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Abstract. This paper develops identification results for the distribution of valuations in a class of
allocation-transfer mechanisms. These mechanisms determine an allocation of units of a valuable
object and arrangement of monetary transfers on the basis of the actions taken by the players. The
identification strategy is based on the assumption of monotone equilibrium, in which players take
actions that are weakly increasing functions of their valuations. Such equilibria are known from the
economic theory literature to exist under general conditions on the mechanism. The identification
results flexibly deliver either point identification or partial identification, as appropriate based on the
identifying content of the data from the mechanism. The identification result is non-parametric, in
the sense that it does not depend on parametric assumptions about the distribution of valuations.
Moreover, the identification results can apply to an incomplete model that does not necessarily involve
a complete specification of all of the details of the mechanism. Consequently, the identification results
are necessarily robust to the details of the specification of the model and flexibly accommodate unique
features of the mechanism in particular empirical applications.
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1. Introduction

This paper develops identification results for the distribution of valuations in a class of allocation-
transfer mechanisms, including models of contests, auctions, procurement auctions and related models
of oligopoly competition, bargaining and trading, partnership dissolution, and public good provision.
These mechanisms involve allocation of units of a valuable object and arrangement of monetary
transfers on the basis of the actions taken by the players. The interpretations of the actions depend on
the mechanism, and include effort in contest models, bids in auction models, offers in bargaining and
trading models, or contributions in public good provision models. In some mechanisms, as in auctions
of a single unit, at most one player can be allocated a unit of the object. In other mechanisms, as in
auctions of multiple units or public good provision, multiple players can be allocated a unit of the
object. In some mechanisms, as in contests, the allocation can be non-deterministic. Each of the
players has a privately-known valuation for a unit of the object. The identification result concerns
recovering the distribution of these valuations from data from the mechanism. The valuations can be
dependent, including but not limited to “affiliated values.” The identification results are constructive.

The identification results are based on the assumption of monotone equilibrium. In mechanisms,
each player uses a strategy that expresses its action as a function of its valuation. In a monotone
equilibrium, the strategies are weakly increasing functions. In monotone equilibria in different sorts
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of mechanisms, if the valuation of a player increases then that player puts forth more effort in contest
models, bids more in auction models, offers more in bargaining and trading models, or contributes
more in public good provision models. In addition to the intuitive appeal of monotone equilibrium,
the economic theory literature has emphasized the importance of proving existence of monotone
equilibrium in many specific mechanisms. Moreover, the economic theory literature, including Maskin
and Riley (2000), Athey (2001), McAdams (2003, 2006), and Reny (2011), has also emphasized
the importance of proving general results that establish general conditions on the mechanism that
are sufficient for existence of monotone equilibrium. These general results apply to a large class of
mechanisms satisfying the sufficient conditions. Therefore, the monotone equilibrium assumption can
be motivated either as an intuitive condition, or as the implication of known sufficient conditions
by appealing to results from the economic theory literature establishing monotone equilibrium. In
the case of independent valuations, the assumption of monotone equilibrium can be replaced by the
assumption that the allocation to player i is a weakly increasing function of the action of player i,
holding fixed the actions of the other players. For example, in contests, the probability that player i
wins should be a weakly increasing function of the effort of player i. Or, for example in auctions, the
allocation to player i should be a weakly increasing function of the bid of player i. This is a common
property of mechanisms, and further serves to motivate the generality of the identification analysis.

When assuming monotonicity in other areas of econometrics, monotonicity commonly relates to the
functional relationship between two observed variables, and the functional relationship is the object
of interest. Monotonicity assumptions are commonly used in regression models or treatment effects
models that relate an outcome to a treatment. Monotonicity has been imposed as a shape restriction
on the estimator in regression models (e.g., Mukerjee (1988), Ramsay (1988, 1998), and Mammen
(1991)), and has been used in the identification of treatment effects models (e.g, Manski (1997),
and Manski and Pepper (2000, 2009)). When assuming monotone equilibrium, the monotonicity
relates to the equilibrium functional relationship between the observed action and the unobserved
valuation, and the distribution of the unobserved valuation is the object of interest. Therefore, in
addition to the evident differences in contexts, the role of the monotone equilibrium assumption is
fundamentally different from the role of these other common uses of monotonicity assumptions in
econometrics.1 The assumption of monotone equilibrium is used in multiple steps of the identification
strategy, including in steps relating to the beliefs of the players in the case of dependent valuations.

The identification strategy does not necessarily result in point identification of the distribution
of valuations. Rather, depending on the identifying content of the data, the identification results
flexibly deliver either point identification or partial identification of the distribution of valuations.
Although the main approach of the paper is to derive the partial identification result, the paper also
provides sufficient conditions for point identification. Partial identification results are stated in terms
of “bounds” on the distribution of valuations in the sense of the usual multivariate stochastic order.
1Along these lines of using monotonicity to improve the properties of an estimator, monotonicity of the bidding
strategy in specific first-price auction models has been studied in the literature by Henderson, List, Millimet, Parmeter,
and Price (2012) and Luo and Wan (2016). Those papers explore the impact of monotonicity on the properties of
the estimator (e.g., rate of convergence, optimality, etc.), whereas this paper explores the role of monotonicity in
identification. Moreover, those papers work in the context of the important case of specific first-price auction formats,
whereas this paper studies partial identification in the entire allocation-transfer mechanism framework, which flexibly
includes auctions that are not necessarily first-price auctions, and also a variety of models other than auctions. Further,
those papers assume independent valuations, whereas this paper allows dependent valuations.



ROBUST IDENTIFICATION IN MECHANISMS 3

Beyond the assumption of monotone equilibrium, the identification results are based on relatively
weak regularity assumptions about the economic environment. In particular, the identification
result is non-parametric, in the sense that it does not depend on parametric assumptions about the
distribution of valuations. Further, the identification result applies to the class of allocation-transfer
mechanisms, which is sufficiently general to include a variety of important specific mechanisms.
Indeed, the identification results can apply even if the econometrician does not know all of the details
of the mechanism, which includes the details of how the allocations and transfers are determined
on the basis of the actions of the players, because it is basically sufficient for the econometrician to
just assume that the mechanism falls into the class of allocation-transfer mechanisms. The exact
statement of the conditions the econometrician must assume is stated in detail in the identification
analysis. In other words, the identification results can apply even if the econometrician does not know
the distribution of the observable data that would be generated for any given specification of the
distribution of valuations, resulting in an incomplete model. Therefore, the identification results do
not depend on correctly specifying all of the details of the mechanism, and the identification results
can flexibly accommodate unique features of the mechanism in particular empirical applications.
In that sense, the identification results are robust to the specification of the model. Of course, an
important special case of the identification results obtains when the econometrician does know the
complete model of the mechanism. And, of course, even if the econometrician does know the complete
model of the mechanism, the identification problem of recovering valuations from the data remains.
In other words, the case of an incomplete model of the mechanism complicates the identification
problem, but is not the only source of the identification problem.

Although in many cases the econometrician may know the complete model of the mechanism,
there are a variety of settings in which the econometrician may not know the complete model of the
mechanism. For example, contest models have been used extensively in the theory literature to model
“competition” for a valuable object, based on the players competing by exerting some sort of “costly
effort.” Contest models have been used extensively in the theory literature to study applications like
political lobbying and research and development. The “contest success function” relates the effort
put forth by all of the players to the probabilities that each of them win the contest, which relates
to the “allocation” part of the mechanism. The theory literature has proposed a variety of possible
contest success functions, and hence the econometrician may not have confidence in knowing this
relationship between effort and outcome. Because the identification results do not require a complete
specification of the mechanism, as applied to contest models, the identification results do not require
the econometrician to specify (or know) the contest success function. Contest models are discussed
throughout the paper as Example 1. For another example, auction models (or related procurement
auction models) may involve “participation costs” or endogenous quantity functions that are not fully
known by the econometrician. Endogenous quantity functions relate to situations where the quantity
of the object allocated depends on the actions of the players, as in a “supply curve.” Because the
identification results do not require a complete specification of the mechanism, as applied to auction
models with participation costs and/or endogenous quantity, the identification results do not require
the econometrician to specify (or know) the participation costs and/or endogenous quantity function.
Auction models are discussed throughout the paper as Example 2.
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Fundamentally, the identification strategy is based on the structure shared by allocation-transfer
mechanisms in monotone equilibrium. The identification strategy involves two main steps: a reduced-
form identification step and a structural identification step.

The reduced-form identification step concerns identifying the utility maximization problem, from
the perspective of each player in the mechanism at the time it chooses its action, up to the unobserved
valuation. In general, the utility maximization problem facing each player depends on its own
valuation, and also on how allocations and transfers are determined on the basis of the players’
actions, and beliefs about the other players’ actions. The reduced-form identification step involves
recovering relevant aspects of how allocations and transfers are determined, and also players’ beliefs,
directly from the data. Reduced-form identification involves identifying the beliefs held by each player
about the actions of the other players. In general with dependent valuations, beliefs depend on the
valuation of the player and therefore can be quite complicated, since players with different valuations
have different beliefs about the valuations of the other players and hence different beliefs about the
actions of the other players. Therefore, an important part of the reduced-form identification step
concerns dealing with the beliefs of a player even though the valuation of that player is unobserved.

The structural identification step involves using the now-identified utility maximization problem to
recover information about the unobserved valuation corresponding to an observed action. Depending
on the identifying content of the data from the mechanism, the identification result delivers either
point identification or partial identification of the valuation.

As an extension, the paper considers identification under an additional monotonicity assumption.
This extension is especially useful with discrete action spaces. Because the parameter of interest is
the infinite-dimensional distribution of valuations, such discrete coarsening of the data results in
partial identification, generically.2 By contrast, in the main identification results, although partial
identification is the focus of the paper, point identification does obtain under the appropriate
sufficient conditions. As another extension, the paper shows that identification of some features of
the distribution of valuations is robust to partial failures of the equilibrium assumption.

The identification results apply to the class of allocation-transfer mechanisms. Consequently, one of
many possible applications of the identification results is identification of bidder valuations in auction
models. The literature on identification in auction models is too large to attempt to fully review
here, but has been reviewed, for example, in Paarsch and Hong (2006) and Athey and Haile (2007).
Earlier identification results made distributional assumptions concerning the valuations and specific
(generally point identifying) assumptions on the auction model (e.g., Paarsch (1992), Donald and
Paarsch (1993, 1996), and Laffont, Ossard, and Vuong (1995)). Later identification results relaxed the
distributional assumptions concerning the valuations (e.g., Guerre, Perrigne, and Vuong (2000), and
Athey and Haile (2002)). As applied to auction models, the identification strategy developed in this
paper applies across the class of auctions that fall into the class of allocation-transfer mechanisms,
and is based on the assumption of monotone equilibrium in which players bid weakly more if their
valuation increases. Hence, the identification strategy can flexibly and automatically accommodate
a range of auction formats and complications like multiple units possibly with endogenous supply,
2In the “econometrics of (entry) games” literature with discrete outcomes but (generally) continuous explanatory
variables there is still some continuity in the data to identify possibly infinite-dimensional objects, but in these
mechanisms discrete actions implies discrete data. On the other hand, Kline and Tamer (2016) considers the case
of partially identified inference with discrete explanatory variables in entry games when the parameter of interest is
finite-dimensional, rather than the infinite-dimensional distribution of valuations in mechanisms.
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reserve prices, and/or participation costs, or other unique features in particular empirical applications.
Such auctions are not necessarily point identifying, and the identification results deliver either point
identification or partial identification as appropriate based on the identifying content of the data
from the auction. Indeed, basically as long as the econometrician assumes that the auction falls into
the class of allocation-transfer mechanisms, the identification results allow incomplete knowledge
of these details of the auction. As noted above, in applications to auctions, the econometrician
might not know the participation cost and/or endogenous quantity function, among other details. In
applications to other mechanisms, the econometrician might not know other features of the mechanism.
Along similar lines of not knowing the details of the auction, Haile and Tamer (2003) studied the
(partial) identification of bidder valuations in an incomplete model of English auctions with symmetric
independent private values.3 Haile and Tamer (2003) studied identification of bidder valuations based
on the assumptions that bidders will not be “outbid” and will not “overbid.” By contrast, this paper
studies identification under the condition that the auction falls in the class of allocation-transfer
mechanisms and under the assumption of monotone equilibrium. Consequently, Haile and Tamer
(2003) and this paper are two non-nested approaches to different identification problems that share
the feature of not requiring the econometrician to specify a complete model. Moreover, the results in
this paper considers identification in settings not restricted to English auction formats and settings
not restricted to symmetric independent valuations. Another important identification problem,
particularly in certain auction formats, concerns the “missing data” problem when the econometrician
does not observe the bids of all of the players. Aradillas-López, Gandhi, and Quint (2013) have
established partial identification in the important case of an ascending auction with correlated
valuations, focusing on showing partial identification of economically relevant seller profit and bidder
surplus quantities4 rather than the object in this paper, the overall joint distribution of valuations.
Because the data used by the identification strategy developed here includes the actions of all players,
it cannot be applied to address the identification problem studied in Aradillas-López, Gandhi, and
Quint (2013). However, the identification strategy developed here does allow “missing data” on other
parts of the mechanism, for example the “participation cost” in an auction with a participation cost.
Similarly, because the identification strategy can apply to an incomplete specification of the model,
the identification results also accommodate “missing ex ante knowledge,” for example on endogenous
quantity functions in an auction. The identification results developed in this paper also apply to
allocation-transfer mechanisms that are not auctions.

The remainder of the paper is organized as follows. Section 2 sets up the allocation-transfer
mechanism framework and provides some baseline analysis. Section 3 provides the partial identification
strategy. Section 4 provides sufficient conditions for point identification. Section 5 discusses the
role of equilibrium assumptions in the identification results. Section 6 provides the extension of the
identification strategy under an additional assumption, that is especially useful with many discrete
actions, or an entirely discrete action space. Finally, Section 7 concludes. Appendix A provides
further examples of the allocation-transfer mechanism framework. The body of the paper essentially
contains the proofs of the identification results, because the body of the paper details the identification
strategy. Also, proofs are provided in Appendix B.
3See also Chesher and Rosen (2015) for further identification results in a related model of English auctions with
symmetric independent private values, based on generalized instrumental variables.
4Similarly, Tang (2011) focuses on partial identification of auction revenue in first-price auctions with common values.
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2. Allocation-transfer mechanism framework

There are N ≥ 2 players5 in the mechanism, which determines the allocation of units of a valuable
object and arrangement of monetary transfers on the basis of the actions of the players. Examples of
models fitting the framework are discussed, and include contests, auctions, bargaining and trading,
partnership dissolution, and public good provision. Contests and auctions are specifically discussed
as examples in Section 2.1 after setting up the framework. Players are indexed by i = 1, 2, . . . , N .

Player i has valuation θi for a unit of the object. The utility of player i with valuation θi, and who
receives allocation xi of the object and transfers away (“pays”) ti units of money is

U(θi, xi, ti) ≡ θixi − ti.

Note the convention that ti is the transfer from player i. Positive ti reflects that player i “pays” ti.
However, the sign of ti is unrestricted, so player i can be “paid,” reflected by negative ti, a transfer to
player i. For example, the monetary transfer could be the payment in an auction model, the “price”
in a bargaining and trading model, or the contribution in a public good provision model. This utility
function is standard in the economic theory literature on mechanisms.

It is common knowledge amongst the players that the valuations θ ≡ (θ1, θ2, . . . , θN) are drawn
from the joint distribution F (θ). The actual realization θi is the private information of player i.

Assumption 1 (Dependent valuations). It is common knowledge amongst the players that θ is drawn
from F (θ), and θi is the private information of player i. The distribution F (·) has associated ordinary
density f(·). For each i ∈ {1, 2, . . . , N}, the support of the distribution of θi is convex.

The part of this assumption about the support states the standard condition that the support of
θi is an interval. The econometrician need not know the support. The identification results allow
dependent valuations, but simplify under the further assumption of independent valuations:

Assumption 2 (Independent valuations). In addition to Assumption 1, player valuations are
independent, in the sense that the components of θ = (θ1, θ2, . . . , θN) are independent random
variables, so F (θ) = F1(θ1)F2(θ2) · · ·FN(θN).

Even under the assumption of independent valuations, players are not assumed to be symmetric,
and in particular it is not assumed that players draw their valuation from the same distribution,
so Fi(·) need not equal Fj(·), which is useful for example to model “weak” and “strong” bidders in
auctions or asymmetries between buyers and sellers in models of bilateral trade. Symmetry is allowed
as a special case, in which case, as usual when indices do not play a role in a model, the “player
indices” can be viewed as randomly assigned to players in (and data from) the mechanism.6

After realizing θi, player i takes an action ai from its action space Ai. The interpretation of the
actions depends on the mechanism, and includes efforts in contests, bids in auction models, offers in
bargaining and trading models, and contributions in public good provision models.

Assumption 3 (Action space). For each i ∈ {1, 2, . . . , N}, the econometrician knows the action
space for player i is Ai ⊆ R. Further, Ai = Alow

i,disc ∪ Ai,cont ∪ Ahigh
i,disc where

Alow
i,disc = {a(low,1)

i , a
(low,2)
i , . . . , a

(low,|Alow
i,disc|)

i } if Alow
i,disc 6= ∅

5In principle, the results could apply to some “single-agent mechanisms” with N = 1, of course as long as the
assumptions hold in such a mechanism, but the focus is on multiple-agent mechanisms.
6Similarly, in typical cross-sectional models, the “i index” is just randomly assigned to observations in the data.
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and

Ai,cont =



[αi, βi] if αi < βi are finite
(−∞, βi] if αi = −∞ and βi is finite
[αi,∞) if αi is finite and βi =∞
(−∞,∞) if αi = −∞ and βi =∞
∅ if αi > βi

and
Ahigh
i,disc = {a(high,1)

i , a
(high,2)
i , . . . , a

(high,|Ahigh
i,disc|)

i } if Ahigh
i,disc 6= ∅.

And for any a(1)
i ∈ Alow

i,disc, a
(2)
i ∈ Ai,cont and a(3)

i ∈ A
high
i,disc, it holds that a(1)

i < a
(2)
i < a

(3)
i . If any of

Alow
i,disc, Ai,cont, and Ahigh

i,disc are empty, this is understood to hold restricted to the non-empty sets.

The action space Ai includes7 both a “continuous part” Ai,cont and a “discrete part” Ai,disc ≡
Alow
i,disc∪A

high
i,disc. Any of Alow

i,disc, Ai,cont, and A
high
i,disc can be empty sets. The “continuous part” Ai,cont must

be non-empty for the main identification strategy to result in non-trivial bounds on the valuations,
but the “discrete part” Ai,disc can be an empty set. Most mechanisms have mainly if not entirely
continuous action spaces. For example, in many mechanisms, Ai = [0,∞) so Alow

i,disc = ∅ = Ahigh
i,disc

and Ai,cont = [0,∞). Section 6 develops an extension of the identification strategy that is useful in
mechanisms with many discrete actions, or entirely discrete action spaces.

The allocation-transfer mechanism framework does not require a “numerical interpretation” of the
actions in Ai,disc, similar to how the numerical encodings of the categories in categorical choice models
may or may not actually have a substantive “numerical interpretation.” In some mechanisms, the
actions in Ai,disc have meaningful “numerical interpretation.” For example, in some auctions, it might
be that only integer bids are allowed, in which case actions in Ai,disc = N would be interpreted as the
corresponding numerical bid. In other mechanisms, the actions in Ai,disc do not have any meaningful
“numerical interpretation.” For example, in mechanisms with voluntary participation including
auctions with participation costs, one of the actions is the “do not participate” action. Hence, in such
auctions, it is reasonable to take Ai = {DNP} ∪ [ri,∞) so Alow

i,disc = {DNP} and Ai,cont = [ri,∞)
and Ahigh

i,disc = ∅, where ri ≥ 0 is a lowest allowed bid (“reserve price”). The action “DNP” in such
mechanisms would have a special (“non-numerical”) interpretation of “do not participate (in the
auction).” Actions taken in the set [ri,∞) would have the usual interpretation as the associated
numerical bid.8 Even if there is no “numerical interpretation” of the actions in Ai,disc, it is important
that the action space is ordered. The ordering of the action space plays a role in the identification
strategy because it is assumed that players use monotone strategies. For monotone strategy to be
defined, the action space must be ordered. The numerical encoding of “special” actions as numbers in
Ai,disc respects the ordering of the actions.9 In particular, actions in Alow

i,disc are “lower” than actions
in Ai,cont, and actions in Ahigh

i,disc are “higher” than actions in Ai,cont. For example, in auctions with
voluntary participation, generically players with low valuations choose to not participate, so it makes
7The case αi = βi is not allowed, in order to guarantee that Ai,cont is not a finite set.
8See for example Athey (2001, Section 4.1) or Reny and Zamir (2004) or Menezes and Monteiro (2005, Section 3.1.4)
or Tan and Yilankaya (2006) among other examples from the economic theory literature on such an action space.
9Any two finite totally ordered sets of equal cardinality are order isomorphic, so in particular any finite totally ordered
set is order isomorphic to any subset of Z with equal cardinality and the usual total order on Z.
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sense to define DNP to be in Alow
i,disc, so that DNP is a lower action compared to any participating

bid in [ri,∞), in order for the equilibrium strategy to be monotone.10
The vector of all players’ actions is a = (a1, a2, . . . , aN), the vector of all players’ allocations is

x = (x1, x2, . . . , xN), and the vector of all players’ transfers is t = (t1, t2, . . . , tN).
The mechanism determines the allocations and transfers on the basis of the actions. Even for a

given profile of actions, non-deterministic allocations and monetary transfers are allowed, for example
to allow “noise” in the process of determining a winner in a contest (see Example 1). Let X ⊆ RN
be the set of feasible allocations of the units of the object across the N players, or equivalently, the
feasible set of values for x. For example, if the mechanism involves the allocation of a single indivisible
unit of an object, X = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1), (0, 0, 0, . . . , 0)}, where the
last feasible allocation reflects the possibility that the mechanism keeps the object, for example if a
reserve price is not met in an auction. Depending on the set X , the framework allows that multiple
players are allocated units of the object, for example in the case of public good provision or auctions
with multiple units. The framework also allows that some players have fractional allocation, for
example in the case of divisible objects. Similarly, let T ⊆ RN be the set of feasible transfers across
the N players, or equivalently, the feasible set of values for t. Finally, let O ⊆ X × T be the set of
jointly feasible allocations and transfers across the N players, or equivalently, the jointly feasible set of
values for x and t. The combination of x and t is the outcome of the mechanism. The econometrician
does not need to have ex ante knowledge of X , T , and/or O. Let ∆(S) be the set of all random
variables with realizations in some set S.

On the basis of all players’ actions a, the mechanism is such that the realized allocation and
monetary transfer is a realization11 from the joint distribution of

(x̃(a), t̃(a)) = (x̃1(a), x̃2(a), . . . , x̃N(a), t̃1(a), t̃2(a), . . . , t̃N(a)) ∈ ∆(O),

where x̃i(a) (resp., t̃i(a)) is a random variable that characterizes the distribution of allocations
(resp., transfers) for player i given that the players take actions a. These distributions charac-
terizing the allocations and transfers are part of the specification of the mechanism rules. The
variable xi (resp., ti) is player i’s realized allocation (resp., transfer) in its utility function. The
allocation and transfer are jointly determined, so the allocation and transfer can be “correlated.” If
(x̃1(a), x̃2(a), . . . , x̃N(a), t̃1(a), t̃2(a), . . . , t̃N(a)) is a degenerate random variable, then the allocation
and transfer is deterministic when the players take actions a. For example, in an auction, for any a
that does not involve a tie for high bid, the auction could allocate the object deterministically to the
high bidder with the corresponding transfer appropriate for the auction pricing rules. As a function
of all players’ actions, the expected allocation to player i is xi(a) = E(x̃i(a)) and the expected transfer
from player i is ti(a) = E(t̃i(a)).

Although the players’ valuations are private information, the mechanism itself is common knowledge
amongst the players. In particular, the players know the distributions of (x̃(·), t̃(·)). In other words,
10It could be that DNP is encoded as −1 or −2, for example. The specific numerical encoding is irrelevant.
11By construction, these realizations are draws from the joint distribution and therefore by construction are independent
from all other model quantities (e.g., the valuations of the players). This condition formalizes the notion that the
allocation and transfer “don’t depend on” anything except the actions of the players, and is (often implicitly) a
standard condition in the related economic theory literature. Of course, the realized allocation and transfer will
indirectly depend on the players’ valuations, since the players’ valuations determine the players’ actions and the players’
actions determine the realized allocation and transfer. For example, in the case of a tie for high bid in an auction, the
auctioneer could flip a coin to determine who wins, but the outcome of the coin flip cannot somehow be “correlated”
with the valuations of the players.
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the players know the “rules” of the mechanism. These assumptions on the information of the players
are the standard assumptions from the economic theory literature.

