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Abstract 

A transition away from coal fired power would improve local air quality and would help the U.S 

to establish itself as a global leader in the collective effort to mitigate the climate change 

challenge. The costs of substituting away from coal are spatially concentrated, and mining states 

are already experiencing lost income due to the reduced demand for coal.  We document that 

power plants in states and counties with substantial mining activity are more likely to be coal 

fired and to purchase more within political boundary coal. These results are robust to including 

flexible controls for the distance from power plants to mines. Given that we find that mines have 

access to “captive” same jurisdiction demand, we predict that the phase out of this polluting 

industry will be slower than has been previously suggested.  While the local community gains 

from extending coal mining, this pursuit of local self-interest imposes social costs because coal 

mining and coal burning has significant environmental consequences.  
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comments. 



Introduction 

To mitigate the global challenge of climate change, nations must burn less coal.  In recent 

years, the share of U.S electricity generated by coal has fallen from nearly 50% to 33%.  The U.S 

reduction in coal use for generating power is especially notable because it has occurred without 

the U.S imposing carbon pricing or a carbon tax (Cragg et. al. 2013).   The substitution away 

from coal is mainly due to the rise of the adoption of fracking technology and some states 

sharply ratcheting up their renewable portfolio standards (Venkatesh et al 2012 and Burtraw et 

al, 2012). 

While environmentalists cheer for coal’s sunset, there are interest groups with strong 

incentives to protect this declining industry. Reduced power plant demand for coal imposes 

spatially concentrated costs borne by traditional coal mining communities in states such as West 

Virginia, Kentucky, and Wyoming, and the low skill workers who engage in mining and 

providing services in mining areas.  There were 261 coal mines in the United States that shipped 

coal to the electricity sector in 2014. These mines tend to be in rural areas where the population 

is white and has less education and fewer alternative job prospects than the national average.   

In this paper, we document evidence that power plants are more likely to use coal to 

generate power and are more likely to purchase locally mined coal if the power plant and the 

coal mine are located in the same state, county, or congressional district.  This finding is robust 

to flexibly controlling for the distance between mines and power plants.  Our explanation for this 

within political boundary trading focuses on political intervention.  Elected officials such as a 

mining state’s governors, Congressmen and local officials have an incentive to help their 

constituents.  Miners and the members of their communities are typically low skill people with 

long time roots to the area who do not have clear industrial alternatives.  Local elected officials 

in coal states are aware that their constituents face significant dislocation costs and seek to 

protect them from long-lasting negative income shocks by stabilizing demand for their 

constituents’ output.1  

                                                           
1 Recent work by Autor, Dorn and Hanson (2016) documents that local labor markets only slowly re-

equilibrate after a reduction in local demand.  They use the China joining the WTO which accelerates 

China’s exports to study this.  In their setting, U.S areas (commuting zones) differ with respect to their 



Officials have various powers to encourage the local power plant to purchase coal from 

the mine to increase local demand. West Virginia provides incentives that reduce the production 

cost for local coal mines and encourages local buyers to buy from these sellers.2 Maryland and 

Virginia offer a $3 per ton tax credit for utilities buying in-state coal (Bowen and Deskins 2015). 

Oklahoma offers credits of $5 per ton to both coal mines and power plants, effectively 

contributing $10 to every ton of Oklahoman coal that is burned for electricity generation in the 

state. Further, in the mid-2000s, Oklahoma enacted a law requiring that power plants purchase at 

least 10% of their coal from in-state coal mines. This law, intended to protect Oklahoman mines 

from competing Wyoming coal, was eventually struck down by the U.S. Supreme Court.  

A distinctive feature of the coal industry is that its consumption and production entails 

large Pigouvian externalities (Davis 2009, Mueller and Mendelsohn 2012).  In such a case, 

protectionism causes two inefficiency losses.  First, there is the usual deadweight loss from not 

exhausting the gains to trade between demanders and low cost suppliers.  Second, there is 

deadweight loss caused by prolonging the use of a dirty technology that causes social harm.  By 

supporting local coal mines, the transition to natural gas and renewable electricity sources is 

slowed and this results in additional emissions of greenhouse gases and criteria air pollutants.  

Since climate change is a global externality, local and state elected leaders have weak incentives 

to internalize this externality.  Instead, they have strong incentives to protect local coal mines as 

this improves the local economy through providing high-paying jobs as well as indirectly 

through the local spending multiplier. 

  We study the environmental implications of local protectionism for local air quality and 

overall CO2 emissions.  By quantifying the social costs associated with protection of a declining 

industry, this piece of our empirics is the mirror opposite of other research that attempts to 

                                                           
direct competition with China.  Those geographic areas in direct competition with China suffer long run 

effects.   

 
2 One proposal for a type of tax deduction that would provide additional benefits for coal sold within the 

state was introduced in the 2014 legislative session as the West Virginia Coal Employment Enhancement 

Act (Senate Bill 604/House Bill 3072). Though the bill did not passed into law, it would have created a 

new tax incentive for sale of coal mined within West Virginia to power producers and industries that 

consume the coal within the state. 



measure the social benefits of protecting infant industries (see Goodstein, 1995). This literature 

argues that society ostensibly props up infant industries because they convey a social good 

(Melitz 2005).  

The Spatial Economics of Coal Trading 

We present a simple framework for studying bilateral trade between power plants and 

coal mines. In a later section, we will introduce several nuances related to issues such as the 

ownership structure of the coal fired power plants, coal quality, and environmental regulation of 

power plants.  Our starting point is that the buyers and sellers of coal have weak incentives to 

internalize the social consequences of their mutually beneficial trade. 

Consider the case where coal is produced by a set of spatially-differentiated mines using 

a homogeneous production function, and converted into electricity using a homogeneous 

production function by power plants which seek to minimize their cost of production subject to 

generating a given level of electricity.3  Further, suppose there are no long term contracts such 

that coal is sold on a spot market.  

Given these assumptions, we expect that a gravity model of bilateral trade will have 

significant explanatory power.  If coal markets are competitive, power plants will purchase coal 

from the closest mine, at a price that is at most equal to the production price of coal plus the 

transportation cost from the second-closest mine. If a power plant purchases from a mine that is 

not its closest prospective trading partner, it is indicative of deviation from perfect competition.4 

The cost of coal transportation is a substantial portion of total coal generation costs. 

Shipping coal by rail – the predominant transportation method – generally costs on the order of 

2-8 cents per ton per mile, so each additional 100 miles of transportation increases the delivered 

price of coal by $2-$8 per ton. Given that coal prices are generally below $50 per ton; power 

plants have a substantial incentive to purchase coal from close mines. These costs are a 

                                                           
3 Even publicly-owned utilities that own their own power plants should purchase from other power plants 

if the electricity can be provided at lower cost.  
4 Neither coal production nor electricity generation technologies are homogenous, of course, and other 

considerations, such as uncertainty about mine production, could lead power plants to seek out more 

distant trading partners. 



significant portion of total operating costs for a coal-fired power plant. Based on EIA reports of 

average operating expenses and average heat input for coal-fired power plants, the transportation 

costs of moving coal 100 miles would account for about 0.2 cents per kWh, around 5% of total 

operating expenses.5  In 2012, the median power plant purchased 960,000 tons of coal while the 

median coal mine delivered nearly 1.2 million tons of coal.  

 

Coal Area Elected Officials as “Local Pareto Planners” 

 Elected officials in coal areas have strong incentives to take actions that increase the 

demand for coal.  Mining is a high paying job for low skill non-urban workers.  The average 

salary for all U.S. coal miners was $82,000 in 2013 according to the National Mining 

Association.  Coal mining activity is concentrated in relatively rural communities and requires 

relatively little education (Bell and York 2010). Mining jobs creates a local multiplier effect in 

their community, resulting in additional job opportunities and economic activity. 

