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1 Introduction

One lesser-known characteristic of the US labor market is that the wage returns to different

college majors are highly heterogeneous across space. For example, among males in the 2010-

2015 American Community Survey, the return to STEM and business majors each range from

23% to 43%, relative to education majors.1 While much work has examined sorting of majors

into occupations, occupational sorting does little to narrow this gap: the return to a STEM

major in a STEM occupation relative to a STEM major in a non-STEM occupation ranges from

10% in Texas to 26% in Oregon, with a similar range for other majors.2 This broad range

in returns to majors and occupations suggests that post-college migration, and in particular its

interaction with post-college occupational choice, might be a significant driver of the observed

range in returns.

The objectives of this paper are (i) to uncover the extent to which selection into residence

location and occupation biases the observed wage returns to college majors (relative to educa-

tion majors); and (ii) to assess the extent to which migration flows respond to cross-location

differences in wage returns, occupational availability, and local amenities. This is the first paper

to examine the spatial dimension of college major and occupation decisions, and the first to

examine how the interaction of the two influences migration flows.3 In doing so, I find that

correcting for selection tends to reduce the measured returns by up to 30%. I also find that

migration of college majors is influenced twice as much by occupational density as it is by wage

returns.

It is important to know how college graduates make post-college migration decisions. The

answer is of interest not only to students who select their major, but also to local governments

who seek to attract and retain a skilled workforce. Certain majors may be more likely to move

out of the state from which they graduated, possibly in search of employment in a related

occupation. If this is the case, then a state government seeking to retain its college graduates

could respond in two ways: (i) increasing the tuition rate of the majors that are more likely

to leave; or (ii) increasing the density of occupations related to the majors that are more likely

to leave. Knowing how sensitive graduates of specific majors are to occupation relatedness can

inform the effectiveness of such policies.

Using data on male college graduates from the 2010-2015 American Community Survey, I

document substantial differences in earnings, occupational choice, and locational choice across

1Returns calculated using a Mincerian regression of log earnings on a cubic in potential experience, demo-
graphic indicators, and MSA fixed effects.

2For overviews of the literature on college major choice and consequences, including post-college occupational
choice, see Altonji, Blom, and Meghir (2012) and Altonji, Arcidiacono, and Maurel (2016a). Lemieux (2014),
Kinsler and Pavan (2015), and Altonji, Kahn, and Speer (2016b) examine the effect of occupational choice on major
earnings premiums. Each of these studies abstracts from location.

3Winters (Forthcoming) is the only paper in the literature analyzing the migration behavior of college majors.
He examines the migration response of different college majors to birth-state earnings shocks to workers in the
same major.
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college majors. These differences provide support for the existence of different location-occupation

complementarities for different majors. As an example, I show that STEM and business majors

earn the highest returns to and are much more likely to work in occupations related to their

major. However, business majors are much less likely to live outside their state of birth. These

results are consistent with a model where college graduates have preferences for working in an

occupation related to their field of study, but where occupational concentration varies across

space.

Additional evidence on the importance of location and occupation for college majors can

be seen by examining flows between specific locations. For example, education majors who

originate in New York are highly unlikely to work as teachers in New York unless they hold a

master’s degree. As a result, there is a large outflow of bachelor’s-level education majors from

New York to areas where working as a bachelor’s-level teacher is more common, but where the

wage returns to doing so are much lower. Migration flows such as these show that non-wage

factors, specifically related occupation availability, are potentially strong determinants of the

observed returns to college majors.

One would expect selection to result in naïve estimates being upward biased if certain majors

are more prone to migrate or choose a particular occupation in response to favorable wage

shocks. On the other hand, naïve estimates may be downward biased if certain majors have

strong non-wage preferences for a particular location or occupation. Estimating the direction

and magnitude of this bias is one of the primary empirical questions of this paper.

To account for the various factors described above, I estimate an extended Roy (1951) model

that allows for nonpecuniary tastes in both the location and occupation dimensions.4 Themodel

divides occupations for each major into related and unrelated, and divides the United States into

15 groups of states. This paper bridges previous work that has examined the role of selective

migration on the wage returns to a college degree (Dahl, 2002; Bayer, Khan, and Timmins,

2011) and the role of selective occupational choice on the returns to college major (Lemieux,

2014; Kinsler and Pavan, 2015).

Estimation of an extended Roy model is difficult in a model with nonpecuniary preferences

and many choice alternatives. To estimate the model, I implement methods pioneered by Lee

(1983) and Dahl (2002) which show that a control function approach, where the control func-

tion includes a polynomial of a small number of observed choice probabilities, is able to account

for a variety of patterns in selection.5 This polynomial serves as a multidimensional analog of

the inverse Mill’s ratio in the classic Heckman (1979) correction model. As a result, the re-

searcher can obtain unbiased and consistent estimates of the selection-corrected returns using

OLS. With the selection-corrected returns in hand, I then examine the responsiveness of migra-

4For surveys on the Roy model and its empirical content, see Heckman and Vytlacil (2007a,b) and French and
Taber (2011).

5The assumption that a small number of probabilities can form a sufficient statistic for selection is referred to
by Dahl as the index sufficiency assumption.
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tion flows to spatial differences in wage returns, occupational density, and non-wage amenities.

I implement the Lee and Dahl approach with a machine learning method that shows the use-

fulness of machine learning in economics, in the spirit of Varian (2014) and Bajari et al. (2015).

The specific method used in this paper is the conditional inference classification tree. While

existing methods have utilized nonparametric bin estimation to derive selection probabilities,

tree classification of this type has the advantage of using statistical hypothesis tests to determine

which covariates should be included, and where bin cut points should be made. The algorithm

is especially useful in settings where it would be infeasible to include all covariates. I assess the

performance of the classification tree relative to classical econometric estimators and show that

it performs better both in simulations and in practice.

Using these empirical methods, I find that OLS estimates of the returns to college majors

(relative to education majors) are upward biased. Correcting for selective migration and occupa-

tional choice tends to lower the measured returns, by up to 30% in some locations and consistent

with other studies (Dahl, 2002; Bayer et al., 2011). The bias is the strongest among business and

STEM majors who hold advanced degrees. Controlling for selection does not narrow the spa-

tial gaps in measured returns by very much. These findings imply that spatial dispersion in

the returns to major is likely primarily due to innate productivity differences or compensating

differentials.

With the corrected returns to major in hand, I analyze the determinants of migration flows

for different majors. I find that, in addition to differences in the wage returns to major, migration

flows for all majors are responsive both to the availability of occupations related to the major,

and to non-wage amenities such as distance, weather, and local government characteristics. Sur-

prisingly, the elasticity of migration with respect to occupational density is more than twice the

elasticity with respect to earnings.

The findings of this paper have important implications for local governments seeking to at-

tract or retain skilled workers. Specifically, the results highlight the importance of employment

in related occupations as a means of attracting college-educated workers. For example, state gov-

ernments who enact tuition subsidies that are geared towards certain majors may not be able to

retain those students if there is not a sufficient density of occupations related to those majors in

that location.6 Moreover, as discussed in Moretti (2012) and Kline and Moretti (2014), the suc-

cess of place-based policies is not guaranteed and often comes at significant cost. One potential

solution could be to offer different tuition by major that is indexed to the local concentration of

related occupations.

The remainder of the paper is organized as follows: Section 2 details the Roy model which

serves as the empirical basis of understanding selection. Section 3 outlines the statistical frame-

work that allows me to reduce the dimensionality of the choice set. Section 4 describes the data

construction and key variables used in the estimation, and Section 5 discusses the estimation of

the model, including the non-parametric machine learning decision tree algorithm. Section 6

6For further discussion on the implementation of major-specific tuition rates, see Stange (2015).
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discusses the main empirical findings, and Section 7 concludes.

2 A Roy Model of Migration, Occupation, and Earnings

In this section, I introduce an extended Roy (1951) model of college major, occupational choice,

and locational choice, using the framework developed in Dahl (2002).7 It extends Roy’s origi-

nal model in two ways: (i) both pecuniary and nonpecuniary factors influence an individual’s

decision; and (ii) there are more than two alternatives in the choice set.8

The focus of this paper is on how selective migration and occupational choice in the United

States affects the measured returns to the human capital investment of college major. The objec-

tive is to examine how sensitive earnings in a particular major are to post-college location and

occupational choice. Existing models in the literature on college major and occupation have

treated location as fixed (Lemieux, 2014; Kinsler and Pavan, 2015; Ransom and Phipps, Forth-

coming). At the same time, there is strong evidence that location is an increasingly important

determinant of labor market outcomes, particularly for the college educated (Moretti, 2012;

Diamond, 2016). This paper serves to fill the gap between these two literatures.

An extended Roy model serves as an appropriate lens through which to view the joint

location and occupation decisions of college graduates because it allows for the inclusion of

nonpecuniary components. Factors such as amenities and distance have been shown to be im-

portant determinants of migration decisions (Kennan and Walker, 2011; Ransom, 2016; Zabek,

2016), while nonpecuniary considerations have also been shown to be important to occupational

choice among college graduates (Arcidiacono et al., 2014).

2.1 Model

This section formalizes each component of the Roy model and how each of the components

interact with each other. The primary components of the model are earnings (the outcome

equation) and preferences (the selection equation). In contrast with most of the Roy model

literature, this paper emphasizes the empirical results of the outcome equation as opposed to the

selection equation. As such, it is appropriate to view the model as a reduced-form approximation

of a Roy model because I make no attempt to structurally model the selection equation.

The framework of the model is as follows. A geographical area (e.g. the United States) is

divided into L mutually exclusive locations (e.g. groups of states). The model has two periods.

7The Roy model has also been used in the migration literature by Borjas (1987) and Falaris (1987), among
others.

8See Heckman and Taber (2008) for an overview of the original Roy (1951) model and its various extensions.
Heckman and Honoré (1990) discusses identification of the Roy model, including the assumptions on the distri-
bution of earnings that are required to generate empirical content of the Roy model. D’Haultfœuille and Maurel
(2013) perform inference on an extended Roy model of schooling decisions in France. Eisenhauer et al. (2015)
discuss how to use the generalized Roy model to separately identify costs and benefits of treatment.
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In the first period, individuals are born and make human capital investment decisions. In the

second period, individuals choose where to live and in which occupation to work, and receive

utility from both earnings and nonpecuniary aspects of the chosen location and occupation.9

2.1.1 Earnings

The potential log annual earnings for individual i residing in location ` and working in occupa-

tion k are given by the following equation:

wi`k = x iγ1`k + siγ2`k + ηi`k, ` = 1, . . . ,L , k = 1, . . . ,K (2.1)

where x i is a vector of individual characteristics and si is an S -dimensional vector of dummy

variables indicating i’s college major and advanced degree attainment. The parameter of interest

in (2.1) is γ2`k , which measures the link between earnings, college major, and location and

occupational choice. However, because ηi`k is only observed in the chosen (`, k) combination,

and because the chosen (`, k) is the result of a non-random selection process, OLS estimates of

γ1`k and γ2`k will be biased. I next outline the preferences of individuals, which govern the

selection process.

2.1.2 Preferences

Individuals have preferences for both earnings and nonpecuniary factors:

Vi j`k = wi`k + ui j`k, ` = 1, . . . ,L , k = 1, . . . ,K (2.2)

where j indexes birth location, ` indexes current location, and k indexes occupation. ui j`k
encompasses all nonpecuniary utility components that could determine the utility of residing

in location ` and working in occupation k given origin j . These include location characteristics

such as climate, crime, commuting time, distance from j , geographical and cultural amenities,

and many others. Also included are occupational characteristics such as working conditions,

relevance to previous human capital investments, coincidence with personal preferences, and

flexibility of hours, among many others.

9The choice to model location and occupation as once-and-for-all decisions is primarily due to data limitations:
longitudinal surveys containing data on college major, location, and occupation do not have sufficient sample size
to allow for meaningful estimation of location-specific outcomes. Work by Kennan (2015) examines the interaction
between migration and college completion in a dynamic setting using the National Longitudinal Survey of Youth
1979 (NLSY79), but is unable to capture heterogeneity across majors because of data limitations.
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Preferences can be rewritten as follows:

Vi j`k = E [wi`k | x i, si] + E
[
ui j`k | z i

]
︸                                 ︷︷                                 ︸

v j`k

+ ηi`k + εi j`k
︸        ︷︷        ︸

ei j`k

= v j`k + ei j`k

where z i is a vector of individual characteristics that affect preferences, ηi`k represents measure-

ment error in earnings, and εi j`k represents preference shocks for choosing to live in ` and

work in occupation k given birth location j . v j`k is referred to as either the subutility function

(in the selection literature) or the conditional value function (in the dynamic discrete choice

literature).10

2.1.3 Utility maximization

Individuals maximize utility such that

di j`k = 1
[
v j`k + ei j`k ≥ v jmn + ei jmn ∀ (m, n) ,

�
`, k

�]
(2.3)

where 1[A] is an indicator variable that takes a value of 1 when condition A is true and 0

otherwise. (2.3) emphasizes that utility depends not only on the location of residence, but also

on the deterministic and stochastic elements of utility in each location, including the location of

birth. Furthermore, earnings are observed only in the location that is selected:

2.1.4 Selection rule

The selection rule is given by

wi`k observed ⇐⇒ di j`k = 1 (2.4)

Specifically, earnings are only observed if all L selection equations in (2.3) are simultaneously

satisfied. Thus, individuals observed to reside in ` are not a random sample of the population;

10The model assumes that individuals have no uncertainty regarding their earnings or tastes in other locations.
While it is possible to allow for imperfect information, doing so would require, e.g. assuming that the individual’s
information set is shared by the econometrician. On the other hand, the approach taken here to model migration in
response to individual earnings shocks departs frommuch of the migration literature, which assumes that migration
decisions are influenced by the deterministic portion of earnings (Kennan andWalker, 2011; Bishop, 2012; Ransom,
2016). This assumption is typically made for tractability of dynamic models.
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hence

E [ηi`k |wi`k observed] = E
[
ηi`k | di j`k = 1, x i, z i

]
(2.5)

= E

[
ηi`k | ei jmn − ei j`k ≤ v j`k − v jmn, ∀ (m, n) ,

�
`, k

�]

, 0

where E [ηi`k | ·] is the selectivity bias for i.

Equations (2.1) through (2.5) comprise an extended Roy model of earnings, migration, and

occupational choice.

Unfortunately, this extended Roy model is difficult to estimate without making additional

assumptions about how the subutility functions affect the selection term (i.e. the conditional

expectation in (2.5)). There are two reasons for this: (i) the number of locations L needs to be

sufficiently large in migration models in order to accurately reflect the actual choice set faced by

individuals, thus effecting the curse of dimensionality; and (ii) individuals derive utility from

both earnings and nonpecuniary aspects of the location, meaning that the researcher is required

to account for individual preferences. The problem with the latter reason is that there are a large

number of variables that are important factors in the nonpecuniary dimension, but which are

unobserved or poorly measured.

In the next section, I explain how I avoid these issues by implementing existing estimation

methods (Lee, 1983; Dahl, 2002) which are designed to circumvent parametric estimation of the

subutility functions, and which work well on choice sets that are otherwise prohibitively large.

