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Abstract

In this paper, we show both theoretically and empirically that the size
of over-the-counter (OTC) markets with outstanding trades can be reduced
without affecting individual net positions. First, we find that the networked
nature of OTC markets generates an excess of notional obligations between
the aggregate gross amount and the minimum amount required to satisfy
each individual net position. Second, we show conditions under which such
excess can be removed while preserving individual net positions. We refer
to this operation as “compression” and identify feasibility and efficiency
criteria, highlighting intermediation as a key factor for excess levels. We
show that a trade-off exists between the amount of notional that can be
removed from the system and the conservation of trading relationships.
Third, we apply our theoretical framework to a unique and comprehensive
transaction-level dataset on OTC derivatives. We document large levels
of excess across all markets and time. Finally, we show that compression
when applied at the global level can reduce a considerable fraction of total
notional even under conservative approaches.
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1 Introduction

In contrast to centrally organized markets where quotes are available to all mar-
ket participants and exchange rules are explicit, participants in over-the-counter
(OTC) markets trade bilaterally and have to engage in a search and bargaining
process. The decentralized feature of OTC markets makes them opaque as mar-
ket information is often very limited to most agents. As a result of the search
friction, dealers play the role of marketmakers and intermediate between buyers
and sellers of a given good (Duffie et al., 2005). Several OTC markets have an
important role in the economy (Duffie, 2012) and can be very large1. The size
and lack of transparency of those markets has become an important concern for
policy makers2.

In this paper, we show that the networked nature of decentralized markets
where trading takes place over-the-counter generates excess of notional when
trades are fungible and contingent. Formally, we define the excess of a mar-
ket as the positive difference between the total gross notional of the market and
the minimum aggregate amount satisfying every participants’ net position. In-
tuitively, the excess of a market measures the amount of notional resulting from
redundant trades, that is, trades that offset each other.

In turn, the existence of such excess makes OTC markets compressible, i.e.,
the web of outstanding trades can be modified in order to remove redundant
trades and, by doing so, reduce the excess. The main contribution of our paper
is to provide a theoretical framework to understand and quantify the redundancy
of trades leading to excess, propose methods to remove excess and investigate
empirically the efficiency of each approach by applying the framework to a real,
unique, transaction-level dataset on over-the-counter derivatives.

From an accounting perspective, a large excess in a market means that an
important gap exists between net and gross balance sheet based measures. Relying
on one measure or the other thus leads to a distorted view of the market (Gros,
2010). Let us illustrate the situation with the Figure 1 which maps the network
of obligations of an actual OTC market for Credit-Default-Swap (CDS) contracts.
Sellers of the CDS are on the left hand-side (green), buyers are on the right hand-
side and dealers are in the middle (blue and purple). We observe two separate
sets of obligations: customer-dealer obligations and dealer-to-dealer obligations.
The first line below the figure retrieves the market share of gross notional per
set of market participants. The second line retrieves the average ratio between

1For example, OTC derivatives markets amounted to $ 553 trillion of outstanding gross
notional at end of June 2015 (BIS, 2015)

2In September 2009, the G20 leaders committed to make OTC derivatives markets more
transparent by mandating central clearing for certain derivative classes alongside reporting to
trade repository.

1



individual net positions and gross positions for participants in each set. While
buyers and sellers have a combined gross share of less than 5%, their net position is
equal to their gross position. In contrast, the set of dealers concentrates more than
95% of gross market share while only one fifth is explained by the net position.
This characteristic shows that, on average, 80% of the notional flowing through
the dealers is the result of offsetting trades.

In practice, some markets are already implementing mechanisms to reduce
their excess. For example, firms engaging in certain derivatives markets eliminate
some of the excess through the use of so-called portfolio compression. Portfolio
compression is a post-trade technique through which market participants can
modify or remove outstanding contracts and create new ones in order to reduce
their overall market gross position without modifying their net positions3. The
methods we present in this paper follow the same principle.

Let us illustrate portfolio compression with the stylized example graphically
shown in Figure 2(a) of a market consisting of 4 institutions (i , j, k, l) selling
and buying the same contract with different notional values: i has an obligation
of notional value 5 to j, j has an obligation to k of notional value 10, k has
obligations 20 and 10 towards k and l respectively.

The aggregate gross notional of the market is thus the sum of the contracts:
x = 5 + 10 + 20 + 10 = 45. At the individual level, the gross notional position of i
is equal to the sum of trades in which each i is involved: 5+20 = 25. Instead, the
net notional position of i is the difference between the amount due by i and the
amount due to i: 5 − 20 = −15. We can compress the market by removing the
bilateral amount between i and j and reduce the obligations that both firms have
with k by 5. The result is illustrated in Figure2(b) where the net position of each
firm is equal to the situation while the gross notional of the market is reduced by
15: x′ = 5 + 15 + 10 = 30.

The above example represents a case of multilateral compression, i.e., several
counterparties are involved and the exercise is run over the whole set of fungible
trades outstanding between all counterparties4. Naturally, a certain amount of
information disclosure is needed in order to run such process. Individual counter-

3Formally, the Markets in Financial Instrument Regulation (MiFIR) describes portfolio com-
pression as follows: “Portfolio compression is a risk reduction service in which two or more
counterparties wholly or partially terminate some or all of the derivatives submitted by those
counterparties for inclusion in the portfolio compression and replace the terminated derivatives
with another derivatives whose combined notional value is less than the combined notional value
of the terminated derivatives. [...] Portfolio compression aims at reducing non-market risks in
existing derivatives portfolios without changes in the market risk of the portfolios. ”

4In the bilateral case where 2 institutions share several fungible trades that go in both
directions, the exercise is much simpler as it merely consists of removing all bilateral contracts
and creating a new contract between the two same institutions with a notional value equal to
the net value of all original outstanding contracts.
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Figure 1: Illustration of an OTC market. All trades are outstanding and relate
to Credit-default-swap contracts written on the same government reference entity
for the month of April 2016. The data were collected under the EMIR framework
and thus contain all trades where at least of counterparty is based in EU. Green
nodes correspond to buyers. Red nodes correspond to sellers. Purple nodes are
G16 dealers. Blue nodes are dealers not belonging to the G16 dealers set.
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Figure 2: A graphical example of compression

parties might not know the presence and amount of trades they are not involved in
directly. In case institutions refuse to disclose their positions to other participants
while still seeking to compress, a solution is to involve a third party (for instance, a
dedicated service provider) that would be required to take care of the compression
analysis. Such entity would recover the portfolio information from each market
participant seeking to compress their position, reconstruct the web of trades and
propose a global compression procedure that satisfies every stakeholder5.

Despite portfolio compression being born out of the regulatory perimeter
(Duffie et al., 2016), several regulatory bodies and recent regulations have re-
cently supported its adoption6.

As advertised by compression providers7, the increasing interest for compres-

5While the set of participants is theoretically heterogeneous (e.g., banks, insurances, funds,
etc.), the list of existing service providers is limited. TriOptima, LMRKTS, Markit, Catalyst
and SwapClear are among the most active compression service provider in OTC markets. Most
compression operations are run on cleared and uncleared Interest Rate Swaps (IRS) and in-
dex and single-name Credit Default Swaps (CDS). Other instruments are also starting to be
compressed: cross currency swaps, commodity swaps, FX forward, inflation swap. According
to the International Swaps and Derivatives Association (ISDA), portfolio compression is re-
sponsible for a total of $448.1 trillion of IRS derivatives elimination between 2003 and 2015
(ISDA, 2105). According to TriOptima, their portfolio compression service TriReduce has elim-
inated over $861 trillions in notional until September 2016 (continuous updates are reported in
http://www.trioptima.com/services/triReduce.html).

6For example, under the European Market Infrastructure Regulation (EMIR), institutions
that trade more than 500 contracts with each other are required to seek to compress their trades
at least twice a year. Article 14 of Commission Delegated Regulation (EU) No 149/2013 of 19
December 2012 supplementing Regulation (EU) No 648/2012 of the European Parliament and of
the Council with regard to regulatory technical standards on indirect clearing arrangements, the
clearing obligation, the public register, access to a trading venue, non-financial counterparties,
and risk mitigation techniques for OTC derivatives contracts not cleared by a CCP (OJ L 52,
23.2.2013, p. 11- ‘Commission Delegated Regulation on Clearing Thresholds’ or ‘RTS’)

7See, for example, the advertising brochure by Swapclear:
\interfootnotelinepenaltyhttp://www.swapclear.com/Images/lchswapcompression.pdf
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sion results from many benefits at the market participant level. Overall, we can
distinguish between three major incentives for institutions to engage in compres-
sion:

Reduction of counterparty risk As contracts are removed and replaced by
new contracts with lower notional amounts, the counterparty risk deriving
from the gross exposures to those trades is reduced.

Alleviating regulatory constraints Institutions like banks are subject to cap-
ital requirements computed on the basis of gross measurements8. Hence,
reducing the notional amounts of contracts can help reducing the corre-
sponding capital requirements of market participants.

Improvement of operational management Reducing the number of contracts
leads to a reduction of operational risks and easier management: trade count
reduction, speed to auction in case of default, less cash-flow needed to set-
tle obligation, fewer reconciliations, lighter burden of settlement, lowered
collateral and margin requirements, etc.

Despite the growing use of portfolio compression, limited policy and academic
work has been devoted to understanding the determinants of excess, compression
operations and the subsequent externalities. A more elaborated view of those
aspects in indeed relevant to ensure a proper design and implementation of com-
pression in OTC markets. Furthermore, compression implies a modification of
the web of outstanding trades which can affect the risk profiles of market partici-
pants and, in turn, the stability of the market as a whole. As monitoring changes
in counterparty risk is paramount to both micro and macro-prudential regula-
tion, the effects of compression should not be ignored. The current work seeks to
fill that gap by providing analytical and empirical insights at the individual and
systemic level.

In this paper, we show that intermediation, determined by the existence of
chains of fungible trades, is the raison d’être of excess in markets. Dealers are thus
at the heart of the generation of redundant trades. However, the level of excess
that can be removed (i.e., redundant excess) is a function of potential constraints
set by both individuals and regulators, i.e., compression tolerances. Hence, com-
pression does not always remove the total amount of excess (i.e., there can be some
residual excess after compression). We identify a spectrum of benchmark com-
pression tolerances settings and investigate their feasibility and efficiency. More
precisely, we consider approaches that differ in the conservation of counterpar-
ties’ trading relationships before compression. We show that a trade-off exists

8For example capital requirements under the Basel framework are computed including gross
derivatives exposures (BIS, 2016)
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between the efficiency of a compression and the level of compression tolerance in
the modification of trading relationships.

Finally, we use a unique data set comprising all credit-default-swaps transac-
tions made by EU institutions between 2014 and 2016 in order to quantify the
levels of excess exhibited by real OTC markets as well the efficiency of the above
mentioned compression methods. We find that the vast majority of markets de-
fined as the set of transactions written on the same reference entity with the same
maturity (as illustrated by Figure 1) exhibit levels of excess accounting for more
than 50% of the total gross notional. This finding is robust over time. Regarding
compression, we show that even the most conservative method achieves more than
50% of excess removal for most markets. Relaxing compression constraints on the
intra-dealer segment of markets yields significantly better efficiency (i.e., 70% of
excess removal for most markets) with cases of more than 97% of excess removal.

Despite the application of our framework on derivatives markets, our findings
and methods can similarly be applied to other over-the-counter markets. As long
as a market exhibits fungibility, contingency and intermediation, our framework
can help understanding the generation of excess and the possibility of reducing
it. Hence markets like credit markets or bond markets are natural candidates for
such exercise.

The rest of the paper is organized as follows. We provide an overview of
the relevant literature for this work in Section 2. In Section 3, we introduce
the general setting for our analysis describing a model of an OTC market and
the formal definition of excess. Section 4 provides the core of the paper. It
describes compression as a network operation over the market; discusses the issues
of compression tolerances and proposes benchmark cases; analyses the feasibility
and efficiency of each approach. In Section 5, we report the results of our empirical
analysis of excess and compression efficiency in real Over-The-Counter (OTC)
derivatives markets. Last, we conclude and discuss avenues for further research
as well as comments on some operational and regulatory aspects of compression
in Section 6. Appendices provide proofs of the propositions and lemmas as well
as analytical details for the algorithms used in the paper.

