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1 Introduction

Regression models with time-varying parameters have become a staple of the applied

econometrician’s toolkit. A particularly prevalent version of these models is the Markov-

switching regression of Goldfeld and Quandt (1973), in which parameters switch between

some finite number of regimes, and this switching is governed by an unobserved Markov

process. Hamilton (1989) makes an important advance by extending the Markov-switching

framework to an autoregressive process, and providing an iterative filter that produces both

the model likelihood function and filtered regime probabilities. Hamilton’s paper initiated

a large number of applications of Markov-switching models, and these models are now a

standard approach to describe the dynamics of many macroeconomic and financial time

series. For surveys of this literature see Hamilton (2008) and Piger (2009).

Hamilton’s Markov-switching regression model assumes that the Markov state variable

governing the timing of regime switches is strictly exogenous, and thus independent of the

regression disturbance at all leads and lags. Diebold et al. (1994) and Filardo (1994) extend

the Hamilton model to allow the transition probabilities governing the Markov process to be

partly determined by strictly exogenous or predetermined information, which could include

lagged values of the dependent variable. However, this time-varying transition probability

(TVTP) formulation maintains the assumption that the state variable is independent of

the contemporaneous value of the regression disturbance. The large literature applying

Markov-switching models has almost exclusively focused on either the Hamilton (1989) fixed

transition probability model or the TVTP extension, which we will collectively refer to as

“exogenous switching” models.

Despite the popularity of this exogenous switching framework, it is natural in many

applications to think of the state process as endogenous. For example, a very common

application of the Markov-switching regression is to models where the dependent variable is

an aggregate measure of some macroeconomic or financial variable, and the state variable

is meant to capture the business cycle regime (e.g. expansion and recession). It seems
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reasonable that shocks to these aggregate quantities, such as real GDP, would contribute

simultaneously to changes in the business cycle phase. More generally, both the state variable

and the disturbance term to the dependent variable may be influenced simultaneously by

a number of unmodeled elements. For example, in the Hamilton (1989) regime-switching

autoregressive model of real GDP growth, both the state variable capturing the business cycle

phase and the shock to real GDP are likely influenced by other factors, such as monetary

and fiscal policy.

Motivated by such arguments, Kim et al. (2008) develop an “endogenous switching”

regression model, in which the state variable and the regression disturbance term are deter-

mined simultaneously. Kang (2014) incorporates the Kim et al. (2008) model of endogenous

switching inside of a more general state-space model. However, a significant drawback of

this existing endogenous switching literature is that it is largely limited to the case of two

regimes.1 This limits the potential application of the model considerably, as there is evi-

dence for more than two regimes in many empirical implementations of the Markov-switching

model. For example, in models of real activity, Boldin (1996) finds evidence for a three regime

switching model of business cycle dynamics for real GDP, while Hamilton (2005) does the

same for the unemployment rate. For asset prices, Garcia and Perron (1996) and Guidolin

and Timmermann (2005) provide evidence for a three-regime switching mean and volatility

model of U.S. interest rates and equity returns respectively. In a Markov-switching VAR,

Sims and Zha (2006) find the best fit using nine regimes, primarily capturing changes in

conditional volatility.

In this paper, we develop an N -regime endogenous Markov-switching regression model.

In the two regime case, the model collapses to that in Kim et al. (2008). For more than two

1Kim et al. (2008) propose a version of their model for more than two regimes, but it is very restrictive in
terms of the patterns of correlation between the state variable and the regression disturbance term that
can be captured. In particular, their N-state model implies that larger positive values of the regression
disturbance term are monotonically related to larger values of the state variable. Among other things, this
makes results from this model highly dependent on the arbitrary decision of how the states are labeled.
The model we develop in this paper is far less restrictive, and is able to capture a wide variety of patterns
of correlation between the regression disturbance term and the state variable.

3



regimes, the model admits a wide variety of patterns of correlation between the state variable

and regression disturbance term. Despite this flexibility, the model maintains computational

feasibility, and can be estimated via maximum likelihood using extensions to the filter in

Hamilton (1989). The parameterization of the model also allows for a simple test of the null

hypothesis of exogenous switching. Using simulation experiments, we demonstrate that the

maximum likelihood estimator performs well in finite samples, and that a likelihood ratio

test of the null hypothesis of exogenous switching has good size and power properties.

We consider two applications of our N -regime endogenous switching model. In the first,

we test for endogenous switching in a three regime switching mean model of U.S. real GDP

growth. In the second we consider endogenous switching inside of a three-regime version of

the Turner et al. (1989) volatility feedback model of U.S. equity returns. We find statistically

significant evidence of endogenous switching in both of these models, as well as quantitatively

large differences in parameter estimates resulting from allowing for endogenous switching.

2 An N-State Endogenous Markov-Switching Model

Consider the following Gaussian regime-switching model:

yt = g (xt, yt−1, . . . , yt−p, St, St−1, . . . , St−p) + σStεt, (1)

εt ∼ i.i.d.N(0, 1),

where g (·) is a conditional mean function, yt is scalar, xt is a k × 1 vector of observed

exogenous variables, and St ∈ {0, 1, . . . , N − 1} is an integer valued state variable indicating

which of N different regimes is active at time t. Both yt and xt are assumed to be covariance-

stationary variables. Examples of equation (1) include a regime-switching regression model:

yt = x′tβSt + σStεt, (2)
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as well as a regime-switching autoregression:

yt = µSt + φ1 (yt−1 − µSt−1) + φ2

(
yt−2 − µSt−2

)
+ · · ·+ φp

(
yt−p − µSt−p

)
+ σStεt. (3)

For simplicity of exposition, we focus on the regime-switching regression model in equation

(2) throughout this paper. However, the algorithms presented below for estimation and

filtering are easily extended to the more general case of equation (1).

In an N-state Markov-switching model, the discrete regime indicator variable St follows

an N-state Markov-process. Here we will allow the Markov-process to have time-varying

transition probabilities as in Diebold et al. (1994) and Filardo (1994):

pij,t = Pr (St = i|St−1 = j, zt) (4)

In (4), the transition probability is influenced by the strictly exogenous or predetermined

conditioning information in zt, and is thus time varying. Throughout, we assume that zt is

covariance stationary.