3 Reducing the Dimensionality of the Problem

Estimating the problem described in Section 2 is infeasible without making additional assump-

tions. The difficulty arises out of the curse of dimensionality due to the large set of locations

and occupations in which a person can choose to live and work. In this section, I provide in-

tuition and a brief formal derivation on how to feasibly estimate the aforementioned extended

Roy model. I also informally discuss how the model is identified. The key point is that I follow

the strategy developed by Lee (1983) and refined by Dahl (2002) to express the selection in the

earnings equation as a function of a small number of observed choice probabilities.

3.1 Overview

The intuition of this approach is as follows: examining equations (2.3) and (2.4) reveals that the

probability of observing an individual’s earnings in location ` and occupation k is related to

the probability that Vj`k is the maximum of all subutility functions. Thus, the joint distribu-

tion between the error term in the earnings equation (ηi`k ) and the differenced subutility error

terms (e j11 − e jmn, . . . , e jLK − e jmn ) can be reduced from L × K dimensions to two dimensions:

8



the first dimension is the earnings error and the second is the maximum order statistic of the

differenced subutility functions. The key assumption is that this bivariate distribution does not

depend on the subutility functions themselves, except through a small number of choice prob-

abilities.11 This allows the researcher to express the selection correction term in the earnings

equation (analogous to the inverse Mills ratio term in the canonical Heckman selection model)

as a function of a small number of observed choice probabilities. Without this assumption,

the researcher would be required to estimate an (LK − 1)-dimensional integral. This becomes

quickly infeasible as L grows large, as is the case in the current setting.

3.2 Technical details

To aid the exposition, I now briefly formalize the above intuition. Readers interested in a full

derivation should consult Dahl (2002) and Lee (1983).

First consider a reformulation of (2.3) and (2.4):

wi`k observed ⇐⇒ v j`k + ei j`k ≥ v jmn + ei jmn ∀ (m, n) ,
�
`, k

�

⇐⇒

(

v j11 − v j`k + ei j11 − ei j`k, . . . , v jLK − v j`k + ei jLK − ei j`k
)′

≤ 0 (3.1)

⇐⇒ max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

≤ 0

Now consider the joint density of the earnings error term and the max of the subutility dif-

ferences, evaluated at the error realizations. We have the following one-to-one mapping between

the LK -dimensional density f j`k and the two-dimensional density g j`k . This mapping is made

possible by implementing maximum order statistics (see Lee, 1983):

f j`k
(

ηi`k, ei j11 − ei j`k, . . . , ei jLK − ei j`k
)

(3.2)

= g j`k

(

ηi`k,max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

| v j11 − v j`k, . . . , v jLK − v j`k

)

where the expression for g j`k in (3.2) is written as being conditional on the differences in the

subutility functions in order to emphasize this dependence.

In order to reduce the dimensionality of g j`k (·), Dahl proposes an index sufficiency assump-

tion as follows:

g j`k

(

ηi`k,max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

| v j11 − v j`k, . . . , v jLK − v j`k

)

(3.3)

= g j`k

(

ηi`k,max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

| pi j`k, pi jmn

)

where pi j`k and pi jmn are two probabilities that are readily observed in the data. I discuss later

11Dahl (2002) refers to this assumption as the index sufficiency assumption, which I discuss below in more detail.
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how to choose these probabilities. The implicit assumption in (3.3) is that the probabilities pi j`k
and pi jmn contain all of the information about how the index of subutility functions influences

the joint distribution of the earnings error term and the maximum of the subutility errors.

Applying the assumption in (3.3) to the earnings equation gives the following corrected

earnings equations that account for selective migration and occupational choice, and that are

feasibly estimated:

wi`k = x iγ1`k + siγ2`k +
L∑

j=1

di j`kλ j`k

(

pi j`k, pi jmn

)

+ ωi`k, (3.4)

The implication of the assumption in (3.3) is that E
[
ωi`k | x i, si, pi j`k, pi jmn, di j`k = 1

]
= 0,

meaning that the selection problem has been resolved. Note also that the index sufficiency

assumption reduces the dimensionality of the selection correction functions from LK , LK -

dimensional control functions to LK bivariate control functions.

Because index sufficiency is an assumption, it is important to recognize the restrictions that

it levies. Index sufficiency holds, for example, if earnings errors are composed of an individual

fixed effect that is invariant to the location of residence. On the other hand, this assumption is

less likely to hold in a setting where, for example, an individual’s fixed effect on earnings could

vary with location. I discuss in Appendix A the results of Monte Carlo simulations that show

that this assumption holds for a variety of scenarios.

In Section 5, I discuss details of the estimation of equation (3.4) including how to estimate the

probabilities of interest, and how to estimate the unknown correction functions λ j`k , including

additional assumptions made to reduce the number of control functions entering (3.4).

3.3 Identification

I now informally discuss how the model is identified. As discussed in other implementations

of the Roy model (Dahl, 2002; D’Haultfœuille and Maurel, 2013; Bayer et al., 2011), sepa-

rately identifying nonpecuniary preferences from earnings in most cases requires an exclusion

restriction—a covariate which appears in the choice probabilities but does not affect wages.

Crucial to identification in this model is the existence of two such exclusion restrictions: one

for locational choice and one for occupational choice. I use two related exclusion restrictions

inspired by Kinsler and Pavan (2015). To separately identify preferences for location from earn-

ings, I use the fraction of demographically similar (including college major and advanced degree

status) individuals from the same birth state who stayed in their birth state, net of the national

rate of staying. To separately identify preferences for occupation from earnings, I compute a

similar number, but instead calculate the share who choose to work in an occupation related to

their major.

The ideal exclusion restriction for location or occupational choice would be an adequate

10



measure of search frictions. The rationale for this is as follows: individuals have preferences for a

certain location or occupation, but are unable to secure employment in the preferred alternative

because there are not enough vacancies. While not a perfect measure of search frictions, the

proposed exclusion restriction recovers a reduced-form approximation of such.

Another advantage of using the above exclusion restrictions is that it allows me to include

birth location directly into the wage equation. Previous literature has shown that certain loca-

tions do a better job of educating their residents, which implies that stayers in those locations

may receive higher wages than movers (Card and Krueger, 1992; Heckman, Layne-Farrar, and

Todd, 1996; McHenry, 2011). Allowing stayers to earn different wages than movers improves

on the previous approaches of Dahl (2002) and Bayer et al. (2011) which require birth location

to be excluded from wages. Finally, research by Zabek (2016) finds that there is substantial het-

erogeneity across states in the fraction of people who reside in their state of birth. This result

gives further credence to the exclusion restriction explained above.12

In addition to the peer share exclusion restrictions, I also allow distance moved and other

demographic characteristics to influence the nonpecuniary portion of utility. Specifically, these

covariates are: an indicator for birth location in the same Census region as the location of

residence, and separate indicators for each of the following: co-residence with a family member,

spouse’s work status (if applicable), spouse born in residence location, and presence of children

aged 0-4 or 5-18. In results not shown, I find that these demographic characteristics have much

less predictive power in the first stage than the two primary exclusion restrictions.13

The primary threat to the validity of these exclusion restrictions is if the location or oc-

cupation decision of the demographic cell is driven by advantageous draws from the earnings

distribution in the home location or in a certain occupation. This is unlikely to be a strong

driver of decisions because there is a strong correlation across majors within a given state in

the propensity to stay in that state. Thus, propensity to stay in the state of birth appears to be

driven more by nonpecuniary factors.

12The exclusion restriction rests on the assumption that certain states retain their natives at higher frequencies
than others for purely idiosyncratic reasons. For example, Texas is the “stickiest” state, retaining 77% of its natives.
On the other hand, Wyoming is the least sticky, retaining just 37% of its natives. Stickiness is positively correlated
with state population, but not very strongly ( ρ = 0.45, rank correlation = 0.72), indicating that this is not sim-
ply a mechanical relationship. Finally, stickiness is strongly correlated across majors within state, indicating that
preferences for staying in one’s state of birth have more to do with nonpecuniary factors.

13For example, I estimate separate linear probability models for moving out of one’s birth location and for
working in a related occupation. The first-stage F -statistic for leaving the birth location is 51,386 (R2

= .081)
when including only the migration peer share variable and 21,150 (R2

= .1533) when including all other excluded
variables, with spousal birth location accounting for all of the latter’s explanatory power. For related occupation,
the F -statistic is 28,349 (R2

= .046) for the occupation peer share variable and 413 (R2
= .003) for the other

excluded variables.
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4 Data and Descriptive Analysis

I now discuss the data used in the estimation procedure. I also present a descriptive analysis of

the data trends which, when compared with the model estimates, will be used to quantify the

amount of selection in migration and occupation decisions.

4.1 Data

I use data from the American Community Survey (ACS) as compiled by Ruggles et al. (2015)

over the years 2010-2015. The ACS is an annual stratified random sample of 1% of US house-

holds produced by the US Census Bureau. Sampled households respond to the survey either on

paper or via the internet, and non-responding households receive a follow-up telephone call or

visit by a Census employee.

The ACS collects detailed data for each adult household member on income, employment,

education, demographic characteristics, and health. It also collects information about the house-

hold, such as household and family structure and housing unit characteristics. In this analysis,

I focus on the following variables: location of birth, location of residence, demographic char-

acteristics (e.g. age, gender, race, ethnicity, household composition), college major, advanced

degree attainment, occupation, and earnings.14

The analysis sample consists of all native-born males between the ages of 22 and 54 with

at least a bachelor’s degree, and who have observed earnings within a reasonable range, who

have observed college major, who are not in school, do not live in group quarters, and who do

not have imputed values for any of the variables of interest. This corresponds to a 6% sample

of the US population for this subgroup. The estimation sample of the data comprises 583,913

individuals. Details on the number of observations deleted with each criterion are listed in Table

B1.

4.1.1 Definitions of majors, occupations, and locations

I now discuss aggregation of majors, occupations, and locations in order to preserve tractability

in estimation.

Majors I aggregate majors into five categories, crossed with advanced degree status so that si in

equation (2.1) is a 10-dimensional vector. The ACS records hundreds of distinct college major

fields following the Classification of Instructional Programs (CIP) established by the National

Center for Education Statistics (NCES). In order to focus the analysis and to maintain statistical

power, I aggregate majors into groups with similar pre- and post-graduation outcome character-

14Information on college major began to be collected in 2009. I focus on the years 2010-2015 in order to
maximize sample size while avoiding the most severe part of the Great Recession, because previous work has
shown that migration is sensitive to business cycle conditions (Molloy and Wozniak, 2011; Ransom, 2016).
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istics. The set of aggregated majors is: education, social sciences, business, STEM, and all others.

A detailed mapping of the 51 Department of Education major fields to these five aggregated

fields is provided in Table B2. Notably, the business field includes economics majors and the

STEM field includes pre-med majors.

Occupations I define occupation as having two values: related or unrelated (i.e. K = 2).

An occupation is related to a major if it is reported to have a 2% or larger share of all 3-digit

occupation codes within a detailed definition of major (i.e. the 51 Department of Education

codes).15 The set of occupations that are related to an aggregated major category is then the

union of the set of related occupations for each of the detailed majors corresponding to the

aggregate. I allow the set of related occupations to differ based on advanced degree status.

The cutoff of 2% was chosen so as to ensure that highly specialized majors (i.e. majors with

high concentration in few occupations) would have their most concentrated occupations defined

as related. To provide further intuition for this approach, I present in Figure 1 the frequency

distribution of occupations (sorted from most to least frequent) for non-advanced-degree hold-

ers in four majors: primary education, history, economics, and computer programming. For

each panel of the figure, I include a vertical line along with the frequency distribution, which

serves to mark the cutoff between related and unrelated occupations. Figure 1 shows that the

primary education and computer programming majors are highly specialized, with 30%-40%

of majors working in the most common occupation (elementary school teachers and software

developers, respectively). Furthermore, computer programming majors are observed in many

fewer occupations than the other majors included in the figure, by a factor of four. On the

other hand, economics and history majors do not have clear-cut occupations corresponding to

them, as the most frequent occupation contains only 10% of majors (miscellaneous managers

for both). Figure 2 reports the same information but for advanced degree holders only. The

results are similar. The exact occupation titles that are related to each of these majors are listed

in Tables B3 and B4 respectively by advanced degree status.

While the 2% cutoff for defining related occupations may seem ad hoc, the rule results in a

construction of majors and occupations that aligns with common sense and other papers in the

literature.16 A list of related occupations for each of the five aggregate college major categories

is included in Table B5 for bachelor’s degree holders and Table B6 for advanced degree holders.

Importantly, the definition of relatedness explained here does not preclude the same occupation

from being related to two different majors. This distinction allows for the occupation relatedness

15This is similar to the “Top 5” occupation distinction made by Altonji et al. (2016b), but is more flexible in
defining relatedness by taking into account the distribution of occupations within a given major.

16As an example, Kinsler and Pavan (2015) use a self-reported measure of occupational relatedness and find that
there is considerable overlap across majors among workers who report being in the same related occupation. The
difference between my definition of relatedness and the self-reported definition in Kinsler and Pavan is that my
approach restricts all individuals in an occupation-major category to be either related or unrelated. In contrast, the
self-reported definition of relatedness allows for both unrelated and related jobs to be observed in every occupation-
major category.
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definition to match what is observed in the data.

To further illustrate my definition of occupation relatedness, I discuss four different extremes

observed from Tables B5 and B6. First, almost all engineering occupations are not considered to

be related to any major except STEM.17 Second, salespersons and miscellaneous administrators

are considered to be related to every major. Third, lower-level service jobs in food services,

tourism, and administrative support tend to only be related to other majors, reflecting the occu-

pations that aspiring performing artists and authors tend to work in. Finally, accountants and

auditors are related to business majors, other majors, and STEM majors. Of additional note is

that Table B6 includes a set of occupations not included in Table B5 such as actuaries, pharma-

cists, and lawyers. These occupations all have the expected relatedness with bachelor’s degree

major: actuaries and pharmacists are related only to STEM, while lawyers are related to all ma-

jors except education. Based on this set of illustrative examples, the definition of occupation

relatedness posed here is reasonable.

Locations Because the empirical method employed in this paper does not work well in small

samples, I aggregate locations as another way of maintaining statistical power. Specifically, I

divide the United States into 15 locations, corresponding to states or groups of adjacent states.

The 15 locations consist of the five largest states (California, Texas, Florida, New York, and

Illinois), followed by the nine Census divisions, with the South Atlantic division being divided

in two. The resulting locations range in population from 11.5 million to 39 million. A detailed

list of each location is included in Table B7.

4.2 Descriptive Analysis

To motivate the modeling approach described in Section 2, I now discuss descriptive evidence

of the heterogeneity of migration and occupational choice across majors at the national level,

and heterogeneity in migration flows across certain locations by college major, advanced degree

status, and occupation.

4.2.1 Summary statistics

This subsection details the main differences across majors in earnings, propensity to leave one’s

state of birth, and propensity to work in a related occupation.