2 Literature review

The study of OTC markets structures has gained attention in the last decade
prompted by both their role in the 2008 financial crisis and the increase of data
availability (Duffie, 2012).

Despite the use of different sets of data and the focus on different instruments,
many contributions show similar findings. First, there are typically two types of
market participants: dealers and customers. Customers enter the market either
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to buy or sell a particular product while dealers act as intermediary and keep
balanced positions (i.e., they seek to have a relatively low net balance of contracts
bought and sold with respect to their gross amount). In particular, this feature has
been well documented for derivatives markets (Shachar, 2012; Benos et al., 2013;
Peltonen et al., 2014; Abad et al., 2016; Ali et al., 2016). To a larger extent, this
same feature is in line with the core-periphery structure of OTC credit markets
(Craig and Von Peter, 2014; van Lelyveld et al., 2014; Fricke and Lux, 2015).

Institutions acting as dealer are typically large banks (Craig and Von Peter,
2014). (Atkeson et al., 2015) propose a parsimonious theoretical model which
generates the above described feature for derivatives markets: they show that
banks that enter an OTC derivatives market for intermediation profit incentive
need to be larger to bear the entry cost while not benefiting from a long or
short position in the market. (D’Errico et al., 2016) empirically observe that
in the global OTC credit default swap market these intermediaries form a very
tight structure which entails closed intermediation (exposure) chains. The authors
report that this structure occurs on almost all reference entities and can be related
to the notion of “hot potato” trades, a feature of OTC derivatives observed and
modeled by (Burnham, 1991; Flood, 1994; Lyons, 1995, 1997).

Furthermore, those markets are characterized by the concentration of large
amounts of notional within the intra-dealer activity. For the CDS market, (Atke-
son et al., 2013) report that, in the US, on average, about 95% of OTC derivatives
gross notional held on banks’ balance sheet is concentrated in the top five banks;
(D’Errico et al., 2016) shows that, using worldwide data on CDS, between 70%
and 80% of the notional is in the intra-dealer market across reference entities.
(Abad et al., 2016) report similar levels for Interest-Rates-Swaps (IRS) markets
and Foreign-Exchange (FX) markets in the EU market.

Overall, this large amount of intra-financial exposures relates to a deeper role
of financial intermediation, as detailed by (Allen and Santomero, 1997), who find
that certain OTC derivative markets are “mainly markets for intermediaries rather
than individuals or firms”. Furthermore, the authors note that standard interme-
diation theories could not explain the large surge in intermediation as merely a
result of reduced transaction costs and informational asymmetries.

In contrast to above listed efforts to better understand OTC markets, lim-
ited attention has been devoted to market compression in the literature. This
reflects both the novelty of this financial innovation and the recent adoption by
market participants due to the contemporary regulatory changes (e.g., the Basel
III leverage ratio framework which accounts for derivative gross exposures).

An explorative study of compression is proposed by (O’Kane, 2014). The au-
thor analyses, by means of simulations, the performances of different compression
algorithms on a synthetic network where all banks are connected. The bench-
mark algorithm is in the spirit of the approach followed by TriOptima (to the
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author’s claim) which is based on a depth-first search algorithm. The author
shows that, if performed optimally, compression mitigates counterparty risk and
suggests compression be encouraged by regulators. (Benos et al., 2013) use CDS
transaction data from the UK to show that monthly reduction breaks in dealers’
gross positions are due to compression, indicating the frequency of compression
cycles.

In spirit, this paper is also related with works on the “gridlock problem” in
payments system and in particular the issues of minimal settlements. Rotem-
berg (2011) models a system of payment interconnected via due payments and
identifies the conditions under which the market can be cleared with minimal
endowments of liquid assets. This approach is relevant in the context of this
paper as compression can also be seen as a procedure that seeks to reduce the
conditional payments without affecting the expected net flow from each market
participant. Importantly, the author shows that in the absence of closed chains
of intermediation, solvency necessarily implies the settlements of all obligations.
(Hayakawa, 2015) expands the model to characterize further the lower and upper
bounds of required settlement funds.

From a policy perspective, our work relates to ongoing debates on the ade-
quacy of the regulatory framework. In particular, the way net and gross positions
information are currently used under different accounting rules is subject to con-
cerns as they do not allow to fully capture the risks associated (Blundell-Wignall
and Atkinson, 2010). In particular, (Gros, 2010) shows that under different leg-
islation (i.e., US and Europe), the same financial institutions can exhibit very
different profiles. Compression, by affecting the gross levels without changing the
net levels, can therefore have an effect on the accounting approach followed by
policy makers and other market analysts.

Finally, our work relates to the growing stream of works highlighting the im-
portant relationship between interconnectedness and systemic risk in financial
markets (Allen and Babus, 2008; Yellen, 2013). These works explore the role of
interdependencies on the propagation of distress at different levels: link forma-
tion (Babus, 2016; Gofman, 2016), default cascades (Allen and Gale, 2000; Elliott
et al., 2014; Acemoglu et al., 2015) and regulatory oversight (Roukny et al., 2016).
This paper contributes to this literature by showing how post-trade practices can
affect the network profile of a financial market. Intuitively, compression affects
counterparty risk which has held a central role in the unfolding of the 2007-2009
financial crises together with OTC derivatives markets (Haldane, 2009; European
Central Bank, 2009; Brunnermeier et al., 2013)

However, in this work, we do not build explicit links between compression
and systemic risk. Our framework rather helps understanding how to manage
counterparty risk reduction, collateral demand and capital requirements in post-
trade situations. The focus we take is rather on providing a first comprehensive
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framework to understand the mechanics underlying such reduction: future work
will tackle more systemic risk questions in a more explicit way.

3 The market

We consider an Over-The-Counter (OTC) market made of n market participants
(institutions) indexed by N = {1, 2, ..., n}. These institutions trade contracts
with each other and establish a series of bilateral obligations. While we keep the
contract type very general, we assume that these obligations are fungible, that is,
the traded contracts have the same payoff structure from the market participants’
perspective and can thus be algebraically summed. The whole set of outstanding
obligations in the market constitutes the financial network. Formally, we have the
following definition:

Definition (Financial Network). The network or graph G is the pair (N,E) where
N is a set of institutions present in the market and E is a set of directed out-
standing fungible obligations (i.e., edges) between two institutions in the market.
An outstanding obligation is represented by eij whose value corresponds to the no-
tional value of the obligation and the directionality departs from the seller i to the
buyer j with i, j ∈ N .

From the financial network, we infer two measurements of an individual’s
position in the OTC market: the gross position and the net position. On the one
hand, the gross position of an institution i is the sum of all obligations’ notional
value involving this institution on any side of the trade (i.e., buyer and seller).

Definition (Gross position). The gross position of i is given by:

vgrossi =
∑
j

eij +
∑
j

eji =
∑
j

(eij + eji) (1)

On the other hand, the net position of an institution i is the difference between
the sum of the notional values all i’s obligations’ towards other nodes in the
network and the sum of the notional values of the obligations from other nodes
in the network to i:

Definition (Net position). The net position of i is given by:

vneti =
∑
j

eij −
∑
j

eji =
∑
j

(eij − eji) (2)

We also define the total gross notional of the market as the sum of the notional
amounts of all trades:
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Definition (Total gross notional). The total gross notional of a market is given
by:

x =
∑
i

∑
j

eij (3)

Furthermore, we classify market participants according to their activity in the
market. A market can contain two types of institutions: customers and dealers.
Customers only enter the market to buy or sell a given contract. They are thus
active on one side of each trade. In contrast, dealers also intermediate between
other market participants and, thus, act both as buyers and sellers of the same
contract type. We use the following indicator to identify dealers in the market:

Definition (Dealer indicator). Given a market G = (N,E), let δ() indicate
whether a market participant is a dealer in the market in the following way:

δ(i) =

{
1 if

∑
eij.
∑
eji > 0 (dealer)

0 otherwise (customer)
(4)

In a sense, we generalize the modeling approach of (Atkeson et al., 2015) with
regards to market participant types. Note that, as a results, only 3 types of
trading relationships can exist in the market: dealer-customer, dealer-dealer and
customer-customer.

3.1 Definition of excess

We now elaborate on the concept of excess and the condition for markets to exhibit
positive levels.

Let us start by introducing a post-trade mathematical operator that acts upon
a market in order to modify the set of outstanding liabilities. Such operation
can be subject to different types of constraints. Here we focus on the concept
of net-equivalence. In our framework, an operation on a networked market is
net-equivalent if, despite exhibiting a different set of edges, the resulting market
keeps the net position of each institution equal to its original value (i.e., before
the operation). Formally, we have:

Definition (Net-Equivalent Operation). Given a market G = (N,E) an opera-
tion Ω() such that G′ = Ω(G) : (N,E)→ (N ′, E ′) is net-equivalent if

N = N ′ (5)

and
vneti = v

′net
i ∀i ∈ N (6)

where vneti and v
′net
i are the net positions of i in G and G′ respectively.
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Notice that the networks G and G′ differ by the configuration of their obli-
gations which could be due to changes in the notional value of existing trades or
creation and removal of trades. Furthermore, the aggregate gross notional of each
net-equivalent market does not need to be equal.

We now show that, given an original market, it is possible to compute the min-
imum level of gross notional that can be obtained from a net-equivalent market.

Proposition 1. Given a market G = (N,E), if a net-equivalent operator Ω on
G is such that:

G′ = Ω(G) = min
x′

(Ω(G) : (N,E)→ (N ′, E ′))

then

x′ =
1

2

n∑
i=1

|vneti | =
n∑

i: vneti >0

vneti (7)

Proof. See Appendix �

In fact, as the market we defined is a closed system (i.e., both sides of all the
trades are market participants, ∀ei,j ∈ E, i ∈ N and j ∈ N), the sum of all net
positions must be equal to zero (

∑
i v

net
i = 0). Nevertheless, looking only at the

institutions with a positive net position (i.e., institutions for which total selling
outbalances total buying), we obtain the total out-flow of the market. This total
out-flow is necessarily equal, in absolute values, to the total in-flow obtained from
all the institutions with a negative net notional. The out-flow is also equal to half
the absolute sum of all net notional positions as the sum of all positive and all
negative net positions are equal. If the total amount of notional in the market is
smaller then the total out-flow, there will be no configuration of trades such that
the resulting market is net-equivalent because there will exist at least one market
participant with

∑
j(e
′
ij − e′ji) < vneti . Hence, in order to be net-equivalent, the

resulting market’s gross notional must be at least equal to the total out-flow. Note
that there can exist several G’ but they all share the same level of gross notional
(i.e., v′gross = 1

2

∑n
i=1 |vneti |).

We can now formally define the excess of a market. In fact, if, for a given
market, there exists a net-equivalent operation that reduces the aggregated gross
notional, we conclude that the original market exhibits trades that can be removed
or modified without affecting the net positions of any market participant.

Given the previous result, we can quantify the total level of excess in a market
as the difference between the aggregate gross notional of a given market and the
aggregate gross notional of the net-equivalent market with the minimum market
aggregate gross notional. Formally, we define and quantify the excess in a market
as follows:
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Definition (Excess). The excess in the market is defined as

∆(G) = x− x′ (8)

=

(
n∑

i=1

n∑
j=1

eij −
1

2

n∑
i=1

|vneti |

)
(9)

=

 n∑
i=1

n∑
j=1

eij −
n∑

i: vnet
i >0

vneti

 (10)

Note that Equation (8) and Equation (9) are equivalent as long as the market
under study is a closed-system. The excess in the market is thus the amount of
notional generated by trades that offset each other: it corresponds the amount of
notional that can be removed without affecting the net position. Note that, at
this stage, we are not accounting for the potential positive value of some offsetting
outstanding contracts for market participants or market regulators. We elaborate
on that aspect in Section 4.2.

3.2 Existence condition

Not all markets exhibit notional excess. As mentioned above, the existence of
excess is due to the existence of a difference between net and gross positions of
(some) individual positions. In the following, we identify a necessary and sufficient
condition for excess to emerge in a market: the existence of intermediation. In
fact, for excess to exist in the market, we need at least one institution to have
its gross position larger than its net position. As we show below, such case only
exists if the institution is selling and buying the same type of contract at the same
time (even if done at different levels of notional), that is, if the institution is a
dealer. From a network perspective, this situation is present when there exists at
least two edges where the same institution is found at each ends. More formally,
we define intermediation as follows:

Definition (Intermediation). A market G = (N,E) exhibits intermediation i.i.f.

