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Abstract

We examine the macroeconomic effects of forward guidance shocks at the zero lower

bound. Empirically, we identify forward guidance shocks using unexpected changes in

futures contracts around monetary policy announcements. We then embed these pol-

icy shocks into a standard vector autoregression to trace out their macroeconomic

implications. Forward guidance shocks that lower expected future policy rates lead

to significant increases in economic activity and inflation. After examining forward

guidance shocks in the data, we show that a standard model of nominal price rigidity

can reproduce our empirical findings. To estimate our theoretical model, we generate

a model-implied futures curve which closely links our model with the data. Our results

suggest no disconnect between the empirical effects of forward guidance shocks and the

predictions from a simple theoretical model.
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1 Introduction

In December 2008, the Federal Open Market Committee (FOMC) lowered the federal funds

rate to its effective lower bound. With economic conditions continuing to deteriorate and

its conventional policy tool unavailable, the Federal Reserve announced its intention to keep

future policy rates exceptionally low “for some time.” Such communication about the future

path of policy, known as forward guidance, became a fixture of U.S. monetary policy in

subsequent years.

However, recent theoretical and empirical works are divided on the macroeconomic ef-

fects of forward guidance. In standard models with nominal price rigidities, Eggertsson and

Woodford (2003) show that lowering the expected path of policy rates can be highly effective

in increasing economic activity and inflation. However, Del Negro, Giannoni and Patterson

(2012) and Kiley (2016) argue that these theoretical models overpredict the expansionary

effects of forward guidance. In contrast, empirical work by Campbell et al. (2012) and Naka-

mura and Steinsson (2015) argues that communicating lower expected rates may signal bad

news about the state of the economy. Through this macroeconomic news effect, these pa-

pers suggest that lower expected policy rates may cause contractions in expected economic

activity and employment.

We examine this apparent disconnect between the empirical evidence and theoretical pre-

dictions of macroeconomic models. First, we study the empirical effects of forward guidance

shocks at the zero lower bound. We identify forward guidance shocks in the data using the

unexpected changes in high-frequency futures contracts following FOMC announcements.

To trace out the dynamic effects of these policy changes on macroeconomic aggregates, we

embed our identified forward guidance shocks into a standard vector autoregression (VAR).

We find that forward guidance shocks that lower expected future policy rates result in a

persistent economic expansion. At their peak response, output and prices increase by over

10 basis points following a one standard deviation forward guidance shock. Our findings are

robust to alternative ordering schemes in the VAR, different measures of economic activity

and prices, and alternative measures of expected future interest rates. Similar to conven-

tional policy shocks, we find that forward guidance shocks can produce significant increases

in economic activity but only explain a modest fraction of overall business-cycle fluctuations.

After identifying forward guidance shocks in the data, we examine their effects in a stan-

dard model of nominal price rigidity. Using a nonlinear solution method, we estimate a
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standard New-Keynesian model with a zero lower bound constraint. We model a forward

guidance shock as an exogenous innovation to the central bank’s desired policy rate at the

zero lower bound. When desired rates are less than zero, an exogenous shock to the desired

rate acts like an exogenous extension of the zero lower bound episode. This exogenous ex-

tension of the zero lower bound lowers future expected policy rates, which we link with our

identified forward guidance shock in the data. To closely align with the futures contracts

from our empirical results, we generate a model-implied futures curve using the household’s

stochastic discount factor. Using impulse response matching, we estimate our nonlinear

model such that a forward guidance shock in the model generates the same movements in

futures rates that we observe in the data.

Our theoretical model can reproduce the macroeconomic effects of forward guidance

shocks we find in the data. In the model, an exogenous decline in expected future policy

rates generates movements in economic activity and prices similar in shape and magnitude

to our empirical responses. The key features of our model are a reasonable degree of nom-

inal price rigidity, habits in household consumption, investment adjustment costs, variable

capital utilization, and a persistent forward guidance shock process. Our results suggest

that dynamic equilibrium models, with a mix of nominal and real rigidities, remain useful in

examining the effects of monetary policy shocks both at and away from the zero lower bound.

Our findings suggest no disconnect between the empirical effects of forward guidance

shocks and the predictions from a standard theoretical model. Thus, we argue that the

“Forward Guidance Puzzle” posited by Del Negro, Giannoni and Patterson (2012) may be

overstated. Our conclusion relies on estimating the appropriate-sized forward guidance shock

using the model-implied futures curve. In both our empirical evidence and theoretical model,

a typical expansionary forward guidance shock moves 12-month ahead futures rates by about

three basis points. This shock extends the zero lower bound duration by one month in our

model. Del Negro, Giannoni and Patterson (2012), however, simulate a much longer one-year

exogenous extension of the zero lower bound period. In our high-frequency identification of

policy shocks, we do not observe forward guidance shocks of that size in the data. Thus,

we simulate a much smaller forward guidance shock in the model that is consistent with the

typical movements in futures rates around policy meetings.
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2 Forward Guidance Shocks in the Data

We use a two-step procedure to examine the macroeconomic effects of forward guidance

shocks in the data. First, we identify the exogenous forward guidance shocks associated

with each FOMC meeting. Using high-frequency measures of future policy rates, we exam-

ine how the implied path of policy rates changes after each policy announcement. Then, we

embed these policy shocks into a standard block-recursive monetary VAR to trace out the

dynamic effects on macroeconomic aggregates.

In our baseline results, we focus on estimating the effects of forward guidance shocks

at the zero lower bound. Thus, we restrict our initial analysis to the December 2008 -

December 2015 sample period. We make this sample selection for three reasons. First,

the zero lower bound period allows us to easily identify changes in the path of future rates

while holding the current level of policy rates constant. Away from the zero lower bound,

identifying forward guidance shocks requires us to isolate changes in the path of rates from

fluctuations in the current policy rate. While we undertake such a decomposition in Section

5, we opt for a simpler identification scheme in our baseline results. Second, this easier

identification scheme allow us to easily map our empirical evidence in a standard theoretical

model. Finally, focusing on the most recent period avoids contaminating our results with

any structural change that may occur as the economy enters and exits the zero lower bound.

2.1 High-Frequency Futures Data

In our baseline model, we use federal funds futures contracts to measure the expected path of

future policy rates. These contracts payoff based on the average effective federal funds rate

at a given month in the future. Around each regularly-scheduled FOMC meeting, we com-

pute the daily change in policy rates implied by the 12-month ahead futures contract. Since

futures prices should already reflect any expected policy change prior to the announcement,

our measure of forward guidance shocks captures how one-year ahead policy expectations

change with the surprise component of each monetary policy announcement. To generate

a monthly series for the implied level of policy rates, we follow Romer and Romer (2004)

and Barakchian and Crowe (2013) and assign a value of zero to months in which there is

no FOMC meeting and cumulatively sum the resulting series. In the following section, we

embed this policy measure in a monthly-frequency vector autoregression.
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2.2 Baseline Empirical Model

We now embed our futures-implied policy shock series into a structural vector autoregres-

sion to trace out the macroeconomic effects of a forward guidance shock. We estimate our

baseline empirical model at a monthly frequency using several indicators of real economic ac-

tivity and a measure of aggregate prices. We include a monthly measure of GDP, a proxy for

equipment investment, capacity utilization, the GDP deflator, and the policy rates implied

by the 12-month ahead federal funds futures contract. We use the Macroeconomic Advis-

ers monthly GDP and corresponding price deflator to measure aggregate real activity and

prices. To proxy equipment investment at a monthly frequency, we use core capital goods

shipments, which the Bureau of Economic Analysis uses to calculate the official quarterly

investment data. Appendix A.1 contains more details on the data construction.

