
Preferences and Performance in Simultaneous
First-Price Auctions: A Structural Analysis∗

Matthew Gentry† Tatiana Komarova‡ Pasquale Schiraldi§

October 2016

Abstract
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exclusion restrictions, providing a basis for both estimation and testing of
preferences over combinations. We then apply our model to data on Michi-
gan Department of Transportation (MDOT) highway procurement auctions,
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1 Introduction

Simultaneous bidding in multiple first-price auctions is a commonly occurring but

rarely discussed phenomenon in many real-world auction markets.1 In environments

where values over combinations are non-additive in the set of objects won, bidders

must account for possible combination wins at the time of bidding. This in turn sub-

stantially alters the strategic bidding problem compared to the standard first price

auction with ambiguous welfare implications depending on the importance of syn-

ergies (either positive or negative) among objects. As a first step toward exploring

this issue, we develop a structural model of bidding in simultaneous first-price auc-

tions and study identification and estimation in this framework. We then apply our

methodology to estimate cost synergies arising in Michigan Department of Trans-

portation (MDOT) highway procurement auctions, using the resulting estimates to

analyze revenue and efficiency performance of the simultaneous first-price mechanism

in this application.2

To illustrate the policy questions arising in simultaneous multi-object auctions,

note that given a set of L heterogeneous objects for sale, bidders i’s preference struc-

ture could in principle be as complex as a complete 2L-dimensional set of signals

describing the valuations i assigns to each of the 2L possible subsets of objects. Mean-

while, the simultaneous first-price mechanism allows bidders to submit (at most) L

individual bids on the L objects being sold. Consequently, the simultaneous first-

price auction format is necessarily inefficient – the “message space” (standalone bids)

is insufficiently rich to allow bidders to express their true preferences. Allowing com-

1To underscore the prevalence of simultaneous bidding in applications, note that most widely
studied first-price marketplaces in fact exhibit simultaneous bids. Concrete examples include mar-
kets for highway procurement in most US states (Jofret-Bonet and Pesendorfer 2003, Krasnokut-
skaya 2009, Krasnokutskaya and Seim 2004, Somaini 2013, Li and Zheng 2009, Groeger 2014,
many others), snow-clearing in Montreal (Flambard and Perrigne 2006), recycling services in Japan
(Kawai 2010), cleaning services in Sweden (Lunander and Lundberg 2012), oil and drilling rights in
the US Outer Continental Shelf (Hendricks and Porter 1988, Hendricks, Pinkse and Porter 2003),
and to a lesser extent US Forest Service timber harvesting (Lu and Perrigne 2008, Li and Zheng
2012, Li and Zhang 2010, Athey, Levin and Siera 2011, many others).

2This paper focuses on complementarities arising when auctions are run simultaneously. This
complements the literature on potential linkages in valuations over time, e.g. Balat 2015, De Silva
2005, De Silva et al 2003, Groeger 2014, Jofre-Bonet and Pesendorfer 2003 among others.
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binatorial bids might help to alleviate this “message space” problem, but need not

produce an efficient allocation (see e.g. Crampton at al. 2006 for a review) and

could impose substantial practical costs on both bidders and the seller (the “winner

determination problem”). Hence in evaluating the relative merit of the simultaneous

first-price format it is first necessary to assess the empirical magnitude of revenue and

efficiency losses due to simultaneous bidding. Very little is presently known about

these questions, due in part to the scarcity of methods for analyzing preferences over

combinations in simultaneous auctions.

We develop a structural empirical model of bidding in simultaneous first-price

auctions when objects are heterogeneous and bidders have non-additive preferences

over combinations, to our knowledge the first such in the literature. We represent

the total value i assigns to each combination as the sum of two components: the sum

of the standalone valuations bidder i assigns to winning each object in the combi-

nation individually, plus a combination-specific complementarity (either positive or

negative) capturing the incremental gain or loss i assigns to the combination as a

whole. We interpret standalone valuations as private information drawn indepen-

dently across bidders conditional on observables, but require incremental preferences

over combinations to be stable in the sense that complementarities are functions of

observables.3 We find this framework natural in a variety of procurement contexts –

when, for instance, non-additivity in preferences can be represented as realizations of

a utility shock realized after a multiple win. Furthermore – and crucially – our frame-

work collapses immediately to the standard separable model when complementarities

are zero, supporting formal testing of this hypothesis.

Building on this framework, we make four main contributions to the literature

on structural analysis of auction markets. First, we establish a new set of identifi-

cation results applicable even when complementarities are non-zero. We first show

that optimal behavior in this environment yields an inverse bidding system non-

parametrically identified up to the unknown function describing complementarities,

3Note that this structure does not restrict dependence between i’s standalone valuations for
different objects in the market. We view this flexibility as critical, as in practice we expect i’s
standalone valuations to be positively correlated.

3



which collapses to the standard inverse bidding function of Guerre, Perrigne and

Vuong (2000) when complementarities are zero. Under natural exclusion restrictions

– namely, that marginal distributions of standalone valuations are invariant either

to characteristics of other bidders or characteristics of other objects – we then trans-

late this inverse bidding system into a system of linear equations in unknown bidder

complementarities, with excludable variation in competition yielding non-parametric

identification and excludable variation in other characteristics yielding semiparamet-

ric identification of these. We thereby provide a formal basis for structural analysis

of simultaneous first-price auctions with non-additive preferences over combinations,

to our knowledge the first such in the literature.

Second, we develop a three-step procedure by which to estimate primitives in our

structural model. First, in Step 1, we estimate the multi-variate joint distribution

of bids as a function of bidder- and auction-level characteristics. Due to the high-

dimensional nature of this estimation problem, we follow several prior studies (e.g.

Cantillon and Pesendorfer 2006 and Athey, Levin and Siera 2011) by employing

a parametric approximation to the bid density in implementing this step. Next,

in Step 2, we parametrize preferences over combinations as a function of bidder-

and combination-specific covariates4 and estimate parameters in this function by

minimization of a simulated analogue to our semiparametric identification criterion.

Finally, in Step 3, we map estimates derived in Step 2 through the inverse bidding

system derived in Step 1 to obtain estimates of the distribution of private costs

rationalizing observed bidding behavior.

Third, we apply our structural framework to analyze simultaneous bidding in

Michigan Department of Transportation (MDOT) highway procurement markets.

We view this market as prototypical of our target application: large numbers of

projects are auctioned simultaneously (an average of 45 per letting round in our

2005-2015 sample period), more than half of bidders bid on at least two projects

simultaneously (with an average of 2.7 bids per round across all bidders in the sam-

4In our application, combination-specific covariates might include the sum of engineer’s estimates
across projects in a combination, distance between projects in a combination, and indicators for
whether projects in a combination are of the same type, among others.
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ple), and combination and contingent bidding are explicitly forbidden. Within this

marketplace, we show that factors such as size of other projects, number of bidders in

other auctions, and the relative distance between projects have substantial reduced-

form impacts on i’s bid in auction l, a finding hard to rationalize in standard sep-

arable models. We then apply the three-step estimation algorithm described above

to recover structural estimates of primitives. Our results suggest that a combination

win would generate roughly 13 percent cost savings for a combination at the 95th

(best) percentile in our sample, transitioning to roughly 3.5 percent cost increases

for a combination at the 5th (worst) percentile, with large and / or heterogeneous

projects more likely to be substitutes.

Finally, building on our structural estimates, we measure potential inefficien-

cies associated with the simultaneous first price auction design. Towards this end,

we compare the simultaneous first-price auction used in the MDOT marketplace

with a mechanism which ensures both an efficient allocation and provides a rea-

sonable benchmark to compare procurement costs: the combinatorial proxy auc-

tion of Ausubel and Milgrom (2002).5 As expected, this counterfactual alternative

yields non-trivially lower social costs costs: our estimates suggest total social gains

of approximately four percent, with relatively larger gains in lettings with larger

complementarities. Interestingly, however, the majority of these social gains accrue

to bidders: MDOT’s expected procurement costs fall by only about 1 percent. In

other words, even in the presence of substantial complementarities, and ignoring

any other implementation costs, the benefits of switching to a combinatorial mech-

anism are (from MDOT’s perspective) relatively small. This is to our knowledge

the first structural comparison of the simultaneous first-price format with leading

combinatorial alternatives, and in our view helps to rationalize the popularity of the

simultaneous first-price format in applications.

While this is to our knowledge the first structural analysis of bidding in simul-

5Following Ausubel and Milgrom (2002), we assume for the purposes of this comparison that
bidders truthfully report their valuations to the proxy bidder. Alternatively, one could instead
consider the classic Vickery-Clarke-Groves (VCG) mechanism as an efficient benchmark. This would
lead to the same allocations as the Ausubel-Milgrom proxy auction, but the VCG mechanism is
known to have poor revenue performance.
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taneous first-price auctions, our work builds on a small but growing structure liter-

ature analyzing combinatorial auctions.6 Cantillon and Pesendorfer (2006) analyze

combinatorial first-price sealed-bid auctions for London bus routes, using the possi-

bility of package bidding to identify bidder preferences over combinations. In their

framework, identification turns on invertibility of the Jacobian of the mapping be-

tween player i’s bids and the equilibrium probability that player i wins each possible

combination, which in turn allows one to invert the system of necessary first order

conditions describing optimal bidding to recover combinatorial valuations in terms of

combinatorial bids. In our setting, this procedure necessarily fails; by construction,

we observe only L bids for up to 2L − 1 unknown combinatorial valuations. This

represents a substantially different (and more challenging) identification problem,

for which we develop a novel solution. More recently, Bajari and Fox (2013) have

estimated the deterministic component of bidder valuations in FCC simultaneous

ascending spectrum auctions without package bidding. They exploit the assumption

that the allocation of licenses is pairwise stable in matches and use the maximum

score estimator for matching game to estimate the valuation function. Finally, Kim,

Olivares and Weintraub (2014) have extended the methodology of Cantillon and

Pesendorfer (2006) to analyze the large-scale combinatorial auctions used in pro-

curement of Chilean school meals.

Paralleling these structural studies, there is also a small reduced-form literature

seeking to quantify the role of preferences over combinations in multi-object auc-

tions. Ausubel, Cramton, McAfee and McMillan (1997) and Moreton and Spiller

(1998) measure synergy effects in FCC spectrum auctions. Lunander and Lundberg

(2012) empirically compare combinatorial and simultaneous first-price auctions in

a Swedish market for internal cleaning services, finding that bidders inflate their

standalone bids in combinatorial auctions relative to first-price auctions but that

this does not significantly affect the procurer’s final costs. De Silva (2005) and

6Although only tangentially related to our problem, there is also a growing empirical literature
on multi-unit auctions, which focus on markets for homogeneous, divisible goods like electricity
and treasury bills. See e.g. Fevrier, Preget, and Visser (2004); Chapman, McAdams and Paarsch
(2007); Kastl (2011); Hortacsu and Puller (2008); Hortacsu and McAdams (2010) and Hortacsu
(2011); Wolak (2007); and Reguant (2014).
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De Silva, Jeitschko and Kosmopoulou (2005) analyze spatial synergies in Oklahoma

Department of Transportation highway procurement auctions, finding that bidders

winning earlier projects participate more often and bid more aggressively in subse-

quent nearby projects. These findings are consistent with the hypothesis of spatial

synergies in procurement, motivating the structural model we consider here.

Finally, from a more theoretical perspective, there have been several studies ana-

lyzing strategic interaction in stylized models involving simultaneous first-price auc-

tions; see for example Szentes and Rosenthal (1996) and Ghosh (2012). Gentry,

Komarova, Schiraldi and Shin (2015) study existence and proprieties of equilibrium

in a setting closely paralleling that studied here. There is also a substantial literature

analyzing properties of various combinatorial auction mechanisms: Ausbel and Mil-

grom (2002), Ausbel and Cramton (2004), Cramton (1998, 2002, 2006), Krishna and

Rosenthal (1996), Klemperer (2008, 2010), Milgrom (2000a, 2000b), and Rosenthal

and Wang (1996), to mention just a few. Detailed surveys of this literature are given

in de Vreis and Vorha (2003) and Cramton et al. (2006).7

The rest of this paper is organized as follows. Section 2 outlines the simulta-

neous bidding framework on which our structural model is built. Section 3 studies

identification in this model. Section 4 describes the Michigan Department of Trans-

portation (MDOT) highway procurement marketplace, while Section 5 presents our

structural results. Section 6 counterfactually analyzes performance of the simultane-

ous first-price mechanism in the MDOT marketplace. Finally, Section 7 conclusions.

Additional results are collected in a set of technical appendices: Appendix A col-

lects technical proofs, Appendix B extends our framework to incorporate entry, and

Appendices C and D present extended identification results.

7There is also a growing theoretical literature on simultaneous first-price auctions in computer
science; see Feldman et al. 2012, and Syrgkanis 2012 among others. This literature focuses primarily
on deriving bounds on the “Bayesian price of anarchy,” or fractional efficiency loss, in simultaneous
first-price auction markets. Positive results in this literature are largely restricted to settings with
negative complementarities, and even in these settings bounds tend to be wide (e.g. Feldman et al.
(2012) show that Bayesian Nash equilibrium captures at least half of total social surplus).
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2 The simultaneous first-price bidding game

A set N = {1, ..., N} of risk-neutral bidders compete for (subsets of) a set L =

{1, ..., L} of objects allocated via separate but simultaneous first-price auctions. For

each bidder i ∈ N , letMi ⊂ L be the set of auctions in which i is participating, and

let Mi ≡ #Mi be the number of auctions in this set.

Our analysis focuses on the bidding game arising after participation sets M ≡
(M1, ...,MN) are determined. We see this focus as natural for at least two rea-

sons. First, bid-stage identification is a necessary prerequisite for studying entry;

one cannot understand participation if one does not understand bidding. Second,

insofar as our primary purpose is to estimate preferences over empirically relevant

combinations, it is sufficient to focus on bidding taking participation as given. For

completeness, Appendix B gives one example of an entry game which formally jus-

tifying our key identifying restrictions.

Combinatorial valuations In principle, bidder i may have distinct preferences

over every possible combination (subset of objects) in her participation set Mi.

Following Cantillon and Pesendorfer (2006), we assume that these combinatorial

preferences are described via a 2Mi × 1 vector of combinatorial valuations Yi, drawn

privately by bidder i from a joint distribution FMY,i satisfying the following properties:

Assumption 1 (Independent Private Values). Under each participation structure

M, bidder i draws private type Yi is drawn from a continuous c.d.f. FMY,i with support

on a compact, convex set YMi ⊂ R2Mi . Furthermore, Y 0
i = 0, FMY,i is common

knowledge, and type draws are independent across bidders: Yi ⊥ Yj for all i, j ∈ N .