∃i ∈ N s.t. δ(i) = 1

At the market level, we thus have the following result:

Lemma 1. Given a market G = (N,E), if:∑
i∈N

δ(i) > 0⇒ ∆(G) > 0
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In fact, if there is no intermediation, net positions are equal to gross positions
as every participant is active only on the buy or sell side (i.e., only customers in
the market). As a result, markets with no intermediation do not exhibit notional
excess. This result provides a global market view on the effect of intermediation
in distorting gross and net measurements. It generalizes measurements at the
individual level as shown in the entry-exit model of (Atkeson et al., 2015). This
result also explicitly shows why the existence of notional excess is intrinsic to
OTC markets: the presence of dealer institutions is the source of notional excess in
those markets. We conclude that the two main types of market organizations (i.e.,
over-the-counter and centralised echange-traded markets) have different levels of
notional excess,

Corollary 1. Centralised exchange-traded market markets exhibit no excess

Centralised exchange-traded market markets can indeed be framed as bi-
partite networks consisting of customers exclusively interacting with each other
on the buy and sell spectrum and thus vneti = vgrossi , ∀i ∈ N .

Corollary 2. In the presence of dealers, over-the-counter markets always exhibit
positive notional excess.

Even if some over-the-counter markets exhibit customer-customer trading rela-
tionships, those interactions do not contribute to notional excess. It is the activity
of dealers that generates notional excess both in the intra-dealer segment and in
the dealer-customer segment. Several studies have stated the prevalent role of
dealers in over-the-counter markets (Duffie et al., 2005) and others have shown
the high levels of notional concentration in the dealers segment of OTC markets
(Atkeson et al., 2013; Abad et al., 2016; D’Errico et al., 2016) as illustrated in
Figure 1. We also document these feature in the empirical section of this paper.

Finally, note the special case of bilaterally netted positions. It often happens
that two institutions having an outstanding trade decide to terminate this trade
by creating an offsetting trade (i.e., contract of similar characteristics in the op-
posite direction). Such situation also generates excess as trades are accounted
for in the gross position while they do not contribute to the net position of each
counterparty. While those mechanisms cannot be framed as intermediation, the
formal network definition still applies (i.e., both institutions are active on the buy
and sell side) and the related results are unchanged (i.e., existence of notional
excess).

3.3 Excess decomposition

We now explore the decomposition of excess with respects to two segments of the
market: the intra-dealer market and the customer market.

13



The intra-dealer (sub-)market only contains obligations between dealers while
the customer (sub-)market contains obligations where at least one counterparty
is a customer. Formally we have:

Definition (Intra-dealer and customer market). The set of contracts E can be
segmented in two subsets ED and EC such that

δ(i).δ(j) = 1 ∀eij ∈ ED (11)

δ(i).δ(j) = 0 ∀eij ∈ EC (12)

Where ED is the intra-dealer market and EC is the customer market and ED +
EC = E.

In general, the excess is not additive: quantifying the excess of each segment
separately does not lead to excess of the entire market. Special cases of excess
additivity are presented in the following result:

Proposition 2 (Additivity of excess). Given a market G = (N,E), and the two
markets G1 = (N,E1) and G2 = (N,E2) obtained from the partition {E1, E2} of
E, then:

∆(G) ≥ ∆(G1) + ∆(G2)

which implies that:

∆(N,E) ≥ ∆(N,ED) + ∆(N,EC)

In particular, we have additivity, ∆(N,E) = ∆(N,ED) + ∆(N,EC) if

1.
∑dealer

h (edh − ehd) = 0, ∀d ∈ D, or

2.
∑customer+

c+ edc+ −
∑customer−

c− ec−d = 0, ∀d ∈ D

Proof. See Appendix �

The above results states that if all dealers have a zero net position w.r.t. to all
their outstanding trades with (1) their dealer counterparties or (2) their customer
counterparties, then the excess can be decomposed between the intra-dealer excess
and the dealer-customer excess. In general, we have ∆(E) ≥ ∆(ED)+∆(EC). The
insights from this results will become useful when we consider applying different
methods of excess reduction for the different segments of the market.
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4 Compression

Building on the framework introduced in the previous section, we now focus on
ways to reduce the excess of markets, that is, we investigate the extent to which
the excess of OTC markets can be compressed. In particular, we adopt an analo-
gous concept as that of portfolio compression already in place in some derivatives
markets. Portfolio compression is a technique that aims at terminating outstand-
ing trades and creating new ones in order to reduce gross individual positions
without affecting net positions.

In our framework, compression is an operation over the market’s underlying
network of outstanding trades that effectively reduces the excess of notional. For-
mally, we have the following definition of compression in OTC markets:

Definition (Compression). Given a market G = (N,E) and a market G′ =
(N,E ′) := c(N,E) is compressed w.r.t. to G if and only if

v
′net
i = vneti and v

′gross
i ≤ vgrossi for all i ∈ N

with at least one strict inequality and where c() is a net-equivalent network oper-
ator.

Compression, at the market level, is thus an operation on the network of
outstanding trades (i.e., c(N,E)) that reconfigures the set of edges ((N,E ′) :=
c(N,E)) while (i) keeping all net positions constant (i.e. net-equivalence) and
(ii) reducing the individual gross notional of at least one node. By construction,
this latter property leads to a reduction of gross notional at the market level (i.e,
x′ < x). As a result, compression on a market always reduces the excess. The
above definition is a canonical definition of compression. Several refinements can
be added to the compression operator. We discuss these aspects in Section 4.2.

4.1 Feasibility

As, by definition, compression acts upon market excess, a direct consequence of
Lemma 1 is that compression can only take place if there is intermediation in the
market:

Corollary 3 (Necessary condition for compression). Compression can only take
place if there is intermediation in the market.

Similar to the excess conditions, such results informs us that centralised exchange-
traded markets are not candidate for compression. Note that the intermediation
condition is necessary but not sufficient as additional factors can be accounted
for to determine the sufficiency of compression. Those factors, called compression
tolerances, can limit the capacity to compress the excess of a market.
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4.2 Tolerances

In realistic settings, designing a compression operator also includes factors such
as individual preferences or regulatory restrictions. For instance, at the individ-
ual level, market participants might not be willing to compress certain trades; at
the regulatory level, policy makers might refuse that new trades be created be-
tween specific counterparties in the market. We call these additional constraints
compression tolerances, as they define the extent to which modifications can be
applied to the set of portfolios during the compression exercise both in terms of
change in currently existing contracts and creation of new ones with new coun-
terparties. Compression tolerances thus determine the degrees of freedom for a
compression operation to take place.

Formally, compression tolerances form a set of constraints at the bilateral level
of each potential edge in the networked market.

Definition (Compression tolerances). A compression operator c() s.t. G′ =
(N,E ′) := c(N,E) satisfies the set of compression tolerances Γ = {(aij, bij)|a, b ∈
R, i, j ∈ N} if

aij ≤ e′ij ≤ bij ∀i, j ∈ N

with 0 ≤ aij ≤ eij, eij ≤ bij ∀(i, j) ∈ N .

For each potential contract between two counterparties in the resulting com-
pressed market, there exist a lower (i.e., aij) and upper bound (i.e., bij). Those
constraints are tolerances and hence cannot force an expected value for the re-
sulting obligation, that is why lower bound (resp. upper bound) cannot be higher
(resp. lower) than the original obligation notional, i.e., aij ≤ eij (resp. eij ≤ bij).

The levels of compression tolerances affect how much excess can be removed
from compression: there is a potential opportunity cost in the efficiency of com-
pression resulting from how participants’ portfolios can be modified9.

Finally, note that compression tolerances on a bilateral obligation (i, j) are
set from the combination of both participants i and j constraints, as they must
satisfy each participant’s individual sets of constraints (both on the asset and the
liability side).

9In the context of clients to a compression service provider, compression tolerances deter-
mine how much the clients are willing to stick to their original positions. In derivatives markets,
service providers such as TripOptima call those constraints risk tolerances. As they can re-
duce the efficiency of a compression exercise, bargaining can also take place between the service
provider and its clients in order to modify those constraints. Dress rehearsals are steps in the
compression exercise where the service provider informs all the clients on a candidate compres-
sion solution and seeks their confirmation. Several iterations can be needed before an optimal
solution satisfying all participants is reached.
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4.3 Residual and redundant excess

The set of all individual compression tolerances determines the trades that can be
deemed redundant and thus modified. Hence, the total excess of a market as in
Definition 3.1 can be divided in two levels: redundant excess and residual excess.
The former is the excess that can be compressed while the latter is the excess
that remains after compression. The determination of those levels is conditional
upon (1) the underlying network of outstanding fungible contracts and (2) the set
of compression tolerances set by the market participants or the market regulator.
Formally, we have:

Definition (Residual and redundant excess). A compression operator c() s.t.
G′ = (N,E ′) := c(N,E) satisfying the set of compression tolerances Γ = {(aij, bij)|a, b ∈
R, i, j ∈ N} generates:

• ∆res(G) = ∆(G′) (residual excess)

• ∆red(G) = ∆(G)−∆(G′) (redundant excess)

We have the following relationship: ∆(G) = ∆res(G) + ∆red(G)

4.4 Efficiency

Given a market, there exist many possible compression operations. In order to
compare them, we associate each compression operator ck(N,E) with its redun-
dant excess. We can thus assess the efficiency of different compression operations
using the associated levels of excess reduction.

Definition (Efficiency of Compression). A compression operator over a network
G, cs(N,E) is more efficient than another compression operator, ct(N,E) if

cs(N,E) � ct(N,E)⇔ ∆s
red(G) > ∆t

red(G) (13)

From this definition it appears that a compression operator that yields a com-
plete reduction of the overall excess achieves the highest level of efficiency (i.e.,
∆res(G) = 0).

The definition can be re-expressed in relative terms by introducing a compres-
sion ratio, i.e.:

cs(N,E) � ct(N,E)⇔ ρs > ρt (14)

Where ρs =
∆s

red(G)

∆(G)
and ρt =

∆t
red(G)

∆(G)
are the compression ratios of cs and ct

respectively, i.e., the fraction of notional obligation eliminated via the compression
operation. The ratio provides a natural way to compare different compression
operators when applied to networks where obligations are of a dissimilar type
(e.g. expressed in different currencies or with different underlying in case of a
derivative).
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4.5 Benchmark approaches

In practice, compression tolerances are set to cover a wide range of heteroge-
nous preferences from market participants and regulators. As a result, the space
of possible compression tolerance combinations is infinite. Nevertheless, in the
following, we study specific compression benchmark as ways to define the condi-
tions and maximum levels of compression that can be achieved according to some
standardized set of preferences. As such, we consider the two following case:

1. (aij, bij) = (0, eij) ∀i, j ∈ N

2. (aij, bij) = (0,+∞) ∀i, j ∈ N

Those two benchmark are informative on the role of preferences with regards
to previously existing trading relationships. As such we call these approaches
conservative and non-conservative. Intuitively, the non-conservative case has the
highest levels of compression tolerance: it discards all counterparty constraints.
The approach is deemed non-conservative with respect to the original web of
contracts in the market. In the conservative case: compression tolerances are
such that e′ij ≤ eij for all links. The compression tolerances are such that all
original dependencies can be reduced or removed but no new relationships can be
created. It is conservative with respect to the original trading relationships of the
market. Below, we formalize those two approaches.

4.5.1 Non-conservative compression

In the non-conservative compression approach: the resulting set of new trades E ′

is not determined in any way by the previous configuration of trades E.

Definition (Non-Conservative Compression). c(N,E) is a non-conservative com-
pression operator i.f.f. c() is a compression operator that satisfies the compression
tolerances set Γ:

aij = 0 and bij = +∞, ∀(aij, bij) ∈ Γ, (15)

In practice, such benchmark approach is unlikely to be the default modus
operandi. However, it is conceptually useful to study as it sets up the bar for the
most compression tolerant case.

4.5.2 Conservative compression

The second compression approach is defined as conservative. A compression op-
eration is conservative if the set of new trades resulting from the compression
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Figure 3: Original configuration the market

is strictly obtained from the reduction in notional values of previously existing
trades. Trades can be removed (i.e., complete reduction of notional) but no new
trade can be introduced. Formally, we have:

Definition (Conservative Compression). c(N,E) is a conservative compression
operator i.f.f. c() is a compression operator that satisfies the compression toler-
ances set Γ:

aij = 0 and bij = eij, ∀(aij, bij) ∈ Γ, eij ∈ E (16)

The resulting graph G′ = (N,E ′) is a ‘sub-graph’ of the original graph G = (N,E).

