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Abstract

We propose a method to estimate static discrete games with weak assumptions
on the information available to players. In contrast to the existing literature, we do
not fully specify the information structure of the game. Instead, we allow for all in-
formation structures consistent with the assumptions that players know their own
payoffs and the distribution of opponents’ payoffs. We make this approach tractable
by adopting a weaker solution concept: Bayes Correlated Equilibrium (BCE), pro-
posed by Bergemann and Morris (2013, 2015). We characterize the sharp identified
set obtained under the assumption of BCE behavior. In simple games with modest
levels of variation in observable covariates, identified sets are narrow enough to be
informative, while avoiding the misspecification resulting from strong assumptions
on information. In an application, we estimate a game theoretic model of entry in the
Italian supermarket industry, and quantify the effect of the presence of large malls on
competition. Our model yields parameter estimates and counterfactual predictions
that differ from those obtained under the restrictive assumption of complete infor-
mation.
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1 Introduction

Empirical models of static discrete games are important tools in industrial organization,
as they allow to recover the determinants of firms’ behavior while accounting for the
strategic nature of firms’ choices. Models in this class have been applied in contexts such
as entry, product or location choice, advertising, and technology adoption.1 In discrete
games the equilibrium predictions, and thus the map between the data and parameters of
interest, depend crucially on the assumptions maintained on the information that players
have on each other’s payoffs. However, in applied contexts the nature of firms’ informa-
tion about their competitors is often ambiguous. Moreover, restrictive assumptions, when
not satisfied in the application at hand, can result in inconsistent estimates of the payoff
structure of the game.

We propose a new method to estimate the distribution of players’ payoffs relying only
on assumptions about the minimal information players have. In particular, we assume
that players know at least (i) their own payoffs, (ii) the distribution of opponents’ payoffs,
and (iii) parameters and observable covariates. We admit any information structure that
satisfies these assumptions. In this sense our model is incomplete, in the spirit of Manski
(2003, 2009), Tamer (2003), and Haile and Tamer (2003). More precisely, we allow our
model to produce any prediction that results from a Bayes Nash Equilibrium (BNE) under
an admissible information structure. Our object of interest is the set of parameters that
are identified given this incomplete model.

Our method nests the two main approaches used in the existing literature: complete
information, frequently adopted since the pioneering work in this area (Bjorn and Vuong
1985, Jovanovic 1989, Bresnahan and Reiss 1991a, Berry 1992); and private information
(see e.g. Seim 2006, and De Paula and Tang 2012). Moreover, our model generalizes
the class of information structures considered by Grieco (2014), and is flexible in other
dimensions. For example, agents can be informed about opponents’ payoffs with different
levels of accuracy, and the information structure of the game can vary across markets.

To make this approach tractable, we rely on the connection between equilibrium be-
havior and information, and adopt Bayes Correlated Equilibrium (BCE) as solution con-
cept. BCE, introduced by Bergemann and Morris (2013, 2015), has the property of de-
scribing Bayes Nash Equilibrium predictions for a class of informational environments.
We show that, under the assumption of BCE behavior, for every vector of parameters in
the identified set there exists an admissible information structure and a BNE that deliver
predictions compatible with the data. We can characterize the sharp identified set for the
parameters of interest without modeling equilibrium selection, exploiting the convexity

1See for instance Bresnahan and Reiss (1991b), Berry (1992), Tovainen and Waterson (2005), Jia (2008),
Ciliberto and Tamer (2009) for models of entry, Mazzeo (2002) and Seim (2006) for models of product
choice, Sweeting (2009) for advertising, Ackerberg and Gowrisankaran (2006) for technology adoption.
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of the set of equilibria. These results motivate the use of BCE to estimate the distribu-
tion of players’ payoffs while being robust with respect to the informational environment,
thus avoiding misspecification bias due to strong assumptions on information.

We investigate the identification power of BCE in simple entry games with linear pay-
offs and find that the identified sets are informative about the model’s primitives. In
fact, point identification is obtained under the assumption of full support variation in ex-
cluded covariates, as in Tamer (2003). More generally, however, we obtain partial identi-
fication of the payoff parameters and of the joint distribution of payoff types. We perform
inference by constructing confidence intervals for the identified set using the methods of
Chernozhukov, Hong and Tamer (2007).

We apply our method to the investigation of the effect of large malls2 on the grocery
retail industry in Italy. There is disagreement on the impact of the presence of these big
outlets on local supermarkets, echoing the US debate on “Wal-Mart effects.” Advocates
of stricter regulation of large retailers claim that malls drive out existing supermarkets
and leave consumers without the option of shopping at local stores.3 However, economic
theory4 and some of the existing evidence from other countries5 suggest that other effects
might prevail. Despite the extra competition from supermarkets in malls, local stores
might benefit from the agglomeration economies created by the mall.

We provide a quantitative assessment of these economic forces. We consider cross
sectional data from 2013 and estimate a static entry game to capture the determinants
of market structure in geographic grocery markets. We assume the entry of malls to
be exogenous to the outcomes of competition among local supermarkets, conditional on
market-level observables. This assumption is consistent with the presence of regulatory
and geographic constraints on the choice of location for malls, and with malls’ larger
catchment area, determined by differences in habits for non-grocery and grocery shop-
ping.

It is difficult to take a stance on the informational environment in this setting, espe-
cially in light of the heterogeneity among supermarket groups. Previous cross-section
studies of entry have assumed that players have complete information, and interpreted
the data as long-run equilibrium outcomes in which players have no ex-post regret. In
our application the data provide only a snapshot of the industry at the end of a period
of expansion, so it is not obvious that the configuration we observe is a stable outcome.

2We define large malls for the purpose of this paper as shopping centers with at least fifty independent
shops and a grocery anchor.

3In the US, the presence of areas where consumers have limited access to fresh groceries from local
stores (see for instance Bitler and Haider, 2011) has been linked to the presence of large retailers.

4Zhu, Singh and Dukes (2011) show that when the existing retailers offer non-overlapping product lines,
they can benefit from the presence of large stores that can produce demand externalities.

5Ellickson and Grieco (2013) examine the effect of Wal-Mart’s expansion into groceries on local su-
permarkets. They find evidence of a highly localized impact, which points to a significant dimension of
horizontal differentiation in supermarkets possibly arising from consumers’ travel costs.
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Our weaker equilibrium assumption seems more appropriate than strong restrictions on
information, which constrain regret in a way that does not fit this application.

We estimate the model using our robust method, and find mixed evidence on the ef-
fect of large malls on supermarkets. We do not reject values of parameters that indicate
a strong negative effect of large malls on the supermarket groups that are least differen-
tiated. We also do not reject values of parameters that indicate a beneficial effect of malls
on some supermarket groups. We compare these estimates with those obtained using a
model of complete information. Results differ in important ways. Under complete in-
formation, we do not reject low values (in absolute value) of competitive effects, which
are rejected under weak assumptions on information. This is because the assumption of
complete information imposes that players fully anticipate competitors’ decisions. As a
consequence, when not supported by the data, this more restrictive model may lead to
underestimate how much players’ profits are affected by the presence of opponents in a
market.6

In a counterfactual, we evaluate the effect on market structure of removing large malls
from markets that currently have no other supermarket. The model with complete infor-
mation predicts that removing large malls results in a substantial increase in the aver-
age upper bounds of the probability of observing at least two entrants. We do not find
a similar prediction with our method: the average upper bounds of the probability of
observing at least two entrants may not change or may decrease. In this application, a
model with restrictive assumptions on information leads us to strong conclusions, which
are dispelled once more robust methods are adopted.

2 Related Literature

This paper belongs to the literature on identification and estimation of static discrete
games, recently surveyed by Bajari, Hong and Nekipelov (2010) and De Paula (2013).7

The works in this area can be classified according to the assumptions they adopt on in-
formation and on equilibrium behavior. Some authors consider the complete information
game, and assume play to be Nash Equilibrium (typically in pure strategies), while others
consider the incomplete information game as in Seim (2006), Sweeting (2009) and Bajari
et al. (2010), and assume that data are generated by BNE play.

Grieco (2014) is the first to propose a method that relaxes the standard assumptions
of either complete or perfectly private information. We share with Grieco (2014) the goal
of considering more flexible information structures, but instead of a parametrization of

6The sign of this bias is consistent with the attenuation bias documented by Bergemann and Morris
(2013) and Dickstein and Morales (2015) in the context of individual decision making, and by Aguirre-
gabiria and Magesan (2015) in the context of dynamic games.

7See also Borkovsky et al. (2015) for a discussion of recent advances in empirical games.
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the information structure we adopt the assumption of BCE behavior. We further relax the
assumptions on the correlation of private signals and symmetry of the information struc-
ture that are embedded in an informational environment with a public signal. Our model
allows for private signals that are differently informative across markets and across play-
ers. Mazzeo, Seim and Varela (2014) also develop a model of entry that nests complete
and incomplete information by relying on public signals. They integrate the discrete
game theoretic model of product choice with a model of imperfect competition in the
product market to perform merger simulations. We only consider static games in this
paper, but our framework is amenable to be integrated with a model of post-entry com-
petition, as it can allow for rich information structures, in which for instance some firms
have privileged information, and offers relatively manageable computational burden.

Other papers in the literature examine the role of information in empirical game the-
oretic models. Aradillas-Lopez (2010) describes semiparametric inference procedures for
models in which the part of players’ payoffs that is unobserved to the econometrician is
private information, and players might be imperfectly informed about the part of oppo-
nents’ payoffs that is observable to the econometrician. We assume that everything that is
observed or can be estimated by the econometrician is common knowledge among play-
ers, but allow for a richer information structure on private payoff types since we are not
constrained by the analytical necessity of finding BNEs of incomplete information games.
Takahashi and Navarro (2012) develop testing procedures to distinguish between infor-
mation structures. They notice that if payoffs shocks are independent and players follow
a deterministic equilibrium selection rule, any correlation observed in their strategies is
to be traced back to the information that players might have about the opponents’ pay-
offs. This intuition is related to the idea in De Paula and Tang (2012), who use a similar
argument to test for multiplicity of equilibria. Our method allows correlation in play-
ers’ strategies to come from correlation in unobservables, information and multiplicity
of equilibria.8 It does not rely on strong assumptions on information, independence of
private shocks, or assumptions on equilibrium selection, and can be used when more
restrictive assumptions on information are rejected by the data.9

The literature offers also different ways of dealing with the equilibrium multiplicity
inherent in game theoretic models.10 We follow Tamer (2003), Berry and Tamer (2006)
and Ciliberto and Tamer (2009), who abandon strong assumptions on equilibrium selec-
tion and allow for set identification of parameters. Our model also relaxes assumptions

8See also Xu (2014) for a model that allows for correlated payoff types.
9While we do not pursue testing in this paper, it is possible to recast the problem in an inferential frame-

work that naturally allows for testing such as the semiparametric likelihood methods of Chen, Torgovitsky
and Tamer (2011) used by Grieco (2014).

10Previous work considered aggregation of outcomes (Bresnahan and Reiss 1991b), assumptions on the
order of entry (Berry 1992), and parametric equilibrium selection rules (Bajari, Hong and Ryan 2010) to
address multiplicity.
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on the information available to players, an important dimension of unobserved hetero-
geneity. The focus of this paper on partial identification is in line with the broader re-
search agenda summarized in Manski (2003, 2007) and Tamer (2010). In particular, we
rely on some ideas presented in Beresteanu, Molinari and Molchanov (2011), who pro-
vide a useful characterizations of the sharp identified set for models with convex predic-
tions.11

We build on the theoretical work of Bergemann and Morris (2013, 2015). These au-
thors define the equilibrium concept used in this paper and highlight the link between
behavioral assumptions and information structures. They discuss robust prediction us-
ing BCE as a way of capturing the implications of equilibrium behavior for a given payoff
environment, allowing for all possible information structures. We focus instead on iden-
tification, recovering elements of the payoff structure when the outcomes of the game
are observed but the information structure is unknown. Bergemann and Morris (2013)
discuss both identification and prediction in a linear-quadratic common value environ-
ment under BCE behavior. This paper considers identification in private value models of
discrete games widely used in the applied literature, and discusses techniques that allow
employing BCE in estimation of empirical models of games.

We are not the first to consider the empirical content of weaker assumptions on play-
ers’ behavior. Aradillas-Lopez and Tamer (2008) consider identification and inference
in static models of discrete games under the assumption of rationalizable behavior. We
adopt BCE as a solution concept to pursue robustness to unobserved informational en-
vironments, and leverage on the tractability and empirical content of BCE. Yang (2009)
examines estimation of discrete games of complete information under Nash behavior, us-
ing the non-sharp restrictions imposed by Correlated Equilibrium in order to simplify
computation. Bayes Correlated Equilibrium is similarly convenient to compute, and at
the same time allows us to obtain sharp restrictions for Bayes Nash behavior in a class of
games that allows for a rich range of information structures. Aguirregabiria and Magesan
(2015) develop a method for estimation of dynamic discrete games allowing for players’
beliefs not to be in equilibrium, while maintaining the assumption of independent pri-
vate payoff shocks. We assume equilibrium behavior, but under our weak assumptions
we also avoid strong restrictions on beliefs.12

Our emphasis on identification and estimation under weak assumptions on informa-
tion is similar to the spirit of Dickstein and Morales (2015), who examine a non strategic
model of firms’ export decisions, and develop a method to estimate payoff parameters
without fully specifying firms’ information on their expected revenues. They show that

11Galichon and Henry (2011) also provide a characterization of the identified set for discrete games.
12While their model is motivated by strategic uncertainty of players, we focus instead on removing strong

assumptions on the information structure, a primitive that determines crucially players’ beliefs in equilib-
rium.
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restrictive assumptions on information result on bias on parameters, and rely on moment
inequalities to set-identify parameters under weak assumptions. We consider instead
game-theoretic models, and obtain sharp bounds by explicitly capturing the implications
of a rich class of information structures and relying on the BCE assumption.