Following the previous literature on the effects of conventional policy shocks, we order

our measure of forward guidance shocks last using a recursive identification scheme. This

assumption implies that the macroeconomic conditions adjust slowly to changes in the ex-

pected policy rates. Given the monthly-frequency of our VAR, our baseline model assumes

that a monetary policy announcement today does not affect the current month’s economic

indicators. At a monthly frequency, we believe this assumption seems plausible. However,

this ordering assumption is not necessary for our main results. In Appendix A.2, we show

that our results are unchanged if we order our policy shocks first or treat them as exogenous

variables determined outside of the VAR.

We conduct statistical inference on the impulse responses using a Bayesian Monte Carlo

procedure. Following Sims and Zha (1999), we use a non-informative conjugate prior such

that the posterior distribution of the reduced form VAR parameters is centered at the or-

dinary least squares point estimates.1 We use standard selection criteria to determine the

number of lags to include in the vector autoregression.

2.3 Empirical Impulse Responses

We now return to our key empirical question: What are the macroeconomic effects of forward

guidance shocks? Figure 1 plots the estimated impulse responses for an identified forward

guidance shock with the 90% probability interval. A one standard deviation forward guidance

shock lowers the implied one-year ahead federal funds rate by about three basis points.

1 Our exact implementation follows Koop and Korobilis (2010).
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In response to the shock, firms increase their output, raise prices, and invest in new

capital. Per our ordering assumption, economic activity and prices remain unchanged at

impact. In the following months, however, overall output rises sharply and remains elevated

for the next three years. Investment and capacity utilization rise quickly after the shock and

peak roughly one year after the policy shock. The fluctuations in investment are significantly

larger than the movements in total output. Prices rise gradually over time, reaching their

peak response about 24 months after the shock. At their peak response, output and prices

both increase by over 10 basis points following the shock. Overall, our results suggest that

an exogenous decline in expected policy rates at the zero lower bound broadly increases

economic activity and prices.

2.4 Forecast Error Variance Decompositions

While forward guidance shocks can produce significant increases in economic activity, they

only explain a modest fraction of overall business-cycle fluctuations. Table 3 contains the

forecast error variance decompositions for our baseline empirical model across multiple hori-

zons. At the two-year horizon, we find that forward guidance shocks explain less than 20

percent of the total unexpected fluctuations in output. For comparison, we also present the

same variance decompositions for conventional monetary policy shocks using the previous

empirical work of Romer and Romer (2004) and Christiano, Eichenbaum and Evans (2005).

With respect to output, we find no statistically meaningful differences in the variance decom-

positions between our results and the findings of Romer and Romer (2004) and Christiano,

Eichenbaum and Evans (2005).

However, we find that forward guidance shocks appear more important than conven-

tional policy shocks in explaining short-run fluctuations in the price level. This differential

conclusion is likely due to changes in the persistence of inflation over time. For example,

Christiano, Eichenbaum and Evans (2005) estimate their model over the 1964-1995 sample

period whereas we use data from 2008-2015. We find that prices respond fairly quickly after a

forward guidance shock, peaking after about two years. In contrast, prices only gradually rise

and peak after about four years in the model of Christiano, Eichenbaum and Evans (2005).

These findings suggest substantially less inflation persistence after an identified monetary

policy shock in our sample compared with previous studies.2

2Both Cogley, Primiceri and Sargent (2010) and Davig and Doh (2014) also argue that inflation persistence

has declined since the 1970’s
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2.5 Robustness of Empirical Results

Our empirical findings are robust to alternative measures of monetary policy expectations,

different empirical specifications, and other measures of economic activity and prices. Dur-

ing the zero lower bound period, our baseline empirical model assumes that one-year ahead

futures rates fully capture the expected path of policy. Using this single expected interest

rate to measure the path of policy helps us easily map our empirical framework into a the-

oretical model. However, our empirical findings are quantitatively unchanged if we instead

use alternative measures of interest-rate expectations. In Section 6, we instead identify a

forward shock using a principal component of a variety of interest-rate futures. In addition,

Appendix A.3 shows that we find similar macroeconomic effects if we measure forward guid-

ance shocks using two-year ahead Eurodollar rates. In Appendix A.4, we show our results

are not sensitive to the number of lags included in our baseline VAR. Finally, Appendix A.5

shows that our results are robust to using industrial production and core producer prices as

alternative measures of activity and prices.

Taken together, these results suggest that forward guidance shocks that lower expected

future policy rates lead to a sustained and robust economic expansion. In the next section,

we show that a standard model of nominal price rigidity can reproduce the macroeconomic

effects of forward guidance shocks in the data. Our findings suggest no disconnect between

the empirical effects of forward guidance shocks and the predictions from a standard theo-

retical model.

3 A Theoretical Model of Nominal Price Rigidity

This section outlines the dynamic stochastic general equilibrium model we use to analyze

forward guidance shocks. The model shares features with the models of Ireland (2003),

Ireland (2011), and Christiano, Eichenbaum and Evans (2005). Our model features opti-

mizing households and firms and a central bank that systematically adjusts the nominal

interest rate to offset shocks to the economy. We allow for sticky prices using the staggered

price-adjustment specification of Calvo (1983). The model considers shocks to household

preferences and the central bank’s desired policy rate. To link the theoretical model with

our previous empirical results, we use the household’s stochastic discount factor to generate

a model-implied futures curve. Following Christiano, Eichenbaum and Evans (2005), we as-

sume that household consumption and firm pricing decisions are made prior to the realization

of shocks in the economy. This timing assumption ensures that the impact response of the
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macroeconomic aggregates in the model following a forward guidance shock are consistent

with the recursive identification scheme from our empirical evidence. Appendix B shows all

of the model’s equilibrium conditions in greater detail.

3.1 Households

In the model, the representative household maximizes lifetime expected utility over streams

of consumption Ct and leisure 1 −Nt. Households derive utility from consumption relative

to a habit level Ht. The household receives labor income Wt for each unit of labor Nt sup-

plied in the representative intermediate goods-producing firm. The household also owns the

intermediate goods firm, which pays lump-sum dividends Dt. Also, the household has access

to zero net-supply nominal bonds Bt and real bonds BR
t . Nominal bonds pay one nominal

dollar and are purchased with a discounted price 1/Rt, where Rt denotes the one-period

gross nominal interest rate. Real bonds return one unit of consumption and have a purchase

price 1/RR
t , where RR

t denotes the one-period gross real interest rate. The household divides

its income from labor and its financial assets between consumption Ct and the amount of

the bonds Bt+1 and BR
t+1 to carry into next period.