Table 1 lists differences across major in the three outcomes considered in this paper. The

results in the odd-numbered rows of the table are regression coefficients on major dummies,

estimated at the national level and controlling for demographics, advanced degree status, CBSA

fixed effects, and a cubic in potential experience. The results in parentheses are standard devia-

tions of the distribution of state-level coefficients.

17Civil engineers and industrial engineers are also related to the “other” category of majors.
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The results of Table 1 show that education majors earn the least, leave their birth state at the

lowest rates, and work in related occupations at the highest rates. What is interesting from the

table is that there is no clear monotonicity among these three outcomes. For example, STEM

and business majors each earn about the same amount and work in related occupations at similar

rates. However, STEM majors are much more likely to leave their state of birth.

Finally, the standard deviations in Table 1 show that there is substantial heterogeneity in

these outcomes across states, and that state-specific variation in migration and availability of

related occupations is as large as state-specific variation in earnings. While the spatial variation

in earnings is well known, variation in migration and concentration of related occupations is

much less known. As discussed previously, variation in these latter two outcomes is a crucial

component of identification of the extended Roy model.

4.2.2 Transition Matrix

The results of the previous subsection indicate that there is sizable variation across locations in

all three outcomes that I consider. In this section, I present evidence of how migration flows are

related to the variation in location-specific outcomes previously documented.

Figure 3 displays the migration transition matrix by major for the five largest states, for those

who do not hold an advanced degree. Rows indicate birth location, while columns indicate res-

idence location. Each row and column contains five bars, which correspond to the five majors.

Each bar is divided in two, with the bottom section corresponding to the share of individuals

choosing the related occupation.

Examining Figure 3 reveals a number of facts that support the model. First, the flow of

workers from New York to Florida is remarkable. Underscoring this pattern is the fact that

Florida is disproportionately popular for New Yorker education majors. Furthermore, it is

especially evident of non-pecuniary factors because the education majors who stay in New York

disproportionately leave the teaching occupation, while the those who move to Florida are

disproportionately in the education occupation. The reverse is also true: education majors

who leave Florida (see the second row) are almost all those who choose the non-education

occupation. This fact is evident of nonpecuniary preferences, because, as will be shown, I find

that education majors who work as teachers in Florida face a wage cut for doing so. This

nonpecuniary dimension of the choice is likely to affect the observed earnings distribution in a

significant way.

Figure 4 is the transition matrix for advanced degree holders. While there are high flows

from New York to Florida among this group, there are equally high flows from New York to

California. Furthermore, the education majors in New York who earn master’s degrees stay in

New York and work as teachers at much higher rates than their counterparts who do not hold

master’s degrees. These findings are further evidence of self-selection in location and occupation

decisions that differ by college major and advanced degree status.
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It is worth noting one other observation from Figures 3 and 4. Examining the middle bar of

the off-diagonal elements of columns 1 and 4 shows the fraction of other majors who choose to

move to California and New York. Of the movers who choose these two locations, other majors

are disproportionately represented. This likely reflects the fact that other majors are composed

of performing arts majors, and California and New York are hubs for such occupations. This

is consistent with migration being a function not only of earnings, but also of availability of

related occupations. I formally show this effect in more detail later.

Taken together, the results from Figures 3 and 4 provide additional evidence of the presence

of nonpecuniary factors on the decision of where to live and in which occupation to work.

These nonpecuniary factors are likely to cause the observed earnings distribution to look much

different than if individuals were placed randomly into locations and occupations.

5 Estimation

In this section, I discuss how to estimate the final equation (3.4) of the model discussed in

Sections 2 and 3. The estimation proceeds in two stages. First, I estimate the choice probabilities
(

pi j`k, pi jmn

)

. Second, I estimate the parameters of equation (3.4), including the unknown

correction functions λ j`k .

5.1 Choice probabilities

There are a variety of ways in which one can estimate the choice probabilities. Some alternatives

include the conditional logit model, the conditional probit model, or non-parametric estimation

techniques.

The conditional logit model is by far the most popular method used to estimate choice prob-

abilities (and in migration models in particular, because the dimension of the choice set tends to

be large) due to its simple closed-form expression for the underlying choice probabilities. The

primary drawback of this model is that it suffers from the independence of irrelevant alternatives

property.18

The conditional probit model (Hausman and Wise, 1978) allows for arbitrary correlations

among the choice alternatives, but is unsuitable for settings such as this where the choice set is

large. This is because the conditional probit model requires estimation of a (J − 1)-dimensional

integral, where J is the number of alternatives. Using this model would would eliminate the

gains afforded by the index sufficiency assumption discussed in Section 3.

Non-parametric estimation has two advantages. First, it does not require the researcher to

model location-specific characteristics, of which there are a large number and many of which are

18For tractability reasons, dynamic migration models such as Kennan and Walker (2011) and Ransom (2016)
assume that migration probabilities take a conditional logit form. Davies et al. (2001) assume this form in a static
setting. Monras (2015) argues that a nested logit is more appropriate for characterizing migration decisions.
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poorly measured. Second, it does not require the researcher to specify the dependence structure

of the choice alternatives as would be required with the conditional probit model or a nested

logit (or GEV) model.19

The primary drawback to non-parametric estimation is deciding how finely and in which

ways to divide the state space. Probabilities that are estimated from cells that are too small will

introduce a large amount of error into the estimation. On the other hand, failure to create

enough cells will result in probabilities that do not accurately represent the data.

5.1.1 Non-parametric estimation using machine learning

I estimate the location and occupational choice probabilities non-parametrically using a method

from the machine learning literature called conditional inference recursive partitioning, devel-

oped by Hothorn et al. (2006) and implemented in the R programming language by Hothorn

and Zeileis (2015).

The algorithm is designed to overcome the drawbacks associated with non-parametric esti-

mation. The main advantage is that it prevents the researcher from being required to make ad

hoc assumptions about how the state space should be divided when creating probability bins.

It also has the advantage of automatically merging together sparse bins such that the algorithm

does not return any empty bins or any bins of excessively small size. I detail the conditional

inference tree algorithm in the following subsection.

Generally speaking, machine learning is the practice of allowing computers to learn for

themselves without having to be explicitly programmed. In statistical applications, machine

learning amounts to using methods that combine estimation with model selection to enhance

out-of-sample prediction of statistical models. The result is an algorithm which automatically

selects which covariates to include while also estimating their parameters. In the current setting,

the conditional inference recursive partitioning algorithm selects which variables and which lev-

els of the variables matter most in predicting migration and occupations. For other settings

where the set of covariates is larger than the sample size, model selection methods automatically

choose which covariates should be included such that standard rank and order conditions for

identification are satisfied.20 Varian (2014) provides an overview of basic machine learning al-

gorithms and suggests ways in which they can be used to improve existing research methods in

economics. Other examples of machine learning applications in economics include Athey and

Imbens (2015), Gentzkow et al. (2015), and Belloni et al. (2011).21

19Hausman and Wise (1978) note that the conditional probit model produces inconsistent estimates of the
choice probabilities if dependence among the alternatives is incorrectly specified. Likewise, the conditional logit
model produces inconsistent estimates if there is in fact any dependence among the alternatives. Estimates from the
nested logit or other generalized extreme value (GEV) models are also inconsistent if the wrong nesting structure
is specified.

20This setting applies to Bajari et al. (2015) who show how a variety of machine learning methods can be used
in demand estimation to evaluate advertising effectiveness.

21Athey and Imbens (2015) show how machine learning methods can be used to estimate heterogeneous treat-
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5.1.2 Conditional inference recursive partitioning algorithm

The conditional inference recursive partitioning algorithm is a classification tree algorithm de-

signed to non-parametrically predict a dependent variable from a set of covariates. The algo-

rithm takes as inputs the dependent variable and the covariates, and returns as outputs combina-

tions of the covariates that form clusters (nodes of the tree) or cells. Using an internal stopping

criterion based on hypothesis testing, it optimally trades off bias (creating too few clusters and,

as a result, poorly fitting the estimation data) and variance (creating too many clusters and, as a

result, poorly fitting out of sample) such that out-of-sample prediction is maximized.22 The algo-

rithm works for both continuous and categorical variables on both sides of the equation.23 The

current application contains a categorical dependent variable and covariates that are primarily

categorical, but some of which are continuous.

Below, I detail the algorithm, which recursively iterates on the following two steps:

1. Selection. The algorithm begins by testing whether the dependent variable is independent

of the covariates (i.e. testing whether the distribution of the dependent variable Y is dif-

ferent from the conditional distributionY |X j for all covariates). If any member of this set

of conditional distributions is significantly different from the unconditional distribution,

then the algorithm selects the covariate with the strongest association with Y as measured

by a p-value.

2. Splitting. Once a covariate has been selected, the algorithm optimally splits it. This is

done in a similar fashion as the selection, only the algorithm at this phase selects among

different subsets of the specified covariate. The optimal split is the one that creates the

most distinct pair of distributions of the dependent variable, as measured by a p-value.

There are other criteria involved in determining if a candidate split is carried out; namely

how large the resultant cluster will be. Clusters that are too small will predict poorly

out-of-sample and are skipped accordingly.

The algorithm then iterates on these two steps until at least one of the following criteria is met:24

ment effects. Gentzkow et al. (2015) illustrate how to use model selection to estimate polarization in high-
dimensional textual data. Belloni et al. (2011) develop methods for using model selection in instrumental variables
models when the number of instruments is larger than the sample size.

22Hothorn et al. (2006) emphasize that the internal stopping criterion acts similarly to pruning or cross-
validation methods that are commonly used in other machine learning settings to penalize complexity.

23In the case of a continuous dependent variable, the algorithm minimizes the sum of squared errors within
each cluster to find the optimal cluster division. In the case of a continuous covariate, the algorithm creates bins by
choosing cut points. The algorithm can also be used in survival analysis.

24There are a few tuning parameters of the algorithm that the researcher can adjust. One is the p-value that
determines splitting, another is the smallest number of observations allowed in a cluster, and a third is the smallest
number of observations allowed in a candidate node split (i.e. the minimum number of observations required in
each resulting subset of the split). I choose 5% for the p-value parameter, 50 observations for the minimum cluster
size, and 50 observations for the minimum candidate node split size. These were chosen via cross-validation, but in
practice the predictive accuracy of the tree algorithm was not sensitive to these tuning parameters.
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• No additional covariates can be selected because they fail to reject the null hypothesis of

independence.

• Any further splits of the already-selected covariates would fail to reject the null hypothesis

of equality in the dependent variable across the split

• Any further splits would result in clusters with too few observations (i.e. unsuitable for

out-of-sample prediction)

• The candidate cluster already perfectly predicts the dependent variable

• No further splits are possible because the candidate cluster is composed of a single combi-

nation of all independent variables

As an example of what the output of this algorithm looks like, I include Figure 5, which

depicts a simple example of the output from a fictitious migration dataset. Individuals are char-

acterized only by their level of work experience and can choose to live in 3 locations: New

York, Texas, or elsewhere. The algorithm shows that experience is the strongest predictor of

location choice, and that the most distinct difference occurs when splitting at three, followed

by an additional split that occurs at eight. The algorithm shows that New York is entirely com-

posed of individuals with less than four years of work experience, that Texas is composed nearly

perfectly of individuals with experience levels between four and eight years, and that workers

with nine or more years of experience almost certainly live elsewhere. In the actual estimation,

each tree will have many more than three terminal nodes.

5.1.3 Implementation of the non-parametric estimation algorithm

I now discuss in detail the estimation of the choice probabilities and which variables are used to

predict migration and occupational choice. Following Dahl (2002), I use cell decision probabili-

ties, where the cells are computed from the recursive partitioning algorithm detailed above. The

implicit assumption with this approach is that observably similar people face similar unobserved

earnings and preference shocks. Importantly, this implies that the researcher need not model

the characteristics of the alternatives, only the characteristics of the individuals.

Formally, the cell decision probability for all individuals, all origin locations j , and all desti-

nation locations ` and occupations k is

pi j`k = Pr
(

di j`k = 1 | v j1k − v j`k, . . . , v jLK − v j`k

)

(5.1)

= Pr
(

di j`k = 1 | cell
)

The conditional inference tree algorithm assigns cells based on the following characteristics:

whether the individual was born in the location of residence or in the same Census region;

college major; advanced degree status; age; race; marital status; whether or not the individual
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is living with a family member or relative; whether or not the individual’s spouse is working

(if married); the presence of children ages 0-4 and ages 5-18; and the two exclusion restrictions

discussed in Section 3.3. I estimate the cell probabilities using the so-called “one-vs-all” classifica-

tion method: for each residence location and occupation, I compute the probability of choosing

the alternative under consideration vs. all others. I then assign individuals into cells based on

the terminal node of the tree in their chosen alternative.

5.1.4 Tree algorithm performance relative to more commonly used methods

A valid question regarding the conditional inference tree algorithm is how it compares with the

traditional non-parametric bin estimator or with the logit estimator, the latter of which is by far

the most popular estimation method for discrete choice models.

The primary benefits of the tree algorithm are twofold: (i) it allows the researcher to con-

sider a large number of candidate covariates without having to worry about encountering the

curse of dimensionality (i.e. the result of which would be empty bins); and (ii) it allows the

sample space to be divided into irregularly shaped bins. The first benefit arises out of model se-

lection and could be accomplished with other parameter regularization methods such as LASSO

(Belloni et al., 2011). The second benefit arises out of the algorithm’s recursive nature: by not

making all splits simultaneously, the division of the state space can contain non-rectangular

shapes. A final benefit of the algorithm is that it performs slightly better at out-of-sample pre-

diction than existing methods.25 A summary of this is given in Table B8.26

The benefits of the tree algorithm are manifest in Appendix A where I compare the small-

and large-sample performance of various algorithms and error structures. The tree algorithm

performs about as well as the bin estimator in large samples, but much better in small samples.

Furthermore, if the researcher misspecifies the bins (because of the curse of dimensionality),

then the tree algorithm significantly outperforms the simple bin estimator.

While the tree algorithm performs better in Monte Caarlo simulations, does it substantially

alter the estimates of selection bias in the ACS data? The answer is yes. In results not shown,

25Another general benefit of the tree algorithm is that it can inform structural modeling by providing the re-
searcher with an ordered list of predictors. Traditionally, researchers have used theory to choose a set of candidate
covariates. Decisions should continue to be based on theory; however, machine learning approaches can be com-
bined with theory to give researchers an improved way of informing structural models.

26To assess the performance of each of the estimators, I estimate the first-best choice probabilities for each algo-
rithm using the 2010-2015 ACS sample discussed previously. I then test the out-of-sample predictive performance
of each algorithm using a holdout sample of the 2010-2015 ACS. The results from this exercise are detailed in Table
B8. Each of the classification algorithms performs roughly similarly in terms of raw predictive accuracy as well as
penalized predictive accuracy, with the tree algorithm slightly outperforming both of the alternatives. The defi-
nitions of each of these accuracy metrics are detailed in Table B8. The superior performance of the tree classifier
is due to the inability of the bin estimator handle heterogeneous splits of the continuous covariates, foremost of
which are the two exclusion restrictions. In the bin scenario, the researcher must choose cut points of this continu-
ous variable in which to categorize the data. This process of discretization throws out useful variation. In contrast,
the tree algorithm allows different splits of the exclusion restriction to be made at different combinations of the
covariates.
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but available from the author upon request, I find that using either a bin or a logit estimator

causes the degree of selection bias to be understated. That is, the model estimates when using

these two estimators tend to fall in between those of OLS and the tree algorithm. This evidence

is further support for the appropriateness of the tree algorithm in this particular application.

