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1 Introduction

Voluntarily repeated games with a Prisoner’s Dilemma type stage game, formulated and analyzed

in, e.g., Datta (1996), Ghosh and Ray (1996), Kranton (1996a), Carmichael and Macleod (1997),

Eeckhout (2006), Fujiwara-Greve and Okuno-Fujiwara (2009), Rob and Yang (2010), and Mcadams

(2011)1, are natural models to describe a large, anonymous society in which meeting a new partner

is random but continuation of a partnership is a mutual choice by the partners. The main problem

is how to achieve mutually cooperative partnerships when each player can unilaterally end the

partnership without information flow to new partners. Cooperation from the beginning of new

partnerships by all agents is never a Nash equilibrium. If all players cooperate with a stranger, one

can defect and run away in every partnership to earn the highest one-shot payoff every period.

Most literature of the voluntarily repeated Prisoner’s Dilemma focused on symmetric-strategy,

trust-building/gradual cooperation equilibria to cope with the lack of personalized punishments.

If all partnerships in the society require some periods of non-cooperation/low levels of cooperation

before shifting to a full cooperation, deviations towards a cooperative partner are discouraged by

this “community punishment”, because one-shot deviation gain is offset by a sufficiently long phase

of trust-building in the next partnership. The gradual increase is also important in symmetric

equilibria to keep the continuation payoff increasing to motivate the partners to stay.

We now think that in a very large society with limited information, such coordination on the

initial trust-building by all players is unlikely. In our previous paper, Fujiwara-Greve et al. (2015)

(henceforth GOS), we thus proposed a simple two-strategy equilibrium in which no coordination

is needed. The “fundamentally asymmetric” equilibrium is as follows. The cooperative c0-strategy

always chooses the cooperative action C in the Prisoner’s Dilemma but keeps the partnership if

and only if (C,C) is observed. The myopic d0-strategy always chooses the selfish D action and ends

the partnership regardless of the history within the partnership. GOS showed that the long-run

average payoff of the c0-strategy is nonlinear in its share in the matching pool, while that of the

d0-strategy is linear in the share of the c0-strategy, so that the two strategies can earn the same

payoff at some ratio (see Figure 4 below). The cooperation incentive is provided by the existence of

the myopic defectors in the matching pool, and no coordination to make a community punishment

is necessary.

1See also the dynamic analyses by Schumacher (2013) and Izquierdo et al. (2014), focusing on stationary or Markov
strategies.
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Figure 1: Internalization of the matching pool distribution
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In this paper, we show that the voluntary nature of the partnerships gives us a huge variety of

asymmetric equilibria by internalization of the matching pool distribution when the partnership is

about to end in the fundamentally asymmetric equilibrium. The idea is as follows. Consider the

moment when a pair of players is about to end the partnership. This is an on-path behavior when

a c0-player meets a d0-player or two d0-players meet. The continuation payoff for each partner

is the payoff to start in the matching pool. Instead of ending the partnership, if the players can

reproduce the matching pool strategy distribution as the continuation strategy distribution, they

can choose to stay, and this “tolerant” strategy combination is also an equilibrium (see Figure 1).

Using this idea, we show that the Voluntarily Separable Repeated Prisoner’s Dilemma (hence-

forth VSRPD) of Fujiwara-Greve and Okuno-Fujiwara (2009) is “rich” in equilibrium modes of

behavior. There is a continuum of equilibria in which (i) each player uses a pure strategy, (ii) a lot

of (but not all) partnerships eventually achieve long-term cooperation (and the cooperative part-

nerships gradually accumulate), (iii) the periods it takes to achieve long-term cooperation varies

from one to any finite number, and (iv) in the meantime, any action combination sequence can be

played. This is the meaning of the title of the paper. The internalization logic is only possible in

the voluntary partnership setup. Note also that all these equilibria have the same average payoff

(which is the equilibrium payoff of the c0-d0 equilibrium). These features highlight how the volun-

tary framework makes a difference from ordinary repeated Prisoner’s Dilemma. The incentive to

cooperate and/or tolerate the (C,D) action combination is provided by the diversity of the equilib-

rium strategies itself. Tolerant players are hoping to be matched with someone who will eventually

cooperate with them, with an intention to either establish a long-term cooperative partnership, or
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exploit the cooperator. When there are similar tolerant players in the society, this is an equilibrium

behavior.