The representative household maximizes lifetime utility by choosing Ct+s, Nt+s, Bt+s+1,

and BR
t+s+1, for all s = 0, 1, 2, . . . by solving the following problem:

max Et−1

∞∑
s=0

at+sβ
s

(
log (Ct+s − bHt+s)− ξ

N1+η
t+s

1 + η

)
subject to the intertemporal household budget constraint each period,

Ct +
1

Rt

Bt+1

Pt
+

1

RR
t

BR
t+1 ≤

Wt

Pt
Nt +

Bt

Pt
+
Dt

Pt
+BR

t .

λt denotes the Lagrange multiplier on the household budget constraint. In equilibrium,

consumption habits are formed external to the household and are linked to last period’s

aggregate consumption Ht = Ct−1.

The discount factor of the household β is subject to shocks via the stochastic process at.

We interpret these fluctuations as demand shocks since an increase in at induces households

to consume more and work less for no technological reason. We use these shocks to simulate

a large decline in household demand which generates a zero lower bound episode. The

stochastic process for these fluctuations is as follows:

at = (1− ρa) a+ ρaat−1 + σaεat (1)

where εat is an independent and standard normal random variable.
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3.2 Final Goods Producers

The representative final goods producer uses Yit units of each intermediate good produced

by the intermediate goods-producing firm i ∈ [0, 1]. The intermediate output is transformed

into final output Yt using the following constant returns to scale technology:[∫ 1

0

Y
θ−1
θ

it di

] θ
θ−1

≥ Yt,

where θ is the elasticity of substitution across intermediate goods. Each intermediate good

Yit sells at nominal price Pit and the final good sells at nominal price Pt. The finished goods

producer chooses Yt and Yit for all i ∈ [0, 1] to maximize the following expression of firm

profits:

PtYt −
∫ 1

0

PitYitdi

subject to the constant returns to scale production function. Finished goods-producer opti-

mization results in the following first-order condition:

Yit =

[
Pit
Pt

]−θ
Yt.

The market for final goods is perfectly competitive, and thus the final goods-producing firm

earns zero profits in equilibrium. Using the zero-profit condition, the first-order condition

for profit maximization, and the firm objective function, the aggregate price index Pt can be

written as follows:

Pt =

[∫ 1

0

P 1−θ
it di

] 1
1−θ

.

3.3 Intermediate Goods Producers

Each intermediate goods-producing firm i rents labor Nit from the representative household

to produce intermediate good Yit in a monopolistically competitive market. Each period,

producers can reoptimize their nominal price Pit with a constant probability 1 − ω. Firms

that cannot chose a new optimal price index their current price to a weighted combination of

past and steady state inflation rates. The intermediate-goods firms own their capital stocks

Kit and face convex costs κ of changing its level of investment Iit. Firms also choose the rate

of utilization of their installed physical capital Uit which affects its depreciation rate. The

intermediate goods firms all have access to the same constant returns-to-scale production

function. We introduce a production subsidy Ψ = θ/(θ − 1) to ensure that the steady state

of the model is efficient. Firms rebate any profits to the household in lump-sum each period.
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We determine the optimal decisions of the intermediate goods-producing firm in two

steps. First, firms determine the minimal cost method to meet the current level of demand

for their product. Thus, each firm solves the following cost minimization problem:

min Et−1

∞∑
s=0

(
βs
λt+s
λt

)(
Wt+s

Pt+s
Ni,t+s + Ii,t+s

)
subject to the production function,

Yit ≤
(
KitUit

)α(
Nit

)1−α
and its capital accumulation equation,

Kit+1 =

(
1− δ

(
Uit

))
Kit +

(
1− κ

2

( Iit
Iit−1

− 1
)2)

Iit.

We assume depreciation depends on utilization via the following functional form:

δ
(
Uit

)
= δ + δ1

(
Uit − U

)
+

(
δ2
2

)(
Uit − U

)2
.

Ξt denotes the marginal cost of producing one additional unit of intermediate good i and qt

is the price of a marginal unit of installed capital.

After solving its cost minimization problem, firms that can reoptimize choose their op-

timal price to maximize their lifetime discounted real profits. Their profit maximization

problem is as follows:

max Et−1

∞∑
s=0

ωsβs
λt+s
λt

(
Ψ Πs(1−χ)Πχ

t−1,t−1+s
Pit
Pt+s

Yit+s − Ξt+s Yit+s

)

subject to the following demand curve,

Yit+s =

[
Πs(1−χ)Πχ

t−1,t−1+s
Pi,t
Pt+s

]−θ
Yt+s.

The inflation rate between periods t and t+ s is defined as follows:

Πt,t+s =

1 s = 0

Pt+1

Pt
× Pt+2

Pt+1
× · · · × Pt+s

Pt+s−1
s = 1, 2, . . .

The parameter χ controls the amount of indexation to lagged inflation.
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3.4 Equilibrium

In the symmetric equilibrium, all intermediate goods firms face the same marginal costs and

hence choose to employ the same amount of labor, capital, and utilization rate. All firms

that can change their nominal price choose the same optimal price P ∗t . We denote the gross

one-period inflation rate as Πt = Pt/Pt−1. Under the assumption of Calvo (1983) pricing

frictions, the aggregate price index Pt evolves as follows:

P 1−θ
t = θ

(
Π1−χ Πχ

t−1

)1−θ(
Pt−1

)1−θ
+
(

1− θ
)(
P ∗t
)1−θ

3.5 Monetary Policy

We assume a cashless economy where the monetary authority sets the one-period net nominal

interest rate rt = log(Rt). Due to the zero lower bound on nominal interest rates, the central

bank cannot lower its nominal policy rate below zero. In the spirit of Reifschneider and

Williams (2000), we assume the monetary authority sets its policy rate according to the

following history-dependent policy rule subject to the zero lower bound:

rdt = φrr
d
t−1 +

(
1− φr

)(
r + φπ

(
Et−1πt − π

)
+ φyEt−1yt

)
+ νt (2)

νt = ρννt−1 + σνενt (3)

rt = max
(

0, rdt

)
(4)

where rdt is the desired policy rate of the monetary authority and rt is the actual policy rate

subject to the zero lower bound. πt denotes the log of the one-period gross inflation rate Πt

and yt is the gap between current and steady state output. Finally, νt is an autocorrelated

monetary policy shock. Away from the zero lower bound, this policy rule acts like a Taylor

(1993)-type policy rule with interest-rate smoothing. An exogenous ενt shock away from the

zero lower bound acts like a conventional monetary policy shock.