The econometrician does not need to have knowledge of the distributions of (x̃(·), t̃(·)), nor
knowledge of the expected allocations and transfers (x(·), t(·)). Hence, the econometrician need not
know the complete model of the mechanism. In particular, any “randomness” that underlies non-
deterministic allocations and transfers need not be explicitly modeled or known by the econometrician.
Consequently, from the perspective of the econometrician, the identification results can apply to an
incomplete model that does not necessarily involve a complete specification of the mechanism. In
other words, the identification results can apply even if the econometrician does not know all of the
details of the mechanism. In particular, the econometrician might not know the details of how the
allocations and transfers are determined on the basis of the actions of the players. Therefore, the
identification results do not depend on correctly specifying all of the details of the mechanism, and
the identification results can flexibly accommodate unique features of the mechanism in particular
empirical applications. Intuitively, the identification strategy is based on reduced-form identification of
the relevant aspects of the mechanism directly from the data as a substitute for assuming them known
ex ante. Of course, the case of an incomplete model of the mechanism complicates the identification
problem, but is not the only source of the identification problem. Even if the econometrician does
know the complete model of the mechanism, the identification problem of recovering valuations from
the data remains. Examples of an incomplete model of the mechanism are discussed in Section 2.1.

F (θ)

θ1

θ2

θ3

a1

a2

a3

x̃(a), t̃(a)

x1, t1

x2, t2

x3, t3

strategy

strategy

strategy

affects strategies

af
fec

ts

str
ate

gies

in equilibrium: strate-
gies mutually determined

Figure 1. Graphical summary of mechanism in the case of N = 3.

2.1. Diagram and examples of mechanism framework. Figure 1 provides a sketch of the basic
idea of the allocation-transfer mechanism framework. The mechanism determines the allocations
and monetary transfers (the x and t variables) on the basis of the actions of the players (the a
variables). The strategy of player i determines the action ai taken by player i as a function of the
realized valuation θi of player i. The strategies depend implicitly on the rules of the mechanism.
In equilibrium, the strategies also depend on the strategies used by the other players, in the sense
of mutual best responses. As illustrated also via further examples in Appendix A, many economic
environments can be modeled using this allocation-transfer mechanism framework.
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Example 1 (Contests). The allocation-transfer mechanism framework includes contest models, in
which the actions are interpreted as “costly effort” toward winning a valuable object. The economic
theory of such models has been developed in, for example, Hillman and Riley (1989), Baye, Kovenock,
and De Vries (1993), Amann and Leininger (1996), Krishna and Morgan (1997), Lizzeri and Persico
(2000), and Parreiras and Rubinchik (2010), in addition to an overall large literature. See for example
Konrad (2007, 2009) for a summary of the literature, including discussion of theoretical applications
to a broad range of instances of competition, including advertising, litigation, political lobbying,
research and development, and sports.12

The valuation θi is the value that player i has for the object. Often, the “efforts” are equivalent
to financial expenditures, so that Ai = [0,∞) and the transfer rule is ti(a) = ai. However, other
transfer rules are also possible. For example, it might be that part of the effort is “refundable,” so
that players only expend some fraction of their effort, possibly depending on whether the player wins
or loses (e.g., see the models in Riley and Samuelson (1981) and Matros and Armanios (2009)). The
allocation rule x(a) = (x1(a), x2(a), . . . , xN (a)) is known as the “contest success function” that relates
the actions taken by the players to the probabilities that each of the players wins the valuable object.
The econometrician may not know the contest success functions x(·), and indeed the economic theory
literature has explored a variety of different contest success functions. See for example Corchón
and Dahm (2010) for a detailed discussion. For example, following Tullock (1980)-style models,

xi(a) =


ar

i∑N

j=1 a
r
j

if a 6= 0
1
N

if a = 0
for some r > 0. In particular, the case of r = 1 has been interpreted as a

“lottery” in which the probability that player i wins is equal to player i’s share of the overall aggregate
effort. The specification states that if all players expend no effort, then each player has equal chance
of winning the contest. More generally, there can be functions fi(·) such that xi(a) = fi(ai)∑N

j=1 fj(aj)
,

including the logistic specification fi(z) = ekz as in Hirshleifer (1989). Alternatively, following Lazear
and Rosen (1981)- and Dixit (1987)-style models, xi(a) = Pε(ai + εi > maxj 6=i(aj + εj)), where Pε is
the distribution of “noise” or “randomness” involved in determining the contest winner. Because
the identification results do not require a complete specification of the mechanism, the identification
results do not require the econometrician to know x(·) (or the underlying distribution x̃(·)). In
particular, the econometrician might not know know r or fi or Pε.

In the above specifications, generally a player that expends the most effort is most likely to win,
but is not guaranteed to win. In the limiting case of the “all-pay auction” formulation,

xi(a) =


1 if i expends the most effort
pi(a) if i ties for expending the most effort with at least one other player
0 if i does not expend the most effort,

where pi(a) reflects the tie-breaking rule. In all-pay auction models, the player that expends the most
effort is guaranteed to win.

The identification results show that it is possible to partially identify (or, if the data satisfies the
appropriate conditions, even point identify) the distribution of valuations in contests, even if the
econometrician does not know the “contest success function.” But even if the econometrician does
12These models fit the frameworks of the papers establishing conditions for monotone equilibrium in mechanisms
(discussed further after Assumption 6), as illustrated for example by Wasser (2013) who applies Athey (2001) to
establish conditions for a monotone equilibrium in contests.
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know the complete model of the mechanism, the identification problem of recovering valuations from
the data remains.

Example 2 (Auctions). The allocation-transfer mechanism framework includes auction models,
including auction formats involving various complications like “participation costs,” reserve prices,
asymmetries, and/or multiple units possibly with endogenous supply. The economic theory of auctions
is too large to attempt to even partly review here, but has been reviewed, for example, in Klemperer
(1999, 2004), Milgrom (2004), and Krishna (2009). One feature of the auction theory literature is
the range of auction formats, implying a range of allocation and transfer rules.13 The identification
strategy can apply to a wide range of auction formats, because the identification strategy applies to
the class of allocation-transfer mechanisms, which includes a wide variety of auction formats. One of
many possible auction models fitting the framework is discussed here.14

The valuation θi is the value player i has for a unit of the object being auctioned. Because the
allocation-transfer mechanism framework does not necessarily require the assumption of symmetric
players, the auction could involve such asymmetries as “strong” and “weak” bidders, as in Milgrom
(2004, Section 4.5).15 The action space is Ai = {DNP} ∪ [ri,∞), where as discussed above, the
“DNP” action has a special interpretation as “do not participate in the auction” and ri ≥ 0 is the
reserve price. The transfers include the payments to the auctioneer, but could include participation
costs when applicable. The allocation is the awarding of units of the object from the auction. The
allocation rule and transfer rule depend on the specifics of the auction format. A participation cost
can be modeled in a few different ways, particularly concerning whether or not the players know
their own valuation at the time they make the participation decision.16 This example concerns the
case that bidders know their own valuation at the time they make the participation decision (e.g.,
Samuelson (1985), Tan and Yilankaya (2006), and Cao and Tian (2010)).

Let ri ≥ 0 be the reserve price for player i. Generally, with symmetric players, ri = r = rj, but
with asymmetric players, reserve prices could be player-specific. Suppose that there is endogenous
supply, in the sense that the quantity allocated to the winning bidder is a function S(a) of the
profile of bids (e.g., Milgrom (2004, Section 4.3.3)). For example, the supply S(a) might depend
only on the winning bid, as in a “supply curve” at the “price” of the winning bid. See also Example
3 for related models where S(a) can be interpreted as a “demand curve.” The standard case that
there is one exogenous unit of the object being auctioned is the special case that S(·) ≡ 1. Let
13The economic theory of auctions with participation costs has been developed in, for example, Samuelson (1985),
McAfee and McMillan (1987), Levin and Smith (1994), Tan and Yilankaya (2006), and Cao and Tian (2010). See for
example (Krishna, 2009, Section 2.5) for equilibrium in auctions with reserve prices.
14Much of the economic theory literature has focused on establishing monotonicity of the strategy in auction models,
and moreover the literature on general conditions for monotone equilibrium in mechanisms (discussed further after
Assumption 6) often treats auctions as a leading example of their results.
15For example, Campo, Perrigne, and Vuong (2003) have focused on establishing point identifying assumptions for
asymmetric bidders with affiliated private values in first price auctions. Reny and Zamir (2004) have studied the
existence of monotone equilibrium in related auction models.
16A third approach allows that bidders observe a signal of their valuation at the time of their participation decision, an
identification problem studied in Gentry and Li (2014). Other identification results emphasizing entry/participation in
particular auction models includes Marmer, Shneyerov, and Xu (2013) (focusing on identifying the selection effect, and
discriminating between models of entry), Fang and Tang (2014) (focusing on inferring bidder risk attitudes), and Li,
Lu, and Zhao (2015) (focusing on testable implications of risk aversion). In this paper, the identification problem
concerns the partial identification of the distribution of valuations.
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Hi(a) = maxj 6=i and j s.t. aj≥rj
aj be the highest bid other than the bid of player i, among the bids

from players that exceed the corresponding reserve price.
Then, in auction formats where the highest bidder wins, as long it exceeds its reserve price and

the highest competitor’s bid among those bids exceeding the corresponding reserve price,17

xi(a) =


S(a) if ai > Hi(a) and ai ≥ ri

pi(a) if ai = Hi(a) and ai ≥ ri

0 ai < Hi(a) or ai < ri,

where pi(a) ∈ [0, S(a)] reflects the tie-breaking rule, the expected number of units that player i is
allocated when bids are a, involving a tie for high bid. The transfer rule depends on the auction
format. But in many auction formats including those with participation costs, the transfer rule can
be written t̃i(a) = t̃i1(a) + t̃i2(a), where t̃i1(·) is the auction payment rule that accounts for who wins
and loses the auction, and t̃i2(·) is the participation cost that depends only on the binary decision of
participation in the auction (i.e., whether the player bids or takes the special “do not participate”
action). Hence, with participation cost c,

ti2(a) =

c if i participates (i.e., ai ≥ 0)
0 if i does not participate (i.e., ai = DNP )

Then, for example in a first price auction, and noting that ti1(a) is the expected transfer that integrates
over the tie-breaking rule,

ti1(a) =


aiS(a) if ai > Hi(a) and ai ≥ ri

aipi(a) if ai = Hi(a) and ai ≥ ri

0 ai < Hi(a) or ai < ri

Other auction formats would have different allocation rules and/or transfer rules.
Some participation costs may be paid directly to the auctioneer, while other participation costs

are not paid to the auctioneer. The participation costs could include unobserved costs like the “cost
of preparing a bid” or the “opportunity cost of participating in the auction.” Consequently, the
econometrician may not know ti(a) (or the underlying distribution t̃i(a)), because the econometrician
may not know c appearing in ti2(a), but because the identification results do not require a complete
specification of the mechanism, the identification results do not require the econometrician to know
ti(a). In particular, the participation cost need not be observed or known by the econometrician.
See the discussion of Condition 5 of Lemma 1. Similarly, the econometrician may not know xi(a)
and/or ti(a), because the econometrician may not know the “supply function” S(a), but again, the
identification results do not require the econometrician to know xi(a) and/or ti(a). But even if
the econometrician does know the complete model of the mechanism, the identification problem of
recovering valuations from the data remains.

Intuitively, players with low valuations refuse to participate in equilibrium. See for example Menezes
and Monteiro (2005, Section 3.1.4). Therefore, as discussed again in Example 4 after developing
the identification strategy, the partial identification strategy can intuitively be expected to result
in an upper bound on the valuations corresponding to players that do not participate, and point
17The comparison of actions to the reserve price guarantees that a player that takes an action below the reserve price
(particularly DNP ) does not win the auction.
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identification of valuations corresponding to players that do participate.18 Because the identification
strategy does not restrict to a particular model of the auction, the identification result will vary
depending on the identifying content of the data based on the specifics of the auction.

Of course, the identification problems presented by specific auction models have been treated in
isolation. The point of this example is to show the generality of the allocation-transfer mechanism
framework, where such models are examples of a broader identification strategy. For example, as
cited above, there have been papers specifically focusing on the identification problem posed by a
participation cost, and other papers focusing on the identification problem posed by asymmetric
bidders, and so forth. In contrast, the general allocation-transfer mechanism framework flexibly
accommodates various combinations of such complications in auctions without the need for a
“specialized” identification strategy, alongside perhaps even other complications. And, the framework
extends beyond auctions to other settings. In some cases, for example as in some of the existing
literature on participation costs cited in Footnote 16, the identification problems addressed have
concerned objects of interest other than the underlying distribution of valuations, and establishing
those objects are point identified, or have testable implications, and so forth. This paper focuses
always on the distribution of valuations, even if that happens to be partially identified.

Example 3 (Procurement auctions, reverse auctions, oligopoly models, etc.). Models of procurement
auctions, reverse auctions, and related situations fit the allocation-transfer mechanism framework.
Such models are similar to auctions, with the distinguishing feature that the N players are bidding
to sell units of an object, rather than buy units of an object. Therefore, the valuation θi can be
interpreted to be player i’s (constant) marginal cost of supplying one unit of the object, and the
“low bid” wins the market. Let Li(a) = minj 6=i and j s.t. aj≤rj

aj be the lowest bid other than the bid of
player i, among the bids from players that are below the corresponding reserve price. The “allocation”
experienced by player i is the quantity of the object that player i supplies, and therefore the allocation
is negative, so the allocation rule could be

xi(a) =


−S(a) if ai < Li(a) and ai ≤ ri

−pi(a) if ai = Li(a) and ai ≤ ri

0 ai > Li(a) or ai > ri,

,

where, similarly to Example 2, S(a) is the endogenous quantity (i.e., “demand”) given the profile of
bids a, ri is the maximum acceptable bid for player i, and pi(a) reflects the tie-breaking rule. The
“transfer” experienced by player i is the payment to player i. Due to the convention in this paper
that transfers are from the player, transfers are negative. For example, it could be that

ti(a) =


−aiS(a) if ai < Li(a) and ai ≤ ri

−aipi(a) if ai = Li(a) and ai ≤ ri

0 ai > Li(a) or ai > ri

Some models of oligopoly competition are basically the same mechanism, with N firms in an oligopoly
having privately known constant marginal costs of production competing to win the oligopoly
18If players do not know their own valuation when they make the participation decision (e.g., McAfee and McMillan
(1987) and Levin and Smith (1994)), intuitively the consequence is that players use a mixed strategy to determine
their participation with the result that the eventual auction is essentially an auction with fewer players than would
otherwise be in the auction, to compensate (in equilibrium) the participating players for paying the participation cost,
but with no relation between a players’s participation and valuation. See Milgrom (2004, Section 6.2).
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market, see for example Vives (2001, Chapter 8). In these models, the “endogenous quantity” S(a)
is the demand curve, generally depending on the lowest bid (i.e., the “realized price”). As with
the endogenous supply in Example 2, the econometrician may not know the “demand curve” and
therefore again not know xi(a) and/or ti(a), but again the identification results do not require the
econometrician to know xi(a) and/or ti(a). But even if the econometrician does know the complete
model of the mechanism, the identification problem of recovering valuations from the data remains.

For yet another example, detailed in Appendix A, the allocation-transfer mechanism framework
includes models of bargaining and trading, where the actions are “offers” which have different meaning
depending on whether the player is a buyer or seller, the transfers are the monetary transfers between
the players, and the allocation is the actual trade of the object between the players. An important
feature of such mechanisms is the asymmetric roles of buyers and sellers. The equilibrium of such
mechanisms can be quite complicated, making it useful that the identification strategy does not
require solving for the equilibrium. Other examples discussed in Appendix A include partnership
dissolution, and public good provision.

The results apply to the class of allocation-transfer mechanisms, and therefore do not rely on
specifics of particular examples. The range of examples shows the generality of the allocation-transfer
mechanism framework. The cited references in the examples include a range of results on equilibrium
existence, as well as additional theoretical analysis of the models that can be used to motivate the
assumptions used in the identification analysis.

2.2. Data and identification problem. The identification problem concerns recovering the distri-
bution of valuations from observing many instances (“plays”) of the mechanism. For context, the
related literature on identification in auctions has typically considered this identification problem
in the case of auctions specifically. Variables relating to the actions, allocations, and transfers in
upper-case letters represent quantities in the data, whereas quantities in lower-case letters represent
variables in the underlying mechanism. For example, Ai is the realized action in the data from
player i, whereas ai is the action variable in the underlying mechanism from player i. Therefore,
from each play of the mechanism, the realized actions are A = (A1, A2, . . . , AN), the realized al-
locations are X = (X1, X2, . . . , XN), and the realized transfers are T = (T1, T2, . . . , TN). Unless
otherwise stated, the econometrician observes population data on the actions, allocations, and
transfers. Hence, unless otherwise stated, the population data is P (A,X, T ). For example, in an
application to contest models from Example 1, that data comes from many contests, and for each
contest, the econometrician observes each player’s action (i.e., effort), the actual allocation of the
object (i.e., “who wins the contest”), and the actual transfers (i.e., generally, the effort itself). Or,
for example in an application to auction models from Example 2, that data comes from many
auctions, and for each auction, the econometrician observes each player’s action (i.e., bid), the actual
allocation of the object (i.e., “who wins the auction”), and the actual transfers (i.e., “how much
each bidder pays”). The realized allocations and realized transfers are linked to the realized action
through the mechanism: in each instance of the mechanism, by definition (X,T ) is a draw from
(x̃(A), t̃(A)) = (x̃1(A), x̃2(A), . . . , x̃N (A), t̃1(A), t̃2(A), . . . , t̃N (A)), the possibly non-deterministic allo-
cation and transfer distributions given action profile A of the players. In the case of deterministic
allocation and deterministic transfer, for a particular action profile A, then it can be understood that
simply X = x̃(A) = (x̃1(A), x̃2(A), . . . , x̃N(A)) and T = t̃(A) = (t̃1(A), t̃2(A), . . . , t̃N(A)).
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As detailed in the context of reduced-form identification in Lemma 1, the identification strategy
can be based on less than full data on P (A,X, T ). If the econometrician specifies a complete model
of the mechanism, then the identification strategy can be based on only P (A). If the mechanism
involves a “two-part transfer,” as in an auction with a participation cost, then the identification
strategy can in certain cases be based on data from only one part of the transfer.

2.3. Definitions of stochastic ordering. Because the valuations can be dependent (e.g., “cor-
related values”), the identification strategy results in bounds on the multivariate distribution of
valuations in terms of the usual multivariate stochastic order, which relates to upper sets. Hence the
bounds concern both the marginal distributions of each player’s valuation and the “correlation” of
the valuations. Under stronger conditions, the distribution of valuations is point identified.

Definition 1 (Upper set). Let x = (x1, x2, . . . , xd) ∈ Rd and y = (y1, y2, . . . , yd) ∈ Rd. A set U ⊆ Rd
is an upper set if x ∈ U and y ≥ x implies that y ∈ U . Per the standard, the condition y ≥ x is
equivalent to yj ≥ xj for all j = 1, 2, . . . , d.

Definition 2 (Usual multivariate stochastic order). Let A and B be d-dimensional random vectors,
with probability laws PA and PB. A is stochastically larger than B in the usual multivariate stochastic
order if PA(U) ≥ PB(U) for all Borel measurable upper sets U ⊆ Rd. And A is stochastically smaller
than B in the usual multivariate stochastic order if B is stochastically larger than A in the usual
multivariate stochastic order.

As formalized in Shaked and Shanthikumar (2007, Theorem 6.B.1), A is stochastically larger than
B in the usual multivariate stochastic order exactly when there are Â and B̂ defined on the same
probability space, such that Â has the same distribution as A and B̂ has the same distribution
as B, and such that Â ≥ B̂ with probability 1. In the usual multivariate stochastic order, the
partial identification result establishes that the random vector of valuations θ = (θ1, θ2, . . . , θN) is
stochastically larger than a certain random vector (i.e., “the distribution of θ is bounded below”) and
is stochastically smaller than another certain random vector (i.e., “the distribution of θ is bounded
above”). The random vectors that are the upper and lower bounds for θ are themselves identified
quantities, and have a constructive definition as a function of the observable data.

As discussed in Shaked and Shanthikumar (2007, Chapter 6), by the standard properties of the
usual multivariate stochastic order, the partial identification result in terms of the usual multivariate
stochastic order also implies partial identification of other quantities, including expectations of
functions of the valuations and the multivariate cumulative distribution function of the valuations.
In particular, the condition that the random vector A is stochastically larger than the random vector
B in the usual multivariate stochastic order is equivalent to the condition that E(φ(A)) ≥ E(φ(B))
for all weakly increasing functions φ for which the expectations exist.

In particular, because φ(X) = 1[X ≤ t] is weakly decreasing in X, the condition that A with
distribution function FA is stochastically larger than B with distribution function FB in the usual
multivariate stochastic order implies that FA(t) ≤ FB(t) for all t ∈ Rd.

As formalized in Definition 3, the condition that FA(t) ≤ FB(t) for all t ∈ Rd is known as the lower
orthant order (e.g., Shaked and Shanthikumar (2007, Chapter 6.G.1)). The lower orthant order is
a distinct sense of stochastic ordering. For random vectors, unlike for scalar random variables, the
lower orthant ordering is implied by, but does not imply, the usual multivariate stochastic ordering.
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See Müller (2001) for more about the relationships between the senses of stochastic ordering when A
and B are multivariate normal.

Definition 3 (Lower orthant stochastic order). Let A and B be d-dimensional random vectors, with
cumulative distribution functions FA and FB. A is stochastically larger than B in the lower orthant
stochastic order if FA(t) ≤ FB(t) for all t ∈ Rd. And A is stochastically smaller than B in the lower
orthant stochastic order if B is stochastically larger than A in the lower orthant stochastic order.

Bounds on the distribution of valuations in the usual multivariate stochastic order also imply
bounds on other quantities derived from the distribution of valuations, as discussed in Shaked and
Shanthikumar (2007, Chapter 6). In their independent private values English auction setup, Haile and
Tamer (2003) have shown how to use lower orthant bounds on the scalar distribution of valuations to
bound the optimal reserve price in auctions.

2.4. Baseline assumptions. The following baseline assumptions are used. These assumptions are
standard from the economic theory literature on mechanisms.

The players are assumed to be risk neutral, and therefore the expected allocations and transfers
xi(a) and ti(a) determine ex post expected utility of player i as a function of its valuation and all
players’ actions:

U i(θi, a) = θixi(a)− ti(a).
It holds that U i(θi, a) is the ex post expected utility because it depends on the actions of all players,
which are not known ex interim by any individual player. In this paper, ex post expected utility
refers to after the realization of the actions of all players in the mechanism, which still can involve
the expectation with respect to the non-degenerate randomness of the allocation rule and transfer
rule.19 Ex interim expected utility refers to before the realization of the actions of all players in
the mechanism, but after an individual player realizes its own valuation, which involves taking the
expectation with respect to the player’s beliefs about the other players’ actions and the randomness
of the allocation rule and transfer rule.

Because player i does not know the actions of the other players when it chooses its action, it
must form beliefs about the actions of the other players. With dependent valuations, the beliefs
held by player i about the actions of the other players depends on player i’s realized valuation,
so player i’s beliefs are a distribution Πi(a−i|θi), defined over the actions of the other players,
a−i = (a1, . . . , ai−1, ai+1, . . . , aN), that conditions on player i’s realized valuation θi. In other words,
with dependent valuations, players might be able to draw inferences about other players’ valuations,
and therefore other players’ actions.

Independent valuations Under Assumption 2 (Independent valuations), player i’s beliefs are
Πi(a−i), independent of player i’s realized valuation. That is because with independent valuations, the
realized valuation of player i does not revise the beliefs of player i about θ−i, and therefore does not
revise the beliefs of player i about a−i. F

Therefore, ex interim expected utility of player i as a function of its valuation and its action is

Vi(θi, ai) = θiEΠi
(xi(ai, a−i)|θi)− EΠi

(ti(ai, a−i)|θi).
19The utility that is actually realized (based on actually realized allocation and transfer) plays no role distinct from ex
post expected utility.
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With independent valuations, θi affects player i’s ex interim expected utility only through the direct
effect on the value of the object. With dependent valuations, θi also affects the expected allocation
and expected transfer experienced by player i, even for a fixed action ai, since player i’s expected
allocation and expected transfer depend on player i’s beliefs about the other players’ actions, and
therefore on θi. This substantially complicates the identification problem under dependent valuations,
compared to independent valuations.