Note that (for the moment) we consider a fully general framework allowing arbitrary

combinatorial preferences; this simplifies development of the key notation and defini-

tions we describe below. In Section 3, we specialize this to the case of deterministic

complementarities on which our empirical analysis is based.

The bidding game Each bidder i ∈ N submits a single bid bil for each auction l in

her participation setMi. Bids are binding and bidders may not submit combinations
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bids. Bidding is simultaneous and objects are awarded auction by auction: for each

l ∈ L the high bidder in auction l wins object l and pays her bid in auction l. For the

moment, we assume that ties are broken independently across bidders and auctions;

we return to this issue when discussing equilibrium below.

Let B` ⊂ R+ denote the set of feasible bids in auction ` = 1, ..., L; without loss

of generality, we take this to be a compact set. A bid bi for player i is an Mi × 1

vector such that bi` ∈ B` for all ` ∈Mi. Let BMi = ×`∈Mi
B` denote i’s action space

under participation structure M. A distributional strategy for bidder i in the sense

of Milgrom and Weber (1985) is a measure σMi over YMi ×BMi whose marginal over

YMi is FMY,i . Let σM = (σM1 , ..., σMN ) denote a distributional strategy profile for all

bidders, and σM−i denote a distributional strategy profile for rivals of bidder i.

For notational convenience, we omit the superscriptM for the remainder of this

section. All objects defined below should be interpreted with reference to a given

participation structure M.

Outcomes Define an outcome ω from the perspective of bidder i as an 1 × Mi

vector such that for each ` ∈ {1, ...,Mi} the element ω` = 1 if the `th element of

Mi is allocated to i and ω` = 0 otherwise. Similarly, let the outcome matrix Ωi for

bidder i be the 2Mi ×Mi matrix whose rows describe all outcomes possible for i. For

example, if if Mi = 2, then the (transpose of) Ωi would be:

ΩT
i =

[
0 0 1 1

0 1 0 1

]

With slight abuse of notation, let Y ω
i denote the combinatorial valuation i assigns to

the combination corresponding to outcome ω. Note that taking bid bi ∈ Bi as given,

i’s net payoffs over possible outcomes are described by the 2Mi × 1 vector Yi − Ωibi.

Standalone valuations and complementarities Let i’s standalone valuation

for object l ∈ Mi, denoted Vi`, be the valuation i assigns to the outcome “i wins

object ` alone”: Vi` ≡ Y
{`}
i . Similarly, let i’s standalone valuation vector, denoted Vi,

be the Mi×1 vector describing i’s standalone valuations for each of the Mi objects for
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which i is competing. We define the complementarity (positive or negative) which i

associates with outcome ω, denoted Kω
i , as the difference between the combinatorial

valuation i assigns to outcome ω and the sum of i’s standalone valuations for objects

won under ω:

Kω
i = Y ω

i − ωTVi.

Vectorizing this definition yields the 2Mi × 1 complementarity vector :

Ki ≡ Yi − ΩiVi.

Intuitively, ΩiVi describes the additive part of bidder i’s preferences over combina-

tions, while Ki describes non-additivities in i’s preferences. In particular, our model

reduces to the standard additively separable case if and only if Ki = 0.

Joint and marginal win probabilities Taking rival strategies σ−i as given, let

Pi(bi;σ−i) be the 2Mi×1 vector describing the probability distribution over outcomes

arising when i submits bid bi, with element P ω
i (bi;σ−i) of Pi(bi;σ−i) denoting the

probability that i wins the combination associated with outcome ω. Similarly, let

Γi(bi;σ−i) be the Mi×1 vector whose `th element Γim(bi;σ−i) describes the marginal

probability that bidder i wins her `th auction taking own bid vector bi and rival

strategies σ−i as given. Observe that Γi(bi;σ−i) is related to Pi(bi;σ−i) by

Γi(bi;σ−i) = ΩT
i Pi(bi;σ−i).

Note that if ties occur with probability zero at bim, then Γi`(bi;σ−i) is simply the

c.d.f. of the maximum rival bid in auction `, evaluated at bi`.

Interim payoffs Finally, consider bidder i with type Yi ∈ Yi competing against

rivals who bid according to strategy profile σ−i. Applying the definitions above, we
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can then write bidder i’s interim payoff function as follows:

πi(bi;Yi, σ−i) = (Yi − Ωibi)
TPi(bi;σ−i)

= (ΩVi − Ωibi)
TPi(bi;σ−i) +KT

i Pi(bi;σ−i)

= (Vi − bi)TΓi(bi;σ−i) +KT
i Pi(bi;σ−i), (1)

Note that if i’s preferences over combinations are additive (i.e. if Ki = 0), then (1)

reduces to the standard separable form

πi(bi; vi, σ−i) =

Mi∑
m=1

(Vim − bim)Γim(bim;σ−i).

In this case, standard first-price theory applied auction by auction will characterize

an equilibrium of the overall simultaneous first price auction game.

3 Identification

Consider a population of simultaneous first-price lettings. In each letting t, the auc-

tioneer offers Lt objects for auction to Nt bidders active in the marketplace (though

as above not all bidders need be active in all auctions). Each bidder i then submits

a vector bit of sealed bids for each auction in which she is active, with bids submitted

simultaneously and the high bidder in each auction winning that object.

For each bidder i and letting t, the econometrician observes bidder i’s participa-

tion set Mit, bidder i’s bid vector bit, and a vector of bidder-specific characteristics

Zit. To simplify notation, we will adopt the convention that Zit includes Mit.
8 Let

Zt = (Z1t, ..., ZNt) describe characteristics of all bidders active in letting t.

On the auction side, the econometrician observes two sets of covariates: a vector

of generic auction characteristics Xlt for each object l auctioned in letting t, and

8As above, we do not explicitly model determination ofMt, but rather focus on bidding behavior
taking realizations ofMt as given; we simply requireMt to be drawn jointly with other observables
from a stable underlying process. We describe in Appendix B how our analysis can be extended to
accommodate endogenous determination of Mt in a fully specified entry game.
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(optionally) a vector of combination characteristics Wt taken to affect project com-

plementarities without influencing standalone valuations. In a highway procurement

context, Xlt would typically include factors like project size, project location, and

type of work in project l, whereas Wt might include distance between projects, sum

or product of project sizes, and degree of overlap in project schedules. For future

reference, let Xt ≡ (X1,t, ..., XLt,t) describe characteristics of all auctions at time t,

with X i
t and W i

t denoting the subvectors of Xt and Wt relevant for bidder i.

Building on the first-order approach of Guerre, Perrigne and Vuong (2000), our

identification analysis aims to leverage necessary conditions for best-response behav-

ior in simultaneous first-price auctions. For analysis based on these conditions to

proceed, we require the following hypotheses on bidder behavior:

Assumption 2. For each realization (Z,W,X) in the support of (Zt,Wt, Xt), the dis-

tribution of bids observed at (Z,W,X) are generated by play of a Bayesian Nash equi-

librium. Furthermore, holding (Z,W,X) constant, the same equilibrium is played.

We emphasize that both aspects of this statement are assumptions – formal equi-

librium analysis at the level of generality we consider here would represent a funda-

mental breakthrough in its own right and as such is beyond the scope of this paper.9

In this respect we parallel many prior studies on complex auction games, in which

either existence (Fox and Bajari (2013) on spectrum auctions, Ausubel and Mil-

grom (2002) on proxy auctions) or uniqueness (Jofre-Bonet and Pesendorfer (2003),

Roberts and Sweeting (2014), Somaini (2014) and references cited therein) cannot

be guaranteed in general. From an applied perspective, we view Assumption 2 as

natural: if Ki = 0, then existence is immediate and uniqueness follows under regu-

9“Fundamental” in the sense that existing theoretical tools appear insufficient to support such
an analysis. As in multi-unit auctions, the presence of both multidimensional bids and multidimen-
sional types leads to failure of classical differential-equations approaches to equilibrium analysis.
Monotonicity-based methods widely used in multi-unit auctions – e.g. Athey (2001), McAdams
(2006), and Reny (2011) – can be applied in special cases, but (due to potential failure of mono-
tonicity) do not apply at the level of generality we consider here. Other approaches – e.g. that of
Jackson, Simon, Swinkels and Zame (2002) applied in Cantillon and Pesendorfer (2006) – deliver
generalizations of Bayes-Nash equilibria, but not Bayes-Nash equilibrium itself. See Gentry et al
(2016) for a detailed discussion of the challenges associated with equilibrium analysis in simultane-
ous first-price auctions, plus results on equilibria in some special cases.
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larity conditions (Lebrun 1999); otherwise, any model under which one can dispense

with Assumption 2 will be misspecified. In this sense, our analysis formally embeds

the classical additively separable model within a much more general (but far more

challenging) framework permitting arbitrary complementarities.10

To leverage necessary conditions for optimal behavior, we require only the hy-

potheses on equilibrium behavior stated in Assumption 2. For such an analysis to

yield point (rather than partial) identification of primitives, we require the equilib-

rium played to satisfy the following additional regularity conditions:

Assumption 3. For each realization (Z,W,X) in the support of (Zt,Wt, Xt), the

joint cumulative distribution function of bids for each bidder at (Z,W,X) is absolutely

continuous, and for any auction l ∈ Lt and any bidders i, j active in auction l, the

marginal distributions of bids bil, bjl at (Z,W,X) have common support.

As above, under the null of separability (Ki = 0), these properties follow immediately

from standard regularity conditions; when Ki 6= 0, we require them as assumptions.

In practice, the main role of Assumption 3 is to ensure that marginal bid distributions

are atomless, which in turn permits extension of the Guerre, Perrigne and Vuong

(2000) first-order approach to identification analysis to settings with simultaneous

auctions. In Appendix C, we show how to extend the analysis below to accommodate

violations of Assumption 3. The main ideas of this extension closely parallel those

in the text, although only yielding partial identification of model primitives.11

10Although existence in continuous bid spaces is beyond the scope of present theory, existence in
any discrete bid space follows immediately from results in Milgrom and Weber (1985). Although it
is conventional to interpret bid spaces as “approximately continuous,” in practice almost every real-
world bid space is ultimately discrete. In this sense, we see existence as a concern of more theoretical
than practical importance. Appendix C provides an alternative set of partial identification results
applicable in settings where discreteness is viewed as economically important.

11As noted when discussing Assumption 2 above, in real-world applications bid spaces are virtu-
ally always discrete. From a theoretical perspective this can be used to guarantee that equilibrium
always exists; from a practical perspective it raises the question of how to deal with discreteness.
Our analysis follows the literature’s overwhelming convention of interpreting bid spaces as “ap-
proximately continuous.” This seems natural in our application as bid increments are tiny (cents)
relative to bids (thousands or millions of dollars). In settings where discreteness is perceived as
economically important, one could fall back on the more general results in Appendix C.
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3.1 Deterministic complementarities

Even cursory analysis of the simultaneous first-price bidding game suggests a major

empirical challenge: bidder i’s private type Yi could involve up to 2Mi − 1 distinct

combinatorial valuations, but we observe only Mi bids corresponding to these 2Mi−1

unknowns. To make empirical progress, it is therefore necessary to impose additional

structure. We therefore propose to specialize the empirical model as follows: whereas

standalone valuations (Vi) remain private information as in the standard separable

model, complementarities Ki are stable functions of bidder, auction and combination

specific unobservables. We formalize this assumption as follows:

Assumption 4 (Stochastic Vi, stable Ki). For all i, standalone valutations Vi

are distributed according to joint c.d.f. Fi(·|Z,W,X) but complementarities Ki =

κi(Z,W,X), with Vi ⊥ Vj for all i and j and both Fi and κi(·) common knowledge.

We view this structure as natural in applications such as procurement contracting for

at least two reasons. First, Assumption 4 reflects our interpretation of Kω
i as a pure

combination effect; i.e. an incremental cost or benefit derived from winning objects

in ω together, or the expectation over a combination-specific shock realized after a

multiple win. Second, as above, Assumption 4 naturally nests the null hypothesis

of additively separable preferences: κi(Z,W,X) = 0 for all (X,W,Z). It therefore

provides an ideal framework within which to evaluate this hypothesis.

As usual, our identification analysis proceeds holding generic auction character-

istics X fixed. For simplicity, we therefore omit X in notation in this section. All

statements that follow should be interpreted as applying pointwise in X.

3.2 Nonparametric identification up to κi

Holding X constant, let Gi(·|Z,W ) be the c.d.f. of the equilibrium joint distribution

of the Mi × 1 bid vector bi submitted by bidder i at observables (Z,W,X). Let

P−i(·|Z,W ) : Bi → ∆2Mi be the probability distribution over outcomes facing bidder

i taking rival strategies at (Z,W ) as given, and Γ−i(·|Z,W ) ≡ ΩTP−i(·|Z,W ) be the

Mi × 1 vector of marginal win probabilities corresponding to P−i(·|Z,W ).
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Note that under Assumption 2, Gi(·|Z,W ) is identified directly from the data

for all i, with identification of G1, ..., GN implying identification of P−i and Γ−i.

Given any realization vi of Vi and any candidate complementarity vector Ki, we can

therefore write the problem facing bidder i at observables (Z,W ) in terms of directly

identified objects as follows:

max
b∈Bi
{(vi − b) · Γ−i(b|Z,W ) + P−i(b|W,Z)TKi}.

Let Ki be the (2Mi − Mi − 1)-dimensional subspace of R2Mi containing all 2Mi-

dimensional vectors whose first Mi + 1 components are zero:12

Ki = {k ∈ R2Mi : k1 = k2 = . . . = kMi+1 = 0}.

Temporarily suppose that i’s objective is differentiable at bi ∈ int(Bi); Proposition

1 establishes that under Assumption 3 this holds almost surely with respect to the

measure on Bi induced by Gi. Then by hypothesis of equilibrium play, bi must satisfy

necessary first-order conditions for an interior optimum:

∇bΓ−i(bi|Z,W )(vi − b∗) = Γ−i(bi|Z,W )−∇bP−i(bi|W,Z)TKi. (2)

Clearly, this system is not invertible for (vi, Ki) jointly. But taking Ki ∈ Ki as

given, it reduces to an Mi × 1 system of equations in the Mi × 1 vector of unknown

standalone valuations vi. Under our assumptions, this system is invertible, implying

that for any candidate Ki ∈ Ki there exists a unique candidate for vi at which bi

satisfies first order necessary conditions for a best response:13

Proposition 1 (Inverse Bidding Function). Suppose that Assumptions 1-3 hold. Let

Ki ∈ Ki be any candidate for bidder i’s complementarity vector κi(Z,W ). Then

for almost every (Z,W ) and almost every bi drawn from Gi(·|Z,W ), there exists a

12These zero components correspond to the outcomes in which bidder i wins either no objects
(ω = (0, . . . , 0)) or one object (ω′ω = 1), for which complementarities are zero by construction.