To model the dependence of the transition probability on zt, it will be useful to al-

ternatively describe St as the outcome of the values of N − 1 continuous latent variables,

S∗1,t, S
∗
2,t, . . . , S

∗
N−1,t. To do so, we employ a multinomial probit specification:

St =



0, 0 > S∗1,t, S
∗
2,t, . . . , S

∗
N−1,t

1, S∗1,t > 0, S∗2,t, . . . , S
∗
N−1,t

...

N − 1, S∗N−1,t > 0, S∗1,t, S
∗
2,t, . . . , S

∗
N−2,t


, (5)
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where each of the N − 1 latent variables follow a symmetric process:

S∗i,t = γi,St−1 + z′tδi,St−1 + ηi,t

ηi,t ∼ i.i.d.N(0, 1)

i = 1, 2, · · · , N − 1

This provides enough structure to parameterize the transition probabilities for the Markov-

process:

p0j,t = Pr (η1,t < c1,j,t, η2,t < c2,j,t, . . . , ηN−1,t < cN−1,j,t) , (6)

pij,t = Pr (ηi,t > ci,j,t, {(ηi,t − ηm,t) > (ci,j,t − cm,j,t) : m = 1, . . . , N − 1,m 6= i}) , (7)

where ci,j,t = − (γi,j + z′tδi,j) , i = 1, . . . , N − 1, j = 1, . . . , N − 1.

Typical applications of the Markov-switching model assume that the Markov-process

driving St is either strictly exogenous, or in the case of time-varying transition probabilities,

possibly dependent on lagged dependent variables included in zt. In the formulation of the

Markov-switching model given above, this assumption is captured by assuming that the

Gaussian model disturbance term is independent of each of the Gaussian disturbance terms

for the latent variables at all leads and lags:

E (εtηi,t+τ ) = 0, ∀ t, i, τ

Here, we are alternatively interested in endogenous switching models, where St is po-

tentially contemporaneously correlated with εt. To model endogenous switching, we assume

that the joint probability density between εt and each ηi,t is bivariate normal:

 ηi,t

εt

 ∼ N


 0

0

 ,
 1 ρi

ρi 1


 , i = 1, 2, . . . , N − 1 (8)
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while maintaining the assumption that εt is independent of ηi,t at leads and lags:

E (εtηi,t+τ ) = 0, ∀ t, i, τ 6= 0. (9)

In this model of endogenous switching, the extent of endogeneity is controlled by the ρi

parameters, i = 1, . . . , N − 1. Indeed, the exogenous switching model is nested through

the parameter restriction ρ1 = ρ2 = · · · = ρN−1 = 0. Further, these ρi parameters have a

straightforward interpretation: When ρi is positive, larger values of εt are associated with

an increased likelihood of St = i occurring relative to St = 0. When (ρi − ρm) is positive,

larger values of εt are associated with an increased likelihood of St = i occurring relative to

St = m. The converse is also true. Note that nothing in this model takes a stand on the

direction of causality, and the model could be consistent with causality running from εt to

St, from St to εt, or bi-directional causality.

A normalization is required to complete the model. In order to calculate the transition

probabilities in (6)-(7), the joint distribution of the ηi,t, i = 1, 2, . . . , N−1 must be specified.

This is needed to map the rule in (5) into transition probabilities, and is without loss of

generality. Here we assume that conditional on εt, the ηi,t are independent:

f (η1,t, η2,t, . . . ηN−1,t|εt) = f1 (η1,t|εt) f2 (η2,t|εt) . . . fN−1 (ηN−1,t|εt) , (10)

where, from (8):

ηi,t| εt ∼ N

(
ρiεt,

√
1− ρ2i

)
(11)

To gain further intuition into how the exogenous and endogenous Markov-switching mod-

els differ, it is useful to consider the probability of transitioning between states, conditional

on εt:

p̃ij,t = Pr (St = i|St−1 = j, zt, εt) (12)

For the exogenous switching model, this conditional transition probability is equal to the
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unconditional transition probability, so that p̃ij,t = pij,t. For the endogenous switching

model the conditional and unconditional transition probabilities will not be equal, and the

realization of εt can signal markedly different probabilities of transitioning between regimes.

As an example of this, Figure 1 plots unconditional and conditional transition probabili-

ties against alternative realizations of εt ∈ [−3, 3] for a particular parameterization of a three

state (N = 3) endogenous switching model. In this example, the dependence on zt has been

eliminated, and the correlation parameters have been set to ρ1 = −0.5 and ρ2 = 0.9. The

figure shows that the conditional probability of transitioning regimes can vary in extreme

directions depending on the outcome of εt. For example, focusing on the diagonal entries,

the probability of continuing in the St = 0 regime (p̃00,t) increases gradually from around 0.3

to above 0.8 as εt moves from a large negative value (-3) toward 0. This transition proba-

bility then falls rapidly to near 0 as εt increases from 0 to around 2. The other continuation

probabilities, p̃11,t and p̃22,t, also display dramatic shifts that cover the entire probability

range as εt is varied. Alternative parameterizations for ρ1 and ρ2 give alternative patterns

of p̃ij,t. An example of this is given in Figure 2, which depicts the transition probabilities

when ρ1 = 0.9 and ρ2 = 0.9. These figures also demonstrate that the conditional transition

probability can differ markedly from the unconditional transition probability, which is given

by the horizontal dashed lines in each figure. As will be shown in detail in the next section,

the ratio of these two probabilities is an important quantity in distinguishing the likelihood

function for the endogenous switching model from that for the exogenous switching model.

3 Likelihood Calculation, State Filtering and Tests for

Endogenous Switching

In this section we describe how both the likelihood function and filtered and smoothed

probabilities of the states can be calculated for the endogenous switching model.2 We will

2The model likelihood for Markov-switching models will be invariant to an arbitrary relabeling of regimes. We
assume throughout that the model has been appropriately normalized. Specific strategies for normalization
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also describe how these calculations differ from those for the exogenous switching model.

Finally, we discuss how tests of the null hypothesis of exogenous switching vs. the alternative

hypothesis of endogenous switching can be conducted.