Our study of the effect of the presence of large malls on local supermarkets is re-
lated to several papers that examine the effect of entry of large store formats, especially
Wal-Mart in the US, on other retailers.13 Among the papers using game theoretic entry
models, Jia (2008) estimates a structural model with chain effects in which first Wal-Mart
and Kmart make simultaneous moves and then small retailers decide whether to open,
and finds that the entry of Wal-Mart impacts negatively the number of small retailers.
Grieco (2014) uses his model of entry with flexible information to study the impact of
Wal-Mart’s Supercenters on small grocery stores in rural US counties, and reports a mild
but largely negative effects of the presence of Wal-Mart on small stores’ profits. The im-
pact of large retailers on smaller stores has also been investigated outside the US. Igami
(2011) examines the supermarket industry in Tokyo, studying the effect of the entry of
large supermarkets on competitors. We examine instead the Italian supermarket indus-
try, and focus on the impact that large grocery stores that anchor regional malls have on
local supermarkets.14 In a companion paper, Magnolfi and Roncoroni (2015), we study
the role of political connections in shaping market structure in this industry.

3 Model

We consider a class of static games, indexed by realizations of covariates x ∈ X ⊆ R
dX .

Games with different levels of x can be interpreted as different markets where firms in-
teract. Players are in a finite set N. Each player i ∈ N chooses an action yi ∈ Yi . The
action space Y = ×i∈NYi and N do not depend on x. The econometrician observes cross-
sectional data on discrete outcomes y ∈ Y ⊂ R

dY and covariates x, and wants to recover
the determinants of behavior. The setup is summarized in Assumption 1 below.

Assumption 1. The econometrician observes the distribution Px,y of the random vector
(x,y). This joint distribution induces a set of conditional probability measures{

Py|x ∈ ∆(Y ) : x ∈ X
}

on Y . The finite set of players N is also observable.

13See Basker (2007) for a survey of this literature.
14For the Italian supermarket industry, Viviano (2008) studies the impact of entry deregulation on em-

ployment in the retail sector, finding a positive effect of large store entry on employment in small retail
firms in part of her sample.
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To identify the determinants of behavior, the first step is to assume that the data are
generated by a true structure in a well-defined class. We outline the primitives of this
structure in the next subsections, describing separately the payoff environment and the
informational environment that players face. All features of the true structure generating
observed behavior are common knowledge among players.

3.1 Payoff Environment

Every player i has a payoff type εi ∈ Ei ⊆R. Payoff types ε = (εi)i∈N are distributed accord-
ing to the cdf F (·;θε), parametrized by the finite dimensional parameter θε ∈ Θε ⊆ R

dΘε .

Payoffs to player i, denoted by πi , depend on action profiles and realizations of payoff
types. Payoffs are also affected by observable covariates x ∈ X, and finite dimensional
payoff parameters θπ ∈ Θπ ⊆ R

dΘπ , so that for every player i and every pair (x,θπ) there
is a map:

π
x,θπ
i : Y ×Ei →R.

We assume that ε is independent of the vector x. A realization of x and a vector of param-
eters θ = (θπ,θε) ∈ Θ = Θπ ×Θε pins down a payoff structure. We want to identify, from
data on behavior and market observable characteristics x, the vector of parameters θ. We
present a model with ε independent of x and finite dimensional parameters θ, but these
restrictions are not necessary for our general discussion of robust identification.15

We introduce now an example that we will use throughout the description of the
model: a two-player entry game with payoffs linear in covariates, and independent uni-
formly distributed types.

Example 1. (Two Player Entry Game) Consider a model of a two player, binary action
game. Players are in the set N = {1,2}. Actions are “out” or “enter” , represented as
Yi = {0,1}. Payoffs are:

π
x,θπ
i = yi

(
x′iβi +∆−iy−i + εi

)
,

so that the payoff parameter vector is θπ = (βi ,∆i)i=1,2. Payoff types εi are distributed iid
according to a uniform distribution on [−1,1]. Payoffs can be visualized in the following
payoff matrix:

15We do not pursue nonparametric identification of the payoff structure in this paper, as it is not directly
related to our main goal of achieving robustness with respect to assumptions on information. We present
instead a simple parametric setup to maintain the link with the previous literature and applied work.
See Lewbel and Tang (2015) for an example of nonparametric identification and estimation of the payoff
structure in models of games with incomplete information, and Tang (2010) for a model that relaxes the
independence between ε and x.
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Player 2: Out Enter
Player 1: 0 1

Out 0 (0, 0)
(
0, x′2β2 + ε2

)
Enter 1

(
x′1β1 + ε1, 0

) (
x′1β1 +∆2 + ε1,

x′2β2 +∆1 + ε2

)

3.2 Informational Environment

We assume that every player i knows the realization of her payoff type εi . In addition,
every player receives a private random signal τxi , which may be informative about the
full vector of payoff types ε. An information structure S specifies, for every value of x,
the set of signals a player can receive and the probability of receiving them, depending
on the realization of the vector of payoff types. Formally:

S =
(
T x,

{
Pτ |ε,x : ε ∈ E

})
x∈X

,

where T x is a subset of a separable metric space and represents the set of realizations of
the vector of signals τx =

(
τxi

)
i∈N

. The probability kernel
{
Pτ |ε,x : ε ∈ E

}
is the collection

of probability distributions of τx conditional on every realization of ε. The sets of sig-
nals and the distribution of signal vectors depend on x, since we allow the informational
environment to change with observed characteristics of the payoff environment.

We denote S0 the collection of all possible information structures S. More formally,
S0 is a general nonparametric class of information structures:

S0 :=
{
S | ∀x ∈ X, T x is separable metric space, Pτ |ε,x is probability measure on (T x,B (T x))

}
,

where B denotes the Borel σ−algebra.
Two extreme examples of information structures are complete information, denoted

by S, and minimal information, denoted by S, which corresponds to the private value
environment. Most prior work on estimation of discrete games assumes one of these
extremes, both nested by our framework. The structure S features T xi = E for every x ∈ X,
and provides players with perfectly informative signals: Pτx |ε {ε} = 1 for all ε ∈ E , x ∈ X.
Instead, in the minimal information structure S signals τx are uninformative: Pτx |ε = Pτx

for all ε ∈ E , x ∈ X.
Our framework can also accommodate many more examples of information struc-

tures, such as privileged information SP in which some players know the type of some
other players.16 In this case, the signal spaces for all players are T xi = E. For an informed

16This information structure resembles the ones that characterize the proprietary information model of
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player i, signals τxi are distributed according to Pτxi |ε {ε} = 1 for all ε ∈ E , x ∈ X, while for
an uninformed player j signals τxj are distributed according to Pτxj |ε = Pτxj

.

In some models, the information structure can depend on the correlation among pay-
off types, as in the following example of informative Normal public signals.

Example 2. (Informative Normal Public Signals) Consider a model of a two player, binary
action game, with N = {1,2} and Yi = {0,1} . Payoffs are:

π
x,θπ
i = yi (θπy−i + εi) ,

and payoff types εi are jointly Normal with zero means, unit variances, and correlation ρ.
Moreover, player i receives signals τi =

(
τ1
i , τ

2
i

)
∈R2, distributed according to:

Pτ1|ε =N
((
ε2

ε1

)
,

(
1− ρ

σ2 0
0 1− ρ

σ2

))
,

and
(
τ1

1 , τ
2
1

)
=

(
τ2

2 , τ
1
2

)
. One interpretation for this model is that the payoff type εi can be

decomposed in two parts, εi = η1
i + η2

i , and τi =
(
η1
−i ,η

1
i

)
. The vector

(
η1
−i ,η

1
i

)
represents

a publicly observed component of the payoff type that is correlated across players, while
η2
i is an idiosyncratic and privately known component of the payoff type. The class of

information structures defined in this example is the same that is considered in Grieco
(2014). See Appendix C for more discussion.

3.3 Equilibrium

The parameter vector θ = (θπ,θε) and the information structure S summarize the ele-
ments of the structure that are unknown to the econometrician; a pair (θ,S) pins down
an incomplete information game Γ x (θ,S) for every x. We assume that players’ behavior is
described by a profile of strategies that are a Bayes Nash Equilibrium (BNE) of this game.
We denote the equilibrium strategy profile as:

s = (si)i∈N ∈
(
×i∈N (∆ (Yi))

Ei×T xi
)
.

We also denote the set of all BNE for the game Γ x(θ,S) as EBNEθ,S,x. In general an incomplete
information game Γ x(θ,S) can have multiple equilibria, so that the set of equilibria EBNEθ,S,x

may not be a singleton.
The informational environment of the game has an important impact on equilibrium

behavior. When players receive informative signals on their opponents’ payoff types,

Engelbrecht-Wiggans, Milgrom and Weber (1983) for common value auctions, and the model of Kim and
Che (2004) for independent private value auctions.
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their beliefs and hence their equilibrium behavior will reflect this information. The more
informative the signals that player i receives about ε−i , the more we expect player i′s
equilibrium behavior to vary with the realizations of ε−i . Conversely, players who re-
ceive uninformative signals will only base their equilibrium behavior on their own payoff
type.17

Example. (1, Cont. ) We illustrate these points in Figure 1, which depicts equilibrium
outcomes in the space of payoff types for a two-player entry game with no covariates x,
competitive effects ∆1 = ∆2 = −1

2 , and payoff types iid uniform over the interval [−1,1].
The three panels correspond, respectively, to games with information structure S, S and
SP , and show how different informational environments result in radically different equi-
librium behavior.

For each equilibrium strategy s ∈ EBNEθ,S,x we can formulate the following prediction on
behavior:

Definition 1. (BNE Prediction) A BNE s of the game Γ x(θ,S) induces a distribution over
outcomes ps :

ps (y) =
∫
ε∈E

∫
τ∈T

∏
i∈N
{si (yi |εi , τi)}dPτ |ε {τ}

dF (ε;θε) ,

for all y ∈ Y , where si (yi |εi , τi) indicates the probability of yi as specified by si (εi , τi) .

The set EBNEθ,S,x of equilibria might not be a singleton, and we do not make any spe-
cific assumption on equilibrium selection. For any couple (θ,S), we define a prediction
correspondence QBNEθ,S : X⇒ ∆|Y |−1

QBNEθ,S (x) := co
[{
p ∈ ∆|Y |−1 : ∃ s ∈ EBNEθ,S,x such that p = ps

}]
,

where co[·] takes the convex hull of a set. The prediction correspondence describes the
set of distributions over actions y that can be obtained in a game Γ x (θ0,S0) under the as-
sumption of BNE play. The convex hull operator takes care of the multiplicity of equilib-
ria, considering all possible distributions over equilibria. In the next section, we consider
identification in this model.

4 Identification

We maintain that for each level of market characteristics x, observed behavior is compat-
ible with a BNE in a game Γ x (θ0,S0) in the class described in Section 3. We are interested

17This results in different levels of ex-post regret that players experience: when not informed about their
opponents’ type, players might optimally choose actions that will result suboptimal ex post, when the
equilibrium strategy profile is realized.
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Figure 1: Equilibrium Behavior and Information

Panel (A) Panel (B) Panel (C)

Complete Information Minimal Information Privileged Information
ε2

1

1/2

0

-1
-1 0 1/2 1 ε1

(0,1) (0,1) (1,1)

(1,0)
(1,0) or

(0,1)
(0,1)

(0,0) (1,0) (1,0)

2
1

1/2

0

-1
-1 0 1/2 1

1/5

1/5

(0,1) (1,1)

(0,0) (1,0)

ε1

ε
ε 2

1

1/2

0

-1

-1 0 1/2 1 ε1

ε*2

(0,1) (1,1)

(1,0)(0,0)

[1/8,1/4]є

This figure represents Bayes Nash Equilibrium outcomes in the space (ε1, ε2) for the two-player

entry game described in Example 1, with payoffs πi (y,ε) = yi
(
−1

2yj + εi
)

for i = 1,2 and εi
iid∼

U [−1,1] .

Panel (A) represents outcomes for a game with complete information, in which, for (ε1, ε2) ∈
[
0, 1

2

]2
there are multiple equilibria.

Panel (B) represents minimal information outcomes, generated by equilibrium strategies
that prescribe yi = 1 whenever εi ≥ 1

5 .

Panel (C) represents privileged information outcomes, generated by equilibria in which
player 2 does y2 = 1 whenever ε2 is greater or equal than a threshold ε∗2 ∈

[
1
8 ,

1
4

]
, and player

1 responds optimally to the realization of ε2, which he observes, and player 2’s equilibrium
strategy.
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in recovering θ0, but we do not know the true information structure S0. We first link
the game theoretic structure to observables, and then describe the identified set we can
obtain for the parameters of interest if we allow for any S ∈ S0, and for any Bayes Nash
Equilibrium constructed given any S.

Given the formal characterization of the implications of equilibrium behavior pro-
vided by Definition 1, we summarize below our assumptions on the data generating pro-
cess.

Assumption 2. For all x ∈ X, the outcomes y are generated by equilibrium play of the
game Γ x (θ0,S0) , so that Py|x ∈QBNEθ0,S0

(x) .

Under Assumptions 1 and 2, the sharp identified set of parameters is defined as:

ΘBNE
I (S0) =

{
θ ∈Θ|∃ S ∈ S0 such that Py|x ∈QBNEθ,S (x) Px − a.s.