Given this ex interim expected utility function, player i rationally takes an action that maximizes
its ex interim expected utility given its realized valuation, so that its strategy ai(θi) is supported on
the set of actions that maximizes ex interim expected utility:

(1) ai(θi) ∈ ∆(arg max
ai∈Ai

Vi(θi, ai)).

Assumption 4 (Optimal strategy). For each i ∈ {1, 2, . . . , N}, for each possible valuation θi, player
i uses a strategy ai(θi) when it has valuation θi, with ai(θi) ∈ ∆(arg maxai∈Ai

Vi(θi, ai)), so each
action taken according to the strategy ai(θi) maximizes ex interim expected utility.

In this assumption and other places, “possible valuation” means a valuation that is possible
according to the (unknown) distribution of valuations. This assumption means that player i is
rational, in the sense that it uses a strategy that maximizes its utility given its beliefs. Assumption
4 does not state that player i has correct beliefs. Instead, the subsequent Assumption 5 states
that player i has correct beliefs. Also, Assumption 4 allows the use of a mixed strategy, but
the identification strategy is based on the assumption of monotone equilibrium in monotone pure
strategies, as formalized and discussed subsequently in Assumption 6. Breaking up the assumptions
makes it easier to explain the identification strategy, by making it easier to refer to separate roles of
the assumptions of using an optimal strategy, correct beliefs, and monotone equilibrium.

Let P (A,X, T, θ) be the “infeasible” data, regardless of whether those variables are observed by
the econometrician. Then let P (A−i|θi) be the realized distribution in the “infeasible” data over
A−i = (A1, . . . , Ai−1, Ai+1, . . . , AN) conditional on the realized valuation θi of player i. Of course, θi
is not observed by the econometrician, so the econometrician cannot condition on θi. In a Bayes Nash
equilibrium, each player’s beliefs are correct and correspond to the actual distribution of actions of
the other players, in the sense that, for each player i, Πi(a−i ∈ B|θi) = P (A−i ∈ B|θi) for all Borel
sets B. In other words, the beliefs of player i about a−i when player i has valuation θi is equal to the
actual realized distribution of A−i when player i has valuation θi. This is the standard definition of
correct beliefs with incomplete information.

Assumption 5 (Correct beliefs). For each i ∈ {1, 2, . . . , N}, player i has correct beliefs, in the sense
that, for each possible valuation θi, Πi(a−i ∈ B|θi) = P (A−i ∈ B|θi) for all Borel sets B.

Independent valuations Under Assumption 2 (Independent valuations), the assumption of correct
beliefs is Πi(a−i ∈ B) = P (A−i ∈ B), since then beliefs do not depend on θi. F

As in other incomplete information setups, this assumption of correct beliefs implicitly supposes
the realized distribution of actions (i.e., the data) comes from a single equilibrium corresponding
to the players’ beliefs. If multiple equilibria were played in the data, even with “correct beliefs” in
each equilibrium, the realized distribution over actions in the data would be a mixture over the
beliefs held by the player across equilibria, and thus the realized distribution over actions in the
data would not equal players’ beliefs. However, the econometrician need not have any ex ante



18 BRENDAN KLINE

knowledge of which equilibrium is selected in the case of multiple equilibria. Equivalently, since
different equilibria have different strategies relating a valuation to the action, the econometrician
need not have ex ante knowledge of which equilibrium strategy is actually used in the data. If there is
a unique equilibrium of the mechanism, and indeed the economic theory literature has many results
on equilibrium uniqueness, particularly but not only under the condition that the equilibrium is in
monotone strategies as assumed in the identification strategy, then obviously the assumption that
the data comes from a single equilibrium is automatically satisfied.

Under correct beliefs held by player i, Vi(θi, ai) = θiEP (xi(ai, A−i)|θi)− EP (ti(ai, A−i)|θi).

3. Partial identification

Based on the following identification strategy, the distribution of valuations is partially identified,
in terms of the usual multivariate stochastic order in Definition 2. The identification result could be
called “partial-point” identification, because some features of the distribution of valuations are point
identified, while other features of the distribution of the valuations are partially identified. Section 4
reports sufficient conditions for point identification of the entire distribution of valuations.

The identification strategy is based around the utility maximization problem in Equation 1 facing
each player as a function of its realized valuation. Developing the identification strategy involves
developing an understanding of the observable implications of the utility maximization problem.

For each valuation θi of player i, let

Asθi (θi) = {a∗i ∈ Ai : EΠi
(xi(ai, a−i)|θi) and EΠi

(ti(ai, a−i)|θi) are differentiable functions of ai at ai = a∗i }.

Per Assumption 3 (Action space), Asθi (θi) ⊆ Ai,cont, since a function cannot be differentiable at an
isolated point of its domain. It is understood throughout the paper that derivatives with respect
to ai on the boundary of Ai,cont are one-sided derivatives. Specifically, the derivative on the lower
bound of Ai,cont is the right derivative and the derivative on the upper bound of Ai,cont is the left
derivative. The ex interim expected allocation EΠi

(xi(ai, a−i)|θi) and ex interim expected transfer
EΠi

(ti(ai, a−i)|θi) tend to be differentiable functions of ai, in part because the expectation with respect
to player i’s beliefs Πi(·|θi) is a smoothing operator.20 Indeed, differentiability is a standard condition,
albeit not a universal condition, in the economic theory literature on mechanisms with incomplete
information. In such cases, Asθi (θi) = Ai,cont for all valuations θi. Differentiability is assumed for the
point identification result in Section 4, but the partial identification result accommodates points of
non-differentiability.

If player i with valuation θi takes an action ai ∈ Asθi (θi) according to the ex interim expected
utility maximizing strategy from Assumption 4 (Optimal strategy), then the first order condition
20 For example, in auction models, if the auction format is such that the high bidder wins, and using Assumption 5
(Correct beliefs), then EΠi

(xi(ai, a−i)|θi) = P (maxj 6=iAj ≤ ai|θi), which is generally a differentiable function of ai
across auction formats. This analysis uses that the event that two or more bidders tie for high bid has probability 0,
as generally happens in auctions in equilibrium. The expected transfer is differentiable for similar reasons, for example
in the case of a first price auction, EΠi(ti(ai, a−i)|θi) = EΠi(ai1[maxj 6=iAj ≤ ai]|θi) = aiP (maxj 6=iAj ≤ ai|θi).
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approach to an optimization problem implies a necessary condition.21 Use the notation that int(S)
is the interior of some set S. Any ex interim expected utility maximizing action ãi(θi) such that
ãi(θi) ∈ int(Ai) ∩ Asθi (θi) necessarily satisfies the condition that

(2) θi
∂EΠi

(xi(ai, a−i)|θi)
∂ai

∣∣∣∣∣
ai=ãi(θi)

− ∂EΠi
(ti(ai, a−i)|θi)
∂ai

∣∣∣∣∣
ai=ãi(θi)

= 0.

If ãi(θi) = αi and ãi(θi) ∈ Asθi (θi), then ãi(θi) satisfies the condition22 that

(3) θi
∂EΠi

(xi(ai, a−i)|θi)
∂ai

∣∣∣∣∣
ai=ãi(θi)

− ∂EΠi
(ti(ai, a−i)|θi)
∂ai

∣∣∣∣∣
ai=ãi(θi)

≤ 0.

And if ãi(θi) = βi and ãi(θi) ∈ Asθi (θi), then ãi(θi) satisfies the condition that

(4) θi
∂EΠi

(xi(ai, a−i)|θi)
∂ai

∣∣∣∣∣
ai=ãi(θi)

− ∂EΠi
(ti(ai, a−i)|θi)
∂ai

∣∣∣∣∣
ai=ãi(θi)

≥ 0.

Equations 2-4 are useful for identification of the distribution of valuations, because these relation-
ships connect the observed action taken by player i to the unobserved valuation of player i. However,
these relationships depend on the unknown beliefs Πi(·|θi) of player i. Even under Assumption 5
(Correct beliefs), these beliefs are unknown precisely because the valuation θi is unknown. Therefore,
the next part of the identification strategy concerns dealing with the unknown beliefs. Unknown
beliefs can be dealt with by using the main assumption of the identification strategy, monotone
equilibrium.

Assumption 6 (Weakly increasing strategy). For each i ∈ {1, 2, . . . , N}, for each possible valuation
θi, ai(θi) is a pure strategy. And, for each i ∈ {1, 2, . . . , N}, ai(·) is a weakly increasing function.

For example, in applications to contests, a monotone strategy simply requires the intuitive condition
that players put forth effort as an increasing function of their valuation for the object awarded by the
contest. Or for another example, in applications to auctions, a monotone strategy simply requires
the intuitive condition that players make bids that are increasing functions of their valuation for the
object being auctioned. It is straightforward to adjust the identification results for mechanisms in
which some (or all) players use weakly decreasing strategies, essentially by “flipping” the inequalities
derived from Assumption 6. Alternatively, a weakly decreasing strategy can be translated into a
weakly increasing strategy by flipping the signs on the allocation rule and valuations, because if
the strategy is weakly decreasing in the valuation θi, then the strategy is weakly increasing in the
“negative valuation” θ̂i = −θi with “negative allocation” x̂i(a) = −x̃i(a). Note that θ̂ix̂i(a) = θix̃i(a)
so utility is unaffected by flipping the signs in this way.

Beyond the intuitive appeal of monotone strategies, and indeed perhaps motivated by the intuitive
appeal of monotone strategies, the economic theory literature has emphasized the importance of
21 Because the use of one-sided derivatives on the boundary of the “continuous part” of the action space may be
slightly unfamiliar, consider the first order conditions for the maximization problem maxai∈Ai h(ai). Suppose that
h(·) has a right derivative at a∗i and suppose that a∗i is a local maximum. Since the right derivative exists at a∗i , a∗i
cannot be the upper bound of Ai,cont. Then, h(t)−h(a∗i )

t−a∗
i
≤ 0 for all t > a∗i in a neighborhood of a∗i . Therefore, the

right derivative at a∗i must be non-positive. Suppose that h(·) has a left derivative at a∗i and suppose that a∗i is a
local maximum. Since the left derivative exists at a∗i , a∗i cannot be the lower bound of Ai,cont. Then, h(t)−h(a∗i )

t−a∗
i
≥ 0

for all t < a∗i in a neighborhood of a∗i . Therefore, the left derivative at a∗i must be non-negative. Therefore, if h(·)
has a derivative at a∗i and a∗i is a local maximum, the right and left derivatives are the same, and equal to the usual
derivative, which must therefore be zero.
22Recall derivatives on the boundary of Ai,cont are understood to be appropriate one-sided derivatives.
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proving existence of equilibrium in monotone strategies. Equilibrium existence in pure strategies is a
general result for mechanisms with incomplete information. The economic theory (and existence)
of such equilibria in pure strategies has been studied, for example, in Milgrom and Weber (1982,
1985), Dasgupta and Maskin (1986), Plum (1992), Reny (1999), Lizzeri and Persico (2000), Maskin
and Riley (2003), and Jackson and Swinkels (2005) in addition to citations elsewhere in this paper,
particularly Section 2.1 and Appendix A, amongst a huge literature. The use of pure strategies implies
that ai(θi) is a particular action (i.e., a pure strategy) rather than a non-degenerate distribution (i.e.,
a mixed strategy). Moreover, many general results establish conditions for existence of pure strategy
equilibria in monotone strategies, see for example Maskin and Riley (2000), Athey (2001), McAdams
(2003, 2006), and Reny (2011). Such results establish general conditions on the mechanism that are
sufficient for existence of monotone equilibrium. Moreover, again as cited elsewhere in this paper,
particularly Section 2.1 and Appendix A, the economic theory literature has also established existence
of pure strategy equilibria in monotone strategies in the context of specific mechanisms. Many of
the economic theory papers establishing Assumption 6 assume affiliated valuations. Particularly in
the context of affiliation in auctions, see Milgrom (2004, Section 5.4.1) for details. Further, many
papers on identification in auctions assume affiliated valuations. However, the identification strategy
in this paper does not require affiliation, as long as Assumption 6 is satisfied. Equilibria in monotone
strategies can exist even without affiliated valuations, see for example Monteiro and Moreira (2006).

Finally, under Assumption 2 (Independent valuations) rather than the more general Assumption 1
(Dependent valuations), it is possible to replace Assumption 6 with Assumption 7 stated directly on
the mechanism: the expected allocation rule for player i is a non-decreasing function of the action of
player i. Assumption 7 essentially plays the role of the use of a monotone strategy in equilibrium, in
the identification strategy, with independent valuations.

Independent valuations Under Assumption 2 (Independent valuations), Assumption 6 (Weakly
increasing strategy) can be dropped in favor of:

Assumption 7 (Non-decreasing expected allocation rule). For each i ∈ {1, 2, . . . , N}, xi(ai, a−i) is
non-decreasing in ai for all a−i.

Assumption 7 is a standard condition satisfied in many mechanisms. For example, in contests from
Example 1, xi(ai, a−i) is the “contest success function,” and Assumption 7 states that the probability
that player i wins the contest is a weakly increasing function of the effort of player i, holding fixed the
effort of the other players. Standard contest success functions of the sort discussed in Example 1 have
this property. Or, for example in auctions from Example 2, Assumption 7 states that the allocation
to player i is a weakly increasing function of the bid of player i, holding fixed the bids of the other
players. Standard auction formats in which the highest bid wins, resulting in functional forms for
xi(ai, a−i) like in Example 2, have this property. The identification results can be written if some
(or all) players have non-increasing expected allocation rules, essentially just flipping the directions
of the inequalities derived from Assumption 7. Alternatively, a non-increasing expected allocation
rule can be translated into a non-decreasing expected allocation rule by “flipping” the sign of the
action space, because if xi(ai, a−i) is non-increasing in ai for all a−i, then x̂i(âi, a−i) = xi(−âi, a−i)
is non-decreasing in âi for all a−i. Assumption 7 implies EΠi

(xi(ai, a−i)) is non-decreasing in ai.F

It is possible that player i with valuation θi takes the action ai(θi) and player i with valuation
θ′i 6= θi also takes the same action ai(θ′i) = ai(θi). The possibility of “flat spots” complicates the
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identification problem. In particular, “flat spots” result in partial identification, because if multiple
valuations use the same action, then in general there cannot be an invertible mapping that uniquely
recovers the valuation of a player that uses an action that is used by multiple valuations. Moreover,
and more subtly, because in general different valuations have different beliefs even if they use the
same action, there cannot in general be an invertible mapping that recovers beliefs held by a player
with a valuation that results in using an action that is used by multiple valuations.

Under Assumption 6, the set {θi : ai(θi) = a∗i } of valuations θi that use given action a∗i ∈ Ai is
necessarily an interval, which can be the empty set, a singleton set, or a non-degenerate interval
(possibly infinite, and possibly including or not the endpoints).23 Suppose that two distinct valuations
θi and θ′i 6= θi both use the same action a∗i . Then, all valuations between θi and θ′i use that same
action a∗i . Under Assumption 1 (Dependent valuations), given that θi and θ′i are in the support by
construction, there is strictly positive mass of valuations between θi and θ′i.24 Therefore, a positive
mass of valuations use the action a∗i , and therefore there is a mass point in the observed distribution of
actions at a∗i . By the contrapositive, if there is not a mass point at some action a∗i , then a∗i is used by a
unique valuation. This conclusion is not true without Assumption 6, since if ai(·) were non-monotone,
then the set {θi : ai(θi) = a∗i } can be non-singleton, but not necessarily of positive probability under
the distribution of θi. Therefore, if the strategy were not monotone, then multiple valuations could
use the same action a∗i even though there is no mass point at a∗i . Consequently, Assumption 6 plays
a critical role in the identification strategy, because it is used to recover information about the beliefs
of the players. Assumption 6 results in point identification of the beliefs of the players, under suitable
conditions, so Assumption 6 also plays a critical role in the point identification result in Section 4.

Let Adi be the support of Ai, the actions taken in the data by player i. And let
˜̃Adi = {a∗i ∈ Adi : there is not a mass point at a∗i in the data} = {a∗i ∈ Adi : P (Ai = a∗i ) = 0}.

Obviously, the location of mass points is identified directly from the data, and Remark 1 also
establishes theoretical results on the possible locations of mass points. Under Assumption 6, for any
a∗i ∈

˜̃Adi there is a unique valuation θ∗i that uses the action a∗i , so conditioning on Ai = ai(θ∗i ) = a∗i is
the same as conditioning on θi = θ∗i . Therefore, P (A−i ∈ B|θi = θ∗i ) = P (A−i ∈ B|Ai = a∗i ) for all
Borel sets B. Consequently, under Assumption 5 (Correct beliefs), the beliefs of player i when it has
valuation θ∗i are equal to the distribution of A−i|(Ai = ai(θ∗i ) = a∗i ), the distribution of actions of
the other players conditioning on player i taking its equilibrium action ai(θ∗i ). In other words, the
beliefs of a player observed to take an action a∗i ∈

˜̃Adi are equal to the distribution in the data of
the other players’ actions conditional on player i taking action a∗i . If multiple valuations used a∗i ,
then the distribution in the data of the other players’ actions conditional on player i taking action a∗i
would instead be a mixture over the beliefs held by player i with different valuations that use a∗i .

For any realized action Ai, let

AsAi (Ai) = {a∗i ∈ Ai : EP (xi(ai, A−i)|Ai) and EP (ti(ai, A−i)|Ai) are differentiable functions of ai at ai = a∗i }.

Per Assumption 3 (Action space), AsAi (Ai) ⊆ Ai,cont, since a function cannot be differentiable at
an isolated point of its domain. Whether or not differentiability holds is part of the reduced-form
23Suppose {θi : ai(θi) = a∗i } is not the empty set. And suppose that ai(θi) = a∗i and ai(θ′i) = a∗i . Suppose without loss
of generality that θi ≤ θ′i. Since ai(·) is weakly increasing, any valuation between θi and θ′i also uses action a∗i .
24Because the support is convex by Assumption 1, there is some θ′′i strictly between θi and θ′i in the support of
valuations. Any sufficiently small neighborhood of θ′′i is also strictly between θi and θ′i, and by definition of support of
a random variable, that neighborhood has positive mass under the distribution of valuations for player i.
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identification problem summarized by Lemma 1. Then, based on Equations 2-4, imposing Assumptions
5 (Correct beliefs) and 6 (Weakly increasing strategy), the optimality of an observed action Ai = ai(θi)
implies the following necessary conditions. If Ai = ai(θi) ∈ int(Ai) ∩ AsAi (Ai) ∩ ˜̃Adi , then Ai = ai(θi)
satisfies the condition that

(5) θi
∂EP (xi(ai, A−i)|Ai)

∂ai

∣∣∣∣∣
ai=Ai

− ∂EP (ti(ai, A−i)|Ai)
∂ai

∣∣∣∣∣
ai=Ai

= 0.

If Ai = ai(θi) = αi and ai(θi) ∈ AsAi (Ai) ∩ ˜̃Adi , then Ai = ai(θi) satisfies the condition that

(6) θi
∂EP (xi(ai, A−i)|Ai)

∂ai

∣∣∣∣∣
ai=Ai

− ∂EP (ti(ai, A−i)|Ai)
∂ai

∣∣∣∣∣
ai=Ai

≤ 0.

And if Ai = ai(θi) = βi and ai(θi) ∈ AsAi (Ai) ∩ ˜̃Adi , then Ai = ai(θi) satisfies the condition that

(7) θi
∂EP (xi(ai, A−i)|Ai)

∂ai

∣∣∣∣∣
ai=Ai

− ∂EP (ti(ai, A−i)|Ai)
∂ai

∣∣∣∣∣
ai=Ai

≥ 0.

Unlike Equations 2-4, Equations 5-7 do not involve the unknown beliefs of player i. Let

Ψx
i (z) ≡ ∂EP (xi(ai, A−i)|Ai = z)

∂ai

∣∣∣∣∣
ai=z

and Ψt
i(z) ≡ ∂EP (ti(ai, A−i)|Ai = z)

∂ai

∣∣∣∣∣
ai=z

(8)

and let

(9) Ψi(z) ≡ Ψt
i(z)

Ψx
i (z) .

Then, rewriting Equations 5-7: if Ai = ai(θi) ∈ int(Ai) ∩ AsAi (Ai) ∩ ˜̃Adi , and Ψx
i (Ai) 6= 0, then

(10) θi = Ψi(Ai).

If Ai = ai(θi) = αi and Ai ∈ AsAi (Ai) ∩ ˜̃Adi and Ψx
i (Ai) > 0, so expected allocation is increasing25 in

action, then

(11) θi ≤ Ψi(Ai).

If Ai = ai(θi) = βi and Ai ∈ AsAi (Ai) ∩ ˜̃Adi and Ψx
i (Ai) > 0, then

(12) θi ≥ Ψi(Ai).

Based on Equations 10-12, the partial identification result reflects the set of valuations that are
compatible with the use of a given observed action. Therefore, structural identification of θi depends
on reduced-form identification of Ψx

i (·) and Ψt
i(·).

Definition 4 (Action with reduced-form identification). An action ai ∈ Ai,cont is an action with
reduced-form identification if Ψx

i (ai) and Ψt
i(ai) can be identified to exist, and Ψx

i (ai) and Ψt
i(ai) are

25For example, in contests it requires the intuitive condition that a player’s probability of winning increases with the
player’s effort, and in auctions it requires the intuitive condition that a player’s expected allocation increases with
the player’s bid. Since Ψx

i (·) is an identified function, the econometrician can check whether or not Ψx
i (Ai) > 0. If it

happens that Ψx
i (Ai) < 0 instead, then similar bounds on θi obtain, flipping the direction of the inequalities. However,

Ψx
i (Ai) < 0 is ruled out by Assumption 7 (Non-decreasing expected allocation rule). More generally, Ψx

i (Ai) < 0
seems to be at odds with the assumption of the use of a monotone increasing strategy (using “monotone comparative
statics arguments”) since the “cross-derivative” of ex interim expected utility with respect to (θi, ai) would be negative
evaluated in the case where Ψx

i (Ai) < 0. Therefore, to simplify the presentation, the results ignore the unlikely case
that Ψx

i (Ai) < 0. Hence, the key restriction to apply these equations is that Ψx
i (Ai) 6= 0.
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point identified quantities. Per the convention, identification of derivatives on the boundary of Ai,cont
is understood to concern identification of the corresponding one-sided derivative.

Identification of θi can be based on varied sources of reduced-form identification.
First, per Equation 8, the econometrician can have ex ante knowledge of xi(·) and ti(·) and take

the expectation of those known functions with respect to the observed distribution of the actions in
the data. Hence, reduced-form identification obtains with a “standard” complete specification of the
model, when the econometrician knows the allocation and transfer rules. Even in that case, part of
the reduced-form identification step is dealing with the beliefs of the players, using the data.

Second, because xi(·) is the expected allocation and ti(·) is the expected transfer,

Ψx
i (z) = ∂EP (EP (Xi|Ai = ai, A−i)|Ai = z)

∂ai

∣∣∣∣
ai=z

and Ψt
i(z) = ∂EP (EP (Ti|Ai = ai, A−i)|Ai = z)

∂ai

∣∣∣∣
ai=z

(13)

Per Equation 13, even without ex ante knowledge of the allocation and transfer rules, the econo-
metrician can identify Ψx

i (·) and Ψt
i(·) by first identifying xi(·) and ti(·) based on the relationships

xi(ai, a−i) = E(x̃i(ai, a−i)) = E(x̃i(ai, a−i)|Ai = ai, A−i = a−i) = E(Xi|Ai = ai, A−i = a−i) and
ti(ai, a−i) = E(t̃i(ai, a−i)) = E(t̃i(ai, a−i)|Ai = ai, A−i = a−i) = E(Ti|Ai = ai, A−i = a−i). In each of
these relationships, the first equality holds by definition of the expected allocation and transfer, the
second equality holds since the randomness (if any) in the allocation and transfer is independent
from the realized actions by construction, and the third equality holds by construction of the realized
allocation and transfer. Hence, reduced-form identification obtains even with an incomplete specifi-
cation of the model, when the econometrician does not know the allocation and transfer rules, so
that the identification results are robust to the details of the specification of the model and flexibly
accommodate unique features of the mechanism in particular empirical applications.