When the economy encounters the zero lower bound, however, this history-dependent

rule lowers the future path of policy to help offset the previous higher-than-desired nominal

rates caused by the nominal constraint. Households fully internalize this future conduct of

policy. When desired rates are less than zero, an exogenous shock to the desired rate ενt acts

like an exogenous extension of the zero lower bound episode. This exogenous extension of

the zero lower bound lowers future expected policy rates, which we link with our identified
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forward guidance shock in the data. Thus, our specification of monetary policy allows us

to analyze both conventional policy shocks away from the zero lower bound and forward

guidance shocks at the zero lower bound.

Our forward guidance shock specification differs from the work of Del Negro, Giannoni

and Patterson (2012) and Keen, Richter and Throckmorton (2015), which use a combina-

tion of current and anticipated monetary policy shocks to model forward guidance shocks.

However, we prefer our specification for two reasons. First, our specification is parsimonious

and only adds a single state variable (the central bank’s desired rate) to the model. In

contrast, anticipated news shocks add an additional state variable for each horizon of central

bank forward guidance. Second, we find simulating forward guidance using news shocks

somewhat cumbersome. As Keen, Richter and Throckmorton (2015) discuss, an anticipated

policy shock which lowers future expected policy rates causes output and inflation to rise

today. Through the endogenous component in the central bank’s policy rule, higher output

and inflation implies higher policy rates today. Thus, to keep rates unchanged today, the

economic modeler must simulate an additional expansionary contemporaneous policy shock

to keep rates unchanged today. By contrast, our single forward guidance shock acts like an

exogenous extension of the zero lower bound episode that leaves current policy rates un-

changed. We believe this analysis closely aligns with the type of experiments envisioned by

policymakers.

3.6 Generating Model-Implied Futures Contracts

A key issue in determining the effects of forward guidance is choosing the appropriate values

for the exogenous shock process. We want to ensure our simulated forward guidance shock in

the model is consistent with the forward guidance shock we identify in the data. Therefore,

we generate a model counterpart to the federal funds futures contracts in the data. We

denote the price of a n-month ahead futures contract at time t by fnt . The payoff on this

contract is one minus the average effective federal funds rate over the contract expiration

month. For the 1-month ahead contract in our model, this payoff concept equals 1− 12rt+1,

where rt+1 is the monthly policy rate of the central bank next period. Using the household

stochastic discount factor, we calculate the price of the one-month ahead zero net-supply

futures contract by including the following equilibrium condition:

1 = Et

{(
β
λt+1

λt

)
Rt

Πt+1

1− 12rt+1

f 1
t

}
. (5)
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The structure of the futures contracts implies that an n-month contract at time t becomes an

n− 1 contract at time t+ 1. Thus, we price out the entire futures curve using the additional

equilibrium condition:

1 = Et

{(
β
λt+1

λt

)
Rt

Πt+1

fn−1t+1

fnt

}
, (6)

for each monthly contract from n = 2, . . . , 12.

These model counterparts allow us to determine the appropriate-sized forward guidance

shock to simulate in the model. For a given horizon, we can determine the futures-implied

interest rate by computing one minus the contract price. Note that we have included an

additional term Rt/Πt+1 in each equilibrium condition. In reality, investors in federal funds

futures contracts must post collateral when entering futures positions. Since the collateral

also earns a return, there is no opportunity cost of funds associated with futures positions.

For tractability, our equilibrium conditions assume that the household enters these contracts

using one-period nominal bonds each period. To be consistent with the timing assumptions

in our structural VAR, we assume that futures prices can change in the same period as the

forward guidance shock but output and prices are fixed at impact.3

3.7 Solution Method

We solve our model using the OccBin toolkit developed by Guerrieri and Iacoviello (2015).

This solution method allows us to model the occasionally-binding zero lower bound and solve

for the model-implied futures prices. The algorithm takes only a few seconds to solve the

model, which permits us to estimate several key model parameters using impulse response

matching. The solution method constructs a piecewise linear approximation to the original

nonlinear model. We have also solved a fully nonlinear, but simplified, version of our model

with the policy function iteration method of Coleman (1990) and Davig (2004). We find

that the Guerrieri and Iacoviello (2015) toolkit provides a good approximation dynamics of

the full nonlinear economy after a forward guidance shock.

3We could provide further microfoundations for this timing assumption using a two-agent household

structure with workers and financial market participants. Workers would supply labor to the intermediate-

goods producing firm and financial market participants would specialize in trading futures contracts. Under

the assumption of consumption sharing within the household, this alternative model would produce identical

results.
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3.8 Estimation Strategy

Our estimation strategy examines movements in futures rates both in the data and model.

The estimation procedure picks the size and persistence of the forward guidance shock such

that the model generates the same movement in 12-month ahead futures rates we observe

in the data. Without disciplining movements in the model-implied expected future interest

rates, it is unclear what size forward guidance shock to simulate in the model. Our strat-

egy is broadly consistent with previous monetary policy shock literature, which chooses the

conventional monetary policy shock such that the movements in the model-implied policy

indicator are consistent with the identified responses of the vector autoregression. However,

since we focus on forward guidance shocks during the zero lower bound period, we discipline

the model using expectations of future policy rates.

Following much of the previous literature, we partition the model parameters into two

groups. The first group is composed of β, Π, η, ξ, θ, φπ, φy, ρa, σ
a. We calibrate these pa-

rameters using steady-state relationships or results from previous studies. Since the model

shares features with the models of Ireland (2003) and Ireland (2011), we calibrate some of

our parameters to match his values or estimates. To match our empirical evidence, we cali-

brate the model to monthly frequency. We calibrate ξ to normalize output Y to equal one at

the deterministic steady state. We choose standard values for the monetary policy reactions

to inflation and output (φπ = 1.5, φy = 0.1). Our monthly calibrations of β and Π imply a

steady state annualized real interest rate of two percent and a two percent inflation target.

We estimate the second set of model parameters which consists of the household habit

parameter b, the probability that a firm can not reoptimize its price ω, the degree of lagged

inflation indexation χ, the degree of smoothing in the monetary policy rule φr, the amount of

investment adjustment costs κ, the elasticity of the return on capital with respect to capacity

utilization σδ = δ2/δ1, and the forward guidance shock parameters ρν and σν . In addition,

we also estimate the size of the initial negative demand shock εa0 which takes the economy

to the zero lower bound prior to the forward guidance shock. We collect these parameters

into a vector γ = (b, ω, χ, φr, κ, σδ, ρν , σν , ε
a
0).

Using a Bayesian impulse response matching estimator, we estimate these key model

parameters by finding the values which maximize their posterior distribution. Let ψ̂ denote

the impulse response functions for the 5 variables in our empirical VAR stacked into a single

vector with (5 × 48 = 240) rows and let the diagonal matrix V −1 denote a measure of the
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precision of the estimated impulse responses.4 Then, let ψ(γ) denote the theoretical model’s

corresponding counterpart to ψ̂. Following Christiano, Trabandt and Walentin (2010), we

can write the approximate likelihood function as follows:5

L(ψ̂ | γ, V ) = (2π)−
N
2 | V |−

1
2 exp

[
−0.5(ψ̂ − ψ(γ))′V −1(ψ̂ − ψ(γ))

]
.