Such benchmark approach is arguably close to the way most compression takes
place in derivatives markets (O’Kane, 2014).

4.5.3 A simple example with 3 market participants

To better articulate the different ways in which portfolio compression can take
place according to the conservative and non-conservative approach, let us take
the following example of a market made of 3 financial institutions. Figure 3
graphically reports the financial network: the institution i has an outstanding
contract sold to j of notional value 5 while buying one from k of notional value
20 and j has an outstanding contract sold to k of notional value 10. For each
institution, we compute the gross and net positions:

vgrossi = 25 vneti = −15

vgrossj = 15 vnetj = +5

vgrossk = 30 vnetk = +10

We also obtain the current excess in the market:

∆(G) = 35− 15 = 20
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Let us first adopt a conservative approach. In this case, we can only reduce or
remove currently existing trades. A solution is to remove the trade between i and
j and adjust the two other contracts accordingly (i.e., subtract the value of the
ij contract from the two other contracts). The resulting market is represented in
Figure 4(a). Computing the same measurements as before, we obtain:

v′grossi = 15 v′neti = −15

v′grossj = 5 v′netj = +5

v′grossk = 20 v′netk = +10

We also obtain the new excess in the market:

∆cons
res (G) = 20− 15 = 5

We see that, after applying the conservative compression operator that re-
moved the (i, j) contract, we have reduced the excess by 15. It is not possible
to reduce the total excess further without violating the conservative compression
tolerances. We thus conclude that, for the conservative approach, the residual
excess is 5 and the redundant excess is 15.

Let us now go back to the initial situation of Figure 3 and adopt a non-
conservative approach. We can now create, if needed, new trades. A non-
conservative solution is to remove all trades and create 2 new trades: one going
from j to i of value 5 and one going from k to i of value 10. We have created
a contract that did not exist before between j and i. The resulting market is
depicted in Figure 4(b). Computing the same measurements as before, we obtain:

v′gi = 15 v′ni = −15

v′gj = 5 v′nj = +5

v′gk = 10 v′nk = +10

We also obtain the current excess in the market:

∆non−cons
res (G) = 15− 15 = 0

We observe that we have managed to achieve perfectly efficient compression
as there is no more excess of notional in the resulting market while all the net
positions have remained untouched. Individual gross positions are now completely
in line with the net positions. Nevertheless the solution has generated a new trade
(i.e., from j to i). We thus conclude that, for the non-conservative approach, the
residual excess is 0 and the redundant excess is 20.
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Figure 4: Examples of conservative and non-conservative compression approaches.

Conservative Non-conservative
Total excess 20 20
Redundant excess 15 20
Residual excess 5 0

Table 1: Table summarizing the results applying conservative and non-
conservative compression on a market with 3 participants.

The results are summarized in Table 1. Though simple, the above exercise
hints at several intuitive mechanisms and results. In the following sections, we
develop further those aspects in a systematic and generalized analysis.

4.6 Feasibility and efficiency

For each compression approach, we identify the conditions under which compres-
sion can take place and the efficiency of each approach. We conclude by proving
the existence of a trade-off between the approaches and the level of efficiency.

4.6.1 Non-conservative compression

With non-conservative compression operators, the set of trades prior to compres-
sion does not matter for determining the new set of trades, only the net and gross
positions of each individuals do. We can thus generalize the Corollary 3 as follows:

Proposition 3. Given a market G(N,E) and compression cn() satisfying a non-
conservative compression tolerance set Γ:

∆cn

red(G) > 0 ⇔
∑
i∈N

δ(i) > 0
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Furthermore, once non-conservative compression is possible, we can analyze
the efficiency of such compression operation. The efficiency criterion is solely based
on the amount of excess notional that is successfully removed after compression
is applied. Given the role of intermediation in generating excess, removing chains
of intermediation present in the network directly reduces the excess. Recall from
Lemma 1 If all intermediation chains are broken, the market exhibits zero excess.
Moreover, the resulting market is composed of two kinds of participants: selling
customers on one side and buying customers on the other side. No institution
combines both activities anymore, that is, non-conservative compression either
removes dealers from the market (if their net position is zero) or makes them
buying customers (resp., selling customers) if their net position is negative (resp.,
positive). Such market is thus necessarily characterized by a directed bipartite
underlying network structure:

Definition (Directed Bipartite Graph). A graph G=(N,E) is bipartite if the set
of nodes can be decomposed into 2 subsets N out and N in where each set is strictly
composed of only one kind of node: respectively, nodes with only outgoing edges
and nodes with only incoming edges. The edges are characterized as follows: eij
with i ∈ N out and j ∈ N in. Also, a bipartite graph has no dealers:∑

i∈N

δ(i) = 0

Note that any compression operator that transforms a market with interme-
diation into a market that is bipartite is necessarily non-conservative. More im-
portantly, any compression operation leading to a bipartite structure is also a
perfectly efficient compression as all the excess becomes redundant:

Proposition 4. Given a market G = (N,E), there exists a set of non-conservative
compression operators C such that

C = {cn|∆cn

res(G) = 0} 6= ∅

Moreover, let G′ = cn(G)|cn ∈ C, then G′ is bi-partite.

Proof. See Appendix �

The proof of existence stems from the following algorithm: from the original
network, compute all the net positions then empty the network and generate
edges such that the gross and net positions are equal at the end. As net and gross
positions are equal, the resulting market has a bipartite underlying architecture:
there is no intermediation.
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Corollary 4. Given a market G(N,E) a compression operation c(N,E):

∆c
res(G) = 0

if ∑
i∈N ′

δ(i) = 0

Hence, by generating a method that removes all intermediation in the market
while keeping the net positions constant, all the (redundant) excess is removed.
Such method can be formalized under an algorithmic framework. Obviously, there
exist many ways to devise algorithm that conduct intermediation removal and
there exist multiple solutions that achieve a similar level of efficiency. For illus-
trative purposes, we provide a simple algorithm for such type of compression in
the Appendix.

Remark: a more realistic approach to non-conservative compression

In a realistic setting, exposure limits exist, either set by individuals or by regu-
lators. In the non-conservative case, this implies a cap on the upper bound of
each compression tolerance (i.e., bij). In the following we consider the case of a
non-conservative compression with a common exposure limit set to any bilateral
relationship in the market (e.g., set by the regulator). We have:

(aij, bij) = (0, λ) with λ > max{eij} λ ∈ R+

The value of λ will affect the efficiency of the non-conservative case. Never-
theless, it is possible to determine the value beyond which the previous results
on the efficiency of non-conservative compression still hold (i.e., achieving full
compression).

Proposition 5. Given a market G = (N,E), if compression tolerances Γ =
{(aij, bij)|a, b ∈ R, i, j ∈ N} are set such that:

(aij, bij) = (0, λ) with λ > max eij λ ∈ R+

then,
C = {c|G′ = c(G) : ∆c

res(G) = 0} 6= {}

i.i.f.

λ ≥ |vneti∗ |
|N−1.sign(vnet

i∗ )|
where i∗ ∈ N s.t. |vneti∗ | = max{|vneti | ∀i ∈ N}
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Proof. See Appendix �

More generally we see that, a solution with 0 residual excess is possible for
any compression tolerance set Γ that satisfies the following conditions:

aij = 0, bij ≥
|vneti∗ |

|N−1.sign(vnet
i∗ )|

∀(aij, bij) ∈ Γ

A regulator can thus identify conditions under which all the excess can be
removed from the system under regulatory constraints on the exposure limit.

4.6.2 Conservative compression

In the conservative case, an operator can only reduce or remove existing trades.
As we noted before, only non-conservative compression can be applied to general
chains of intermediation as the breaking of intermediation chains generates new
ties. Nevertheless, when chains of intermediation are closed, we show that com-
pression can be used without requiring the creation of new ties. Let us formalize
the concept of closed intermediation chains:

Definition (Directed Closed Chain of Intermediation). A directed closed chain of
intermediation is a set of edges K = (N,E) arranged in a chain of intermediation
such that the first and last node are the same and no other node appears twice in
the set:

E = {e1,2, ..., ei,i+1, ..., en,1}

Hence ∏
i,j

eij > 0

This structure constitutes the necessary and sufficient condition for conserva-
tive compression to be applicable to a market:

Proposition 6. Given a market G(N,E) and a compression operator cc satisfying
a conservative compression tolerance set Γ:

∆cc

red(G) > 0 ⇔ ∃E∗ ⊂ E s.t.
∏

e∗∈E∗
e∗ > 0

Proof. See Appendix �

Next, we show that the most efficient conservative compression (i.e., compres-
sion that removes the highest level of excess) on a single directed closed chain
consists of removing the contract with the lowest notional value in the chain.
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Lemma 2. Given a directed closed chain K = (N,E), consider the set of com-
pression operations C satisfying a conservative compression tolerance set Γ such
that

C = min
x′

(c(N,E) : (N,E)→ (N ′, E ′))

then
e′ij = eij −mine{E}. ∀e′ ∈ E ′

and
∆c

res(K) = ∆(K)− Φ(E),

where Φ(E) = |E|mine∈E{E}

Proof. See Appendix �

On a directed chain, withdrawing the smallest trade removes the maximum
redundant excess without having to change the directionality of other trades. To
keep balances equal, when the trade is removed, its notional value is subtracted
from all other trades in the chain resulting in an excess reduction equal to the
value of the removed trade times the initial number of trades in the closed chain
of intermediation.

Given a market of several closed chains of intermediation, a conservative com-
pression algorithm would thus aim at breaking chains by removing the contract
with the smallest notional value. Breaking a closed chain of intermediation (i.e.,
the set of edges echainij ∈ Echain such that

∏
echainij > 0) results in a reduction of

excess by:

∆res(G) = ∆(G)− Φ(Echain),

At the end of the algorithm, the resulting compressed market does not contain
directed closed chains anymore: it is a Directed Acyclic Graph (DAG)10.

Definition (Directed Acyclic Graph). A Directed Acyclic Graph is a graph that
does not contain any directed cycle (i.e. closed directed chains).

Corollary 5. A market resulting from a conservative compression is a directed
acyclic graph.

The fact that conservative compression cannot take place if there is no closed
chain of intermediation also yields a result on the efficiency limitation of such
compression class of operators. We show that, in general, the residual excess of
a conservative compression is positive (i.e., not all the excess can be removed).
However, there is a specific configuration of closed chains that allows complete
removal of excess. Consider the following type of chain.

10In the Graph Theory literature, closed chains of intermediation are also called cycles.
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Definition (Balanced chain). A balanced chain is a chain of intermediation K =
(N,E) which has the two following features:

1. |{e|e = mine{E}}| ≥ |E|
2

2. if ∃ei ∈ E|ei > mine{E} then {ei−1, ei+1} = {mine{E},mine{E}}

The first property of such chain is that more than half of edges have the same
value and this value is the minimum value of all the set of edges. The second
property states that, for any edge that has a value higher the the minimum value,
the edges preceeding and succeeding it in the sequence of edges in the chain (i.e.,
ei−1 and ei+1) have the minimum value. A chain in which all edges have the same
value is thus a special case of a balanced chain.

We now show that conservative compression can remove all the excess only
when all closed chains of intermediation in the market are balanced.

Proposition 7. Given a market G(N,E) and a compression operator c() satis-
fying a conservative compression tolerance set Γ:

∆cc

res(G) = 0 (17)

i.i.f. all chains in E are closed and balanced

Proof. See Appendix. �

From this result, we also obtain the following corollary:

Corollary 6. If there is at least one closed chain of intermediation that is not
balanced in G = (N,E), then:

∆cc

res(G) > 0

The intuition behind this result is that, in order to completely remove the
excess, there must be no more intermediation in the resulting market. But since
a conservative compression cannot compress an intermediation chain that is not
(i) closed nor (ii) not balanced, there will be a level of excess that cannot be
removed from conservative compression, in the general case. Analyzing further the
efficiency of such approach is less straightforward than the non-conservative case.
In fact, the network structure of the market plays an important role that is not
merely captures in the excess values in part because the number of closed chains of
intermediation will affect the efficiency of a conservative compression. In contrast
with the non-conservative case, it is not possible to establish general expressions
for the expected residual and redundant excess under a conservative approach.
Next we establish conditions under which such formulation is feasible and, then,
we propose an algorithmic method to determine the conservative residual and
redundant excess amounts for any given network structure.
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Figure 5: Example of market with entangled chains

Special case

In order to reach a directed acyclic graph any algorithm would need to identify
and break all closed chains of intermediation. Nevertheless, the sequences of
chains to be compressed can affect the results. In fact, if two chains share edges,
compressing one chain modifies the value of the contracts also present in the other
one. There can be different values of residual excess depending on which closed
chain is compressed first.