Collect the model parameters into the vector θ, and let Zt = {zt, zt−1, · · · } and Ψt =

{yt, yt−1, · · · } indicate the history of observed zt and yt through date t. As in Filardo (1994),

the conditional likelihood value for yt, f (yt|Ψt−1,Zt, θ), t = 1, · · · , T , can be constructed

recursively using an extension of the iterative formulas in Hamilton (1989) to the case of

time-varying transition probabilities:3

f (yt|Ψt−1,Zt, θ) =
N−1∑
St=0

N−1∑
St−1=0

f (yt|St, St−1,Ψt−1,Zt, θ) pij,t Pr (St−1|Ψt−1,Zt−1, θ) (13)

Pr (St = i|Ψt,Zt, θ) ∝
N−1∑
St−1=0

f (yt|St, St−1,Ψt−1,Zt, θ) pij,t Pr (St−1|Ψt−1,Zt−1, θ) (14)

These equations can be iterated recursively to obtain the log likelihood function L (θ) =
T∑
t=1

log [f (yt|Ψt−1,Zt, θ)] and the filtered state estimates Pr (St = i|Ψt,Zt, θ), t = 1, . . . , T . To

initialize the recursion we require an initial filtered state probability, Pr (S0 = i|Ψ0,Z0, θ),

i = 0, · · · , N − 1, calculation of which can be quite involved. Here we follow the usual

practice, suggested by Hamilton (1989), of approximating this initial probability with an

unconditional probability. In the case of time-varying transition probabilities, we use the

unconditional state probability computed assuming zt is always at its sample mean. Denote

this probability as Pr (St = i|z̄), i = 0, · · · , N − 1, where z̄ is the sample mean of zt. Next,

define p̄ij = Pr (St = i|St−1 = j, z̄), and collect these in a matrix of transition probabilities

will be discussed for the empirical analysis presented in Section 5.
3For notational convenience, we suppress the dependence of probability density functions on the regressors,
xt, throughout this section. Equations (13) and (14) make use of the assumption, implicit in equation (2),
that conditional on xt and the state indicator St, the probability density function of yt does not depend on
zt. This is without loss of generality, since xt may include elements of zt.
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as:

P̄ =



p̄00 p̄01 . . . p̄0N−1

p̄10 p̄11 . . . p̄1N−1
...

...
. . .

...

p̄N−1 0 p̄N−1 1 · · · p̄N−1N−1


(15)

Finally, define:

A =

IN − P̄
ι′N


where IN is the N×N identity matrix and ιN is an N×1 vector of ones. The vector holding

Pr (St = i|z̄), i = 0, · · · , N−1 is then computed as the last column of the matrix (A′A)−1A′.

The key element required to compute each step of the the recursion in (13) and (14) is

f (yt|St, St−1,Ψt−1,Zt, θ), and it is here that we see the distinction in the likelihood function

between the exogenous and endogenous switching models. In the exogenous switching model,

the state indicators St = i and St−1 = j simply define the mean and variance of a Gaussian

distribution for yt, such that:

f (yt|St = i, St−1 = j,Ψt−1,Zt, θ) =
1

σi
φ

(
yt − x′tβi

σi

)

where φ() indicates the standard normal probability density function. By contrast, when

there is endogenous switching, the state variables St = i and St−1 = j indicate not just

the parameters of the relevant data generating process, but additionally provide information

about which values of the random disturbance, εt, are most likely. In the case of endogenous

switching:

f (yt|St = i, St−1 = j,Ψt−1,Zt, θ) =
p̃ij,t
pij,t

[
1

σi
φ

(
yt − x′tβi

σi

)]
(16)
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This equation, which is derived in the appendix, can be interpreted as follows. The term

in brackets is the regime-dependent conditional density for yt for the exogenous switching

model. This density is then weighted by a ratio of probabilities of transitioning from regime

j to regime i, where the probability in the numerator is conditional on the regime-specific

value of εt and the probability in the denominator is not. The unconditional transition prob-

ability pij,t can be interpreted as the average value of p̃ij,t with respect to the unconditional

distribution of εt. In other words, pij,t gives the average probability of transitioning from

state j to state i with respect to εt. Thus, equation (16) says that if the value of εt signals an

above average probability of transitioning from state j to state i, then the likelihood value

for yt conditional on St = i and St−1 = j will be higher than would be calculated under the

exogenous switching model. Returning to Figures 1 and 2, the ratio p̃ij,t/pij,t can be far from

unity, meaning the likelihood function for the exogenous switching model may be substan-

tially misspecified in the presence of endogenous switching. In general, estimation assuming

exogenous switching will lead to biased parameter estimates as well as biased filtered state

probabilities when endogenous switching is present.

The recursion provided by equations (13) and (14) can be used to construct the value

of the likelihood function for any value of θ, which can then be numerically maximized

with respect to θ to obtain the maximum likelihood estimates, θ̂.4 Given these estimates,

the recursion can be run again to provide the filtered state probability evaluated at the

maximum likelihood estimates, Pr
(
St = i|Ψt,Zt, θ̂

)
. In many applications we also require

the so-called “smoothed” state probability Pr (St = i|ΨT ,ZT , θ), which provides inference on

St conditional on all available sample information. To compute the smoothed probabilities,

we can apply the recursive filter provided in Kim and Nelson (1999b), which remains valid

for the N-state endogenous Markov-switching model described in Section 2. Beginning with

4One practical computational difficulty in constructing the likelihood function is that it requires computing
the unconditional and conditional transition probabilities, p̃ij,t and pij,t, which involves calculation of mul-
tivariate Gaussian cumulative density functions, for which there is no closed form solution. In our empirical
implementation of the endogenous switching model we use Matlab’s “mvncdf” command to numerically
compute the required integrals.
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the final filtered probability, Pr (ST = j|ΨT ,ZT , θ), j = 0, . . . , N − 1, the following equation

can be applied recursively, for t = T − 1, . . . , 1:

Pr (St = i|ΨT ,ZT , θ) =
N−1∑
j=0

N−1∑
k=0

Pr (St−1 = j, St = i, St+1 = k|ΨT ,ZT , θ) (17)

where:

Pr (St−1 = j, St = i, St+1 = k|ΨT ,ZT , θ) (18)

=
Pr(St = i, St+1 = k|ΨT ,ZT , θ)pki,tPr(St = i, St−1 = j|Ψt,Zt, θ)

Pr(St = j, St+1 = k|Ψt,Zt, θ)

For additional details of the derivation of equation (18), see Kim (1994) and Kim and Nelson

(1999b).