5.2 Correction functions

I now describe how to feasibly estimate the unknown selection correction functions in (3.4). As

written, this equation contains LK bivariate correction functions for each location ` and occu-

pation k. To further simplify this, I make the assumption that the selection correction functions

are the same for everyone. In formal terms, this assumption imposes that the correction term in

(3.4) be rewritten as λ j`k (·) = λ`k
(

pi j`k, pi jmn

)

. While this assumption is restrictive, it allows

me to estimate the wage effect of staying in the birth location. In results not shown, I also test

the sensitivity of the measured returns to major when allowing separate correction functions for

stayers and movers. The estimates change very little.

I now discuss my choice for the probabilities pi j`k, pi jmn. I assign as pi j`k the first-best

choice probability, which is readily observable in the data. For pi jmn, I use the probability that

individual i would stay in the first-best location, but work in the non-chosen occupation. This

is simply pi j`k ′, where k′ denotes the non-chosen occupation.

To estimate the unknown correction functions λ j`k , I use a flexible polynomial function of

the probabilities as discussed in Dahl (2002). Extensive specification testing leads me to choose a

polynomial of degree three in each of the probabilities. Also included are second- and third-order

interactions between the two choice probabilities. Including a higher degree polynomial or a

larger number of probabilities results in much less precise estimates with no appreciable increase

in the Wald test statistic of joint significance of the polynomial. Lower degree polynomials do

not appear to be flexible enough to adequately capture selection patterns. The final estimating

equation is of the same form as (3.4), except that there are no summation operators because of

the assumption that λ j`k (·) = λ`k
(

pi j`k, pi jmn

)

, as discussed above.

5.3 Earnings equation

The earnings equation parameters in (2.1) are estimated by OLS (separate equations for each

location and occupation) after making use of the index sufficiency assumption in (3.3) and the

dimensionality reduction assumptions discussed in the previous section.

5.3.1 Standard errors

The standard errors of the parameters associated with the selection functions must be adjusted

to account for two elements of the estimation: (i) the selection probabilities are not i.i.d. across

individuals because of the cell assumption in (5.1); and (ii) the estimation of the cell probabilities
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induces estimation error into the coefficients because the true probabilities are not observed.

To resolve this, I follow Dahl (2002), who proposes the following feasible estimator of the

asymptotically correct covariance matrix:

V̂ = σ̂2 (X ′X )
−1
+ (X ′X )

−1
Γ̂V̂ (P ) Γ̂′ (X ′X )

−1 (5.2)

where X is the matrix of earnings equation covariates (including the correction function terms),

Γ̂ is a block-diagonal matrix containing the derivatives of the polynomial correction functions

with respect to the probabilities, evaluated at the estimated polynomial coefficient and estimated

probabilities. V̂ (P ) is a block diagonal matrix with each block containing the 2 × 2 covariance

matrix for the estimated first-best and occupation probabilities within the given cell.

At present, I present standard errors that are corrected for the fact that probabilities are

based on migration cells, but which do not explicitly correct for estimation error in the choice

probabilities. This is done by clustering the standard errors at the cell level.

6 Empirical Results

In this section, I discuss the results of the estimation procedure described in the previous section

and their implications. I first present results on the estimation of the decision probabilities,

followed by a discussion of the selection-corrected estimates of the returns to majors and occu-

pational relatedness. Finally, I analyze migration flows across space

6.1 Choice probabilities

The cell assumption in (5.1) states that the choice probability of a given cell is the probability

that all individuals in the cell make the same choice.27 Thus, deviations from the cell mean

correspond to a reduced-form measure of preference shocks, which allow me to separate prefer-

ences from earnings. Because of their key role in identification, I present in Table 2 moments of

the distributions of average cell probabilities, conditional on major, occupation, and move-stay

decision. The table also reports the number of individuals in each migration-occupation-major

classification and the number of different cells contributing to each classification.

An implication of the earlier discussion on identification is that identification requires the

decision probabilities across majors within a migration-occupation bin to be overlapping. Intu-

itively, the returns to major can be calculated by comparing individuals in two different majors

who have the same preferences, as measured by the cell probabilities. Examination the table

reveals that there is a wide range of overlap in probabilities across majors.

The probabilities listed in Table 2 also confirm the earlier descriptive analysis of Figures 3

27For parametric choice models, the analogous assumption is that the choice probability is the same for all
individuals with the same values for all covariates.
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and 4. The cell probabilities in panels (a) and (c), which correspond to working in a related

occupation, are highest among education, business, and STEM majors. Another way to see this

is to compare the difference in average cell probabilities for working in a related occupation

relative to working in an unrelated occupation. This difference is much higher for education,

business, and STEM majors than for the remaining two.

Finally, note that the number of cells is larger for movers than for stayers, and that the

number of cells roughly corresponds to the number of individuals within a major-occupation

category. The difference in the number of cells is much less stark than if a bin estimator were to

be used, because the tree algorithm automatically merges together sparse bins, or bins that are

not statistically distinct, to avoid overfitting.

6.2 Earnings

I now discuss the estimates of the earnings equation with and without selection correction.

The primary parameters of interest are the college major dummies and their interaction with a

dummy for advanced degree attainment. The primary research question is how these parameter

estimates change once I account for self-selection into locations and occupations. Throughout,

I treat bachelor’s-level education majors as the reference category.

6.2.1 Estimates for specific states

Table 3 lists the full estimates of equation (3.4) with the implemented simplifications discussed

in Section 5.2. While I estimate 30 equations, I present detailed results for only three of the five

most populous states. I later present aggregate results for all 15 locations.

Table 3 reports the earnings equation estimates for each occupation in the three states, for

both the naive case and the corrected case. The first column within each state and occupation

reports the estimated returns to each major assuming no selection bias, while the second column

reports the estimated returns after correcting for selection. The OLS estimate is upward biased

for the vast majority of all measured returns. The magnitude of the upward bias differs from

state to state, with the largest differences in New York and the smallest differences in Florida.

As noted previously, I am able to separately identify the earnings effect of stayers. These

estimates are reported on the last row of Table 3. There is actually a wage penalty for stayers in

each of these three states. This penalty gets erased once controlling for selection, indicating that

what naively appears to be a compensating differential for staying in one’s birth state is actually

a selection effect.

It is important to keep in mind the interpretation of what generates the direction of the bias

in returns. As noted in Dahl (2002) and Bayer et al. (2011), an upward bias in the returns to

schooling is the result of individuals responding to above-average earnings shocks. This comes

about in the model through the selection correction terms: if someone moves to a location when

observationally similar individuals do not, then it must be because of a favorable earnings shock.
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Put differently, moves in response to favorable earnings shocks will overstate the treatment effect

of randomly assigning individuals to live in a given location.

A remaining question upon examining the results in Table 3 is whether or not the differ-

ences are statistically significant. I test for this in two ways: (i) I conduct a Wald test for joint

significance of the polynomial of choice probabilities; and (ii) I conduct a Hausman-type test

where the null hypothesis is that the baseline OLS is efficient and consistent, while the corrected

estimates are consistent but inefficient. The former is a necessary condition of the presence of

bias, while the latter is a sufficient condition. I present the Wald test statistics in the bottom of

Table 3. In all cases, the Wald tests have p-values smaller than 0.003. I present the results of the

Hausman test for all locations for select major-occupation combinations in Tables B9 through

B20. In Florida, for example, the following returns have Hausman p-values less than 10%: ad-

vanced degree STEM, business, and social science majors in related occupations; and BA social

science and STEM majors in unrelated occupations.

On aggregate, about one-third of all returns are significantly different. The returns to major

among advanced degree holders who work in related occupations tend to be the most signifi-

cantly different from OLS.

6.2.2 Estimates for all locations

I now present results on the returns to major for all locations for each of the two occupations

and advanced degree statuses. Figures 6 through 9 contain plots for all majors and degree at-

tainments. The figures include a 45 degree line with the corrected return on the vertical axis

and the uncorrected return on the horizontal axis. Circles or dots represent pairs of returns,

where circles indicate that the difference is not significant while dots indicate that the corrected

estimate is statistically significantly different at the 10% level or lower, using the Hausman-type

test described previously.

In all figures there is upward bias in the returns to major for almost all locations and majors.

The magnitude of the bias is larger for business and STEM majors in related occupations, and

especially so for advanced degree holders.

To assess the magnitude of bias, I present in Table 4 the percentage change in returns when

correcting for selection. Some of the returns have very low bases on which the percent change

is calculated, particularly for the low-earnings majors. Thus, I focus on STEM and business

majors, and find that the magnitude of the bias ranges from 0% to 45% with a median value of

between 5% and 17%. As shown in the earlier graphs, the magnitude of the bias is largest among

advanced degree holders who work in related occupations.

Finally, a valid question is whether or not correcting for selection bias in the returns narrows

the gap in returns across locations? Examining the graphs in Figures 6 through 9 shows that the

range of values is roughly the same for both the horizontal and vertical axes. This means that

the cross-location range in returns is largely unaffected by the selection correction. This finding
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implies that wage differences across locations are most likely due to other factors such as innate

productivity differences or compensating differentials.

6.3 Migration flows

With estimates of individual-level migration probabilities and location-occupation-level selection-

corrected returns to major, I now investigate the cross-major comparative responsiveness of mi-

gration flows to earnings, occupational availability, and local amenities.

To formalize ideas, consider the log migration flow from location j to ` for college graduates

in major m with advanced degree status a ∈ {0, 1}. This is assumed to be

ln p̂ma j` =ψ
m
a0 + ψ1

∑

a

∑

k

(

wm
a`k
− wm

a jk

)

+ ψm
a2 ln dist j`+ (6.1)

ψa3

(

ln Rm
a` − ln Rm

a j

)

+ ψm
4

�
ln A` − ln A j

�
+ νma j`

where p̂m
a j`
=

1
Na,m

∑

i
∑

k p̂i j`k1 [si = (a,m)] is the average of the individual estimated migration

probabilities for all individuals of major m with advanced degree status a. The estimates are

taken from the procedure outlined in Section 5.

Equation (6.1) states that migration flows for individuals of a particular major are a function

of cross-location differences in the following characteristics: four log earnings terms (wa`k, a ∈

{0, 1}, k ∈ {unrelated, related}); log distance (Great Circle formula, in miles); the log fraction of

individuals in majorm who work in a related occupation, R; and log measures of local amenities

A.28 Because each right hand side variable is expressed in logs, the corresponding coefficients

represent elasticities. Importantly, I restrict the log earnings elasticity to be the same for both

occupations and both advanced degree statuses because there is a high level of correlation in these

measures within locations. The theoretical implication of this assumption is that all individuals

value money in the same way. A similar argument explains why I restrict ψ4 to be the same for

both bachelors and advanced degree holders.

In order to feasibly estimate the effect of earnings on migration flows, I difference (6.1) with

respect to individuals of a different major m′. Similar analyses have been used by Dahl (2002)

to investigate migration behavior and by Wiswall and Zafar (2015) to investigate college major

28Specifically, A includes a number of climate, geographical, and local government amenities to capture dif-
ferences in quality of life across locations. These amenities include: climate measures such as cloudiness, average
wind speed, heating degree days, cooling degree days, morning humidity, and precipitation; quality of life measures
such as per-pupil schooling expenditures, population density, health care expenditures per capita, and violent crime
rates; and local spending measures such as state budget expenditures per capita and higher education expenditures
per full-time-equivalent student. Variables are measured either at the city or state level and are aggregated to the
regional level by weighting by the component populations.
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choice. Rewriting (6.1) gives

ln p̂ma j` − ln p̂
m ′
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Note that, according to equation (3.4), earnings differences only vary across majors through

the parameter on schooling, γa
2`k

. Thus, (6.2) can be rewritten in a more compact form as

∆
m ln p̂ma j` =ψ̃a0 + ψ1

∑

a

∑

k

∆
m
∆
` γ̂

a,m
2`k
+ ψ̃a2 ln dist j`+ (6.3)

ψa3∆
m
∆
` ln Rm

a` + ψ4∆
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where ∆m∆` signifies the difference-in-differences operator across majors and locations.

Estimates of (6.3) are reported in Table 5. Each column is based on 2
�
L2
− L

�
observations,

or the number of off-diagonal pairwise location combinations for both advanced degree groups.

In all columns, the normalized majorm′ is education. Thus, the estimates should be interpreted

as determinants of migration for individuals with major m and advanced degree a relative to

education majors of advanced degree group a. For each major, I report results with and without

the local amenity variables. My preferred results include the amenity variables, as these are

shown to contain a large amount of predictive power as measured by the R squared statistic.

The results of Table 5 indicate that, in addition to differences in the wage returns to major,

migration flows for all majors relative to education are responsive to distance and availability of

related occupations. Most surprising is that, for all majors, the elasticity for related occupation

concentration is larger than the elasticity of earnings, by a factor of 2 or more. These large

elasticities are strongest among STEM and business majors with advanced degrees and among

social science and other majors without advanced degrees.

The response of migration to wage returns is strongest for social science majors in certain

specifications. In others, the earnings elasticity is roughly equal among business, other, and

social science majors. All majors show positive elasticities with respect to distance relative to

education majors, but only for advanced degree holders. This implies that education majors

with master’s degrees face the largest costs to migration, which is likely a result of state-level

education policies.29 This result, coupled with the low distance elasticity for business majors, is

29For example, Ashworth (2015) studies teachers’ decisions to obtain master’s degrees in North Carolina where
the associated wage premium is legislated by the state. Many states have similar fixed salary schedules for primary
and secondary school teachers. Thus, moving states may cause a reduction in wages either because the worth of a
master’s degree might be lower in the new state, or because work experience may not be counted in the same way
in the new state.

26



consistent with descriptive evidence presented in Figures 3 and 4 which show that education and

business majors are the least likely to leave their state of birth, and that master’s level education

majors are even less likely to leave.

Comparing the odd- and even-numbered columns of Table 5 reveals the effect of including

amenity measures on the estimated impacts. Including these measures has the effect of lowering

both the wage and related occupation elasticities for all majors except STEM. The robustness

of the earnings and occupation elasticities even after accounting for a wide variety of amenities

confirms their importance to migration decisions.

The findings of this section have important implications for local governments seeking to re-

tain their educated workers, either through higher education subsidies or other place-based poli-

cies. In particular the results underscore the importance of employment in related occupations

as a substantial component of the migration decision of college graduates. If state governments

wish to retain the college graduates whose tuition they have partially subsidized, then it may be

optimal to index the tuition of different majors to the local concentration of related occupations

for those majors.30

The findings of this section also have important implications for the literature on college

major and occupational choice. The fact that college graduates have preferences for working

in related occupations and that these occupations are not uniformly distributed across space

implies that post-college outcomes are dependent on local labor market characteristics. Thus,

location preferences may be a large component of the non-pecuniary factors that other studies

have found when studying the determinants of college major choice.