 By boosting coal demand and raising local wages and home prices, elected officials can 

achieve stability for local families.  Stable families and their communities go hand in hand in 

areas that do not have alternative industries to turn to.  Our examination of the sunset of the coal 

industry revisits recent research that has examined how rural communities have gained from the 

fracking boom (Feyrer, Mansur, and Sacerdote (2015) and Alcott and Kenniston (2014), 

DeLeire, Eliason and Timmins 2014)).  

Families enjoying job security are less likely to experience divorce, substance abuse and 

economic hardship.  Labor economists have emphasized the possibility of scaring due to duration 

dependence associated with experiencing unemployment (Borjas and Heckman 1980, Black and 

Sanders 2002, Black, McKinnish and Sanders 2003, 2005a, 2005b). If coal miners lose their jobs 

                                                           
5 EIA quotes 3.904 cents per kwh for fossil steam plants in 2014 and 0.00052 tons of coal per kwh. We 

assume a transportation cost of $4 per 100 miles, the midpoint of our range. 



and become unemployed, the duration dependence hypothesis posits that they will become 

increasingly less likely to find a new job and are unlikely to find a new job that pays as well.   

The children who grow up in such families are likely to be especially affected. Based on 

Heckman’s dynamic complementarity model, the early years of life are crucial for raising the 

chances of a child achieving her full potential (Heckman 2007).  If the household’s income 

declines and if the family divorces, such a child is less likely to succeed. This sad dynamic 

shows how reduced coal demand translates into widening income inequality and increased 

poverty in these rural areas. 

Elected officials in coal areas will understand this dynamic and this creates an incentive 

(both due to altruism for constituents as well as the desire to be re-elected) to engage in a type of 

Keynesian demand management in which the local politicians use their clout to encourage same 

state coal power plants to “buy locally”. In this sense, local elected officials are a type of “Pareto 

Planner” (abstracting from the pollution externalities that we discuss below).6   

 Such politicians have influence over several possible policy levers (see the introduction 

for examples).  Power plants face land use issues related to permitting and environmental 

regulations. One could imagine, for example, that prior to the introduction of national regulations 

on coal ash waste disposal, that legislators who wished to protect the coal industry could enact 

relatively less stringent rules on ash disposal. Alabama, which locally produces about 40% of its 

consumed coal had no state-level oversight or regulation of its coal ash ponds. Similarly, the 

water temperature discharged by power plants is regulated in part by the state, and state 

environmental protection boards could opt to waive maximum water temperature regulations for 

                                                           
6 We recognize that there are alternative mechanisms that could contribute to within jurisdiction coal 

trade.  Past investments by local power plants to optimize the power generation process as a function of 

local coal purchases may create a “lock in” effect through the asset specificity of past investments 

(Joskow 1985). One possible explanation for why the two parties would be willing to “lock in” to a long 

term relationship is because they anticipate that there will be less future political risk between two 

contracting parties since they are both represented by the same political leaders.   

 



coal plants who purchase in-state coal. Moreover, in the case of power plants that are owned by 

utilities, politicians can directly influence the approval of increase in regulated electricity rates.  

Past work in urban economics has explored the spillover effects that key decision makers 

take into account when making investment decisions.  Henderson and Mitra (1996) discuss the 

incentives of an edge city developer.  Such a developer collects more money for property sales if 

he makes strategic investments that maximize positive synergies in land use and minimizes 

negative synergies in land use. Gould, Pashigian, and Pendergrast (2005) explore a similar idea 

in their work on shopping malls.  By offering a rent discount, the mall owner can attract an 

anchor tenant who attracts plenty of customers. Anticipating that there will be walking traffic, 

other mall tenants are willing to pay more for commercial leases to have access to these potential 

customers.  In our case, as well as the edge city and shopping mall cases, there are localized 

externalities that individual decision makers (i.e. the power plants) might have ignored.    

   

Environmental Externalities Imposed by Coal Production and Consumption  

 While local elected officials have strong incentives to internalize the direct economic 

consequences for their constituents, they have weak incentives for internalizing pollution costs if 

such costs are borne by people who live outside of the jurisdiction.  Such free riding has been 

quantified in the case of international river pollution (Sigman 2001) and rivers crossing Chinese 

provinces (Kahn, Li and Zhou 2015).  Such officials have even weaker incentives to internalize 

the greenhouse gas production implications of encouraging coal consumption. In this case, the 

externality’s costs are borne at the global level.  Coal burning features a high carbon intensity of 

roughly 2300 pounds per MWH of power. In addition to producing this global externality, coal 

use by power plants create many local negative environmental and health externalities. These 

externalities are shown to reduce nearby home values (Davis 2011).   

 

 

 



The Empirical Strategy 

 Figure One maps the 372 coal fired power plants in the United States and the 161 coal 

mines in the U.S that either purchased coal in 2014 or shipped coal to the electricity sector in 

2014.  Several clear geographic patterns emerge.  Coal mining is concentrated in Appalachia 

(Kentucky, West Virginia, Ohio and Pennsylvania), in southern Illinois and Indiana, and in 

Wyoming. While the majority of mines are in the Appalachia region, the largest mines are in 

Wyoming, which has relatively low-quality but easily accessible coal deposits with low sulfur 

content. Coal power plants exist throughout the country, but are most prevalent in the Midwest, 

Mid Atlantic, and South. For each power plant, we calculate its distance to the coal mines with 

which it trades.  Table 1 reports the empirical distribution of these distances where we weight the 

observations by the quantity of coal the power plant consumed in 2014.  We find that 30% of 

total power plant coal is purchased from mines that are less than 80 miles away.  This is clear 

evidence of significant local purchasing. 

Our estimation strategy for studying the quantity, pricing and the propensity to lock into 

long term contracts focuses on the bilateral distance between any pair of power plants and mines 

and the role of within political boundary trades.  These equations bear a close similarity to the 

standard gravity models from international trade. The distinctive feature of our econometric 

framework is the vector of dummy variables indicating if the origin mine and potential 

destination power plant share a common political jurisdiction. 

Coal Purchases and Quantities 

We estimate a series of regressions to test for “within border” effects.  In each of these 

regressions, we seek to test for protectionist behavior based on whether we observe “excess 

trade” when the power plant and the coal mine are located inside the same geographic 

jurisdiction.   We define a dummy variable, 𝑇𝑟𝑎𝑑𝑒𝑖𝑗𝑡 , to be that equals one if power plant i and 

mine j trade at time t and estimate the probability that 𝑇𝑟𝑎𝑑𝑒𝑖𝑗𝑡 equals 1 based on a series of 

political boundary controls.7 In this, and in most of our other specifications, the unit of 

                                                           
7 Our empirical strategy resembles the approach adopted by Hillberry and Hummels (2003) to study trade 

flows. 



observation is the power plant-mine-year. We model this probability of trade using a logistic 

regression of the form; 

 

𝑝𝑟𝑜𝑏(𝑇𝑟𝑎𝑑𝑒𝑖𝑗𝑡) = 𝑓(𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗), 𝐵𝑜𝑟𝑑𝑒𝑟𝑖𝑗,𝑃𝑙𝑎𝑛𝑡 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖 , 𝑀𝑖𝑛𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑗 , 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑡𝑜𝑙𝑡) 

 

(1) 

We also estimate versions of equation (1) using a “Heckit” and where we study the log quantity 

of trade conditional that a positive amount of trade has occurred. 