}
. (4.1)

This is the set of parameters whose implications, without restrictions on equilibrium se-
lection or information structure, are compatible with the observables. All parameters
θ ∈ΘBNE

I (S0) are observationally equivalent, since for each of them there exists an informa-
tion structure S ∈ S that generates a correspondence QBNEθ,S rationalizing the observables.
The set ΘBNE

I (S0) is our object of interest. It captures the restrictions on the parameters
that we obtain under weak assumptions on the information structure.

However, definition (4.1) seems hardly useful in practice, since computing correspon-
dences QBNEθ,S for all S in the large class S0 is an analytical challenge. A brute force ap-
proach would in fact require specifying all possible information structures, and finding
the corresponding sets of predictions. In the following subsections, we propose a method
to identify the set ΘBNE

I (S0) that sidesteps the analytical difficulties inherent in a direct
approach by relying on the connection between equilibrium behavior and robustness to
assumptions on information.

4.1 Bayes Correlated Equilibrium

In this subsection, we show how the adoption of Bayes Correlated Equilibrium as solution
concept solves the problem of characterizing the robust identified set ΘBNE

I (S0). We start
with the definition of BCE, which follows Bergemann and Morris (2015).

Definition 2. (BCE) A Bayes Correlated Equilibrium (BCE) for the game Γ x (θ,S) is a
probability measure ν over (Y ×E) that is consistent with the prior:

∑
y∈Y

[∫
{ε̃≤ε}

dν {y, ε̃}
]

= F (ε;θε) ,

13



for all ε ∈ E , and incentive compatible:

∀i,εi , yi such that if ν {yi |εi} > 0,
∑

y−i∈Y−i

[∫
E−i
π
x,θπ
i (y,εi)dν {y−i , ε−i |yi , εi}

]
≥

∑
y−i∈Y−i

[∫
E−i
π
x,θπ
i

((
y′i , y−i

)
, εi

)
dν {y−i , ε−i |yi , εi}

]
∀y′i ∈ Yi .

The BCE concept is an extension of Correlated Equilibrium to an incomplete informa-
tion setup, under the assumptions that players have a common prior on the distribution
of payoff types, and can observe additional signals. BCE behavior is not represented
by strategy functions, but rather by a joint distribution of observable actions and pay-
off types. This distribution needs to be consistent with the common prior that players
maintain, so that its marginal over payoff types reflects the common knowledge of the
underlying distribution of ε. Moreover, players are best responding to equilibrium be-
liefs, as summarized by the BCE distribution.

Notice that we define BCE for the game of minimal information Γ x (θ,S) in which
players only know their own payoff type εi . While in principle BCE can be defined for
any incomplete information game, we use Definition 2 in what follows, and denote as
EBCEθ,x the set of BCE for the game Γ x (θ,S) . The set EBCEθ,x is convex, since it is defined by
equalities and inequalities that are linear in the equilibrium distribution.

In order to capture the BCE predictions on observed behavior, we consider the marginal
with respect to players’ actions of a BCE distribution ν.

Definition 3. (BCE Prediction) The BCE distribution ν induces a distribution over out-
comes pν defined as:

pν (y) =
∫
ε∈E

dν (y,ε) .

The observable implications of BCE behavior in a structure characterized by (θ,S) are
described by the prediction correspondence QBCEθ : X⇒ ∆|Y |−1, defined as:

QBCEθ (x) =
{
p ∈ ∆|Y |−1 : ∃νx ∈ EBCEθ,x such that p = pνx

}
.

Since the set EBCEθ,x is convex, any convex combination of BCE distributions is also a BCE
distribution. Therefore, QBCEθ (x) captures equilibrium predictions with no restrictions
on equilibrium selection.

Figure 2 shows the set of BCE outcomes for the setup in Example 1. Panel (A) shows
that BCE imposes weaker restrictions on equilibrium behavior: the sets of BNE predic-
tions obtained under a specific assumption on information are all contained in the set of
BCE predictions. Panel (B) illustrates instead that BCE predictions are still a relatively
small subset of all possible outcomes, represented by the simplex.

14



Fi
gu

re
2:

B
C

E
an

d
B

N
E

P
re

d
ic

ti
on

s
C

om
p

P
P

P
P

P
P

11
11

10
10

01
01

B
C

E
 P

re
d

ic
ti

o
n

s
C

o
m

p
le

te
 I

n
fo

rm
at

io
n

 
M

in
im

al
 I

n
fo

rm
at

io
n

 P
re

d
ic

ti
o

n
s

P
ri

v
il

eg
ed

 I
n

fo
rm

at
io

n
 

F
ig

u
re

 2
: P

an
el

 (
A

)
F

ig
u

re
 2

: P
an

el
 (

B
)

In
th

is
fi

gu
re

w
e

co
m

p
ar

e
B

C
E

p
re

d
ic

ti
on

s
Q
B
C
E

θ
w

it
h

th
e

B
N

E
p

re
d

ic
ti

on
s
Q
B
N
E

θ
,S

ob
ta

in
ed

u
nd

er
d

iff
er

en
t

in
fo

rm
at

io
n

st
ru

ct
u

re
s
S

fo
r

th
e

tw
o-

p
la

ye
r

en
tr

y
ga

m
e

d
es

cr
ib

ed
in

E
xa

m
p

le
1.

T
he

ax
es

re
p

re
se

nt
p

ro
ba

bi
li

ti
es

of
d

iff
er

en
t

ou
tc

om
es
P y

.
T

he
so

li
d

gr
ee

n
li

ne
re

p
re

se
nt

s
th

e
p

u
re

st
ra

te
gy

N
as

h
p

re
d

ic
ti

on
s

of
th

e
co

m
p

le
te

in
fo

rm
at

io
n

ga
m

e
Q
B
N
E

θ
,S

.
T

he
re

d
d

ot
re

p
re

se
nt

s
th

e
B

N
E

p
re

d
ic

ti
on

of

th
e

m
in

im
al

in
fo

rm
at

io
n

ga
m

e
Q
B
N
E

θ
,S

.T
he

ye
ll

ow
d

ot
te

d
li

ne
re

p
re

se
nt

s
th

e
p

ri
vi

le
ge

d
in

fo
rm

at
io

n
p

re
d

ic
ti

on
s
Q
B
N
E

θ
,S
P

.

In
p

an
el

(A
),

w
e

re
p

re
se

nt
th

e
se

t
of

B
C

E
p

re
d

ic
ti

on
s,

co
nt

ai
ni

ng
th

e
B

N
E

p
re

d
ic

ti
on

s
u

nd
er

d
iff

er
en

t
re

st
ri

ct
io

ns
on

in
fo

rm
a-

ti
on

.

In
p

an
el

(B
),

w
e

re
p

re
se

nt
th

e
u

ni
t

si
m

p
le

x,
w

it
h

th
e

se
t

of
B

C
E

p
re

d
ic

ti
on

s
in

si
d

e.

15



We are most interested in the implications of adopting BCE behavior for identifica-
tion. Under Assumptions 1 and 2 the behavioral assumption of BCE, the identified set of
parameters in this class of games is defined by:

ΘBCE
I =

{
θ ∈Θ such that Py|x ∈QBCEθ (x) Px − a.s.

}
. (4.2)

4.2 BCE Identification

Bergemann and Morris (2013, 2015) establish the robust prediction property of BCE.
In our setup, this property translates into the equivalence, for any given θ, of the BCE
predictions QBCEθ and the union of BNE equilibrium predictions QBNEθ,S taken over S ∈ S0.

Figure 2 illustrates this result by representing the polytope QBCEθ as well as the sets of
BNE predictions QBNEθ,S for the three information structures described in Example 2, and
for the payoff structure described in Example 1. We show that a robustness result holds
also for identification. In particular, the identified set we obtain under BCE is equivalent
to our object of interest, ΘBNE

I (S0). For any restriction on information S ⊆ S0, let:

ΘBNE
I (S) =

{
θ ∈Θ|∃ S ∈ S such that Py|x ∈QBNEθ,S (x) Px − a.s.

}
be the identified set of parameters consistent with BNE behavior. We have then:

Proposition 1. (Robust Identification) Let Assumptions 1 and 2 hold. Then,

1. the identified set under BCE behavior contains the true parameter value, θ0 ∈ΘBCE
I , and

2. ΘBCE
I = ΘBNE

I (S0) .

Proof. See Appendix B.

Proposition 1 offers a foundation for the use of the BCE behavioral assumption for
identification on robustness grounds. The adoption of BCE allows for the characterization
of a set of parameters consistent with equilibrium behavior and a common prior, with
minimal assumptions on information. The object ΘBNE

I (S0), impossible to characterize
when relying on BNE behavior, is easily defined by relying on the weaker solution concept
of BCE. Although the proposition shows that for all parameters θ ∈ ΘBCE

I there must be
an information structure S such that θ ∈ ΘBNE

I ({S}) , it is not necessarily true that every
restriction on information S results in implications on parameters that will be considered
in the set ΘBCE

I . In fact, we show in Section 6 that the restriction S could be falsified, so
that ΘBNE

I (S) = ∅. In the next subsection we present a computable characterization of the
BCE identified set.
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4.3 Support Function Characterization of the Identified Set

We have argued in Proposition 1 that ΘBCE
I is the set of all parameters compatible with the

observable and the nonparametric class of information structures S0, and that focusing
on this set can provide informative bounds and prevent misspecification. To estimate
and compute ΘBCE

I , however, we need to provide a tractable characterization, since it’s
not immediately obvious how to compute the set as defined in equation (4.2).

For every x ∈ X, the set of BCE predictions QBCEθ (x) is a convex set. Convexity of the
set of predictions follows directly from the definition of BCE. Hence, we can represent
QBCEθ (x) through its support function. This is similar to results in Beresteanu, Molinari
and Molchanov (2011).18

Let h
(
QBCEθ (x) ; ·

)
: R|Y |→R denote the support function of the set QBCEθ (x) :

h
(
QBCEθ (x) ;b

)
= sup
p∈QBCEθ (x)

b′p.

The support function provides a representation of the set of predictions:

p ∈QBCEθ (x)⇐⇒
{
b′p ≤ h

(
QBCEθ (x) ;b

)
∀ b ∈ B

}
,

where B is the unit sphere in R
|Y |. We have then:

ΘBCE
I =

{
θ ∈Θ| P ′y|xb ≤ h

(
QBCEθ (x) ;b

)
∀ b ∈ B Px − a.s.

}
=

θ ∈Θ| max
b∈B

min
p∈QBCEθ (x)

[
b′Py|x − b′p

]
= 0 Px − a.s.

 . (4.3)

The computation of this object is simplified by the fact that the optimization problem is
linear in the variable p. Appendix A provides computational details.

4.4 Inference

Suppose now that we observe an iid sample of size t of players choices and covariates{
yj ,xj

}n
j=1
. To apply existing inferential methods, we assume that the set of covariates X

is discrete.19 We perform inference following an extremum estimation approach by re-
defining the identified set characterized in (4.3) as the set of minimizers of a non-negative
criterion function G, or

ΘBCE
I = {θ ∈Θ|G (θ) = 0} ,

18Appendix D describes how our characterization of the identified set maps into their framework.
19While several recent methods for inference in partially identified models such as Andrews and Shi

(2013) do not require discrete covariates, they prove to be too computationally costly for the estimation of
our model.
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for

G (θ) =
∫
X

sup
b∈B

[
b′Py|x − h

(
QBCEθ (x) ;b

)]
dPx {x} .

The sample analogue of the population criterion function is:

Gn (θ) =
1
n

n∑
j=1

sup
b∈B

[
b′P̂y|xj − h

(
QBCEθ

(
xj

)
;b

)]
,

where P̂y|xj is the empirical frequency of strategy profile y in observations with covari-
ates x = xj . The population criterion function inherits a smoothness property from the
continuity of the payoff function and the upper hemi-continuity of the equilibrium cor-
respondence, so that we can obtain a consistent estimator of the identified set as in Cher-
nozhukov, Hong and Tamer (2007):

Proposition 2. Assume that:
(i) the map θπ→ π

x,θπ
i (y,εi) is continuous for all i, x, y and εi , the quantity

|πx,θπi (yi , y−i , εi)−π
x,θπ
i

(
y′i , y−i , εi

)
|

is bounded above, and the map θε→ F (·;θε) is continuous for all ε;
(ii) the following uniform convergence condition holds: supΘ

√
n|Gn (θ)−G (θ) | =Op (1) ;

(iii) the sample criterion function Gn is stochastically bounded over ΘI at rate 1/n.
Then, the set Θ̂I = {θ ∈Θ|nGn (θ) ≤ logn} is a consistent estimator of ΘBCE

I .

Proof. See Appendix B.

The previous proposition shows that our setup satisfies condition C.1 in Chernozhukov,
Hong and Tamer (2007), and we proceed to apply their methods. We are interested in
building confidence regions Ln for the identified set ΘBCE

I , with the property that:

lim inf
n→∞

P {ΘI ⊆ Ln} ≥ 1−α.

We base these regions on level sets of the sample criterion function:

Ln (c) = {θ ∈Θ|Gn (θ) ≤ c} .

The confidence set can be characterized as in Ciliberto and Tamer (2009) with a likelihood-
ratio type statistic:

Ln := sup
θ∈ΘI

Gn (θ) ,
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so that :

{ΘI ⊆ Ln (c)} ⇐⇒ {Ln ≤ c} ,

and we can obtain the desired confidence region as Ln (ĉ) , where ĉ set at the value of the
alpha-quantile of the asymptotic distribution of Ln. Appendix A describes the details of
how we obtain ĉ and compute Ln (ĉ) .