7 Conclusion

This paper examines the extent to which selection into residence location and occupation bi-

ases the wage returns to college majors. To analyze this question, I develop and estimate an

extended Roy model where individuals have preferences for both wage and non-wage aspects

of given location-occupation pairs. Using estimates of the model, I examine how sensitive mi-

gration flows of different majors respond to cross-location differences in wage returns to major,

availability of occupations related to the major, and non-wage local amenities.

To estimate the model, I implement the framework of Dahl (2002) and Lee (1983) which

allows for feasible estimation of the extended Roy model by expressing the selection in terms

of a small number of observed choice probabilities. I estimate the model using data on college-

educated men from the American Community Survey from years 2010-2015. I also illustrate

the advantages of using machine learning methods to non-parametrically estimate the selection

probabilities. The primary advantage of this is in combining model selection and estimation.

I find that selective migration and occupational choice cause an upward bias in the measured

30For a review of major-specific tuition pricing policies, see Stange (2015).

27



wage returns to college major, relative to education majors. The percent change in the corrected

returns ranges from 0% to 45% for STEM and business majors, is strongest among advanced

degree holders, and is statistically significant in about one-third of all locations. Correcting

for selection bias does little to narrow the range in returns. This implies that cross-location

differences in the wage returns are due to other reasons, such as innate productivity differences

or compensating differentials.

My analysis of migration flows shows that migration decisions of college graduates are de-

termined by the concentration of related occupations in addition to wage returns and non-wage

amenities. The elasticity for related occupation concentration is twice that of earnings, and is

strongest among advanced degree holders who are business or STEM majors and among bache-

lors degree holders who are social science or other majors.

Given that migration flows are sensitive to occupational density, these results imply that

place-based policies designed to retain or attract skilled workers may not be successful with-

out taking into account workers’ preferences for occupations. The results also point to the

importance of considering migration and local occupation concentration when determining

major-specific tuition rates at universities (Stange, 2015).

These results also raise questions about what is in a student’s information set at the time

of college major choice. Research on the determinants of college major choice indicates that

non-monetary preferences for class subject or post-college occupation are a significant part of

the major decision (Arcidiacono et al., 2014; Wiswall and Zafar, 2015). Such non-monetary

occupational preferences might also reflect preferences for a location because occupations are

not distributed evenly across space.
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Figures and Tables

Figure 1: Occupation distributions for select detailed majors: Non-advanced degree holders
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(c) Economics
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Notes: Graphs represent occupation distributions conditional on detailed major. Vertical lines represent the cutoff

between related and unrelated occupations: those to the left of the line are related, while those to the right are

unrelated. Additional details regarding the definition of occupation relatedness are provided in the text and the

appendix.

Source: Author’s calculations from American Community Survey, 2010-2015.
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Figure 2: Occupation distributions for select detailed majors: Advanced degree holders
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(c) Economics
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(d) Computer Programming
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Notes: Graphs represent occupation distributions conditional on detailed major. Vertical lines represent the cutoff

between related and unrelated occupations: those to the left of the line are related, while those to the right are

unrelated. Additional details regarding the definition of occupation relatedness are provided in the text and the

appendix.

Source: Author’s calculations from American Community Survey, 2010-2015.
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Table 1: Differences in outcomes by college major, relative to education majors

Education Soc Sci Other Business STEM

Log Earnings 0.00 0.184 0.154 0.388 0.402
(—) (0.099) (0.079) (0.071) (0.080)

Pr (Lives outside birth state) 0.00 0.115 0.124 0.077 0.134
(—) (0.060) (0.072) (0.064) (0.062)

Pr
�
Works in related occupation

�
0.00 -0.154 -0.110 -0.021 -0.029
(—) (0.078) (0.085) (0.089) (0.091)

Frequency 5.32 11.35 20.90 28.53 33.91
N 31,043 66,276 122,015 166,569 198,011

Notes: Regression estimates at national level, controlling for demographics, advanced degree status, CBSA

dummies, and a cubic in potential experience. Standard deviation of state-specific estimates reported below

in parentheses. All variables except for log earnings and distance are expressed in percentage points and

estimated from linear probability models. Sample taken from the 2010-2015 American Community Survey

and is restricted to males ages 22-54 with a bachelor’s degree or higher. Sample weights are included in the

computation. Additional details on sample selection can be found in Table B1.
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Figure 3: Migration and occupation transition matrix by major for the five largest states: Non-adv. deg. holders
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Notes: Markov transition matrix probabilities of living in a particular location and working in a particular occupation, by major, for the five largest US states.

Light-colored bar segments represent proportion working in an unrelated occupation. Dark-colored bar segments represent proportion working in a related

occupation.
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Figure 4: Migration and occupation transition matrix by major for the five largest states: Adv. degree holders
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Figure 5: Simple example of tree structure from conditional inference recursive partitioning
algorithm
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Note: Sample tree output from fictitious data using the algorithm described in Section 5.1.2
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Table 2: Summary of cell probabilities of observed decisions

(a) Stayers, Related occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Education Major 306 14, 359 0.5285 0.1662 0.2841 0.7220
Social Sciences Major 328 16, 121 0.3625 0.1316 0.1965 0.5214
Other Major 342 32, 107 0.3616 0.1164 0.2058 0.4924
Business Major 363 55, 839 0.4295 0.1158 0.2623 0.5554
STEM Major 371 61, 008 0.4031 0.1158 0.2345 0.5284

(b) Stayers, Unrelated occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Education Major 374 6, 061 0.3006 0.1505 0.1235 0.5182
Social Sciences Major 381 15, 922 0.3284 0.1376 0.1542 0.5068
Other Major 411 27, 934 0.3089 0.1148 0.1612 0.4421
Business Major 424 33, 417 0.2724 0.1014 0.1467 0.3830
STEM Major 441 36, 431 0.2609 0.1023 0.1319 0.3760

(c) Movers, Related occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Education Major 637 7, 469 0.1728 0.1952 0.0089 0.4698
Social Sciences Major 783 17, 976 0.1031 0.1266 0.0088 0.2839
Other Major 799 33, 598 0.1009 0.1259 0.0088 0.2859
Business Major 860 47, 331 0.1269 0.1521 0.0083 0.3484
STEM Major 885 67, 631 0.1167 0.1416 0.0103 0.3259

(d) Movers, Unrelated occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Education Major 627 4, 439 0.0906 0.1162 0.0050 0.2603
Social Sciences Major 743 16, 316 0.0831 0.1099 0.0067 0.2418
Other Major 777 26, 769 0.0789 0.1024 0.0065 0.2283
Business Major 761 26, 243 0.0750 0.0986 0.0054 0.2244
STEM Major 810 36, 942 0.0694 0.0905 0.0056 0.1999

Note: Estimated decision probabilities and cell structure from the conditional inference recursive partitioning algorithm
described in Section 5.1.2. Probabilities correspond to the probability of making the decision that is observed in the data.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Table 3: Uncorrected vs. corrected earnings equation estimates for select states

Florida New York Texas

Unrelated Occupation Related Occupation Unrelated Occupation Related Occupation Unrelated Occupation Related Occupation

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

Bachelor’s degree
Education major 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Social sciences major 0.052 0.044 0.313*** 0.312*** 0.107*** 0.081* 0.212*** 0.181*** 0.066* 0.054 0.156*** 0.153***

(0.042) (0.059) (0.037) (0.043) (0.041) (0.045) (0.053) (0.064) (0.036) (0.043) (0.029) (0.041)
Other major 0.042 0.034 0.279*** 0.276*** 0.029 0.009 0.149*** 0.108* 0.049 0.033 0.133*** 0.130***

(0.040) (0.049) (0.032) (0.032) (0.038) (0.038) (0.050) (0.061) (0.034) (0.036) (0.024) (0.032)
Business major 0.165*** 0.158*** 0.500*** 0.500*** 0.172*** 0.134*** 0.467*** 0.413*** 0.161*** 0.155*** 0.380*** 0.385***

(0.040) (0.051) (0.030) (0.037) (0.039) (0.045) (0.049) (0.065) (0.033) (0.035) (0.023) (0.034)
STEM major 0.173*** 0.165*** 0.460*** 0.456*** 0.180*** 0.139*** 0.393*** 0.333*** 0.254*** 0.247*** 0.344*** 0.349***

(0.040) (0.044) (0.031) (0.035) (0.039) (0.040) (0.050) (0.063) (0.033) (0.041) (0.023) (0.033)
Advanced degree (interaction)

Education major 0.135 0.133 0.114 0.093 0.048 -0.061 0.130* 0.052 0.150* 0.140 -0.125** -0.140**
(0.105) (0.100) (0.074) (0.084) (0.079) (0.100) (0.067) (0.087) (0.084) (0.098) (0.058) (0.054)

Social sciences major 0.165* 0.167** 0.198*** 0.175* 0.184*** 0.111 0.210*** 0.157* 0.089 0.086 0.016 -0.003
(0.088) (0.073) (0.066) (0.092) (0.063) (0.081) (0.051) (0.086) (0.072) (0.090) (0.052) (0.073)

Other major 0.102 0.107 0.176*** 0.154** 0.122** 0.049 0.154*** 0.120 0.029 0.029 -0.044 -0.063
(0.086) (0.075) (0.063) (0.075) (0.060) (0.078) (0.047) (0.076) (0.071) (0.083) (0.049) (0.063)

Business major 0.097 0.099 0.205*** 0.181** 0.136** 0.074 0.236*** 0.211*** 0.071 0.071 0.051 0.028
(0.086) (0.073) (0.061) (0.074) (0.061) (0.085) (0.045) (0.071) (0.068) (0.085) (0.046) (0.062)

STEM major 0.149* 0.154** 0.288*** 0.265*** 0.250*** 0.183** 0.135*** 0.097 0.108 0.101 0.098** 0.076
(0.085) (0.070) (0.061) (0.083) (0.060) (0.081) (0.045) (0.060) (0.067) (0.090) (0.046) (0.057)

Born here -0.063*** -0.056** -0.056*** 0.020 -0.110*** -0.048 -0.113*** 0.014 -0.079*** 0.004 -0.077*** 0.008
(0.014) (0.026) (0.012) (0.021) (0.012) (0.047) (0.010) (0.028) (0.010) (0.051) (0.008) (0.017)

Cubic in experience X X X X X X X X X X X X

Demographics X X X X X X X X X X X X

CBSA fixed effects X X X X X X X X X X X X

Wald test for λ terms 4.79 3.37 4.87 13.87 5.80 6.92
[0.000] [0.002] [0.000] [0.000] [0.000] [0.000]

R2 0.171 0.174 0.216 0.218 0.231 0.236 0.237 0.244 0.209 0.212 0.233 0.235
Observations 10,626 10,626 15,984 15,984 14,878 14,878 22,210 22,210 16,883 16,883 26,591 26,591

Note: Standard errors are listed below coefficients in parentheses. p-values of statistical tests are listed below test statistics in brackets. *** p<0.01; ** p<0.05; * p<0.10.
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Figure 6: Scatter plots of uncorrected and corrected returns to major and working in an unre-
lated occupation
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Notes: Scatter plots of return to major for those working in an unrelated occupation. Solid black lines are
45-degree lines. Blue circles or dots are state-specific pairs marking the uncorrected and corrected returns. Solid
dots indicate statistically significant difference at the 90% level or higher.

Source: Author’s calculations from American Community Survey, 2010-2015.
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Figure 7: Scatter plots of uncorrected and corrected returns to major and working in a related
occupation

(a) Social Sciences
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Notes: Scatter plots of return to major for those working in an related occupation. Solid black lines are 45-degree
lines. Blue dots are state-specific pairs marking the uncorrected and corrected returns.

Source: Author’s calculations from American Community Survey, 2010-2015.
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Figure 8: Scatter plots of uncorrected and corrected returns to major and working in an unre-
lated occupation, adv. degree holders
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Notes: Scatter plots of return to major for those working in an unrelated occupation. Solid black lines are
45-degree lines. Blue circles or dots are state-specific pairs marking the uncorrected and corrected returns. Solid
dots indicate statistically significant difference at the 90% level or higher.

Source: Author’s calculations from American Community Survey, 2010-2015.

43



Figure 9: Scatter plots of uncorrected and corrected returns to major and working in a related
occupation, adv. degree holders
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Notes: Scatter plots of return to major for those working in an related occupation. Solid black lines are 45-degree
lines. Blue circles or dots are state-specific pairs marking the uncorrected and corrected returns. Solid dots indicate
statistically significant difference at the 90% level or higher.

Source: Author’s calculations from American Community Survey, 2010-2015.
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Table 4: Percent change in returns when correcting for selection

Unrelated occupation Related occupation

Major p10 Median p90 p10 Median p90

Bachelor’s degrees
Education 0 0 0 0 0 0
Social Sciences -126.5 -18 36.1 -14.5 -2.3 6.2
Other -143.5 -31.9 70.5 -20.9 -2.2 6.7
Business -14.9 -5.1 1.7 -7.1 -.3 1.5
STEM -13.4 -7.4 0.7 -14 -1.1 1.0

Advanced degrees
Education -70.1 -11.2 -0.5 -106.5 -29.9 0.1
Social Sciences -39.3 -7.4 0.9 -118.4 -27.7 -5.0
Other -31.6 -7.5 3.0 -330.5 -41.3 -12.6
Business -45.5 -9.7 1.1 -45.5 -16.6 -4.0
STEM -25.4 -9 3.2 -27.8 -17.3 -3.0

Note: Summary statistics of the 15-location distribution of the percent change be-
tween uncorrected and corrected returns to majors. Percentage changes are least in-
formative for education, social science, and other majors because these majors have
bases (i.e. uncorrected returns) that may be very close to zero.
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Table 5: Determinants of cross-location migration flows among majors

STEM Business Other Social Science

Dep. variable: ln
(

pm
a j`

)

− ln
(

pEdu
a j`

)

(1) (2) (3) (4) (5) (6) (7) (8)

∆
m
∆
` Corrected return, unrelated occ. × BA 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***

(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)
∆
m
∆
` Corrected return, related occ. × BA 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***

(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)
∆
m
∆
` Corrected return, unrelated occ. × Adv. deg. 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***

(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)
∆
m
∆
` Corrected return, related occ. × Adv. deg. 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***

(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)

ln
(

distance jk
)

× BA 0.033 0.031 -0.019 -0.020 0.040 0.038* 0.024 0.024

(0.023) (0.020) (0.018) (0.016) (0.027) (0.020) (0.024) (0.022)

ln
(

distance jk
)

× Advanced degree 0.130*** 0.128*** 0.037 0.042* 0.109** 0.107*** 0.087** 0.087**

(0.039) (0.030) (0.026) (0.022) (0.045) (0.037) (0.043) (0.034)
∆
m
∆
` ln (share related occ.) × BA 0.265*** -0.131 0.457*** 0.306** 1.582*** 1.112*** 0.823*** 0.761***

(0.097) (0.136) (0.057) (0.121) (0.083) (0.169) (0.064) (0.131)
∆
m
∆
` ln (share related occ.) × Adv. deg. 1.108*** 1.451*** 1.868*** 0.933*** -0.218 -0.516* -0.434 -0.272

(0.335) (0.355) (0.183) (0.216) (0.328) (0.309) (0.294) (0.264)
Advanced degree -0.488 -0.502** -0.250 -0.291 -0.308 -0.328 -0.296 -0.302

(0.299) (0.247) (0.209) (0.187) (0.350) (0.287) (0.331) (0.280)
Constant -0.097 -0.073 0.173 0.184* -0.136 -0.106 -0.007 -0.002

(0.149) (0.136) (0.118) (0.109) (0.181) (0.137) (0.159) (0.152)
Climate measures X X X X

Quality of life measures X X X X

Local spending measures X X X X

Wald test for joint significance of amenity variables 24.60 20.17 38.37 23.93
[0.000] [0.000] [0.000] [0.000]

R2 0.132 0.550 0.293 0.576 0.252 0.644 0.249 0.586
Observations 420 420 420 420 420 420 420 420

Note: Regression of cross-major log differences in migration flows among advanced degree group a from location j to ` on returns to major, distance, availability of related
occupations, and local amenity measures. Huber-White standard errors are listed below coefficients in parentheses. ∆m∆` signifies the difference-in-differences operator,
where differences are taken between majors m and Education, and between locations j and `. Distance is measured in miles between population centroids using the Great
Circle formula. Amenity variables are included as log differences, where the difference is taken between locations j and `. Climate measures include cloudiness, average wind
speed, heating degree days, cooling degree days, morning humidity, and precipitation. Quality of life variables include per-pupil schooling expenditures, population density,
health care expenditures per capita, and violent crime rates. Local spending measures include state budget expenditures per capita and higher education expenditures per
full-time equivalent student. State level variables are aggregated to regional level weighting by component state populations. Number of observations equals 2

�
L2
− L

�
. ***

p<0.01; ** p<0.05; * p<0.10.
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A Monte Carlo Simulation

In this section I detail the Monte Carlo simulation used to compare the performance of the

conditional inference tree estimator with more traditional estimators.