 In this equation, the key explanatory variables of interest are the vector of border 

dummies. We include three dummies indicating whether the mine and the plant are in the same 

state, same Congressional District and the same county.  A key point to note is that we flexibly 

model the role of distance on trade.  This g() polynomial and splines that we report below allow 

us to control for the standard gravity effects and proxies for transportation costs.8   

 

A Regression Discontinuity Test 

 One potential concern is that our cross-political boundary results might merely reflect 

non-linear distance effects that are not captured by our distance controls. In order to address this 

concern, we estimate the effect of the political boundary on coal trading in a regression 

discontinuity framework in the spirit of Black (1999) and Holmes (1998).  

 Specifically, we limit our sample to only counties along state borders that are adjacent to 

a county in another state that also has a coal-fired power plant. There are 69 counties that both 

have a coal-fired power plant and are adjacent to a county in a different state that also has a coal 

fired power plant and a total of 89 unique county boundary pairs (some counties appear in more 

                                                           
8 In an appendix, we estimate the relationship between distance and the EIA-reported transportation costs 

between states. Distance and year fixed effects result in an adjusted R-Squared of approximately 0.35. 



than one pair). There are 105 power plants in these 69 counties. We create a set of adjacent 

county fixed effects for each pair of cross-state adjacent counties. Figure 2 shows the set of 

power plants in this sample and each pair of adjacent-county power plants receives a unique 

fixed effect. For example, along there are two power plants in Clark County, Nevada and one 

power plant in neighboring San Bernadino County, California. Each of the three power plants 

receives a value of one for the Clark County-San Bernadino pair dummy variable and all other 

power plants in the country receive a zero for this pair fixed effect.  By adding these fixed effects 

to our regressions, we control for the effect of the general location of power plants (e.g. distance 

to population centers).9  

Controlling for distance, we estimate a linear probability model to explain the probability 

that power plant, i, and mine, j,  transact as being determined by  

𝑝𝑟𝑜𝑏(𝑇𝑟𝑎𝑑𝑒𝑖𝑗𝑡) = 𝑓(𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗), 𝜋𝑝, 𝐵𝑜𝑟𝑑𝑒𝑟𝑖𝑗,𝑃𝑙𝑎𝑛𝑡 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖 , 𝑀𝑖𝑛𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑗 , 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑡𝑜𝑙𝑡) 

 

which differs from our primary estimating equation because we now include a set of 𝜋𝑝 county 

border fixed effects. Each county border pair, p, is defined as a set of two neighboring counties 

in different states, and for each county border pair we construct a dummy variable that is equal to 

one if power plant i is in either county comprising county border pair, p.  Initially, we do not 

restrict the set of coal mining counties with which a power plant can trade, so for each of our 105 

power plants we observe 400 potential trading partners in each year. Our unit of observation is 

the power plant-mine-year.  Next, we further restrict the sample so that each power plant can 

only buy coal from mines in its own state or in its adjacent county’s state.  

Figure 3 shows the set of cross-state power plant pairs in Ohio, Kentucky, West Virginia, 

and Indiana, as well as the mines in each of these states. Each of the power plants along the 

Ohio-West Virginia border (blue triangles) have a choice set of coal mine trading partners of 

                                                           
9 These fixed effects improve the identification of our cross-state boundary estimates under the 

assumption that any transportation-related constraints that are not adequately captured by our distance 

polynomial are comparable in adjacent counties.   

 



Ohio or West Virginia mines (blue circles). Similarly, each of the power plants along the 

Indiana-Kentucky border (red triangles) have a choice set of coal mine trading partners of 

Indiana and Kentucky mines (red circles). As in the unrestricted regression discontinuity 

framework, each pair of adjacent counties receives a fixed effect to control for unobserved 

regional variation. 

Price and Contract Characteristics 

Next, we consider differential behavior in several of the characteristics of trades. In this 

analysis, we restrict our study to only trades, rather than all possible power plant-mine 

interactions. We also focus on a monthly time-scale (the sharpest time-step reported in our data) 

rather than an annual time-scale to avoid issues associated with aggregating prices and contract 

characteristics over months in a year. 

First, we estimate 

𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑡 = 𝑓(𝑔(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗), 𝐵𝑜𝑟𝑑𝑒𝑟𝑖𝑗,𝑃𝑙𝑎𝑛𝑡 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖 , 𝑀𝑖𝑛𝑒 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑗 , 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑡𝑜𝑙𝑡) (4) 

Where priceijm is the delivered price of coal in dollars per MMBTU from powerplant i to mine j 

in month t. 

 We then estimate two models regarding the contractual characteristics of powerplant-

mine interactions. Joskow (1985) notes the importance of relationship-specific capital in the coal 

market, with larger quantity contracts tending to be longer duration contracts. As a corollary, we 

look for the presence of relationship-specific political capital in coal trades, expecting that plant-

mine pairs in which political capital is prevalent or more important will be more likely to lock 

into long-term contracts than plant-mine pairings in which political capital does not exist. 

Similarly, coal mines that have guaranteed a level of demand by entering into long lasting 

contracts will be more likely to hire or retain workers than plants that have not guaranteed 

trading partners. 

 First, we explore whether or not powerplant-mine pairs that fall inside the same political 

boundaries are more likely to engage in long-term contracting that powerplant-mine pairs that do 

not fall inside the same political boundaries.  We also examine the intensive margin of contracts.  



 

 

Power Plant Placement and Closures 

If the location of power plants themselves are affected by political pressure from mining 

communities then our estimates of coal mine-powerplant interactions will underestimate the full 

impact of political support. In order to examine the effect of local mines we estimate a 

multinomial logit of whether a county has a coal-fired power plant, a non-coal fired power plant, 

or no power plants as a function of whether or not the county has an in-state or in-county coal 

mine. We control for the Euclidean distance between the county centroid and the closest coal 

mine. As a result, our political boundary effects are estimated holding constant the cost 

associated with moving coal from the closest mine to the power plant. Because power plants are 

relatively likely to be positioned near population centers, we include the county’s population in 

the power plant siting decision. 

Competition from natural gas and from regulation has led to substantial reductions in 

coal-fired electricity capacity over the past decade. Given that low natural gas prices are likely to 

continue in the near-term, one might suspect that market forces will cause coal plants to close, 

precluding any ability of political protectionism to stimulate coal demand. In order to test for this 

concern, we examine the universe of coal-fired generators and estimate the likelihood that a 

generator is retired by 2014 as a function of whether or not the generator has an in-state coal 

mine10. We estimate the logit regression 

𝑃𝑟𝑜𝑏(𝑟𝑒𝑡𝑖𝑟𝑒𝑑𝑔) = 𝑓(𝑃𝑙𝑎𝑛𝑡 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑔, 𝐼𝑛 𝑆𝑡𝑎𝑡𝑒 𝑀𝑖𝑛𝑒𝑔, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑀𝑖𝑛𝑒𝑔). (5) 

If the coefficient on our In State Mine is less than zero, power plants with an in-state coal mine 

are less likely to retire than plants without an in-state coal mine, even after controlling for the 

distance to the geographically closest potential trading partner.  

                                                           
10 The EIA reports retirements at the generator-level rather than the plant-level. 



 In each case, our key hypotheses focus on the coefficient estimates for our border 

variables. The border variable in our estimating equations indicates a series of dummy variables 

indicating whether mines and plants cross a state, congressional, or county boundary. Our 

identification strategy relies on the assumption that our flexible controls for distance capture any 

affect associated with transportation costs between poweplants and mines.  Our sunset 

hypothesis posits that all else equal, there will be more coal trade when the buyer and seller are 

in the same jurisdiction, and that the contractual lock-in will be stronger.  This econometric 

strategy combines the standard trade gravity model with Holmes’ (1999) borders approach.  In a 

section after we present our main results, we will test how these border effects vary over time.  