5 Identifying Power of BCE

We address in this section the issue of the informativeness of ΘBCE
I , the set identified un-

der BCE behavior. Whenever variation in covariates allows the econometrician to observe
games in which strategic considerations are negligible, several features of the model can
be point identified. This identification strategy was first proposed by Tamer (2003) for
games of complete information under the assumption of pure Nash Equilibrium behav-
ior, but it still applies without restrictions on information and equilibrium selection.20

To simplify our discussion, we restrict our attention to games with two actions and two
players, and with payoffs linear in covariates. These assumptions are summarized in the
following:

Assumption 3. Let |N | = 2 and Y = {0,1}2 ; let payoffs be:

π
x,θπ
i (y,εi) = yi

(
z′βC + x′iβ

E
i +∆−iy−i + εi

)
.

1. Vectors of covariates are partitioned as x = (x1,x2, z) ∈ X1×X2×Z = X, and the distribu-
tion Px is such that xi has everywhere positive Lebesgue density conditional on z,x−i , for
i = 1,2, and there exists no linear subspace E of Xi ×Z such that Px (E) = 1.

2. Payoff types (ε1, ε2) are independent of covariates x, and distributed according to an
absolutely continuous cdf F (·;θε), defined on E = R

2.

Proposition 3. Suppose the econometrician observes the distribution of the data
{
Py|x : x ∈ X

}
,

generated by BCE play of a game. Then, under Assumption 3,

1. payoff parameters βC ,βE and ∆ are point identified as in single-agent threshold crossing
models; and

2. the structure implies bounds on the payoff type parameter θε.

Proof. See Appendix B.

20For an alternative identification strategy in games of complete information, see Kline (2015).
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The proposition shows that, whenever there are covariates’ values for which one player
has a dominant strategy, identification of payoffs proceeds as in single-agent binary choice
models.21 Since dominance only requires that players be rational and know their own
payoffs, it applies to discrete games in which players have information on at least their
own payoffs. While we do not expect the assumptions of the theorem to hold literally in
applications, Proposition 3 indicates at least a source of variation that helps identifica-
tion.

In Table 1 we show projections of ΘBCE
I for different information structures S0 and

different levels of variation in covariates. We consider in particular the following discrete
sets of covariates with increasing variance, with X

′
= {−1,0,1} and X

′′
= {−3,0,3} to show

variation in covariates at work in reducing the size of the identified set.
Our Proposition 3 implies that the model has identifying power on the joint distri-

bution of payoff types. Consider now entry game with same payoffs as in the previous
example, marginal distributions of payoff types Fi logit with unit variance for i = 1,2, and
joint distribution of payoff types:

F (·;θε) =C (F1,F2;ρ) ,

where C denotes the Frank copula function. We set values of exogenous covariates at X
′
.

Table 2 shows projections of the identified sets.

6 Assumptions on Information and Identification

While we pursue identification under BCE behavior, the current approach of the litera-
ture is to restrict the class of admissible information structures. This is done by choosing
S ⊆ S0 such that QBNEθ,S is analytically tractable for S ∈ S , and focusing the analysis on
the set ΘBNE

I (S) . For instance, seminal papers in the literature such as Bresnahan and
Reiss (1991a), Berry (1992) and Tamer (2003) assume complete information, which cor-
responds to the restriction S =

{
S
}
. Conversely, other authors such as Seim (2006), Sweet-

ing (2009) and Bajari et al. (2010), restrict S to the minimal information structure S, in
which signals τx are uninformative.

Ideally, the restriction imposed on the information structure S is pointwise correct, that
is S = {S0} , or at least correct i.e. S0 ∈ S . In this case,

ΘBCE
I ⊇ΘBNE

I (S) ⊇ΘBNE
I ({S0}) , ∅,

where the first inclusion follows from Proposition 1. However, in typical applications
there is little evidence on the nature of S0. If instead S0 < S , the model is misspecified, and

21For results on the identification of single-agent threshold crossing models, see Manski (1988).
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Table 1: Variation in Covariates and ΘBCE
I

θ0 S0 = S̄ S0 = S S0 = SP

Panel (A): X
′

(1) (2) (3) (4)

βC 1 [.90,1.02] [.81,1.11] [.76,1.04]

β1 1 [.92,1.09] [.90,1.21] [.91,1.17]
β2 1 [.92,1.09] [.90,1.21] [.83,1.17]
∆1 -1 [-2.36,-.82] [-1.48,-.78] [-1.99,-.84]
∆2 -1 [-2.36,-.82] [-1.48,-.78] [-2.13,-.83]

Panel (B): X
′′

βC 1 [.97,1.08] [.87,1.08] [.86,1.08]

β1 1 [.96,1.05] [.96,1.09] [.96,1.06]
β2 1 [.96,1.05] [.96,1.09] [.95,1.08]
∆1 -1 [-1.30,-.90] [-1.23,-.90] [-1.26,-.90]
∆2 -1 [-1.30,-.90] [-1.23,-.90] [-1.29,-.89]

This table reports projections of the identified sets for the parameters of the two players entry model with
payoffs πx,θπi (y,εi) = yi

(
z′βC + x′iβ

E
i +∆−iy−i + εi

)
for i = 1,2 and εi iid standard Normal across players and

markets. The identified sets are obtained under weak assumptions on information, and computed as pro-
jections of ΘBCE

I . Column (1) reports the values of the true parameter vector θ0, while columns (2), (3) and
(4) report projections of ΘBCE

I for different assumptions on the information structure S0 that characterizes
the game that generates the data. Panel (A) reports identified sets for data generated with x uniformly
distributed in the set X

′
, while Panel (B) reports identified sets with x uniformly distributed in the set X

′′
.

Computational details are in Appendix A.
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Table 2: ΘBCE
I with Correlated Payoff Types

θ0 Proj. of ΘBCE
I

(1) (2)

βC 1 [0.67,1]

β1 1 [0.75,1]

β2 1 [0.87,1.17]

∆1 -1 [-1.02,-0.12]

∆2 -1 [-1.50,-0.65]

ρ 0.8 [0.56,0.88]

This table reports projections of the identified sets for the parameters of the two players entry
model with payoffs πx,θπi (y,εi) = yi

(
z′βC + x′iβ

E
i +∆−iy−i + εi

)
for i = 1,2.

In this case, ε are distributed according to F (·;θε) = C (F1,F2;ρ) , where Fi is a Logit distribution,
C denotes the Frank copula function, and ρ is a correlation parameter. The identified sets are
obtained under the assumption that the information structure is complete information, and
computed as projections of ΘBCE

I for each parameter of the model. The information structure
of the game that generates the data is complete information so S0 = S, and covariates x are
uniformly distributed in the set X

′
. Column (3) reports values of the true parameter vector θ0,

while column (4) reports projections of the identified set.

Computational details are in Appendix A.
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Table 3: Identified set when S =
{
S
}

= {S0}

θ0 Proj. of ΘBNE
I

({
S
})

(1) (2)

βC 1 [0.96,1.02]

β1 1 [0.96,1.04]

β2 1 [0.96,1.04]

∆1 -1 [-1.11,-0.97]

∆2 -1 [-1.11,-0.97]

This table reports projections of the identified sets for the parameters of the two players entry
model with payoffs πx,θπi (y,εi) = yi

(
z′βC + x′iβ

E
i +∆−iy−i + εi

)
for i = 1,2.

Payoff types εi are iid standard Normal across players and markets, and the identified sets
are obtained under the assumption that the information structure is complete information,
and computed as projections of ΘBNE

I

({
S
})

for each parameter of the model. The information

structure of the game that generates the data is complete information so S0 = S, and covariates x
are uniformly distributed in the set X

′
. Column (1) reports values of the true parameter vector

θ0, while column (2) reports projections of the identified set.

Computational details are in Appendix A.

one of the following three scenarios will occur. Either (i) the misspecification has benign
consequences, that is θ0 ∈ ΘBNE

I (S) , or (ii) θ0 < ΘBNE
I (S) , ∅, that is misspecification

results in a nonempty identified set, selecting arbitrarily a region of ΘBNE
I (S0) that does

not contain θ0, or (iii) the model is falsified by the data, that is ΘBNE
I (S) = ∅. In this case,

no parameter θ can rationalize the observables given the restriction on information S .
We can compute the set ΘBNE

I (S) identified under restrictions on information using
the same model as in section 5.1 with covariates uniformly distributed in the set X

′
.

When the restrictive assumptions are pointwise correct, that is they correspond to the
true information structure in the data generating process S0, there are gains in identifying
power. For instance, if S = {S} = {S0} the model is point identified. If S =

{
S̄
}

= {S0} , we
obtain results in Table 3.

However, if the model is misspecified, that is we assume S =
{
S
}

but S0 = S , or S = {S}
but S = S0, in this simple model the set ΘBNE

I (S) is empty. No parameter values can
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reconcile the data with the structure of the model, which makes the model falsified by
the data.22 In Proposition 1 we establish that the identified set under BCE contains only
those parameters for which there exists an information structure and a corresponding
BNE that generate predictions that match the data. If no such values exist for S ⊆ S0, then
all the information structures S ∈ S are falsified. When estimation is performed under
a misspecified assumption, we can expect biased estimates. We show in the following
subsection how assumptions about information can affect identification.

6.1 Impact of Strong Assumptions on Identification

We consider a binary, 2-player entry game as described in Example 1, with one payoff
parameter and no covariates. In this game, |N | = 2 and Y = {0,1}2 , and payoffs are:

πi (y,εi) = yi (∆y−i + εi) ,

with Fi distribution of εi uniform on the interval [-1,1]. The parameter ∆ belongs to the
interval Θ = [−1,0] , restricted not to exceed in absolute value the maximum payoff type.

Restrictive assumptions on information have substantial impact on identification in
this game. To see this more clearly, consider the non-sharp identified set:

Θ̃BNE
I (S) =

{
∆ ∈Θ| ∃ S ∈ S0 such that Py (1,1) ∈QBNEθ,S

}
,

obtained by using only the observable probability of the outcome (1,1) . Under the as-
sumption of complete information, that is S =

{
S
}
, if we restrict for analytical conve-

nience the equilibrium correspondence to only allow for pure strategy equilibria, we can
immediately recover the parameters ∆ ∈ Θ̃BNE

I by solving:

Py(1,1) = (1−Fi (−∆))2

=
(

1 +∆

2

)2

.

If instead we adopt the restriction of private signals, that is S = {S} , we have that the
symmetric BNE characterized by si (yi = 1) =

∫
si (yi = 1|εi)dF (εi) solves the equation:

si (yi = 1) = 1−Fi (ε) ,

=
1− ε

2
,

22As pointed out by Ponomareva and Tamer (2011), estimating a misspecified model may result in tight
bounds, which however can be far from the true value. Moreover, in this case, we do not expect that the
estimated parameter sets under the falsified restriction on information will be contained in the confidence
set estimated under BCE.
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where the threshold level ε is pinned down by the equation:

ε+∆

(
1− ε

2

)
= 0,

so that ε = − ∆
2−∆ , and

si (yi = 1) =
1

2−∆
,

and one of the corresponding implications of equilibrium on observable behavior is:

Py(1,1) =
( 1
2−∆

)2
.

Under the assumption that S =
{
SP

}
, in equilibrium player 1 knows when player 2 will

enter. There are in this case a multiplicity of equilibria, in which player 2 has a threshold
strategy characterized by the value ε2, and player 1 will always enter if ε1 > −∆ and enter
only if ε2 < ε2 whenever 0 < ε1 < −∆. For such a strategy to be an equilibrium, it must be
that:

ε2 +∆ (1−Fi (−∆)) ≥ 0,

for all ε2 ≥ ε2, and
ε2 +∆ (1−Fi (0)) ≤ 0,

for all ε2 ≤ ε2, which in turn implies that ε2 ∈
[
−∆(1+∆)

2 ,−∆2
]
, and:

Py {(1,1)} ∈
[
(2−∆) (1 +∆)

4
,
(2−∆ (1 +∆)) (1 +∆)

4

]
.

Notice that for player 2 equilibrium behavior need not depend on the uninformative
signal τ2.

Suppose now that the true parameter is ∆0 = −0.5. For a certain value of Py(1,1) ob-
served in the data, different restrictions on the information structure will yield different
identified sets. Table 4 summarizes the identified set Θ̃BNE

I (S) under different combina-
tions of S and S0. When S0 = SP , we assume that data are generated by the threshold
strategy that lies in the middle of the continuum of equilibria, that is with ε2 = 3/16.

From Table 4, it appears immediately how overstating the amount of information
available to players leads to an identified parameter that is lower, in absolute value than
the true parameter value. Intuitively this is because the probability that both players en-
ter as predicted by the model depends on ∆ and on players’ degree of certainty that their
opponent will also enter. Overstating the amount of information leads the econometri-
cian to impose on players beliefs about their opponent’s actions that are too precise. For
this level of precision in beliefs, in turn, the model rationalizes the observed Py {(1,1)}
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Table 4: Identified Set ΘBNE
I (S) under different S and S0 and ∆0 = −0.5

S0: S SP S

S : S {−0.50} {−0.36} {−0.2}
SP [−0.82,−0.72] [−.54,−0.47] [−0.29,−0.26]
S {−2} {−1.14} {−0.50}

This table reports the identified sets for the parameters of the two players entry model with pay-
offs πi (y,εi) = yi (∆y−i + εi) for i = 1,2 and εi iid U [−1,1] across players and markets. The identi-
fied sets Θ̃BNE

I (S) are non sharp, and obtained under a restrictive assumption on information S
(corresponding to different row) and a true information structures S0 (corresponding to a differ-
ent column). The true value of the parameter θ in the data generating process is ∆0 = −0.5. When
S0 = SP , we assume that data are generated by the threshold strategy that lies in the middle of the
continuum of equilibria, that is with ε2 = 3/16.

with a value of ∆ that is lower, in absolute value, than ∆0. This type of attenuation bias
has already been recognized in the literature on single agents decisions in Bergemann
and Morris (2013), and in the context of dynamic games by Aguirregabiria and Magesan
(2015).