13Obviously, imposing sufficient conditions for bi to be a best response – by, for instance, requiring
second-order conditions to hold at ξ(bi|Ki;Z,W ) – can only improve identification.
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unique vector ṽi ∈ RMi satisfying the first-order system (2) at bi under the hypothesis

κi(Z,W ) = Ki. This ṽi can be expressed in terms of bi as

ṽi = ξi(bi|Ki;Z,W ),

where ξi(·|·;Z,W ) : Bi ×Ki → RMi is defined by

ξi(b|Ki;Z,W ) ≡ b+∇bΓ−i(b|Z,W )−1 × Γ−i(b|Z,W )

−∇bΓ−i(b|Z,W )−1 ×∇bP−i(b|Z,W )TKi, (3)

and the right-hand expression is identified up to Ki.

Proof. See Appendix A.

Recall that Γ(bi;Z,W ) is an Mi × 1 vector whose mth element is the c.d.f. of the

maximum rival bid in themth auction played by i, in which case∇bΓ(bi;Z,W ) will be

a diagonal matrix whose mth diagonal element describes the corresponding rival bid

density. Hence if Ki = 0, then ξi(·) reduces to the standard inverse bidding function

of Guerre, Perrigne and Vuong (2000) defined auction-by-auction. Proposition 1

simply extends this observation to arbitrary Ki ∈ Ki.
Finally, observe that if the conjecture κi(Z,W ) = Ki is in fact correct, then

by Proposition 1 we must have vi = ξi(bi|Ki;Z,W ) almost surely. Hence for each

candidate Ki ∈ Ki, there exists a unique identified candidate F̃i(·|Ki;Z,W ) for the

unknown c.d.f. Fi(·|Z,W ) consistent with the hypothesis κi(Z,W ) = Ki:

F̃i(v|Ki;Z,W ) =

∫
Bi

1[ξi(Bi|Ki;Z,W ) ≤ v]Gi(dBi|Z,W ). (4)

Since Fi(·|Z,W ) ≡ F̃i(·|κi(Z,W );Z,W ) by construction, it follows that identification

of the model reduces to identification of κi(Z,W ). We thus now turn to consider

identification of κi, both non-parametrically through variation in rival characteristics

Z−i and semi-parametrically through variation in combination characteristics W .
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3.3 Nonparametric identification of κi with excluded com-

petitor characteristics

Now suppose that to the assumptions described so far, we add the restriction that

bidder i’s primitives Fi, κi depend only on bidder i’s type Zi:

Assumption 5. Fi(·|Z,W ) = Fi(·|Zi,W ) and κi(Z,W ) = κi(Zi,W ).

Similar assumptions have been widely employed in the empirical auction literature;

see, e.g., Haile, Hong and Shum (2003), Guerre, Perrigne and Vuong (2009), and

Somaini (2014) among others. We will show that under Assumption 5, variation

in competitor characteristics Z−i induces a large (infinite) set of restrictions on the

finite vector κi(Zi,W ). Under mild conditions on variation in Z−i made precise

below, this system will have the unique (overdetermined) solution κi(Zi,W ) ∈ Ki,
leading to nonparametric identification of κi(Zi,W ) (and hence the model as above).

To understand how variation in Z−i identifies κi(Zi,W ), consider a simple two-

auction example. Starting from some initial set of competitor characteristics Z−i, let

Z ′−i be the competitor characteristics derived from Zi by adding, for example, one

additional bidder to Auction 2. Then the marginal probability that i wins Auction

1 will be similar at Z−i and Z ′−i, but the probability of the joint outcome “i wins

both 1 and 2” will differ. Furthermore, under Assumption 5, this is the only way

that shifting Z ′−i matters in Auction 1. Therefore to the extent that moving from

Z−i to Z ′−i matters for i’s behavior in Auction 1, it can be only through κi(Zi,W );

in particular, if κi(Zi,W ) = 0, then we should see no effect. Since the set of such

“experiments” is limited only by the support of Z−i|Zi,W , this in turn provides a

powerful source of identifying information on κi(Zi,W ).

We now formalize this intuition. By linearity of ξi(·|Ki;Z,W ) in Ki, we have for

any (Z,W ) and any K ∈ Ki:

EBi [ξi(Bi|K;Z,W ) |Z,W ] ≡ Υi(Z,W )−Ψi(Z,W ) ·K, (5)
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where Υi(Z,W ) is an identified Mi × 1 vector defined by

Υi(Z,W ) =

∫
Bi

(
Bi +∇bΓ−i(Bi|Z,W )−1Γ−i(Bi|Z,W )

)
Gi(dBi|Z,W )

and Ψi(Z,W ) is an identified Mi × 2Mi matrix defined by

Ψi(Z,W ) =

∫
Bi
∇bΓ−i(Bi|Z,W )−1∇bP−i(Bi|Z,W )T Gi(dBi|Z,W ).

Now consider any Zi and any Z−i, Z
′
−i in the support of Z−i|Zi,W . From above, we

have Fi(·|Zi,W ) ≡ F̃i(·|κi(Zi,W );Z,W ) for all Z, hence in particular

F̃i(·|κi(Zi,W );Zi, Z−i,W ) ≡ F̃i(·|κi(Zi,W );Zi, Z
′
−i,W ). (6)

But invariance of distributions implies invariance of expectations, hence letting Z =

(Zi, Z−i) and Z ′ = (Zi, Z
′
−i):

EBi [ ξ(Bi|κi(Zi,W );Z,W ) |Z,W ] = EBi [ξ(Bi|κi(Zi,W );Z ′,W )|Z ′,W ]. (7)

Substituting (5) into (7), we obtain an Mi × 1 system of linear equations in the

2Mi × 1 vector of unknowns κ(Zi,W ) ∈ Ki:

[Υi(Z,W )−Υi(Z
′,W )]− [Ψi(Z,W )−Ψi(Z

′,W )] · κ(Zi,W ) = 0. (8)

For a single Z−i, Z
′
−i pair, this system will typically be rank-deficient. But the under-

lying equality restriction must hold for every Z−i, Z
′
−i in the support of Z−i|Zi,W .

Pooling these restrictions across Z−i, Z
′
−i, we ultimately conclude:

Proposition 2. Suppose there exist vectors Z−i,0, Z−i,1, ..., Z−i,J in the support of

Z−i|Zi,W such that the submatrix MZ formed by that last (2Mi −Mi − 1) columns
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of the JMi × 2Mi matrix

MZ ≡


Ψi(Zi, Z−i,1,W )−Ψi(Zi, Z−i,0,W )

...

Ψi(Zi, Z−i,J ,W )−Ψi(Zi, Z−i,0,W )


has rank 2Mi −Mi − 1. Then κi(Zi,W ) is identified.

Recall that the identification criterion (8) exploits only invariance of first moments

of Fi(·|Zi,W ) across competitor characteristics Z−i, whereas the underlying distri-

butional invariance restriction (6) requires equality of all moments. The system of

equations in Proposition 2 merely provides a simple and testable sufficient condition

under which the underlying system has a unique solution. Note also that variation

in, e.g., number of rivals in each auctions will produce exactly the kind of vari-

ation needed for full column rank of MZ : nonlinear changes in combination win

probabilities which matter for cross-auction bidding only through κi(Zi,W ). Even

discrete variation in Z−i thus naturally gives rise to full column rank of MΨ, yielding

nonparametric identification of primitives as above.

3.4 Semiparametric identification of κi with excludable com-

bination characteristics

While the restriction that own primitives are invariant to competitor characteristics

is both natural and widely employed, it could potentially be violated in environments

with richer strategic interaction among players. For instance, if there is a competitive

upstream market for sub-contractors, then capacity utilization by i’s rivals could in

principle affect i’s costs. We therefore also consider semi-parametric identification

of κi(·) based on excludable variation in combination characteristics W . In this

approach, we replace Assumption 5 with two alternative identifying assumptions: a

parametric form for κi(Z,W ) and an exclusion restriction on W :

Assumption 6 (κi linear in parameters). κi(Z,W ) = Ci(Zi,W )·θ0i, where Ci(Zi,W )

is a known mapping from (Zi,Wi) to Rpi and θ0i ∈ Θi is an unknown pi × 1 vector
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of parameters.

Assumption 7 (Standalone valuations invariant to W ). Fi(·|Z,W ) = Fi(·|Z).

We see some version of Assumption 6 as natural since we will typically wish to param-

eterize κi in practice; the linear-in-parameters structure considered here is inessential

and serves mainly to simplify the analysis. Meanwhile, Assumption 7 simply formal-

izes the exclusion restriction underlying the definition of W : i.e. that W contains

factors which shift complementarities without shifting standalone valuations. For

instance, in our application, W includes factors such as distance between projects

(holding distance to the bidder constant) or overlap in project schedules (holding

project length constant). For such variables we see Assumption 7 as quite natural.

Now taking Z = (Zi, Z−i) as given, consider identification of κi based on variation

in W . Let (W 0,W 1, ...,W J) be any collection of realizations of W , and for each

j = 0, 1, ..., J let Υj
i ≡ Υi(Z,W

j), Ψj
i ≡ Υi(Z,W

j), and Cj
i ≡ Ci(Zi,W

j) denote

values of the functions Υi(·), Ψi(·), and Ci(·) evaluated at (Z,W j). Substituting

κi(Z,W
j) ≡ Cj

iθ0i into Equation 8, it follows that true parameters θ0i must satisfy:

(Υj
i −Υk

i ) = (Ψj
iC

j
i −Ψk

iC
k
i ) · θ0i ∀ j, k ∈ {0, 1, ..., J}. (9)

While for any given (j, k) pair this system might be rank deficient, the number of

available “experiments” (W 0,W 1, ...,W J) is again limited only by the support of

W |Z. So long as variation in W |Z is sufficiently rich in the following (weak) sense,

it follows that the model is semiparametrically identified:

Proposition 3. Suppose there exist vectors W 0,W 1, ..., ZJ in the support of W |Z
such that the JMi × pi matrix MW defined by

MW ≡


Ψ1
iC

j
i −Ψ0

iC
0
i

...

ΨJ
i C

j
i −Ψ0

iC
0
i


has rank pi. Then θ0i (and hence Fi(·|Z)) is identified.
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Note that although for simplicity we have omitted generic auction covariates X in

the discussion so far, it may be that some elements of W (for instance, total size of

a combination) depend deterministically on X. In this case, as in our application,

we proceed instead under the following variant of Assumption 7:

Assumption 8. For all bidders i and auctions l, Fil(·|Z,W,X) = Fil(·|Z,Xl).

This assumption imposes two key restrictions: the marginal distribution of each

standalone valuation Vil is invariant to W , and (conditional on Z) this marginal dis-

tribution is invariant to characteristics in auctions other than l.14 The identification

argument changes in only two respects: the invariance condition (9) is evaluated

separately for each Vil (rather than jointly over Vi), and identification arises from

variation in W |Z,Xl rather than variation in W |Z,X as above.

4 Application: Michigan Highway Procurement

We now turn to our empirical application: the marketplace for Michigan Department

of Transportation (MDOT) highway construction and maintenance contracts. As

common in similar procurement contexts, MDOT allocates contracts for a wide range

of highway construction and maintenance services via low-price sealed-bid auctions.

The vast majority of MDOT projects are allocated via large simultaneous letting

rounds, which take place on average every three weeks.15 There are an average of

45 auctions per letting round and more than half (56 percent) of bidders submit

bids on multiple contracts in any given letting.16 A bid is an itemized description

of unit costs for each line item specified in contract plans; bids are submitted to

MDOT project by project, with the winner of each project the bidder submitting

the bid involving the lowest total project costs. Contracts are advertised up to

14Since this assumption deals with marginal rather than joint distributions, it is neither strictly
stronger nor strictly weaker than Assumption 7.

15There are only two months without lettings.
16MDOT runs a pre-qualification process, which ensures quality of work. The process involves

a check on the financial status of the firm and its backlogs from all construction activities. A bid
submission includes a detailed break down of all costs involved in the contract. The winner is
determined solely by the total cost of the project.
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ten weeks prior to letting, with the closing deadline for submitting, amending or

withdrawing bids typically 10am on the letting date. MDOT then publically opens

bids and allocates contracts, with opened bids legally binding and winning bidders

held liable to complete contracts won. In view of prior work documenting proximity

effects and capacity constraints in highway procurement, we expect factors such

as capacity constraints, project proximity, project types, and scheduling overlap to

induce substantial non-additivities in bidder payoffs across auctions.

4.1 Data

MDOT provides detailed records on contracts auctioned, bids received, and letting

outcomes on its letting website (http://www.michigan.gov/mdot). Drawing from

these records, we observe data on (almost) all contracts auctioned by MDOT over

the sample period January 2005 to March 2014.17 Our sample includes a total of

8224 auctions, where for each auction the following information is observed: project

description, project location, pre-qualification requirements, the internal MDOT en-

gineer’s estimate of total project cost, and the list of participating firms and their

bids. Based on project descriptions, we classify projects into five project types:

bridge work, major construction, paving (primarily hot-mix asphalt), safety (e.g.

signing and signals), and miscellaneous, leading to a final distribution of projects

across types summarized in Table 1. As evident from Table 1, roughly 80 percent

of contracts are for road and bridge construction and maintenance broadly defined,

with the remainder split between safety and other miscellaneous construction.