Formally, we identify such case as a case of entangled chains of intermediation.

Definition (Entangled Chains). Two chains of intermediation, K1 = (N1, E1)
and K2 = (N2, E2), are entangled if they share at least one edge:

E1 ∩ E2 6= {}

An illustration of entangled chains is provided in Figure 5 where the edge BC
is share by two chains of intermediation (i.e., ABC and BCD)

Let us now formulate the following assumption on the graph:

Assumption 1. (Chain Ordering Proof). A market is chain ordering proof w.r.t.
to the conservative compression if the ordering of entangled chains by Φ does not
affect the efficiency of compression.

If the configuration of entangled chains is such that, according to the initial or-
dering of excess reduction resulting from a compression on each chain, the optimal
sequence is not affected by the effects of compression on other entangled chains,
the market is said to be chain ordering proof. Under the above Assumption, the
optimal conservative compression yields a Directed Acyclic Graph (DAG) where
the excess is given by the following expression:

Proposition 8. Given a market G = (N,E). If there are no entangled chains,
we have:

∆res(G) = ∆(G)−
∑
Ki∈Π

Φ(EKi
)
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In the presence of entangled chains, if G = (N,E) is chain-ordering proof, we
have

∆res(G) < ∆(G)−
∑
Ki∈Π

Φ(EKi
) (18)

Where Π is the set of all chains of intermediation in G.

Proof. See Appendix �

For illustrative purpose, we present an algorithm that always reaches a global
solution under the chain ordering proof assumption in the Appendix.

Generalization

In practice, many markets can exhibit entangled chains with an ordering effect.
When the chain ordering proof assumption does not hold, the sequence of chains
upon which conservative compression is applied will affect the efficiency of the
compression. In order to guarantee a global solution, we characterize conservative
compression as a linear programming problem and apply the network simplex al-
gorithm to determine the most efficient compression procedure. Details regarding
the program characterization and the network simplex algorithm are provided in
the Appendix11.

4.7 Hybrid compression

In more realistic settings, compression tolerances can be subject to the strategical
role of specific trading relationships. In the following, we consider a hybrid model
that results from 2 main assumptions of market participants’ preferences:

Assumption 2. Dealers prefer to keep their intermediation role with customers

Assumption 3. Intra-dealer trades can be switched at negligible cost.

The first assumption states that dealers value their interaction with customers
and will reject compression exercises that remove such contracts. In the case of
a balanced intermediation chain (i.e., where the intermediary has 0 net position),
the intermediary(ies) can be removed from the solution and a sole contract would
be created between the two end-customers. The assumption here is that dealers
prefer to stick with the original situation and will set low compression tolerances
on their customer contracts.

The second assumption posits that the intra-dealer networks forms a well-
connected club where the interactions are so frequent overall that the instance

11For further information on algorithmic solutions for linear programming problems and the
network simplex, see (Ahuja et al., 1993)
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of a specific trade does not signal a strong preference towards a specific dealer
counterparty. As a result, switching counterparties in the intra-dealer network as
a result of compression has negligible costs in comparison with the overall benefits
of compression. The assumption thus results in high compression tolerances on
the contracts between dealers.

In our framework, these two assumptions lead to a segmentation of the market
into the two subsets defined by Definition 3.3: the intra-dealer market, i.e., ED,
and the customer market, i.e., EC . For each we have a different set of compression
tolerances. We have the following formal definition:

Definition (Hybrid compression). c(N,E) is a hybrid compression operator i.f.f.
c() is a compression operator that satisfies the compression tolerances set Γ:

aij ≥ 0 and bij = eij, ∀(aij, bij) ∈ Γ, eij ∈ EC (19)

aij ≥ 0 and bij = +∞, ∀(aij, bij) ∈ Γ, eij ∈ ED (20)

Where EC and ED are the customer market and the intra-dealer market, re-
spectively, with EC + ED = E.

The hybrid compression approach sets high compression tolerance in the intra-
dealer sub-network and low compression tolerance for contracts involving cus-
tomers. Hence, it is a combination of a non-conservative approach in the intra-
dealer network and a conservative approach in the customer network.

Corollary 7. The feasibility of the hybrid model are

• non-conservative condition for ED

• conservative condition for EC

In a market following the definitions of dealers and customers provided in
Section 3, we thus see that compression will only take place in the intra-dealer
network because no closed chains of intermediation will be present in the customer
network. This situation is similar to the conservative case. Nevertheless, the
compression on the intra-dealer network is now non-conservative. As a result,
the intra-dealer network will form a bi-partite graph with 0 residual intra-dealer
excess.

Proposition 9. Given a market G = (N,E), if

∆(N,E) = ∆(N,ED) + ∆(N,EC)

then, a compression operator ch() satisfying a hybrid compression tolerance set Γ
leads to

∆ch

res(N,E) = ∆(N,EC) (21)

As a result, we see that, in case where the excess is additive, it is straightfor-
ward to obtain the efficiency of the hybrid compression. When it is not, a specific
algorithm must be implemented to obtain the exact level (see Appendix).
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5 Empirical application

5.1 Dataset description

In this Section, we apply the theoretical framework developed in this paper to
analyse a unique transaction-level dataset for Credit Default Swaps (CDS) deriva-
tives12. The dataset covers all CDS transactions in which at least one counterparty
is based in the European Union13.

There are multiple selection options to aggregate the data. In the following,
we expose our strategy which focuses on the most conservative approach (i.e., we
gather trades with minimal assumptions on their fungibility).

Each bilateral transaction reports the identity of counterparties, the reference
entity, the maturity of the contract, the currency and its notional amount. For a
given reference entity there can be several identifiers (e.g., government bond with
different maturities). At each point in time, we select the most traded reference
identifier (i.e.,ISIN) associated to the reference with the most traded maturity.
In practice, participants to a compression process may combine a larger variety
of contracts. For sake of simplicity and consistency, we do not consider such
case in the following. At the participant level, we select participant using their
Legal Entity Identifier (i.e., LEI), that is, the entity reporting the transaction. In
practice, financial groups may decide to submit trades coming from different legal
entities of the same group. Once more, for sake of simplicity and consistency, we do
not consider such case in the following. In our framework, a market Gk = (Nk, Ek)
is thus defined as the set of participants and outstanding CDS transactions related
to a specific reference entity k.

We consider 19 mid-month snapshots from October 2014 to April 2016. Over-
all, our sample comprises 7300 reference entities. The vast majority of the no-
tional, however, is concentrated in a much lower number of entities. This allows us
to focus on a restricted sample of entities to illustrate our framework. We opt to
retain 100 references entities which we find to be a good compromise between the
amount of notional traded and clarity of analysis. Our restricted sample comprises
43 sovereign entities (including the largest EU and G20 sovereign entities), 27 fi-
nancials (including the largest banking groups) and 30 non-financials (including
large manufacturing groups).

12Credit-default-swap contracts are the most used types of credit derivatvies. If offers pro-
tection to the buyer of the contract against the default of an underlying reference. The seller
thus assumes a transfer of credit risk from the buyer. CDS contracts played an important role
during the Financial Crisis of 2007-2009. For more information, see (Stulz, 2010)

13For more details on the dataset, the general cleaning procedure and other statistics, see
(Abad et al., 2016)
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5.2 General statistics

An overview of the main statistics is reported in Table 2. In particular, the
total notional of the selected 100 entities varies between 210Bn euro and 250Bn
euros retaining roughly 30−34% of the total gross notional. The average number
of counterparties across the 100 entities is stable and varies between 47 and 59
individual counterparties. The average number of links is also stable and varies
between 109 and 129 bilateral outstanting contracts.

Time
Gross notional
of 100 top ref.
(euros)

Share of
gross notional
among all ref.

Avg
num. of
counterparties

Avg num.
of contracts

Oct-14 2.1E+11 0.336 55 116.41
Nov-14 2.2E+11 0.326 57 122.10
Dec-14 2.3E+11 0.329 59 128.74
Jan-15 2.4E+11 0.331 59 128.60
Feb-15 2.4E+11 0.329 58 126.91
Mar-15 2.4E+11 0.333 53 115.48
Apr-15 2.1E+11 0.320 47 106.99
May-15 2.2E+11 0.320 47 106.98
Jun-15 2.1E+11 0.323 47 105.99
Jul-15 2.2E+11 0.325 49 107.98
Aug-15 2.1E+11 0.321 52 112.42
Sep-15 2.2E+11 0.328 54 115.46
Oct-15 2.3E+11 0.328 55 118.46
Nov-15 2.4E+11 0.330 57 121.82
Dec-15 2.5E+11 0.321 56 121.60
Jan-16 2.5E+11 0.322 56 121.97
Feb-16 2.5E+11 0.320 56 121.97
Mar-16 2.2E+11 0.312 51 109.04
Apr-16 2.3E+11 0.309 51 110.42

Table 2: General statistics of the dataset.

Table 3 provides further statistics on the market segments (i.e, intra-dealer
and customer markets). We compute the average number of dealers, customers
on the buy side and customers on the sell side across all entities in the different
snapshots. We observe stability of these numbers across time: per reference entity,
there are on average 18 to 19 dealers, 12 to 17 customers buying a CDS contract,
14 to 21 customers selling a CDS contract. The average number of contracts
per reference entity varies more through time but remains between 105 and 130
contracts. Taken as a whole, markets are quite sparse with a density of contracts
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around 0.15. This means that, on average, only 15% of all possible bilateral
contracts are actually present. Interestingly, this measure is almost three times
bigger when we only consider the intra-dealer market where the density can reach
0.45. We thus see that the bulk of the activity in those market revolves around
intra-dealer trades. The amount of intra-dealer notional also highlights the level of
activity concentration around dealers: it averages between 73% and 78%. Finally,
the last column of Table 3 confirms the very low frequency of customer-customer
trades: on average, less then 3% of all contracts are written without a dealer on
either side of the trade.

5.3 Quantifying excess and the efficiency of compression

After the general analysis, let us now move to the quantification of the measures
introduced in this paper. We start by measuring the level of excess present in
the markets at hand as a function of the total gross notional (i.e., ε(G) = ∆(G)

x
).

Table 4 reports the statistics of excess levels of 6 snapshots equally spread between
Oct 2014 and April 16 including minimum, maximum, mean, standard deviation
and quartiles. At the extremes, we note a high degree of variability: for example,
in mid-January 2016, the minimum level of excess was 0.261 while the maximum
was 0.806. Nevertheless, results on the means and medians are stable over time
and alway higher than 0.5. We thus see that, in general, around half of the gross
notional in the most traded CDS markets (at least by EU institutions) is in excess
vis-a-vis market participants’ net position.

As non-conservative compression always leads to 0 residual excess, the empir-
ical analysis of the efficiency is trivial: it is equal in every part to the results of
Table 4. In addition, this table also provides us with the upper efficiency limit of
any compression14.

In the case of the conservative and hybrid compressions, the results are not
trivial and require the implementation of specific algorithms (see the Appendix for
a description of each implemented solution). After having implemented each com-
pression algorithm on each market (i.e., for each snapshot, we run the algorithms
on each 100 different markets), we compute the efficiency of the compression as a
fraction of the total level of excess (reported in Table 4):

• Conservative : ρc =
∆c

red(G)

∆(G)

• Hybrid : ρh =
∆h

red(G)

∆(G)

14Note that the current compression exercise does not represent the amount of compression
achieved in the market, rather, it is the amount of compression that is still achievable given the
current state of outstanding trades
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Total Excess Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.422 0.416 0.290 0.262 0.366 0.261 0.292
max 0.811 0.811 0.798 0.820 0.818 0.806 0.781
mean 0.612 0.618 0.612 0.597 0.595 0.568 0.556
stdev 0.087 0.088 0.091 0.096 0.098 0.112 0.098
first quart. 0.561 0.555 0.555 0.527 0.528 0.486 0.499
median 0.617 0.615 0.612 0.610 0.593 0.566 0.565
third quart. 0.665 0.684 0.672 0.661 0.653 0.650 0.635

Table 4: Excess statistics

Table 5 reports the results. On the extremes, both the conservative and
the hybrid compression perform with various degrees of efficiency: the minimum
amount of excess that conservative compression (resp. hybrid compression) os-
cillates around 15% (resp. 35%) while the maximum amount of excess oscillates
around 90% (resp. 97%). This shows that compression can perform very effi-
ciently and very poorly with both approaches. However, the fact that conserva-
tive compress reaches 90% of excess removal shows the possibility of having very
efficient compress despite low compression tolerances. The mean and the median
of both approaches are stable over time: both around 60% for the conservative
compression and 75% for the hybrid compression. Overall, we find that on average
each compression algorithm is able to remove more than half the excess from the
market, the hybrid compression allowing for greater performances as a result of
constraints alleviation (i.e., increase of intra-dealer compression tolerances).