A.1 Data generating process

Consider the following data generating process, structured similar to the model in Section 2.

wi`k = x iγ1`k + siγ2`k + ηi`k (A.1)

ui j`k = z iφ j`k + εi j`k (A.2)

Vi j`k = wi`k + ui j`k (A.3)

wi`k observed ⇐⇒ Vi j`k > Vi j` ′k ′ ∀
�
`′, k′

�
(A.4)

In the baseline model, I consider the case where ` comes from a 15-dimensional set, and

where k is two-dimensional. Thus, there are 30 sectors in the model. For simplicity, si is a

binary variable while x i contains a mixture of binary and continuous variables. z i contains

a number of binary variables as well as two continuous exclusion restrictions which measure

preference intensity for staying in the birth location and for working in the related occupation.

In addition, z i contains a number of interactions among this set of variables. ηi`k is assumed to

be distributed iid N (0, 1) across all individuals, locations, and occupations. The same is true for

εi j`k . In later simulations, I examine performance of the estimator when these error terms are

correlated across locations and occupations.

The estimate of interest is γ̂2 in location 8 and occupation 2, which is chosen without loss

of generality. The true value of this parameter is set to 2. I consider estimation of γ2,8,2 in

small samples (N=1,000 per sector) and large samples (N=10,000 per sector). Each simulation

is repeated 100 times, and I report the resulting mean and standard deviation of the parameter

estimates, along with the average root mean square error of each repetition.

I report the performance of nine different specifications under three different error struc-

tures. As a baseline, I include the naive OLS estimator that would be unbiased and consistent if

no selection were present. I then consider four separate estimates of the selection probabilities

in the polynomial selection terms. For each estimate, I consider including only the first-best

probability, or the first-best and location probabilities as implemented in the empirical section

of the paper. The four different probability estimators are as follows: (i) fully specified bin; (ii)

conditional inference tree; (iii) logit; and (iv) coarse (misspecified) bin. I specifically include

the coarse bin estimator to show the effect of the researcher being unable to include all relevant

choice predictors, e.g. due to the curse of dimensionality. The three different error structures I

consider are as follows: (i) the baseline described above; (ii) allowing the preference shocks to be
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correlated across locations and occupations (i.e. εi j`k distributed iid N (0,Σ) across individuals,

where Σ is a random covariance matrix); and (iii) allowing both preference shocks and earnings

shocks to be multivariate normal distributions.

The results of the simulations are reported in Table A1. Each of the three error structures are

reported respectively in Panels A, B, and C of the table. Within each panel are the nine different

specifications used to estimate γ2,8,2. The main takeaway from the simulations is that the tree

algorithm performs very similarly to the fully specified bin estimator in large samples, but that

the tree algorithm performs much better than all other estimators in small samples. For all

specifications, the OLS estimate of the parameter of interest is severely downward biased, while

the logit estimate is severely upward biased. The coarse bin estimator performs only slightly

better than OLS and incurs a high efficiency cost.

The purpose of Panels A and B is to show that the nonparametric estimator used in this

paper performs well when the distribution of preference shocks is either normal or multivariate

normal. In both of these two scenarios, index sufficiency holds. In Panel C, however, index

sufficiency is less likely to hold. In this case, none of the estimators is able to completely resolve

the selection problem. However, the tree estimator performs best, again particularly in smaller

samples.
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Table A1: Monte Carlo simulation results (true parameter value equals 2)

10,000 Observations per Sector 1,000 Observations per Sector

Ave. Ave.
Std. Sample Std. Sample

Mean Dev. RMSE Size Mean Dev. RMSE Size

Panel A: 30 sectors, baseline
OLS 1.6219 0.0308 0.8994 28502 1.6181 0.0984 0.8974 2857
1st Best Bin 1.9595 0.0304 0.8726 1.9281 0.0967 0.8724
1st Best Tree 1.9597 0.0309 0.8701 2.0147 0.0991 0.8722
1st Best Logit 2.1458 0.0336 0.8687 2.1401 0.1045 0.8675
1st Best Coarse Bin 1.8505 0.0344 0.8959 1.8389 0.1071 0.8942
1st+2nd Best Bin 1.9413 0.0332 0.8723 1.9085 0.1047 0.8720
1st+2nd Best Tree 1.9468 0.0327 0.8700 2.0021 0.1066 0.8715
1st+2nd Best Logit 2.1523 0.0409 0.8684 2.1734 0.1248 0.8673
1st+2nd Best Coarse Bin 1.6186 0.1148 0.8944 1.7443 0.2826 0.8931

Panel B: 30 sectors, εi j`k correlated across
�
`, k

�

OLS 1.6595 0.0311 0.9123 27504 1.6929 0.0875 0.9136 2755
1st Best Bin 1.9616 0.0340 0.8929 1.9576 0.0878 0.8949
1st Best Tree 1.9592 0.0330 0.8914 2.0265 0.0902 0.8951
1st Best Logit 2.1152 0.0361 0.8903 2.1405 0.0906 0.8912
1st Best Coarse Bin 1.8819 0.0372 0.9095 1.8991 0.0974 0.9110
1st+2nd Best Bin 1.9451 0.0376 0.8927 1.9468 0.1050 0.8947
1st+2nd Best Tree 1.9422 0.0352 0.8913 2.0054 0.1106 0.8948
1st+2nd Best Logit 2.1131 0.0431 0.8901 2.1627 0.1319 0.8909
1st+2nd Best Coarse Bin 1.6737 0.1149 0.9085 1.8045 0.2774 0.9100

Panel C: 30 sectors, both εi j`k and ηi`k correlated across
�
`, k

�

OLS 1.5404 0.0943 1.0715 26613 1.5386 0.1265 1.0681 2676
1st Best Bin 1.9428 0.0513 1.0437 1.8828 0.1055 1.0429
1st Best Tree 1.9394 0.0508 1.0417 1.9709 0.1080 1.0427
1st Best Logit 2.1334 0.0554 1.0400 2.1160 0.1184 1.0376
1st Best Coarse Bin 1.8703 0.0662 1.0670 1.8359 0.1362 1.0641
1st+2nd Best Bin 1.9232 0.0534 1.0433 1.8804 0.1230 1.0423
1st+2nd Best Tree 1.9207 0.0529 1.0414 1.9572 0.1285 1.0419
1st+2nd Best Logit 2.1329 0.0598 1.0397 2.1474 0.1698 1.0372
1st+2nd Best Coarse Bin 1.5805 0.1352 1.0658 1.7196 0.3794 1.0630

Note: 100 replications used for all specifications. “OLS” indicates OLS estimation of the parameter of interest, ignoring
potential selection bias. “1st Best Bin” indicates estimation of equation (3.4) using a cubic polynomial of the first-best
probability from a simple bin estimator. “1st+2nd Best Bin” indicates the same, except that both the first-best and occupation
probabilities are used, as described in Section 5.2. The polynomial is a full set of third-degree polynomial terms, including
interactions. “Tree” refers to estimation using probabilities from the conditional inference tree algorithm described in
Section 5.1.2. “Logit” indicates estimation using probabilities from a logit model. “Coarse Bin” refers to estimation using
probabilities from a more coarsely defined bin estimator, as would be required in the empirical application of this paper.
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B Data Appendix

This section describes additional details relating to the construction of the earnings and demo-

graphic variables used in the analysis.

Race and ethnicity I construct a measure of race and ethnicity by first assigning anyone of

Hispanic origin to be Hispanic, and then assigning race based on whether the reported race is

white, black, or other. Mixed-race individuals are classified as other.

Earnings and employment Earnings are measured as the individual’s annual wage and salary

income, expressed in constant 2010 dollars. I drop any nominal earnings measurements greater

than $600,000 or less than $20,000. I classify a person as employed if they reported being em-

ployed at the time of the survey. I also create a variable indicating if the individual’s spouse is

employed.

Work experience I define work experience as potential experience in the usual way: age minus

number of years of schooling minus 6.

Birth place I create separate variables indicating in which state the individual was born, and

in which state the individual’s spouse was born (if applicable).

Marital status and household composition Marital status is self-reported in the survey as

one of six categories. I aggregate these categories into three: married (whether or not residing

with spouse); divorced or separated; and single or widowed. Number of co-resident children

is given in the survey and I distill this information into two dummies: one or more children

under the age of 5; and one or more children under the age of 18. Family co-residence status is

distilled into one dummy variable indicating whether the individual is in the same household as

any relative. The relationship can be blood, or through marriage.

Dwelling characteristics Home ownership status is divided into “owned” or “rented.”
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Table B1: Sample selection details

Criterion No. obs deleted Remaining obs.

Respondents in 2010-2015 ACS — 18,699,149
Drop those without a bachelor’s degree or higher 14,689,233 4,009,916
Drop those outside of 22-54 age range 1,547,395 2,462,521
Drop those currently enrolled in school 269,606 2,192,915
Drop those currently residing in group quarters 13,752 2,179,163
Drop those not born in the US 386,866 1,792,297
Drop those with positive annual earnings below $20,000 196,246 1,596,051
Drop those with annual earnings above $600,000 1,015 1,595,036
Drop those with zero annual earnings 212,871 1,382,165
Drop females 698,912 683,253
Drop those with imputed earnings or occupations 97,994 585,259
Drop those with imputed labor force status 1,346 583,913

Final analysis sample — 583,913
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Table B2: Aggregation of the 51 detailed Department of Education majors

Education STEM Other
Primary Education Agriculture and Agr. Science Architecture
Secondary Education All Other Engineering Area, Ethnic, and Civ. Studies

Biological Sciences Art History and Fine Arts
Social Sciences Chemical Engineering Commercial Art and Design
Family and Consumer Science Chemistry Communications
International Relations Civil Engineering Film and Other Arts
Other Social Science Computer Programming Foreign Language
Philosophy and Religion Computer and Info Tech History
Political Science Earth and Other Physical Sci Journalism
Psychology Electrical Engineering Leisure Studies
Social Work and HR Engineering Tech Letters: Lit, Writing, Other

Environmental Studies Music and Speech/Drama
Business Fitness and Nutrition Prec. Prod. and Ind. Arts
Accounting General Science Protective Services
Business Mgt. and Admin. Mathematics Public Admin and Law
Economics Mechanical Engineering Public Health
Finance Medical Tech
Marketing Nursing
Misc. Bus. and Med. Support Other Med/Health Services

Physics

Note: Aggregation of the 51 detailed Department of Education majors analyzed in Altonji et al. (2016b).
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Table B3: List of frequent occupations for select majors: Non-advanced degree holders

(a) Primary Education

Occupation Share(%)

Primary school teachers 31.21
Secondary school teachers 13.26
Managers and administrators, n.e.c. 4.73
Salespersons, n.e.c. 3.12
Supervisors and proprietors of sales jobs 2.94
Teachers , n.e.c. 2.06
Police, detectives, and private investigators 1.75
Retail sales clerks 1.54
Computer systems analysts and computer scientists 1.33

(b) History

Occupation Share(%)

Managers and administrators, n.e.c. 9.41
Supervisors and proprietors of sales jobs 5.41
Salespersons, n.e.c. 5.35
Primary school teachers 4.67
Military 3.62
Computer systems analysts and computer scientists 3.33
Police, detectives, and private investigators 3.11
Secondary school teachers 2.78
Managers and specialists in marketing, advertising, and public relations 2.76
Retail sales clerks 2.12
Other financial specialists 2.07
Customer service reps, investigators and adjusters, except insurance 1.98
Chief executives and public administrators 1.94
Financial managers 1.54

(c) Economics

Occupation Share(%)

Managers and administrators, n.e.c. 11.32
Other financial specialists 8.53
Salespersons, n.e.c. 7.22
Supervisors and proprietors of sales jobs 5.42
Financial managers 4.87
Accountants and auditors 4.74
Computer systems analysts and computer scientists 4.6
Financial services sales occupations 4.02
Chief executives and public administrators 3.98
Managers and specialists in marketing, advertising, and public relations 2.98
Management analysts 2.71
Computer software developers 2.23
Retail sales clerks 1.8
Customer service reps, investigators and adjusters, except insurance 1.8
Insurance sales occupations 1.58

(d) Computer Programming

Occupation Share(%)

Computer software developers 41.25
Computer systems analysts and computer scientists 18.22
Managers and administrators, n.e.c. 6.9
Managers and specialists in marketing, advertising, and public relations 1.81
Chief executives and public administrators 1.46
Supervisors and proprietors of sales jobs 1.39

Notes: Tables list occupations within the given major that are above the 2% cutoff defining relatedness, along with

three additional occupations below the cutoff.
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Table B4: List of frequent occupations for select majors: Advanced degree holders

(a) Primary Education

Occupation Share(%)

Primary school teachers 39.73
Managers in education and related fields 15.54
Secondary school teachers 14.43
Subject instructors (HS/college) 3.85
Managers and administrators, n.e.c. 2.29
Special education teachers 1.65
Clergy and religious workers 1.65
Vocational and educational counselors 1.58