To conclude this section, we describe how statistical hypothesis tests of the null hypothesis

of exogenous switching can be conducted. Our N-state endogenous switching model collapses

to a standard exogenous Markov-switching model in the case where:

ρ1 = ρ2 = · · · = ρN−1 = 0, (19)

Thus, the null hypothesis of exogenous switching can be tested by any suitable joint test

of the N − 1 zero restrictions in 19. In the simulation studies presented in Section 4, we

will consider the finite sample performance of both Wald and likelihood ratio tests of these

restrictions.

4 Monte Carlo Evidence

In this section we describe results from a Monte Carlo simulation study designed to

evaluate the finite sample performance of the maximum likelihood estimator (MLE) applied

to data generated from an endogenous switching model. We also evaluate the size and
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power performance of hypothesis tests for endogenous switching. To focus on the results

most germane to the addition of endogenous switching, we consider a simplified version of

the general model presented in Section 2. In particular, we focus on the Gaussian Markov-

switching mean and variance model:

yt = µSt + σStεt (20)

εt ∼ i.i.d.N(0, 1)

where St ∈ {0, 1, 2} is a three-state Markov process that evolves with fixed transition prob-

abilities pij = Pr (St = i|St−1 = j).

In all Monte Carlo simulations we set µSt ∈ {−1, 0, 1} and σSt ∈ {0.33, 0.67, 1.00}. The

Markov process evolves according to the endogenous switching model outlined in Section

2 with zt = 0, ∀t. Across alternative Monte Carlo experiments we vary the persistence

of the transition probabilities for remaining in a regime from a “high persistence” case

(p00 = p11 = p22 = 0.9) to a “low persistence case” (p00 = p11 = p22 = 0.7). We also vary the

size of the correlation parameters from ρ1 = ρ2 = 0.9 to ρ1 = ρ2 = 0.5. Finally, we consider

two sample sizes, T = 300 and T = 500. Performance is measured using the mean and root

mean squared error (RMSE) of the estimates of each parameter across 1000 Monte Carlo

simulations. The RMSE, reported in parentheses, is computed relative to the true value for

each parameter.

Table 1 presents results regarding the performance of the MLE that incorrectly assumes

exogenous switching, and demonstrates that the bias in this incorrectly specified MLE can be

severe. The bias in the µi parameters increases as the state persistence falls, with the amount

of bias reaching as high as 44% of the true parameter value in the case of µ2. Estimation

bias is also visible in the estimates of the regime-switching conditional variance term, with

the bias in some cases above 20% of the true parameter value. The estimation bias is not a

small sample phenomenon, with similar bias observed for T = 300 as for T = 500. The bias
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decreases as the correlation parameters, ρ1 and ρ2, fall from 0.9 to 0.5. However, despite this

substantially lessened importance of endogenous switching, the MLE that ignores endogenous

switching still generates very biased parameter estimates, with bias reaching as high as 30%

of the true parameter value for µ2.

Table 2 shows results for the same variety of data generating processes, but with the

MLE now applied to the correctly specified model. These results demonstrate that the MLE

of the correctly specified model performs very well, with mean parameter estimates that are

close to the true value, and RMSE statistics that are small. The performance of the correctly

specified estimator seems largely unaffected by the extent of state persistence or the value

of the correlation parameters. The sample size also does not have large effects on the mean

estimates although, not surprisingly, the RMSE is higher when the sample size is T = 300.

Finally, we show simulation results to assess the finite sample performance of both Wald

and likelihood ratio (LR) tests of the null hypothesis of exogenous switching, which is pa-

rameterized as a test of the joint restriction ρ1 = ρ2 = 0. We again consider two sample

sizes, as well as a high and low state persistence case. To evaluate the size of the Wald and

LR tests, we first consider the case where the true data generating process has ρ1 = ρ2 = 0.

To evaluate the power of these tests we consider two cases, one in which the extent of en-

dogenous switching is high (ρ1 = ρ2 = 0.9) and a second where endogenous switching is

more moderate (ρ1 = ρ2 = 0.5). The size results are based on rejection rates of 5%-level

tests using asymptotic critical values. The power results are based on rejection rates using

size-adjusted 5% critical values.

Both tests have close to correct size, with rejection rates between 5.9% and 9.6% for the

Wald test and 5.3% and 7.9% for the LR test. Not surprisingly, the empirical size is closer

to the level implied by the asymptotic critical values when the sample size is larger. Turning

to the power results, the LR test displays consistently high rejection rates ranging between

72% and 100%. The Wald test is less consistent, with rejection rates ranging from 51% to

100%.
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Overall, the Monte Carlo results suggest that ignoring endogenous switching can lead

to substantial bias in the MLE when endogenous switching is in fact present. This bias

persists into large sample sizes, and for both high and moderate values of the parameters

controlling the extent of endogenous switching. The MLE that accounts for endogenous

switching performed very well, yielding accurate parameter estimates and low variability of

these estimates. Finally, both the Wald and LR tests for exogenous switching were effective,

with approximately correct size and good power. Overall, in terms of both size and power,

the LR test performed better than the Wald test.

5 Applications in Macroeconomics and Finance

In this section, we consider two applications of the N-state endogenous Markov-switching

model. In Section 5.1, we consider endogenous switching in a three-state model of U.S. busi-

ness cycle dynamics. In Section 5.2 we extend the two-state endogenous-switching volatility

feedback model in Kim et al. (2008) to allow for three volatility regimes.

5.1 U.S. Business Cycle Fluctuations

One empirical characteristic of the U.S. business cycle highlighted by Burns and Mitchell

(1946) is asymmetry in the behavior of real output across business cycle phases. In his

seminal paper, Hamilton (1989) captures asymmetry in the business cycle using a two-state

Markov-switching autoregressive model of U.S. real GNP growth. His model identifies one

phase as relatively brief periods of steep declines in output, and the other as relatively

long periods of gradual output increases. Using quarterly data from 1952:Q2 to 1984:Q4,

Hamilton (1989) shows that the estimated shifts between the two phases accord well with

the National Bureau of Economic Research (NBER) chronology of U.S. business cycle peaks

and troughs.

While Hamilton’s original model captures the short and steep nature of recessions relative
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to expansions, it does not incorporate an important feature of the business cycle that was

prevalent over the sample period he considered: recessions were typically followed by high-

growth recovery phases that pushed output back toward its pre-recession level. This “bounce

back” effect is evident in the post-recession real GDP growth rates shown in Table 4. In

order to capture this high growth recovery phase, Sichel (1994) and Boldin (1996) extend

Hamilton’s original model to a three state Markov-switching model.