This example shows that misspecification of the information structure can result in
significant bias in the identified parameters. While in this case the direction of the bias
is intuitive, in more complex games it will not be as simple to determine. Estimation of
games under the assumption of BCE allows to avoid this bias.

7 Application: the Impact of Large Malls on Local Super-
markets

Regional and super-regional malls, typically built around a grocery “anchor,”23 are a rela-
tively new phenomenon in Italy, having gained popularity mostly in the last fifteen years.
The emergence of large malls has sparked a debate on their economic impact on local re-
tailers. We focus on the impact of malls on local supermarkets. In the view of their critics,
large supermarkets in malls represent a formidable competitor to local supermarkets, and
end up decreasing local stores’ profits.24 The entry of large shopping centers might gen-

23While these anchor supermarkets are not regarded by industry experts as very successful in their own
right, they receive rent subsidies from mall operators, since they are believed to attract consumers that
shop at other stores in the mall.

24A recent survey of retailers finds that shop owners rank the emergence of large malls as the
second factor that most affected their business in the last five years. See Confesercenti press
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erate a market structure with fewer supermarkets in operation or even a local monopoly,
thus hurting those consumers that would most benefit from the availability of local stores
and from the presence of smaller store formats. Advocates of this view propose tighter re-
strictions on entry by large malls, especially in markets that cannot support other stores.
Others contend that format differentiation results in little competition between local su-
permarkets and large mall anchors, and the economic activity linked to large malls might
generate spillovers that strengthen local demand. According to this view, regulation that
restricts the number of malls in operation would be ultimately harmful to consumers.

We quantify the effect of malls on supermarket industry groups by estimating a game
theoretic model in which industry players decide strategically whether to operate stores
in local grocery markets, and entry of large malls is exogenous to the dynamics of com-
petition in grocery markets. This calls for the use of a model that explicitly recognizes
the strategic nature of supermarket industry players, as well as the heterogeneity in the
underlying determinants of their entry behavior.

It is not obvious which informational environment prevails in this setting. In princi-
ple, local players might possess a superior knowledge of grocery markets and thus be in
a good position to evaluate the profitability of entry by their rivals. Alternatively, foreign
firms might leverage the long history of their competitors to have a more precise outlook
on their profitability. While the no-regret feature of pure Nash equilibria in games of
complete information is often viewed as a plausible characteristic of the long-run indus-
try snapshot that is captured with a static model, this argument is not particularly strong
for this industry in the period we study. The year of our cross-sectional data, 2013, comes
at the end of a 15-years long period of growth in the industry, which was sparked by a
overhaul of regulation in 1998. However, both accounting data and trade press sources
indicate that many firms and individual outlets have been unprofitable for several years
in the period, so that regret for not having anticipated competition in local markets can-
not be ruled out.

We estimate the model and conduct counterfactual analysis relying on weak assump-
tions on information, using the method we have developed in the previous sections of
this paper. We also estimate the game under the assumption of complete information,
and evaluate the consequences on estimates of imposing more restrictive assumptions.
To reduce complexity, we abstract from the multi-store nature of national players’ deci-
sions, from geographical location and store format choice within a market.25

release at http://www.confesercenti.it/blog/imprese-dei-centri-storici-sondaggio-confesercenti-swg-fisco-
ha-inciso-negativamente-per-8-su-10/.

25For studies of empirical entry games in retail industries that model these aspects, see for instance Jia
(2008), Ellickson, Houghton and Timmins (2013) and Nishida (2014) for multi-store firms and economies
of density, Mazzeo (2002), Seim (2006) and Datta and Sudhir (2013) for endogenous product and location
choice. See Aguirregabiria and Suzuki (2015) for a recent survey of structural models of competition in
retail.
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7.1 Data and Institutional Details

We have data on store presence and characteristics for all supermarkets in Northern and
Central Italy at the end of 2013, obtained from the market research firm IRI. We comple-
ment these with hand-collected information on which supermarkets are in malls and on
mall size, obtained from public online directories. We focus exclusively on Northern and
Central Italy because the structure of grocery markets in the South differs markedly, with
traditional stores and open-air markets still playing a very important role, and relatively
few instances of large malls. Data on population and demographics are obtained from
the 2011 official census, while data on (tax) income at the municipality level are available
for 2013 from the Ministry of Economy and Finance.

Market Definition and Industry Players

Defining the relevant market in this industry requires specifying both which store for-
mats are direct competitors, and the geographical units that constitute separate local
grocery markets. The Italian Antitrust Authority distinguishes between smaller stores
with floor space up to 1,500 m2 (16,146 ft2) and stores above this threshold, pointing out
that stores in these two categories differ fundamentally in location, assortments, and reg-
ulation they are subject to (see AGCM 2013, Viviano et al. 2012). From the point of view
of retail groups, larger stores are more efficient, and have seen the fastest growth in this
industry in the last 15 years, suggesting that firms and consumers prefer these modern
formats. Price surveys also indicate that larger stores offer, on average, lower prices. We
consider stores with a floor space of at least 1,500 m2 (16,146 ft2)26 as the relevant mar-
ket for our study, since these stores seem to be most relevant to economic outcomes in
a grocery market. These are also the stores that are most likely to be in direct competi-
tion with the grocery anchors present in large malls. We define large malls as shopping
centers including at least 50 independent shops.

No existing administrative unit provides a natural way of defining local grocery mar-
kets in Italy, and in antitrust cases the extension of geographical markets is determined
on an ad-hoc basis. Evidence collected by various European Antitrust Authorities indi-
cates that most consumers travel little to do their grocery shopping,27 and evidence from
marketing research points to the fact that supermarkets make most of their revenues from
customers living in a 2 km (1.24 mi.) radius, while large shopping malls attract shoppers
who drive up to 30 minutes. Since commuting patterns capture consumers’ daily move-
ments better than administrative units, we start from the geographical commuting areas

26For comparison, median store size for US supermarkets was 46,500 ft2 in 2013 according to Food
Marketing Institute, an industry association.

27UK’s Competition Commission considers all large stores in a radius of 10-15 minutes by car to belong
to the same market.
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as defined by ISTAT, the national statistical agency, and split commuting areas that are
too large.28 We exclude large cities with more than three hundred thousand inhabitants
in a municipality, as the density of highly urban areas makes it very hard to separate dis-
tinct markets. We are left with 484 local grocery markets. We report summary statistics
for these markets in Table 5, considering separately markets with large malls and markets
with no large malls. The latter are systematically smaller, have a slightly lower per capita
income, and have on average one supermarket.

The Italian supermarket industry is quite diverse, as it includes cooperative firms,
independent local supermarket groups, and foreign firms. Networks of consumers’ and
retailers’ cooperatives, mainly operating under the signs of Coop Italia and Conad, all af-
filiated with the national umbrella organization Legacoop, have the largest market share
and play an important role. Despite their formal organizational form and historical ori-
gins, they are managed efficiently and their behavior can be assimilated to that of their
profit maximizing competitors.29 There are then several national groups, all based in
the North of the country, which own and operate networks of relatively large stores in
partially overlapping geographical areas. Based on IRI data, Esselunga, Bennet, PAM,
Finiper and Selex are the groups that have more than 2.5% market share in 2013. Two
large French retail multinationals, Auchan and Carrefour, have also entered the Italian
market both via acquisitions of local supermarket groups, and by opening new stores.
They operate mainly large format stores, but have not been very profitable in the Italian
market.

A particular feature of the Italian supermarket industry is that it is subject to exten-
sive regulation, and entry in local markets can be delayed significantly by zoning and
other laws. Schivardi and Viviano (2010) exploit geographical variation in how the 1998
retail liberalization reform is implemented, to show that this regulation has an impor-
tant impact on the industry. We consider a static setup, capturing the cross-section of the
industry in 2013, and argue that while regulation matters, it is unlikely to block entry
altogether in a local market. While regulation may increase entry costs, in our modeling
setup all players that find profitable to enter a market, are eventually able to do so.30

28We split the commuting area along municipality borders if it contains more than two towns that have
at least fifteen thousand inhabitants, and are in a radius of 20 minutes of driving distance.

29Bentivogli and Viviano (2012) find in a survey of Italian cooperatives that their strategic response to
changes in the economic environment is substantially similar to that of their privately owned counterparts.

30See for instance Schaumans and Verboven (2008) for a strategic model of entry with binding entry
restrictions.
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Table 5: Demographics of Local Grocery Markets

Variable Mean Std. Dev. Median Max Min

Large Mall in Market 0.130 0.337 0 1 0

421 Markets with no Large Malls:
Population 44,629.22 40,341.88 31,730 297,510 3,276

Surface, in km2 329.90 242.72 275.72 1,969.64 25.19
Tax Income Per Capita, in EUR 13,223.8 1,730.34 13,204.92 18,288.90 8,020.68

# of Supermarkets 1.46 1.95 1 16 0
# of Players in Market 0.85 0.93 1 3 0

63 Markets with Large Malls:
Population 117,614.10 56,195.42 103,925 249,852 35,768

Surface, in km2 447.84 377.92 359.95 2,243.54 95.33
Tax Income Per Capita, in EUR 14,411.47 1,650.48 14,475.88 18,627.36 10,333.89

# of Supermarkets 3.77 2.89 3 13 0
# of Players in Market 1.58 0.87 2 3 0

This table reports summary statistics on the geographical grocery markets we consider in our analysis.
The variable Large Mall in market is a dummy that equals one if a shopping center with at least 50 stores
and a grocery anchor is present in the geographical market at the end of 2013. The supermarket industry
players we consider are (i) cooperative groups Coop Italia and Conad, (ii) Italian independent supermarket
groups, (iii) French supermarket groups Auchan and Carrefour. We code the entry variable as equal to one
if the supermarket industry player has at least one supermarket with a floor space of 1500 m2 or greater in
operation at the end of 2013 in a geographical market.
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Descriptive Regressions

To gain insight on the impact of large malls on grocery markets, we estimate descriptive
linear regressions and ordered probit models.31 The dependent variable is either the
number of supermarkets in a geographical market or the number of supermarket industry
players operating in a market. The coefficient estimates we obtain, reported in Table 6,
point to a small and negative covariation between market structure outcomes and the
presence of large malls in a grocery market. These regressions suggest a weak negative
effect of malls on supermarket industry outcomes, but do not shed light on the potential
differences in the impact of large malls on the behavior of different industry groups.
Moreover, the counterfactual market structure that would emerge if malls were to be
removed from some geographical grocery markets also depends on the competitive effect
that supermarket industry groups have on each other’s entry decisions.

Probit regressions that model the probability entry of supermarket groups as a func-
tion of market demographics, presence of large malls, and the entry behavior of com-
petitors are a first step to describe heterogeneity in supermarket groups’ profits and
competitive effects. We consider separately the three types of players in this industry,
cooperatives, independent Italian groups and French groups, and estimate the model:

yi,m = 1

x′mβi +
∑
j,i

yj,m∆j + εi,m ≥ 0

 , (7.1)

where the outcome yi,m ∈ {0,1} denotes presence in market m in 2013 for industry player
i, xm are market level covariates, and εi,m is a firm-market level unobservable, assumed
to be iid Normally distributed in the probit regression. In the specifications we estimate,
vectors xm include a constant, measures of market size, and dummies for the presence of
large malls in a market. We report in Table 7 estimates for a model in which market size
is captured by market population times log income per capita, but results are very similar
when considering different measures of market size. We control either for a dummy that
indicates market in the home regions of each player, or for a full set of region dummies.

Unlike the results of Table 6, coefficient estimates of these probit regressions cannot
be interpreted causally. In fact, εi,m and yj,m are likely to be correlated in our data. The
positive signs of competitive effects parameters are due to endogeneity, as players enter
markets that have unobservably high profitability. There is some indication in these esti-
mates of a strong negative covariation between the presence of large malls in the market
and the decision of cooperatives to enter or stay in a market, while for the other players
the covariation between entry and the presence of malls is smaller. These results do not

31The ordered probit model is equivalent to the specification of Bresnahan and Reiss (1991b). It can be
interpreted as a game theoretic model in which players have the same payoffs and complete information.
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Table 6: Regressions of Market Structure on Presence of Large Malls

Variable # of Supermarkets # of Players in Market
(1) (2) (3) (4)

Large Mall in Market -0.437 -0.222 -0.150 -0.242
(0.278) (0.165) (0.145) (0.175)

Market Size 3.764∗∗∗ 2.658∗∗∗ 1.213∗∗∗ 1.766∗∗∗

(0.236) (0.158) (0.109) (0.143)

Constant 0.167 0.022
(0.378) (0.230)

N 484 484 484 484
R2 0.677 0.255 0.434 0.225

Model Linear Regression Ordered probit Linear Regression Ordered probit

Standard errors in parentheses. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

This table reports the coefficient estimates and standard errors from linear regressions (columns (1) and
(3)) and ordered probit models (columns (2) and (4)) in which the dependent variable is the number of
supermarkets with a floor space of 1500 m2 or greater (columns (1) and (2)), or the number of supermarket
industry players (columns (3) and (4)), present in a geographical market at the end of 2013. The supermar-
ket industry players we consider are (i) cooperative groups Coop Italia and Conad, (ii) Italian independent
supermarket groups, (iii) French supermarket groups Auchan and Carrefour. We code the entry variable
as equal to one if the supermarket industry player has at least one supermarket with a floor space of 1500
m2 or greater in operation at the end of 2013 in a geographical market. The variable Large Mall in market
is a dummy that equals one if a shopping center with at least 50 stores and a grocery anchor is present in
the geographical market at the end of 2013. The variable market size is the product of population times
log of tax income per capita in the geographical market. All regressions include fixed effects for the 13
administrative regions included in our analysis. Values of R2 refer to pseudo-R2 for the ordered probit
regressions.
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Table 7: Probit Regressions of Entry