Independent valuations Under Assumption 2 (Independent valuations), the actions of different
players are independent, so

Ψx
i (z) = Λx

i (z) ≡ ∂EP (xi(ai, A−i))
∂ai

∣∣∣∣∣
ai=z

and Ψt
i(z) = Λt

i(z) ≡ ∂EP (ti(ai, A−i))
∂ai

∣∣∣∣∣
ai=z

.(14)

Also, let

(15) Λi(z) ≡ Λt
i(z)

Λx
i (z) .

Then,26

Λx
i (z) = ∂EP (Xi|Ai = ai)

∂ai

∣∣∣∣∣
ai=z

and Λt
i(z) = ∂EP (Ti|Ai = ai)

∂ai

∣∣∣∣∣
ai=z

.(16)

Under Assumption 7 (Non-decreasing expected allocation rule), Λx
i (z) ≥ 0 if Λx

i (z) exists. Per
Equations 14 and 16, under Assumption 2 (Independent valuations), the econometrician can identify
Λx
i (·) and Λt

i(·) in “one-step,” compared to the “two-steps” with dependent valuations. F

26To establish the equalities in Equation 16, EP (Xi|Ai = ai) = EP (x̃i(Ai, A−i)|Ai = ai) = EP (xi(ai, A−i)|Ai =
ai) = EP (xi(ai, A−i)), where the first equality holds by definition of the mechanism (and resulting allocations), the
second equality holds by standard properties of conditioning and the law of iterated expectations (with respect to any
randomness in the allocation), and the third equality holds because the actions of different players are independent. It
is similar for EP (Ti|Ai = ai) = EP (ti(ai, A−i)).
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The sufficient conditions for reduced-form identification are formalized in Lemma 1. The conditions
are somewhat lengthy to state, but are weak, as discussed after the statement of the lemma.

Lemma 1 (Sufficient conditions for reduced-form identification). Suppose that Assumptions 1
(Dependent valuations) and 3 (Action space) are satisfied. Let an action ai ∈ Ai,cont be given, and
suppose that one of the following conditions is true.

(1) [Two-step reduced-form identification] It holds that ai ∈ Adi , and there is a set S containing ai
such that Adi∩Ai,cont∩S is a non-degenerate interval and such that the econometrician can point
identify the conditional expectations EP (Xi|Ai = a′i, A−i = a−i) and EP (Ti|Ai = a′i, A−i = a−i)
for all a′i ∈ Adi ∩ Ai,cont ∩ S and a−i ∈ Ãd−i(a′i), where Ãd−i(a′i) has probability 1 according
to the distribution A−i|(Ai = ai). The distribution A−i|(Ai = ai) is point identified. If
ai ∈ int(Ai,cont), then ai ∈ int(Adi ∩ Ai,cont ∩ S). The data is P (A,X, T ).

(2) [Two-step reduced-form identification II] Assumption 6 (Weakly increasing strategy) is satisfied.
It holds that ai ∈ (int(Ai,cont) ∩ bd(Adi ∩Ai,cont))C ∩ (Adi ∩Ai,cont). Also, it holds that ai ∈ ˜̃Adi
and there is an interval I containing ai such that ˜̃Adi ∩Ai,cont ∩I is a non-degenerate interval.
There is a neighborhood N of ai such that xi(a′i, a−i) and ti(a′i, a−i) are continuous27 functions,
at all a′i ∈ Ai,cont ∩ N and a−i ∈ Ãd−i(a′i), where Ãd−i(a′i) has probability 1 according to the
distribution A−i|(Ai = ai). The conditional distribution θ−i|θi is continuous in θi at θ∗i , where
θ∗i is the unique valuation to use ai ∈ ˜̃Adi , in the sense that if θ′i → θ∗i then the conditional
density f(θ−i|θi = θ′i) converges to the conditional density f(θ−i|θi = θ∗i ) for all θ−i.28 The
data is P (A,X, T ).

(3) [One-step reduced-form identification] Assumption 2 (Independent valuations) is satisfied. It
holds that ai ∈ Adi is such that there is a set S containing ai such that Adi ∩ Ai,cont ∩ S is a
non-degenerate interval, such that the econometrician can point identify EP (Xi|Ai = a′i) and
EP (Ti|Ai = a′i) for all a′i ∈ Adi ∩Ai,cont∩S. If ai ∈ int(Ai,cont), then ai ∈ int(Adi ∩Ai,cont∩S).
The data is P (A,X, T ).

(4) [Ex ante known allocation and transfer rules] It holds that ai ∈ Adi , and there is a set
S containing ai such that Ai ∩ Ai,cont ∩ S is a non-degenerate interval and such that the
econometrician has ex ante knowledge of xi(a′i, a−i) and ti(a′i, a−i) for all a′i ∈ Ai ∩Ai,cont ∩ S
and a−i ∈ Ãd−i(a′i), where Ãd−i(a′i) has probability 1 according to the distribution A−i|(Ai = ai).
The distribution A−i|(Ai = ai) is point identified. If ai ∈ int(Ai,cont), then ai ∈ int(Ai ∩
Ai,cont ∩ S). The data is P (A), or more.

(5) [Reduced-form identification with two-part transfers] The transfer can be written as t̃i(ai, a−i) =
t̃i1(ai, a−i) + t̃i2(ai, a−i), with corresponding expected transfers ti(ai, a−i) = ti1(ai, a−i) +
ti2(ai, a−i). Correspondingly, the realized transfer Ti can be written as Ti = Ti1 + Ti2. It holds
that for all a′i in some neighborhood N of ai that ti2(a′i, a−i) = ti2(a−i). Any of Conditions
1-4 hold with ti1 in place of ti and Ti1 in place of Ti.

Then, whether or not Ψx
i (ai) and Ψt

i(ai) exist is point identified. Exists means, by definition, that
the limit corresponding to the definition of the derivative exists. Moreover, if Ψx

i (ai) and Ψt
i(ai)

27Of course, continuity is defined with respect to the domain
∏
iAi.

28By the standard formula for a conditional density, this would be implied by continuity of the joint density and
marginal density, when θ∗i is such that the marginal density is strictly positive. This can also hold more generally, for
example it can hold even when θ∗i is such that the marginal density is zero even though θ∗i is in the support of the
valuations (e.g., on the boundary), for example in particular under Assumption 2 (Independent valuations).
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exist, then there is reduced-form identification per Definition 4. In the case of Condition 1 or 2,
identification of Ψx

i (ai) and Ψt
i(ai) is constructive, and given by the existence and values of the limits

corresponding to expressions in Equation 13. In the case of Condition 3, identification of Λx
i (ai) and

Λt
i(ai) is constructive, and given by the existence and values of the limits corresponding to expressions

in Equation 16. In the case of Condition 4, identification of Ψx
i (ai) and Ψt

i(ai) is constructive, and
given by the existence and values of the limits corresponding to expressions in Equation 8.

Condition 1 is based on the fact, in connection with standard results on identification and estimation
of conditional expectations, that xi(·) and ti(·) are identifiable quantities based on the relationships
xi(a′i, a−i) = EP (Xi|Ai = a′i, A−i = a−i) and ti(a′i, a−i) = EP (Ti|Ai = a′i, A−i = a−i). For example,
kernel regression estimators of conditional expectations are consistent for almost all realizations of
the conditioning variable, with respect to the distribution of the conditioning variable (e.g., Stone
(1977), Devroye (1981), or Greblicki, Krzyzak, and Pawlak (1984)).29 Condition 1 is also based
on standard results on identification and estimation of the conditional distribution A−i|(Ai = ai).
For example, kernel estimators of conditional distributions are consistent for almost all realizations
of the conditioning variable, with respect to the distribution of the conditioning variable, and all
realizations of the conditioning variable if A−i|(Ai = ai) is suitably continuous in ai (e.g., Stute
(1986), Owen (1987), and Hall, Wolff, and Yao (1999)). Therefore, the most practically important
part of Condition 1 relates to the support of the data. The support condition requires that ai ∈ Adi
(in addition to ai ∈ Ai,cont) and that there is a set S containing ai such that Adi ∩ Ai,cont ∩ S is a
non-degenerate interval, with ai ∈ int(Adi ∩ Ai,cont ∩ S) if ai ∈ int(Ai,cont). The support condition is
used to identify the derivatives based on limits along a sequence of a′i approaching ai, where a′i are
taken in Adi ∩ Ai,cont ∩ S. The condition that ai ∈ int(Adi ∩ Ai,cont ∩ S) if ai ∈ int(Ai,cont) is used to
guarantee that the usual two-sided derivative can be identified (to exist), when ai is such that the
two-sided derivative is relevant.30 The support condition can be checked in an application.

Moreover, Condition 2 provides a related sufficient condition. The set (int(Ai,cont) ∩ bd(Adi ∩
Ai,cont))C ∩ (Adi ∩Ai,cont) is the set of all actions actually used from the continuous part of the action
space, except for any action that is in the interior of the continuous part of the action space yet on
the boundary of the set of actions actually used from the continuous part of the action space. In
the common situation that Adi ∩ Ai,cont is an interval, so the set of actions used from the continuous
part of the action space form an interval, then bd(Adi ∩ Ai,cont) is the at most two actions on the
boundary of this interval. Further, reduced-form identification is only relevant for actions that are
not used as mass points. Therefore, possibly not being able to achieve reduced-form identification
on this boundary corresponds (at most) to not being able to achieve reduced-form identification for
a probability zero set of actions. The condition that ˜̃Adi ∩ Ai,cont ∩ I is a non-degenerate interval
29Nevertheless, it is necessary to make the assumption that the conditional expectations are point identified for a′i in
the interval Adi ∩Ai,cont ∩S in order to identify the derivative. There are pathological functions like Thomae’s function
defined on [0, 1] that are continuous on a set of Lebesgue measure one (e.g., the irrationals in [0, 1]) but discontinuous
on a set of Lebesgue measure zero yet dense set (e.g., the rationals in [0, 1]), and yet are nowhere differentiable, even
though the limit corresponding to the definition of the derivative does exist along sequences restricted to the irrationals.
So identifying the conditional expectations on a set of probability 1 is not quite enough to identify the derivatives, if
the set of probability 0 where the conditional expectations are not identified is dense.
30Even though the ordinary two-sided derivative equals both one-sided derivatives, when the ordinary two-sided
derivative exists, it is possible that a one-sided derivative exists despite the two-sided derivative not existing. Hence,
the econometrician might be able to identify a one-sided derivative that does not equal the two-sided derivative, if the
two-sided derivative does not exist. Of course, if the econometrician assumes that either one-sided derivative, if it
exists, equals the usual two-sided derivative, then this distinction becomes irrelevant.
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means that there is a non-degenerate interval of actions used nearby the action ai, none of which
are used as a point mass in the distribution of Ai.31 Condition 2 also assumes some continuity of
the ex post expected allocation and ex post expected transfer, as a sufficient condition for point
identification of the conditional expectations. For example, in the context of a contest from Example
1, continuity of the contest success function is sufficient. For another example, in the context of an
auction from Example 2, the ex post expected allocation and ex post expected transfer of player i
tend to be continuous when a′i ∈ Ai,cont except for at a profile of bids that results in player i tied for
high bid with at least one other player. For any given bid of player i, the set of bids of the other
players that results in a tie for high bid generally has probability zero in equilibrium, and therefore
such discontinuities are accommodated by Condition 2 because continuity is required only on a set of
probability 1. As a substitute for assuming point identification of A−i|(Ai = ai), Condition 2 assumes
that there is an interval I containing ai such that there are no mass points in the distribution of Ai
within that interval, and that θ−i|θi is suitably continuous in θi. Therefore, Conditions 1 and 2 apply
under weak standard conditions.

Condition 3 is similarly based on standard identification of conditional expectations given the
expressions in Equation 16.32

Condition 4 is the fact that knowledge of the allocation and transfer rules is another sufficient
condition for reduced-form identification.33 Even when using Condition 4 to achieve reduced-form
identification, it is not necessary that the econometrician solves for the equilibrium of the mechanism
(or have ex ante knowledge of the selected equilibrium in cases of multiple equilibria). Knowledge
of xi(·) and ti(·) concerns knowledge of the allocation and transfer rules, not the equilibrium of the
mechanism. Data on allocations and transfers is used in the identification strategy only to achieve
reduced-form identification. Consequently, if reduced-form identification is satisfied entirely via
Condition 4, then the identification strategy does not require data on allocations and transfers.

Condition 5 shows that reduced-form identification can be achieved in mechanisms with “two-part”
transfers even if only one “part” of the transfer can be reduced-form identified. For example, in
auctions with participation costs from Example 2, the total transfer t̃i(·) is the sum of the “standard”
auction payment t̃i1(·) that accounts for who wins and loses the auction and the participation cost
t̃i2(·) that depends only on the binary decision of participation in the auction (i.e., whether the
31As detailed in the proof, this condition is closely related to the condition that ai(·) is continuous and strictly
increasing at least on a small interval containing the valuation that uses the action ai. Continuity on even a small
neighborhood is not implied by strictly increasing since, although perhaps pathological as a property of a strategy, a
strictly increasing function can have jump discontinuities at a countably dense subset of its domain (e.g., Rudin (1976,
Remark 4.31)). Nevertheless, continuity and strictly increasing is a common property in mechanisms, on the domain of
valuations that use an action from Ai,cont. See the references to the economic theory literature elsewhere in the paper.
In particular, a common approach to characterizing the equilibrium strategy, when there is sufficient differentiability of
the mechanism, is via a differential equation involving the derivative of the strategy with respect to the valuation,
which of course requires that the strategy is continuous. The identification analysis allows that there can be actions at
which ex interim expected utility is not differentiable.
32Per arguments similar to above, using Assumption 2, EP (Xi|Ai = ai) = EP (xi(ai, A−i)) and EP (Ti|Ai = ai) =
EP (ti(ai, A−i)) tend to be continuous functions of ai under weak conditions on the mechanism. Or see Footnote 20.
33When using Condition 4 to achieve reduced-form identification, the econometrician is allowed to not have ex ante
knowledge of xi(ai, a−i) and ti(ai, a−i) for all a = (a1, a2, . . . , aN ). For example, in an application to auction models,
for given a′i, the econometrician need not know the tie-breaking rule that determines xi(a′i, a−i) and ti(a′i, a−i) in the
case that a−i is such that there is a tie for high bid, supposing that the conditional probability of such ties is zero with
respect to the distribution of the data. Of course, in many auction formats the econometrician might have the ex ante
knowledge that the tie-breaking rule allocates the object amongst the tied bidders with equal probability.
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player bids or takes the special “do not participate” action). The data on transfers and/or the
econometrician’s ex ante knowledge of the rule for transfers might correspond to only one part of
the two-part transfer. For example, in auctions with participation costs, the econometrician might
have data (or ex ante know) the “standard” payments to the auctioneer. However, particularly if the
participation costs are not entirely imposed by the auctioneer (e.g., if the participation costs include
the private costs of preparing a bid), then the econometrician might not have data (or ex ante know)
the participation costs. Because only marginal transfers are relevant to reduced-form identification,
it is still possible to achieve reduced-form identification. For example, in auctions with participation
costs, for ai ≥ 0, the participation cost “part” of the transfer does not depend (in a sufficiently small
neighborhood of such ai) on ai. Condition 5 applies the decomposition of the transfer only locally to
a given action. Of course, the “participation cost part” of the transfer does depend on the action at
the threshold between participating and not participating. But it does not depend on the action in a
sufficiently small neighborhood of any participating bid. Hence, the marginal expected transfer does
not depend on the participation cost for participating bids. In such cases, Condition 5 shows that it
is possible to achieve reduced-form identification by applying Conditions 1-4 to the ti1(·) “part” of
the transfer. For example, from Conditions 1-3, it is possible to achieve reduced-form identification
based on observing the “standard” payments to the auctioneer, but not the participation cost. And
from Condition 4, it is possible to achieve reduced-form identification based on ex ante knowledge of
the rule for the “standard” payments to the auctioneer, but not the participation cost.

In short, Lemma 1 shows reduced-form identification can be achieved either: (a) if data on
allocations and transfers are observed, in which case relevant aspects of the allocation and transfer
rules can be identified from the data even if those rules are not known ex ante, or (b) if the allocation
and transfer rules are known ex ante, even if data on allocations and transfers are not observed.
Depending on the application, either source of reduced-form identification can be relevant. Let

Ãdi = {a′i ∈
˜̃Adi ∩ Ai,cont :Ψx

i (a′i) exists and Ψt
i(a′i) exists and Ψx

i (a′i) > 0(17)
and a′i is a point of reduced-form identification per Definition 4},

By construction, Ãdi is an identified quantity. Moreover, as shown by example in Example 4 in the
context of auctions, it is possible to use economic theory to establish that certain actions a′i satisfy
the conditions of Ãdi under suitable regularity conditions on the mechanism. Also let

(18) ρLi(ai) = {a′i ∈ Ãdi : αi < a′i ≤ ai} and ρUi(ai) = {a′i ∈ Ãdi : ai ≤ a′i < βi}.

By construction, given any action a′i ∈ ρLi(ai) that is not on the upper bound of Ai,cont, the
corresponding valuation compatible with using action a′i is point identified by Equation 10. And
if a′i ∈ ρLi(ai) is on the upper bound of Ai,cont, the corresponding valuation compatible with using
action a′i can be given a lower bound by Equation 12. Therefore, given any action a′i ∈ ρLi(ai), the
corresponding unobserved valuation compatible with using action a′i is bounded below by Ψi(a′i).
Similarly, given any action a′i ∈ ρUi(ai), the corresponding unobserved valuation compatible with
using action a′i is bounded above by Ψi(a′i).

Now, consider any θ̃i < Ψi(a′i) with a′i ∈ ρLi(ai). If θ′i is any valuation consistent with using action
a′i, then θ′i ≥ Ψi(a′i). Moreover, since a′i ∈ Adi by construction, there is indeed some valuation θ′i that
uses action a′i. By Assumption 6 (Weakly increasing strategy), the action used by valuation θ̃i is
weakly less than the action used by valuation θ′i ≥ Ψi(a′i) > θ̃i, so the action used by valuation θ̃i is
weakly less than a′i. Moreover, since θ̃i � Ψi(a′i) by construction, valuation θ̃i cannot use action a′i.
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Consequently, player i with valuation θ̃i must use an action strictly less than a′i. By the contrapositive,
any equilibrium action weakly greater than a′i must correspond to a valuation weakly greater than
Ψi(a′i). Consequently, because a′i ≤ ai, the valuation θi corresponding to the use of equilibrium action
ai must be weakly greater than Ψi(a′i). Since the above holds for any a′i ∈ ρLi(ai), the valuation θi
corresponding to the use of equilibrium action ai must be weakly greater than supa′i∈ρLi(ai) Ψi(a′i).

Consequently, supa′i∈ρLi(ai) Ψi(a′i) is a lower bound for the valuation corresponding to ai. Similarly,
infa′i∈ρUi(ai) Ψi(a′i) is an upper bound for the valuation corresponding to ai. As shown by example
in Example 4 in the context of auctions, it is possible to use economic theory to simplify these
expressions under suitable regularity conditions on the mechanism. In particular, under suitable
regularity conditions on the mechanism, Ψi(·) is a weakly increasing function on Ãdi .34 Under such
conditions, if a∗∗Li(ai) = max(ρLi(ai)) exists, then supa′i∈ρLi(ai) Ψi(a′i) = Ψi(a∗∗Li(ai)). And similarly,
under such conditions, if a∗∗Ui(ai) = min(ρUi(ai)) exists, then infa′i∈ρUi(ai) Ψi(a′i) = Ψi(a∗∗Ui(ai)).

Assumption 8 (Known bounds on valuations). For each i ∈ {1, 2, . . . , N}, the valuation θi must be
in the set [ΘLi,ΘUi].

As often with partial identification results, the identified set can depend on ex ante known bounds
on the partially identified quantity. By (heuristically) setting ΘLi = −∞ and ΘUi =∞, it is possible
to check the identification result without such known bounds. In many mechanisms, it might be
reasonable to set ΘLi = 0, reflecting that the object has non-negative value to all players. Moreover,
in many mechanisms, the partial identification result depends on at most one of the lower or upper
bound on the set of valuations. For example, in auctions with reserve prices and/or participation costs,
as discussed in Example 4, ΘUi does not actually play a role in the identification result. Assumption
8 is not the statement that the support of the valuations is [ΘLi,ΘUi], but rather is the statement
that the support of the valuations is contained within [ΘLi,ΘUi]. Hence, as also stated in Assumption
1 (Dependent valuations), the econometrician need not know the support of the valuations. Then, let

(19) κLi(ai) = max{ΘLi, sup
a′i∈ρLi(ai)

Ψi(a′i)} and κUi(ai) = min{ΘUi, inf
a′i∈ρUi(ai)

Ψi(a′i)}.

Because the valuation must be between ΘLi and ΘUi, it follows that the valuation corresponding to
action ai must be between κLi(ai) and κUi(ai). Recall that ρLi(ai) and ρUi(ai) are defined in Equation
18, and Ψi(·) is the identifiable function given in Equation 9 (see Lemma 1).

Independent valuations Let

(20) ωLi(ai) = max{ΘLi, sup
a′i∈ρLi(ai)

Λi(a′i)} and ωUi(ai) = min{ΘUi, inf
a′i∈ρUi(ai)

Λi(a′i)}

Recall that ρLi(ai) and ρUi(ai) are defined in Equation 18, and Λi(·) is the identifiable function
given in Equation 15 (see Lemma 1). F

34Define AΨ
i = {ai : ai ∈ AsAi (ai)∩ ˜̃Adi , and Ψx

i (ai) 6= 0}. Note that Ãdi ⊆ AΨ
i . Note that Ψi(ai) is a weakly increasing

function of ai for ai ∈ int(Ai) ∩ AΨ
i by Equation 10, since the strategy is weakly increasing by Assumption 6 (Weakly

increasing strategy). Note that Ψi(ai) is also defined for any ai ∈ AΨ
i , which can additionally potentially include the

boundary of Ai,cont. For example, consider the case ai = αi when indeed αi is finite. If Ψi(ai) is a (right-)continuous
function of ai at ai = αi (and there is a corresponding interval Iα,i such that Iα,i ⊆ AΨ

i with αi ∈ Iα,i), then by
standard arguments, Ψi(ai) is a weakly increasing function of ai for ai ∈ (int(Ai)∩AΨ

i )∪{αi}. Note that Ψi(αi) exists
because αi ∈ AΨ

i and Ψi(αi) = lima′
i
→αi

Ψi(a′i) where the limit is taken along a sequence in Iα,i. Let ai ∈ int(Ai)∩AΨ
i .

Then, since Ψi(·) is weakly increasing on int(Ai) ∩ AΨ
i , for all αi < a′i ≤ ai, Ψi(a′i) ≤ Ψi(ai), and therefore the limit

Ψi(αi) ≤ Ψi(ai). And by similar arguments and conditions, Ψi(ai) ≤ Ψi(βi) for ai ≤ βi. Hence, under such conditions,
Ψi(ai) is a weakly increasing function on AΨ

i .
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Theorem 1. Under Assumptions 1 (Dependent valuations), 3 (Action space), 4 (Optimal strategy), 5
(Correct beliefs), 6 (Weakly increasing strategy), and 8 (Known bounds on valuations) the distribution
of valuations θ is partially identified, and the identification is constructive, because the distribution
of θ is stochastically larger than the distribution of (κL1(A1), κL2(A2), . . . , κLN(AN)) and is stochas-
tically smaller than the distribution of (κU1(A1), κU2(A2), . . . , κUN(AN)) , in the sense of the usual
multivariate stochastic order, where (A1, A2, . . . , AN) is distributed according to the data P (A,X, T )
and κLi(·) and κUi(·) are defined in Equation 19.

Independent valuations With independent valuations: replace Assumption 1 (Dependent valua-
tions) with Assumption 2 (Independent valuations), replace Assumption 6 (Weakly increasing strategy)
with Assumption 7 (Non-decreasing expected allocation rule), replace the definition of Ãdi from
Equation 17 with Ãdi = {a′i ∈ Adi ∩ Ai,cont : Λx

i (a′i) exists and Λt
i(a′i) exists and Λx

i (a′i) > 0 and a′i is
a point of reduced-form identification per Definition 4}, and replace the κ functions with the ω
functions defined in Equation 20. F

Theorem 1 is “partial-point” identification because some features of the distribution of valuations
are point identified. Specifically, consider θ∗ = (θ∗1, θ∗2, . . . , θ∗N) from the distribution of valuations
F (θ), with associated action profile a(θ∗) = (a1(θ∗1), a2(θ∗2), . . . , aN(θ∗N)) such that, for all players i:

(1) It holds that ai(θ∗i ) ∈ int(Ai,cont).
(2) And, there is not a point mass in the distribution of Ai at ai(θ∗i ).
(3) And, Ψx

i (ai(θ∗i )) and Ψt
i(ai(θ∗i )) exist, and Ψx

i (ai(θ∗i )) > 0.
(4) And, ai(θ∗i ) is an action with reduced-form identification per Definition 4.