With the likelihood function in hand, let p(γ) denote the joint prior density over γ. According

to Bayes’ rule,

f(γ | ψ̂, V ) ∝ L(ψ̂ | γ, V )p(γ). (7)

where f(γ | ψ̂, V ) is the posterior density over γ. Our estimator solves the following problem:

max
γ

f(γ | ψ̂, V ). (8)

3.9 Priors Over Parameters

For our priors, we use a Beta distribution for parameters that lie between 0 and 1 and a

Gamma distribution for parameters which are positive but unbounded. For the household

habit parameter b, degree of indexation χ, and the persistence of the forward guidance shock

ρν , we center the prior mode at 0.5 with a standard deviation of 0.25. For the Calvo pa-

rameter ω, we center our prior mode at 0.93 which is consistent Nakamura and Steinsson

(2008)’s evidence that prices remain fixed for about one year on average. Our prior standard

deviation over ω is fairly small at 0.02, which communicates the high weight we place on this

micro-level evidence. We center our prior mode over φr at 0.75 which is consistent with a

large literature arguing that historical Federal Reserve policy features a high degree of iner-

tia. As we discuss in Section 3.5, however, the interpretation of this parameter changes when

the economy is at the zero lower bound. Therefore, while we center our prior at previous

estimates of interest-rate smoothing, we put a low degree of precision on this prior and set

the prior standard deviation to 0.25.

4In particular, each element along the diagonal of V −1 contains one over the absolute value of the difference

between the 95th and 5th percentile of the confidence interval. Following Christiano, Eichenbaum and Evans

(2005), this construction of V −1 implies that the estimator γ̂ attempts to place the model impulse responses

inside the confidence intervals of the impulse responses from the data.
5Christiano, Eichenbaum and Trabandt (2016) provide three reasons why this is only an approximate

likelihood: (i) Standard asymptotic theory implies that under the assumption that the DSGE model is the

correct data generating process with the true parameters γ0, ψ̂ converges only asymptotically to N(ψ(γ0, V )

as the sample size grows arbitrarily large, (ii) our proxy for V is guaranteed to be correct only as the sample

size grows arbitrarily large, and (iii) ψ(γ) is approximated with a piece-wise linear DSGE model.
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For the investment adjustment cost parameter κ and elasticity of capital utilization σδ,

we center our prior at the quarterly estimates of Christiano, Eichenbaum and Evans (2005).

However, since our model is calibrated to monthly frequency, we set a very large standard

deviation for these priors to reflect our uncertainty over the exact time-aggregation function.

Our prior for the size of the forward guidance shock σν is similarly uninformative and we

restrict initial aggregate demand shock εa0 to be positive.6

4 Estimated Responses to a Forward Guidance Shock

We now analyze the macroeconomic effects of a forward guidance shock in our estimated

model. To compute the impulse response, we generate two time paths for the economy. In

the first time path, we simulate a large negative demand shock which causes the zero lower

bound to bind for nine months. In the second time path, we simulate the same large negative

first moment demand shock but also simulate a negative shock to the desired policy rate in

Equation 2. This forward guidance shock implies that the 12-month ahead model-implied

futures rates declines by about three basis points, which is consistent with our empirical

findings in Section 2. We assume that the economy is hit by no further shocks and compute

the percent difference between the two time paths as the impulse response to a forward

guidance shock at the zero lower bound. Since the economy is at the zero lower bound,

this exogenous shock to the desired rates acts like an exogenous extension of the zero lower

bound period. In the estimated model, this forward guidance shock exogenously extends the

zero lower bound duration by one month.

The model can reproduce the effects of a forward guidance shock in the data. Figure 1

plots both the empirical and model-implied impulse responses to a forward guidance shock.

Output, investment, and capacity utilization in the model all rise in hump-shaped patterns

similar to their empirical counterparts. The model also replicates the gradual increase in

prices we observe in the data. While the peak response of output occurs earlier than in the

data, the timing of the peak in output is not estimated very precisely. In fact, the model’s

response for output is always within the 90% probability interval of the data’s impulse re-

sponse function. Moreover, the model’s responses for capacity utilization, prices, and futures

rates almost always fall within their empirical probability intervals. These results suggest

that the predictions from a standard model of monetary policy are generally in line with the

empirical effects of a forward guidance shock.

6We multiply the initial demand shock by negative one to simulate a decline in aggregate demand, which

takes the economy to the zero lower bound prior to the forward guidance shock.
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The model struggles to generate sufficient movements in investment. However, recall that

we proxy for investment at a monthly frequency using core capital goods shipments. While

this measure is highly correlated with aggregate investment, it does not align exactly with

the concept of investment in the national income accounts. For example, when aggregated

to a quarterly frequency, core capital goods shipments are two to three times more volatile

than the BEA’s official investment series. Thus, when analyzing the models ability to match

the data, we focus less on the model’s ability to match the response of our investment proxy

since it is a noisy indicator of underlying changes in the true capital stock.

Figure 2 shows the impulse responses for consumption, additional futures contracts, and

real interest rates. Since households expect the zero lower bound to persist for ten months,

6-month ahead futures rates don’t move immediately after the forward guidance shock.

However, the 12-month ahead contracts fall by several basis points as expected nominal

policy rates decline. The combination of the forward guidance shock, nominal price rigidity,

and the zero lower bound produces a significantly hump-shaped response of real interest

rates. At impact, current nominal policy rates are fixed at zero and expected inflation rises

very slightly due to the nominal rigidity in price setting. Thus, real interest rates only fall

modestly when the economy remains at the zero lower bound. However, real rates fall again

once the economy exists the zero lower bound and the monetary authority can lower its

current nominal policy rate. This time path for real interest rates causes a very gradual

increase in consumption, where the peak response occurs about when the economy exits the

zero lower bound.

4.1 Role of the Initial Demand Shock

While many features of our model are standard, simulating a forward guidance shock at

the zero lower bound requires us to estimate the initial conditions in the economy prior to

the forward guidance shock. In this section, we illustrate how our estimate of the initial

aggregate demand shock affects our main results.

Disciplining the model using futures contracts helps the estimation procedure determine

the appropriate zero lower bound episode to simulate in the model. In our baseline results,

we find that a total zero lower bound episode of ten months allows the model to match the

data. For comparison, we now simulate a larger initial shock to the economy such that the
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zero lower bound persists for significantly longer.7 Figure 2 plots the responses under a two-

year zero lower bound duration and our baseline 10-month scenario. If we simulate too large

of an initial demand shock, the 12-month ahead futures rate fails to move at impact and

displays a somewhat hump-shaped pattern. This time path is clearly inconsistent with the

empirical evidence from Figure 1 where futures rates fall at impact and rise monotonically.