The data contains information on a total of 859 unique bidders active in the

MDOT marketplace over our sample period, which we subclassify by size and scope

of activity as follows. We define “regular” bidders to be those who have submitted

more than 100 bids in the sample period. This yields a total of 36 regular bidders in

our sample, with all remaining bidders classified as “fringe.” For the subsample of

bidders who have submitted more than 50 bids, we also collect data on number and

17MDOT records for a small number of contracts are incomplete. Although we have data from
October 2002 to March 2014, we have discarded the first few years (from October 2002 to December
2004) so to construct bidder backlog variables.
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Table 1: Summary of Projects by Type

Contract Type Frequency

Bridge 13.33
Major Construction 9.64
Paving 56.33
Safety 12.25
Miscellaneous 8.45

location of plants by firm. This data is derived from a variety of sources: OneSource

North America Business Browser, Dun and Bradstreet, Hoover’s, Yellowpages.com

and firms’ websites. Based on this information, we further classify bidders as “large”

or “small” based on their number of plants, with “large” bidders defined as those

with at least 5 plants in Michigan. We thus obtain a final classification of 8 large

regular bidders, 28 small regular bidders, and 823 fringe bidders (of which 4 are also

large bidders) in the MDOT marketplace.

Table 2 surveys the auction side of the MDOT marketplace. The first key feature

emerging from this table is, not surprisingly, the large number of contracts auctioned

simultaneously in the market: a mean of 45 per letting, with a maximum of 133 on

a single letting date (note that smaller supplemental lettings are occasionally held

two or three weeks after the main letting in a given month). On average about

five bids are received per contract, which is small relative to the average number of

bidders (approximately 84) active in any given letting. For each contract, MDOT

prepares an internal “Engineer’s Estimate” of expected procurement cost released

to bidders before bidding; as evident from the dispersion in this measure, projects

in the marketplace vary substantially in size and complexity. The statistic “Money

Left on the Table” measures the percent difference between lowest and second-lowest

bids; on average this is 7.4 percent or roughly $112,000 per contract, suggesting the

presence of substantial uncertainty in the marketplace.

Table 3 re-frames the auction-level variables in Table 2 to provide a clearer picture

of bidder behavior in the MDOT marketplace. Again, the key pattern emerging

from Table 3 is the prevalence of simultaneous bidding in MDOT auctions, with the
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Table 2: Auction Level Summary Statistics

Mean St. Dev. Min Max

Auctions per Round 45.19 35.67 1 133
Total Bids per Round 228.1 180.9 1 669
Distinct Bidders per Round 83.97 57.06 1 207
Number of Bidders per Auction 5.048 3.186 1 28
Large Regular Bidders per Auction 0.398 0.672 0 3
Regular Bidders per Auction 1.500 1.362 0 7
Fringe Bidders per Auction 3.149 2.926 0 23
Engineer’s Estimate (in thousands) 1,514 4,689 4.412 165,313
Project Duration (in days) 175.8 205.1 2 1,838
Money Left on the Table 0.0744 0.0966 0 3.016

Table 3: Bidder Level Summary Statistics

Mean St. Dev. Min Max
Bids by Round 2.716 2.785 1 33
Bids by Round if Large 6.65 6.27 1.000 33.000
Bids by Round if Regular 5.96 4.58 1.00 33.00
Backlog (in millions) 5.792 19.01 0 275.5

average bidder competing in roughly 2.7 auctions per round and large and regular

bidders competing in substantially more. The variable “backlog” provides a bidder-

specific measure of capacity utilization. As usual in the literature, we define backlog

for bidder i at date t as the sum of work remaining among projects l won by i up to t,

where work remaining on project l at date t is defined as total project size (measured

by the engineer’s estimate) times the proportion of scheduled project days remaining

at date t. Note that number of bids submitted by any given bidder is small relative

to the number of bidders in the marketplace, with even large bidders competing in

less than fifteen percent of total auctions on average.

Finally, Figure 1 plots the histogram (over all bidders i and lettings t) of the

number of bids submitted by bidder i in letting t.18 As evident from Figure 1, more

than 55 percent of active bidders submit multiple bids in the same letting. Despite

18An observation for the purposes of Figure 1 is thus a bidder-letting pair.
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Figure 1: Number of Simultaneous Bids Submitted, Bidder by Letting
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this, it is relatively uncommon for a typical bidder to compete in a large number of

auctions; almost 90 percent of bidders in our sample bid in 6 or fewer auctions and

only 2 percent bid in more than 10.

4.2 Descriptive regressions

We next explore a series of simple regressions designed to explore the potential

economic implications of simultaneous bidding in the MDOT marketplace. The

unit of analysis in these regressions is a bidder-auction-round combination, with the

dependent variable log of bid submitted by bidder i in auction l in letting t. We

regress log bids on a vector of regressors intended to capture effects of own-auction

and cross-auction characteristics on i’s bid in auction l at time t.

Regression specification As usual, we control for a number of auction-level char-

acteristics which we expect to be key direct determinants of i’s bid in auction l: the
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size of auction l, proxied by the MDOT engineer’s estimate of expected project cost,

the level of competition i faces in auction l, and the distance between project l and

i’s base of operations.19 To explore potential cross-auction interaction in the MDOT

marketplace, we seek a set of covariates relevant for bidding in auction l only through

κi, i.e. factors shifting combination payoffs but irrelevant for standalone valuations

after conditioning on characteristics of auction l, as specified below.

To control for cross-auction competition which may shift combination win prob-

abilities, we consider the number of rivals across all auctions played by bidder i. The

effects of cross-auction competition on i’s bids in auction l are theoretically ambigu-

ous, depending both on the sign of κi and on strategic responses by rival bidders. A

priori, however, if objects are substitutes, we expect greater competition in auction

k to increase marginal returns to winning auction l.

To capture the presence of capacity constraints or diseconomies of scale, we con-

sider two variables. First, as a direct measure of total project size, we consider the

(log of) the sum of engineer’s estimates across all auctions in which i is bidding.

Second, as a measure of the degree of schedule overlap on projects for which i is

bidding, we consider the total number of overlapping days for projects for which i

submits bids, scaled by the sum of days scheduled for each of these projects. Insofar

as marginal costs are increasing in capacity utilization, we expect the coefficients on

these variables to be positive.

In principle, complementarities arising between similar projects may differ from

those arising between different projects. To account for this possibility, we consider

the Herfindahl index for project types for which bidder i is bidding. A negative sign

is interpreted as a relative complementarity between similar projects.

Finally, as an additional proxy for potential economies and / or diseconomies

among projects, we compute a measure of distance between projects, defined as the

(log of) distance between the current project and the other projects in which i bids

normalized by the total distance between each of these projects and the closest plant

19We construct for each bidder-project pair the minimum straight-line distance (in miles) between
any of i’s plants and the centroid of the county in which project l is located. We take the shortest
distance if bidder i owns multiple plants.
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owned by bidder i. Insofar as relatively more distant projects potentially reduce

economies of scale, We expect this variable to have a positive sign.

Regression results Table 4 reports OLS estimates for our baseline regression

specifications: logs bids by bidder, round, and auction on the own- and cross-auction

characteristics defined above. All regression specifications include a full set of bidder

type, project type, and letting date indicators, with standard errors clustered at the

bidder-round level to allow for correlation within bidder i’s bids.

Estimated effects of own-auction characteristics correspond closely both to our

prior and to findings elsewhere in the literature. As expected, bids are increasing

almost one for one in project size, with the coefficient on log engineer’s estimate

exceeding 0.97 in all specifications. Similarly, the negative coefficient on number of

rivals suggests that competition increases bidder aggressiveness, with one additional

competitor associated with a 4 − 5 percent decrease in average bids. Finally, the

coefficient on log distance to project suggests that a one percent increase in i’s

distance from the project leads to about a 2 percent increase in i’s bid on average.

More importantly, estimated cross-auction effects are also highly significant, with

magnitudes stable across specifications and signs broadly consistent with our prior

expectations. In particular, the positive coefficient on log of engineer’s estimates

across auctions suggests that competing in larger auctions leads to a substantial

decrease in aggressiveness by bidder i in auction l, with the negative coefficient on

same-type projects suggesting that this effect is ameliorated slightly when the two

projects are of the same type. Similarly, the positive sign on log distance among

projects suggests that increasing distance to other projects reduces the synergies

among them, which corroborates the hypothesis that simultaneous bidding induces

strategic spillovers. Finally, the significant negative coefficient on total number of

rivals in auctions participated by i suggests that facing more competition across

auctions leads bidder i to bid more aggressively in auction l.
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Table 4: OLS Estimates of Cross-Auction Effects

y = ln(bid) 1 2

Log engineer’s estimate 0.971*** 0.9765***
(0.0011) (0.0011)

Log number of rivals -0.0499*** -0.0398***
(0.0032) (0.003)

Log distance to project 0.021** 0.0129***
(0.0011) (0.001)

Log days to project start 0.0038*** 0.0038***
(0.0009) (0.0009)

Standardized backlog 0.0029*** 0.0033***
(0.001) (0.0011)

Log number of big rivals faced 0.0047*** 0.0049**
(0.0024) (0.0022)

Log number of regular rivals faced 0.026*** 0.0304***
(0.0031) (0.0028)

Multiple-bid indicator -0.0951*** -0.1805***
(0.023) (0.0223)

Log sum engineer’s estimate across played auctions 0.0062*** 0.0119***
(0.0016) (0.0015)

Log sum number of rivals across played auctions -0.0162*** -0.0124***
(0.0025) (0.0023)

Log distance across played projects 0.0047** 0.0042**
(0.002) (0.002)

Fraction overlapping time across projects 0.0175*** 0.0139***
(0.0037) (0.004)

Same-type-auctions concentration index -0.0101** -0.0267***
(0.0051) (0.0053)

Big bidder - 0.0019
- (0.0045)

Regular Bidder - -0.0044*
- (0.0026)

Year FE, Month FE, Auction type FE YES YES
Bidder type FE NO YES
Bidder ID FE YES NO
R-squared 98.16 97.93

Unit of analysis is bidder-auction-round, with standard errors clustered by bidder within each round. There are 40,624
observations. Variables log of engineer’s estimate, log of number of rivals in the auction and log of distance to the county
centroid measure size, strength of competition, and distance to project l respectively. Remaining variables proxy for
cross-auction characteristics: number of rivals in other auctions, sum engineer’s estimate, distance to auctions scaled
by distance to project l in which i is competing and number of overlapping days among projects scaled by the total
number of days to completion.
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5 Structural estimation of complementarities

We now turn to this paper’s primary interest: structural estimation of the function

κi(·) describing preferences over combinations. In principle, the results in Section 3

support fully non-parametric estimation of κi. In practice, of course, the dimension-

ality of the problem renders this infeasible. We therefore implement our structural

procedure in two steps. First, following Athey, Levin and Siera (2011) and Cantillon

and Pesendorfer (2006) among others, we estimate a parametric approximation to

the equilibrium distribution Gi of bids submitted by each bidder i. Second, we map

these estimates through the first-order condition (2) to obtain a minimum-distance

criterion paralleling Equation (7) which we use to estimate parameters in κi. Fol-

lowing Groeger (2014), we assume there is no binding reserve price. When a bidder

is the sole participant (which happens only 137 times out of 8824 auction analyzed),

he will face MDOT that draws a completion cost from a fringe bidder’s cost.

5.1 First step: estimation of G1, ..., GN

In constructing first-step estimates of G1, ..., GN , we model i’s bid in auction l and

letting t as depending on the following observables: i’s type, characteristics Xilt in-

fluencing i’s standalone valuation for contract l, characteristics Wilt relevant for i’s

preferences over combinations involving auction l, competition in auction l, and com-

petition in other auctions in which i bids. In particular, for bidder i at (Zt,Wt, Xt),

we specify and estimate a first-step model of the form:

ln(bit) ∼ MVN(·|µilt,Σilt),

where µilt is a linear-in-parameters function of the form

µilt = α · Dµ
il(Zt,Wt, Xt),
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we specify the variance and covariance components of Σilt respectively as

σ2
ilt = exp(β ·Dσ

il(Zt,Wt, Xt)),

ρilkt =
exp(γ ·Dρ

ikl(Zt,Wt, Xt)− 1)

exp(γ ·Dρ
ikl(Zt,Wt, Xt) + 1)

,

and Dµ
il(·), Dσ

il(·), and Dρ
ikl(·) are known (user-specified) subvectors of (Zt,Wt, Xt).

Table 5 reports first-step estimates from applying the first-step model above to

the sample described in Section 4 once we restrict our attention (for computational

reason) only to bidders who bids in up to 16 auctions which represents 96% of all

bidders. Panel 1 reports estimates α̂ for the parameters α appearing in the mean

function µit; not surprisingly, are very similar to those in our descriptive regressions.

Panel 2 reports estimates β̂ for parameters β appearing in the variance function σ2
ilt,

which suggest that bidders competing in multiple auctions and for larger projects

submit less dispersed bids.20 While we do not have strong priors on these effects,

the direction seems natural. Finally, Panel 3 reports estimates γ̂ for parameters γ

appearing in the covariance function ρilkt. These suggest at least two broad patterns

in bidding behavior across auctions. First, bidders bid tend to bid more similarly for

similar projects: i.e. for those in the same county and / or of the same type. Second,

bidders competing for projects whose schedules overlap in time tend to compete

for one relatively more aggressively than for the other. We interpret the latter

as consistent with the presence of potential diseconomies of scale for overlapping

projects.

5.2 Second step: estimation of complementarities

Let κωi (Z,W,X) denote the complementarity bidder i assigns to outcome ω at ob-

servables (Z,W,X). We consider the following simple linear specification for κi(·):

κωi (Z,W,X; θ0) = Cω(Zi,Wi) · θ0, (10)

20While the parametrization of Σilt does not imply its positive semi-definitiveness, the estimated
variance-covariance matrix is positive semi-definite.
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Table 5: First-step MLE estimates of parameters in Gi

Mean µilt α̂ MLE SEs 95% CI

Constant 0.3208 0.0159 0.2896 0.352
Log engineer’s estimate 0.9809 0.0009 0.9791 0.9827

Log rivals in auction -0.0422 0.0027 -0.0475 -0.0369
Multiple bids dummy -0.1333 0.0207 -0.1739 -0.0927

Log sum engineer’s (across l) 0.0079 0.0014 0.0052 0.0106
Log sum rivals (across l) -0.0078 0.0022 -0.0121 -0.0035

Log days to the start 0.0032 0.0008 0.0016 0.0048
Standardize backlog 0.0036 0.001 0.0016 0.0056

Same-type-auctions index -0.0214 0.005 -0.0312 -0.0116
Fraction overlapping time 0.0186 0.0035 0.0117 0.0255

Log number of big rivals faced 0.0056 0.0022 0.0013 0.0099
Log number of regular rivals faced 0.0242 0.0024 0.0195 0.0289

Big bidder 0.008 0.0045 -0.0008 0.0168
Regular bidder -0.0056 0.0025 -0.0105 -0.0007

Log distance to project 0.0146 0.0009 0.0128 0.0164
Log distance across played projects 0.0074 0.0017 0.0041 0.0107

Bidder Type FE YES - - -
Auction Type FE YES - - -

Year FE YES - - -
Month FE YES - - -

Variance σ2
ilt β̂ MLE SEs 95% CI

Constant 0.0984 0.0743 -0.0472 0.244
Multiple bids dummy -0.2032 0.019 -0.2404 -0.166

Log engineer’s estimate -0.2647 0.0054 -0.2753 -0.2541

Covariance ρiklt γ̂ MLE SEs 95% CI

Constant 0.2057 0.023 0.1606 0.2508
Same county projects 0.2209 0.0275 0.167 0.2748

Same type projects 0.1261 0.0188 0.0893 0.1629
Fraction overlapping time -0.0275 0.0203 -0.0673 0.0123
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where θ0 ⊂ Θ is a p × 1 vector of unknown parameters and Cω(Zi,Wi) is a known

p× 1 function of (Zi,Wi) describing characteristics relevant to combination ω.21

In view of our linear specification (10) for κi, we here consider estimation under

the following combination of Assumptions 5 and 8:

Fi,m(·|Z,W,X) = F (·|Zi, Xl) for all i, all m ∈M〉, and all (Z,W,X), (11)

where Fi,m(·|·) denotes the conditional marginal distribution of bidder i’s standalone

valuation for object m ∈Mi. We thus exploit both variation in rival characteristics

Z−i and variation in combination characteristics W as defined in section 3 above.