Under these conditions, ai(θ∗i ) ∈ ρLi(ai(θ∗i )) ∩ ρUi(ai(θ∗i )). Therefore, it must be that κLi(ai(θ∗i )) ≥
Ψi(ai(θ∗i )) and κUi(ai(θ∗i )) ≤ Ψi(ai(θ∗i )), and therefore per the identification result, it must be that
any valuation θi consistent with the use of action ai(θ∗i ) (which could in principle, when there is
partial identification, include valuations other than θ∗i ) is between Ψi(ai(θ∗i )) and Ψi(ai(θ∗i )), and
therefore must equal Ψi(ai(θ∗i )), and hence there is point identification of the valuation corresponding
to the use of an action satisfying these conditions. These are essentially the assumptions used in the
point identification result in Theorem 2.

There is informative partial identification as long as Ãdi ∩ int(Ai,cont) 6= ∅. Informative partial
identification means that the bounds depend non-trivially on the data, i.e., are informative even
without ex ante bounds on valuations, in the heuristic limit of ΘLi = −∞ and ΘUi = ∞.35 If so,
then ρLi(ai) ∪ ρUi(ai) 6= ∅ for all actions ai.36 And if so, then at least one of “supa′i∈ρLi(ai)” and/or
“infa′i∈ρUi(ai)” appearing in Equation 19 is taken over a non-empty set. And if so, Theorem 1 results
in informative partial identification. By inspecting the definition, Ãdi ∩ int(Ai,cont) = ∅ if:

(1) The action space for player i is entirely discrete (i.e., Ai,cont = ∅).
(2) Or, there are only mass points in the distribution of Ai (i.e., ˜̃Adi = ∅).
(3) Or, there are no actions a′i for which Ψx

i (a′i) and Ψt
i(a′i) exist and Ψx

i (a′i) > 0.
(4) Or, there are no actions for player i with reduced-form identification per Definition 4.

35In extreme cases like ΘLi = ΘUi, the data is irrelevant and identification comes entirely from Assumption 8.
36It holds that ρLi(ai) ∪ ρUi(ai) = {a′i ∈ Ãdi : αi < a′i < βi} when ai ∈ int(Ai,cont) and ρLi(ai) ∪ ρUi(ai) = {a′i ∈
Ãdi : αi ≤ a′i < βi} when ai ≤ αi and ρLi(ai) ∪ ρUi(ai) = {a′i ∈ Ãdi : αi < a′i ≤ βi} when ai ≥ βi. If Ãdi 6= ∅, then in
particular Ai,cont 6= ∅, and per Assumption 3, it must therefore be that αi < βi since αi = βi is not allowed. Therefore,
any ai ∈ Ãdi ∩ int(Ai,cont) is in ρLi(ai) ∪ ρUi(ai).
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Section 6 develops partial identification results under an additional assumption that can apply even
in those cases. Conversely, Ãdi ∩ int(Ai,cont) 6= ∅ if there is an action a∗i satisfying:

(1) a∗i ∈ int(Ai,cont).
(2) And, there is not a mass point at a∗i in the distribution of Ai (i.e., a∗i ∈

˜̃Adi ).
(3) And, Ψx

i (a∗i ) and Ψt
i(a∗i ) exist and Ψx

i (a∗i ) > 0.
(4) And, a∗i is an action with reduced-form identification per Definition 4.

At least in general, excepting especially “non-smooth” mechanisms that either induce “clumping” at
finitely many actions, or have everywhere non-differentiable ex interim expected allocation and/or ex
interim expected transfer, it is reasonable to expect that such an action exists as long as the action
space is not entirely discrete. Of course, that is an empirical question for any given application.

Finally, there is partial identification (not point identification) of the valuation corresponding to
using an action on the boundary of Ai,cont, or using an action in Ai,disc. For example, if action ai
is on the lower bound of Ai,cont or if action ai is in Alow

i,disc, then ρLi(ai) = ∅, so the lower bound on
the valuation associated with taking such an action is ΘLi from Assumption 8 (Known bounds on
valuations). But the upper bound on the valuation associated with taking such an action concerns
the infimum of the set of possible valuations corresponding to using an action in ρUi(ai). See also
Example 4 in the context of auctions.

For any ai ∈ Alow
i,disc and a′i ∈ Alow

i,disc, it holds that ρLi(ai) = ρLi(a′i) and ρUi(ai) = ρUi(a′i), so the
identified bounds for the valuation corresponding to the use of action ai ∈ Alow

i,disc are the same as
the identified bounds for the valuation corresponding to the use of action a′i ∈ Alow

i,disc. Similarly,
for any ai ∈ Ahigh

i,disc and a′i ∈ A
high
i,disc, it holds that ρLi(ai) = ρLi(a′i) and ρUi(ai) = ρUi(a′i), so the

identified bounds for the valuation corresponding to the use of action ai ∈ Ahigh
i,disc are the same as

the identified bounds for the valuation corresponding to the use of action a′i ∈ A
high
i,disc. In many

mechanisms, including many auctions as in Example 2, |Alow
i,disc| ≤ 1 and |Ahigh

i,disc| ≤ 1, in which
case this observation about the identification result is irrelevant. However, in other mechanisms,
|Alow

i,disc| > 1 and/or |Ahigh
i,disc| > 1. In particular, some mechanisms may have entirely discrete action

spaces, so that |Alow
i,disc ∪A

high
i,disc| is the total number of actions. Section 6 develops an extension of the

identification strategy that is useful in mechanisms with many discrete actions, or entirely discrete
action spaces. Based on that identification strategy, the identified bounds for the valuations can
differ for different actions in Alow

i,disc and for different actions in Ahigh
i,disc.

Example 4 (Application to auctions). As an example, the partial identification result applies
to auctions including various complications like multiple units possibly with endogenous supply,
asymmetries, reserve prices, and participation costs. The identification results do not depend on the
specifics of a particular model, and indeed even apply when the econometrician has an incomplete
specification of the model, as long as the econometrician assumes that the auction falls in the class
of allocation-transfer mechanisms. Therefore, this discussion relates to the general issues raised
by such auctions, although by necessity the discussion is in the context of a particular concrete
example, to make it possible to discuss the ideas. The identification results could also apply to other
complications in auctions, or mechanisms other than auctions.

Continuing the discussion of such auctions in Example 2, the action space is {DNP} ∪ [ri,∞),
where the action DNP is the “do not participate” action, ri ≥ 0 is the reserve price, and actions
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in [ri,∞) are the decisions to participate and place that bid in the auction.37 There is a cost
of participation in the auction. Therefore, intuitively, both because of the reserve price and the
participation cost, any bidder with a sufficiently low valuation will use the “do not participate”
action. Such a result can be established under the conditions of the theorems establishing monotone
equilibrium in the cited references in Example 2, and more generally in the cited references in the
discussion of Assumption 6 (Weakly increasing strategy).

Theorem 1 delivers partial identification for the set of valuations corresponding to players that do
not participate. As discussed above more generally, ρLi(DNP ) = ∅ since DNP ∈ Alow

i,disc. Therefore,
for any player that uses the “DNP” action, the corresponding valuation can be bounded between
ΘLi, the ex ante lowest possible valuation, and infa′i∈ρUi(DNP ) Ψi(a′i), the infimum of the set of possible
valuations corresponding to a bid satisfying the conditions of ρUi(DNP ), which in general can be
expected to be the set of participating bids actually used in the data.

To see that typical property of ρUi(DNP ), suppose that the endogenous quantity is a function only
of the winning bid, and consider an equilibrium in which ties for high bid are a probability zero event.
Then, for a bid a′i ≥ ri, it holds that Ψx

i (a′i) = S ′(a′i)P (Hi(A−i) < a′i|Ai = a′i) +S(a′i)fHi(A−i)|Ai=a′i(a
′
i)

exists and is strictly positive under the conditions that S ′(a′i) ≥ 0 exists and S(a′i) > 0, and
fHi(A−i)|Ai=a′i(a

′
i) > 0 exists, where Hi(A−i) is the highest competitor’s bid as defined in Example

2 and fHi(A−i)|Ai=a′i(·) is the conditional density thereof. Hence, if the econometrician maintains
those conditions, the econometrician knows all such bids satisfy that part of the definition of Ãdi in
Equation 17. Similarly, economic theory can be used to establish existence of Ψt

i(a′i) under similar
conditions. The functional form of Ψt

i(a′i) would depend on the rule for determining transfers in
the auction, for example whether the auction is a first-price auction or a second-price auction. As
discussed previously, reduced-form identification also holds under suitable conditions. And, finally,
per Remark 1, economic theory can be used to establish properties of ˜̃Adi , such that it can be expected
that mass points can possibly exist in the distribution of actions only at the DNP action and at the
reserve price. More specifically, in auctions with a DNP action, it can often be expected that there
is not a mass point at the reserve price. See the form of the equilibrium strategies in the references
in Example 2. All together, under such conditions, and also as an intuitive extrapolation to various
other related auction models, Ãdi can be expected to be the set of all participating bids actually used
in the data, and hence also ρUi(DNP ) can also be expected to be the set of all participating bids
actually used in the data.

Suppose a∗∗Ui(DNP ) = min(ρUi(DNP )) exists, and is the lowest participating bid actually used
in the data satisfying the conditions of ρUi(DNP ). Further, assuming continuity of the expressions
involved in Ψx

i (·) and Ψt
i(·) would imply continuity of Ψx

i (·) and Ψt
i(·). Together, under such conditions,

Ψi(·) would be continuous and hence weakly increasing on Ãdi per the arguments of Footnote 34.
Then, under all those conditions, the upper bound on the valuation corresponding to a player that
uses action DNP is infa′i∈ρUi(DNP ) Ψi(a′i) = Ψi(a∗∗Ui(DNP )). Of course, if ρUi(DNP ) did not contain
its infimum, then a∗∗Ui(DNP ) would not exist, and this simplification would not obtain. Of course the
identified upper bound infa′i∈ρUi(DNP ) Ψi(a′i) would still be valid. The identification result does not
require that the econometrician work out these expressions. Rather, this example shows what the
identification result “does automatically” in the specific context of such an auction.
37Even if allowed, bids below the reserve price would by definition have zero probability of winning the auction,
implying that the marginal expected allocation Ψx

i (a′i) = 0 for bids 0 ≤ a′i < ri below the reserve price, if allowed.
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Further, participating bids other than the reserve price (i.e., ai > ri) generally satisfy the conditions
for point identification of the corresponding valuation, so Theorem 1 in such cases delivers point
identification of the valuation corresponding to the use of a participating bid other than the reserve
price (an action generally used with zero probability per the above discussion). That follows because,
considering the conditions for point identification discussed after the statement of Theorem 1,
participating bids strictly above the reserve price are in the interior of the action space, generally
there are not point masses at bids strictly above the reserve price, and essentially the same arguments
as above establish the differentiability conditions and reduced-form identification conditions.

Note that ΘUi does not appear in this application of the identification result. Non-participation
results in partial identification of the corresponding valuation, which is a low valuation and therefore
depends on ex ante knowledge of the lowest possible valuation, whereas participating bids result in
point identification of the corresponding valuation, and so ex ante knowledge of the highest possible
valuation is irrelevant. Of course, the identification result will vary depending on the identifying
content of the data based on the specifics of the auction.

The econometrician must be able to determine the set of “potential bidders” who actually had the
opportunity to participate in the auction. Obviously, the “refusal” to participate is not meaningful
for bidders who were not even given the opportunity to participate.

The identification strategy requires reduced-form identification of the marginal expected transfer.
It is possible to apply the identification strategy even if the participation cost is unobserved by the
econometrician, because the marginal expected transfer for participating bids does not depend on the
participation cost. See the discussion of Condition 5 of Lemma 1.

Remark 1 (Theoretical results on point masses). Obviously, the location of point masses in the
distribution of actions can be identified directly from the data. Also there are theoretical results on the
locations where point masses can potentially exist. Continue to maintain the assumptions of Theorem
1. Additionally, suppose the mechanism presents player i with locally non-constant marginal returns
to the action locally to a particular valuation θ∗i and at the corresponding equilibrium action ai(θ∗i ):
this says that there is a neighborhood N of θ∗i such that ∂

∂ai
Vi(ai, θ′i)

∣∣∣
ai=ai(θ∗i )

6= ∂
∂ai
Vi(ai, θ∗i )

∣∣∣
ai=ai(θ∗i )

for all θ′i ∈ N such that θ′i 6= θ∗i . This involves the condition that ∂
∂ai
Vi(ai, θ′i)

∣∣∣
ai=ai(θ∗i )

exists for all
θ′i in a neighborhood of θ∗i . This analysis of locally non-constant marginal returns is an application
of the ideas about increasing marginal returns in Edlin and Shannon (1998). Under Assumption 2
(Independent valuations), ∂

∂ai
Vi(ai, θi)

∣∣∣
ai=ai(θ∗i )

= θi
∂EΠi

(xi(ai,a−i))
∂ai

∣∣∣
ai=ai(θ∗i )

− ∂EΠi
(ti(ai,a−i))
∂ai

∣∣∣∣
ai=ai(θ∗i )

. In

that case, locally non-constant marginal returns obtains at θ∗i if ∂EΠi
(xi(ai,a−i))
∂ai

∣∣∣
ai=ai(θ∗i )

6= 0.

By Equation 2, if ai(θ∗i ) ∈ int(Ai,cont), then ∂
∂ai
Vi(ai, θ∗i )

∣∣∣
ai=ai(θ∗i )

= 0. Therefore, by locally non-
constant marginal returns, ai(θ∗i ) cannot solve the ex interim expected utility maximization problem
for any valuation θi ∈ N other than θ∗i . Therefore, because ai(·) is weakly increasing under Assumption
6, for θ′i < θ∗i with θ′i ∈ N , it must be that ai(θ′i) < ai(θ∗i ). Similarly, for θ∗i < θ′′i with θ′′i ∈ N , it
must be that ai(θ∗i ) < ai(θ′′i ). Moreover, under Assumption 6, for any θi < θ′i (defined above) it must
be that ai(θi) ≤ ai(θ′i) < ai(θ∗i ). Similarly, under Assumption 6, for any θ′′i < θi (defined above) it
must be that ai(θ∗i ) < ai(θ′′i ) ≤ ai(θi). Therefore, θ∗i is the unique valuation to use the action ai(θ∗i ).
Hence, point masses can exist only at the boundary of Ai,cont or in Ai,disc.
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4. Point identification

As noted after Theorem 1, the partial identification result establishes point identification of features
of the distribution of valuations satisfying certain conditions. If these conditions hold in general, as
follows, then the entire distribution of valuations is point identified.

Assumption 9 (No use of discrete actions and no point masses in distribution of actions). For each
i ∈ {1, 2, . . . , N}, Adi ⊆ Ai,cont and ˜̃Adi = Adi .

According to Theorem 1, any action in Ai,disc corresponds to partial identification of the corre-
sponding valuation. Hence, Assumption 9 disallows the use of actions in Ai,disc. Of course, that holds
by construction if indeed the action space is entirely continuous, so that Ai,disc = ∅. Further, if there
are relatively fewer point masses in the distribution of the actions in the data, then the identified set
for the distribution of valuations in Theorem 1 becomes tighter, all else equal, because the ρLi(ai)
and ρUi(ai) sets become larger. Hence, Assumption 9 (No use of discrete actions and no point masses
in distribution of actions) is used in the point identification result. Obviously, this assumption can
be checked in applications. Under Assumptions 1 (Dependent valuations) and 6 (Weakly increasing
strategy), and the analysis of Section 3, the lack of point masses is equivalent to the condition that
the strategy is strictly increasing.38

Assumption 10 (Differentiable ex interim expected allocation and transfer). For each i ∈ {1, 2, . . . , N},
there is a set Ei,d with P (Ai ∈ Ei,d) = 0 such that the mechanism and player i’s beliefs are such that,
for each possible valuation θi, the expected allocation EΠi

(xi(ai, a−i)|θi) and the expected transfer
EΠi

(ti(ai, a−i)|θi) are differentiable functions of ai, evaluated at any a∗i ∈ support(ai(θi)) ∩ ECi,d.

Assumption 10 requires that ex interim expected allocation and ex interim expected transfer given
valuation θi are differentiable on the support of the strategy ai(θi). Of course, under Assumption
6 (Weakly increasing strategy), ai(θi) is a degenerate random variable (i.e., a pure strategy), in
which case a∗i = ai(θi). However, under Assumption 4 (Optimal strategy) alone, mixed strategies
are allowed. As discussed above, breaking up the assumptions in this way makes it easier to refer
to the separate roles of the assumptions. In many mechanisms, the ex interim expected allocation
and ex interim expected transfer are differentiable on the entire action space. If ex interim expected
allocation and ex interim expected transfer have relatively more points of differentiability, then the
identified set for the distribution of valuations in Theorem 1 becomes tighter, all else equal, because
the ρLi(ai) and ρUi(ai) sets become larger. Hence, Assumption 10 (Differentiable ex interim expected
allocation and transfer) is used in the point identification result. Assumption 10 allows a probability
zero exceptional set of actions at which differentiability fails. Of course, the notation SC for some set
S is the complement of the set S.

Under Assumptions 1 (Dependent valuations), 5 (Correct beliefs), 6 (Weakly increasing strategy),
and 9 (No use of discrete actions and no point masses in distribution of actions), Assumption 10 can
be checked in applications as follows. Let θi be some possible valuation, and let zi = ai(θi) be the
corresponding action from Assumption 6. By construction, per Assumption 6, {zi} = support(ai(θi)).
By the analysis of Section 3, since there is no point mass at zi per Assumption 9, θi must be the
unique valuation to use action zi. Therefore, by Assumptions 5 and 6, and the analysis of Section
38If two valuations use the same action, then there is a point mass at that action. So, if there are no point masses,
then no two valuations use the same action, so the strategy must indeed be strictly increasing. Conversely, obviously if
the strategy is strictly increasing, then there are no point masses in the distribution of actions by Assumption 1.
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3, Ψx
i (zi) = ∂EΠi

(xi(ai,a−i)|θi)
∂ai

∣∣∣
ai=zi

and Ψt
i(zi) = ∂EΠi

(ti(ai,a−i)|θi)
∂ai

∣∣∣∣
ai=zi

. Therefore, the differentiability

condition in Assumption 10 is equivalent to existence of Ψx
i (zi) and Ψt

i(zi) for probability 1 of actions
zi used in the data. The identification problem of determining existence of Ψx

i (zi) and Ψt
i(zi) was

discussed in the context of reduced-form identification in Section 3.

Assumption 11 (Reduced-form identification). For each i ∈ {1, 2, . . . , N}, there is a set Ei,r with
P (Ai ∈ Ei,r) = 0 such that if ai ∈ Adi ∩ ECi,r is such that Ψx

i (ai) and Ψt
i(ai) exist then ai is an action

with reduced-form identification per Definition 4.

If there are relatively more actions with reduced-form identification, then the identified set for
the distribution of valuations in Theorem 1 becomes tighter, all else equal, because the ρLi(ai) and
ρUi(ai) sets become larger. Hence, Assumption 11 (Reduced-form identification) is used in the
point identification result. Assumption 11 requires reduced-form identification for all actions used
in the data except for the probability zero exceptional set Ei,r. This accommodates the possibility
that reduced-form identification may fail on a set of probability zero, as discussed after Lemma 1.
Assumptions 1, 5, 6, 9, and 10, and the analysis of Section 3, imply that Ψx

i (ai) and Ψt
i(ai) actually

do exist for ai ∈ Adi ∩ ECi,d.

Assumption 12 (Non-zero marginal expected allocation). For each i ∈ {1, 2, . . . , N}, there is a set
Ei,m with P (Ai ∈ Ei,m) = 0 such that Ψx

i (ai) 6= 0 for ai ∈ Adi ∩ ECi,m.

Independent valuations Under Assumption 2 (Independent valuations), by Darboux’s theorem, if
Ψx
i (z) = Λx

i (z) = ∂EP (xi(ai,A−i))
∂ai

∣∣∣
ai=z
6= 0 on an interval subset of Adi , then Λx

i (·) is of constant sign
on that interval, and hence EP (xi(ai, A−i)) is a strictly monotone function of ai on that interval, a
sort of strengthened version of Assumption 7 (Non-decreasing expected allocation rule).

If there are relatively more actions a′i such that Ψx
i (a′i) 6= 0, then the identified set for the

distribution of valuations in Theorem 1 becomes tighter, all else equal, because the ρLi(ai) and ρUi(ai)
sets become larger. Hence, Assumptions 12 (Non-zero marginal expected allocation) is used in the
point identification result. Assumption 12 can be checked in applications since Ψx

i (·) is an identified
function, per Assumption 11. Assumption 12 allows a probability zero exceptional set Ei,m.

As a technical note, point identification is achieved in the identification strategy by applying
Equation 2 to a particular action in order to recover the corresponding valuation, except for actions in
the probability zero exceptional set of actions E = ∏

i Ei with Ei = (int(Ai,cont))C ∪Ei,d∪Ei,r ∪Ei,m. In
other words, considering the “unobserved” joint distribution of θ and A, P (θ, A), it is possible to write
that P (θ ∈ B) = P (θ ∈ B,A ∈ EC) + P (θ ∈ B,A ∈ E) = P (θ ∈ B,A ∈ EC) = P (θ ∈ B|A ∈ EC)
for any Borel set B, and hence it is enough to restrict the identification problem to recovering the
distribution of θ from actions in the probability 1 subset of actions EC .

Theorem 2. Under Assumptions 1 (Dependent valuations), 3 (Action space), 4 (Optimal strategy), 5
(Correct beliefs), 6 (Weakly increasing strategy), 9 (No use of discrete actions and no point masses in
distribution of actions), 10 (Differentiable ex interim expected allocation and transfer), 11 (Reduced-
form identification), and 12 (Non-zero marginal expected allocation), the distribution of valuations
θ is point identified, and the identification is constructive, because the distribution of θ equals the
distribution of (Ψ1(A1),Ψ2(A2), . . . ,ΨN(AN)), where (A1, A2, . . . , AN) is distributed according to the
data P (A,X, T ) and Ψi(·) is the identifiable function given in Equation 9 (see Lemma 1).
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Independent valuations With independent valuations: replace Assumption 1 (Dependent valua-
tions) with Assumption 2 (Independent valuations), drop Assumption 6 (Weakly increasing strategy)
and replace the Ψ functions with the Λ functions defined in Equation 15. F

As a point identification result, Theorem 2 drops Assumption 8 (Known bounds on valuations),
compared to Theorem 1. In short, Theorem 2 shows sufficient conditions under which it is possible
to point identify the distribution of valuations. Point identification is possible even when the model
is incomplete in the sense that it is not necessary for the econometrician to know the allocation
and transfer rules. Of course, the case of an incomplete model of the mechanism complicates the
identification problem, but is not the only source of the identification problem.

The partial identification result can deliver point identification of features of the distribution of
valuations satisfying essentially the assumptions discussed in this section. Consequently, if a large
probability mass of actions satisfies these assumptions, then the partial identification result is “close”
to point identification, in the sense that the large probability mass of actions that satisfies these
assumptions would result in point identification of the corresponding valuations.

5. On the role of equilibrium assumptions

Bayes Nash equilibrium requires that all players act rationally given beliefs (Assumption 4) and
have correct beliefs (Assumption 5), so that each player chooses an action that is a best response to
the distribution of actions of the other players. It is relevant to ask what role equilibrium played in
the identification results, both to gain a better understanding of the identification results, and also
because it may be useful in some settings to relax the assumption of equilibrium.