Here we also use a three state Markov-switching model to capture mature expansions,

recessions, and a post-recession expansion phase. In particular, we assume that the U.S. real

GDP growth rate is described by the following three state Markov-switching mean model:

∆yt = µSt + σεt (21)

εt ∼ i.i.d.N(0, 1)

where yt is U.S. log real GDP and St ∈ {0, 1, 2} is a Markov-switching state variable that

evolves with fixed transition probabilities pij. Note that in this model U.S. real GDP growth

follows a white noise process inside of each regime. This intra-regime lack of dynamics is

consistent with the results of Kim et al. (2005) and Camacho and Perez-Quiros (2007), who

find that traditional linear autoregressive dynamics in U.S. real GDP growth are largely

absent once mean growth is allowed to follow a three-regime Markov-switching process.

We restrict the model in two ways. First, we restrict µ0 > 0, µ1 < 0, and µ2 > 0, which

serves to identify St = 1 as the recession regime, and St = 0 and St = 2 as expansion regimes.

Second, following Boldin (1996), we restrict the matrix of transition probabilities so that the

states occur in the order 0→ 1→ 2:

P̄ =


p00 0 1− p22

1− p00 p11 0

0 1− p11 p22

 ,
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In combination with the restrictions on µSt , this form of the transition matrix restricts the

regimes to occur in the order: mature expansion → recession → post-recession expansion.

We will consider two versions of this model, one in which the Markov-switching is assumed

to be exogenous, so that ρ1 = ρ2 = 0, and one that allows for endogenous switching.

We estimate this model using data on quarterly U.S. real GDP growth from 1947:Q1

to 2016:Q2. Over this sample period, there are two prominent types of structural change

in the U.S. business cycle that are empirically relevant. The first is the well-documented

reduction in real GDP growth volatility in the early 1980s known as the “Great Moderation”

(Kim and Nelson (1999a), McConnell and Perez-Quiros (2000)). To capture this reduction in

volatility, we include a one time change in the conditional volatility parameter, σ, in 1984:Q1,

the date identified by Kim and Nelson (1999a) as the beginning of the Great Moderation.

The second, as identified in Kim and Murray (2002) and Kim et al. (2005), is the lack of a

high growth recovery phase following the three most recent NBER recessions. To capture

this change in post-recession growth rates, we include a one-time break in µ2. Finally, to

allow for the possibility that the nature of endogenous switching changed along with the

nature of the post-recession regime, we allow for breaks in ρ1 and ρ2. These breaks in µ2, ρ1

and ρ2 are also dated to 1984:Q1, although results are insensitive to alternative break dates

between 1984:Q1 and the beginning of the 1990-1991 recession. All other model parameters

are assumed to be constant over the entire sample period.

The second and third columns of Table 5 shows the maximum likelihood estimation

results when we assume exogenous switching. The estimates show a prominent high growth

recovery phase before 1984:Q1 (µ2,1 >> µ0). The estimates also show that this high growth

recovery phase has disappeared in recent recessions, and indeed been replaced with a low-

growth post-recession phase (µ2,2 < µ0). The conditional volatility parameter, σ, falls by

50% after 1984, consistent with the large literature on the Great Moderation.

The maximum likelihood estimates assuming endogenous switching are shown in the

fourth and fifth columns of Table 5. A likelihood ratio test rejects the null hypothesis of
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exogenous switching at the 5% level (p-value = 0.045). The estimates of the correlation

parameters prior to 1984 are such that ρ2 < ρ1 < 0. This pattern of correlations means

that larger positive values of εt increase the likelihood of St = 0 (mature expansion) relative

to St = 1 (recession) and St = 2 (post-recession expansion), and increase the likelihood of

St = 1 relative to St = 2. These estimates switch signs after 1984, such that ρ1 ≈ ρ2 > 0. In

this case, larger positive values of εt increase the likelihood of St = 1 and St = 2 relative to

St = 0.

There is also evidence of bias in the parameter estimates of the exogenous switching

model. The estimated mean growth rate in the post-recession expansion phase is substan-

tially different when accounting for endogenous switching. Also, the continuation probabil-

ity for the post-recession phase, p22, is substantially lower when accounting for endogenous

switching, meaning the length of these phases are overstated by the results from exogenous

switching models. Finally, results of the Ljung-Box test, shown in the bottom panel of

the table, show that accounting for endogenous switching eliminates autocorrelation in the

disturbance term that is present in the exogenous switching model.

Figure 3 displays the smoothed state probabilities for both the exogenous and endogenous

switching models, and shows the distortion in estimated state probabilities that can occur

from ignoring endogenous switching. From panel (a), we see that the smoothed probability

that the economy is in a mature expansion (St = 0) is often lower for the exogenous switching

model than the endogenous switching model, while panel (c) shows that the opposite is

true for the smoothed probability of the post-recession expansion phase (St = 2). Put

differently, the endogenous switching model suggests a quicker transition from the post-

recession expansion phase to the mature expansion phase than does the exogenous switching

model.
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5.2 Volatility Regimes in U.S. Equity Returns

An empirical regularity of U.S. equity returns is that low returns are contemporaneously

associated with high volatility. This is a counterintuitive result, as classical portfolio the-

ory implies the equity risk premium should respond positively to the expectation of future

volatility. One explanation for this observation is that while investors do require an increase

in expected return for expected future volatility, they are often surprised by news about

realized volatility. This “volatility feedback” creates a reduction in prices in the period in

which the increase in volatility is realized. The volatility feedback effect has been investi-

gated extensively in the literature by French et al. (1987), Turner et al. (1989), Campbell

and Hentschel (1992), Bekaert and Wu (2000) and Kim et al. (2004).

Turner et al. (1989) (TSN hereafter) model the volatility feedback effect with a two state

Markov-switching model:

rt = θ1E
(
σ2
St|It−1

)
+ θ2

[
E(σ2

St|I
∗
t )− E(σ2

St|It−1)
]

+ σStεt

εt ∼ i.i.d.N(0, 1)

where rt is a measure of excess equity returns, It = {rt, rt−1, · · · }, and I∗t is an information

set that includes It−1 and the information investors observe during period t. St ∈ {0, 1} is a

discrete variable that follows a two state Markov process with fixed transition probabilities

pij. To normalize the model, TSN restrict σ1 > σ0, so that state 1 is the higher volatility

regime.