The essence of our identification strategy is to compare the equilibrium bidding

behavior of similar bidders competing for similar contracts within letting environ-

ments that differ either in rival characteristics Z−i or in combination characteristics

W . We implement this intuition as follows.

(a) Given a bidder i, randomly select an auction m played by i.

(b) Holding auction m and the number of auctions played by i constant, draw two

different sets of auctions played by bidders of the same type as i. This yields

two distinct letting environments j and k, which by construction are identical

on non-excluded dimensions but differ on excluded dimensions.

(c) For each of these hypothetical letting environments, we approximate the key

equilibrium-dependent terms Ψi(Z,W,X) and Υi(Z,W,X) via simulation as fol-

lows. We first draw a size-R sample of bids {bri}Rr=1 from the estimated condi-

tional distribution Ĝi(·|Z,W,X) of bids submitted in lettings with the charac-

teristics given.22 For each draw bri , we then compute estimates of Γi(b
r
i |Z,W,X),

∇Γi(b
r
i |Z,W,X), and∇Pi(bri |Z,W,X) based on our initial estimate of Ĝi(·|Z,W,X).

21In practice, Cω(·) includes the following elements: bidder i’s net backlog after winning com-
bination ω (i.e. i’s current backlog plus the sum of engineer’s estimates among projects won),
the Herfindahl index of auction types in ω, the fraction of time overlap among projects in ω, the
product of fraction overlapping time and total combination size, the distance among projects in
combination ω, and a set of dummies for bidder size (large, regular) and bidder type. Construction
of these variables is described in detail in Section 4.1 above.

22In practice we set R to 500, with larger samples having very little effect on results.
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Taking appropriate averages of these, we ultimately obtain the desired approxi-

mations to Ψ and Υ:

Υ̂i(Z,W,X) =
1

R

R∑
r=1

bri +∇Γi(b
r
i |Z,W,X)−1 Γi(b

r
i |Z,W,X);

Ψ̂i(Z,W,X) =
1

R

R∑
r=1

∇Γi(b
r
i |Z,W,X)−1∇Pi(bri |Z,W,X)T .

(d) Select the elements in Υj
i ,Ψ

j
i ,Υ

k
i ,Ψ

k
i corresponding to auction m for which the

exclusion restrictions implied by Assumption 8 are satisfied.

(e) Repeat the previous steps from (a) to (d)

(f) Construct an estimator θ̂ for θ0 by minimizing violations of (9) as measured by

the following least-squares estimation criterion:

min
θ∈Θ

∑
i

∑
m

(
Υj
i,m −Υk

i,m −
(
Ψj
i,mCj

i,m −Ψk
i,mCk

i,m

)
· θ
)2
. (12)

While so far we have emphasized first moments as sufficient for identification, the

analysis in Section 3 in fact yields a much stronger identifying restriction: invariance

of the whole distribution of Vim to suitable variation in (Z−i,W ). Both in principle

and in practice, matching on features beyond simple first moments conveys substan-

tial additional information on the shape of this distribution, thereby significantly

improving precision of estimates of θ0. To incorporate this additional information,

we extend the criterion (12) to enforce invariance also in certain predicted quantiles

of Vim.23 Since these predicted quantiles are themselves functions of θ, we minimize

this richer criterion by iteration. Starting from the initial estimate θ̂ derived from

(12), we simulate a new set of predicted means and quantiles of Vim as above. We

then minimize divergence in these to obtain a new estimate θ̂1 of θ0, and iterate this

procedure until convergence. In each iteration, the criterion to minimize reduces to

23In practice, we consider the 25th, 50th and 75th quantiles.
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a linear least-squares estimator (OLS), which we implement via robust regression

to reduce influence of skewness, outliers, and non-constant variance in the errors.

Standard error are boot-strapped.24

5.3 The main result: structural estimates of θ0

Table 6 reports estimates θ̂ derived from mapping the first-step estimates Ĝ1, ..., ĜN

in Section 5.1 through the second-step procedure outlined in Section 5.2. Although

we estimate Ĝ1, ..., ĜN for all bidders, when forming the criterion (12) used to esti-

mate θ̂ we restrict attention to the subsample of bidders competing in two auctions.

This restriction serves both to reduce computational costs and to improve the nu-

merical quality of our simulated criterion (12); as usual, performance on both fronts

declines rapidly in higher dimensions.25 Note, however, that as defined above κ(·)
depends only on characteristics such as total size of, overlap between, and distance

among projects in a given combination. Insofar as these scale naturally to other

combination sizes, so will our estimates of the complementarity vector κ(·).
Bearing in mind that positive signs reflect “positive complementarities” (lower

costs) while negative signs reflect “negative complementarities” (higher costs), the

coefficients reported in Table 6 have the following economic interpretations. The

variable “Current backlog plus sum of engineer’s estimates” reflects the ex post back-

log that i would realize in the event of a combination win, with a negative coef-

ficient on this variable suggesting that higher ex post backlog renders a joint win

less valuable, as we would expect in the presence of capacity constraints. The vari-

ables “Fraction overlapping time” and “Fraction overlapping time × Sum engineer’s

estimates” measure the extent to which project schedules overlap, with negative

signs on these suggesting that schedule overlap substantially increases both average

completion costs and the rate at which completion costs increase in combination

size. Meanwhile, signs on the variables “Distance among projects” and “Same-type

24In practice, we generate 1297 pseudo-observations as described above to construct our criterion
function.

25This is particularly true with respect to simulated gradients of probabilities of higher-order
combinations, which would play a central role in any attempt to estimate κ(·) in higher dimensions.
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Table 6: Estimated complementarity parameters θ0

Combination characteristics (Elements of W ) θ̂ SE

Current backlog in ’000 plus sum engineer’s estimates in ’000 -0.0013 0.0003
Fraction overlapping time among projects in combination -21.1490 7.0028
Fraction overlapping time × Sum engineer’s estimates in ’000 -0.0063 0.0014
Distance in KM among projects in combination -0.0288 0.0062
Same-type-auctions index 82.8348 17.5152
Bidder type / size FE YES -

Units are in thousands of dollars, positive κ means lower cost (more cost synergy,
larger complementarities) between projects.

auction index” suggest that both greater distance and greater heterogeneity make

projects more substitutable. Finally, although not reported in Table 6, we include

a vector of bidder type and bidder size dummies; signs on these vary, but suggest a

positive intercept for κ(·) on aggregate as we quantify in detail next.

To illustrate the economic significance of these parameter estimates, we next

translate the parameter estimates θ̂ in Table 6 into estimates for the underlying

complementarities κ(·) themselves. These will of course vary both across bidders and

across combinations, so for the moment we proceed as follows. We first construct,

for each bidder i in the sample, the complementarity κω(Zi,Wi; θ̂) associated with

the largest combination played by i. We then normalize this complementarity by

the total size of the relevant combination, and analyze the distribution of these

normalized complementarities across bidders.

Table 7 summarizes the results of this procedure, reporting quantiles of normal-

ized complementarities for both (i) all bidders competing in two auctions and (ii) all

bidders in our MDOT sample. As evident from Table 7, there is substantial hetero-

geneity in complementarities across bidders in the MDOT sample, with a joint win

leading to cost savings of approximately 13 percent of combination size at the 95th

(best) quantile of complementarities, transitioning to cost increases of approximately

3.5 percent at the 5th (worst) quantile. Recalling the parameter estimates in Table
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6, we view these pattern as consistent with an underlying U-shaped cost curve, with

completion costs falling until firm resources are fully employed and rising thereafter.

We conclude this section with a note on interpretation of Tables 6 and 7 under

endogenous entry. In Appendix B, we embed the bidding model considered here

within a fully specified entry and bidding game, showing that our estimation strategy

is robust to this extension. Hence the parameter estimates reported in Table 6 remain

valid even under entry. In interpreting Table 7, however, endogenous entry will be

pivotal: the distribution of complementarities among projects in which bidders enter

will obviously differ from that which would arise if projects were randomly assigned.

In particular, insofar as bidders tend to bid for complementary combinations, we

would expect the distribution in Table 7 to be positively selected.

6 Counterfactuals

While the simultaneous first-price auction is clearly inefficient when bidders have

combinatorial preferences, little is known empirically about the magnitude of these

inefficiencies in practice. Furthermore, little is known (either theoretically or empir-

ically) about the revenue properties of the simultaneous first-price auction relative

to other feasible multi-object mechanisms such as the Vickery-Clarke-Groves (VCG)

mechanism, the combinatorial proxy auction (Ausubel and Milgrom 2002), or the

clock-proxy auction (Ausubel, Crampton and Milgrom 2006). Given that implemen-

tation of such combinatorial mechanisms involves substantial practical costs (even

solving the allocation problem once is NP-hard), determining the magnitude of their

potential revenue and efficiency effects is crucial in evaluating whether policymakers

might want to switch. If efficiency gains are small and / or revenue effects are am-

biguous, an optimal policymaker may prefer the simplicity and transparency of the

simultaneous first-price auction to better-performant but more complex combinato-

rial mechanisms. Conversely, if large efficiency and / or revenue gains are feasible,

incurring greater combinatorial implementation costs may be worthwhile.

In this section, we compare revenue and efficiency outcomes of the simultaneous

low-bid first-price auction with those of a descending combinatorial proxy auction
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Table 7: Distribution of complementarities across bid-
ders

Quantile of normalized κ̂ω(Zi,Wi) in:
Quantile rank Two-auction sample Full sample

5th -0.0352 -0.0365
10th -0.0205 -0.0239
15th -0.0103 -0.0170
20th -0.0045 -0.0117
25th -0.0010 -0.0079
30th 0.0022 -0.0050
35th 0.0057 -0.0023
40th 0.0094 0.0007
45th 0.0139 0.0034
50th 0.0187 0.0062
55th 0.0231 0.0097
60th 0.0287 0.0139
65th 0.0358 0.0186
70th 0.0437 0.0242
75th 0.0554 0.0321
80th 0.0732 0.0414
85th 0.0923 0.0554
90th 0.1244 0.0812
95th 0.1847 0.1291

“Normalized κ̂ω(Zi,Wi; θ̂)” denotes estimated comple-
mentarity κ̂ω(Zi,Wi; θ̂) among projects bid by i divided
by the sum of engineer’s estimates among projects bid by
i, with quantiles evaluated over the empirical distribu-
tion of (Zi,Wi) over all bidders and periods in the sample
indicated. Positive fractions represent positive comple-
mentarities (lower costs). Thus the statement that the
50th quantile of normalized κ̂ω(Zi,Wi) is 0.0075 in the
full sample means that for the median bidder a joint win
would generate cost savings equal to approximately 0.7
percent of combination size, and similarly.
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a la Ausubel and Milgrom (2002). While efficiency can also be achieved with the

VCG mechanism, this can also exhibit very poor revenue performance. The Ausbel-

Milgrom proxy auction mitigates the potential revenue disadvantages of the VCG

auction, while still achieving efficiency so long as bidders report their true preferences

to the proxy agent.

Descending proxy auction Adapted to our procurement setting, the descending

proxy auction operates as follows. First, each bidder i reports to its proxy agent a

(2Mi − 1)× 1 vector describing costs of completion for each possible combination of

the Mi products on which i has undertaken cost discovery. Second, proxies compete

on behalf of bidders in a virtual descending package auction, bidding according to

the following rule: in each bidding round, submit the allowable package bid that,

if accepted, would maximize the bidder’s profit given its reported costs. After each

bidding round, a provisional winning allocation is determined by minimizing procurer

costs over existing bids, and bidding proceeds to the next round. If no new bids are

submitted in a round, the auction ends.

Consistent with most prior work on proxy auctions, we restrict attention to the

case where bidders truthfully report costs. This guarantees that the final allocation

is efficient and in the core of the corresponding exchange game. Note, however, that

it is uncertain whether truthful reporting is an equilibrium in general.26 Insofar as

false reports distort final allocations, our results may overstate gains from the proxy

auction. Nevertheless, we see truthful revelation as a useful and practical benchmark

for comparison with the simultaneous first-price auction.

Computation of final outcomes in the Ausubel-Milgrom proxy auction is known

to be extremely challenging, requiring one to solve a NP-hard winner determination

problem for every bidding round. Since the proxy auction obtains (approximate) ef-

ficiency only with a small bid increment, and the number of bidding rounds required

for convergence increases substantially as the bid increment decreases, naive appli-

cation of the Ausubel-Milgrom algorithm can be extremely costly computationally.

We therefore focus instead on two variants of the Ausubel-Milgrom auction iden-

26See related discussion in, e.g., Ausubel and Milgrom (2002).
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tified by Sandholm (2006) as having good computational properties: the safe-start

proxy auction, in which starting bids for each bidder are determined by the VCG

payment rule, and the increment scaling proxy auction, in which the bid increment

automatically scales down as the auction proceeds. In both variants we target a

final-iteration bid increment of $1000, which is quite small as bids are typically in

hundreds of thousands to millions of dollars. These algorithms need not generate

the same revenue as the naive proxy auction, but retain its desirable efficiency and

revenue properties. See Sandholm (2006) for detailed discussion of these algorithms.