Thus, appropriately choosing the initial demand shock ensures that the model can generate

movements in futures rates similar to what we observe in the data.

4.2 Effects of Forward Guidance Shock Persistence

We find that the model greatly prefers a highly persistent forward guidance shock process

to match the empirical impulse responses. Table 2 shows that our modal estimate of the

forward shock persistence ρν = 0.95 with a very small standard error. In this section, we

show why the estimation procedure favors this highly persistent shock process. We now solve

an alternative model where we simulate a forward guidance shock without any persistence

ρν = 0.8 Figure 3 plots the model-implied impulse responses to both a persistent and iid

forward guidance shock.

An autocorrelated forward guidance shock process helps the model generate a persistent

decline in futures rates. In the data, futures rates remain lower for about 18 months following

a typical forward guidance shock. Figure 1 shows that our baseline model easily replicates

this feature of the data. Without a persistent shock process, however, Figure 3 shows that the

model struggles to generate a persistent decline in futures rates. Since expected future policy

rates don’t fall enough, the alternative model then fails to generate sufficient movements in

output and prices. Thus, a persistent shock process is crucial in matching both the path

of the futures rates and the response of the other macroeconomic variables in response to a

forward guidance shock.

4.3 Remaining Parameter Estimates

We now discuss the remaining estimated model parameters in Table 2. Our estimated degree

of nominal rigidity ω implies that prices remain fixed for about 7 quarters on average. While

7In the estimation, we impose that the initial zero lower bound episode lasts for at least 6 months. This

minimum constraint on the zero lower bound duration is consistent with the ex ante views of professional

forecasters during 2009.
8In this alternative calibration, we also increase the size of the forward guidance shock to generate the

same movement in futures rates at impact as our baseline model.
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prices in our model are more persistent than in the micro-level estimates of Nakamura and

Steinsson (2008), our results are consistent with the previous findings of Gali and Gertler

(1999), Eichenbaum and Fisher (2007), and Christiano, Eichenbaum and Evans (2005).9

The degree of lagged indexation in the Phillips curve is estimated to be χ = 0.3, which is

considerably smaller than Christiano, Eichenbaum and Evans (2005) who set χ = 1 to match

the responses to a conventional monetary policy shock. As we discuss in Section 2.4, this

difference is likely due a decline in the persistence of inflation since the 1980s.

In addition to a moderate degree of nominal rigidity, the model requires some real-

rigidities to match the data. Our estimate of consumption habits b = 0.78 is in line with

estimates from Ferson and Constantinides (1991). As in Christiano, Eichenbaum and Evans

(2005), our estimate of the capacity utilization adjustment cost parameter is very small and

not significantly different from zero. Since 1/σδ governs the elasticity of capacity utilization

with respect to the return on capital, our estimate of σδ implies a large response of utiliza-

tion to a given movement in capital returns. Even though our estimation is informed by

the response of capacity utilization, the model’s impulse response lies below the VAR point

estimate for much of the impulse response horizon. This finding suggests that this parameter

also affects the responses of other variables in the model such as prices through marginal

cost dynamics. In unreported results, we confirmed this intuition by re-estimating the pa-

rameters without asking the model to match the response of capacity utilization. Under this

alternative estimation exercise, we find similar estimates of σδ and a marginally better fit

for prices.

Turning to investment, we find much larger monthly investment adjustment costs than

the quarterly estimates of Christiano, Eichenbaum and Evans (2005). Large adjustment

costs imply that firms make incremental investments in their capital stock which generates

persistence in the response of investment and overall output. Thus, the model prefers a large

value of κ as it helps the model account for the persistence of output and investment we find

in the data.10

We estimate a significant degree of desired-rate smoothing in the central bank’s policy

9As Christiano, Eichenbaum and Evans (2005) show, the inclusion of nominal wage rigidity would likely

lower our estimate of ω without greatly changing the other estimated parameters or the model’s fit of the

data.
10If we set a tighter prior for κ, Appendix C shows that we find significantly smaller estimates of κ than

in our baseline model. Under this alternative prior, the model’s fit deteriorates a bit, but not significantly,

with the primary difference being the persistence of the investment and output responses.
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rule, which is largely consistent with our prior. However, the fact that our estimate doesn’t

significantly differ from our prior mode suggests that φr may not be well-identified by our

impulse response matching procedure. In Appendix C, we explore alternative priors for φr

and consistently find point estimates of φr which are very near to the prior mode. With

the exception of the size of the initial demand shock, however, we find that all other model

parameters and the model’s overall fit are not affected if we use an alternative prior for φr.

Since we don’t have a strong opinion on the correct size of the initial aggregate demand

shock, we find that we can’t pin down the degree of history dependence in monetary policy.

This result isn’t too surprising since we are only informing our estimation procedure with

information on monetary policy shocks. Coibion and Gorodnichenko (2012) show that the

degree of endogenous interest-rate smoothing is likely better informed by the policy response

to non-monetary shocks. However, these additional results show that the overall fit of our

model does not rely on a particular assumption about the amount of history dependence in

the central bank’s policy rule.

5 Quantitative Easing & Forward Guidance Before 2009

To this point, we have identified forward guidance shocks in the data only using policy an-

nouncements when the FOMC was constrained by the zero lower bound. During this period,

however, the FOMC also conducted several rounds of large-scale asset purchases known as

quantitative easing. Similar to forward guidance, the stated goal of these asset purchases

was to help stabilize real economic activity and inflation. Announcements regarding these

asset-purchase programs, however, often appeared in the same policy statement as changes

in the FOMC’s forward guidance. Thus, one may be concerned that part of the macroe-

conomic effects we identify may be due to the asset-purchase programs, not forward guidance.

If asset purchases simply reflect signaling about the path of future short-term rates, then

the simultaneous quantitative easing announcements would not affect our results. For exam-

ple, Krishnamurthy and Vissing-Jorgensen (2011), Woodford (2012), Bauer and Rudebusch

(2014), and Bhattarai, Eggertsson and Gafarov (2015) argue that asset purchases acted as a

commitment device to reinforce the FOMC’s guidance about future policy rates. Of course,

in our theoretical model, all economic agents understand that the central bank is fully com-

mitted to its policy rule in all states of the world. Therefore, if quantitative easing is simply

real-world commitment device then we do not need to worry about disentangling the effects

of forward guidance from quantitative easing when bringing the model to the data. However,

if asset purchases operate as well through a portfolio-rebalancing channel, then the presence
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of quantitative easing announcements could bias our estimates of the macroeconomic effects

of forward guidance.