One estimation difficulty with the above model is that there exists a discrepancy between

the investors’ and the econometrician’s information set. In particular, while It−1 may be

summarized by returns up to period t− 1, the information set I∗t includes information that

is not summarized in the econometrician’s data set on observed returns. To handle this

estimation difficulty, TSN use actual volatility, σ2
St

to approximate E(σ2
St
|I∗t ). That is, they
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estimate,

rt = θ1E
(
σ2
St |It−1

)
+ θ2

[
σ2
St − E(σ2

St |It−1)
]

+ σStut (22)

ut = εt + θ2
[
E(σ2

St |I
∗
t )− σ2

St

]
Kim, Piger, and Startz (2008) (KPS, hereafter) point out that this approximation in-

troduces classical measurement error into the state variable in the estimated equation, thus

rendering it endogenous. KPS propose a two-state endogenous Markov-switching model to

deal with this endogeneity problem. Again, this two-state model of endogenous switching

is identical to the N-state endogenous switching model proposed in Section 2 when N = 2.

However, there is substantial evidence for more than two volatility regimes in U.S. equity

returns (Guidolin and Timmermann (2005)). Here, we extend the TSN and KPS exogenous

and endogenous switching volatility feedback models to allow for three volatility regimes.

Specifically, we extend the volatility feedback model in equation (22) to allow for three

regimes, St ∈ {0, 1, 2}, with fixed transition probabilities pij. For normalization we assume

σ2 > σ1 > σ0, so that state 2 is the highest volatility regime.

To estimate the three state volatility feedback model, we measure excess equity returns

using monthly returns for a value-weighted portfolio of all NYSE-listed stocks in excess of the

one-month Treasury Bill rate. The sample period extends from January 1952 to December

2015. The second and third columns of Table 6 show the estimation results when we assume

exogenous switching. The estimates are consistent with a positive relationship between the

risk premium and expected future volatility (θ1 > 0) and a substantial volatility feedback

effect (θ2 << 0). The estimates also suggest a dominant volatility feedback effect, as θ1 is

small in absolute value relative to θ2.

The fourth and fifth columns of Table 6 show the results when we allow for endogenous

switching. First, there is statistically significant evidence in favor of endogenous switching,

with a likelihood ratio test rejecting the null hypothesis of exogenous switching at the 5%

20



level (p-value = 0.034). The primary difference in the estimated parameters is a much smaller

volatility feedback effect (smaller θ2) in the endogenous switching model than was found in

the exogenous switching model. The estimated correlation parameters have different signs,

with ρ1 < 0 and ρ2 > 0. Thus, large values of ut in equation (22) increase the likelihood of

St = 0 (low volatility regime) relative to St = 1 (medium volatility regime), and increase the

likelihood of St = 2 (highest volatility regime) relative to both St = 0 and St = 1.

Figure 4 shows the risk premium implied by three different volatility feedback models,

the exogenous switching model with three states (red dashed line), the endogenous switching

model with three states (blue solid line), and the endogenous switching model with two states

(green dotted line). The three state endogenous switching model produces a risk premium

that is more variable than the other models across volatility states. In particular, the risk

premium from the three state endogenous switching model rises above the risk premium

from the other models during the highest volatility state, which from Figure 5 is seen to be

highly correlated with NBER recessions. However, during the other volatility states, the risk

premium from the three state endogenous switching model is generally below that from the

other models. On average, our model suggests a 9% risk premium, similar to that estimated

by Kim et al. (2004) using the volatility feedback model assuming exogenous switching over

the period 1952 to 1999. This estimated risk premium is higher than Fama and French

(2002), who estimate an average risk premium of 2.5% using the average dividend yield plus

the average dividend growth rate for the S&P 500 index over the period 1951 to 2000.

6 Conclusion

We have proposed a novel N -state Markov-switching regression model in which the state

indicator variable is correlated with the regression disturbance term. The model admits

a wide variety of patterns for this correlation, while maintaining computational feasibility.

Parameter estimates can be obtained via maximum likelihood using extensions to the filter
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in Hamilton (1989). The parameterization of the model also allows for a simple test of the

null hypothesis of exogenous switching. In simulation experiments, the maximum likelihood

estimator performed well, and a likelihood ratio test of the null hypothesis of exogenous

switching had good size and power properties. We considered two applications of the N -

regime endogenous switching model, one to an empirical model of U.S. business cycles,

and the other to a switching volatility model of U.S. equity returns. We find statistically

significant evidence of endogenous switching in both of these models, as well as quantitatively

large differences in parameter estimates resulting from allowing for endogenous switching.
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Appendix: Derivation of f (yt|St, St−1,Ψt−1,Zt, θ)

The iterative filter presented in Section 3 requires calculation of the regime-dependent

density f (yt|St, St−1,Ψt−1,Zt, θ), where yt represents the random variable described by

the data generating process described in equation (2) along with the endogenous regime-

switching process described in Section 2. We have again suppressed the conditioning of this

density on the covariates xt. This appendix derives this regime-dependent density.

Let y∗t denote a realization of yt for which we wish to compute f (y∗t |St = i, St−1 = j,Ψt−1,Zt, θ).

Applying Bayes Rule yields:

f (yt|St = i, St−1 = j,Ψt−1,Zt, θ) =
f (yt, St = i|St−1 = j,Ψt−1,Zt, θ)

Pr (St = i|St−1 = j,Ψt−1,Zt, θ)
(A.1)

The denominator of equation (A.1) is the time-varying transition probability, pij,t. Consider

the following CDF of the numerator of (A.1):

Pr (yt < y∗t , St = i|St−1 = j,Ψt−1,Zt)

=

∫ y∗t

−∞
f (yt, St = i|St−1 = j,Ψt−1,Zt) dyt

=

∫ y∗t−x
′
tβi

σi

−∞
f (εt, St = i|St−1 = j,Ψt−1,Zt) dεt

=

∫ y∗t−x
′
tβi

σi

−∞
Pr (St = i|εt, St−1 = j,Ψt−1,Zt) f (εt|St−1 = j,Ψt−1,Zt) dεt

=

∫ y∗t−x
′
tβi

σi

−∞
Pr (St = i|εt, St−1 = j,Ψt−1,Zt) f (εt) dεt

where the validity of moving to the last line in this derivation is ensured by the independence

of εt over time, the exogeneity of Zt, and the independence of εt and St−1 (see equation (9).)
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Finally, differentiating this CDF with respect to y∗t yields:

f (y∗t , St = i|St−1 = j,Ψt−1,Zt, θ) (A.2)