Finally, in order to better appreciate the levels of compression achievable in
the CDS market, we “zoom-in” into the top 5 reference entities by notional across
all time snapshots and investigate how much notional value can be eliminated
via compression. The top five reference entities are all large sovereigns. For each
market, let eijk be the notional contract between i and j on the k-th reference
entity and xk =

∑
k eijk be the total gross notional outstanding on reference

entity k. Let wk = xk∑
k xk

be the relative gross notional for entity k vis-a-vis the

total notional of the 5 markets aggregated. Consider the relative excess ratio
ε(G) = ∆(G)

x
, we compute the following ratio for each compression approach:

Non-conservative: εkn(G) = εk(G)

Hybrid: εkh(G) = ρkh × ε(G)

Conservative: εkc (G) = ρkc × ε(G)
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Conservative (ρc) Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.160 0.203 0.141 0.156 0.181 0.119 0.098
max 0.894 0.927 0.924 0.887 0.912 0.911 0.878
mean 0.575 0.631 0.606 0.587 0.566 0.563 0.538
stdev 0.165 0.159 0.161 0.155 0.171 0.178 0.164
first quart. 0.461 0.514 0.525 0.470 0.452 0.444 0.424
median 0.573 0.642 0.604 0.604 0.542 0.556 0.552
third quart. 0.691 0.731 0.737 0.705 0.688 0.690 0.648

Hybrid (ρh) Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16

min 0.370 0.460 0.377 0.288 0.266 0.296 0.272
max 0.971 0.986 0.968 0.967 0.977 0.975 0.981
mean 0.731 0.771 0.768 0.754 0.749 0.745 0.764
stdev 0.149 0.129 0.128 0.128 0.142 0.134 0.138
first quart. 0.626 0.692 0.689 0.676 0.647 0.658 0.693
median 0.747 0.794 0.786 0.760 0.780 0.757 0.795
third quart. 0.848 0.869 0.860 0.852 0.856 0.855 0.853

Table 5: Statistics of compression efficiency

Finally, we compute the weighted average for each of these ratios as follows:

Non-conservative: εn =
5∑

k=1

(
wk ε

k(G)
)

Hybrid: εh =
5∑

k=1

(
wk ρ

k
h × ε(G)

)
Conservative: εc =

5∑
k=1

(
wk ρ

k
c × ε(G)

)
Those ratios can be easily interpreted as the fraction of notional that can be

eliminated over all five entities taken individually. Results for these weighted av-
erages are reported in Figure 6. The circled series highligted by the light blue
shade represent the weighted non-conservative compression ratio εn (which coin-
cides with the weighted level of excess); the triangle points represent the weighted
hybrid compression ratio εh; the squared points represent the conservative com-
pression ratio εc. From the figure, we observe again large levels of excess across
time, i.e. between 60% and 70%. In addition, the conservative compression ratio
ranges between 40% and 50% of total notional across time. This implies that, in
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the case of the top 5 largest single-name CDS markets and even under very con-
servative assumptions, almost half of the notional can be eliminated while keeping
both individual net positions and counterparty relationships.
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Figure 6: Weighted averages of the non-conservative, hybrid and conservative
compression ratios for the top-5 reference entities in our sample.
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6 Closing remarks

In this work, we have shown that Over-The-Counter (OTC) markets with contin-
gent trades generate gross volumes that can far exceed the amounts satisfying ev-
ery market participants’ net position. We call this difference excess. We show that
the activity of dealers acting as intermediary on all transactions is the main factor
determining the level of excess in a market. In turn, this excess can be removed
while keeping net positions satisfied via a network operation called compression.
To the best of our knowledge, this work is the first to propose a framework to
analyze the mechanics of compression (i.e., feasibility and efficiency conditions)
highlighting a trade-off between the fraction of excess that can be eliminated from
the market and the degree to which counterparties restrain the procedure to pre-
existing trading exposures. Furthermore, we report an empirical investigation to
quantify the levels of excess and the efficiency of different compression procedures
in real OTC markets. We find large levels of excess, important concentration on
the intra-dealer activity and great efficiency of compression when relaxing con-
straints on intra-dealer activities.

The framework is easily adaptable to novelties due to the quick expansion of
this technique and the increasing adoption by market participants. An extension
of the model would account for multiple networks of exposures, as OTC market
participants are often involved in several product classes (Duffie and Zhu, 2011;
D’Errico et al., 2016). A natural question, in a similar spirit of (Duffie and Zhu,
2011) is whether, and to what extent, compression can take place on different
OTC classes.

Along these lines, as OTC trades are increasingly called for standardization
and mandatory central clearing, it is worth investigating the role of Central Clear-
ing Counterparties (CCPs) in determining excess and efficiency of compression.
Indeed, CCPs would be a peculiar node in our framework as their net position is
always zero. Such analysis is straightforward using our framework.

In our work, we have assumed the perspective of social planner, possessing
information on the entire set of trades. In practice gathering information is often
imperfect mainly because (i) not all market participants are seeking compression
or (ii) compression seekers do not disclose their whole portfolio. Compression
providers must therefore operate with a limited set of information, which would
naturally reduce the efficiency set from the point of view of a social planner.
As such, an analysis on the effects of partial information on the feasibility and
efficiency of compression.

Finally, a fundamental item for discussion is the role of compression on sys-
temic risk. As information emerges about the practice and empirical work is done
in order to fully characterize its implementation, regulators and policymakers will
be endowed with increasingly better tools to understand the implication of this
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post-trade activity on systemic risk. There are three main stream of this type of
research we foresee.

The first relates to the elimination (or mitigation) of the effects of chains of
obligations, which have been identified as a source of uncertainty and instability
(Roukny et al., 2016) or as giving rise to frictions such as payments gridlocks
(Rotemberg, 2011). Given these premises, compression seems to have a beneficial
effect in mitigating these effects.

However, the elimination of linkage naturally leads to reshaping the underlying
network, and potentially concentrates exposures into fewer counterparties. This
will lead to changes in counterparty risk, collateral exchange, etc. In particular,
as compression cycles become more and more frequent, participants in the OTC
market may internalize the arrival of a compression cycle and undercollateralized
exposures while expecting their exposures to be reduced. This problem may be
further exacerbated if the cycle is unsuccessful and many trades still outstanding:
this operational risk can be further increased by volatile market conditions.

Furthermore, the impact of compression on capital is another important as-
pect. As OTC derivative exposures are computed in the Basel III leverage ratio,
banks’ capital must include those gross exposures. As compression reduces these
exposures, banks lower the amount of capital necessary to cover the same posi-
tions. There can be two views on the matter. On the one hand, reducing capital
requirement frees up unused leverage and increases investments. On the other
hand, reducing capital requirement affects the loss absorption capacity of market
participants.

Finally, our framework does not pertain uniquely to contingent claims arising
from financial institutions. It may also find application also for non-financial firms,
thereby allowing to quantify the levels of excess and potential compression in the
real economy. Compression may reduce the total amount of outstanding debt
due and liquidity needs. On the other hand, understanding the amount of excess
in the financial and non-financial systems represents a complementary avenue of
research: by identifying potential accumulations of excess, social planners may be
able to set countercyclical policies aimed at reducing debts before the underlying
network structures becomes critical for the propagation of distress (Kiyotaki et al.,
1997).
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A Proofs

A.1 Proposition 1

Proof. The proof consists of two steps.

1. First, we show that given a market G = (N,E), we can always find a net-
equivalent market G′ with total notional of x′ as in Equation 7.

Consider the partition of N into the following disjoint subsets: N+ =
{i|vneti > 0}, N− = {i|vneti < 0} and N0 = {i|vneti = 0} (such that N =
N+

⋃
N−

⋃
N0). Let B ∈ N × N be a new set of edges (each with weight

bij) such that:

• ∀bij s.t. (i, j) ∈ B, i ∈ N+, j ∈ N−;

•
∑

j bij = vneti , ∀i ∈ N+;

•
∑

i bij = vnetj , ∀j ∈ N−.

The total notional of the market G′ = (N,B) is thus given by:

x′ =
∑
i

∑
j

bij =
∑
i∈V +

vneti =
∑
i∈V −
|vneti |.

As edges in B only link two nodes within N (i.e., the system is closed),
the sum of all net position is equal to 0:

∑
i v

net
i = 0. Hence, we have:∑

i∈V + vneti +
∑

j∈V − v
net
j = 0. We see that, in absolute terms, the sum of net

positions of each set (V + and V −) are equal: |
∑

i∈V + vneti | = |
∑

j∈V − v
net
j |.

As all elements in each part have the same sign by construction, we ob-
tain:

∑
i∈V + |vneti | =

∑
j∈V − |vnetj |. As a result, we have:

∑
i∈V + vneti =

1
2
|
∑

i∈V v
net
i |.

2. Second, we show that x′ is the minimum total notional attainable from a
net-equivalent operation over G = (N,E). We proceed by contradiction.
Consider G′ = (N,B) as defined above and assume there exists a G∗ =
(N,B∗) defined as a net-equivalent market to G′ such that x∗ < x′. At the
margin, such result can only be obtained by a reduction of some weight in
B: ∃b∗ij < bij. If x∗ < x′, then there exists at least one node for which
this reduction is not compensated and thus ∃v∗neti < vneti . This violates
the net-equivalent condition. Hence, x′ =

∑n
i: vNi >0 v

N
i is the minimum net

equivalent notional.

�
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A.2 Lemma 1

Proof. By definition, δ(i) = 1 ⇔
∑

j eij ·
∑

j eji > 0: a dealer has thus both
outgoing and incoming edges. Then it holds that:

δ(i) = 1 ⇒ vgrossi > |vneti | ⇔
∑
j

eij +
∑
j

eji >

∣∣∣∣∣∑
j

eij −
∑
j

eji

∣∣∣∣∣ .
In contrast, for a customer

∑
j eij ·

∑
j eji = 0 and thus δ(i) = 0. Then it holds

that:

δ(i) = 0 ⇒ vgrossi = |vneti | ⇔
∑
j

eij +
∑
j

eji =

∣∣∣∣∣∑
j

eij −
∑
j

eji

∣∣∣∣∣ .
The equality is simply proven by the fact that if i is a customer selling (resp.
buying) in the market, then

∑
j eji = 0 (resp.

∑
j eij = 0) and thus both ends of

the above equation are equal.

If G = (N,E) has
∑

i∈N δ(i) = 0, then all market participants are customers, and
we thus have: vgrossi = |vneti | ∀i ∈ N . As a result, the excess is given by

∆(G) = x− 1

2

∑
i

∣∣vneti

∣∣ = x− 1

2

∑
i

|vgrossi | .

As in the proof of Proposition 1, the market we consider is closed (i.e., all edges
relate to participants in N) and thus:

∑
i |v

gross
i | = 2x. We thus have no excess

in such market: ∆(G) = 0.

If G = (N,E) has
∑

i∈N δ(i) > 0, then some market participants have vgrossi >
|vneti |. As a result, the excess is given by:

∆(G) = x− 1

2

∑
i

|vneti | =
1

2

∑
i

|vgrossi | − 1

2

∑
i

|vneti | =

=
∑
i

|vgrossi | −
∑
i

|vneti | > 0

�
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A.3 Proposition 2

Proof. For sake of clarity, in the following we only focus the notation on the set of
edges for the computation of excess. In general, let us decompose the set of edges
E in two subsets A and B such that E = A ∪ B and

∑
ij eij =

∑
ij aij +

∑
ij bij.