As refinements of Nash equilibrium, we consider static evolutionary stability concepts, based on

the Evolutionarily Stable Strategy (ESS) introduced by Maynard Smith and Price (1973). Although

the VSRPD model describes a natural economic situation of large, anonymous markets, it is too

much to assume that each player can rationally choose actions at each information set. Consider,

for example, the decision of whether to end the current partnership or not. A player needs to have a

consistent belief on not only the continuation strategy by the current opponent but also the strategy

distribution in the matching pool after this period. The strategy distribution in the matching pool

evolves stochastically due to the random death process and also depends on the details of the

strategies in the society which determine the voluntary termination of pairs. Thus the rational

equilibrium approach would impose an unrealistically strong assumption on the belief formation.

Evolutionary approach does not require individual optimization but still gives refinements of Nash

equilibria and can be interpreted as a long-run outcome of boundedly rational agents’ strategy

adjustment processes.

The diverse-behavior equilibria satisfy an evolutionary stability, such that any mutant is outper-

formed by some equilibrium strategy, when mutant distributions are within a “sufficiently random

distribution” set.2 Random mutations that put positive probabilities over a wide range of strategies

are often assumed in evolutionary models such as Kandori et al. (1993). However, the outcome

of random mutations is quite different. In the finite population, coordination game context in

Kandori et al. (1993), random mutations eventually lead to coordination on a pure strategy by

sufficiently many mutants to upset an equilibrium. By contrast, in our infinite population, Pris-

oner’s Dilemma framework, random mutation means that cooperative mutants, who can invade the

incumbents by secret handshake (Robson, 1990), are always exploited by other mutants, and the

mutant distributions “self-defeat”.

A weaker richness result holds for stronger stability concepts. Namely, the c0-d0 equilibrium

satisfies many extensions of the ESS to the VSRPD model, when mutant distributions are a little

more random than the ones for the diverse-behavior equilibria. Since there are new matches in

the society in every period, any action combination in the Prisoner’s Dilemma are observed in the

society every period, under the two-strategy equilibrium.

2Since the stage game is an extensive form, the ordinary ESS does not exist, and GOS showed that the c0-d0-
equilibrium is not neutrally stable.
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C D

C c, c ℓ, g

D g, ℓ d, d

Table 1: Prisoner’s Dilemma: g > c > d > ℓ and 2c ≧ g + ℓ.

The rest of the paper is organized as follows. In Section 2 we describe the model, stability

notions, and the fundamentally asymmetric equilibrium of GOS. Section 3 gives an example of

two-period richness result of equilibrium behaviors, to give the intuition. In Section 4, we prove

the evolutionary stabilities of the diverse-behavior equilibria and the fundamentally asymmetric

equilibrium of GOS. Section 5 concludes the paper.

2 Model and Preliminaries

2.1 Voluntarily Separable Repeated Prisoner’s Dilemma

The model ofVoluntarily Separable Repeated Prisoner’s Dilemma (VSRPD) introduced by Fujiwara-

Greve and Okuno-Fujiwara (2009) (henceforth Greve-Okuno) is as follows. There is a continuum

population of homogeneous players of measure 1, over the infinite, discrete time horizon. At the

beginning of each period, players are either matched with a partner from the previous period or

without a partner. Those without a partner enter a random matching process and form pairs3 to

play the following extensive form game.

Newly matched players have no verifiable knowledge4 of the past action history of each other

(the no-information-flow assumption), and they play the ordinary two-action symmetric Prisoner’s

Dilemma of Table 1. The actions in the Prisoner’s Dilemma are observable only to the current

partners. After observing the actions in the Prisoner’s Dilemma, the partners simultaneously

choose whether to keep the partnership (action k) or to end it (action e). A partnership dissolves

if at least one partner chooses action e. In addition, at the end of a period, each player may

exit from the society for some exogenous reason (which we call a “death”) with probability 1− δ,

where 0 < δ < 1. If a player dies, a new player enters into the society, keeping the population

size constant. Players who lost the partner for some reason as well as newly born players enter

the matching pool in the next period. This justifies the no-information-flow assumption, because

3For simplicity and following Greve-Okuno, we assume that a player finds a new partner for sure. This assumption
makes cooperation most difficult.

4In the continuum population, even if players remember their personal histories and try to communicate with
others, it is unlikely that they can give information to a positive measure of other players. Therefore effectively there
is no information flow across different partnerships.
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Figure 2: Timeline of the VSRPD

the players in the matching pool have different backgrounds. In sum, a partnership continues if

and only if both partners choose action k and do not die. In this case the same partners play the

Prisoner’s Dilemma in the next period, skipping the matching process. The game continues this

way ad infinitum. The timeline of VSRPD is depicted in Figure 2.