Counterfactual implementation As described above, the main challenge in im-

plementing our counterfactuals is computational: the optimal winner determination

problem in combinatorial auctions is well-known to be NP-hard, with complexity

growing very rapidly in the number of auctions and bidders.27 To ease this com-

putational burden, we restrict our counterfactual sample as follows. First, we drop

the 5 percent of bidders submitting more than 8 bids. Second, starting from the

778 self-contained lettings in our counterfactual sample, we partition each letting

involving more than one million possible allocations into smaller sub-lettings via the

Girvan-Newman algorithm: interpreting each letting as a network with bidders and

auctions defining nodes and bids defining edges, we iteratively drop bids with the

highest “edge connectivity” until the letting is partitioned.28 We then repeat this

process until no letting involves more than 1 million potential allocations. Our final

counterfactual sample thus involves 1656 self-contained lettings representing roughly

95 percent of unique bidders and roughly 70 percent of total bids, of which 1193

lettings (our primary interest) involve at least two auctions.

Given this sample, we implement our counterfactual comparisons as follows.

27For instance, to determine the efficient allocation in a letting with 30 auctions receiving 4 bids
each – by no means the largest in our sample – we might have to compare up to 430 ≈ 1018 possible
allocations. Even comparing a billion allocations per second – faster than feasible on a standard
microprocessor – this would take more than 30 years to solve exactly. Real-world approaches to
solving large-scale combinatorial auctions rely instead on heuristic winner-determination algorithms,
which aim to achieve reasonable solution quality in reasonable computation time. Since we here
wish to solve exactly, we do not explore these.

28See Girvan and Newman (2002) for a formal description of this algorithm.
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First, for each bidder i and letting t in the counterfactual sample, we draw a sample

of bids {brti }Rr=1 from the corresponding bid distribution Ĝi(·) estimated in Step 1 of

our structural procedure. Second, for each bid vector brti drawn for each bidder i,

we recover the corresponding standalone valuation vector vrti implied by the inverse

bid function (2), taking as given the estimates κ̂i(·) for κi(·) obtained in Step 2 of

our structural procedure. For each letting t in the counterfactual sample and each

replication r ∈ {1, ..., R}, we then proceed in three steps.

First, we simulate the allocation artFPA and procurement cost Crt
FPA arising under

the simultaneous first-price auction given bid realizations {brti }Ni=1; i.e. awarding each

auction to the bidder submitting the lowest standalone bid. Then, given estimated

complementarities {κ̂i(·)}Ni=1 and estimated valuations {vrti }Ni=1, we simulate total

social costs of project completion SrtFPA corresponding to allocation artFPA.

Second, assuming truthful reporting of types by bidders, we simulate proxy auc-

tion procurement costs Crt
PROXY based on the safe-start and incremental scaling al-

gorithms described above. In both variants, we target a final iteration bid increment

of $1000, which is quite small relative to typical bids. While in principle efficiency in

proxy auctions obtains only when the bid increment approaches zero, in practice our

$1000 bid increment leads to allocations which are virtually indistinguishable from

the VCG mechanism.

Revenue and efficiency We now describe results of this counterfactual compar-

ison based on R = 10 simulation replications, focusing on the subsample of lettings

involving at least two auctions. For purposes of these simulations, we set MDOT’s

effective reserve price for each project equal to 125 percent of the MDOT engineer’s

cost estimate; other plausible values generate very similar results.

Two striking patterns emerge from this exercise. First, as expected, the simulta-

neous first-price mechanism is socially inefficient, generating expected social costs of

roughly $6.60 million per counterfactual letting versus $6.36 million per letting for

the (socially efficient) proxy mechanism. In level terms this difference is nontrivial,

translating to an average savings of roughly $40, 000 per auction. Yet in percentage

terms gains are relatively small: roughly 3.7 percent social cost savings relative to
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total project completion costs under the simultaneous first-price mechanism.

Second, and even more striking, expected payments by MDOT to bidders are very

similar across mechanisms, with the proxy auction generating savings of only about

one percent of total MDOT payments. We emphasize that this is not a prediction of

the theory; with different parameters, one can easily obtain substantial differences

in revenue.

Recall that (by construction) the number of bids submitted per bidder is lower in

our counterfactual than in the data: approximately 2.2 bids per bidder in the coun-

terfactual, versus 2.7 bids per bidder in the data. To determine whether our results

are sensitive to this, we reweight counterfactual lettings such that the average number

of bids per bidder in the counterfactual equals the average number of bids per bidder

in the data.29 This increases estimated efficiency gains slightly to approximately 4.3

percent, leaving estimated MDOT payments essentially unchanged.

Finally, to explore the role of complementarities per se in the performance of

the simultaneous first-price mechanism, we compute a measure of “complementarity

importance” defined as follows: for each letting, we find the maximum (in absolute

value) complementarity among combinations played by each bidder, average this

measure across bidders, and then normalize by average size of projects. Reweighting

the bid-adjusted sample by this measure of complementarity importance, estimated

gains increase to about 5.5 percent social savings and 1.5 percent MDOT savings

relative to the corresponding simultaneous first-price baseline. In other words, coun-

terfactual gains tend to be substantially larger in lettings where complementarities

are more important – as expected given the discussion above.

On the whole, we view these findings as strong suggestive evidence that the

simultaneous first-price mechanism in fact performs remarkably well in the MDOT

marketplace. This analysis is of course only partial in that we effectively hold entry

behavior fixed across mechanisms. By construction, social savings not captured by

MDOT must accrue as profit to bidders, and in equilibrium this should translate

29Specifically, we choose a final weight vector to minimize the Euclidean distance between our
final weights and unit weighting, subject to the constraint that the average number of bids per
bidder in the reweighted sample equals that in the data.
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into greater entry. This in turn might generate slightly larger revenue effects than

we find here. In contrast, since new entrants are by definition marginal, we expect

true efficiency gains to be similar to those reported above.

7 Conclusion

Motivated by an institutional framework common in procurement applications, we

develop and estimate a structural model of bidding in simultaneous first-price auc-

tions, to our knowledge the first such in the literature. Non-parametric and semi-

parametric identification of the model is achieved under standard exclusion restric-

tions. Finally, we apply this framework to data on Michigan Department of Trans-

portation highway construction and maintenance auctions. Our estimates suggest

that winning a two-auction combination generates cost effects ranging from roughly

3.5 percent cost increases (relative to combination size) at the 5th percentile to

roughly 13 percent cost savings (relative to combination size) at the 95th percentile,

with combination costs increasing in joint size of, scheduling overlap between, and

distance between projects in the combination. Building on these observations, we

compare performance of the simultaneous first-price mechanism with performance of

a descending proxy auction a la Ausubel and Milgrom (2002). Despite the presence of

substantial complementarities (both positive and negative) in the data, we find that

this alternative mechanism generates relatively modest gains: roughly four percent

savings in social costs of project completion, with little change in MDOT’s expected

procurement costs. We view this as strong suggestive evidence that simultaneous

first-price auctions can perform relatively well even in environments with econom-

ically important complementarities. This observation may partially rationalize the

widespread popularity of simultaneous first-price auctions in practice.
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Appendix A: Proofs

Proof of Proposition 1. The proof of Proposition 1 rests on two key claims. First, the
first-order system (2) must be well-defined for almost every bi submitted by i, i.e. almost
everywhere with respect to the measure induced by Gi(·|Z,W ). Second, at almost every
bi at which first order conditions hold, the first-order system (2) must be invertible. We
establish each claim in turn.

First show that the first order system (2) is well-defined for almost every bi submitted
by i. Recall that we can write bidder i’s objective as

π(vi, b|K;Z,W ) = (Ωvi +K − Ωb)TP−i(b|Z,W ).

where vi and K are given at the time of maximization. Note that the system (2) necessarily
holds at any best respose where π(vi, ·|K;Z,W ) is differentiable and that Assumption
2 implies that each observed bi is a best response. Hence the system (2) will be well
defined for almost every bi submitted by i if and only if π(vi, ·|K;Z,W ) is differentiable
almost everywhere with respect to the measure on Bi induced by Gi(·|Z,W ). But under
Assumption 3, Gi(·|Z,W ) is absolutely continuous. To establish the claim, it thus suffices
to show differentiability of π(vi, ·|K;Z,W ) a.e. with respect to Lebesgue measure on Bi.

Clearly (Ωvi + K − Ωb) is differentiable in b. Thus differentiability of π(vi, ·|K;Z,W )
at b is equivalent to differentiability of P−i(·|Z,W ) at b. Let B−i be the Mi × 1 random
vector describing maximum rival bids in the set of auctions in which i participates. Again
applying Assumption 3 to rule out ties, the probability i wins combination ω at bid b is

Pω(b|Z,W ) = Pr({∩{m:ωm=1}0 ≤ B−i,m ≤ bi,m} ∩ {∩{m:ωm=0}bi,m ≤ B−i,m <∞}).

For each ω ∈ Ωi, let bω be the (
∑
ω) × 1 sub-vector of b describing i’s bids for objects

in ω, Bω
−i be the (

∑
ω) × 1 sub-vector of B−i describing maximum rival bids for objects

in ω, and Gω−i(b
ω|Z,W ) be the equilibrium joint c.d.f. of Bω

−i at (Z,W ). Applying the
formula for a rectangular probability and simplifying, we can then represent P−i(·|Z,W )
in the form

Pω−i(b|Z,W ) =
∑
ω′∈Ω

aωω′G
ω′
−i(b

ω′ |Z,W ),

where each aωω′ is a known scalar (determined by ω, ω′) taking values in {−1, 0, 1}. But by
absolute continuity each c.d.f. Gω−i(·|Z,W ) is differentiable a.e. (Lebesgue) in its support,

and interpreted as a function from Bi to RMi , each bω
′

is continuously differentiable in b.
Thus interpreted as a function from Bi to R, each Gω

′
−i(b

ω′ |Z,W ) is differentiable on a set

of full Lebesgue measure in B−i. The set of points in Bi at which all Gω
′
−i(b

ω′ |Z,W ) are

differentiable is the intersection of points in Bi at which each Gω
′
−i(b

ω′ |Z,W ) is differentiable,
i.e. the intersection of a finite collection of sets of full Lebesgue measure in Bi. But from
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above differentiability of Gω
′
−i(b|Z,W ) for all ω′ implies differentiability of Pω−i(b|Z,W ).

Hence Pω−i(·|Z,W ) is differentiable on a set of full Lebesgue measure in Bi. This in turn
implies differentiability of π(vi, ·|K;Z,W ) a.e. with respect to the measure on Bi induced
by Gi(·|Z,W ), as was to be shown.

We next establish that the first-order system (2) must yield a unique solution ṽ for
almost every bi submitted by i. Let B̃i be the set of points in Bi at which π(·, ·|K;W,Z)
is differentiable in b; from above, B̃i is a subset of full Lebesgue measure in Bi. Choosing
any b ∈ B̃i and rearranging (2) yields

∇bΓ−i(b|Z,W )ṽ = ∇bΓ−i(b|Z,W )b+ Γ−i(b|Z,W )−∇bP−i(b|W,Z)TKi.

Hence uniqueness of ṽ is equivalent to invertibility of theMi×Mi matrix∇bΓ−i(b|Z,W ).
Recall that Γ−i(b|Z,W ) is an Mi × 1 vector whose lth element describes the probability
that bid vector b wins auction l. Note that b ∈ B̃i rules out ties at b. Thus for b ∈ B̃i
the mth element of Γ−i(b|Z,W ) is the marginal c.d.f. Gl−i(b|Z,W ) of B−i,m, from which
it follows that ∇bΓ−i(b|Z) is a diagonal matrix whose m,mth element is the marginal
p.d.f. g−i,m(b|Z,W ) of B−i,m. Hence ∇bΓ−i(b|Z,W ) will be invertible at b if and only if
g−i,m(b|Z,W ) > 0 for all m = 1, ...,Mi.

But by hypothesis each submitted bid bi is a best response to rival play at (Z,W )
for some (v,K). Suppose that there exists an ε > 0 such that g−i,m(·|Z,W ) = 0 on
(bim − ε, bi]. Then player i could infinitesimally reduce bim without affecting either Γ−i
or P−i, a profitable deviation for any (v,K). Hence we must have g−i,m(·|Z,W ) > 0
almost everywhere (Lebesgue) in the support of Bi. By Assumption 3, this in turn implies
g−i,m(·|Z,W ) > 0 for almost every bi submitted by i. Since m was arbitrary, we must have
∇bΓ−i(bi|Z,W ) invertible for almost every bid bi submitted by i. Hence for almost every
bi submitted by i there will exist a unique ṽ satisfying (2) at bi, given by

ṽ = bi +∇bΓ−i(bi|Z,W )−1Γ−i(bi|Z,W )

+∇bΓ−i(bi|Z,W )−1∇bP−i(bi|W,Z)TK.

The RHS of this expression is identified up to K, establishing the claim.

Appendix B: Entry

In this Appendix, we formally embed the bidding model we describe above within a two-
stage entry-plus-bidding model paralleling those considered by Li and Zhang (2015) and
Groeger (2014) among others. This discovery process proceeds as follows.

At the beginning of the game, each bidder i is endowed with a 2L × 1 combinatorial
valuation vector Yi drawn by nature from FY,i. However, realizations of Yi are ex ante
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unknown to i and can be discovered by i only through costly entry. Specifically, at the
beginning of Stage 1, each bidder i observes a 2L × 1 vector of private combinatorial entry
costs Ci, with element CSi of Ci describing the total cost i must incur to enter auctions
S ∈ S. This cost vector Ci satisfies the following properties:

Assumption 9 (Private Entry Costs). For each bidder i, Ci is drawn independently of
combinatorial preferences Yi from cost distribution FC,i with support on a compact, con-

vex set Ci ⊂ R2L, with Ci private information, FC,i common knowledge, and cost draws
independent across bidders: Ci ⊥ Cj for all i, j.

Having observed Ci, bidder i chooses a set of auctionsMi ∈ S in which to enter, pays the
corresponding entry cost CMi

i , and proceeds to Stage 2. Then, at the beginning of Stage 2,
Bidder i observes the realizations of her combinatorial valuations Y S′

i for all combinations
feasible at Mi; that is, for each S′ ∈ S such that S′ ⊂ Mi. Lastly, bidder i submits a
single bid bim for each object m in her entry set Mi. Conditional on realization of any
participation structureM = {M1, ...,MN} realized in Stage 1, the bidding subgame then
proceeds exactly as described in the main text.