We want to verify if
∆(E) = ∆(A) + ∆(B)

We decompose each part according to the definition of excess:∑
ij

eij − 0.5
∑
i

|
∑
j

(eij − eji)| =
∑
ij

aij − 0.5
∑
i

|
∑
j

(aij − aji)|+
∑
ij

bij − 0.5
∑
i

|
∑
j

(bij − bji)|

−0.5
∑
i

|
∑
j

(eij − eji)| = −0.5
∑
i

|
∑
j

(aij − aji)| − 0.5
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(eij − eji)| =
∑
i

|
∑
j

(aij − aji)|+
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(eij − eji)| =
∑
i

|
∑
j

(aij − aji)|+
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(aij + bij − aji − bji)| =
∑
i

|
∑
j

(aij − aji)|+
∑
i

|
∑
j

(bij − bji)|∑
i

|
∑
j

(aij − aji) +
∑
j

(bij − bji)| =
∑
i

(
|
∑
j

(aij − aji)|+ |
∑
j

(bij − bji)|
)

This later relationship is not true in general due to the convexity of the absolute
value function. Using Jensen’s inequality we thus have the following relationship:

∆(E) ≥ ∆(A) + ∆(B)

We now identify specific cases under our framework in which the relationship
holds. Let us decompose the original additivity expression:

∆(E) = ∆(ED) + ∆(EC)∑
i

|
∑
j

(eij − eji)| =
∑
i

|
∑
j

(eDij − eDji)|+
∑
i

|
∑
j

(eCij − eCji)|

We can decompose each part in the context of a dealer-customer network.
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1) For the whole network we have

∑
i

|
∑
j

(eij − eji)| =
dealer∑

d

|
∑
j

(edj − ejd)|+
customer∑

c

|
∑
j

(ecj − ejc)| (22)

=
dealer∑

d

|
∑
j

(edj − ejd)|+
customer+∑

c+

|
∑
j

(ec+j − ejc+)|+
customer−∑

c−

|
∑
j

(ec−j − ejc−)|

(23)

=
dealer∑

d

|
∑
j

(edj − ejd)|+
customer+∑

c+

|
∑
j

(ec+j)|+
customer−∑

c−

|
∑
j

(−ejc−)|

(24)

=
dealer∑

d

|
∑
j

(edj − ejd)|+
customer+∑

c+

dealer∑
d

ec+d +
customer−∑

c−

dealer∑
d

edc−

(25)

2) For the dealer network we have

∑
i

|
∑
j

(eDij − eDji)| =
dealer∑

d

|
dealer∑

h

(eDdh − eDhd)| (26)

3) For the customer network we have

∑
i

|
∑
j

(eCij − eCji)| =
dealer∑

d

|
∑
j

(eCdj − eCjd)|+
customer+∑

c+

|
∑
j

(eCc+j − eCjc+)|
customer−∑

c−

|
∑
j

(eCc−j − eCjc−)|

(27)

=
dealer∑

d

|
∑
j

(eCdj − eCjd)|+
customer+∑

c+

dealer∑
d

eCc+d +
customer−∑

c−

dealer∑
d

eCdc−

(28)

Combining equations, we obtain:

dealer∑
d

|
n∑
j

(edj − ejd)| =
dealer∑

d

|
dealer∑

h

(eDdh − eDhd)|+
dealer∑

d

|
customer∑

c

(eCdc − eCcd)| (29)

We continue decomposing the different elements.

1) For the whole network:
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dealer∑
d

|
n∑
j

(edj − ejd)| =
dealer∑

d

|
dealer∑

h

(edh − ehd) +
customer+∑

c+

(edc+ − ec+d) +
customer−∑

c−

(edc− − ec−d)|

(30)

=
dealer∑

d

|
dealer∑

h

(edh − ehd) +
customer+∑

c+

edc+ −
customer−∑

c−

ec−d|

(31)

2) for the dealer and customer networks:

dealer∑
d

|
dealer∑

h

(eDdh − eDhd)|+
dealer∑

d

|
customer∑

c

(eCdc − eCcd)| = (32)

dealer∑
d

|
dealer∑

h

(eDdh − eDhd)|+
dealer∑

d

|
customer+∑

c+

eCdc+ −
customer−∑

c−

eCc−d|

(33)

After this decomposition, we can remove the subcripts related to the different
networks, and we obtain the general condition for additive excess:

dealer∑
d

|
dealer∑

h

(edh − ehd) +
customer+∑

c+

edc+ −
customer−∑

c−

ec−d| = (34)

dealer∑
d

|
dealer∑

h

(edh − ehd)|+
dealer∑

d

|
customer+∑

c+

edc+ −
customer−∑

c−

ec−d|

(35)

Hence, the above relationship holds when

1.
∑dealer

h (edh − ehd) = 0, ∀d ∈ D

or

2.
∑customer+

c+ edc+ −
∑customer−

c− ec−d = 0, ∀d ∈ D

�
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A.4 Propostion 3

Proof. Non-conservative compression tolerances allow all possible re-arrangements
of edges. Hence, the only condition for non-conservative compression to remove
excess (i.e., ∆cn

red(G) > 0) is merely that excess is non-zero (i.e., ∆(G) > 0). From
Lemma 1, we know that positive excess exists in G = (N,E) only when there is
intermediation (i.e., ∃i ∈ N |δ(i) = 1). �

A.5 Proposition 4

Proof. We proceed by defining a procedure that respects the non-conservative
compression constraints and show that this procedure (algorithm) generates a
new configuration of edges such that the resulting excess is 0.

Similar to the proof of Proposition 1, consider the three disjoint subsets N+ =
{i|vneti > 0}, N− = {i|vneti < 0} and N0 = {i|vneti = 0}, such that N =
N+

⋃
N−

⋃
N0. Let B be a new set of edges such that:

• ∀bij ∈ B, i ∈ N+, j ∈ N−

•
∑

j bij = vneti , ∀i ∈ N+

•
∑

i bij = vnetj , ∀j ∈ N−

The market G′ = (N,B) is net-equivalent to G while the total gross notional is
minimal in virtue of Proposition 1. The nature of the new edges makes G′ bipartite
(i.e., ∀bij ∈ B, i ∈ N+, j ∈ N−), hence, there is no intermediation in G′. The
procedure depicted above to obtain B is a meta-algorithm as it does not define all
the steps in order to generate B. As a result, several non-conservative compression
operation cn can satisfy this procedure. Nevertheless, by virtue of Proposition 3,
each of these non-conservative compression operation lead to ∆cn

res(G) = ∆(G′) =
0 �

A.6 Propostion 5

Proof. The value of λ will affect the efficiency of the compression. In order to
achieve full compression, we show that λ must be above a certain limit. Let us
decompose N , the set of nodes, as follows:

N+ = {i|vneti > 0}, N− = {i|vneti < 0}, N0 = {i|vneti = 0}
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As a result, N = N+ ∪ N− ∪ N0. In a case of 0 residual excess, the node with
positive net balance can only interact with a node with negative balance (i.e.,
bi-partite graph):

∀êij ∈ Ê : i ∈ N+, j ∈ N−

Hence, the maximum possible value of a contract resulting from such compres-
sion is:

max{êij} = max{|vneti |}

For the node with max{|vneti |}, i∗, the portfolio configuration such that bilateral
exposure is minimised is the uniform distribution:

max{êi∗j} =
|vneti∗ |

|N−1.sign(vnet
i∗ )|

If the exposure limit λ is set such that this configuration is feasible, we know a
solution with 0 residual excess is always feasible.

More generally we see that, a 0 residual solution is possible for any compression
tolerance set that satisfies the following conditions:

aij = 0, bij ≥
|vneti∗ |

|N−1.sign(vnet
i∗ )|

∀(aij, bij) ∈ Γ

�

A.7 Proposition 6

Proof. In a conservative compression, we have the constraint:

0 ≤ e′ij ≤ eij ∀i, j ∈ N

At the individual level, assume i is a customer selling in the market (i.e., δ(i) = 0).
Under a conservative approach, it is not possible to compression any of the edges
of i. In fact, in order to keep the net position of i constant, any reduction of
ε in an edge of i (i.e., e′ij = eij − ε) requires a change in some other edge (i.e.,
e′ik = eik + ε) in order to keep v′neti = vneti . Such procedure violates the conser-
vative compression tolerance: e′ik = eik + ε > eik. The same situation occurs for
customers buying. Conservative compression can thus not be applied to node i if
δ(i) = 0.

The only configuration in which a reduction of an edge eij does not require a
violation of the conservative approach and the net-equivalence condition is when
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i can reduce several edges in order to keep its net balance. In fact, for a node i, the
net position is constant after a change

∑
j e
′
ij =

∑
j eij−ε if it is compensated by a

change
∑

j e
′
ji =

∑
j eji−ε. Only dealers can apply such procedure. Furthermore,

such procedure can only be applied to links with other dealers: a reduction on one
link triggers a cascade of balance adjusting that can only occur if other dealers
are concerned as customers are not able to re-balance their net position as shown
above. Hence, the redundant excess for a conservative approach emerges from
intra-dealer links.
Finally, the sequence of rebalancing and link reduction can only finish once it
reaches the initiating node back. Hence, conservative compression can only be
applied to closed chains of intermediation, that is, a set of links E∗ ⊂ E such that
all links have positive values

∏
e∗∈E∗ e

∗ > 0. �

A.8 Lemma 2

Proof. A conservative compression on a closed chain of intermediation K =
(N,E)→ (K,E ′) implies that, in order for the compression to be net equivalent
(i.e., v

′net
i = vneti ∀i ∈ N), a reduction by and arbitrary ε ∈ [0,maxij{eij s.t. (i, j) ∈

E}] on an edge e′ik = eik − ε must be applied on all other edges in the chain:
e′ = e− ε ∀e′ ∈ E ′.

Overall, reducing by ε one edge, leads to an aggregate reduction of |E|ε after
re-balancing of net positions.

Recall that, in a conservative compression, we have 0 ≤ e′ij ≤ eij. Hence, for each
edge, the maximum value that ε can take is eij. At the chain level, this constraint
is satisfied i.f.f. ε = mine{E}. The redundant excess is given by |E|mine{E} and
the residual excess is thus

∆c
res(K) = ∆(K)− |E|mine{E}

�

A.9 Proposition 7

Proof. From Corollary 4, we know that all the excess is removed from a market
when the resulting set of edges E ′ form a bi-partite structure (i.e., not interme-
diation). We also know that from Proposotion 6, that conservative compression
can only be applied to closed chains of intermediation. Hence, given G = (N,E),

51



in order to obtain ∆c
res(G) = 0, we need that (1) all chains are closed chain, to

apply conservative compression and (2) all closed chains are balanced, to remove
all the excess.

The first condition stems from Proposotion 6. The second condition is justified
as follows.

Consider the special case where K = (N,E) is a closed chain of intermediation
such that:

ei = α ∀ei ∈ E,α ∈ R+
0

In this chain, the net position of all nodes i ∈ N is 0. Hence, removing all
the edges satisfies the net-equivalence property and the conservative compression
tolerance. As a result, we have ∆cc

res(G) = 0 simply because x′ = 0.
Next, consider changing K = (N,E) such that one single edge has a higher

value than all the others which remain with the value α:

∃1!e∗ ∈ E|e∗ > α

Following the Lemma 2, we can remove all edges equal to α and modify e∗ such
that

e
′∗ = e∗ − α

The market G′ has been compressed conservatively and only has one edge left
(i.e., E ′ = {e′∗}). As a result, there is no excess in G′ (i.e., no intermediation)
and ∆cc

res(G) = 0.
For a closed chain of any length and heterogenous edge value distribution, the

breaking of intermediation chain can only be done if a node with an edge with
values higher than the minimum has the other edge equal to the minimum. Such
property is only satisfied when closed chains of intermediation are balanced in the
sense of Definition 4.6.2. �

A.10 Proposition 8

Proof. If there are no entangled chains in G = (N,E), then the following conser-
vative procedure:

1. list all closed chains of intermediation Ki ∈ Π and

2. maximally compress each chain separately,

reaches maximal efficiency. The residual excess is given after aggregating the
excess removed on each closed chain separately:

∆res(G) = ∆(G)−
∑
Ki∈Π

|Ei|mine{Ei}
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If there are entangled chains but the market G = (N,E) is chain ordering proof,
compressing chains separately only provides the upper bound as there will be
cases where entangled chains will need to be updated (due to the reduction of one
or more edges). Hence, we have,

∆res(G) ≤ ∆(G)−
∑
Ki∈Π

|Ei|mine{Ei}

�

A.11 Proposition 9

Proof. If ∆(N,E) = ∆(N,ED) + ∆(N,EC), then we can separate the compres-
sion of each market.