This assumption of equilibrium is completely standard, since it is reasonable in very many settings,
but in some settings it may be too strong.39 In the context of auction models, for example, it might
be that some “novice” bidders have incorrect beliefs about the other bidders, whereas “experienced”
bidders might have correct beliefs about the other bidders. Similarly, it might be that the “novice”
bidders do not have sufficient understanding or experience with the auction format to bid the optimal
amount given their beliefs, whereas “experienced” bidders might have that sufficient understanding
and experience to bid the optimal amount given their beliefs. The difference between “novice” and
“experienced” might be due to learning from participating in previous auctions, or some other reason
that is observable by the econometrician, so that the econometrician can distinguish which players
are “novices” and which players are “experienced.” For example, in electricity markets with data that
includes typically unobserved valuations, which makes it possible to test bidder optimality, Hortacsu
and Puller (2008) find that “large” firms are more strategically sophisticated than “small” firms.

It is possible to identify valuations for any player that has correct beliefs and acts rationally given
those correct beliefs, regardless of whether other players have correct beliefs and/or act rationally
given those beliefs. Therefore, it is possible to identify particular players’ valuations, even without
the assumption of equilibrium. Moreover, such a result is useful to understand the role of equilibrium
assumptions in Theorems 1 and 2. As before, the identification strategy involves recovering the
valuation corresponding to an action, based on the ex interim utility maximization problem from
Equation 1. Under the full assumption of equilibrium, this resulted in identification of the valuations
39Identification in games relaxing the assumption of equilibrium, or related questions, has been considered in Aradillas-
Lopez and Tamer (2008), Haile, Hortaçsu, and Kosenok (2008), Kline and Tamer (2012), and Kline (2015, 2016b).
Kline (2016a) includes a discussion of the tradeoffs between equilibrium assumptions and assumptions on the data, for
identification in settings like entry games. See Maskin (2011) for a commentary on Nash equilibrium in mechanisms.
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of all players. Under the weaker assumptions in this section, this results in identification of the
valuation of player i. In other words, it is possible to identify the valuation of player i, without
assuming anything about the behavior of the other players, as long as player i still has correct beliefs
and acts rationally given those correct beliefs. Those beliefs need not involve the other players
themselves having correct beliefs or acting rationally given those beliefs. For example, player i might
have correct beliefs that the other players are “irrational.”

If it were assumed that all players draw valuations from the same marginal distribution (i.e.,
“symmetric private values”), then identification of one player’s marginal distribution of valuations is
sufficient to identify all players’ marginal distributions of valuations. If it were further assumed that
player valuations are independent (i.e., “symmetric independent private values”), then identification
of one player’s marginal distribution of valuations is sufficient to identify the joint distribution of all
players’ distributions of valuations. Of course, in some settings, it may be implausible to assume
that only some players have correct beliefs and act rationally given those beliefs, while also assuming
that all players draw valuations from the same marginal distribution. However, if for example all
players have the same marginal distribution of valuations, but some players just happen to have
more “experience” with the mechanism for reasons unrelated to their valuation, those simultaneous
assumptions may be plausible. Of course, in any case, it is possible to identify the valuations of the
player that has correct beliefs and acts rationally given those correct beliefs.

The identification strategy is almost exactly the same as developed in Sections 3 and 4. When
relaxing the assumption of equilibrium, only a specific player i is assumed to have correct beliefs and
act rationally given those beliefs. Assumptions 4, 5, 6, 9, 10, 11, and 12 that apply to all players are
replaced by similar assumptions that apply only to a particular player i:

Assumption 4i (Player i uses an optimal strategy). For each possible valuation θi, player i uses a
strategy ai(θi) when it has valuation θi, with ai(θi) ∈ ∆(arg maxai∈Ai

Vi(θi, ai)), so each action taken
according to the strategy ai(θi) maximizes ex interim expected utility.

Assumption 5i (Player i has correct beliefs). Player i has correct beliefs, in the sense that, for each
possible valuation θi, Πi(a−i ∈ B|θi) = P (A−i ∈ B|θi) for all Borel sets B.

Assumption 6i (Player i uses a weakly increasing strategy). For each possible valuation θi, ai(θi) is
a pure strategy. And, ai(·) is a weakly increasing function.

Assumption 9i (Player i has no use of discrete actions and no point masses in distribution of
actions). Adi ⊆ Ai,cont and

˜̃Adi = Adi .

Assumption 10i (Player i has differentiable ex interim expected allocation and transfer). There
is a set Ei,d with P (Ai ∈ Ei,d) = 0 such that the mechanism and player i’s beliefs are such that,
for each possible valuation θi, the expected allocation EΠi

(xi(ai, a−i)|θi) and the expected transfer
EΠi

(ti(ai, a−i)|θi) are differentiable functions of ai, evaluated at any a∗i ∈ support(ai(θi)) ∩ ECi,d.

Assumption 11i (Player i has reduced-form identification). There is a set Ei,r with P (Ai ∈ Ei,r) = 0
such that if ai ∈ Adi ∩ ECi,r is such that Ψx

i (ai) and Ψt
i(ai) exist then ai is an action with reduced-form

identification per Definition 4.

Assumption 12i (Player i experiences non-zero marginal expected allocation). There is a set Ei,m
with P (Ai ∈ Ei,m) = 0 such that Ψx

i (ai) 6= 0 for ai ∈ Adi ∩ ECi,m.
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Theorem 3. Under Assumptions 1 (Dependent valuations), 3 (Action space), 4i (Player i uses an
optimal strategy), 5i (Player i has correct beliefs), 6i (Player i uses a weakly increasing strategy),
9i (Player i has no use of discrete actions and no point masses in distribution of actions), 10i
(Player i has differentiable ex interim expected allocation and transfer), 11i (Player i has reduced-form
identification), and 12i (Player i experiences non-zero marginal expected allocation), the distribution
of valuations θi is point identified, and the identification is constructive, because the distribution of θi
equals the distribution of Ψi(Ai), where Ai is distributed according to the data P (A,X, T ) and Ψi(·)
is the identifiable function given in Equation 9 (see Lemma 1).

Independent valuations With independent valuations: replace Assumption 1 (Dependent valu-
ations) with Assumption 2 (Independent valuations), drop Assumption 6i (Player i uses a weakly
increasing strategy) and replace the Ψ functions with the Λ functions defined in Equation 15. F

Essentially, Theorem 3 is the “player i part” of Theorem 2, both in terms of assumptions and result.
Hence, perhaps surprisingly, it is possible to point identify the distribution of valuations of player i
without the assumption of equilibrium. For example, it could be that player i in the mechanism is the
“large/experienced” firm, in which case the assumptions would be, roughly, that the “large/experienced”
firm acts rationally given beliefs and has correct beliefs, and the result would be that the distribution
of valuations for the “large/experienced” firm would be point identified. Analogously, it is possible to
formulate the “player i part” of Theorem 1, establishing partial identification of player i’s distribution
of valuations. In the interest of space, that result is not stated here. Moreover, assuming that players
i and j both satisfy the assumptions, it is possible to formulate the “player i and j part” of the
identification results, establishing identification of the joint distribution of their valuations.

6. Identification with an additional assumption

It is possible to extend the identification strategy under an additional assumption, which is especially
useful for mechanisms involving discrete action spaces and/or non-differentiable ex interim expected
allocation or ex interim expected transfer. The main identification results from Sections 3 and 4
deliver informative partial identification (and point identification under the conditions of Section
4) in the large class of allocation-transfer mechanisms that have at least partly continuous action
spaces and somewhere differentiable ex interim expected allocation and ex interim expected transfer,
corresponding to the large economic theory literature concerning mechanisms with these properties.
However, in an extreme case, if the action space is entirely discrete, or if ex interim expected
allocation and/or ex interim expected transfer are nowhere differentiable, then the identification
result in Theorem 1 still applies, but as discussed after the statement of Theorem 1, the resulting
identified set for the distribution of valuations would be the trivial bounds that the valuations
are between the ex ante known bounds on the valuations from Assumption 8 (Known bounds on
valuations). The identification strategy developed in this section establishes informative non-trivial
bounds on the valuations even in that extreme case.

Indeed, in some mechanisms, the action space does not contain a “continuous part,” which also
implies that ex interim expected allocation and ex interim expected transfer cannot be a differentiable
function of the action. For example, some auction formats might allow only bids that are an integer
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multiple of some fixed amount (e.g., the allowed bids might be 5 dollars, 10 dollars, 15 dollars,
etc.).4041 Discrete action spaces could also arise in mechanisms other than auctions, as in Example 7.

Hence, the identification strategy developed in this section applies most usefully to mechanisms
with many discrete actions, or mechanisms with an entirely discrete action space. Indeed, in a sense
formalized below, the identification strategy developed in this section is a sort of “discrete analogue”
of the identification strategy developed in Section 3. An action from Ai,disc is generically used by
multiple valuations. Consequently, an action from Ai,disc generically results in partial identification
of the corresponding valuation. For the same reason, it is generically not possible to recover the
beliefs of a player using an action from Ai,disc, as done in Section 3. Therefore, a different approach
to essentially bounding the beliefs of the players must be taken for actions taken from Ai,disc.

Under Assumption 4 (Optimal strategy), for any valuation θi, any action ãi(θi) that solves the
utility maximization problem in Equation 1 satisfies

θiEΠi
(xi(ãi(θi), a−i)|θi)− EΠi

(ti(ãi(θi), a−i)|θi) ≥(21)
max
zi∈Ai

(θiEΠi
(xi(zi, a−i)|θi)− EΠi

(ti(zi, a−i)|θi)) .

Under Assumption 5 (Correct beliefs), Equation 21 implies

θiEP (xi(ãi(θi), A−i)|θi)− EP (ti(ãi(θi), A−i)|θi) ≥(22)
max
zi∈Ai

(θiEP (xi(zi, A−i)|θi)− EP (ti(zi, A−i)|θi)) .

Under Assumption 6 (Weakly increasing strategy), for any action a∗i ∈ Ai there is an interval

(23) Θi(a∗i ) = {θi : ai(θi) = a∗i }

of valuations such that player i with valuation θi uses action a∗i if and only if θi ∈ Θi(a∗i ). Moreover,
if ai 6= a′i then Θi(ai) and Θi(a′i) are disjoint; and if ai < a′i and Θi(ai) and Θi(a′i) are both non-empty
then sup Θi(ai) ≤ inf Θi(a′i). Therefore, for any zi, z′i ∈ Adi ,

(24) EP (xi(zi, A−i)|Ai = z′i) = EP (xi(zi, A−i)|θi ∈ Θi(z′i)) = EP (EP (xi(zi, A−i)|θi)|θi ∈ Θi(z′i))

(25) EP (ti(zi, A−i)|Ai = z′i) = EP (ti(zi, A−i)|θi ∈ Θi(z′i)) = EP (EP (ti(zi, A−i)|θi)|θi ∈ Θi(z′i)).
40The economic theory of such auctions has been developed in Chwe (1989), Rothkopf and Harstad (1994), Dekel
and Wolinsky (2003), David, Rogers, Jennings, Schiff, Kraus, and Rothkopf (2007). Also, some results on equilibrium
existence including Milgrom and Weber (1985) and Athey (2001) use a finite action space as a theoretical construction.
41“Discrete” can be used with different definitions, which are worth distinguishing. Hortaçsu and McAdams (2010)
studies an identification problem (and empirical application) in discriminatory price divisible goods auctions with
independent private values. Kastl (2011) studies an identification problem (and empirical application) in uniform price
divisible good auctions with (mainly) independent private values. In those models, bidders submit a bid function
that specifies a quantity demanded for each possible price. Hence, neither model is covered by the allocation-transfer
mechanism framework, because those models deal with an action space that is a bid function rather than just a scalar
bid. More importantly, the notion of “discrete” action is also different. In particular, Kastl (2011) uses “discrete”
(per Kastl (2011, Assumption 3)) as a statement about the step function nature of the bid functions, where each
player submits a bid function that is a step function, and therefore characterizable by a discrete vector of prices and
quantities that characterize each “step” of the bid function. Hortaçsu and McAdams (2010) similarly emphasize step
bid functions. However, the actual price and quantities at each step of the bid function is unrestricted. By contrast,
as applied to auctions, this paper uses discrete as a statement on the restriction of the allowed bid levels. So, the
players can only bid, for example, integer multiples of some minimal bid level. An earlier version of Hortaçsu (2002)
looked at a model with a discrete grid of possible prices, and hence with a “discrete” action space more similar to
the discreteness in this paper. Of course, the overall identification problem (and hence identification strategy) is still
different from the identification problem addressed in this paper, particularly given the differences in the models being
identified. The identification strategy in this paper does not restrict to auctions or independent values.
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Hence, if θi corresponds to the use of z′i ∈ Ai,disc, the beliefs expressions in Equation 22 conditioning
on θi are generically not identifiable by the same strategy as in Sections 3 and 4, because generically
multiple valuations use any given z′i ∈ Ai,disc. However, it is possible to provide bounds on these
beliefs expressions under an additional assumption. In order to state the additional assumption, as a
regularity condition it is necessary to assume that ex interim expected utility has a maximizer when
player i has valuation θi and “counterfactually” has the beliefs of valuation θ′′i .

Assumption 13 (Counterfactual ex interim expected utility maximization problem has a solution).
For each i ∈ {1, 2, . . . , N}, maxai∈Ai

(θiEΠi
(xi(ai, a−i)|θ′′i )− EΠi

(ti(ai, a−i)|θ′′i )) has a solution for
any possible valuations θi and θ′′i .

Assumption 4 (Optimal strategy) states that the ex interim expected utility maximization problem
has a solution when θi = θ′′i . Standard conditions imply that a solution exists even when θi 6= θ′′i .

Assumption 14 (Monotone effect of counterfactual beliefs on utility). For each i ∈ {1, 2, . . . , N},
and any possible valuations θi and θ′′i , there is some selection

ai(θi; θ′′i ) ∈ arg max
ai∈Ai

(θiEΠi
(xi(ai, a−i)|θ′′i )− EΠi

(ti(ai, a−i)|θ′′i ))

with ai(θi; θi) = ai(θi) from Assumption 6, such that for a∗i = ai(θi; θ′′i ) and when θ′i ≤ θ′′i ,

θiEΠi
(xi(a∗i , a−i)|θ′i)− EΠi

(ti(a∗i , a−i)|θ′i) ≥ θiEΠi
(xi(a∗i , a−i)|θ′′i )− EΠi

(ti(a∗i , a−i)|θ′′i ).

Independent valuations Under Assumption 2 (Independent valuations), Assumptions 13 and 14
are not used. F

The action a∗i = ai(θi; θ′′i ) maximizes the “counterfactual” ex interim expected utility of player i
with valuation θi and “counterfactually” the beliefs of a player with valuation θ′′i possibly not equal
to θi. The assumption states that the “counterfactual” ex interim expected utility experienced by
player i that has valuation θi that uses such an action a∗i and “counterfactually” has the beliefs of
valuation θ′i with θ′i ≤ θ′′i is weakly greater than that under the beliefs with valuation θ′′i . A sufficient
condition is that θiEΠi

(xi(a∗i , a−i)|θ′i)−EΠi
(ti(a∗i , a−i)|θ′i) is a weakly decreasing function of θ′i. Hence,

the assumption can be interpreted as stating that utility is monotone in the “counterfactual beliefs”
arising due to “counterfactual” valuations.

If valuations are independent, then beliefs do not depend on valuation, so this assumption is
satisfied. Further, even when valuations are dependent, this condition is satisfied when valuations are
suitably “positively dependent” (i.e., affiliated as in Milgrom (2004, Section 5.4.1), or alternatively,
with the distribution of θ−i|θi monotonic in θi in the usual multivariate stochastic order), all players
have correct beliefs (per Assumption 5) and use weakly increasing strategies (per Assumption 6),
and ex post utility θixi(a∗i , a−i)− ti(a∗i , a−i) of player i weakly decreases with the actions of the other
players, when player i takes the action a∗i = ai(θi; θ′′i ).

Lemma 2 (Sufficient conditions for Assumption 14). Suppose that for each i ∈ {1, 2, . . . , N}, and
any possible valuations θi and θ′′i , there is some selection

ai(θi; θ′′i ) ∈ arg max
ai∈Ai

(θiEΠi
(xi(ai, a−i)|θ′′i )− EΠi

(ti(ai, a−i)|θ′′i ))

with ai(θi; θi) = ai(θi) from Assumption 6, such that for a∗i = ai(θi; θ′′i ), θixi(a∗i , a−i) − ti(a∗i , a−i)
is a weakly decreasing function of a−i. Suppose Assumptions 5 (Correct beliefs) and 6 (Weakly
increasing strategy) are satisfied. Suppose either: (a) valuations are affiliated, or (b) the distribution
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of θ−i|(θi = θ′i) is stochastically smaller than the distribution of θ−i|(θi = θ′′i ) in the usual multivariate
stochastic order, when θ′i ≤ θ′′i . Then Assumption 14 is satisfied.

For example, in contest models from Example 1, the condition that ex post utility decreases with the
actions of the other players is the intuitive condition that players are worse off when their opponents
put forth more effort. Generically, in contest models, this would hold even without the restriction
that player i takes the action a∗i that maximizes “counterfactual” ex interim expected utility, as long
as the “contest success function” for player i is a weakly decreasing function of the efforts of the
other players. In other mechanisms, this restriction to using such an action a∗i is important because
if player i takes an extremely “irrational” action, then ex post utility of player i could be weakly
increasing in the actions of the other players. For example, in a standard first price auction as a
special case of Example 2, ex post utility is (θi − ai)(1[ai > maxj 6=i aj] + pi(a)1[ai = maxj 6=i aj]). If
ai > θi, then ex post utility is weakly increasing in the actions of the other players, since player i is
better off losing the auction since it overbid its valuation. But there is no incentive to bid more than
its valuation, so in a first price auction a∗i ≤ θi. For any such bid, player i is weakly worse off if the
other players bid more.

Under the conditions of Lemma 2, if player i “counterfactually” has the beliefs of player i with
valuation θ′i with θ′i ≤ θ′′i then player i believes the other players to take weakly lower actions compared
to the case of having the beliefs of player i with valuation θ′′i , and therefore ex interim expected
utility is weakly greater under “counterfactual” beliefs θ′i compared to “counterfactual” beliefs θ′′i
since ex post utility is weakly greater when the actions of the other players are weakly lower. The
conditions in Lemma 2 are sufficient but not necessary for Assumption 14, so a violation of these
conditions does not imply that Assumption 14 fails. In particular, as noted above, Assumption 14 is
satisfied with independent valuations, regardless of any other condition.

Equation 22 implies, under Assumptions 5 (Correct beliefs), 6 (Weakly increasing strategy), 13
(Counterfactual ex interim expected utility maximization problem has a solution), and 14 (Monotone
effect of counterfactual beliefs on utility), for θ′i < θi < θ′′i , and letting ai(θi; θ′′i ) be the selection per
Assumption 14, for any zi ∈ Ai,

θiEP (xi(ai(θi), A−i)|θ′i)− EP (ti(ai(θi), A−i)|θ′i) ≥(26)
θiEP (xi(ai(θi), A−i)|θi)− EP (ti(ai(θi), A−i)|θi) ≥

θiEP (xi(ai(θi; θ′′i ), A−i)|θi)− EP (ti(ai(θi; θ′′i ), A−i)|θi) ≥
θiEP (xi(ai(θi; θ′′i ), A−i)|θ′′i )− EP (ti(ai(θi; θ′′i ), A−i)|θ′′i ) ≥
θiEP (xi(zi, A−i)|θ′′i )− EP (ti(zi, A−i)|θ′′i ).

Then, for any zi ∈ Ai, and letting z′i < ai(θi) < z′′i be any two actions that are actually used by
player i, for at least some valuation of player i, i.e., z′i, z′′i ∈ Adi :

θiEP (xi(ai(θi), A−i)|Ai = z′i)− EP (ti(ai(θi), A−i)|Ai = z′i)(27)
= θiEP (xi(ai(θi), A−i)|θ′i ∈ Θi(z′i))− EP (ti(ai(θi), A−i)|θ′i ∈ Θi(z′i))
≥ θiEP (xi(ai(θi), A−i)|θi)− EPi

(ti(ai(θi), A−i)|θi)
≥ θiEP (xi(zi, A−i)|θ′′i ∈ Θi(z′′i ))− EP (ti(zi, A−i)|θ′′i ∈ Θi(z′′i ))
= θiEP (xi(zi, A−i)|Ai = z′′i )− EP (ti(zi, A−i)|Ai = z′′i ).
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And consequently,

θi ≥
(EP (ti(ai(θi), A−i)|Ai = z′i)− EP (ti(zi, A−i)|Ai = z′′i ))
(EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ))

(28)

∀z′i < ai(θi) < z′′i , {z′i, z′′i } ∈ Adi , zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ) > 0}

θi ≤
(EP (ti(ai(θi), A−i)|Ai = z′i)− EP (ti(zi, A−i)|Ai = z′′i ))
(EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ))
∀z′i < ai(θi) < z′′i , {z′i, z′′i } ∈ Adi , zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ) < 0}

Therefore, similarly to the identification strategy in Sections 3-4, structural identification of θi
depends on reduced-form identification of the expressions on the right hand side of Equation 28.

Definition 5 (Action with reduced-form identification of differences). A specification (ai, zi, z′i, z′′i ) ∈
(Ai)4 of player i with z′i, z′′i ∈ Adi , is a specification with reduced-form identification of differences if

EP (xi(ai, A−i)|Ai = z′i)−EP (xi(zi, A−i)|Ai = z′′i ) and EP (ti(ai, A−i)|Ai = z′i)−EP (ti(zi, A−i)|Ai = z′′i )

are point identified. The set of specifications with reduced-form identification of differences is Ri.

Establishing sufficient conditions for reduced-form identification of differences is similar to estab-
lishing sufficient conditions for reduced-form identification in Section 3. In particular, similarly to
Section 3, even if the allocation rule and/or transfer rule are not known ex ante by the econometrician,
xi(ai, a−i) = EP (Xi|Ai = ai, A−i = a−i) and ti(ai, a−i) = EP (Ti|Ai = ai, A−i = a−i) are point
identified quantities under standard conditions on identification/estimation of conditional expecta-
tions. Then reduced-form identification of differences can be established by taking the appropriate
expectations (with respect to the distribution of the actions in the data) of the allocation rule and
transfer rule displayed in Definition 5. Therefore, because of the similarity to results already reported
in Section 3, in the interest of space, not all possible sufficient conditions are reported here. But of
particular relevance to this extension of the identification strategy is the case of a discrete action
space, so consider the case that Ai = Ai,disc for all players i. Let Ad be the support of the observed
actions (A1, A2, . . . , AN), and let Adi be the support of the observed actions Ai. If Ad = ∏

iAdi , so
that the support of (A1, A2, . . . , AN) is the Cartesian product of the supports of the actions of each
player, which is implied by the condition that the support of θ = (θ1, θ2, . . . , θN) is the Cartesian
product of the marginal supports of each θi,42 then any specification of actions (ai, zi, z′i, z′′i ) ∈ (Adi )4

of player i is a specification with reduced-form identification of differences.43

Lemma 3 (Sufficient conditions for reduced-form identification of differences with discrete actions).
Suppose that Assumptions 1 (Dependent valuations) and 3 (Action space) are satisfied. Suppose the
data is P (A,X, T ). If Ai = Ai,disc for all players i, and Ad = ∏

iAdi , then any specification of actions
(ai, zi, z′i, z′′i ) ∈ (Adi )4 of player i is a specification with reduced-form identification of differences per
Definition 5. Consequently, Adi ×Adi ×Adi ×Adi ⊆ Ri.
42Suppose that a∗j ∈ Adj for all players j. Then there must be θ∗j in the support of θj such that a∗j = aj(θ∗j ). Hence, if
the support of θ = (θ1, θ2, . . . , θN ) is the Cartesian product of the marginal supports of each θi, (θ∗1 , θ∗2 , . . . , θ∗N ) is in
the support of θ, so a∗ = (a∗1, a∗2, . . . , a∗N ) is in the support of A.
43Since only differences in transfers are relevant for Definition 5, it is possible to accommodate two-part transfers
similarly to Condition 5 of Lemma 1.
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Independent valuations Under Assumption 2 (Independent valuations), A−i is independent of Ai
and therefore z′i and z′′i effectively play no role in Definition 5. So, under Assumption 2, a specification
(ai, zi) ∈ (Ai)2 is a specification with reduced-form identification of differences if it satisfies the
condition in Definition 5, without the conditioning on z′i and z′′i . Hence, under Assumption 2, the
dimension of elements of Ri changes. F

An implication of Equation 28, restricted to specifications with reduced-form identification of
differences, is

θi ≥
(EP (ti(ai(θi), A−i)|Ai = z′i)− EP (ti(zi, A−i)|Ai = z′′i ))
(EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ))(29)

∀z′i < ai(θi) < z′′i , zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ) > 0}
(ai(θi), zi, z′i, z′′i ) ∈ Ri

θi ≤
(EP (ti(ai(θi), A−i)|Ai = z′i)− EP (ti(zi, A−i)|Ai = z′′i ))
(EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ))

∀z′i < ai(θi) < z′′i , zi ∈ {Ai : EP (xi(ai(θi), A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ) < 0}
(ai(θi), zi, z′i, z′′i ) ∈ Ri

Let
(30)

ΦLi(ai) = max


sup


(EP (ti(ai,A−i)|Ai=z′i)−EP (ti(zi,A−i)|Ai=z′′i ))
(EP (xi(ai,A−i)|Ai=z′i)−EP (xi(zi,A−i)|Ai=z′′i )) :

z′i < ai < z′′i , zi ∈ {Ai : EP (xi(ai, A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ) > 0},
(ai, zi, z′i, z′′i ) ∈ Ri

ΘLi

and
(31)

ΦUi(ai) = min


inf


(EP (ti(ai,A−i)|Ai=z′i)−EP (ti(zi,A−i)|Ai=z′′i ))
(EP (xi(ai,A−i)|Ai=z′i)−EP (xi(zi,A−i)|Ai=z′′i )) :

z′i < ai < z′′i , zi ∈ {Ai : EP (xi(ai, A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ) < 0},
(ai, zi, z′i, z′′i ) ∈ Ri

ΘUi

where ΘLi and ΘUi are ex ante known bounds on valuations from Assumption 8. Consequently, the
valuation corresponding to ai must be between ΦLi(ai) and ΦUi(ai).