The one-shot payoffs in the Prisoner’s Dilemma are in Table 1, where g > c > d > ℓ and

2c ≧ g+ℓ. The latter makes the symmetric pure-action profile (C,C) more efficient than alternating

(C,D) and (D,C).

The game continues with probability δ from an individual player’s point of view, hence δ is the

effective discount factor of a player. (However, even if both partners choose to keep each other, the

partnership continues with probability δ2 only.)

Under the no-information-flow assumption, we focus on match-independent strategies5 that

only depend on the period t = 1, 2, . . . within a partnership (not the calendar time in the whole

game) and the private history of actions within a partnership. Let Ht := [{C,D} × {C,D}]t−1 be

the set of partnership histories6 at the beginning of t ≧ 2 and let H1 := {∅}.

Definition 1. A pure strategy s of VSRPD consists of (s1t, s2t)
∞
t=1 where:

s1t : Ht → {C,D} specifies an action choice s1t(ht) ∈ {C,D} given the partnership history ht ∈ Ht,

and

s2t : Ht × {C,D}2 → {k, e} specifies whether to keep or to end the partnership, depending on the

partnership history ht ∈ Ht and the current period action profile.

The set of pure strategies of VSRPD is denoted as S and the set of all strategy distributions

in the population is denoted as ∆(S). A pure strategy can be viewed as a degenerate strategy
5The continuum population implies that “contagious” strategies used in Kandori (1992) and Ellison (1994) cannot

make an impact on a positive measure of the population and hence are irrelevant.
6The first coordinate is the player’s action. The relevant histories on which partners can condition their actions

are the action combinations in the Prisoner’s Dilemma only, because the continuation decision history must be (k, k)
throughout.
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distribution and thus belongs to ∆(S), and with a slight abuse of notation, we write s ∈ S in both

sense as a pure strategy and a distribution in ∆(S) that puts the mass of 1 on s.

For simplicity, we assume that each player is endowed with a pure strategy, and occasionally

changes to another pure strategy. This is without loss of generality. In a continuum population,

the same distribution of pairs are generated by (i) all players using the same individually-mixed

strategy p ∈ ∆(S), and (ii) all players are playing a pure strategy but the fraction of players using

s is p(s).7 Hence we adopt a simpler formulation of (ii).

We investigate evolutionary stability of stationary (pure-strategy) distributions in the match-

ing pool. Although the strategy distribution in the matching pool may be different from the

distribution in the entire society, if the former is stationary, the distribution of various “states” of

matches (corresponding to possible private histories) is also stationary, thanks to the stationary

death process.8 Since each player is born into the random matching pool, the life-time payoff is

determined by the strategy distribution in the matching pool.

2.2 Stability Concepts

The expected lifetime average payoff of a player endowed with a pure strategy s ∈ S at the time

of entering the matching pool consisting of a stationary strategy distribution p (with finite or

countable support) is written as v(s; p) and is derived as follows.9 Let T (s, s′) be the planned

length of the partnership when the player with strategy s meets a player with strategy s′. The

expected length of this match is then

L(s, s′) = 1 + δ2 + · · ·+ δ2(T (s,s′)−1).

Let the total expected payoff for the s-player in the (s, s′) pair be V (s, s′). Then the expected

long-run payoff when s-player is in the matching pool with the stationary distribution p (with up

to the countable support) is recursively formulated as follows.

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V (s, s′)

+ [δ(1− δ){1 + δ2 + · · ·+ δ2(T (s,s′)−2)}+ δ2(T (s,s′)−1) · δ]V (s; p)
]
.

7See Sun (2006) and Duffie and Sun (2012) for the foundation of the Law of Large Numbers.
8See Greve-Okuno footnote 7 for the details. For specific strategies, e.g., cT - and DT

d0
-strategies, we can prove

that any stationary distribution in the matching pool exists consistently with the model.
9For more details, see Greve-Okuno. The probabilistic foundation to the dynamic process is given by Duffie et

al. (2016). Their “mutation” should be interpreted as changes of each player’s “states” which is a combination of
whether the player is a newborn or not and the strategy (s)he has.
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By rearrangements, we have the average payoff for s-player facing a stationary distribution p in the

matching pool:

v(s; p) :=

∑
s′∈supp(p) p(s

′)V (s, s′)∑
s′∈supp(p) p(s

′)L(s, s′)
. (1)

Notice that, in general, the average payoff is not linear in the share distribution p.