 

Power Plant and Mine Data 

The EIA collects data on fuel deliveries to the plants in the power sector. Since 2008, fuel 

delivery data are reported on the EIA-923 form, which covers monthly fuel deliveries by both 

utilities and non-utility deliveries. Between 2002 and 2008, utility fuel deliveries were reported 

through the FERC-423, while non-utility deliveries were collected via survey with the EIA-423 

for plants in excessive of 50 MW. Prior to 2002, only the FERC-423 existed, and collected only 

utility fuel purchases. 

Because the earlier data do not report the mine-specific MSHA ID, we treat a mine-

observation as the mine’s county of origin, which is reported much more consistently and 

aggregate coal deliveries to the plant-coal county-year (aggregating across months in the year). 

We then construct a matrix of the unique combination pairs of the 410 coal mine counties and 

516 power plants and 25 years in our sample.  For each mining county, we calculate the latitude 

and longitude of the county centroid and compute the distance between the county centroid and 

each power plant. Finally, we calculate the total annual quantity of coal that is shipped for each 

county and the total annual quantity of coal that is received for each power plant and drop plant-

coal county-year observations in which the plant received no coal or the coal county shipped no 

coal. This leaves 1.9 million observations from the initial matrix of 5.2 million plant-mine-year 

combinations. 



 Similarly, we create a matrix of plant-coal mine-year unique combinations for the 2008-

2014 years in which the mine-specific MSHA ID is reported. In this case we compute the 

distance between the latitude and longitude of the coal mine and the latitude and longitude of the 

coal power plants, rather than county centroids. Again, we drop observations in which total plant 

purchases or total mine deliveries is zero. We then overlay state, county, and congressional 

boundary shape files onto our geospatial data on power plant and coal county/mine location and 

create indicator variables for whether a power plant – coal county/mine combination are in the 

same state, county, or congressional district. 

 In both cases we supplement the EIA/FERC data with characteristics of the power plant 

and the mines. In the case of the power plant characteristics, we merge an identifier from the EIA 

923 which indicates whether the utility operating a power plant is a municipally-owned, investor-

owned, a non-utility independent power producer, etc. For the coal mine, we merge in data on 

whether a coal mine is an underground or surface mine, and on the local economic conditions in 

the county of the coal mine. In the recent EIA sample, the delivered cost of coal is also reported 

for each transaction from plants operated by a regulated utility, including the ash, sulfur, and heat 

content for the fuel. 

 

Results on Coal Trading 

As shown in Table 2, coal purchases are generally local. Columns 3 and 4 show the 

percentage of coal deliveries to power plants in each state that were from in-state and out-of-state 

coal mines, respectively. Columns 5 and 6 show the percentage of coal deliveries from mines in 

each state that were to in-state and out-of-state power plants, respectively. Columns 4 and 5 are 

blank if a state does not have any coal mines that shipped to the power sector throughout the 

duration of our sample. 

 The average state receives 24% of its total coal consumption from in-state mines, 

although this is biased downward because many states do not produce coal at all and must 

purchase all of their coal from out-of-state mines. The average across only the states that produce 

coal is 48%. The states that receive the lowest-percentage of total coal purchases from in-state 

mines were Kansas (20), Maryland (24), Missouri (29), Oklahoma (40) and Tennessee (47). In 



each of these states, coal is the dominant source of electricity generation but coal mining is a 

relatively small industry. 

 

Coal Purchases and Quantities Results 

The prevalence for intra-state trades are not driven merely by distance. Across each 

distance specification, we consistently find a negative and statistically significant effect of being 

across state lines on the probability that a power plant will purchase coal from a mine. Table 3 

presents these results. A power plant is 0.3 percentage points less likely to purchase coal from an 

out-of-state mine than from an in-state mine that is the same distance away. This effect is quite 

large in context. Across our entire sample, the probability that a plant-mine combination engages 

in a trade in a given year is about 2 percent. We find even stronger effects at the county 

boundary. Cross-county trades are approximately 2 percentage points less likely to occur than 

intra-county trades. The effect of the congressional district is comparable in magnitude to the 

effect of the state boundary. These effects are consistent regardless of the approach to controlling 

for transportation distance using either polynomials or a restricted cubic spline. Using the 10 

mile bins – the finest granularity of distance control – the state effect is reduced slightly. The 

state boundary is associated with a 0.2 percentage point reduction in the probability of a trade. 

The effect of the county boundary is reduced by an order of magnitude, and the statistical 

significance is weaker for both the county and congressional boundary estimates. Also, note the 

relationship between the political boundaries. A mine that is not in the same state as a power 

plant is obviously not in the same county or congressional district as the power plant, so the net 

effect is the sum of the three coefficients. 

 Unsurprisingly, the probability that a power plant and a mine trade is increasing in both 

power plant purchases and in mine shipments. This indicates that plants that buy a lot of coal 

tend to purchase from more mines than plants that buy a relatively small amount of coal. 

Similarly, mines that produce a lot of coal sell to more power plants than small mines.  

We find similar results when we examine not only the probability of a trade occurring but 

the amount of coal that is purchased. These results are reported in Table 4. A power plant will 

buy approximately 8,000 fewer tons of coal from an out-of-state mine than it would buy from an 

in-state mine of comparable distance. The effect of the congressional border is approximately 



100,000 tons, around eight times the magnitude of the cross-state effect. The effect of the county 

border is substantial, a mine that is across a county border from a power plant will sell 1.4 

million fewer tons of coal than a mine that is inside the same county as the power plant. In each 

case except the cross-state effect in the splined distance control and the state and congressional 

boundary effect in the ten-mile bins, the estimates are strikingly similar across distance controls. 

The regressions presented above include all interactions – both positive quantities as well 

as interactions of zero quantity (i.e. no trade occurred). If we limit our sample to only the 

interactions that resulted in trades, we can estimate the effect of political boundaries on the 

intensive margin of coal trading. Table 5 presents the regression results for this specification. 

Only the intra-county effect persists on the intensive margin, except in the case of the 10 mile bin 

where we find suggestive evidence that plants buy more from cross-state mines than in-state 

mines. Surprisingly, the magnitude of the effect is only slightly smaller than the case in which 

we consider the quantity in all observations.  

 

Evolution of the Boundary Effect Over Time 

The coal sector, the electricity sector, and the labor conditions in coal mining 

communities have evolved over time. As economic conditions worsen in coal mining 

communities, protecting coal mining jobs grows in importance and politicians should be 

relatively more willing to exert pressure on power plants to support the local industry. Similarly, 

the extent to which electricity generation decisions are exposed to political pressure has changed 

over time. One might expect, for example, that government-owned utilities would be more 

susceptible to job protectionary pressure than independent power producers who would be more 

concerned with profit maximization and less concerned with local stakeholders. We would 

therefore expect a smaller border effect when a greater proportion of power plants were 

controlled by independent power producers. Cicala (2014) documents that when utilities were 

forced to divest their power plants to new owners during electricity deregulation that fuel 

procurement costs declined for coal plants. If political protectionism is responsible for some of 

Cicala’s (2014) effect, we would expect our border protection estimate to be smaller after 

deregulation than before it. 



In order to investigate this dynamic over time we estimate our primary specification as a 

cross section for each year between 1990 and 2014, dropping the time specific fixed effects. 

Estimating the model separately for each year, rather than estimating a single model with 

interactions between the time fixed-effects and the political boundary variables lets our distance 

control adjust over time so that changes in the political protectionism over time are not 

confounded with changes in shipping infrastructure or cost. 