To rectify this concern, we now examine the macroeconomic effects of forward guidance

announcements prior to the zero lower bound period. Prior to 2009, the FOMC made nu-

merous announcements about the future path of policy rates without any changes in the

size or composition of its balance sheet. Using this earlier sample period, we can trace out

the macroeconomic effects of a forward guidance shock without worrying about separately

identifying the effects of quantitative easing. If we find that the estimated effects prior to

and during the zero lower bound period are broadly similar, then this result suggests that

the presence of quantitative easing is not significantly affecting our baseline results.

Identifying forward guidance shocks prior to the zero lower bound, however, requires us

to isolate changes in the expected path of rates from fluctuations in the current policy rate.

Therefore, we use the Gurkaynak, Sack and Swanson (2005) methodology to identify forward

guidance shocks in the pre-zero lower bound period. Using measures of both current and

expected future stance of monetary policy, Gurkaynak, Sack and Swanson (2005) extract

the first two principal components of interest-rate changes around FOMC announcements.

After a rotation, they denote the first component the target factor which reflects unexpected

changes to the current stance of policy. They denote the second component as the path fac-

tor which, similar to our baseline forward guidance shock, captures unexpected changes to

the expected path of policy rates. Using the path factor, we can examine the macroeconomic

effects of a forward guidance shock both during and prior to the zero lower bound period.

Similar to our baseline empirical model, we embed the path factor into a structural vector

autoregression to trace out its macroeconomic implications.11

We find that forward guidance shocks produce similar macroeconomic effects both before

and during the zero lower bound episode. Figure 4 plots the impulse responses to a one

standard deviation path factor shock over the 1994-2008 and 2009-2015 sample periods.

Both before and during the zero lower bound period, the economy’s responses to a forward

guidance shock are qualitatively similar: Firms increase their output, raise prices, and invest

in new capital. For most variables, the impulse responses are actually quantitatively larger

during the pre-zero lower bound period, but are less precisely estimated. Similar to our

11In the Appendix, we provide additional details on the construction of the Gurkaynak, Sack and Swanson

(2005) target and path factors. During the zero lower bound period, the path factor is highly correlated

with our baseline measure of forward guidance shocks from Section 2.
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baseline results from Section 2, the peak responses of output and prices are about 10 basis

during the zero lower bound period. The robustness of our findings prior to zero lower bound

period suggests that quantitative easing (operating through a portfolio-rebalancing channel)

is not a key driver of our findings at the zero lower bound.12

6 Discussion of Related Literature

6.1 Forward Guidance Puzzle

Our findings suggest no disconnect between the effects of a forward guidance shock in the data

and the predictions of a theoretical model of nominal price rigidity. This finding contrasts

with recent work by Del Negro, Giannoni and Patterson (2012), which argue that models with

nominal rigidities overestimate the expansionary effects of forward guidance. Our alternative

conclusion emerges from the size of the forward guidance shock we estimate in the model. In

both our empirical evidence and model, a typical expansionary forward guidance shock lowers

12-month ahead futures rates by about 3 basis points. This shock extends the zero lower

bound duration by one month in our model. Del Negro, Giannoni and Patterson (2012),

however, simulate a much longer one-year extension of the zero lower bound period, which

results in a very large expansion in economic activity. These authors argue this increase

in activity is implausibly large, and denote their finding the “Forward Guidance Puzzle.”

However, our estimated model suggests that a one-year exogenous extension requires a highly

unlikely 10+ standard deviation shock.13 Our much smaller exogenous shock produces only

modest increases in output and inflation that are consistent with our empirical evidence.

6.2 Elasticity of Output with Respect to Expected Rates

Our conclusions also run counter to Kiley (2016), which argues that output and prices are

too responsive to changes in expected rates in standard models with nominal rigidities. How-

ever, one may argue that we do not find any disconnect between the model and data because

12In related work, Swanson (2016) aims to separately identify the empirical effects of forward guidance

and quantitative easing on asset prices. To identify the effects of each policy tool, he assumes that forward

guidance announcements produce the same movements in asset prices both before and during the zero lower

bound period. The robustness of our results across subsamples supports his identifying assumption, at least

with respect to the effects on typical macroeconomic variables.
13Prior to conducting their forward guidance experiment, Del Negro, Giannoni and Patterson (2012) use

overnight-indexed swaps rates to estimate the state of the economy and the expected path of interest rates.

However, they do not use these rates to inform the size of the exogenous forward guidance shock they

simulate in their model.
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our empirical evidence implies an unrealistically large response of output to small changes

in expected future interest rates. In the data, we find that a typical forward guidance shock

causes a 2.5 basis point movement in one-year ahead expected policy rates, which generates

a moderate but sustained economic expansion. In particular, output rises by about 10 basis

points at its post-shock peak. Thus, we find an elasticity of the peak response of output

with respect to one-year ahead expected policy rates of about 4.3. Using established results

in the prior literature, we want to know whether this elasticity is empirically reasonable.

Thus, we compare our findings with the previous work of Romer and Romer (2004) and

Christiano, Eichenbaum and Evans (2005) on the effects of conventional monetary policy

shocks. Specifically, we use the empirical VAR models in those papers to compute the same

elasticity, the peak response of output with respect to one-year ahead expected interest rates.

Since we focus on the elasticity of output to expected rather than current policy rates, we

use their estimated VAR models to measure expectations of future policy rates following

a conventional monetary policy shock. In the monthly VAR model of Romer and Romer

(2004), we measure one-year ahead expected policy rates using the point estimate of the

policy rate 12 periods after a monetary policy shock. Similarly, we use the response of the

federal funds rate after 4 periods in the quarterly model of Christiano, Eichenbaum and

Evans (2005) as our measure of one-year ahead policy expectations. Figure 5 shows the

responses of output and interest rates in each of the three models. The diamonds reflect the

points used to compute the elasticity of interest.

Our baseline empirical results imply very similar elasticities to the findings from the

previous conventional policy shock literature. In Romer and Romer’s (2004) model, the

elasticity of the peak response of output with respect to one-year ahead expected future

policy rates is 3.9. Similarly, the VAR model of Christiano, Eichenbaum and Evans (2005)

implies an elasticity of 4.9. Thus, our estimated elasticity of output with respect to expected

policy rates of 4.3 after a forward guidance shock is in the range of other estimates from the

previous conventional policy shock literature. In addition, we can also compute the elasticity

of the peak response of prices with respect to one-year ahead expected policy rates. Our

empirical VAR generates a price elasticity of 4.0, which is also between the values of Romer

and Romer’s model (6.2) and the results of Christiano, Eichenbaum, and Evans (3.5).
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6.3 Other Related Literature

Recent papers by McKay, Nakamura and Steinsson (2014) and Kaplan, Moll and Violante

(2016) also argue that standard representative-agent macroeconomic models overstate the

effects of forward guidance. McKay, Nakamura and Steinsson (2014) focus specifically on the

implications of the linearized consumption Euler equation for a given path of real interest

rates. Holding all other real interest rates fixed, they simulate an exogenous decline in real

interest rates for a single period in the future. They show that the effects on household

consumption and prices increase as the real rate shock moves several years into the future.