Variable COOP Entry IT Entry FR Entry

(1) (2) (3) (4) (5) (6)

Large Mall in Market -0.686∗∗∗ -0.722∗∗∗ -0.154 -0.182 0.111 0.098
(0.238) (0.243) (0.233) (0.248) (0.213) (0.220)

Market Size 1.575∗∗∗ 1.640∗∗∗ 1.323∗∗∗ 1.644∗∗∗ 0.828∗∗∗ 0.882∗∗∗

(0.215) (0.225) (0.224) (0.268) (0.182) (0.198)
Competitive Effects ∆ji
COOP Present in 2013 0.533∗∗∗ 0.452∗∗∗ 0.136 0.234

(0.154) (0.172) (0.167) (0.186)
IT Present in 2013 0.490∗∗∗ 0.569∗∗∗ 0.226 0.252

(0.150) (0.170) (0.170) (0.192)
FR Present in 2013 0.174 0.132 0.140 0.043

(0.187) (0.196) (0.186) (0.206)
Home Region Dummies
COOP Home Region 1.174∗∗∗

(0.157)
IT Home Region 1.083∗∗∗

(0.143)
FR Home Region 0.906∗∗∗

(0.157)

Constant -2.103∗∗∗ -2.488∗∗∗ -1.517∗∗∗ -0.204 -2.026∗∗∗ -1.722∗∗∗

(0.180) (0.303) (0.129) (0.232) (0.159) (0.275)

N 484 481 484 447 484 447

Region FE N Y N Y N Y

Standard errors in parentheses. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

This table reports coefficient estimates and standard errors from Probit regressions in which the dependent
variable is entry of one supermarket industry player in a geographical grocery market. We consider three
such players, (i) cooperative groups Coop Italia and Conad (COOP), (ii) Italian independent supermarket
groups (IT), (iii) French supermarket groups Auchan and Carrefour (FR). We code the entry variable as
equal to one if the supermarket industry player has at least one supermarket with a floor space of 1500 m2

or greater in operation at the end of 2013 in a geographical market. The variable Large Mall in market is a
dummy that equals one if a shopping center with at least 50 stores and a grocery anchor is present in the
geographical market at the end of 2013. The variable market size is the product of population times log
of tax income per capita in the geographical market. Competitive effects are coefficients on variables that
describe entry of competing players. Home region dummies are equal to one for markets in regions where
the players’ headquarters are located. N is the number of observations. Columns (1), (3) and (5) do not
include region fixed effects for the 13 administrative regions covered by our analysis, while columns (2),
(4) and (6) do include these fixed effects. 33



change significantly when we control for players’ presence in 2000 in unreported regres-
sions. Our descriptive exploration of the data seems to indicate a weak effect of large
malls on supermarket industry outcomes, with a considerable degree of heterogeneity in
the way the presence of malls impacts the entry decisions of different supermarket indus-
try players. To obtain a more reliable picture of the effects of large malls, and to perform
counterfactual analysis taking into account the interdependent nature of entry decisions,
we move to a game theoretic model. This requires a discussion of the assumptions we
make on players’ information.

7.2 Game Theoretic Model

We estimate now a static model of strategic interaction among players in the supermarket
industry. Each player chooses whether to be present in each of the local geographical
markets. This decision takes into account the exogenous characteristics of the market, the
endogenous presence of the other players, and market-level characteristics unobserved to
the econometrician. Payoffs from entry for player i in market m are:

π
x,θπ
i = x′mβi +

∑
j,i

yj,m∆j + εi,m,

while payoffs from staying out of the market are ized to zero. Market level covariates
xm in this specification include a measure of market size, a dummy for the presence of
large malls in the market, and a home region dummy. The vector of unobservable payoff
types

(
εi,m

)
i∈I is jointly distributed according to a distribution F (ε;ρ) .We assume that for

every i, εi,m has a Logistic distribution with zero mean and unit variance. The correlation
of payoff types is modeled by a copula, with correlation between any couple of εi,m,εj,m
equal to ρ.32 As discussed in Berry (1989), this specification of entry profits can either be
interpreted as a “reduced form” assumption, justified on the grounds of parsimony and
difficulties in modeling the nature of post-entry competition, or can be given a structural
interpretation. A similar form of profits (up to monotone transformations), can in fact
be derived under the assumptions of post-entry Cournot competition, constant elasticity
demand and marginal costs identical across firms.33 In order to reduce the complexity
of the game theoretic model, we consider a game with three players, lumping together
cooperatives, independent Italian groups and French groups.34

32While in principle we could allow for asymmetric correlations among players’ payoff types, we do not
do so in this application for data limitations.

33A Cournot model would also result in a complicated nonlinear expression for competitive effects. For
parsimony, we assume instead that the entry of player j has a constant effect ∆j on the payoffs of every
other player i.

34For this model, for example, action yi = 1 played by independent Italian groups represents the event of
entry by at least one independent Italian supermarket chain.

34



We assume that the presence of large malls is exogenous to outcomes in the supermar-
ket industry. This assumption is motivated by three arguments. First, since malls mostly
host non-grocery shops, they have a “catchment area” that is substantially larger than
the one of supermarkets, and attract consumers from a region that only partly coincides
with local grocery markets. Second, malls require large areas for development, and this
severely limits location choice in densely populated Italy, pushing developers to locate
malls far from their ideal location. Third, obtaining permits for building large malls is a
long process subject to shocks due to changing attitudes of local and national regulators,
and can drive malls to locations that are only viable because consumer travel relatively
far for non-grocery shopping. The exogenous entry assumption for the large player also
follows Grieco (2014) and Ackerberg and Gowrisankaran (2006).

We estimate the model under the assumption that players observe their own shock,
and can receive additional informative signals on the realizations of their competitors’
payoffs. This approach nests not only for the information structures typical of the empir-
ical games literature, but also allows for asymmetries in players’ information structures
that are relevant for this empirical setting but not compatible with existing models. As
suggested by the probit estimates in Table 7, the behavior of French groups seems to be
markedly different from that of the other players. Industry analysts point out that the
rollout of French groups in the Italian market was largely unprofitable, and part of this
can be attributed to a fundamentally different information structure, which might have
left them with ex-post regret. This is hardly the case for independent Italian groups,
which have been more profitable and might know local markets better. Hence, we adopt
the assumption that the data are generated by BCE behavior, and estimate the confidence
set for ΘBCE

I . To compare our method to standard techniques, we also obtain a confidence
set for parameters maintaining the assumption that data are generated by pure strategy
Nash equilibrium behavior for the game of complete information.

Confidence Sets

Column (1) in Table 8 presents the estimated 95% confidence intervals of the identified
set under the assumptions of BCE behavior. We report, for each parameter of the model,
the lowest and highest value it takes in the confidence set.

Results for constant and coefficients on market size and home regions dummies are
in line with the results of probit regressions, pointing to an intuitive positive correlation
between market size and payoff from establishing presence in a local grocery market. The
effects of operating in a home region is not significantly different from zero for any of the
groups we examine. This is in contrast with the probit results in Table 7, which find
evidence of positive effects of home region on the likelihood of presence of a player in a
local market.
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The evidence on the effect of the presence of large malls on the presence of supermar-
ket groups is mixed. We do not find the effect of malls to be significantly different from
zero for any of the players, although the confidence sets for the effect of large malls on the
presence of French Supermarket groups (and, to a lesser extent, the confidence set for the
same parameter in the payoff of Cooperatives) lie mostly on the negative real line. Probit
estimates find largely positive competitive effects, as those models ignore the endogene-
ity of competitors’ entry. The game theoretic model provides evidence that competitors’
presence in a local market makes entry less profitable for supermarket groups. Projected
confidence sets for the correlation parameter ρ are firmly positive, pointing to a robust
correlation of payoff types among players in the same market.

In column (2) we report the projections of the 95% confidence intervals for the identi-
fied set under the assumptions of pure strategy Nash behavior and complete information.
It is interesting to compare the estimates obtained under these more restrictive assump-
tions with the one obtained with our method. For the constant, market size parameters,
and home region parameters the confidence sets corresponding to the two models are
largely similar. The assumption of complete information makes a difference, however,
for the estimates of the effect of large malls and of competitive effects. While the sign of
the effect of malls is not identified under weak assumptions on information, with com-
plete information this effect is estimated to be negative for two out of three players in the
industry.

The importance of assumptions on information is most highlighted when we consider
the estimates of the competitive effects that players have on each other. For all super-
market groups the interval estimated under weak assumptions on information is shifted
to the left with respect to the one estimated under the assumption of perfect informa-
tion. This means that the competitive effects estimated under the restrictive assumption
of perfect information are mostly smaller, in absolute value, than those obtained with a
model with weak assumptions on information. By assuming Nash behavior under per-
fect information, we impose that those players who decide to operate in a market with
a competitor know that the competitor will be present. Instead, under BCE behavior,
the equilibrium expectations allow for uncertainty about opponents’ behavior. Hence,
more negative values for the competitive effects parameters cannot be rejected, as they
enter players’ payoffs in expectation. These differences in estimated confidence sets are
important, since they have an impact on the counterfactual predictions, and the respec-
tive policy implications, that the two models provide. The interval for the correlation
parameter ρ is wider for the model with perfect information on payoff shocks: under
the assumption of complete information we cannot reject very high values of correla-
tion among payoff types. Weaker assumptions on information offer ways of rationalizing
correlation in players’ actions that are alternative to correlation in payoff shocks, thus
allowing to reject very high correlation parameters.
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It is not surprising that the set we estimate under the restrictive assumption of com-
plete information is not nested in the estimated set under the weaker BCE assumption.
Indeed, our robust identification result predicts that the complete information estimates
are expected to be a subset of the BCE estimates only when the more restrictive assump-
tion is not falsified by the data. If instead the more restrictive assumption is not sup-
ported by the data, there is no reason to expect estimates obtained under that assumption
to lie inside the robust estimated set.35

Counterfactuals

We consider the counterfactual scenario in which regulation prevents the construction
of large shopping malls in small markets. This counterfactual is a way to quantify how
market structure is affected by the presence of large malls. We examine in particular the
eight small geographical grocery markets that have a large shopping center but no super-
markets in the current market configuration, and compute predicted market structures
under our parameter estimates. We then compute predicted outcomes of the entry game
between supermarkets once the large shopping center is removed.

The multiplicity of parameter vectors that are included in the confidence region, as
well as the multiplicity of equilibria given a certain parameter vector, imply that the
model does not yield point predictions on which market structure will emerge. There are
then several ways to evaluate how tighter regulation that prevents entry of large malls in
these markets affects market outcomes.

We follow Ciliberto and Tamer (2009), and focus on the changes in average upper
bounds on the probability of market outcomes, such as observing entry of a certain player,
or observing entry by at least two players. More formally, consider an outcome y in
the sigma algebra of the set Y = {0,1}3 . For each market with covariates x, and a fixed
parameter value θ ∈ Θ̂I we can find the upper bound on the probability of outcome y as:

px,θ (y) = max
ν∈EBCE(x,θ)

∫
ν (y,ε)dε,

so that, when averaging across markets x ∈ X̃, we have pθ (y) = 1
|X̃ |

∑
x px,θ (y) . The same

procedure yields, for all markets with counterfactual covariates x′, upper bounds px′ ,θ (y)
and average upper bounds pCFθ (y) , so that for every parameter value we have the differ-
ence in average upper bounds:

∆
θ,y
p =

(
pCFθ (y)− pθ (y)

)
.

We report in Table 9 the values of minθ∈Θ̂I ∆
θ,y
p and maxθ∈Θ̂I ∆

θ,y
p for several market out-

35A similar result is observed in Haile and Tamer (2003) and in Dickstein and Morales (2015).
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Table 8: Confidence Sets

Parameter Weak Assumptions on Info - BCE Complete Information - Nash

(1) (2)

Constant [-2.35, -0.23 ] [-3.26, -1.16 ]

Market Size [3.66, 7.02 ] [2.65, 6.79 ]

Home Region:

Cooperatives [-0.52, 1.43 ] [-0.66, 1.47 ]

Indep. Italian Supermarket Groups [-0.41, 1.96 ] [-0.59, 1.88 ]

French Supermarket Groups [-1.89, 1.82 ] [-1.19, 1.55 ]

Presence of Large Malls:

Cooperatives [-2.79, 0.90 ] [-3.04, -0.14 ]

Indep. Italian Supermarket Groups [-2.33, 2.41 ] [-3.08, 0.26 ]

French Supermarket Groups [-4.18, 0.29 ] [-4.65, -0.35 ]

Competitive Effects:

Cooperatives [-6.04, -1.99 ] [-3.11, -0.01 ]

Indep. Italian Supermarket Groups [-5.78, -1.35 ] [-3.23, -0.19 ]

French Supermarket Groups [-8.29, -2.63 ] [-3.52, -0.02 ]

ρ - Correlation Of
[0.43, 0.90 ] [0.38, 1.00 ]

Unobservable Profitability

This table reports estimates of the game theoretic model of entry played among the three main players
in the Italian supermarket industry. Payoffs are described by equation (7.1), and payoff types εm are
iid across markets, distributed according to the distribution a Logistic distribution with zero mean
and correlation ρ. Estimates are reported for each parameter value as projections of Θ̂I,.95, the .95
confidence set for the identified set. The three numbers we report for each coefficient k correspond
to

[
infθ∈Θ̂I,.95

θk , supθ∈Θ̂I,.95
θk

]
. The numbers we report in column (1) are obtained by estimating the

model with weak assumptions on information, whereas numbers in column (2) are obtained from the
model with complete information. See Appendix A for computational details.
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comes y.
The two models are consistent in predicting a decrease in the upper bound of the aver-

age probability that small markets remain without supermarkets for most of the param-
eters in the identified set. Predictions on the change in probability of entry for different
groups are different, in particular the BCE model allows for a sharp drop (more than -
50%) of the upper bound of the probability that Cooperatives operate in a market after
large malls are removed. Instead, the complete information model allows for a sharp in-
crease (up to 70%) of the upper bound of the probability that French groups operate in a
market.