Figures 3-5 show the 95 percent confidence interval on different state, different county, 

and different congress over time. Each political delineation experienced a roughly similar 

pattern. From 1990-1995, the coefficients declined indicating relatively greater protectionary 

behavior. Between 1995 and approximately 2000, there was relatively less protectionary 

behavior. Protectionary behavior was relatively consistent between 2000 and 2006 after which it 

generally decreased through 2014. 

The majority of our sample falls after electricity deregulation was already in effect or 

being implemented so we do not have pre-deregulation coefficients with which to compare 

against the early 1990s results. Still, it is surprising that protectionist behavior is growing during 

the expansion of deregulation during the early 1990s. This provides some suggestive evidence 

our political jurisdiction effect is not driving the reductions in procurement costs noted by Cicala 

(2014).  

We also note that changes in political climate throughout our sample period. The 

magnitude of the boundary effect is generally increasing (less local purchasing) during the 

1990s, the late 2000s and the 2010s, while it is decreasing (more local purchasing) during the 

early and mid-2000s. Note that the 1992-2000 and 2008-2014 periods with declining local 

protectionary power aligns with a Democratic Presidential Administration, while the increasing 

protectionary power of the 2000s aligns with the Republican Bush Administration. We do not, 

however, attempt to assign any causality between the political climate and the effect. 

 

Regression Discontinuity Results 

Our regression discontinuity models presented in Tables 6 and 7 find further evidence of 

political boundary effects in coal purchasing.  In estimating equation (2), we include all mines as 

potential trading partners, each of the 105 power plants in the 69 counties that both have a coal-



fired power plant and border a county with a coal-fired power plant can trade with any of the 400 

mines. 

We find that the county boundary results in approximately a 4 percentage point reduction 

in the probability that a power plant purchases coal from a coal mine. Again, this effect is robust 

to a range of controls for the distance between the power plant and the coal mine.  The different 

state boundary also corresponds to a congressional district and county boundary which we omit 

from the regression discontinuity framework. Our regression discontinuity approach is finding 

larger overall effects than our baseline specification. The combined effect of the three boundaries 

in our baseline results is around 2-3 percentage points. 

 

Next, we further restrict our regression discontinuity framework by limiting each pair of 

adjacent-county power plants to only being able to purchase coal from mines in either state of the 

adjacent counties. For example, the power plants in Mobile County, Alabama and Jackson 

County, Mississippi would have as potential trading partners the coal mines in Alabama and 

Mississippi but we drop the power plant-mine observations in which the mines are in other 

states. In this specification, the border variable captures the relative difference in the probability 

of a trade between each mine in Alabama and the plants in Mobile, County Alabama and Jackson 

County, Mississippi. Our neighboring county--pair fixed effect captures unobserved 

characteristics of the Mobile/Jackson area and the remaining difference in probability is assigned 

to the border effect. The results are slightly larger in the specification that limits a power plant’s 

potential trading partners to only the in-state mines on either end of the border. In this 

specification, the boundary effect is in the neighborhood of 5 percentage points.  

Price and Contract Characteristics Results 

When we focus on the characteristics of the trades (i.e. transacted price, contracted vs 

spot, and contract duration), we substantially reduce our sample size because we do not observe 

trade characteristics for trades that do not occur. After focusing only on trades that occur, the 

correlation between our cross-boundary variables increases because many of the, for example, 

different-county but same-state observations that induced orthogonality between the political 



boundary controls did not result in trades. As such, we highlight the results of F-tests for the joint 

significance of our political-boundary variables in each of these cases. 

 Evidence of jurisdictional effects on price after controlling for distance are mixed, at 

best.  The point estimates in Table 8 indicate that there is a price discount associated with in-

county coal purchases of about 12-15 cents per million BTUs. This suggests that coal mines are 

able to extract higher prices from power plants that are outside their county than from those who 

are within the county. Again, these regressions include controls for the distance between the 

power plant and the coal mine, so it is unlikely that this is simply reflecting transportation costs. 

However, only in the case of the spline distance control is there any evidence that the cross-

boundary controls are jointly different from zero. This would imply that when all of the 

boundary controls are taken together, that mines are not able to extract different prices from 

plants that are across jurisdictional lines than from plants within their jurisdiction. Similarly, 

when we control for distance using the ten mile bins, we do not find statistical significance for 

any of our key explanatory variables, and the F-test suggests joint insignificance. The weak 

evidence of plants extracting lower prices from in-state mines provides further suggestive 

evidence that the relationship between plants and mines is driven by a political mechanism rather 

than a cost minimizing mechanism. 

In Table 9 we estimate the effect of our boundary effects on the probability that a trade is 

associated with a long term contract rather than a spot trade. Similarly, in Table 10 we estimate 

the effect of our boundary effects on the length of the contract for those trades that are associated 

with contracts. Each of our political boundary controls is negative but statistically insignificant 

when we examine whether power plants and mines enter into contracts or interact on the spot 

market. We also find that both the county and state boundaries affect contract duration. 

Specifically, we find that contracts are longer between power plants and mines that are within the 

same but shorter between power plants and mines that are within the same state. The magnitude 

of the two coefficients are relatively similar but of opposite signs, indicating that mines and 

power plants that are in the same state but not in the same county, tend to be shorter than 

contracts between cross-state firms as well as shorter than contracts between intra-county firms. 



These results are broadly consistent with Joskow (1984) who attributed the longer 

duration of relatively high quality contracts to relationship-specific capital. Indeed, our controls 

for trade quantity align with Joskow. Moreover, the effect of the boundary control on contracting 

duration and prevalence indicates the potential for a different type of relationship specific capital. 

While Joskow (1984) focused on the physical characteristics of the plants and the coal that they 

burned, our result is consistent with relationship-specific political capital inducing power plants 

and mines to operate together. 

 

Power Plant Placement and Closures Results 

In Table 11, we also find a jurisdictional effect in power plant placement decisions. After 

controlling for the distance to the closest coal mine, the probability of having a coal fired power 

plant in a county is about 0.5 percentage points higher if there is a coal mine in the county than if 

there is not a coal mine in the county. Note that this indicates that even after controlling for the 

distance to the closest coal mine, a county is more likely to have a coal burning power plant if 

there is an in-county coal mine. Surprisingly, the effect of having an in-state but out-of-county 

coal mine actually serves to decrease the probability that there is a coal power plant in the 

county. This effect is quite small relative to the in-county effect. 

In Table 12, we show a jurisdictional effect in coal power plant closures. A power plant 

(or rather a generator) that is in a state with a coal mine is approximately 7 percentage points less 

likely to have closed by 2014 than a coal power plant without a potential in-state trading partner.  

 

Environmental Implications of Within Coal Mining States Transactions 

We estimate the environmental implications of local coal protectionism in two 

complementary fashions. First, we estimate the local impacts of coal consumption using data on 

ambient air pollution levels in counties that have power plants that purchase coal for the 

electricity sector and in surrounding counties. Second, we estimate aggregate emissions from the 

electricity sector due to coal protection. The former approach allows for a more specific 

consideration of who is affected by pollution, while the latter approach provides an aggregate 



effect of coal mining protection that takes into account general equilibrium impacts in the 

electricity sector. 

In order to examine the effect of coal protectionism on ambient pollution, we obtain daily 

pollution monitor data on SO2 and PM from the EPA’s AQM database. We then aggregate these 

data to the county-month level and merge them with the total amount of delivered coal to a 

county for electricity generation, as derived from the fuel deliveries data. Finally, in order to 

examine total emissions, we obtain CO2, SO2, and NOx emissions from the EPA’s Air Markets 

Program Data (AMPD). AMPD reports emissions for each power plant that is covered under any 

air markets program. Most power plants are covered by at least one air markets program in the 

latter half of our sample. We then aggregate CO2, SO2, and NOx emissions across power plants 

in each NERC region up to the monthly level. 