Following Milgrom and Weber (1985), define a distributional entry strategy for player
i as a measure ξi over Ci × S whose marginal over Ci is FC,i, with ξ = (ξ1, ..., ξN ) a profile
of distributional entry strategies. Then assuming that at least one Bayes-Nash equilibrium
exists, any such equilibrium must have the following form. For each participation struc-
ture M arising from the entry game, let Π(M) = (Π1(M), ...,ΠN (M)) be any vector of
candidate bid-stage payoffs in the corresponding bidding subgame. Taking these payoffs
as given, let

Ξ(S, ξ−i) = E[Πi(S,M−i)|ξ−i]

be i’s expected net profit from entering auction combination S ∈ S given rival entry
strategies ξ−i (where the expectation is taken over rival entry sets M−i). We can then
write bidder i’s Stage 1 problem as:

Mi = arg max
S∈S

Ξ(S, ξ−i)− CSi .

The Stage 1 action set for each bidder is the finite set S, and bidders’ private entry costs
are independent. Hence by Proposition 1 of Milgrom and Weber (1985), there exists an
equilibrium in distributional strategies for the entry game corresponding to continuation
payoffs Π(M). So long as bid-stage payoffs Π(M) are themselves generated from play
of a Bayes-Nash equilibrium in every bidding subgame, this in turn will constitute an
equilibrium of the overall entry and bidding game.

If to this we add the restriction that FC,i is atomless on Ci for each i, then Proposition
4 of Milgrom and Weber (1985) implies existence of a equilibrium in which bidders play
pure entry strategies. Specifically, the set of cost vectors Ci at which bidder i chooses to
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enter set S ∈ S, denoted CSi , will be the affine cone

CSi = {Ci ∈ R2L : CSi − CS
′

i ≤ Ξ(S, ξ−i)− Ξ(S′, ξ−i) ∀S′ ∈ S},

Furthermore, since Ci ⊥ Yi, equilibrium behavior will involve variation in participation by
bidder i which is effectively exogenous and hence excludable from the perspective of rival
bidders. This is precisely the form of variation we exploit in our identification argument.

Appendix C: Partial identification with general Gi

The point identification result for the vector-function of complementarities κi(Zi,W,X)
and the conditional distribution of Vi|Zi,W,X relied on the first order conditions obtained
from bidder’s optimization of the payoff function. To derive those equations we employed
the absolute continuity of the bid distribution functions Gi. That, in particular, eliminated
the possibility of bidders playing atoms in the equilibrium. In this appendix, we want to
illustrate an approach to the identification question without any continuity restrictions
imposed on Gi. Our identification method is based on using inequalities for bidder’s best
responses and employing the exclusion restrictions in Assumption 5 to obtain bounds on
κi(Zi,W,X) and the CDFs of Vil|Zi,W,X. Hereafter we assume that ties are broken
independently across auctions.

Let us fix (Zi,W,X) ∈ Zi ×W × X . For each Z−i ∈ Z−i|Zi,W,X, bidder maximizes
the payoff function

π(vi, b;Z,W,X) = vTi Γ−i(b|Z,W,X)− bTΓ−i(b|Z,W,X) + P−i(b|Z,W,X)Tκi(Zi,W,X)

with respect to b ∈ Bi. That is, for each Z−i ∈ Z−i|Zi, X,W , every bidder i’s bid vector bi
observed in the equilibrium satisfies the inequality

vTi Γ−i(bi|Z−i)− bTi Γ−i(bi|Z−i) + P−i(bi|Z−i)Tκ(Zi,W,X) ≥
vTi Γ−i(b|Z−i)− bTΓ−i(b|Z−i) + P−i(b|Z−i)Tκ(Zi,W,X)

∀ b ∈ Bi, (13)

where for notational simplicity we wrote Γ−i(·|Z−i) and P−i(bi|Z−i) instead of Γ−i(bi|Z,W,X)
and P−i(bi|Z,W,X) respectively, thus omitting fixed (Zi,W,X) from the notation.

Equivalently, (13) can be written as

vTi (Γ−i(bi|Z−i)− Γ−i(b|Z−i)) + (P−i(bi|Z−i)− P−i(b|Z−i))T κ(Zi,W,X) ≥
bTi Γ−i(bi|Z−i)− bTΓ−i(b|Z−i) ∀ b ∈ Bi. (14)

The set of (vi, κ(Zi,W,X)) that satisfy linear inequalities in (14) is clearly convex. If the
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bidding set Bi is a continuum, then (14) represents a continuum of linear inequalities in
(vi, κ(Zi,W,X)). If the convex set described by (14) is a singleton, then we are in the
situation of point identification. Otherwise, we are in a scenario of partial identification.
This convex set is fairly difficult to describe in a closed form. A much easier task is to
describe its superset and then use it to derive bounds on the c.d.f.s of Vil|Zi,W,X.

We start by obtaining a closed form for a superset of the identified set for κ(Zi,W,X).
To construct this superset, we consider in (14) only those b that are different from the
observed equilibrium vector bi in one component. Namely, we first consider

b = bi + εem ∈ Bi

for ε > 0 and obtain from (14) that

vim (Γ−i,m(bim|Z−i)− Γ−i,m(bim + ε|Z−i))+(P−i(bi|Z−i)− P−i(bi + εem|Z−i))T κ(Zi,W,X) ≥
bimΓ−i(bim|Z−i)− (bim + ε)Γ−i(bim + ε|Z−i),

where we used the assumption that the ties are broken independently across auctions at
bi, and thus, a change in the mth component of bi affects only the mth component of Γ−i.
Noting that Γ−i,m is (weakly) increasing in bim, we have Γ−i,m(bim|Z−i) − Γ−i,m(bim +
ε|Z−i) ≤ 0. If bidder i’s probability of winning object m strictly increases as the m’s
component of the bid vector changes from bim to bim + ε, then

vim ≤ −
(P−i(bi|Z−i)− P−i(bi + εem|Z−i))T κ(Zi,W,X)

Γ−i,m(bim|Z−i)− Γ−i,m(bim + ε|Z−i)
+

bimΓ−i(bim|Z−i)− (bim + ε)Γ−i(bim + ε|Z−i)
Γ−i,m(bim|Z−i)− Γ−i,m(bim + ε|Z−i)

. (15)

If Γ−i,m(bim|Z−i) − Γ−i,m(bim + ε|Z−i) = 0, then P−i(bi|Z−i) − P−i(bi + εem|Z−i) = 0
and we obtain the following inequality that clearly holds:

0 ≥ −εΓ−i(bim|Z−i).

If there exists a known scalar v̄ <∞ such that Vim ≤ v̄ with probability 1 for any m (note
that v̄ could be strictly outside the support of Vim), then in this situation we can just
bound vim from above by v̄.

Analogously, taking
b = bi − εem ∈ Bi
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for ε > 0, obtain from (14) that

vim (Γ−i,m(bim|Z−i)− Γ−i,m(bim − ε|Z−i))+(P−i(bi|Z−i)− P−i(bi + εem|Z−i))T κ(Zi,W,X) ≥
bimΓ−i(bim|Z−i)− (bim − ε)Γ−i(bim − ε|Z−i).

If bidder i’s probability of winning object m strictly increases as the m’s component of the
bid vector changes from bim − ε to bim, then

vim ≥ −
(P−i(bi|Z−i)− P−i(bi + εem|Z−i))T κ(Zi,W,X)

Γ−i,m(bim|Z−i)− Γ−i,m(bim − ε|Z−i)
+

bimΓ−i(bim|Z−i)− (bim − ε)Γ−i(bim − ε|Z−i)
Γ−i,m(bim|Z−i)− Γ−i,m(bim − ε|Z−i)

. (16)

If Γ−i,m(bim|Z−i) − Γ−i,m(bim − ε|Z−i) = 0, then P−i(bi|Z−i) − P−i(bi − εem|Z−i) = 0
and we obtain the inequality 0 ≥ −εΓ−i(bim|Z−i), which implies that Γ−i(bim|Z−i) = 0. If
there exists a known scalar v ≥ 0 such that Vim ≥ v with probability 1 for any m (note that
v could be strictly outside the support of Vim), then in this situation we can just bound
vim from below by v.

Inequalities (15) and (16) will be the basis for our analysis. But before we proceed
let us introduce some notations. Let ∆+

ε,m[f(u)] and ∆−ε,m[f(u)] denote differences in the
values of f(·) associated with adding ε and −ε to the mth component of u respectively:

∆+
ε,m[f(u)] = f(u+ εem)− f(u),

∆−ε,m[f(u)] = f(u− εem)− f(u),

where em denotes the Mi-dimensional mth unit vector.
For each bi ∈ Bi, define I−ε,m(bi|Z−i), I+

ε,m(bi|Z−i) as follows:

I−ε,m(bi|Z−i) =

{
v if ∆−ε,m[Γ−i(bi|Z−i)] = 0,

∆−ε,m[bTi Γ−i(bi|Z−i)]
∆−ε,m[Γ−i,m(bi|Z−i)]

else

}
;

I+
ε,m(bi|Z−i) =

{
v̄ if ∆+

ε,m[Γ−i(bi|Z−i)] = 0,
∆+
ε,m[bTi Γ−i(bi|Z−i)]

∆+
ε,m[Γ−i,m(bi|Z−i)]

else

}
.
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Also, for each bi ∈ Bi, define the following S−ε,m(bi|Z−i) and S+
ε,m(bi|Z−i):

S−ε,m(bi|Z−i) =

{
0 if ∆−ε,m[Γ−i(bi|Z−i)] = 0,

∆−ε,m[P−i(bi|Z−i)]
∆−ε,m[Γ−i,m(bi|Z−i)]

else

}
;

S+
ε,m(bi|Z−i) =

{
0 if ∆+

ε,m[Γ−i(bi|Z−i)] = 0,
∆+
ε,m[P−i(bi|Z−i)]

∆+
ε,m[Γ−i,m(bi|Z−i)]

else

}
.

For K ∈ Ki, let F̃−im(·|K;Z−i) denote the c.d.f. of

sup
ε>0

(
I−ε,m(bi|Z−i)− S−ε,m(bi|Z−i)TK

)
,

and let F̃+
im(·|K;Z−i) denote the c.d.f. of

inf
ε>0

(
I+
ε,m(bi|Z−i)− S+

ε,m(bi|Z−i)TK
)

.
Then inequalities (15) and (16) imply that a superset of the identified set of κ(Zi,W,X)

for bidder i can be found as
Mi⋂
m=1

K̃i,m(Zi,W,X),

where K̃i,m(Zi,W,X) is defined as

K̃i,m(Zi,W,X) = {K ∈ Ki
∣∣ F̃+

im(·|K;Z−i) ≤ F̃−im(·|K;Z ′−i) ∀Z−i, Z ′−i ∈ Z−i|Zi,W,X}.

Let us denote this superset as H(1)
i,κ (Zi,W,X).

Now we can construct supersets of the identified sets for the distributions of standalone
valuations. As Fc(Rp) we denote the set of all continuous cumulative distribution functions
on Rp.

A superset of the identified set for the c.d.f. of the standalone valuation Vim conditional
on Zi, X can be found as the set of univariate functions Fim(·) ∈ Fc(R) such that for any
η ∈ R,

Fim(η) ∈
⋂

W∈W|Zi,X

⋂
κ0∈H(1)

i,κ(Zi,W,X)

⋂
Z−i,Z′−i∈Z−i|Zi,W,X

[F̃+
im(η|κ0;Z−i), F̃

−
im(η|κ0;Z ′−i)]}. (17)

Here we applied the exclusion restriction that the distribution of standalone valuations

conditional on Zi,W,X does not depend on W . Let us denote this superset asH(1)
i,Fm

(Zi, X).

Our final step is to construct a superset H(1)
i,F (Zi, X) for the identified set for the
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joint distribution of the vector of standalone valuations. H(1)
i,F (Zi, X) can be found as

the set of Mi-variate functions Fi(·) ∈ Fc(RMi) such that each mth marginal distribution

function generated by Fi(·) belongs to H(1)
i,Fm

(Zi, X), m = 1, . . . ,Mi. Moreover, for any
η = (η1, . . . , ηMi),

Fi(η) ≤ min
m=1,...,Mi

inf
W∈W|Zi,X

inf
κ0∈H(1)

i,κ(Zi,W,X)

inf
Z−i∈Z−i|Zi,W,X

F̃+
im(ηm|κ0;Z−i), (18)

Fi(η) ≥ max


Mi∑
m=1

sup
W∈W|Zi,X

sup
κ0∈H(1)

i,κ(Zi,W,X)

sup
Z−i∈Z−i|Zi,W,X

F̃−im(ηm|κ0;Z−i)−Mi + 1, 0

 ,

(19)

where we employed the well known result on sharp Frechet-Hoeffding bounds for joint dis-
tributions.

Below we provide an expectations version of the partial identification argument. Even
though the supersets in the expectations approach will be larger than those discussed
previously, computationally they are easier to obtain. Before describing these supersets,
let us define Mi × 1 vectors Ψ−ε (Z−i), Ψ+

ε (Z−i) and Mi × 2Mi matrices χ−ε (Z−i), χ
+
ε (Z−i)

as follows:

Ψ−ε (Z−i) ≡
[
E[I−ε,m(Bi|Z−i)|Z−i]

]Mi

m=1

Ψ+
ε (Z−i) ≡

[
E[I+

ε,m(Bi|Z−i)|Z−i]
]Mi

m=1

χ−ε (Z−i) ≡
[
E[S−ε,m(Bi|Z−i)|Z−i]T

]Mi

m=1

χ+
ε (Z−i) ≡

[
E[S+

ε,m(Bi|Z−i)|Z−i]T
]Mi

m=1
.

Then, applying the expectation over the distribution of bids conditional on Zi,W,X to
inequalities (15) and (16) and pooling restrictions across Z−i, Z

′
−i and m = 1, . . . ,Mi, we

establish that a superset of the identified set for κ(Zi,W,X) can be found in the following
way:

H(2)
i,κ (Zi,W,X) =

⋂
ε>0

K̂εi(Zi,W,X),

where K̂εi(Zi,W,X) is defined as

K̂εi(Zi,W,X) ≡
{
K ∈ Ki

∣∣∣ (Ψ−ε (Z−i)−Ψ+
ε (Z ′−i)

)
−
(
χ−ε (Z−i)− χ+

ε (Z ′−i)
)
K ≤ 0 for all Z−i, Z

′
−i ∈ Z−i|Zi,W,X

}
.