Predictions on the change in probability of two key outcomes, entry by at least one or
two players, are also affected by the assumptions maintained on information. In partic-
ular, the model that assumes perfect information predicts positive changes in the upper
bound of the probability of observing at least one or at least two players in a market. This
supports the view that preventing entry by large malls in small geographical grocery mar-
kets increases the likelihood of obtaining outcomes that are more conducive to consumer
welfare. However, removing strong assumptions on information and considering pre-
dictions from the BCE model yields a fairly different picture. Under the assumption of
BCE behavior, the change in the upper bound of the probability of having at least one or
at least two supermarket industry players in a market does not have an unambiguously
positive sign. Thus, the conclusion that removing large malls would increase the aver-
age probability that underserved markets end up with at least one or two supermarkets
seems to rest on very restrictive assumptions on information, and does not stand once
these assumptions are removed.

8 Conclusion

In this paper we present a method to estimate empirical discrete games, focusing on entry
examples, under weak assumptions on the structure of the information available to play-
ers about each other’s payoffs. Assumptions on information matter, since the different
equilibrium predictions implied by different information structures translate in parame-
ter estimates that might be biased if the information structure is misspecified. We are able
to avoid strong parametric assumptions on information by adopting a broad equilibrium
concept, Bayes Correlated Equilibrium (BCE), defined by Bergemann and Morris (2013,
2015). We argue that BCE is weak enough to make our method robust to assumptions on
information, but informative enough to yield useful confidence sets for parameters. In
an application, in which we study the effect of large malls on competition among super-
market groups in local grocery markets, we show that strong assumptions on information
can bias counterfactual policy evaluations, while our method allows the analyst to avoid
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Table 9: Counterfactual Change in Probability of Outcomes

Outcome Weak Assumptions on Info - BCE Complete Information - Nash

(1) (2)

No Entry [-0.44, 0.06] [-0.42, 0.06 ]

Entry by Cooperatives [-0.54, 0.40 ] [-0.03, 0.53 ]

Entry by Italian Groups [-0.21, 0.11 ] [-0.14, 0.45 ]

Entry by French Groups [-0.08, 0.17 ] [-0.32, 0.69 ]

Entry by at least 1 Player [-0.03, 0.32 ] [0.05, 0.43 ]

Entry by at least 2 Players [-0.50, 0.33 ] [0.16, 0.44 ]

This table reports the counterfactual change in average upper bounds in probabilities ∆
θ,y
p =(

pCFθ (y)− pθ (y)
)
, where pCFθ (y) is average upper bound of probability of outcome y in the coun-

terfactual scenario in which large malls are removed, and pθ (y) is average upper bound of prob-
ability of outcome y in simulated with actual values of market level covariates. The average is
taken across eight small geographical markets that currently have a large mall and no supermar-

kets. In brackets we report
[
minθ∈Θ̂I

∆
θ,y
p , maxθ∈Θ̂I

∆
θ,y
p

]
. The numbers we report in column (1)

are obtained with the estimates from the model with weak assumptions on information, whereas
numbers in column (2) are obtained from the model with complete information.

40



restrictive assumptions.
We use throughout this paper an entry application, but also recognize that entry is a

dynamic phenomenon. With its weaker equilibrium assumption, our method can be seen
as a good candidate to capture with a static model behavior that is generated by a more
complicated underlying dynamic model. Moreover, the use of (pure) Nash Equilibrium in
games of complete information in entry applications is often justified on the grounds that
this information structure and equilibrium notion, which impose no regret on players, is
apt to capture a rest point of dynamic interaction. In work in progress, we argue that the
theory of learning in games provides a rigorous rationale for the use of BCE to capture
the steady state of repeated play when agents adopting myopic adaptive behavior rules
have to learn to play equilibrium strategies.

There are other avenues for future research left open by this paper. Our method for
the estimation of games under weak assumptions on information could be applied be-
yond discrete games, starting with models of auctions. Using BCE to allow bidders to
have information on each other’s valuation, as in Bergemann, Brooks and Morris (2015),
seems relevant for several applied contexts, but will require careful thought on identifi-
cation, feasible computation, and inference. We also do not pursue in this paper identi-
fication of information structures. While trying to recover an information structure from
data on binary outcomes might be too optimistic, richer data like those generated by play
in games with continuous actions could allow to identify the information structure of the
game that generates the observable outcomes.
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Appendix A - Computational Details

Computation of Gn

In order to make the inferential procedure outlined above feasible, we need to compute
Gn,

36 which requires computing supb∈B
[
P ′y|xb − h

(
QBCEθ (x) ;b

)]
. We can rewrite m (θ,x) as

the objective of the following program:

max
b

min
(p,ν)

b′
(
Py|x − p

)
(P 0)

s.t.
∑|Y |
j=1 b

2
j ≤ 1,

0 ≤ ν (y,ε) , ∀y ∈ Y ,ε ∈ E
p (y) =

∑
ε∈E ν (y,ε) , ∀y ∈ Y∑

y∈Y ν (y,ε) = f (ε;θε) ∀ε ∈ E∑
y∈Y ,ε∈E ν (y,ε) = 1,∑

y−i∈Y−i ,
∑
ε−i∈E−i ν (y, (εi , ε−i)) [π

xj ,θ

i (y, (εi , ε−i))− ∀i, j,yi , y′i , εi

π
xj ,θ

i

((
y′i , y−i

)
, (εi , ε−i)

)
≥ 0

We compute the value of the program (P 0) by approximating the infinite dimensional
object ν. We do this by discretizing the set E, which we substitute with the discrete set
Er containing r elements, so that the object ν has dimension |Y | × r |N | ≡ dν . (P 0) is in the
class of bilinear optimization problems with convex constraints; we use duality to find
an equivalent program that can be handled by standard solvers. Let first p̃ = Py|x − p, and
(p̃,vec(ν)) = (z1, z2) ; all vectors are row vectors. The program now reads:

max
u

min
z1,z2≥0dν

(
u,0dν

)
(z1, z2)T (P 1)

s.t. ||u|| ≤ 1,

Aeqz
T = aT ,

Aineqz
T ≤ 0′dineq ,

in which Aeq,Aineq and a are matrices that stack, respectively, linear equality constraints,
linear inequalities and constants, and dineq is the number of rows of Aineq. By duality, we

36The computation of the population criterion function G, necessary for the tables presented in Sections
5 and 6, is analogous.
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obtain the equivalent program:

max
u,λeq,λineq≥0dν

a
(
λeq,λineq

)T
(P 2)

s.t. ||u|| ≤ 1,(
AT

)r
1:|Y |

(
λeq,λineq

)T
= −uT ,(

AT
)r
|Y |+1:dA

(
λeq,λineq

)T
≥ 0dz ,

where A =
[
Aeq
Aineq

]
, the row vectors λeq and λineq are the Lagrange multipliers associated

to the constraints of (P 1) , and
(
AT

)r
1:|Y |

and
(
AT

)r
|Y |+1:dA

denote the first |Y | and the last

rows of the matrix AT . By strong duality, as well as existence of BCE, (P 2) has the same
value than (P 1), and we compute it using the solver KNITRO.

Computation of Ln

We compute the confidence set for the identified set Ln (ĉ) following the procedure out-
lined in Ciliberto and Tamer (2009).

1. We construct deterministic parameter grids using Halton sets around the parameter
values of Probit regressions, and compute Gn for these points. We select the ten val-
ues of θ that have the lowest Gn (θ), and use them as starting points of a Simulated
Annealing routine, which runs for ten thousand iterations.

2. We pool all the parameters visited by Simulated Annealing, and consider the cor-
responding set Θ̃ as an approximation of Θ. We define as gn = minθ′∈Θ̃Gn (θ′) , and
can then obtain for all θ ∈ Θ̃:

G̃n (θ) = Gn (θ)− gn.

3. We extract T = 100 subsamples of size nt = n/3. For each subsample i, we the crite-
rion function using the subsampled observations, so that:

Gin (θ) =
1
nt

nt∑
j=1

sup
b∈B

[
P̂ i′y|xjb − h

(
QBCEθ

(
xj

)
;b

)]
,

and then we find g in = minθ∈ΘGin (θ) .

4. We choose the cutoff value ĉ0 = gn/4, and define the set:

Θ̂I (ĉ0) =
{
θ ∈Θ| G̃n (θ) ≤ ĉ0

}
.
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5. We obtain then G̃in (θ) = Gin (θ) − g in for all θ ∈ Θ̃, and compute ĉ1 as the 95th per-
centile of the distribution across subsamples of the statistic:

L̃in (ĉ0) = sup
θ∈Θ̂I (ĉ0)

[
Gin (θ)− g in

]
.

6. Iterating steps 4,5 we obtain a sequence ĉ`,Θ̂I (ĉ`) , which converges when

sup
θ∈Θ̂I (ĉ0)

[Gn (θ)− gn] ≤ ĉ`.

We denote such ĉ` as ĉ, and report as Ln (ĉ) the set Θ̂I (ĉ) .

Appendix B - Proofs

To prove Proposition 1, we first restate formally Bergemann and Morris (2015) robust
prediction property in our context as Lemma 1.

Lemma (1). For all θ ∈Θ and x ∈ X,

1. if p ∈QBCEθ (x) , then p ∈QBNEθ,S (x) for some S ∈ S0.

2. Conversely, for all S ∈ S0, QBNEθ,S (x) ⊆QBCEθ (x) .

Proof. Fix θ ∈Θ and x ∈ X throughout.
1. Consider p ∈QBCEθ (x) . By definition ofQBCEθ (x) , there exists then ν ∈ EBCEθ,x such that p =

pν . We construct an information structure S =
{(
T x,

{
Pτ |ε,x : ε ∈ E

})
x∈X

}
by defining for all

x ∈ X :
T x = Y ,

and a probability kernel
{
Pτ |ε,x : ε ∈ E , x ∈ X

}
37 such that:∫

E
Pτ |ε,x {y}dP

θε
ε {ε} = νx {y,E} , ∀E ∈ B (E) : Pθεε {E} > 0, y ∈ Y ,

where P
θε
ε is the probability measure corresponding to the distribution of payoff types

F (·;θε) . Then, the incentive compatibility condition of the BCE distribution implies that
the strategy profile s with:

si (yi |εi , τi = yi) = 1,

si (yi |εi , τi , yi) = 0, ∀yi ∈ Yi ,
37For the existence of such a kernel, see Chang and Pollard (1997).
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is a BNE of the game Γ x (θ,S) , and ps = pν . Then, p ∈QBNEθ,S (x) .
2. Suppose instead that p =

∑K
k=1αkpsk ∈ Q

BNE
θ (x) for K <∞, αk ∈ (0,1) and sk ∈ EBNEθ,S,x

for all k = 1, ...,K. Then, for each sk there exists νk ∈ EBCEθ,x such that:

νk (y,E) =
∫
ε∈E

∫
τ∈T

∏
i∈N
{si (yi |εi , τi)}dPτ |ε,x {τ}

dPθεε {ε} ,
for all y ∈ Y and E ∈ B (E) . Hence,

∑
kαkν

k = ν ∈ EBCEθ,x , and the corresponding pν = p ∈
QBCEθ (x) .

Proposition (1). Let Assumptions 1 and 2 hold. Then,

1. the identified set under BCE behavior contains the true parameter value, θ0 ∈ΘBCE
I , and

2. ΘBCE
I = ΘBNE

I (S0) .

Proof. By Assumption 2, Py|x ∈QBNEθ0,S0
(x) ,while by Lemma 1, we haveQBNEθ0,S0

(x) ⊆QBCEθ0
(x).

Since this happens Px − a.s., it follows by the definition of ΘBCE
I that θ0 ∈ΘBCE

I .

Moreover, if θ ∈ΘBNE
I (S) for any S ⊆ S0, it follows that ∃ S ∈ S such that Py|x ∈QBNEθ,S (x)Px−

a.s. By Lemma 1 again, we have QBNEθ,S (x) ⊆QBCEθ (x) , so that θ ∈ΘBCE
I . Hence, ΘBNE

I (S) ⊆
ΘBCE
I . Consider instead θ ∈ ΘBCE

I ; by definition of ΘBCE
I , there must be a collection of

(νx)x∈X:Px(X)=1 such that pνx ∈QBCEθ (x) . It follows that, by Lemma 1, pνx ∈QBNEθ,S (x) Px−a.e.
for some S ∈ S0. Hence, ΘBCE

I ⊆ΘBNE
I (S0) .

Proposition (2). Assume that:
(i) the map θπ→ π

x,θπ
i (y,εi) is continuous for all i, x, y and εi , the quantity

|πx,θπi (yi , y−i , εi)−π
x,θπ
i

(
y′i , y−i , εi

)
|

is bounded above, and the map θε→ F (·;θε) is continuous for all ε;
(ii) the following uniform convergence condition holds: supΘ

√
n|Gn (θ)−G (θ) | =Op (1) ;

(iii) the sample criterion function Gn is stochastically bounded over ΘI at rate 1/n.
Then, the set Θ̂I = {θ ∈Θ|nGn (θ) ≤ logn} is a consistent estimator of ΘBCE

I .