  In order to examine the effect of coal protection on ambient are quality, we estimate 

𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑡 = 𝑓(𝐶𝑜𝑎𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑐𝑡, 𝑇𝑖𝑚𝑒 𝑇𝑟𝑒𝑛𝑑𝑡, 𝐶𝑜𝑢𝑛𝑡𝑦 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑐) 

 (6) 

where Pollution is the average measurement of ambient pollution levels for sulfur dioxide and 

particulate matter, and Coal Consumption is a matrix of coal deliveries to a state, county, and 

neighboring counties.  

 Similarly, in order to examine the effect of coal protection on total greenhouse gas 

emissions, we estimate 

𝑓(𝐸𝑚𝑖𝑡𝑛𝑡) = 𝑓(𝐼𝑛 𝑆𝑡𝑎𝑡𝑒 𝐶𝑜𝑎𝑙 𝑀𝑖𝑛𝑒𝑠𝑛𝑡, 𝑁𝐸𝑅𝐶 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑛𝑡, 𝑇𝑖𝑚𝑒 𝑇𝑟𝑒𝑛𝑑𝑡)   

where Emit is the emissions of CO2, SO2, and NOx from a NERC region.    

 (7) 

If coal power plants with nearby coal mines are more likely to continue to operate – or 

operate at higher levels of generation – than coal power plants without nearby coal mines, we 

would expect a positive coefficient on the In State Coal Mines variable. This variable is defined 

as the percentage of coal power plants in a NERC region that have an in-state coal mine. A 

NERC would receive a value of 100 if every state in the NERC region produced coal, and a 

value of 0 if no states in the NERC region produced coal.  

  Tables 13 and 14 present these regression results. As we would expect purchases of coal 

by electricity generators at the state level results in increased SO2 and PM concentrations in 



counties within that state. Based on our OLS regression results presented in Table 4, we would 

expect that the effect of having an in-state coal mine would increase SO2 concentrations by 

approximately 0.008 parts per billion for each coal plant in the state.11 Similarly, an in-state coal 

mine would increase PM concentrations by approximately 0.008 micrograms per cubic meter. 

We generally fail to find local effects of county-level or neighboring county-level generation. 

Strangely, we find that coal consumption is associated with decreases in PM10 concentrations in 

the county of purchase. Given that coal is only one of a large number of components that affect 

PM levels it is likely that other PM generating behavior is negatively correlated with coal 

generation.  

We also find that the percentage of power plants in a NERC region that have an in-state 

coal mine trading option leads to increases in CO2, SO2, and NOx emissions. In the case of 

CO2, for every percentage point increase in the proportion of power plants in a NERC region 

that are close to an in-state mine, an extra 2.3 million tons of CO2 is emitted. Assuming a social 

cost of carbon of $40 per short ton, these results suggest that each percentage point increase in 

the number of coal-fired power plants in a NERC region with a potential in-state trading partner 

results in $92 million per year in added social costs. Based on the average prevalence of in-state 

mines in our data set (53%), this would indicate that around 8% of CO2 emissions from the 

electricity sector are attributable to this effect. 

 

Conclusion  

 The phase out of coal would be likely to be a Hicksian Pareto improvement for the 

United States.  Based on a Social Cost of Carbon of $30 a ton, the current national externality 

from coal associated with in-state mine purchasing (abstracting from criteria air pollution costs) 

was $4 billion in 2014.12  While it may be socially efficient to phase out coal, the costs of such a 

transition are spatially concentrated.   

                                                           
11 Table 4 indicates that having an in-state mine would raise coal shipments to each coal plant by around 

10,000 tons. Because each of these plants would increase total state generation by 0.01 million tons the 

net effect on the state would be 0.07*0.01*number of plants. 
12 2600000 tons of coal * 53 percent of plants close to an in-state mine * 30 dollars per ton = $4.1 billion 



 Local officials in coal areas are well aware that many of their constituents depend on the 

continuing viability of the coal industry and they are aware of the negative dynamics that this 

industry faces. We have introduced a detection approach to measure “excess” within border 

transactions. Our empirical research design exploits the fact that coal mines and power plants 

vary with respect to their geographic location. Some lie within the same political jurisdiction 

while others do not.  This variation allows us to use a flexible distance polynomial between pairs 

of power plants and coal mines to recover key border effects.  We document an increased 

likelihood of trade and larger trade quantities when partners are within the same state, county, 

and congressional district.  We have argued that these effects are no accident as local officials 

internalize the benefits of coal’s prolonged sunset but they ignore the social environmental costs 

associated with such implicit subsidies. The costs of the CO2 emissions associated with this 

protectionism are substantial, nearly $100 million a year in excess social carbon costs. Still, 

sustained low natural gas prices may limit the duration of coal’s sunset as market forces drive 

additional natural gas capacity to supplant coal plants. Given the proximity of environmental 

tipping points associated with particular levels of CO2 concentrations as well as uncertainty 

about energy policy under the Trump Administration, coal protectionism may still cause major 

environmental costs. 

Given the durability of housing capital and the built up social networks established in 

mining areas, its residents face both migration costs and asset losses if the demand for coal 

mining declines.  Such individuals face a fundamental job retraining challenge in transitioning to 

other jobs. During a time of great concern about income inequality and concern about fighting 

climate change, environmentalists/progressives face a challenge of promoting policies that phase 

out coal without increasing rural poverty and family dislocation.  Republican leaders do not face 

this tradeoff because of their general dismissal of the climate change challenge.  

Harstad (2012) has proposed a mechanism of “buying coal” from marginal unregulated 

coal producers and then keeping these purchased deposits in the ground after restricting 

production among regulated coal producers. His proposal could be modified to address the 

problem of coal’s sunset by purchasing domestic coal reserves and by paying coal miners to 

mine the purchased coal. This would compensate mine owners and workers for their losses 



associated with natural gas production and environmental regulations.  Future research could 

explore how such proposals could be augmented to buyout the working right from current coal 

miners.  In the late 1990s, the major cigarette manufacturers settled with the tobacco growing 

states to compensate tobacco growers for their losses associated with the falling demand for 

tobacco. This case may offer insight into a possible Coasian strategy for accelerating the sunset 

of coal production in the United States.   
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Tables and Figures 

Table 1: Quantity-Weighted Distribution of the Distance between Coal Mines and Power 

Plants in 2014 (Miles) 

0% 10%  20%  30% 40% 50% 60% 70%  80% 90% 100% 

2.5  14.5 26.4 79.0 177.9 333.2 632.4 785.1 904.4 1058.0 1793.4 

 

  



 

Table 2: Coal Consumption and Deliveries by Source and Destination 

State 

FIPS 

 