(b) History

Occupation Share(%)

Lawyers 23.8
Primary school teachers 9.34
Subject instructors (HS/college) 6.38
Managers and administrators, n.e.c. 6.26
Secondary school teachers 5.25
Managers in education and related fields 4.2
Physicians 2.53
Military 2.5
Clergy and religious workers 2.27
Chief executives and public administrators 2.14
Computer systems analysts and computer scientists 1.63
Other financial specialists 1.62
Financial managers 1.51

(c) Economics

Occupation Share(%)

Lawyers 18.77
Managers and administrators, n.e.c. 9.91
Financial managers 6.55
Other financial specialists 5.78
Accountants and auditors 5.11
Chief executives and public administrators 4.46
Management analysts 3.73
Subject instructors (HS/college) 3.52
Supervisors and proprietors of sales jobs 2.68
Computer systems analysts and computer scientists 2.67
Physicians 2.61
Salespersons, n.e.c. 2.47
Economists, market researchers, and survey researchers 2.43
Managers and specialists in marketing, advertising, and public relations 2.36
Financial services sales occupations 2.05
Primary school teachers 1.62
Managers in education and related fields 1.32
Computer software developers 1.1

(d) Computer Programming

Occupation Share(%)

Computer software developers 44.97
Primary school teachers 9.38
Supervisors and proprietors of sales jobs 5.98
Computer systems analysts and computer scientists 5.71
Industrial engineers 5.1
Designers 3.86
Auto body repairers 3.48
Retail sales clerks 3.23
Managers and administrators, n.e.c. 3.15
Salespersons, n.e.c. 2.33
Customer service reps, investigators and adjusters, except insurance 2.1
Electrical engineer 1.82
Editors and reporters 1.8
Subject instructors (HS/college) 1.74

Notes: Tables list occupations within the given major that are above the 2% cutoff defining relatedness, along with

three additional occupations below the cutoff.
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Table B5: Complete list of related occupations by major: Non-advanced degree holders

Occupation Edu. Soc. Sci. Other Bus. STEM

Chief executives and public administrators X X X X

Financial managers X X X

Human resources and labor relations managers X X

Managers and specialists in marketing, advertising, and public relations X X X X

Managers of medicine and health occupations X

Managers of food-serving and lodging establishments X

Funeral directors X

Managers of service organizations, n.e.c. X

Managers and administrators, n.e.c. X X X X X

Accountants and auditors X X

Other financial specialists X X X X

Management analysts X X X X

Personnel, HR, training, and labor relations specialists X X

Inspectors and compliance officers, outside construction X

Architects X

Aerospace engineer X

Metallurgical and materials engineers, variously phrased X

Chemical engineers X

Civil engineers X X

Electrical engineer X

Industrial engineers X

Mechanical engineers X

Not-elsewhere-classified engineers X

Computer systems analysts and computer scientists X X X X

Actuaries X

Chemists X

Atmospheric and space scientists X

Geologists X

Physical scientists, n.e.c. X

Agricultural and food scientists X

Biological scientists X

Foresters and conservation scientists X

Registered nurses X

Pharmacists X

Respiratory therapists X

Occupational therapists X

Physical therapists X

Therapists, n.e.c. X

Primary school teachers X X X X

Secondary school teachers X X X

Teachers , n.e.c. X X

Vocational and educational counselors X

Economists, market researchers, and survey researchers X

Social workers X

Recreation workers X

Clergy and religious workers X X

Writers and authors X

Designers X

Musician or composer X

Actors, directors, producers X

Art makers: painters, sculptors, craft-artists, and print-makers X

Photographers X

Editors and reporters X

Athletes, sports instructors, and officials X

Clinical laboratory technologies and technicians X

Radiologic tech specialists X

Health technologists and technicians, n.e.c. X X

Engineering technicians, n.e.c. X

Drafters X

Surveyors, cartographers, mapping scientists and technicians X

Chemical technicians X

Airplane pilots and navigators X

Air traffic controllers X

Computer software developers X X X X

Legal assistants, paralegals, legal support, etc X

Supervisors and proprietors of sales jobs X X X X X

Insurance sales occupations X

Financial services sales occupations X

Salespersons, n.e.c. X X X X X

Retail sales clerks X X X X

Office supervisors X

Customer service reps, investigators and adjusters, except insurance X X X

Fire fighting, prevention, and inspection X X

Police, detectives, and private investigators X X X

Other law enforcement: sheriffs, bailiffs, correctional institution officers X

Guards, watchmen, doorkeepers X

Waiter/waitress X

Cooks, variously defined X X

Welfare service aides X X

Farmers (owners and tenants) X

Farm workers X

Supervisors of agricultural occupations X

Gardeners and groundskeepers X

Supervisors of construction work X

Production supervisors or foremen X

Military X X X

Note: Occupations not related to any college major are excluded from this table.
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Table B6: Complete list of related occupations by major: Advanced degree holders

Occupation Edu. Soc. Sci. Other Bus. STEM

Chief executives and public administrators X X X X X

Financial managers X X X X

Human resources and labor relations managers X

Managers and specialists in marketing, advertising, and public relations X X X X

Managers in education and related fields X X X X X

Managers of medicine and health occupations X X

Managers of food-serving and lodging establishments X

Managers of service organizations, n.e.c. X X

Managers and administrators, n.e.c. X X X X X

Accountants and auditors X X

Other financial specialists X X X

Management analysts X X X X

Personnel, HR, training, and labor relations specialists X X

Architects X

Aerospace engineer X X

Chemical engineers X

Civil engineers X

Electrical engineer X

Industrial engineers X

Mechanical engineers X

Not-elsewhere-classified engineers X

Computer systems analysts and computer scientists X X X X

Operations and systems researchers and analysts X

Actuaries X

Mathematicians and mathematical scientists X

Physicists and astronomers X

Chemists X

Atmospheric and space scientists X

Geologists X

Physical scientists, n.e.c. X

Agricultural and food scientists X

Biological scientists X

Foresters and conservation scientists X

Medical scientists X

Physicians X X X X

Dentists X X

Veterinarians X

Other health and therapy X

Registered nurses X

Pharmacists X

Physical therapists X

Speech therapists X

Therapists, n.e.c. X

Physicians assistants X

Subject instructors (HS/college) X X X X X

Primary school teachers X X X X X

Secondary school teachers X X X X

Teachers , n.e.c. X X

Vocational and educational counselors X X X

Archivists and curators X

Economists, market researchers, and survey researchers X

Psychologists X

Urban and regional planners X

Social workers X X

Clergy and religious workers X X

Lawyers X X X X

Writers and authors X

Designers X X

Musician or composer X

Art makers: painters, sculptors, craft-artists, and print-makers X

Editors and reporters X

Athletes, sports instructors, and officials X

Clinical laboratory technologies and technicians X

Radiologic tech specialists X

Health technologists and technicians, n.e.c. X X

Airplane pilots and navigators X

Computer software developers X X

Supervisors and proprietors of sales jobs X X X X

Financial services sales occupations X

Salespersons, n.e.c. X X X X

Retail sales clerks X

Office supervisors X

Customer service reps, investigators and adjusters, except insurance X

Police, detectives, and private investigators X X

Guards, watchmen, doorkeepers X

Cooks, variously defined X

Nursing aides, orderlies, and attendants X

Welfare service aides X

Farmers (owners and tenants) X

Auto body repairers X

Production supervisors or foremen X

Military X X X X

Note: Occupations not related to any college major are excluded from this table.
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Table B7: Aggregation of locations

Location 2010 Population

California 39,144,818
OH, IN, MI, WI 33,927,016
Texas 27,469,114
NC, SC, GA 25,153,808
Mountain Census Division 23,530,498
NJ, PA 21,760,516
West North Central Census Division 21,120,392
Florida 20,271,272
New York 19,795,791
East South Central Census Division 18,876,703
WV, VA, DC, MD, DE 17,851,684
New England Census Division 14,727,584
AK, HI, OR, WA 13,369,363
Illinois 12,859,995
OK, AR, LA 11,560,266

Notes: The Mountain Census Division includes the following states:
AZ, NM, CO, UT, NV, ID, MT,WY. TheWest North Central Census
Division includes the following states: ND, SD, NE, KS, MO, IA, and
MN. The East South Central Census Division is comprised of AL, MS,
TN, and KY. The New England Census Division is comprised of CT,
RI, MA, VT, NH, and ME.
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Table B8: Predictive performance of various algorithms

Classification algorithm

Performance Criterion Logit Bin Tree

Training set performance:
Accuracy 37.67% 36.43% 38.85%
Kappa 34.89% 33.62% 36.13%

Test set performance:
Accuracy 37.32% 35.29% 37.68%
Kappa 34.54% 32.43% 34.92%

Note: “Logit” refers to a flexibly specified logit; “Bin” refers to a bin
estimator; “Tree” refers to the conditional inference tree classifica-
tion algorithm detailed in Section 5.1.2. I estimate each algorithm
on a subset of the 2010-2015 ACS sample included in this paper and
compute predictive performance out-of-sample using a holdout sam-
ple. To measure predictive performance, I compute the predicted al-
ternative, defined as the alternative with the largest predicted prob-
ability. Predictive performance is measured via a multi-dimensional
confusion matrix using two related but separate metrics: Accuracy
and Kappa.

Accuracy =
number of correctly classified predictions

number of predictions .

Kappa =
Accuracy−Expected Accuracy

1−Expected Accuracy .

Expected Accuracy is defined as Expected Accuracy =

∑J
j=1

��∑
i di j

� �∑
i pi j

��
/N J , where di j represents the observed class

for observation i in the data, pi j represents the predicted class for
observation i, and N represents the total number of observations.
The Kappa statistic is meant to capture predictive performance net
of guessing. For example, the Kappa statistic penalizes strategies
that would predict that all observations belong to one class (for
example, such strategies could yield high accuracy for classification
problems where one class is extremely rare).
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Table B9: Return to STEM majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms

California 0.161 0.162 0.015 1.937
(0.036) (0.039) [0.901] [0.051]

Texas 0.254 0.247 0.937 5.802
(0.033) (0.041) [0.333] [0.000]

Florida 0.173 0.165 2.887 4.789
(0.040) (0.044) [0.089] [0.000]

Illinois 0.210 0.191 1.561 2.649
(0.037) (0.035) [0.212] [0.010]

New York 0.180 0.139 2.166 4.874
(0.039) (0.040) [0.141] [0.000]

New England 0.213 0.185 3.365 5.033
(0.038) (0.039) [0.067] [0.000]

New Jersey & Penn. 0.308 0.279 6.257 5.400
(0.030) (0.036) [0.012] [0.000]

WV, VA, DC, MD, DE 0.221 0.215 0.883 6.509
(0.032) (0.043) [0.347] [0.000]

NC, SC, GA 0.241 0.235 1.305 3.193
(0.029) (0.035) [0.253] [0.002]

E S Central Div 0.218 0.202 4.337 2.730
(0.031) (0.035) [0.037] [0.010]

OH, IN, MI, WI 0.220 0.194 2.850 2.484
(0.022) (0.032) [0.091] [0.012]

W N Central Div 0.187 0.169 1.004 4.240
(0.024) (0.030) [0.316] [0.000]

OK, AR, LA 0.222 0.200 5.890 3.381
(0.040) (0.042) [0.015] [0.002]

Mountain Div 0.231 0.228 0.075 2.055
(0.030) (0.042) [0.784] [0.041]

OR, WA, AK, HI 0.167 0.175 0.631 1.970
(0.041) (0.033) [0.427] [0.051]
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Table B10: Return to STEM majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms

California 0.444 0.447 0.044 4.905
(0.032) (0.033) [0.834] [0.000]

Texas 0.344 0.349 0.294 6.917
(0.023) (0.033) [0.587] [0.000]

Florida 0.460 0.456 0.228 3.366
(0.031) (0.035) [0.633] [0.002]

Illinois 0.381 0.328 3.319 5.491
(0.034) (0.041) [0.068] [0.000]

New York 0.393 0.333 3.631 13.871
(0.050) (0.063) [0.057] [0.000]

New England 0.380 0.349 3.545 9.652
(0.033) (0.040) [0.060] [0.000]

New Jersey & Penn. 0.345 0.311 3.003 5.590
(0.023) (0.030) [0.083] [0.000]

WV, VA, DC, MD, DE 0.439 0.438 0.016 5.582
(0.027) (0.030) [0.899] [0.000]

NC, SC, GA 0.481 0.485 0.178 3.251
(0.024) (0.028) [0.673] [0.002]

E S Central Div 0.464 0.458 0.457 1.395
(0.027) (0.036) [0.499] [0.208]

OH, IN, MI, WI 0.400 0.364 2.966 5.115
(0.018) (0.023) [0.085] [0.000]

W N Central Div 0.401 0.376 2.008 4.081
(0.021) (0.029) [0.157] [0.000]

OK, AR, LA 0.482 0.477 0.325 4.775
(0.033) (0.040) [0.568] [0.000]

Mountain Div 0.481 0.479 0.032 1.439
(0.025) (0.018) [0.857] [0.178]

OR, WA, AK, HI 0.459 0.459 0.003 1.286
(0.037) (0.035) [0.958] [0.258]
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Table B11: Return to Business majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms

California 0.137 0.140 0.121 1.937
(0.036) (0.041) [0.728] [0.051]

Texas 0.161 0.155 1.300 5.802
(0.033) (0.035) [0.254] [0.000]

Florida 0.165 0.158 1.811 4.789
(0.040) (0.051) [0.178] [0.000]

Illinois 0.174 0.156 2.276 2.649
(0.037) (0.029) [0.131] [0.010]

New York 0.172 0.134 1.891 4.874
(0.039) (0.045) [0.169] [0.000]

New England 0.178 0.160 1.029 5.033
(0.038) (0.039) [0.310] [0.000]

New Jersey & Penn. 0.259 0.241 3.599 5.400
(0.029) (0.038) [0.058] [0.000]

WV, VA, DC, MD, DE 0.176 0.175 0.048 6.509
(0.032) (0.047) [0.826] [0.000]

NC, SC, GA 0.151 0.143 1.719 3.193
(0.029) (0.033) [0.190] [0.002]

E S Central Div 0.151 0.138 2.484 2.730
(0.031) (0.031) [0.115] [0.010]

OH, IN, MI, WI 0.198 0.179 1.265 2.484
(0.022) (0.030) [0.261] [0.012]

W N Central Div 0.186 0.177 0.265 4.240
(0.024) (0.029) [0.607] [0.000]

OK, AR, LA 0.104 0.089 3.673 3.381
(0.040) (0.046) [0.055] [0.002]

Mountain Div 0.163 0.159 0.492 2.055
(0.030) (0.041) [0.483] [0.041]

OR, WA, AK, HI 0.177 0.180 0.129 1.970
(0.041) (0.039) [0.720] [0.051]
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Table B12: Return to Business majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms

California 0.460 0.467 0.286 4.905
(0.032) (0.037) [0.593] [0.000]