Notice two features of H(2)
i,κ (Zi,W,X). First, it can be represented as the intersection
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of a set of half-spaces in Ki, where half-spaces are bounded by hyperplanes involving
slope vectors (χ−ε,m(Z−i) − χ+

ε,m(Z ′−i)) and intercepts (Ψ−ε,m(Z−i) − Ψ+
ε,m(Z ′−i)), and the

intersection is taken over collections of (Z−i, Z
′
−i, ε,m).

Second, if Gi is absolutely continuous, then H(2)
i,κ (Zi,W,X) is a singleton, and as we

show below, the analysis of H(2)
i,κ (Zi,W,X) essentially becomes our identification strategy

in the case of point identification. Indeed, bidder i’s objective function is differentiable at
almost every observed bi. Hence as ε→ 0 we will have for all m

lim
ε→0

∆−ε,mbiΓ−i(bi|Z−i)
∆−ε,mΓ−i,m(bi|Z−i)

= lim
ε→0

∆−ε,mbiΓ−i(bi|Z−i)/ε
∆−ε,mΓ−i,m(bi|Z−i)/ε

=
∂(biΓ−i(bi|Z−i))/∂bim
dΓ−i,m(bi|Z−i))/dbim

,

and therefore Ψ−ε (·)→ Ψ(·). Analogously, it is straightforward to show that Ψ+
ε (·)→ Ψ(·),

χ−ε → χ(·), and χ+
ε → χ(·). Hence after applying the expectations operator, inequalities

(15) and (16) imply that

Ψ(Z−i)− χ(Z−i)κ0 ≤ Ψ(Z ′−i)− χ(Z ′−i)κ0 ∀ Z−i, Z ′−i ∈ Z−i|Zi,W,X.

Noting that Z−i, Z
′
−i are interchangeable, we thus have for any Z−i, Z

′
−i ∈ Z−i|Zi,W,X:

Ψ(Z−i)− χ(Z−i)κ0 ≤ Ψ(Z ′−i)− χ(Z ′−i)κ0

Ψ(Z ′−i)− χ(Z ′−i)κ0 ≤ Ψ(Z−i)− χ(Z−i)κ0,

or equivalently

Ψ(Z−i)− χ(Z−i)κ0 = Ψ(Z ′−i)− χ(Z ′−i)κ0 ∀ Z−i, Z ′−i ∈ Z−i|Zi,W,X.

But this is exactly the identification restriction invoked in Proposition 3 in the main text.
Thus we can strictly generalize our existing identification results (which depend on differ-
entiability a.e.) to partial identification for arbitrary Gi.

A superset for the identification set of the c.d.f. of Vim can be found as in (17) by

replacing H(1)
i,κ (Zi,W,X) with H(2)

i,κ (Zi,W,X). Similarly, a superset for the identification

set of the c.d.f. of vector Vi can be found as in (18) and (19) by replacing H(1)
i,κ (Zi,W,X)

with H(2)
i,κ (Zi,W,X).

Appendix D: Complementarities depending on V

In this appendix, we explore prospects for generalizing our non-parametric identification
results to the case where complementarities are additively separable functions of standalone
valuations. In other words, conditional on Z,W,X the compementarities are stochastic but
their randomness can be fully explained by the standalone valuations. As a special case,
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we consider a scenario when these functions are affine in standalone valuations. Such a
case could arise if, for instance, winning two auctions together increases i’s valuation for
one or both objects by a fixed percentage.

Notation and definitions We say complementarities are additively separable in stan-
dalone valuations if for each ω that contains at least two non-zero components (that is,
‖ω‖2 ≥ 2), the complementarity for outcome ω is a function of the vector of standalone
valuations vi = (vi1, vi2, . . . , viMi)

T such that

Kω(vi, Zi,W,X) =
∑
l:ωl=1

φl(vil, Zi, X,W ) + K̄ω(Zi, X,W ) (20)

for some functions φl, l = 1, . . . , L. If each function φl is linear in vil, then we obtain the
special case of complementarities affine in vi:

Kω(vi, Zi,W,X) =
∑
l:ωl=1

δl(Zi,W,X)vil + K̄ω(Zi,W,X), if ‖ω‖2 ≥ 2. (21)

As usual, if ω contains at most one component equal to one (that is, ‖ω‖2 ≤ 1), then we
set Kω(vi, Zi,W,X) ≡ 0. An interesting special case of (21) is when all δl are identical and
K̄ω = 0 for any ω. This case describes the situation of a constant relative complementarity
– that is, when Kω(vi, Zi,W,X) is a constant ratio of the additive valuation.

Now assume that complementarities are affine in vi, and define an Mi × 1 vector
δ(Zi,W,X) and an Mi ×Mi matrix D(δ(Zi,W,X)) as follows:

δ(Zi,W,X) ≡ (δ1(Zi,W,X), δ2(Zi,W,X), . . . , δMi(Zi,W,X))T

D(δ(Zi,W,X)) ≡ diag(δ1(Zi,W,X), δ2(Zi,W,X), . . . , δMi(Zi,W,X)).

To write this in a convenient vector-matrix notation, let Ai denote the 2Mi×2Mi matrix such
that its submatrix (alj)l,j=Mi+2,...,2M coincides with the identity matrix of size 2Mi−Mi−1,
with all the other elements of Ai being 0. We then have

K(vi, Zi,W,X) = AiΩiD(δ(Zi,W,X))vi + K̄(Zi,W,X),

where K̄(Zi,W,X) denotes the 2Mi × 1 vector of constant components in the comple-
mentarities (obviously, K̄(Zi,W,X) ∈ Ki). Clearly, the rank of matrix AiΩi is equal to
Mi.

As can be seen, the functional form of complementarities does not depend on Z−i.
As we show below, under weak conditions there is enough variation in Z−i |Zi,W,X to
determine the linear (in vil) part of complementarities as well as the constant part.
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Non-parametric identification Using the first-order conditions and taking into ac-
count the form of K(vi, Zi,W,X), obtain

vi = bi + [∇bΓ−i(bi|Z−i)]−1 Γ−i(bi|Z−i)− [∇bΓ−i(bi|Z−i)]−1∇bP−i(bi|Z−i)T
[
AiΩiD(δ)vi + K̄

]
,

where for notational simplicity conditioning on Zi,W,X is omitted from the notation in
the rest of this Appendix. Rewrite that system of equations by collecting all terms with vi
on the left-hand side:(
IMi + [∇bΓ−i(bi|Z−i)]−1∇bP−i(bi|Z−i)TAiΩiD(δ)

)
vi = bi + [∇bΓ−i(bi|Z−i)]−1 Γ−i(bi|Z−i)

− [∇bΓ−i(bi|Z−i)]−1∇bP−i(bi|Z−i)T K̄,

and introduce a notation for the matrix in front of vi on the left-hand side:

Π(bi, δ, Z−i) ≡ IMi + [∇bΓ−i(bi|Z−i)]−1∇bP−i(bi|Z−i)TAiΩiD(δ).

Define ∆(Z−i) as the set of δ ∈ <Mi such that

Π(bi, δ, Z−i) is non-singular for almost all bi.

This set is non-empty as e.g. 0 ∈ ∆(Z−i). If δ ∈ ∆(Z−i), then we can multiply the system
from the left by Π(bi, δ, Z−i)

−1 resulting in

vi = Π(bi, δ, Z−i)
−1bi + Π(bi, δ, Z−i)

−1 [∇bΓ−i(bi|Z−i)]−1 Γ−i(bi|Z−i)
−Π(bi, δ, Z−i)

−1 [∇bΓ−i(bi|Z−i)]−1∇bP−i(bi|Z−i)T K̄.

Assuming that δ ∈ ∆(Z−i) and carrying on with fixed Zi,W,X, let us denote

D1(δ, Z−i) ≡ EBi
[
Π(Bi, δ, Z−i)

−1Bi
∣∣Z−i]+ EBi

[
Π(Bi, δ, Z−i)

−1 [∇bΓ−i(Bi|Z−i)]−1 Γ−i(Bi|Z−i)
∣∣Z−i] ,

D2(δ, Z−i) ≡ EBi
[
Π(Bi, δ, Z−i)

−1 [∇bΓ−i(Bi|Z−i)]−1∇bP−i(Bi|Z−i)T
∣∣Z−i] .

Keeping Zi,W,X fixed, let us draw another value Z ′−i from Z−i|Zi,W,X. Due to the
assumptions made on the distribution of the standalone valuations, E[Vi|Zi, Z−i,W,X] =
E[Vi|Zi, Z ′−i,W,X]. Therefore, for δ ∈ ∆(Z−i) ∩∆(Z ′−i),

D1(δ, Z ′−i)−D1(δ, Z−i) =
(
D2(δ, Z ′−i)−D2(δ, Z−i)

)
K̄.

For fixed Zi,W,X, this system has 2Mi − 1 unknowns (Mi in δ and 2Mi −Mi − 1 in K̄)
and Mi equations. This gives us the following result.

Proposition 4. Suppose that for (Zi,W,X) ∈ Zi ×W × X , there exist J + 1 ≥ (2Mi −
1)/Mi + 1 vectors Z−i,0, Z−i,1, . . . , Z−i,J in the support Z−i|Zi,W,X such that there is a
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unique δ ∈
⋂J
j=0 ∆(Z−i,j) and a unique κ ∈ Ki that solve the system of J ·Mi equations

D1(δ, Z−i,j)−D1(δ, Z−i,0) = (D2(δ, Z−i,j)−D2(δ, Z−i,0))κ, j = 1, . . . , J. (22)

Then the values of δ(Zi,W,X) and K̄(Zi,W,X) are identified, and thus, the complemen-
tarity function is identified for these values of Zi, W , X.

System (22) is non-linear in δ. However, for each fixed δ ∈
⋂J
j=0 ∆(Z−i,j), this system

is linear in κ. Proposition 4 implies that in the case of identification it is not possible
to have a situation when for different δ1 and δ2, where δ1, δ2 ∈

⋂J
j=0 ∆(Z−i,j), system

(22) has solutions κ1 ∈ Ki and κ2 ∈ Ki, respectively. Thus, in this sense the question of
identification of δ(Zi,W,X) and K̄(Zi,W,X) comes down to the question of the existence
of a solution to a system of linear equations: (22) can have a solution κ for one δ only,
and for that δ it has to be unique. Using the Kronecker-Capelli theorem, which gives
the necessary and sufficient conditions for the existence of a solution to a system of linear
equations, and also the necessary and sufficient conditions for the uniqueness of such a
solution, we formulate the identification result in the Proposition 5 below.

Before we proceed to Proposition 5, let is rewrite (22) in a more convenient way. At
the moment k has to satisfy certain restrictions (namely, the first Mi + 1 components of
this vector are 0) and we first want to rewrite it through an unrestricted parameter to
apply certain tools from algebra. Let Ei denote the 2Mi × (2Mi −Mi − 1) matrix such
that its submatrix (ẽij)i=Mi+2,...,2Mi , j=1,...,2Mi−li−1 coincides with the identity matrix of

size 2Mi −Mi − 1, and all its other elements (that is, all the elements in the first Mi + 1

rows) are equal to zero. For every κ ∈ Ki there is a unique κ̌ ∈ R2Mi−Mi−1 such that

κ = Eiκ̌.

Obviously, this κ̌ is a parameter that does not have to satisfy any prior restrictions. It is
formed by the last 2Mi −Mi − 1 values in κ. System (22) can equivalently be written as

D1(δ, Z−i,j)−D1(δ, Z−i,0) = (D2(δ, Z−i,j)Ei −D2(δ, Z−i,0)Ei) κ̌, j = 1, . . . , J, (23)

with κ̌ ∈ R2Mi−Mi−1. For a fixed δ, system (22) is linear in κ, has the J ·Mi × 2Mi matrix
of coefficients, and imposes restrictions on the solution κ by requiring that κ ∈ Ki. Its
equivalent representation (23) is linear in κ̌ for a fixed δ, has the J ·Mi × (2Mi −Mi − 1)

matrix of coefficients, and does not impose any restrictions on the solution κ̌ ∈ R2Mi−Mi−1.
This allows us to apply the Kronecker-Capelli theorem to system (23) in a straightforward
way.

Proposition 5. Suppose that for (Zi,W,X) ∈ Zi ×W × X , there exist J + 1 ≥ (2Mi −
1)/Mi + 1 vectors Z−i,0, Z−i,1, . . . , Z−i,J in the support Z−i|Zi,W,X such that there is a

unique δ ∈
⋂J
j=0 ∆(Z−i,j) that satisfies the following two conditions:
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1. First,
rank ([M1(δ) |M2(δ)]) = rank (M2(δ)) , (24)

where M2(δ) denotes the J ·Mi × (2Mi −Mi − 1) matrix

M2(δ) ≡

 D2(δ, Z−i,1)Ei −D2(δ, Z−i,0)Ei
...

D2(δ, Z−i,J)Ei −D2(δ, Z−i,0)Ei

 ,
and M1(δ) denotes the J ·Mi × 1 vector

M1(δ) ≡

 D1(δ, Z−i,1)−D1(δ, Z−i,0)
...

D1(δ, Z−i,J)−D1(δ, Z−i,0)

 .
2. Moreover, this δ is such that M2(δ) has full column rank:

rank (M2(δ)) = 2Mi −Mi − 1. (25)

Then the values of δ(Zi,W,X) and K̄(Zi,W,X) are identified, and thus, the complemen-
tarity function is identified for these values of Zi, W , X.

Condition (24) requires that in system (23), the rank of the matrix of coefficients M2(δ)
is equal to the rank of the augmented matrix [M1(δ) |M2(δ)] for one δ only. The Kronecker-
Capelli theorem guarantees then that (23) has a solution κ̌ for that δ only. Condition (25)
then guarantees this κ̌ is determined uniquely, and, thus, κ = Eiκ̌ is determined uniquely.

Note that all the identification conditions in Proposition 5 are formulated in terms of δ.
The closed form for δ(Zi,W,X) cannot be found but in practice one can find δ(Zi,W,X)
and K̄(Zi,W,X) by solving, e.g., the following optimization problem:

min
δ∈

⋂J
j=0 ∆(Z−i,j), κ̌∈R2Mi−Mi−1

Q(δ, κ̌, Zi,W,X),

where
Q(δ, κ̌, Zi,W,X) ≡ (M1(δ)−M2(δ)κ̌)T (M1(δ)−M2(δ)κ̌) .
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