State Name In State 

Consumption 

Percentage 

Out of State 

Consumption 

Percentage 

In State 

Delivery 

Percentage 

Out of 

State 

Delivery 

Percentage 

1 Alabama 0.4 0.6 0.96 0.04 

4 Arizona 0.4 0.6 0.72 0.28 

5 Arkansas 0 1 0 1 

6 California 0 1 - - 

8 Colorado 0.58 0.42 0.49 0.51 

9 Connecticut 0 1 - - 

10 Delaware 0 1 - - 

11 
District of 

Columbia 
0 1 - - 

12 Florida 0 1 - - 

13 Georgia 0 1 - - 

17 Illinois 0.22 0.78 0.31 0.69 

18 Indiana 0.49 0.51 0.81 0.19 

19 Iowa 0 1 1 0 

20 Kansas 0.01 0.99 0.53 0.47 

21 Kentucky 0.52 0.48 0.3 0.7 

22 Louisiana 0.24 0.76 1 0 

23 Maine 0 1 - - 

24 Maryland 0.11 0.89 0.26 0.74 

25 Massachusetts 0 1 - - 

26 Michigan 0 1 - - 

27 Minnesota 0 1 - - 

28 Mississippi 0.23 0.77 1 0 

29 Missouri 0.01 0.99 0.65 0.35 

30 Montana 0.95 0.05 0.34 0.66 

31 Nebraska 0 1 - - 

32 Nevada 0 1 - - 

33 
New 

Hampshire 
0 1 - - 

34 New Jersey 0 1 - - 

35 New Mexico 1 0 0.63 0.37 

36 New York 0 1 - - 



37 
North 

Carolina 
0 1 - - 

38 North Dakota 0.98 0.02 0.98 0.02 

39 Ohio 0.65 0.35 0.38 0.62 

40 Oklahoma 0.02 0.98 0.95 0.05 

41 Oregon 0 1 - - 

42 Pennsylvania 0.68 0.32 0.57 0.43 

44 Rhode Island 0 1 - - 

45 
South 

Carolina 
0 1 - - 

46 South Dakota 0 1 - - 

47 Tennessee 0.03 0.97 0.33 0.67 

48 Texas 0.48 0.52 1 0 

49 Utah 0.87 0.13 0.76 0.24 

51 Virginia 0.5 0.5 0.32 0.68 

53 Washington 0.55 0.45 - - 

54 West Virginia 0.55 0.45 0.34 0.66 

55 Wisconsin 0 1 - - 

56 Wyoming 1 0 0.08 0.92 

 

 

 

  



 

 

 

Table 3: Effect of Political Boundaries on Probability of Trade 

 (1) (2) (3) (4) 

Different State 
-0.0027*** 

(0.0004) 

-0.0033*** 

(0.0004) 

-0.0039*** 

(0.0005) 

-0.0020*** 

(0.0003) 

Different County 
-0.0170*** 

(0.0039) 

-0.0191*** 

(0.0043) 

-0.0265*** 

(0.0056) 

-0.0045 * 

(0.0026) 

Different Congress 
-0.0020*** 

(0.0004) 

-0.0020*** 

(0.0005) 

-0.0035*** 

(0.0006) 

-0.0005 

(0.0003) 

Total Mine 

Production 

0.0001***    

(0.0000) 

0.0001*** 

(0.0000) 

0.0001*** 

(0.0000) 

0.00004 *** 

(0.0000) 

Total Plant Purchases 
0.0002*** 

(0.0000) 

0.0003*** 

(0.0000) 

0.0003*** 

(0.0000) 

0.0001 *** 

(0.0000) 

Distance Control 
4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 10 mile bins 

Year FE X X X X 

Plant Location 

Control 
X X X X 

Average Frequency 

of Any Trade 
0.020 0.020 0.020 0.02 

Note: ***: < 0.01, **: <0.05, *: <0.10. Standard errors are clustered at the plant-mine-level. See Equation 1. 

  



Table 4: Effect of Political Boundary on Quantity of Coal Traded (Millions of Tons) 

 (1) (2) (3) (4) 

Different State 
-0.0086** 

(0.0035) 

-0.0124*** 

(0.0035) 

-0.0068* 

(0.0035) 

-0.0004 

(0.0061) 

Different County 
-1.3907*** 

(0.2108) 

-1.3955*** 

(0.2106) 

-1.3908*** 

(0.2107) 

-1.5601*** 

(0.4681) 

Different Congress 
-0.0950*** 

(0.0228) 

-0.1000*** 

(0.0208) 

-0.0932*** 

(0.0209) 

-0.0403 

(0.0276) 

Total Mine Production 
0.0045*** 

(0.0003) 

0.0025*** 

(0.0002) 

 

0.0025*** 

(0.0002) 

0.002*** 

(0.0003) 

Total Plant Purchases 
0.0046*** 

(0.0001) 

0.0047*** 

(0.0006) 

 

0.0047*** 

(0.0006) 

0.0047*** 

(0.0008) 

Distance Control 
4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 10 mile bins 

Year FE X X X X 

Plant Location Control X X X X 

Average Quantity 

(Millions of Tons) 
0.010 0.010 0.010 0.010 

Note: ***: < 0.01, **: <0.05, *: <0.10. Standard errors are clustered at the plant-mine-level. See Equation 2. 

 

  



Table 5: Effect of Political Boundary on Coal Quantity Traded Given a Trade Occurred 

(Millions of Tons) 

 (1) (2) (3) (4) 

Different State 
-0.0022 

(0.0339) 

-0.0003 

(0.0339) 

-0.0052 

(0.0333) 

0.1215* 

(0.0674) 

Different County 
-1.0474*** 

(0.1849) 

-1.034*** 

(0.1859) 

-1.0528*** 

(0.1849) 

-0.9424** 

(0.4506) 

Different Congress 
-0.0816 

(0.069) 

-0.0645 

(0.0674) 

-0.1012 

(0.0654) 

-0.0602 

(0.1132) 

Total Mine 

Production 

0.0046*** 

(0.0004) 

0.0046*** 

(0.0004) 

0.0046*** 

(0.0004) 

0.0043*** 

(0.0007) 

Total Plant Purchases 
0.2341*** 

(0.0197) 

0.2345*** 

(0.0199) 

0.2339*** 

(0.0199) 

0.2167*** 

(0.029) 

Distance Control 
4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 10 mile bins 

Year FE X X X X 

Plant Location 

Control 
X X X X 

Average Quantity 

(Millions of Tons) 
0.526 0.526 0.526 0.526 

Note: ***: < 0.01, **: <0.05, *: <0.10. Standard errors are clustered at the plant-mine-level. See Equation 2. 

 

  



 

Table 6: Effect of Political Boundary on Probability of Trade (Regression Discontinuity 

with All Mines)  

 (1) (2) (3) (4) 

Different State 
-0.0381*** 

(0.0062) 

-0.0489*** 

(0.0062) 

-0.0359*** 

(0.0062) 

-0.0337*** 

(0.060) 

Total Mine Production 
0.0017*** 

(0.0004) 

0.0018*** 

(0.0004) 

0.0020*** 

(0.0004) 

0.0022*** 

(0.0004) 

Total Plant Purchases 
0.0013*** 

(0.0001) 

0.0013*** 

(0.0001) 

0.0013*** 

(0.0001) 

0.0013*** 

(0.0001) 

Distance Control 
4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 10 mile bins 

Year FE X X X X 

Plant Location Control X X X X 

Average Frequency of 

Any Trade 
0.021 0.021 0.021 0.021 

Note: ***: < 0.01, **: <0.05, *: <0.10, Standard errors are clustered at the plant-mine-level. See Equation 3. 

  



 

Table 7: Effect of Political Boundary on Probability of Trade (Regression Discontinuity 

with Only In-State Mines) 

 (1) (2) (3) (4) 

Different State 
-0.0467*** 

(0.0091) 

-0.0483*** 

(0.0091) 

-0.0054*** 

(0.0092) 

-0.0453*** 

(0.0090) 

Total Mine Production 
0.0062*** 

(0.0021) 

0.0066*** 

(0.0021) 

0.0072*** 

(0.0021) 

0.0065*** 

(0.0021) 

Total Plant Purchases 
0.0007 

(0.0005) 

0.0007 

(0.0006) 

0.0007 

(0.0006) 

0.0009 

(0.0006) 

Distance Control 
4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 10 mile bins 

Year FE X X X X 

Plant Location Control X X X X 

Average Frequency of 

Any Trade 
0.089 0.089 0.089 0.089 

Note: ***: < 0.01, **: <0.05, *: <0.10, Standard errors are clustered at the plant-mine-level. See Equation 3. 