= Pr

(
St = i

∣∣∣ (y∗t − x′tβi
σi

)
, St−1 = j,Ψt−1,Zt

)
f

(
y∗t − x′tβi

σi

)

where (y∗t − x′tβi) /σi is a realization of the random variable εt. The first term in (A.2) is

the conditional transition probability, p̃ij,t. Given the marginal Gaussian distribution for εt,

the second term in equation (A.2) is:

f

(
y∗t − x′tβi

σi

)
=

1

σi
φ

(
y∗t − x′tβi

σi

)

Combining the above results, we have:

f (y∗t |St = i, St−1 = j,Ψt−1,Zt, xt) =
p̃ij,t
pij,t

[
1

σi
φ

(
y∗t − x′tβi

σi

)]

which is equation (16) evaluated at y∗t .
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Figure 1
Pr (St = i|St−1 = j) vs. Pr (St = i|St−1 = j, εt)

ρ1 = −0.5, ρ2 = 0.9

Notes: These graphs show the unconditional transition probability, Pr (St = i|St−1 = j)
(horizontal dashed line), and the transition probability conditional on the continuous distur-
bance term in equation (2), Pr (St = i|St−1 = j, εt) (solid line). In all panels, j → i indicates
transitions from state j to state i, and the x-axis measures alternative values of εt.
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Figure 2
Pr (St = i|St−1 = j) vs. Pr (St = i|St−1 = j, εt)

ρ1 = 0.9, ρ2 = 0.9

Notes: These graphs show the unconditional transition probability, Pr (St = i|St−1 = j)
(horizontal dashed line), and the transition probability conditional on the continuous distur-
bance term in equation (2), Pr (St = i|St−1 = j, εt) (solid line). In all panels, j → i indicates
transitions from state j to state i, and the x-axis measures alternative values of εt.
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Figure 3
Smoothed State Probabilities for Three Regime Model of Real GDP Growth

(a) Probability of St = 0 (b) Probability of St = 1

(c) Probability of St = 2

Notes: Smoothed probability of mature expansion phase (St = 0), recession phase (St = 1),
and post-recession recovery phase (St = 2) from 1947:Q2 to 2016:Q2. Dotted lines denote the
regime probability estimated by the exogenous switching model, and solid lines represents
the regime probability estimated by the endogenous switching model. NBER recessions are
shaded.
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Figure 4
Risk Premium from Alternative Volatility Feedback Models

Notes: Risk premium implied by different Markov-switching volatility feedback models.
The red dashed line reports the risk premium produced by the exogenous switching model
with three states, the green dotted line reports the risk premium produced by the endogenous
switching model with two states, and the blue solid line reports the risk premium produced
by the endogenous switching model with three states. NBER recessions are shaded.
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Figure 5
Smoothed State Probabilities from Three Regime

Volatility Feedback Model with Endogenous Switching

(a) Probability of St = 0 (b) Probability of St = 1

(c) Probability of St = 2

Notes: Smoothed probability of low volatility phase (St = 0), medium volatility phase
(St = 1), and high volatility phase (St = 2). NBER recessions are shaded.
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Table 1
Monte Carlo Simulation Results

Performance of Misspecified Maximum Likelihood Estimator

ρ1 = ρ2 = 0.9
µ0 = −1 µ1 = 0 µ2 = 1 σ0 = 0.33 σ1 = 0.67 σ2 = 1

T = 300
High Persistence -1.11 0.11 1.31 0.32 0.61 0.93

(0.04) (0.14) (0.30) (0.03) (0.08) (0.12)
Low Persistence -1.24 0.22 1.44 0.27 0.52 0.82

(0.03) (0.15) (0.25) (0.02) (0.11) (0.12)

T = 500
High Persistence -1.10 0.09 1.23 0.32 0.61 0.95

(0.03) (0.09) (0.20) (0.02) (0.07) (0.09)
Low Persistence -1.24 0.23 1.43 0.28 0.51 0.82

(0.03) (0.11) (0.19) (0.02) (0.07) (0.08)

ρ1 = ρ2 = 0.5
µ0 = −1 µ1 = 0 µ2 = 1 σ0 = 0.33 σ1 = 0.67 σ2 = 1

T = 300
High Persistence -1.06 0.07 1.14 0.32 0.64 0.97

(0.05) (0.13) (0.24) (0.03) (0.11) (0.12)
Low Persistence -1.14 0.18 1.30 0.31 0.59 0.91

(0.08) (0.17) (0.36) (0.03) (0.15) (0.16)

T = 500
High Persistence -1.06 0.06 1.11 0.33 0.65 0.98

(0.03) (0.09) (0.14) (0.02) (0.07) (0.07)
Low Persistence -1.14 0.17 1.27 0.31 0.60 0.92

(0.03) (0.13) (0.28) (0.02) (0.12) (0.12)

Notes: This table contains summary results from 1000 Monte Carlo simulations when the
true data generating process is given by yt = µSt + σStεt and St evolves according to the
endogenous switching model detailed in Section 2 with N=3 states. “High Persistence”
indicates high state persistence, with transition probabilities p00 = p11 = p22 = 0.9, while
“Low Persistence” indicates transition probabilities p00 = p11 = p22 = 0.7. Each cell contains
the mean of the 1000 maximum likelihood point estimates for the parameter listed in the
column heading, as well as the root mean squared error of the 1000 point estimates from
that parameter’s true value (in parentheses). The maximum likelihood estimator is applied
to the incorrectly specified model that assumes the state process is exogenous.
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Table 2
Monte Carlo Simulation Results

Performance of Correctly Specified Maximum Likelihood Estimator

ρ1 = ρ2 = 0.9
µ0 = −1 µ1 = 0 µ2 = 1 σ0 = 0.33 σ1 = 0.67 σ2 = 1

T = 300
High Persistence -1.00 -0.01 1.02 0.33 0.66 0.99

(0.03) (0.10) (0.22) (0.02) (0.07) (0.09)
Low Persistence -1.01 -0.01 1.04 0.33 0.65 0.98

(0.05) (0.13) (0.33) (0.03) (0.10) (0.12)