They argue that these effects are unrealistic, so they introduce idiosyncratic household risk

and borrowing constraints to temper the responses of consumption and prices.

For the typical one- to two-year ahead guidance provided by the FOMC, we find that

a standard representative-agent model is a good approximation to the actual economy fol-

lowing a forward guidance shock. While households and firms absolutely consider risk and

borrowing constraints when making their decisions in reality, our results suggests that these

features may not be strictly necessary to model the implications for typical macroeconomic

aggregates. Thus, we believe that the same models Christiano, Eichenbaum and Evans

(2005) and others use to study the effects of conventional monetary policy shocks remain

useful in studying forward guidance shocks at the zero lower bound.

Recent work by Gertler and Karadi (2015) also examines the effects of monetary pol-

icy shocks. Similar to our work, these authors measure policy shocks using high-frequency

changes in futures rates around policy announcements. However, they then use these shocks

as external instruments to estimate the effects of a policy shock on a variety of macroeco-

nomic and financial variables. Our work differs from theirs along two key margins. First,

since we focus primarily on the zero lower bound period, we are able to trace out the effects of

a forward guidance shock without any change in the current policy rate. Gertler and Karadi

(2015) cannot separately decompose the effects of a change in the current policy rate versus

the expected path of policy. Second, our framework allows us to examine additional pol-

icy indicators, such as two-year ahead futures rates and the Gurkaynak, Sack and Swanson

(2005) path factor, which are generally unavailable in their external instruments procedure.14

14Specifically, Gertler and Karadi (2015) find that the Gurkaynak, Sack and Swanson (2005) path factor

is not a strong instrument for the monthly reduced-form VAR residuals of the one-year ahead bond yield.

In addition, they do not find any strong instruments for the two-year bond yield as a policy indicator.
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Our paper is also related to Nakamura and Steinsson (2015), which uses high-frequency

responses of interest rates to estimate monetary non-neutrality. The authors estimate the

effects of FOMC announcements on various nominal and real interest rates. Then, they

estimate a medium-scale macroeconomic model such that the impact effects on the model-

implied nominal and real yield curves following a conventional monetary policy shock are

consistent with their high-frequency evidence. They measure the degree of monetary non-

neutrality as the ratio of the cumulative response of output to the cumulative response of

inflation. They estimate this ratio to be 3.8, which implies output moves almost four times

as much as inflation after a monetary shock. Using their measure, our baseline forward

guidance shock produces a ratio less than one, which is closer to the model-implied value of

Christiano, Eichenbaum and Evans (2005).

7 Conclusions

We draw several conclusions from our results. First, an unexpected decline in the path of

policy rates at the zero lower bound produces a sustained economic expansion. Unlike the

previous literature, we show that these estimated effects of forward guidance in the data are

fully consistent with a standard macroeconomic model with nominal rigidities. Thus, we find

no disconnect between the empirical effects of forward guidance shocks and the predictions

from a textbook model of monetary policy. Our conclusion rests on appropriately calibrating

the size of the forward guidance shock to simulate in the model. Finally, we argue that the

same models economists use to study the effects of conventional monetary policy shocks

remain useful in studying forward guidance shocks at the zero lower bound.
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Table 1: Calibrated Model Parameters

Parameter Description Calibrated Value

β Household Discount Factor 0.9983

Π Steady State Inflation Rate 1.02
1
12

δ0 Steady State Depreciation 0.1 / 12

δ1 First-Order Utilization Parameter 1/β − 1 + δ0

η Inverse Frisch Labor Supply Elasticity 0.5

ξ Utility Function Constant 58.43

θ Elasticity of Substitution Intermediate Goods 6.0

α Capital Share in Production Function 0.33

φπ Central Bank Response to Inflation 1.5

φy Central Bank Response to Output 0.1

ρa Preference Shock Persistence 0.95

σa Std. Dev. of Preference Shock 0.005

Table 2: Estimated Model Parameters

Prior Posterior

Parameter Description Distribution Mode Std. Dev. Mode Std. Dev.

b Habit Persistence Beta 0.50 0.25 0.7784 0.0211

ω Calvo Probability Beta 0.93 0.02 0.9535 0.0005

χ Degree of Lagged Indexation Beta 0.50 0.25 0.2735 0.0099

φr Policy Rate Smoothing Beta 0.75 0.25 0.7834 0.0078

κ Investment Adjustment Gamma 2.48 60.0 76.2051 4.6839

σδ Capacity Utilization Curvature Gamma 0.01 60.0 1.4811×10−5 0.0001

ρν Policy Shock Persistence Beta 0.50 0.25 0.9545 0.0005

1200× σν Std. Dev. of Policy Shock Gamma 25.0 1200 0.0917 0.0041
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Table 3: Variance of Forecast Errors Explained by Monetary Policy Shocks

Output

Model 1-Year Horizon 2-Year Horizon 5-Year Horizon

Baseline VAR 9 16 30

(1, 21) (2, 34) (3, 52)

Romer & Romer (2004) 7 25 22

(1, 18) (6, 47) (9, 48)

Christiano, Eichenbaum, & Evans (2005) 15 41 26

(5, 24) (21, 47) (11, 32)

Price Level

Model 1-Year Horizon 2-Year Horizon 5-Year Horizon

Baseline VAR 19 35 45

(5, 34) (9, 52) (7, 62)

Romer & Romer (2004) 0 5 80

(0, 7) (1, 21) (48, 90)

Christiano, Eichenbaum, & Evans (2005) 1 1 14

(0, 5) (0,6) (2, 26)

Notes: Numbers in parentheses are the 90% confidence interval. For comparison with our baseline results, we

estimate the model of Christiano, Eichenbaum, & Evans (2005) using the price level in the VAR, rather than

the inflation rate. Romer & Romer (2004) proxy output at a monthly frequency using industrial production.
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Figure 1: Empirical & Model-Implied Impulse Responses to Forward Guidance Shock
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Note: The solid blue lines denote the empirical point estimate to a one standard deviation shock and the

shaded areas denote the 90% probability interval of the posterior distribution. The red dashed line denotes

the model-implied impulse response. 31



Figure 2: Role of the Initial Demand Shock
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Figure 3: Effects of Forward Guidance Shock Persistence
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Figure 4: Empirical Impulse Responses Before & During the Zero Lower Bound Period
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Note: The solid lines denote the point estimate to a one standard deviation shock and the shaded areas denote

the 90% probability interval of the posterior distribution. Each column represents the impulse responses from

a different empirical model. 34



Figure 5: Elasticity of Output with Respect to Expected Policy Rates
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Note: The solid lines denote the point estimate to a one standard deviation shock and the shaded areas

denote the 90% probability interval of the posterior distribution. Each row represents the impulse responses

from a different empirical model. The diamonds denote the point estimates used in calculating the elasticity

of output with respect to one-year ahead expected policy rates. Romer & Romer (2004) proxy output at a

monthly frequency using industrial production. 35
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