  



 

Table 8: Effect of Political Boundaries on Transacted Price (Cents per MMBTU) 

 (1) (2) (3) (4) 

Different State 
-2.3187 

(6.3526) 

-2.2735 

(6.3623) 

-3.1584 

(6.6) 

0.2732 

(6.1342) 

Different County 
12.9112** 

(6.3893) 

13.7154** 

(6.0378) 

15.4026** 

(6.3359) 

3.9116 

(6.3606) 

Different Congress 
0.27447 

(5.9576) 

0.96891 

(6.0302) 

2.6153 

(6.062) 

-1.4332 

(4.9599) 

Quantity  

(Millions of Tons) 

-73.518*** 

(14.9040) 

-73.6208*** 

(14.8002) 

-73.9827*** 

(14.6578) 

-73.7290*** 

(14.9981) 

Distance Control 
4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 10 mile bins 

Year FE X X X X 

Mine FE X X X X 

Average Price  

(Cents per MM BTU) 
226.1 226.1 226.1 

226.1 

F-Test for Joint-

Significance  

1.4879 

 (p=0.21) 

1.8976 

(p=0.13) 

2.2662* 

 (p =0.078) 

1.4762 

(p=0.219) 
Note: ***: < 0.01, **: <0.05, *: <0.10, Standard errors are clustered at the plant-mine-level. See Equation 4. 

  

 

  



 

Table 9: Effect of Political Boundary on Contracting Decision 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Different 

Congress 

-0.0239 

(0.027) 

-0.024 

(0.0261) 

-0.0266 

(0.027) 

-0.1992 

(0.1961) 
    

Different 

County 

-0.0351 

(0.0274) 

-0.0352 

(0.0279) 

-0.037 

(0.027) 

-0.6374 

(0.4193) 
    

Different 

State 

-0.0199 

(0.0191) 

-0.0199 

(0.0193) 

-0.0187 

(0.0193) 

-0.2906 

(0.3201) 

-0.0289* 

(0.0175) 

-0.0346* 

(0.0181) 

-.02907* 

(0.0172) 

-0.3188* 

(0.1740) 

Quantity 
1.4057*** 

(0.1615) 

1.4058*** 

(0.1612) 

1.4035*** 

(0.1628) 

1.4488*** 

(1.984) 

1.4188*** 

(0.1629) 

1.4239*** 

(0.1619) 

1.4211*** 

(0.1635) 

14.473*** 

(1.9823) 

Distance 

Control 

4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 

10 mile 

bin 

4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 

10 mile 

bin 

Year FE X X X X X X X X 

Plant 

Location 

Control 

X X X X X X X X 

Contracting 

Frequency 
0.845 0.845 0.845 0.845 0.845 0.845 0.845 0.845 

Jointly 

Different 

from Zero? 

5.84 

(p=0.119) 

5.58 

(p=0.134) 

6.21 

(p =0.102) 

6.749 

(p=0.080) 
    

Note: ***: < 0.01, **: <0.05, *: <0.10. Standard errors are clustered at the plant-level. See Equation 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 10:  Effect of Political Boundary on Duration of Contract 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Different 

Congress 

3.8777 

(3.9216) 

3.6729 

(4.0485) 

3.2607 

(4.0862) 

4.0058 

(3.8313) 
    

Different 

County 

-10.942* 

(6.5345) 

-11.646* 

(6.5705) 

-13.31* 

(6.9363) 

-17.788** 

(8.3207) 
    

Different 

State 

10.548*** 

(2.7912) 

10.573*** 

(2.776) 

10.907*** 

(2.7579) 

10.344*** 

(2.6485) 

10.961*** 

(3.115) 

10.901*** 

(3.709) 

10.934*** 

(3.083) 

10.848*** 

(2.8808) 

Quantity 
34.68*** 

(11.102) 

34.833*** 

(11.072) 

34.643*** 

(11.04) 

28.928*** 

(10.399) 

36.913*** 

(10.67) 

37.092*** 

(10.592) 

37.244*** 

(10.582) 

30.768*** 

(10.616) 

Distance 

Control 

4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 

10 mile 

bin 

4 Degree 

Polynomial 

3 Degree 

Polynomial 
Spline 

10 mile 

bin 

Year FE X X X X X X X X 

Plant 

Location 

Control 

X X X X X X X X 

Average 

Contract 

Length 

30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 

Jointly 

Different 

from 

Zero? 

19.3*** 

(p=0.0002) 

18.4*** 

(p= 

0.0003) 

21.2*** 

(p<0.0001) 

20.747*** 

(p=0.0001) 
    

Note: ***: < 0.01, **: <0.05, *: <0.10. Standard errors are clustered at the plant-level. See Equation 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 11: Effect of Intra-Jurisdictional Mines on Power Plant Siting at County Level 

 No Plant Coal Plant 
Non-Coal 

Plants Only 

Mine in 

State 

0.0097*** 

(0.0015) 

-0.0011** 

(0.0005) 

-0.0008*** 

(0.0002) 

Mine in 

County 

-0.0030 

(0.0045) 

0.0054***  

(0.0016) 

-0.0023 

(0.0048) 

Population 
-1.28x10-6 *** 

(1.12x10-7) 

1.62x10^-7***  

(2.08x10-8) 

1.12x10-6*** 

(9.78x10-8) 

Distance 

to Closest 

Coal Mine 

0.0065*** 

(0.002) 

-0.0129*** 

(0.00029) 

0.0063*** 

(0.00019) 

Note: ***: < 0.01, **: <0.05, *: <0.10.  

  



 

Table 12: Effect of Intra-Jurisdictional Mine on Plant Closure 

 (1) 

Mine in 

State 

-0.0696** 

(0.0296) 

Nameplate 

Capacity 

-0.0004*** 

(0.0000) 

Opening 

Year 

-0.0006*** 

(0.0000) 

Distance 

to Closest 

Coal Mine 

-0.0001 

(0.0001) 

Note: ***: < 0.01, **: <0.05, *: <0.10. Standard errors are White-Robust. See Equation 7. 

 

 

 

 

 

  



 

Table 13: Effect of Coal Consumption on Local Ambient Air Pollutant Concentrations 

  SO2 PM10 

State Coal 

Consumption 

0.0770*** 

(0.0069) 

0.1775* 

(0.0995) 

Local Coal 

Consumption 

0.0224 

(0.0453) 

-0.9067** 

(0.0459) 

Neighboring 

Coal 

Consumption 

0.00007 

(0.0037) 

-0.0222 

(0.0372) 

Year FE X X 

County FE X X 

Note: ***: < 0.01, **: <0.05, *: <0.10. See Equation 8. 

 

 

 

 

Table 14: Effect of in-state mines on NERC-level emissions 

  CO2 SO2 NOX 

Percentage of Plants 

with In-State Mine 

2.264*** 
(0.0318) 

0.0014** 
(0.0004) 

0.0029*** 
(0.0001) 

Coal Percentage of 

Capacity 

26.607 
(129.584) 

-0.8810 
(1.715) 

-0.0784 
(0.405) 

Year FE X X X 

NERC FE X X X 
Note: ***: < 0.01, **: <0.05, *: <0.10. . CO2, SO2, and NOX are expressed in millions of tons. See Equation 9. 

 

 

 

 



 

Figure 1: Power Plant Purchases and Mine Sales in 2014 

 

 

  



Figure 2: Power Plants Used in Our Regression Discontinuity Research Design 

 

 

  



Figure 3: The Geography of Power Plants and Mines in Indiana, Ohio, West Virginia, and 

Kentucky 

 

  



Figure 4: Different State Coefficient Over Time 

 

Figure 5: Different County Coefficient Over Time 
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Figure 6: Different Congress Coefficient Over Time 
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