Intra-dealer market (N,ED). According to the hybrid compression, the set
of constraints in the intra-dealer market is given by a non-conservative compres-
sion tolerances set. According to Proposition 4, the residual excess is zero. We
thus have:

∆ch

res(N,E
D) = 0

Intra-dealer market (N,ED). According to the hybrid compression, the
set of constraints in the customer market is given by a conservative compression
tolerances set. Since, by construction, the customer market does not have closed
chains of intermediation, it is not possible to reduce the excess on the customer
market via conservative compression. We thus have:

∆ch

res(N,E
C) = ∆(N,EC) (36)

Finally, we obtain

∆ch

res(N,E) = ∆ch

res(N,E
D) + ∆ch

res(N,E
C)

= ∆(N,EC)

�
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B Compression Algorithms

B.1 Non-Conservative Algorithm

In order to provide a rigorous benchmark, we propose a deterministic non-conservative
compression algorithm that achieves perfectly efficient compression. In particular,
the solution of the algorithm minimizes the number of trades and maximizes their
concentration.

Data: Original Market G=(N,E)
Result: G∗ such that ∆v(G

∗) = 0
Let N+ = {s s.t. vsn > 0 and s ∈ N} be ordered such that vnet1 > vnet2 ;
Let N− = {s s.t. vnets < 0 and s ∈ N} be ordered such that vnet1 > vnet2 ;
Let i = 1 and j = 1;
while i! = |N+| and j! = |N−| do

Create edge e∗ij = min(vneti −
∑

j′<j e
∗
ij′ , v

net
j −

∑
i′<i e

∗
i′j);

if vneti =
∑

j′<j e
∗
ij′ then

i = i+ 1;
end
if vnetj =

∑
i′<i e

∗
i′j then

j = j + 1;
end

end
Algorithm 1: A perfectly efficient non-conservative compression algorithm with
minimal density

From the initial market, the algorithm constructs two sets of nodes N+ and N−

which contain nodes with positive and negative net positions, respectively. Note
that nodes with 0 net positions (i.e., perfectly balanced position) will become
isolated in the intermediation breakdown process. They are thus kept aside from
this point on. In addition, those two sets are sorted from the lowest to the highest
absolute net position. The goal is then to generate a set of edges such that the
resulting network is in line with the net position of each node. Starting from
the nodes with the highest absolute net position, the algorithm generates edges
in order to satisfy the net position of at least one node in the pair (i.e., the
one with the smallest need). For example, if the node with highest net positive
position is i with vneti and the node with lowest net negative position is j with
vnetj , an edge will be created such that the node with the lowest absolute net
positions does not need more edges to satisfy its net position constraint. Assume
that the nodes i and j are isolated nodes at the moment of decision, an edge
eij = min(vneti , vnetj ) will thus be generated. In the more general case where i
and j might already have some trades, we discount them in the edge generation
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process: e∗ij = min(vneti −
∑

j′<j e
∗
ij′ , v

net
j −

∑
i′<i e

∗
i′j). The algorithm finishes once

all the nodes have the net and gross positions equal.
The characteristics of the market resulting from a compression that follows

the above algorithm are the following

Given a financial network G and a compression operator c() that is
defined by the Algorithm 1, the resulting financial network Gmin =
c(G) is defined as:

eij =

{
min(vin −

∑
j′<j eij′ , v

j
n −

∑
i′<i ei′j), if vin.v

j
n < 0

0, otherwise
(37)

where i ∈ V + = {s s.t. vsn > 0} and j ∈ V − = {s s.t. vsn < 0}.
Moreover:

• Gmin is net-equivalent to G

• ∆v(Gmin) = 0

• Gmin has the minimum link density

• Gmin has maximum trade concentration

B.2 Conservative Algorithm

As we did for the conservative case, we now propose and analyze a conservative
algorithm with the objective function of minimizing the excess of a given market
with two constraints: (1) keep the net positions constant and (2) the new set of
trades is a subset of the previous one.

Data: Original Market G=(N,E)
Result: G∗ such that ∆v(G

∗) < ∆v(G) and E∗ ∈ E
Let Π be set the of all directed closed chains in G;
Let G∗ = G;
while Π 6= ∅ do

Select P = (N ′, E ′) ∈ Π such that
|N ′|.mine∈E′(e) = maxPi=(N ′i ,E

′
i)∈Π(|N ′Pi

|.mine∈E′Pi
(e)));

eij = eij −mine∈E′(e) for all eij ∈ E ′;
E∗ = E∗ \ {e : e = min(E ′)};
Π \ {P}

end
Algorithm 2: A deterministic conservative compression algorithm
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The algorithm works as follows. First, it stores all the closed chains present
in the market. Then, it selects the cycle (i.e., closed chain) that will result in
the maximum marginal compression (at the cycle level), that is, the cycle where
the combination of the number of nodes and the value of the lowest trades is
maximized. From that cycle, the algorithm removes the trade with the lowest
notional and subtracts this value from the all the trades in the cycle. It then
removes the cycle from the list of cycles and iterates the procedure until the set
of cycles in the market is empty.

At each cycle step t of the algorithm, the excess of the market is reduced by:

∆t = ∆t−1 − |N ′|mine∈E′(e)

At the end of the algorithm, the resulting compressed market does not contain
directed closed chains anymore: it is a Directed Acyclic Graph (DAG). Hence no
further conservative compression can be applied to it.

C Programming characterization and solution

C.1 Programming formalization

Compression can be seen as the solution of a mathematical program which min-
imizes a non-decreasing function of gross notional under given net-positions. By
introducing constraints on counterparty relationships, we will recover the hybrid
and conservative compression.

In particular, let E ′ denote the set of edges after compression and let f : E
′ →

R be a non decreasing function, the general compression problem is to find the
optimal set e

′
ij in the following program:

Problem 1 (General compression problem).

min f(E ′)

s.t.
∑

j

(
e
′
ij − e

′
ji

)
= vi,∀i ∈ V [net position constraint]

aij ≤ e
′
ij ≤ bij,∀(i, j) ∈ E [compression tolerances]

with aij ∈ [0,∞) and bij ∈ [0,∞]. We will refer to E
′

as the vector of solutions
of the problem.

Problem 1 maps all the compression types by translating the compression
tolerances (counterparty constraints) and adopting a specific functional form for
f . As we are interested in reducing the total amount of notional, we will set
f(E ′) =

∑
ij e

′
ij. The non-conservative compression problem is obtained by setting

eij ∈ [0,∞), as follows:
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Problem 2 (Non-conservative compression problem).

min
∑

ij e
′
ij

s.t.
∑

j

(
e
′
ij − e

′
ji

)
= vi,∀i ∈ N

e
′
ij ∈ [0,∞),∀(i, j) ∈ E

In problem 2 the tolerances are set to the largest set possible. By further
reducing these tolerances for the customer sets, we obtain the hybrid compression
problem:

Problem 3 (Hybrid compression problem).

min
∑

ij e
′
ij

s.t.
∑

j

(
e
′
ij − e

′
ji

)
= vi,∀i ∈ N

e
′
ij = eij, ∀(i, j) ∈ EC

e
′
ij ∈ [0,∞),∀(i, j) ∈ ED

Last, by further restricting tolerances, we obtain the conservative compression
problem:

Problem 4 (Conservative compression problem).

min
∑

ij e
′
ij

s.t.
∑

j

(
e
′
ij − e

′
ji

)
= vi,∀i ∈ N

0 ≤ e
′
ij ≤ eij,∀(i, j) ∈ E

All problems can be seen as standard linear programs, which can be solved in
numerous ways.15 We have proposed specific closed form solutions for the non-
conservative compression problem. For the conservative and hybrid approaches,
the general case where the network is not chain ordering proof, a global solution
can be obtained using linear programming. We analyze such approach below.

15In particular, the conservative compression can be mapped into a minimum-cost flow prob-
lem. Network flow problem are optimization problems that exploit the specific network-nature
of the problem. A number of algorithms have been proposed since the 1950s to solve this type
of problem, starting from the well-known Ford and Fulkerson (1956) algorithm (see Ahuja et al.
(1993) for a comprehensive reference on network flows). Two main classes of algorithms have
been developed in order to solve a minimum cost flow network problem. The first class aims
at keeping feasible solutions while striving for optimality, whereas the second keeps optimality
while striving for feasibility.
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C.2 A general conservative compression with global solu-
tion

Given a market G = (N ;E), consider the |N | × |E| node-edge incidence matrix
Q, defined as follows. The rows Q are represented by V and the column by E.
We index the links by the letter l:

qil =


1 if the l-th edge originated from i
−1 if the l-th edge terminates in i
0 if the l-th does not have i.

Now, let e be the vector of all edges, e
′
be the optimal solution of the problem,

v the vector of the nodes’ net positions, and u be the vector of all ones. Hence,
Problem 4 can be rewritten in the following matrix form

min u>e
′

s.t. Qe
′
= v (38)

0 ≤ e
′ ≤ e

Q is not full rank, but since
∑

i vi = u>v = 0, then the first set of constraints
has one redundant row (that can be eliminated). The set of bases of Q are the
matrices constituted by |E| − 1 linearly independent columns of Q and therefore
each basis represents a subset of E. Each basis is associated to a unique solution
of the linear system of equations 38.

In addition, a crucial theorem in flow-network theory is that, if the graph is
connected (as in our case), then to each basis of Q corresponds a spanning tree
of G. That implies that for each basis, the corresponding spanning tree will also
satisfy 38 and therefore be a feasible solution. The space of basic solutions lies
in the space of bases generated by the so-called incidence matrix of the original
network and such solutions are spanning trees..

In particular, we find that the set of basic solutions e
′
ij has specific graph-

topological properties for each of the set of dealers and customers. Define the set
E
′
0 = {e′ij such that e

′
ij = 0}, the set E

′
1 = {e′ij such that e

′
ij = eij} and the set

E
′
2 = {e′ij such that 0 < e

′
ij < eij}. The three sets are disjoint by construction and

the the customer sets belong to E
′
1 because of 38. The spanning tree associated

with a basic solution will be formed by E
′
1 ∪ E

′
2

This is of crucial importance as it constitutes the key ingredient of the ap-
plication of the standard simplex algorithm to a network problem. By moving
along different basis, the simplex method finds an optimal feasible solution. In
a network context, this means to find a basis and add one edge, which creates a
cycle and eliminating, if possible, the other edges composing the newly created
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cycle. The simplex algorithm exploits this graph properties to move along the
space of feasible solutions and finding the optimal. In general, we use the simplex
algorithm to solve our compression problems. It is important to notice that the
simplex method is only one of the many ways of solving the linear program. How-
ever, we discuss it here as it gives interesting network-theoretical interpretations.
First, an important properties relates to the fact that the basis of the incidence
matrix of a graph corresponds to a spanning tree. In this sense, any basic solution
of the problem is then a spanning tree. The main idea of the simplex method is
to move across the space of spanning trees (i.e. basic solutions) by repeatedly
adding an edge that is not in the tree (the basic solution). This will modify the
basis and therefore lead to a potential new solution.

If the inserted arc increasing the objective function, then the arc has an as-
sociated positive reduced cost; if the arc decreases the objective function, then it
has a negative reduced costs; if the arc does not alter the value of the objective
function, then its reduced cost is zero. The way this is done in practice is based
on the following pivoting approach:

Data: Original Market G=(N,E)
Result: G

′
such that ∆(G

′
) < ∆v(G) is minimised and

Qe
′
= v,0 ≤ e

′ ≤ e
Let G

′
= G;

Let {E ′0, E
′
1, E

′
2} be a set partition for a feasible solution;

Let cij be the reduced costs;
Compute node potentials such that cij = πi − πj;
while ∃(i, j) : cij < 0, (i, j) not in the base do

Select (i, j) s.t. cij < 0;
Find the directed cycle generated by (i, j);
Add to the cycle an amount of notional at max equal to the residual
capacity;

Recompute {E ′0, E
′
1, E

′
2}, potentials and reduced costs.

end
Algorithm 3: Illustration of the network simplex algorithm
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