Proof. We start by proving that the correspondence Q : θ ⇒ QBCEθ (x) is upper hemi-
continuous for all x ∈ X. This correspondence is a compound correspondence between the
BCE equilibrium correspondence θ⇒ EBCEθ (x) and the marginal operator ν→

∫
E ν (y,ε)dε.

The compound correspondence of two upper hemi-continuous correspondences is hemi-
continuous (Proposition 11.23 in Border 1989). Since ν →

∫
E ν (y,ε)dε is a continuous

function mapping into a compact set, establishing upper hemi-continuity of QBCEθ can
be accomplished by establishing the same property for the equilibrium correspondence
θ⇒ EBCEθ (x).

49



This requires establishing that the graph ϑ =
{
(θ,ν) : θ ∈Θ, ν ∈ EBCEθ (x)

}
is closed.

Consider a sequence θk→ θ ∈Θ, for
{
θk

}∞
k=1
∈Θ, and a corresponding sequence

{
ν
x,θkπ
k

}∞
k=1

such that νx,θ
k
π

k ∈ EBCE
θk

(x) for all k, and νx,θ
k
π

k converges setwise to the distribution ν. This
happens if ν is a BCE distribution in EBCE

θ,x
. Consistency of ν with respect to the prior

follows for the continuity of the map θε → F (·;θε) . Incentive compatibility of ν results
from continuity of θπ→ π

x,θπ
i , and dominated convergence. Hence, νx ∈ EBCEθ

(x) , so that

the graph ϑ is closed. This establishes that the correspondence QBCEθ is closed.
Then, the map

h : θ→ h
(
QBCEθ (x) ,b

)
= sup
p∈QBCEθ (x)

p′b

is upper semicontinuous (Proposition 14.30 in Aliprantis and Border 1994), for all values
of x,b. By definition of upper semi continuity, the set

{
θ ∈Θ : h

(
QBCEθ (x) ,b

)
≥ c

}
is closed

for all c ∈ R, which implies that
{
θ ∈Θ : −h

(
QBCEθ (x) ,b

)
≤ −c

}
is also closed for all −c ∈

R, so that the map θ → −h
(
QBCEθ (x) ,b

)
is lower semicontinuous. Then the map θ →

supb∈B
(
P ′y|xb − h

(
QBCEθn

(x) ;b
))
, pointwise supremum of a family of lower semicontinuous

functions, is lower semicontinuous as well (Proposition 2.41 in Aliprantis and Border
1994). Hence, the function G (θ) is lower semicontinuous, since for a sequence θn→ θ in
Θ, we have that:

lim inf
n→∞

G (θn) = lim inf
n→∞

∫
X

sup
b∈B

[
P ′y|xb − h

(
QBCEθn

(x) ;b
)]
dPx

≥
∫

lim inf
n→∞

sup
b∈B

[
P ′y|xb − h

(
QBCEθn

(x) ;b
)]
dPx

=
∫

sup
b∈B

[
P ′y|xb − h

(
QBCEθ (x) ;b

)]
dPx

= G (θ) ,

where the first inequality holds by Fatou’s Lemma.
Then, our setup satisfies the condition C.1 in Chernozhukov, Hong and Tamer (2007),

and the consistency of Θ̂I follows by their Theorem 3.1.

Proposition (3). Suppose the econometrician observes the distribution of the data
{
Py|x : x ∈ X

}
,

generated by BCE play of a game. Then, under Assumption 3,

1. payoff parameters βC ,βE and ∆ are point identified as in single-agent threshold crossing
models; and

2. the structure implies bounds on the payoff type parameter θε.

50



Proof. 1. Consider first the identification of βC ,βE2 . We want to show that, for appropriate
values of x, we have:

Py2=1|x =
∫
{ε2:ε2≥−z′βC−x′2β

E
2 }
dF2 (ε2;θε)

for Fi (·;θε) marginal distribution over εi defined from F (·;θε) . The model implies the
following link between the observables and the structure, for all x ∈ X and some BCE
measure νx ∈ EBCEθ (x) :

Py2=1|x = νx {y1 = 1, y2 = 1}+ νx {y1 = 0, y2 = 1} .

By definition of νx, whenever νx {y1 = 1|ε1} > 0 we have:∑
y2∈{0,1}

∫
E2

[
π
x,θπ
1 ((1, y2) , ε1)

]
dνx {y2, ε2|1, ε1} ≥ 0. (8.1)

Let βE1k > 0 without loss of generality, and consider x1k→−∞. Conditional on such values

of x, πx,θπ1 (1, y2, ε1) < 0 for all values of y2 a.e.-ε1. Hence, by (8.1),

lim
x1k→−∞

νx {y1 = 1|ε1} = 0,

a.e.-ε1. This implies that:

lim
x1k→−∞

νx {y1 = 1, y2 = 1} = lim
x1k→−∞

∫
E1

νx {y1 = 1, y2 = 1|ε1}dF1 (ε1;θε)

≤ lim
x1k→−∞

∫
E1

νx {y1 = 1|ε1}dF1 (ε1;θε)

= 0.

Moreover,

lim
x1k→−∞

Py2=1|x = lim
x1k→−∞

νx
{
y1 = 0, y2 = 1,

{
ε : ε2 ≥ −z′βC − x′2β

E
2

}}
+

νx
{
y1 = 0, y2 = 1,

{
ε : ε2 < −z′βC − x′2β

E
2

}}
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and for ε2 < −z′βC − x′2β
E
2 , at the limit:

limx1k→−∞

∫
E1

(
z′βC + x′2β

E
2 +∆1 + ε2

)
dνx {y1 = 1, ε1|y2 = 1, ε2}+∫

E1

(
z′βC + x′2β

E
2 + ε2

)
dνx {y1 = 0, ε1|y2 = 1, ε2}

= limx1k→−∞

∫
E1

(
z′βC + x′2β

E
2 + ε2

)
dνx {y1 = 0, ε1|y2 = 1, ε2} < 0,

so that (8.1) implies that νx {y2 = 1|ε2} = 0 for such ε2. Similarly, (8.1) implies that νx {y2 = 0|ε2} =
0 for ε2 ≥ −z′βC − x′2β

E
2 . Hence,

lim
x1k→−∞

Py2=1|x = lim
x1k→−∞

νx
{
y1 = 0, y2 = 1;

{
ε : ε2 ≥ −z′βC − x′2β

E
2

}}
= lim

x1k→−∞

∫
{ε:ε2≥−z′βC−x′2β

E
2 }
νx {y1 = 0, y2 = 1|ε}dF (ε;θε)

=
∫
{ε2:ε2≥−z′βC−x′2β

E
2 }
dF2 (ε2;θε) .

The last equation describes a single-agent threshold crossing model, and under Assump-
tion 3 we have that

(
βC ,βE2

)
and Fi are point-identified (Manski, 1988).

Player 1’s parameter β1 are identified by an identical argument. To prove identification
of ∆ parameters, consider instead x1k→∞; repeating the same steps leads to:

lim
x1k→−∞

Py2=1|x =
∫
{ε2:ε2≥−z′βC−x′2β

E
2 −∆1}

dF2 (ε2;θε) .

2. Once β,∆ are identified by variation in covariates, we can derive (non-sharp) bounds
on the joint distribution of payoff types F (ε;θε) , giving intuition on how some model
restrictions identify the parameters θε. Let:

E (x,θ) : =
{
ε1 ≥ −z′βC − x′1β

E
1 −∆2, ε2 ≥ −z′βC − x′2β

E
2 −∆1

}
,

E (x,θ) : =
{
ε1 < −z′βC − x′1β

E
1 , ε2 < −z′βC − x′2β

E
2

}
,

Ẽ (x,θ) : = E(x,θ)/(E (x,θ)∪E (x,θ)).

Since these three sets form a partition of E, we have:

Py1=1,y2=1|x = νx {y1 = 1, y2 = 1,E} ,

= νx
{
y1 = 1, y2 = 1,E (x,θ)

}
+ νx

{
y1 = 1, y2 = 1, Ẽ (x,θ)

}
+

νx {y1 = 1, y2 = 1,E (x,θ)} ;
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For any x ∈ X, (IC) implies that for εi ∈ E (x,θ) we have νx {yi = 1|εi} = 1, and for εi ∈ E we

have νx
{
yi = 0|εi

}
= 1. Hence,

Py1=1,y2=1|x =
∫
E
dF +

∫
ε∈Ẽ

νx {y1 = 1, y2 = 1|ε}dF (ε;θε) ,

≤
∫

{
E∪Ẽ

}dF (ε;θε) ;

and

Py1=1,y2=1|x ≥
∫
E
dF (ε;θε) .

The other moments of the data imply analogous bounds. Variation in x shifts the regions
E and E ∪ Ẽ , and provides useful restrictions on θε.

Appendix C - Relation with Grieco (2014)

We show in this appendix that the model presented in Grieco (2014) fits within the class
of models described in Section 3. Consider the following simplified version of Grieco’s
model for a game of two players i = 1,2 with actions yi ∈ {0,1} . Payoffs are:

πi = yi
[
θy−i + η1

i + η2
i

]
,

and payoff types η are distributed according to:
η1

1
η1

2
η2

1
η2

2

 ∼N



0
0
0
0

 ,

σ2 σ2ρ 0 0
σ2ρ σ2 0 0

0 0 1− σ2 0
0 0 0 1− σ2


 . (8.2)

The realizations of
(
η1

1 ,η
1
2

)
are publicly observable, so that player i observes

(
η1

1 ,η
1
2 ,η

2
i

)
.

Define now:
εi = η1

i + η2
i ,

and notice that player i′s beliefs on ε−i conditional on the observables be summarized by
the conditional density:

ε−i |
(
η1
i ,η

1
−i ,η

2
i

)
∼N

(
η1
−i ,1− σ

2
)
. (8.3)

We want to recast this model so that it fits the framework of Section 3, in which player i
observes its own scalar payoff type εi as well as a signal ti on the opponents’ payoff type.
We interpret η1

−i as the signal that player i gets on ε−i , and η1
i as what player i knows that

−i knows about her payoff, so that
(
τ1
i , τ

2
i

)
=

(
η1
i ,η

1
−i

)
. It follows that

(
τ1
i , τ

2
i

)
=

(
τ2
−i , τ

1
−i

)
, so
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signals are public. The joint distribution of signals and redefined payoff shocks, derived
from (8.2) is thus: 

ε1

ε2

τ1
1
τ2

1

 ∼N



0
0
0
0

 ,


1 σ2ρ σ2ρ σ2

σ2ρ 1 σ2 σ2ρ

σ2ρ σ2 σ2 σ2ρ

σ2 σ2ρ σ2ρ σ2


 , (8.4)

so that the distribution of τ1|ε is:

Pτ1|ε =N
((
ε2

ε1

)
,

(
1− σ2 0

0 1− σ2

))
,

and the distribution of ε is:

Pε =N
((

0
0

)
,

(
1 σ2ρ

σ2ρ 1

))
.

Notice that (8.4) implies that the belief of player i about ε−i conditional on her informa-
tion set is:

ε−i | (τi , εi) ∼N
(
τ1
i ,1− σ

2
)
,

which is identical to the belief (8.3). This shows that the model in Grieco (2014) is in the
class of models described in Section 3.

Appendix D - BMM Representation of the Identified Set

Beresteanu, Molinari and Molchanov (2011), henceforth BMM, provide a computable
characterization of the identified set of partially identified models making use of ran-
dom set theory. In this appendix, we show how our characterization of the identified set
maps into their framework.

Let z = (x,y) and ε be respectively the vector of observable outcomes and covariates,
and the vector of payoff types. The random vectors are defined on a probability space
(Ω,F , P ) , and let G be the sigma algebra generated by the random vector x.We also adopt
the assumptions 3.1(i),(iii) and 3.2 in BMM, and substitute 3.1(ii) with the assumption of
BCE behavior. We restate these assumptions below for ease of reference:

Assumption 4. (i) The discrete set of strategy profiles of the game, Y , is finite.
(ii) Payoffs πi (y,εi ;x,θπ) have a known parametric form, and are continuous in x and εj .
(iii) The observed outcome y of the game is the result of BCE behavior in the game of mini-

mal information S.
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(iv) The conditional distribution of outcomes Py|x is identified by the data, and ε has a
continuous distribution function.

For a given realization of x, there is a set EBCEθ (x) of BCE equilibrium distributions
ν; considering x (ω) as a random vector, EBCEθ (x (ω)) = EBCEθ (ω) is a random set. Let
Sel(EBCEθ ) denote the set of all ν (ω) measurable selections of EBCEθ (ω) . In order to charac-
terize the identified set, we need to map these equilibria into observable outcomes of the
game for eachω ∈Ω.A realization ofω implies both a realization of (x (ω) , ε (ω)) , and also
a BCE distribution ν (ω) , which in turn determine the following probability distribution
over outcomes:

q [ν (ω)] = ν {·|ε (ω)} ∈ ∆Y−1,

where ν {·|ε (ω)} is the conditional distribution implied by the joint distribution ν (ω) over
(Y ×E) , and the realization ε (ω) . We denote as Q̃θ as the set of all such equilibrium
predictions:

Q̃θ =
{
q (ν) : ν ∈ Sel

(
EBCEθ

)}
.

Then the conditional Aumann expectation of this random set is:

E

(
Q̃θ |x

)
=

{
E (q (ν) |x) : ν ∈ Sel

(
EBCEθ

)}
.

Notice however that:

E (q (ν) |x) = E [ν {·|ε (ω)} |x]

=
∫
E
ν {y|ε}dF (ε)

=
∫
E
ν {y,ε}dε,

so that E
(
Q̃θ |x

)
=QBCEθ (x) . Hence, our characterization of the identified set is equivalent

to the one proposed in BMM.
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