Independent valuations Under Assumption 2 (Independent valuations), but even without Assump-
tions 6 (Weakly increasing strategy), 13 (Counterfactual ex interim expected utility maximization
problem has a solution), and 14 (Monotone effect of counterfactual beliefs on utility), based on similar
steps, the θi consistent with a given observed action ai is in the set Ξi(ai) = [ΞLi(ai),ΞUi(ai)] with

(32) ΞLi(ai) = max


sup


(EP (ti(ai,A−i))−EP (ti(zi,A−i)))
(EP (xi(ai,A−i))−EP (xi(zi,A−i))) :
zi ∈ {Ai : EP (xi(ai, A−i))− EP (xi(zi, A−i)) > 0}, (ai, zi) ∈ Ri

ΘLi
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and

(33) ΞUi(ai) = min


inf


(EP (ti(ai,A−i))−EP (ti(zi,A−i)))
(EP (xi(ai,A−i))−EP (xi(zi,A−i))) :
zi ∈ {Ai : EP (xi(ai, A−i))− EP (xi(zi, A−i)) < 0}, (ai, zi) ∈ Ri

ΘUi

Further, under Assumption 2 (Independent valuations), “one-step” reduced-form identification of dif-
ferences can be established similarly to Section 3: EP (ti(ai, A−i)) = EP (Ti|Ai = ai), EP (xi(ai, A−i)) =
EP (Xi|Ai = ai), EP (ti(zi, A−i)) = EP (Ti|Ai = zi), and EP (xi(zi, A−i)) = EP (Xi|Ai = zi). F

Then, by Assumption 6 (Weakly increasing strategy) and arguments similar to those in Section 3,
any valuation consistent with ai is between supa′i≤ai,a′i∈A

d
i

ΦLi(a′i) and infa′i≥ai,a′i∈A
d
i

ΦUi(a′i). Let

(34)
ΥLi(ai) = max{ sup

a′i≤ai,a′i∈A
d
i

ΦLi(a′i), sup
a′i∈ρLi(ai)

Ψi(a′i)} and ΥUi(ai) = min{ inf
a′i≥ai,a′i∈A

d
i

ΦUi(a′i), inf
a′i∈ρUi(ai)

Ψi(a′i)}.

The identification strategy from Theorem 1 still applies, so the valuation θi corresponding to
action ai is bounded between ΥLi(ai) and ΥUi(ai). However, under various conditions, for various
actions ai, the identification due to Section 3 or the identification due to this Section 6 can be
the only relevant source of identification. Recall that if the action space is entirely discrete, or ex
interim expected allocation and/or ex interim expected transfer is nowhere differentiable, then the
identification result from Section 3 are the trivial bounds that valuations lie between ΘLi and ΘUi.
Under those conditions, obviously the identification due to this Section 6 is the only relevant source
of identification for any action ai. Indeed, those conditions were the motivation for developing the
extension of the identification strategy in this section. Conversely, if ai is part of the continuous part
of the action space, and satisfies the other conditions for point identification of the corresponding
valuation θi based on the identification result in Section 3, then obviously the identification due
to Section 3 is the only relevant source of identification for that action ai. Hence, the additional
Assumptions 13-14 are not necessary for the identification result relative to action ai. Moreover, if
the conditions of Theorem 2 hold, then there is point identification of the distribution of valuations,
in which case obviously the addition of Assumptions 13-14 has no effect on the identification result.

Independent valuations Also let
(35)
ΓLi(ai) = max{ sup

a′i≤ai,a′i∈A
d
i

ΞLi(a′i), sup
a′i∈ρLi(ai)

Λi(a′i)} and ΓUi(ai) = min{ inf
a′i≥ai,a′i∈A

d
i

ΞUi(a′i), inf
a′i∈ρUi(ai)

Λi(a′i)}.

Theorem 4. Under Assumptions 1 (Dependent valuations), 3 (Action space), 4 (Optimal strategy),
5 (Correct beliefs), 6 (Weakly increasing strategy), 8 (Known bounds on valuations), 13 (Counter-
factual ex interim expected utility maximization problem has a solution), and 14 (Monotone effect
of counterfactual beliefs on utility), the distribution of valuations θ is partially identified, and the
identification is constructive, because the distribution of θ is stochastically larger than the distri-
bution of (ΥL1(A1),ΥL2(A2), . . . ,ΥLN(AN)) and is stochastically smaller than the distribution of
(ΥU1(A1),ΥU2(A2), . . . ,ΥUN(AN)) , in the sense of the usual multivariate stochastic order, where
(A1, A2, . . . , AN ) is distributed according to the data P (A,X, T ) and ΥLi(·) and ΥUi(·) are the identi-
fiable functions given in Equation 34 (see Lemmas 1 and 3).
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Independent valuations With independent valuations: replace Assumption 1 (Dependent valu-
ations) with Assumption 2 (Independent valuations), drop Assumption 6 (Weakly increasing strat-
egy), 13 (Counterfactual ex interim expected utility maximization problem has a solution), and 14
(Monotone effect of counterfactual beliefs on utility), add Assumption 7 (Non-decreasing expected
allocation rule), replace the definition of Ãdi from Equation 17 with Ãdi = {a′i ∈ Adi ∩ Ai,cont :
Λx
i (a′i) exists and Λt

i(a′i) exists and Λx
i (a′i) > 0 and a′i is a point of reduced-form identification per

Definition 4}, and replace the Υ functions with the Γ functions defined in Equation 35. F

Remark 2 (Connection to identification strategy in Section 3). The identification strategy in this
section is a “discrete analogue” of the identification strategy in Section 3. One main difference is
that the identification strategy in this section takes a different approach to bounding the beliefs of
the players. This is necessary because the approach to dealing with the beliefs of the players used in
Section 3 cannot apply to mechanisms with discrete action spaces. To see the relationship between the
identification strategies, based on a heuristic/intuitive argument in which the action space does include
a “continuous part,” suppose ai ∈ int(Ai,cont). Then, consider the limit of zi → ai, z

′
i ↑ ai, z′′i ↓ ai in

the right hand sides of Equations 30-31. Under appropriate conditions and assumptions, the resulting
limit is the same ratio of derivatives that formed the identification strategy in Section 3. In order
for such a limit to make sense, ai must be in the continuous part of the action space. And since
z′i < ai < z′′i in the right hand sides of Equations 30-31, ai must be in the interior of the action space.
This limit can also approximate a (heuristic) limit when the discrete part of the action space with
increasingly many actions becomes a continuous/interval action space, with the substantial caveat
that the mechanism itself changes when the action space changes, so such a limit cannot be taken
literally without a careful analysis of how the mechanism changes.

Under the appropriate conditions and assumptions, (EP (ti(ai,A−i)|Ai=z′i)−EP (ti(zi,A−i)|Ai=z′′i ))
(EP (xi(ai,A−i)|Ai=z′i)−EP (xi(zi,A−i)|Ai=z′′i ))

z′i↑ai and z′′i ↓ai−→

(EP (ti(ai,A−i)|Ai=ai)−EP (ti(zi,A−i)|Ai=ai))
(EP (xi(ai,A−i)|Ai=ai)−EP (xi(zi,A−i)|Ai=ai)) =

(EP (ti(ai,A−i)|Ai=ai)−EP (ti(zi,A−i)|Ai=ai))
ai−zi

(EP (xi(ai,A−i)|Ai=ai)−EP (xi(zi,A−i)|Ai=ai))
ai−zi

zi→ai−→
∂EP (ti(zi,A−i)|Ai=ai)

∂zi

∣∣∣
zi=ai

∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi=ai

.

The first limit requires continuity of the conditional expectations as a function of the condition-
ing variable, so that EP (ti(ai, A−i)|Ai = z′i) → EP (ti(ai, A−i)|Ai = ai) and EP (xi(ai, A−i)|Ai =
z′i) → EP (xi(ai, A−i)|Ai = ai) as z′i ↑ ai and EP (ti(zi, A−i)|Ai = z′′i ) → EP (ti(zi, A−i)|Ai = ai)
and EP (xi(zi, A−i)|Ai = z′′i ) → EP (xi(zi, A−i)|Ai = ai) as z′′i ↓ ai, where the third and fourth
limits must hold uniformly over zi since zi is part of the limiting sequence.44 The second limit is
an application of the definition of the derivative, and requires that the derivatives exist and that
∂EP (xi(zi,A−i)|Ai=ai)

∂zi

∣∣∣
zi=ai

6= 0. These conditions are closely related to (and slightly stronger than)

44Continuity of the conditional expectations is related to the condition of no point masses used in Section 3. Suppose
ai(θi) = a∗i has the unique solution θ∗i , so θ∗i is the unique valuation to use action a∗i . Then there will be no point
mass at a∗i in the distribution of Ai. Suppose further that ai(·) is strictly increasing in a neighborhood of θ∗i , and that
ai(·) is continuous in a neighborhood of θ∗i . The first condition is slightly stronger than the condition that θ∗i is the
unique valuation to use action a∗i , since it could otherwise be that, for example, ai(·) is strictly increasing “below”
θ∗i , has a jump discontinuity at θ∗i , and is flat “above” θ∗i . Since ai(·) is weakly increasing per Assumption 6, ai(·)
is continuous except for a countable set. Then, for example, EP (ti(ai, A−i)|Ai = z′i) = EP (ti(ai, A−i)|θi = a−1

i (z′i)).
Supposing that EP (ti(ai, A−i)|θi) = EΠi

(ti(ai, a−i)|θi) is itself continuous as a function of θi, which could be
established using economic theory similar to related discussion in Section 3 and Example 4, it would follow that
EP (ti(ai, A−i)|Ai = z′i)→ EP (ti(ai, A−i)|Ai = ai) as z′i → ai and similarly for the other limits of the other conditional
expectations. Otherwise, if there were multiple valuations to use action ai, resulting in a point mass at ai, a “small
change” in conditioning on Ai = ai versus Ai = z′i could result in a “large change” in the actual expected value, since
it would correspond to a “large change” in the set of θi being equivalently conditioned on.
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the conditions for point identification discussed after Theorem 1 and used in Theorem 2. In that
case, the valuation θi corresponding to action ai is bounded above and below by, and thus must

equal,
∂EP (ti(zi,A−i)|Ai=ai)

∂zi

∣∣∣
zi=ai

∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi=ai

= Ψi(ai).45 Hence, based on this heuristic/intuitive argument, this is

closely related to the identification result established in Section 3, under similar assumptions, showing
the sense in which the identification strategy in this section is a sort of “discrete analogue” of the
identification strategy in Section 3. More broadly, viewing this limit as a (heuristic) limit when the
discrete part of the action space with increasingly many actions becomes a continuous/interval action
space, this suggests that relatively finer discrete action spaces (e.g., auctions that allow bids that
are any multiple of one cent compared to any multiple of five dollars) can be expected to result in
relatively tighter identification of the distribution of valuations, with the limit in Section 3.

7. Conclusions

This paper develops identification results for the distribution of valuations in a class of allocation-
transfer mechanisms that determine an allocation of units of a valuable object and arrangement
of monetary transfers on the basis of the actions taken by the players. The identification result
concerns recovering the distribution of the valuations for the object, based on observing data from
the mechanism. The identification result applies to the class of allocation-transfer mechanisms, which
is sufficiently general to include a variety of important specific mechanisms. Specific mechanisms that
fit the framework include contests, auctions, procurement auctions and related models of oligopoly
competition, bargaining and trading, partnership dissolution, and public good provision.

The identification results are constructive. The identification result is non-parametric, in the
sense that it does not depend on parametric assumptions about the distribution of valuations. The
identification strategy is based on the assumption of monotone equilibrium. Because the assumption
of monotone equilibrium is credible but weak, the identification results can flexibly deliver either
point identification or partial identification, as appropriate based on the identifying content of the
data from the mechanism. Because the assumption of monotone equilibrium holds under general
conditions in a large class of mechanisms, the identification results can apply to an incomplete model
and the identification results are necessarily robust to the details of the specification of the model
and flexibly accommodate unique features of the mechanism in particular empirical applications.

The identification strategy involves using the data to reduced-form identify relevant aspects of
the mechanism, and then structurally identify the valuation that corresponds to an observed action.
Identification of some features of the distribution of valuations are robust to partial failures of the
equilibrium assumption. The identification strategy can be extended under an additional assumption,
which is especially useful to handle situations involving an entirely discrete action space.
45This heuristic analysis also implicitly assumes reduced-form identification on the right hand side of Equations 30-31.
Further, under the condition that ∂EP (xi(zi,A−i)|Ai=ai)

∂zi

∣∣∣
zi=ai

6= 0, assume that ∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi

is continuous in

zi (i.e., continuously differentiable). Consider the case that ∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi

> 0 on an interval neighborhood

of ai. The case that ∂EP (xi(zi,A−i)|Ai=ai)
∂zi

∣∣∣
zi

< 0 on an interval neighborhood of ai would be similar, except as
discussed above, seems inconsistent with Assumption 6. Then EP (xi(zi, A−i)|Ai = ai) would be strictly increasing
at zi = ai, and hence (when z′i ≈ ai ≈ z′′i ), zi < ai would generally satisfy the condition that EP (xi(ai, A−i)|Ai =
z′i) − EP (xi(zi, A−i)|Ai = z′′i ) > 0 in the right hand side of Equation 30 and zi > ai would generally satisfy the
condition that EP (xi(ai, A−i)|Ai = z′i)− EP (xi(zi, A−i)|Ai = z′′i ) < 0 in the right hand side of Equation 31.
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Appendix A. Further examples of mechanisms

The class of allocation-transfer mechanisms is illustrated via further examples.

Example 5 (Bilateral trade, bargaining, double auctions, etc.). Models of bilateral trade, bargaining46,
double auctions, and related situations fit this framework. The economic theory of such models has
been developed in Chatterjee and Samuelson (1983), Myerson and Satterthwaite (1983), and Wilson
(1985), in addition to a huge subsequent literature.47 See Bolton and Dewatripont (2005, Chapter 7)
for a textbook treatment.48 Equilibrium can be difficult to characterize (e.g., Leininger, Linhart, and
Radner (1989) and Satterthwaite and Williams (1989)), making it useful to not need to explicitly
characterize the equilibrium solution. These models involve Ns sellers (i.e., players that currently
each own a unit of the object) and Nb buyers (i.e., players that potentially would each like to buy a
unit of the object). Often, there is Ns = 1 = Nb, as in bilateral trade. The buyers set “bid prices” and
the sellers set “ask prices” and trade proceeds. In the bilateral trade case of Ns = 1 = Nb, typically
the trading rule is that the object is sold to the buyer when the buyer’s “bid price” is greater than
the seller “ask price” and the transaction price is some weighted average of the “bid price” and “ask
price.” In bilateral trade, the expected allocation to the buyer (player 1) and the expected allocation
to the seller (player 2) are

x1(a) =

1 if a1 ≥ a2

0 if a1 < a2
and x2(a) =

0 if a1 ≥ a2

1 if a1 < a2

and the expected transfer from the buyer and the expected transfer from the seller are

t1(a) =

ka1 + (1− k)a2 if a1 ≥ a2

0 if a1 < a2
and t2(a) =

−(ka1 + (1− k)a2) if a1 ≥ a2

0 if a1 < a2.

The number k ∈ [0, 1] determines the weighting of the buyer’s and seller’s bid in the payment, as in a
“k-double auction.” Common examples are k = 0 (seller pricing), k = 1

2 (equally weighted pricing),
and k = 1 (buyer pricing). The expected transfer from the seller is negative, when trade occurs, since
the seller receives the transfer payment from the buyer.

The case of multiple buyers and/or multiple sellers also fits the framework of allocation-transfer
mechanisms, in which case the allocations and transfers would similarly reflect that trade and prices
are functions of the “bid prices” and “ask prices” but would be more complicated. For example,
suppose that a(Ns) is the Ns-th highest bid and a(Ns+1) is the Ns + 1-st highest bid, both amongst
the combined set of bids from buyers and sellers. Let z(a) = ka(Ns) + (1− k)a(Ns+1) be the resulting
transaction price. Then one possible allocation rule and transfer rule is
46Merlo and Tang (2012) study identification of a bargaining model that evidently does not fit this framework.
47See Fudenberg, Mobius, and Szeidl (2007), Kadan (2007), or Araujo and De Castro (2009) for recent results.
48For monotonicity in the equilibrium strategies, see e.g., Chatterjee and Samuelson (1983, Theorem 1) and Satterthwaite
and Williams (1989, Definition of “regular” equilibrium) and Fudenberg, Mobius, and Szeidl (2007, Theorem 1).
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xi(a) =


1 if ai > z(a)
pi(a) if ai = z(a)
0 if ai < z(a)

and ti(a) =



z(a) if i is a buyer and ai > z(a)
−z(a) if i is a seller and ai < z(a)
pi(a)z(a) if i is a buyer and ai = z(a)
−(1− pi(a))z(a) if i is a seller and ai = z(a)
0 otherwise,

where pi(a) reflects a tie-breaking rule with the condition that ∑N
i=1 xi(a) = Ns for all a.49 In the

above case of bilateral trade, the tie-breaking rule was implicitly that the buyer is allocated the object
in the case of a tie. Therefore, ignoring ties by considering the generic situation that a(Ns) > a(Ns+1),
and because a(Ns) ≥ z(a) ≥ a(Ns+1) with at least one inequality strict, the Ns highest bidders, amongst
both buyers and sellers, are allocated a unit of the object. The transaction price is z(a), and buyers
that are allocated a unit of the object pay z(a) and sellers that are not allocated a unit of the object
receive z(a). See for example Fudenberg, Mobius, and Szeidl (2007) for more details.

Example 6 (Partnership dissolution). Models of partnership dissolution and related situations fit
the framework. The economic theory of such models has been developed in Cramton, Gibbons, and
Klemperer (1987), in addition to a huge subsequent literature. There are N co-owners of an object.
Prior to partnership dissolution, player i owns share ri of the object and has valuation θi for the
object. The econometrician need not know these ownership shares.

In the “bidding game” formulation of partnership dissolution developed in Cramton, Gibbons, and
Klemperer (1987), there are initial transfers between the co-owners that depend on their ownership
shares. Since these initial transfers do not depend on valuations, they are not revealing of valuations.
In the special case of equal ownership shares, these initial transfers are zero. In any case, the
econometrician need not observe data on these initial transfers in order to apply the identification
strategy. Indeed, the identification strategy does not rely on the mechanism implementing such initial
transfers. (These initial transfers are for purposes of satisfying the individual rationality constraint,
violation of which does not change the identification strategy in this paper, since this paper essentially
only uses the incentive compatibility constraint. See formula C of Cramton, Gibbons, and Klemperer
(1987, Theorem 2).) Then, each co-owner bids for ownership, so the action in the mechanism are
bids, with the highest bidder winning ownership. The transfer from player i is (omitting the “lump
sum” initial transfer reflecting ownership shares but not valuations): ti(a) = ai − 1

N−1
∑N
j 6=i aj, so

player i transfer its bid even if it loses, and is “compensated” by the bids of the other players.50

Example 7 (Public good provision). Models of the provision of public goods or public projects,
and related situations, fit the framework. The distinguishing feature of such models is that the
allocation is the same to all players, reflecting the “public” nature of the object. The valuation θi
reflects the private value that player i places on the public good. The economic theory of such models
has been developed in Bergstrom, Blume, and Varian (1986), Bagnoli and Lipman (1989), Mailath
and Postlewaite (1990), Alboth, Lerner, and Shalev (2001), Menezes, Monteiro, and Temimi (2001),
and Laussel and Palfrey (2003), in addition to a huge overall literature, summarized for example in
49In particular, in the generic case of a(Ns) > a(Ns+1), the tie-breaking rule is such that pi(a) = 1 when ai = z(a) and
k = 1 and pi(a) = 0 when ai = z(a) and k = 0.
50Cramton, Gibbons, and Klemperer (1987) works under the assumption of independent valuations. Per the proof of
Cramton, Gibbons, and Klemperer (1987, Theorem 2), the equilibrium is found in strictly increasing strategies.
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Ledyard (2006).51 The mechanisms studied for public good provision differ significantly, and so a
complete discussion is not feasible here. In direct revelation mechanisms (e.g., Clarke (1971)-Groves
(1973) mechanisms), players report their valuation, in which case the identification problem is trivial.
In other mechanisms, the actions of the players are interpreted as contributions to the public good,
and the object is allocated (e.g., the public project is completed) if and only if the sum of the
contributions of the players is greater than the cost of producing the public good. The contributions
may or may not be refunded if the public good is not produced, depending on the specific mechanism.
See for example Menezes, Monteiro, and Temimi (2001). Some models of public good provision, along
the lines of Palfrey and Rosenthal (1984) (who worked with complete information), involve a discrete
and even binary action space (contribute an ex ante fixed amount or not), providing motivation for
identification results with discrete action spaces in Section 6.

Appendix B. Proofs

This appendix provides concise proofs of the identification results, which have already been provided
in detail in the body of the paper. In order to economize on space, references to equations and other
quantities already defined in the body of the paper are used in the proofs.

Proof of Lemma 1. Condition 1: The definitions of Ψx
i (·) and Ψt

i(·) are given in Equation 8. By
definition, xi(a) = E(x̃i(a)) = E(x̃i(a)|Ai = ai, A−i = a−i) = E(Xi|Ai = ai, A−i = a−i) and ti(a) =
E(t̃i(a)) = E(t̃i(a)|Ai = ai, A−i = a−i) = E(Ti|Ai = ai, A−i = a−i). Therefore, by substitution, the
expressions in Equation 13 are valid. Let ai ∈ Adi be given, and let S be given with the properties in
the statement of Condition 1. Let a′i ∈ Adi ∩ Ai,cont ∩ S. By assumption, EP (Xi|Ai = a′i, A−i = a−i)
and EP (Ti|Ai = a′i, A−i = a−i) are point identified for all a−i in a probability 1 subset of the
support of A−i|(Ai = ai). Therefore, given that the distribution of A−i|(Ai = ai) is point identified
by assumption, EP (EP (Xi|Ai = a′i, A−i)|Ai = ai) and EP (EP (Ti|Ai = a′i, A−i)|Ai = ai) are point
identified. Consequently, the existence and values of Ψx

i (ai) and Ψt
i(ai) are point identified by the

existence and values of the limits corresponding to expressions in Equation 13.
Condition 2: The proof involves establishing that Condition 1 holds. The first step is to show

A−i|(Ai = ai) is point identified. Consider a−1
i ( ˜̃Adi ∩ Ai,cont ∩ I) = {θi : ai(θi) ∈ ˜̃Adi ∩ Ai,cont ∩ I}.

Since ˜̃Adi ∩ Ai,cont ∩ I is a non-degenerate interval, a−1
i ( ˜̃Adi ∩ Ai,cont ∩ I) is a non-degenerate interval

since ai(·) is weakly increasing per Assumption 6. Consider θ′i < θ′′i in a−1
i ( ˜̃Adi ∩ Ai,cont ∩ I).