Texas 0.380 0.385 0.663 6.917
(0.023) (0.034) [0.415] [0.000]

Florida 0.500 0.500 0.000 3.366
(0.030) (0.037) [0.988] [0.002]

Illinois 0.435 0.404 3.825 5.491
(0.033) (0.036) [0.050] [0.000]

New York 0.467 0.413 3.556 13.871
(0.049) (0.065) [0.059] [0.000]

New England 0.432 0.410 1.424 9.652
(0.033) (0.041) [0.233] [0.000]

New Jersey & Penn. 0.411 0.382 2.829 5.590
(0.023) (0.030) [0.093] [0.000]

WV, VA, DC, MD, DE 0.449 0.451 0.110 5.582
(0.027) (0.038) [0.741] [0.000]

NC, SC, GA 0.502 0.509 0.917 3.251
(0.024) (0.030) [0.338] [0.002]

E S Central Div 0.463 0.463 0.007 1.395
(0.027) (0.037) [0.933] [0.208]

OH, IN, MI, WI 0.420 0.393 1.734 5.115
(0.018) (0.029) [0.188] [0.000]

W N Central Div 0.407 0.390 0.906 4.081
(0.021) (0.030) [0.341] [0.000]

OK, AR, LA 0.485 0.485 0.011 4.775
(0.033) (0.047) [0.916] [0.000]

Mountain Div 0.483 0.481 0.153 1.439
(0.025) (0.024) [0.696] [0.178]

OR, WA, AK, HI 0.443 0.442 0.032 1.286
(0.037) (0.034) [0.857] [0.258]
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Table B13: Return to Soc. Sci. majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms

California 0.030 0.045 0.497 1.937
(0.037) (0.045) [0.481] [0.051]

Texas 0.066 0.054 1.417 5.802
(0.036) (0.043) [0.234] [0.000]

Florida 0.052 0.044 2.878 4.789
(0.042) (0.059) [0.090] [0.000]

Illinois 0.022 0.013 0.137 2.649
(0.041) (0.035) [0.711] [0.010]

New York 0.107 0.081 0.891 4.874
(0.041) (0.045) [0.345] [0.000]

New England 0.114 0.101 0.313 5.033
(0.040) (0.043) [0.576] [0.000]

New Jersey & Penn. 0.137 0.105 2.114 5.400
(0.032) (0.039) [0.146] [0.000]

WV, VA, DC, MD, DE 0.048 0.056 0.436 6.509
(0.034) (0.045) [0.509] [0.000]

NC, SC, GA 0.101 0.094 0.787 3.193
(0.032) (0.040) [0.375] [0.002]

E S Central Div -0.006 -0.014 0.807 2.730
(0.035) (0.035) [0.369] [0.010]

OH, IN, MI, WI 0.030 0.021 0.762 2.484
(0.024) (0.030) [0.383] [0.012]

W N Central Div 0.017 -0.018 4.604 4.240
(0.027) (0.030) [0.032] [0.000]

OK, AR, LA -0.086 -0.102 3.138 3.381
(0.047) (0.044) [0.076] [0.002]

Mountain Div 0.071 0.070 0.012 2.055
(0.032) (0.044) [0.913] [0.041]

OR, WA, AK, HI 0.006 0.008 0.065 1.970
(0.042) (0.037) [0.798] [0.051]
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Table B14: Return to Soc. Sci. majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms

California 0.312 0.331 2.963 4.905
(0.034) (0.036) [0.085] [0.000]

Texas 0.156 0.153 0.127 6.917
(0.029) (0.041) [0.721] [0.000]

Florida 0.313 0.312 0.019 3.366
(0.037) (0.043) [0.891] [0.002]

Illinois 0.244 0.199 2.512 5.491
(0.040) (0.055) [0.113] [0.000]

New York 0.212 0.181 0.950 13.871
(0.053) (0.064) [0.330] [0.000]

New England 0.231 0.220 0.263 9.652
(0.037) (0.042) [0.608] [0.000]

New Jersey & Penn. 0.155 0.146 0.146 5.590
(0.028) (0.040) [0.702] [0.000]

WV, VA, DC, MD, DE 0.263 0.280 3.683 5.582
(0.031) (0.038) [0.055] [0.000]

NC, SC, GA 0.282 0.285 0.054 3.251
(0.028) (0.030) [0.816] [0.002]

E S Central Div 0.187 0.184 0.069 1.395
(0.034) (0.052) [0.792] [0.208]

OH, IN, MI, WI 0.151 0.143 0.118 5.115
(0.023) (0.029) [0.731] [0.000]

W N Central Div 0.159 0.149 0.211 4.081
(0.028) (0.041) [0.646] [0.000]

OK, AR, LA 0.195 0.178 3.045 4.775
(0.044) (0.065) [0.081] [0.000]

Mountain Div 0.290 0.291 0.017 1.439
(0.029) (0.032) [0.896] [0.178]

OR, WA, AK, HI 0.243 0.242 0.020 1.286
(0.041) (0.036) [0.888] [0.258]
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Table B15: Return to Adv. Deg. STEM majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms

California 0.192 0.173 1.287 1.937
(0.058) (0.062) [0.257] [0.051]

Texas 0.108 0.101 0.315 5.802
(0.067) (0.090) [0.575] [0.000]

Florida 0.149 0.154 0.142 4.789
(0.085) (0.070) [0.706] [0.000]

Illinois 0.179 0.150 0.830 2.649
(0.079) (0.086) [0.362] [0.010]

New York 0.250 0.183 1.577 4.874
(0.060) (0.081) [0.209] [0.000]

New England 0.161 0.122 1.203 5.033
(0.065) (0.091) [0.273] [0.000]

New Jersey & Penn. 0.258 0.192 6.158 5.400
(0.061) (0.067) [0.013] [0.000]

WV, VA, DC, MD, DE 0.279 0.255 1.408 6.509
(0.055) (0.076) [0.235] [0.000]

NC, SC, GA 0.113 0.102 0.485 3.193
(0.062) (0.066) [0.486] [0.002]

E S Central Div 0.241 0.229 0.589 2.730
(0.079) (0.090) [0.443] [0.010]

OH, IN, MI, WI 0.229 0.204 0.892 2.484
(0.054) (0.070) [0.345] [0.012]

W N Central Div 0.127 0.099 2.386 4.240
(0.069) (0.107) [0.122] [0.000]

OK, AR, LA 0.233 0.240 0.230 3.381
(0.116) (0.152) [0.631] [0.002]

Mountain Div 0.378 0.372 0.816 2.055
(0.069) (0.080) [0.366] [0.041]

OR, WA, AK, HI 0.439 0.421 2.737 1.970
(0.093) (0.094) [0.098] [0.051]
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Table B16: Return to Adv. Deg. STEM majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms

California 0.253 0.215 4.298 4.905
(0.041) (0.059) [0.038] [0.000]

Texas 0.098 0.076 4.203 6.917
(0.046) (0.057) [0.040] [0.000]

Florida 0.288 0.265 3.991 3.366
(0.061) (0.083) [0.046] [0.002]

Illinois 0.212 0.175 1.369 5.491
(0.054) (0.067) [0.242] [0.000]

New York 0.135 0.097 0.679 13.871
(0.045) (0.060) [0.410] [0.000]

New England 0.124 0.080 2.288 9.652
(0.044) (0.053) [0.130] [0.000]

New Jersey & Penn. 0.329 0.254 6.393 5.590
(0.044) (0.059) [0.011] [0.000]

WV, VA, DC, MD, DE 0.200 0.180 3.535 5.582
(0.040) (0.050) [0.060] [0.000]

NC, SC, GA 0.232 0.213 6.744 3.251
(0.046) (0.049) [0.009] [0.002]

E S Central Div 0.196 0.174 3.755 1.395
(0.055) (0.056) [0.053] [0.208]

OH, IN, MI, WI 0.202 0.161 2.731 5.115
(0.036) (0.056) [0.098] [0.000]

W N Central Div 0.200 0.163 4.223 4.081
(0.046) (0.076) [0.040] [0.000]

OK, AR, LA 0.169 0.130 2.625 4.775
(0.079) (0.132) [0.105] [0.000]

Mountain Div 0.153 0.153 0.004 1.439
(0.051) (0.054) [0.949] [0.178]

OR, WA, AK, HI 0.184 0.178 0.589 1.286
(0.062) (0.088) [0.443] [0.258]
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Table B17: Return to Adv. Deg. Business majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms

California 0.093 0.076 0.931 1.937
(0.060) (0.069) [0.334] [0.051]

Texas 0.071 0.071 0.000 5.802
(0.068) (0.085) [0.996] [0.000]

Florida 0.097 0.099 0.034 4.789
(0.086) (0.073) [0.854] [0.000]

Illinois 0.169 0.143 0.523 2.649
(0.080) (0.096) [0.470] [0.010]

New York 0.136 0.074 1.345 4.874
(0.061) (0.085) [0.246] [0.000]

New England 0.088 0.047 1.117 5.033
(0.067) (0.092) [0.290] [0.000]

New Jersey & Penn. 0.209 0.138 7.567 5.400
(0.062) (0.066) [0.006] [0.000]

WV, VA, DC, MD, DE 0.312 0.282 2.017 6.509
(0.056) (0.074) [0.156] [0.000]

NC, SC, GA 0.132 0.128 0.059 3.193
(0.063) (0.066) [0.808] [0.002]

E S Central Div 0.178 0.169 0.391 2.730
(0.081) (0.087) [0.532] [0.010]

OH, IN, MI, WI 0.162 0.134 0.998 2.484
(0.055) (0.076) [0.318] [0.012]

W N Central Div 0.065 0.036 2.823 4.240
(0.071) (0.109) [0.093] [0.000]

OK, AR, LA 0.276 0.279 0.041 3.381
(0.119) (0.143) [0.839] [0.002]

Mountain Div 0.328 0.325 0.171 2.055
(0.071) (0.081) [0.680] [0.041]

OR, WA, AK, HI 0.373 0.357 1.365 1.970
(0.096) (0.100) [0.243] [0.051]
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Table B18: Return to Adv. Deg. Business majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms

California 0.310 0.277 3.719 4.905
(0.042) (0.058) [0.054] [0.000]

Texas 0.051 0.028 4.804 6.917
(0.046) (0.062) [0.028] [0.000]

Florida 0.205 0.181 3.449 3.366
(0.061) (0.074) [0.063] [0.002]

Illinois 0.227 0.190 1.687 5.491
(0.054) (0.067) [0.194] [0.000]

New York 0.236 0.211 0.330 13.871
(0.045) (0.071) [0.566] [0.000]

New England 0.168 0.120 2.345 9.652
(0.045) (0.053) [0.126] [0.000]

New Jersey & Penn. 0.264 0.195 4.765 5.590
(0.045) (0.060) [0.029] [0.000]

WV, VA, DC, MD, DE 0.193 0.171 3.756 5.582
(0.041) (0.047) [0.053] [0.000]

NC, SC, GA 0.173 0.155 6.920 3.251
(0.047) (0.048) [0.009] [0.002]

E S Central Div 0.103 0.079 3.812 1.395
(0.055) (0.059) [0.051] [0.208]

OH, IN, MI, WI 0.128 0.080 3.151 5.115
(0.037) (0.061) [0.076] [0.000]

W N Central Div 0.162 0.124 4.027 4.081
(0.048) (0.067) [0.045] [0.000]

OK, AR, LA 0.006 -0.041 3.532 4.775
(0.081) (0.105) [0.060] [0.000]

Mountain Div 0.073 0.078 0.459 1.439
(0.052) (0.062) [0.498] [0.178]

OR, WA, AK, HI 0.128 0.123 0.359 1.286
(0.064) (0.081) [0.549] [0.258]
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Table B19: Return to Adv. Deg. Soc. Sci. majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms

California 0.174 0.146 0.511 1.937
(0.060) (0.074) [0.475] [0.051]

Texas 0.089 0.086 0.049 5.802
(0.072) (0.090) [0.825] [0.000]

Florida 0.165 0.167 0.016 4.789
(0.088) (0.073) [0.898] [0.000]

Illinois 0.167 0.142 0.891 2.649
(0.082) (0.093) [0.345] [0.010]

New York 0.184 0.111 1.782 4.874
(0.063) (0.081) [0.182] [0.000]

New England 0.110 0.054 2.206 5.033
(0.068) (0.089) [0.137] [0.000]

New Jersey & Penn. 0.241 0.179 6.539 5.400
(0.064) (0.071) [0.011] [0.000]

WV, VA, DC, MD, DE 0.330 0.306 1.313 6.509
(0.056) (0.073) [0.252] [0.000]

NC, SC, GA 0.068 0.057 0.495 3.193
(0.066) (0.075) [0.482] [0.002]

E S Central Div 0.232 0.220 0.574 2.730
(0.085) (0.083) [0.449] [0.010]

OH, IN, MI, WI 0.217 0.191 0.890 2.484
(0.058) (0.076) [0.345] [0.012]

W N Central Div 0.112 0.105 0.093 4.240
(0.072) (0.115) [0.761] [0.000]

OK, AR, LA 0.239 0.245 0.250 3.381
(0.125) (0.161) [0.617] [0.002]

Mountain Div 0.363 0.356 0.747 2.055
(0.072) (0.070) [0.387] [0.041]

OR, WA, AK, HI 0.460 0.443 0.902 1.970
(0.095) (0.086) [0.342] [0.051]
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Table B20: Return to Adv. Deg. Soc. Sci. majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms

California 0.195 0.147 3.590 4.905
(0.045) (0.058) [0.058] [0.000]

Texas 0.016 -0.003 2.452 6.917
(0.052) (0.073) [0.117] [0.000]

Florida 0.198 0.175 3.659 3.366
(0.066) (0.092) [0.056] [0.002]

Illinois 0.114 0.082 1.115 5.491
(0.062) (0.081) [0.291] [0.000]

New York 0.210 0.157 0.873 13.871
(0.051) (0.086) [0.350] [0.000]

New England 0.109 0.053 3.010 9.652
(0.050) (0.056) [0.083] [0.000]

New Jersey & Penn. 0.224 0.139 7.469 5.590
(0.050) (0.072) [0.006] [0.000]

WV, VA, DC, MD, DE 0.211 0.178 6.762 5.582
(0.043) (0.056) [0.009] [0.000]

NC, SC, GA 0.106 0.088 5.874 3.251
(0.051) (0.052) [0.015] [0.002]

E S Central Div 0.070 0.044 3.042 1.395
(0.061) (0.071) [0.081] [0.208]

OH, IN, MI, WI 0.100 0.037 5.494 5.115
(0.041) (0.062) [0.019] [0.000]

W N Central Div 0.077 0.027 6.133 4.081
(0.052) (0.078) [0.013] [0.000]

OK, AR, LA 0.009 -0.022 1.338 4.775
(0.089) (0.154) [0.247] [0.000]

Mountain Div 0.087 0.091 0.262 1.439
(0.055) (0.064) [0.609] [0.178]

OR, WA, AK, HI 0.047 0.044 0.055 1.286
(0.068) (0.083) [0.815] [0.258]
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