T = 500
High Persistence -1.00 0.00 0.99 0.33 0.66 0.99

(0.03) (0.07) (0.13) (0.01) (0.05) (0.06)
Low Persistence -1.00 0.00 1.02 0.33 0.66 0.99

(0.03) (0.11) (0.21) (0.02) (0.07) (0.09)

ρ1 = ρ2 = 0.5
µ0 = −1 µ1 = 0 µ2 = 1 σ0 = 0.33 σ1 = 0.67 σ2 = 1

T = 300
High Persistence -1.00 0.00 1.03 0.33 0.66 0.99

(0.04) (0.12) (0.21) (0.02) (0.09) (0.10)
Low Persistence -1.01 0.03 1.10 0.33 0.67 1.00

(0.08) (0.25) (0.53) (0.04) (0.15) (0.19)

T = 500
High Persistence -1.00 0.00 1.01 0.33 0.66 0.99

(0.03) (0.09) (0.14) (0.02) (0.06) (0.07)
Low Persistence -1.00 0.00 1.06 0.34 0.67 0.99

(0.06) (0.19) (0.34) (0.02) (0.11) (0.11)

Notes: This table contains summary results from 1000 Monte Carlo simulations when the
true data generating process is given by yt = µSt + σStεt and St evolves according to the
endogenous switching model detailed in Section 2 with N=3 states. “High Persistence”
indicates high state persistence, with transition probabilities p00 = p11 = p22 = 0.9, while
“Low Persistence” indicates transition probabilities p00 = p11 = p22 = 0.7. Each cell contains
the mean of the 1000 maximum likelihood point estimates for the parameter listed in the
column heading, as well as the root mean squared error of the 1000 point estimates from
that parameter’s true value (in parentheses). The maximum likelihood estimator is applied
to the correctly specified model that assumes the state process is endogenous.
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Table 3
Monte Carlo Simulation Results

Size and Size-Adjusted Power of Tests of ρ1 = ρ2 = 0

Size Power Power
ρ1 = ρ2 = 0 ρ1 = ρ2 = 0.5 ρ1 = ρ2 = 0.9

Wald LR Wald LR Wald LR
T = 300
High Persistence 8.2 7.1 59.8 76.7 96.8 100
Low Persistence 9.6 7.9 51.3 71.8 94.4 100
T = 500
High Persistence 5.9 5.3 75.6 88.2 100 100
Low Persistence 6.3 5.4 71.1 82.3 99.1 100

Notes: Each cell of the table contains the percentage of 1000 Monte Carlo simulations for
which the Wald test or likelihood ratio (LR) test rejected the null hypothesis that ρ1 = ρ2 = 0
at the 5% significance level. For columns labeled “Size”, critical values are based on the
asymptotic distribution of the test-statistic. For columns labeled “Power”, size adjusted
critical values are calculated from 1000 simulated test statistics from the corresponding
Monte Carlo experiment in which ρ1 = ρ2 = 0. The data generating process used to
simulate the Monte Carlo samples is given by yt = µSt +σStεt, where St evolves according to
the endogenous switching model detailed in Section 2 with N=3 states and ρ1 and ρ2 given
by the column headings.
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Table 4
U.S. Real GDP Growth Rate in Quarters

Following Post-War U.S. Recessions

Quarters After Average Growth Observations
Recession

1 6.45 11
2 6.32 11
3 5.50 11
4 5.79 10
5 4.14 10
6 4.29 10
7 3.66 10
8 3.48 9

Full Sample 3.10 278

Notes: Average growth rates are measured as annualized percentages. The sample period is
1947:Q1 to 2016:Q2. For four quarters and longer, one observation is lost due to the termi-
nation of the expansion following the 1980 recession. For eight quarters, another observation
is lost due to the termination of the expansion following the 1957-1958 recession.
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Table 5
Regime Switching Model for Real GDP Growth Rate

Exogenous Switching Endogenous Switching
µ0 0.87 (0.06) 0.93 (0.11)
µ1 -0.48 (0.18) -0.46 (0.18)
µ2,1 1.62 (0.45) 2.37 (0.42)
µ2,2 0.54 (0.15) 0.34 (0.13)
p00 0.93 (0.03) 0.93 (0.03)
p11 0.71 (0.09) 0.69 (0.10)
p22 0.88 (0.05) 0.72 (0.09)
σ1 0.92 (0.07) 0.93 (0.08)
σ2 0.46 (0.03) 0.50 (0.05)
ρ1,1 -0.30 (0.29)
ρ1,2 0.85 (0.16)
ρ2,1 -0.79 (0.19)
ρ2,2 0.80 (0.19)

Likelihood -323.64 -318.78

Q-statistic p-value Q-statistic p-value
Q(k = 1) 4.07 0.04 0.29 0.58
Q(k = 2) 5.48 0.02 1.33 0.52
Q(k = 4) 7.35 0.12 5.35 0.25

Notes: This table reports maximum likelihood estimates of the three state switching mean
model of U.S. real GDP growth given in equation (21). The sample period is 1947:Q1 to
2016:Q2. Standard errors, reported in parentheses, are based on second derivatives of the
log-likelihood function in all cases. Q(k) stands for the Ljung-Box test statistic for serial
correlation in the standardized disturbance term calculated by smoothed probabilities up to
k lags.
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Table 6
Volatility Feedback Model with Three Volatility States

Exogenous Switching Endogenous Switching
θ1 0.50 (0.11) 0.47 (0.11)
θ2 -5.94 (1.67) -3.36 (1.03)
p00 0.96 (0.01) 0.97 (0.01)
p01 0.04 (0.01) 0.03 (0.01)
p10 0.09 (0.02) 0.07 (0.01)
p11 0.85 (0.03) 0.84 (0.03)
p21 0.30 (0.08) 0.31 (0.05)
p22 0.67 (0.11) 0.69 (0.05)
σ0 0.37 (0.01) 0.38 (0.01)
σ1 0.49 (0.03) 0.46 (0.02)
σ2 0.68 (0.07) 0.73 (0.08)
ρ1 -0.63 (0.15)
ρ2 0.42 (0.30)

Likelihood -513.90 -510.51

Notes: This table reports maximum likelihood estimates of the volatility feedback model in
equation 22 with three volatility states, estimated assuming both exogenous and endogenous
Markov switching. The sample period is 1952:M1 to 2015:M12. Standard errors, reported
in parentheses, are based on second derivatives of the log-likelihood function in all cases.
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