By Assumption 6, ai(θ′i) ≤ ai(θ′′i ). Moreover, by the same arguments as used in the proof of
Theorem 1, if ai(θ′i) = ai(θ′′i ) then there is a point mass in the distribution of Ai located at
ai(θ′i) = ai(θ′′i ), a contradiction since ai(θ′i) = ai(θ′′i ) ∈

˜̃Adi by construction. Therefore, ai(·) is
strictly increasing on a−1

i ( ˜̃Adi ∩ Ai,cont ∩ I). Let θ∗i be the unique valuation to use action ai, since
ai ∈ ˜̃Adi . Then since θ∗i ∈ a−1

i ( ˜̃Adi ∩ Ai,cont ∩ I) by construction, ai(·) is strictly increasing on
an interval containing θ∗i and therefore has an inverse on an interval containing ai. Note that
ai(a−1

i ( ˜̃Adi ∩ Ai,cont ∩ I)) = ˜̃Adi ∩ Ai,cont ∩ I, since by construction ˜̃Adi ∩ Ai,cont ∩ I is in the image of
ai(·). Because ai(·) is strictly increasing on the interval a−1

i ( ˜̃Adi ∩Ai,cont∩I) with associated image the
interval ˜̃Adi ∩Ai,cont∩I, ai(·) is continuous on a−1

i ( ˜̃Adi ∩Ai,cont∩I) since monotone functions can only
have jump discontinuities (or see for example Ghorpade and Limaye (2006, Section 3.2)). Because
51See Lemma 1 or the discussion of “regular” equilibrium in Laussel and Palfrey (2003) for the role of monotonicity in
the strategies. Or see the characterization of the equilibrium strategies in Menezes, Monteiro, and Temimi (2001).
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ai(·) is continuous on the interval a−1
i ( ˜̃Adi ∩Ai,cont ∩ I), the inverse on the interval ˜̃Adi ∩Ai,cont ∩ I is

continuous. Therefore, for a′i ∈
˜̃Adi∩Ai,cont∩I, A−i|(Ai = a′i) = A−i|(θi = a−1

i (a′i)). Under Assumption
6, A−i|(θi = a−1

i (a′i)) = a−i(θ−i)|(θi = a−1
i (a′i)). Because aj(·) are weakly increasing functions per

Assumption 6, the set of θj such that aj(θj) ≤ tj is an interval. Therefore, the boundary of the set of
θ−i such that a−i(θ−i) ≤ t−i has probability zero under the continuous distribution of θ−i|(θi = θ∗i ).
Consequently, P (a−i(θ−i) ≤ t−i|θi = θ′i) converges to P (a−i(θ−i) ≤ t−i|θi = θ∗i ) if θ′i → θ∗i , since
θ−i|(θi = θ′i) converges weakly to θ−i|(θi = θ∗i ) by assumption. That holds because the condition that
the density of θ−i|(θi = θ′i) converges everywhere to the density of θ−i|(θi = θ∗i ) as θ′i → θ∗i implies that
θ−i|θ′i converges in total variation (and hence weakly) to θ−i|θ∗i by Scheffé (1947)’s lemma. Therefore,
as a weaker conclusion, A−i|(Ai = a′i) →w A−i|(Ai = ai) as a′i → ai with a′i ∈

˜̃Adi ∩ Ai,cont ∩ I, so
A−i|(Ai = ai) is point identified. That follows since P (A−i ≤ t−i|Ai = a′i) = EP (1[A−i ≤ t−i]|Ai = a′i).
Therefore, equivalently, EP (1[A−i ≤ t−i]|Ai = a′i) → EP (1[A−i ≤ t−i]|Ai = ai) as a′i → ai with
a′i ∈

˜̃Adi ∩ Ai,cont ∩ I, for t−i a continuity point of the distribution A−i|(Ai = ai). Hence, since
conditional expectations are point identified at points of continuity of the conditioning variable,
EP (1[A−i ≤ t−i]|Ai = ai) is point identified and therefore P (A−i ≤ t−i|Ai = ai) is point identified,
when t−i is a continuity point, and therefore the distribution A−i|(Ai = ai) is point identified.

The second step is to show the set S exists. By the continuity assumption on xi(a′i, a−i) and
ti(a′i, a−i), EP (Xi|Ai = a′i, A−i = a−i) and EP (Ti|Ai = a′i, A−i = a−i) are point identified for all
a′i ∈ Adi ∩Ai,cont ∩N and a−i ∈ Ãd−i(a′i). Suppose that ai ∈ (int(Ai,cont)∩ bd(Adi ∩Ai,cont))C ∩ (Adi ∩
Ai,cont) = ((int(Ai,cont))C ∪ (bd(Adi ∩ Ai,cont))C) ∩ (Adi ∩ Ai,cont). By assumption, ˜̃Adi ∩ Ai,cont ∩ I
is a non-degenerate interval that contains ai, so Adi ∩ Ai,cont ∩N is a non-degenerate interval that
contains ai, since N is a neighborhood of ai ∈ Adi ∩ Ai,cont. Further, if ai ∈ int(Ai,cont), then
ai ∈ (bd(Adi ∩ Ai,cont))C ∩ (Adi ∩ Ai,cont) = int(Adi ∩ Ai,cont). Therefore, there is a neighborhood of
ai that is contained in Adi ∩ Ai,cont. And therefore Adi ∩ Ai,cont ∩ N is a neighborhood of ai and
ai ∈ int(Adi ∩ Ai,cont ∩N ). Therefore, S = N satisfies the statement of Condition 1.

Condition 3: The definitions of Λx
i (·) and Λt

i(·) are given in Equation 14. By the arguments of
Footnote 26, the expressions in Equation 16 are valid. By the assumption on Adi ∩ Ai,cont ∩ S in the
statement of the condition, the existence and values of Λx

i (ai) and Λt
i(ai) are point identified by the

existence and values of the limits corresponding to expressions in Equation 16.
Condition 4: The definitions of Ψx

i (·) and Ψt
i(·) are given in Equation 8. Let ai ∈ Adi be given,

and let S be given with the properties in the statement of the condition. Let a′i ∈ Ai ∩ Ai,cont ∩ S.
By assumption, xi(a′i, a−i) and ti(a′i, a−i) are ex ante known by the econometrician for all a−i in
a probability 1 subset of the support of A−i|(Ai = ai). Therefore, given that the distribution of
A−i|(Ai = ai) is point identified by assumption, EP (xi(a′i, a−i)|Ai = ai) and EP (ti(a′i, a−i)|Ai = ai)
are point identified. Consequently, the existence and values of Ψx

i (ai) and Ψt
i(ai) are point identified

by the existence and values of the limits corresponding to expressions in Equation 8.
Condition 5: Under these conditions, evaluated at any z satisfying the conditions on ai in the

statement of the Conditions, Ψt
i(z) ≡

∂EP (ti(ai,A−i)|Ai=z)
∂ai

∣∣∣
ai=z

= ∂EP (ti1(ai,A−i)|Ai=z)
∂ai

∣∣∣
ai=z

. Therefore, if
any of Conditions 1-4 hold with ti1 in place of ti and Ti1 in place of Ti, the result holds. �

Proof of Theorem 1. By Assumptions 3 and 4, Equations 2-4 are necessary conditions. See Footnote
21 for the arguments. By Assumptions 1 and 6, conditioning on θi is equivalent to conditioning on
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Ai = ai(θi), if θi is the unique valuation to use action ai(θi).52 By the arguments of Footnote 23, the
set of θi such that ai(θi) = a∗i is an interval. Consequently, if two distinct valuations θi and θ′i use
action a∗i then the non-degenerate interval containing θi and θ′i uses action a∗i . Under Assumption 1,
the probability of that interval of valuations is strictly positive, implying a point mass at Ai = a∗i
in the data. By the contrapositive, if there is not a point mass at Ai = a∗i in the data, then a∗i is
used by a unique valuation θi. Therefore, under Assumptions 1, 5, and 6, Equations 5-7 are valid.
Consequently, Equations 10-12 are valid.

Let ai ∈ Adi be given. Consider any a′i ∈ ρLi(ai), defined in Equation 18. By construction of the
properties of a′i, the above paragraph applies to a′i, so player i that uses action a′i has valuation θ′i
with identification according to Equations 10-12. In particular, if a′i is not on the upper bound of
Ai,cont, then the valuation θ′i corresponding to the use of action a′i is point identified according to
Equation 10. Alternatively, if a′i is on the upper bound of Ai,cont, then the valuation θ′i corresponding
to the use of action a′i can be provided a lower bound according to Equation 12. Therefore, overall,
the valuation θ′i corresponding to a′i satisfies θ′i ≥ Ψi(a′i).

Consider any θ̃i < Ψi(a′i) with a′i ∈ ρLi(ai). If θ′i is any valuation consistent with using action a′i,
then θ′i ≥ Ψi(a′i). Moreover, since a′i ∈ Adi by construction, there is indeed some valuation θ′i that
uses action a′i. By Assumption 6, the action used by valuation θ̃i is weakly less than the action used
by valuation θ′i ≥ Ψi(a′i) > θ̃i, so the action used by valuation θ̃i is weakly less than a′i. Moreover,
since θ̃i � Ψi(a′i) by construction, valuation θ̃i cannot use action a′i. Consequently, player i with
valuation θ̃i must use an action strictly less than a′i. By the contrapositive, any action weakly greater
than a′i must correspond to a valuation weakly greater than Ψi(a′i). Consequently, because a′i ≤ ai,
the valuation θi corresponding to the use of action ai must be weakly greater than Ψi(a′i).

Since the above holds for any a′i ∈ ρLi(ai), the valuation θi corresponding to the use of action ai
must be weakly greater than supa′i∈ρLi(ai) Ψi(a′i). By similar arguments, the valuation θi corresponding
52As a technical note, it is worth observing that conditioning on a∗i ∈ Adi that is used by a unique valuation θ∗i is
indeed equivalent to conditioning on the unique associated θ∗i under the regularity conditions implied by this setup.
Thus, conditioning on logically equivalent sets of probability zero are the same conditional quantity. The following
works out the details. If a∗i ∈ Adi and a∗i is an isolated point of Adi , then a∗i is a mass point. That follows since the
probability of any neighborhood of a∗i is strictly positive by definition of support. Since a∗i is an isolated point, there is
a neighborhood of a∗i that has intersection {a∗i } with Adi . Therefore, a∗i itself must have positive probability, i.e., is a
mass point. Hence, any a∗i ∈ Adi that is not a mass point is not an isolated point of Adi . Consider any such a∗i . Let θ∗i be
the unique valuation such that a∗i = ai(θ∗i ). Since ai(·) is a weakly increasing function by Assumption 6, limθi↑θ∗i ai(θi)
and limθi↓θ∗i ai(θi) both exist, if θ∗i is in the interior of the support of θi. Otherwise only one such limit can be defined.
By monotonicity, it must be that limθi↑θ∗i ai(θi) ≤ ai(θ∗i ) = a∗i ≤ limθi↓θ∗i ai(θi), for the limits that are defined. If
limθi↑θ∗i ai(θi) < ai(θ∗i ) = a∗i < limθi↓θ∗i ai(θi), then a

∗
i would be an isolated point of Adi , a contradiction. So either

limθi↑θ∗i ai(θi) = ai(θ∗i ) = a∗i or ai(θ∗i ) = a∗i = limθi↓θ∗i ai(θi). Therefore, ai(·) is either left- or right- continuous at θ∗i .
Consider the case that limθi↑θ∗i ai(θi) = ai(θ∗i ) = a∗i . The other case is similar. Define θ̂i(ai) = infθi

{θi : ai(θi) ≥ ai}.
Because ai(·) is a weakly increasing function, for any a′i ≤ a∗i , the set {θi : a′i ≤ ai(θi) ≤ a∗i } is the same as the set
{θi : θ̂i(a′i) ≤ θi ≤ θ∗i }, up to possibly the lower inequality being strict if ai(θ̂i(a′i)) < a′i. Since θi has a continuous
distribution per Assumption 1, that does not affect the probability of the set. Further, the former set is the same
event, by construction, as {Ai : a′i ≤ Ai ≤ a∗i }. By construction, θ̂i(a∗i ) = θ∗i , since ai(θ∗i ) = a∗i and any θi < θ∗i
has ai(θi) < ai(θ∗i ) since θ∗i is the unique valuation to use a∗i . And, θ̂i(a′i) < θ∗i for a′i < a∗i , since there must be
θ′′i < θ∗i such that a′i < ai(θ′′i ) by left-continuity. Hence, θ̂i(a′i) < θ∗i . Moreover, let θ′′i < θ∗i be given with associated
actions ai(θ′′i ) < a∗i . By left-continuity at θ∗i , and weakly increasing, there is some θ′i such that θ′′i < θ′i < θ∗i and
ai(θ′′i ) < ai(θ′i) < a∗i , and therefore θ̂(ai(θ′i)) ≥ θ′′i since ai(θ′′i ) < ai(θ′i). Hence, θ̂i(a′i) ↑ θ∗i as a′i ↑ a∗i . Therefore
conditioning on Ai = a∗i for a∗i ∈ Adi is equivalent to conditioning on the unique associated θ∗i per the definition of
conditional probability, since it satisfies the standard definition of either corresponding to a mass point or the limit of
decreasing neighborhoods of the conditioning event.
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to the use of action ai must be weakly less than infa′i∈ρUi(ai) Ψi(a′i). Because the valuation must
be between ΘLi and ΘUi, by Assumption 8, the valuation corresponding to action ai must be
between κLi(ai) and κUi(ai). Therefore, considering the joint distribution of θ = (θ1, θ2, . . . , θN)
and corresponding observed actions A = (A1, A2, . . . , AN), it holds for all realizations that, for each
i ∈ {1, 2, . . . , N}, κLi(Ai) ≤ θi ≤ κUi(Ai). Consequently, the partial identification result in the usual
multivariate stochastic order follows from Shaked and Shanthikumar (2007, Theorem 6.B.1).

Independent valuations Under Assumption 2, the following adjustments are made to the proof.
Equations 2-4 need not condition on θi since beliefs are independent of valuation. Thus, Equations
5-7 are valid without conditioning on Ai, so Assumption 6 need not be used, and the restriction to ˜̃Adi
is not necessary.

Assumption 7 implies that ex interim expected utility satisfies the single crossing property per the fol-
lowing. If Vi(a′i, θ′′i ) > Vi(a′′i , θ′′i ) with a′i > a′′i and θ′i > θ′′i , then θ′′iEΠi

(xi(a′i, a−i))−EΠi
(ti(a′i, a−i)) >

θ′′iEΠi
(xi(a′′i , a−i))−EΠi

(ti(a′′i , a−i)). Consequently, θ′′i (EΠi
(xi(a′i, a−i))−EΠi

(xi(a′′i , a−i))) > EΠi
(ti(a′i, a−i))−

EΠi
(ti(a′′i , a−i)). By Assumption 7, EΠi

(xi(a′i, a−i)) − EΠi
(xi(a′′i , a−i)) ≥ 0. Consequently, since

θ′i > θ′′i , θ′i(EΠi
(xi(a′i, a−i)) − EΠi

(xi(a′′i , a−i))) > EΠi
(ti(a′i, a−i)) − EΠi

(ti(a′′i , a−i)). Therefore,
θ′iEΠi

(xi(a′i, a−i)) − EΠi
(ti(a′i, a−i)) > θ′iEΠi

(xi(a′′i , a−i)) − EΠi
(ti(a′′i , a−i)). Therefore, Vi(a′i, θ′′i ) >

Vi(a′′i , θ′′i ) implies that Vi(a′i, θ′i) > Vi(a′′i , θ′i). Similar arguments establish the result with weak inequal-
ities. Therefore, the set of actions that maximize ex interim expected utility is increasing in strong set
order as a function of the valuation, by Milgrom and Shannon (1994).

Similarly to with dependent valuations, letting ai ∈ Adi be given and considering any a′i ∈ ρLi(ai),
any valuation θ′i consistent with using a′i satisfies θ′i ≥ Λi(a′i). Moreover, since a′i ∈ Adi by construction,
there is indeed some valuation θ′i that uses action a′i. Now consider any θ̃i < Λi(a′i). Since θ̃i � Λi(a′i)
by construction, valuation θ̃i cannot use action a′i. Suppose that, in the sense of Assumption 4, player
i with valuation θ̃i uses action ãi. Suppose, in order to prove a contradiction, that ãi ≥ a′i. Since
θ̃i < Λi(a′i) ≤ θ′i, because the set of actions that maximize ex interim expected utility is increasing
in strong set order, it must be that ãi maximizes ex interim expected utility when the valuation is θ′i
and a′i maximizes ex interim expected utility when the valuation is θ̃i. But, by the above, a′i does not
maximize ex interim expected utility when the valuation is θ̃i, so it must be that ãi < a′i. Thus, player
i with valuation θ̃i must use an action strictly less than a′i. By the contrapositive, any action weakly
greater than a′i must correspond to a valuation weakly greater than Λi(a′i). Consequently, because
a′i ≤ ai by construction, the valuation θi corresponding to the use of action ai must be weakly greater
than Λi(a′i). Since the above holds for any a′i ∈ ρLi(ai), the valuation θi corresponding to action ai
must be weakly greater than supa′i∈ρLi(ai) Λi(a′i). By similar arguments, the valuation θi corresponding
to action ai must be weakly less than infa′i∈ρUi(ai) Λi(a′i). Because valuations are between ΘLi and ΘUi,
by Assumption 8, the valuation corresponding to action ai is between ωLi(ai) and ωUi(ai). F �

Proof of Theorem 2. From Assumptions 9, 10, 11, and 12, let Ei = (int(Ai,cont))C ∪ Ei,d ∪ Ei,r ∪ Ei,m
and E = ∏

i Ei. It follows that P (A ∈ E) = 0. Then P (θ ∈ B) = P (θ ∈ B,A ∈ EC) + P (θ ∈ B,A ∈
E) = P (θ ∈ B,A ∈ EC) = P (θ ∈ B|A ∈ EC) for any Borel set B, so it is enough to restrict the
identification problem to recovering the distribution of θ from actions in EC . By Assumptions 3, 4, 9,
and 10, Equation 2 is the necessary condition for any action used by player i in Adi ∩ int(Ai,cont)∩ECi,d.
See Footnote 21 for the arguments. By Assumptions 1, 6, and 9, conditioning on θi is equivalent to
conditioning on Ai = ai(θi), so by Assumption 5, Equation 5 is valid for actions inAdi ∩int(Ai,cont)∩ECi,d.
Under Assumption 12, Equation 10 is valid for all actions used by player i inAdi ∩int(Ai,cont)∩ECi,d∩ECi,m.
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By Assumption 11, Ψi(ai) is point identified for all ai ∈ Adi ∩ int(Ai,cont)∩ECi,d ∩ECi,m ∩ECi,r. Therefore,
the identification result obtains.

Independent valuations Under Assumption 2, the following adjustments are made to the proof.
Equation 2 need not condition on θi since beliefs are independent of valuation. Similarly, Equation 5
is valid without conditioning on Ai, so Assumption 6 need not be used. F �

Proof of Theorem 3. The arguments are exactly the same as the arguments in the proof of Theorem
2, except restricted to identifying θi from Ai using Ψi(·). �

Proof of Lemma 2. By Assumption 5, θiEΠi
(xi(ai, a−i)|θ′i)−EΠi

(ti(ai, a−i)|θ′i) = θiEΠi
(xi(ai, a−i(θ−i))|θ′i)−

EΠi
(ti(ai, a−i(θ−i))|θ′i), because the distribution of A−i|θ′i is the same as the distribution of a−i(θ−i)|θ′i.

Under Assumption 6, and the condition that θixi(a∗i , a−i)− ti(a∗i , a−i) is a weakly decreasing func-
tion of a−i for a∗i as in the statement of the lemma, θixi(a∗i , a−i(θ−i))− ti(a∗i , a−i(θ−i)) is a weakly
decreasing function of θ−i. Under affiliation, by standard properties of affiliated random variables
(e.g., Milgrom (2004, Theorem 5.4.5)), it follows that θiEΠi

(xi(a∗i , a−i)|θ′i)− EΠi
(ti(a∗i , a−i)|θ′i) is a

weakly decreasing function of θ′i. Alternatively, under monotonicity of θ−i|θi in the usual multivariate
stochastic order, by standard properties of the usual multivariate stochastic order (e.g., Shaked
and Shanthikumar (2007, Chapter 6)), it follows that θiEΠi

(xi(a∗i , a−i)|θ′i) − EΠi
(ti(a∗i , a−i)|θ′i) ≥

θiEΠi
(xi(a∗i , a−i)|θ′′i )− EΠi

(ti(a∗i , a−i)|θ′′i ) for θ′i ≤ θ′′i . �

Proof of Lemma 3. By definition, xi(a) = E(x̃i(a)) = E(x̃i(a)|Ai = ai, A−i = a−i) = E(Xi|Ai =
ai, A−i = a−i) and ti(a) = E(t̃i(a)) = E(t̃i(a)|Ai = ai, A−i = a−i) = E(Ti|Ai = ai, A−i = a−i). Under
the conditions of the lemma, for a = (a1, a2, . . . , aN) such that aj ∈ Adj for all j, it holds that also
a ∈ Ad and therefore xi(a) and ti(a) are point identified by the previous expressions in terms of
conditional expectations, conditional on a discrete variable. Then, consider EP (xi(ai, A−i)|Ai = z′i)
and suppose that ai ∈ Adi and z′i ∈ Adi . Obviously, the support of A−i|(Ai = z′i) is a subset of
the support of A−i, and ai ∈ Adi by assumption, and therefore xi(ai, a−i) is point identified at
all points relevant to EP (xi(ai, A−i)|Ai = z′i). And of course the distribution of A−i|(Ai = z′i) is
identified since z′i ∈ Adi . Therefore, EP (xi(ai, A−i)|Ai = z′i) is point identified. It is similar for
EP (xi(zi, A−i)|Ai = z′′i ), EP (ti(ai, A−i)|Ai = z′i), and EP (ti(zi, A−i)|Ai = z′′i ). Therefore, there is
reduced-form identification per Definition 5. �

Proof of Theorem 4. By Assumption 4, Equation 21 is a necessary condition for any action ãi(θi)
used by player i. Then, under Assumption 5, Equation 22 is an equivalent necessary condition.
Then, under Assumptions 6, 13, and 14, Equation 26 is valid. Under Assumption 6, given that
z′i < ai(θi) < z′′i are all used in the data, all elements of Θi(z′i) are less than all elements of Θi(ai(θi)),
and all elements of Θi(ai(θi)) are less than all elements of Θi(z′′i ), where Θi(·) is defined in Equation
23. In particular, θi ∈ Θi(ai(θi)), all elements of Θi(z′i) are less than θi, and θi is less than all elements
of Θi(z′′i ). Then, combining Equations 24 and 25 with Equation 26, Equation 27 is valid. Equations
28, 29, 30, and 31 follow immediately, using Assumption 8. Then, by Assumption 6 and arguments
similar to those used in the proof of Theorem 1, the valuation corresponding to ai must be between
supa′i≤ai,a′i∈A

d
i

ΦLi(a′i) and infa′i≥ai,a′i∈A
d
i

ΦUi(a′i). Because the identification result from Theorem 1
also holds under these conditions, the valuation corresponding to ai must be between ΥLi(ai) and
ΥUi(ai) defined in Equation 34. Therefore, considering the joint distribution of θ = (θ1, θ2, . . . , θN)
and corresponding observed actions A = (A1, A2, . . . , AN), it holds for all realizations that, for each
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i ∈ {1, 2, . . . , N}, ΥLi(Ai) ≤ θi ≤ ΥUi(Ai). Consequently, the partial identification result in the usual
multivariate stochastic order follows from Shaked and Shanthikumar (2007, Theorem 6.B.1).

Independent valuations Under Assumption 2, the following adjustments are made to the proof.
Under Assumption 2, Equation 21 need not condition on θi since beliefs do not depend on valuation.
Similarly, Equation 22 need not condition on θi. Thus, Equations 32 and 33 are valid bounds for
the valuation, even without Assumptions 6, 13, and 14. Then, by Assumption 7 and arguments
similar to those used in the proof of Theorem 1 under Assumption 2, the valuation corresponding to
ai must be between supa′i≤ai,a′i∈A

d
i

ΞLi(a′i) and infa′i≥ai,a′i∈A
d
i

ΞUi(a′i). Because the identification result
from Theorem 1 also holds under these conditions, the valuation corresponding to ai must be between
ΓLi(ai) and ΓUi(ai) defined in Equation 35. F �
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