Definition 2. A stationary strategy distribution in the matching pool p ∈ ∆(S) is a Nash equilib-

rium if, for all s ∈ supp(p) and all s′ ∈ S,

v(s; p) ≧ v(s′; p).

From the evolutionary perspective in a continuum population, a Nash equilibrium is a robust

distribution against single-strategy and measure-zero mutants. It is the weakest stability notion in

terms of the allowed measure of mutants (zero instead of a positive measure).

Local stability requires that the incumbent distribution is robust against a small positive mea-

sure of mutant distributions, which use only (a subset of) the incumbent strategies10 and have a

higher weight on a strategy than the incumbent distribution does. (See Figure 4 below.) For any

p ∈ ∆(S) define such distributions:

Q(p) = {q ∈ ∆(S) | supp(q) ⊆ supp(p), ∃ s′ ∈ supp(p); q(s′) > p(s′)}.

For any q ∈ Q(p), let Sp(q) = {s′ ∈ supp(p) | q(s′) > p(s′)} be the (non-empty) set of strategies

with increased shares in q as compared to p.

Definition 3. A stationary strategy distribution in the matching pool p ∈ ∆(S) is a locally stable

Nash equilibrium if,

(i) p is a Nash equilibrium; and

(ii) for any q ∈ Q(p), there exists ϵ̄ ∈ (0, 1) such that, for any ϵ ∈ (0, ϵ̄), any s′ ∈ Sp(q), and any

s ∈ supp(p) \ supp(Sp(q)),

v(s; (1− ϵ)p+ ϵ · q) ≧ v(s′; (1− ϵ)p+ ϵ · q),

with the strict inequality for at least one s̃ ∈ supp(p) \ supp(Sp(q)).

Definition 3 is an extension of the Local Stability of GOS, which corresponds to the case that

q puts a mass of 1 on some s′ ∈ supp(p). A monomorphic Nash equilibrium trivially satisfies

10Thus the name “local” is about the possible strategies that mutants can use, or the “direction” of perturbations
in ∆(S). Each of our stability concept also requires a sufficiently small “distance” of perturbations.

7



Definition 3, because Q(p) is empty, but not Definition 4 of GOS, for just a technical reason.

For polymorphic Nash equilibria, Definition 3 is stronger than Definition 4 of GOS, because the

equilibrium must be robust against any q ∈ Q(p), not just a point-mass distribution.

Let us expand the set of possible mutant strategy distributions, and to make the stability

concepts flexible, we define evolutionary stability concepts with respect to the set of potential

mutant distributions. The larger the set of feasible mutant strategy distributions is, the stronger

the stability concept becomes. This is similar to the comparison of the size of the basin of attraction

among equilibria, as in Bendor and Swistak (1997).

The strongest stability that we can hope for is the following. (Because the set of mutant

distributions M can be a continuum, it is too much to require a uniform invasion barrier, that is

to have ϵ for any q ∈ M .)

Definition 4. A stationary strategy distribution p in the matching pool is a Strongly Evolutionarily

Stable Distribution under mutants within M(⊂ ∆(S)) (p is a Strong-ESD(M)) if

(i) p is a locally stable Nash equilibrium,

(ii) for any q ∈ M , there exists ϵ̄ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ̄) and any s′ ∈ supp(q)\ supp(p),

∀s ∈ supp(p), v(s; (1− ϵ)p+ ϵ · q) > v(s′; (1− ϵ)p+ ϵ · q).

The condition (ii) requires that all incumbent strategy outperform all mutant strategy head to

head. Hence in any monotone dynamic11, all mutant strategies would disappear and the condition

(i) restores the balance among incumbents.

However, it many cases we need weaker concepts.

Definition 5. A stationary strategy distribution p (with up to the countable support) in the

matching pool is a Mean Stable Distribution under mutants within M(⊂ ∆(S)) (p is an MSD(M))

if

(i) p is a locally stable Nash equilibrium,

(ii’) for any q ∈ M , there exists ϵ̄ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ̄),

∑
s∈S

p(s) · v(s; (1− ϵ)p+ ϵ · q) >
∑
s′∈S

q(s′) · v(s′; (1− ϵ)p+ ϵ · q).

11A possible underlying process is as follows. Divide the infinite time horizon into infinitely many sub-horizons,
which are also infinite horizons. Each sub-horizon is a “medium”-run, where the population adjusts to yield a
stationary post-entry distribution (1−ϵ)p+ϵ ·q in the matching pool. After that, in the “long”-run over the infinitely
many sub-horizons, the strategy distribution evolves according to v(s; (1− ϵ)p+ ϵ · q).
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The condition (ii’) requires that the incumbent mean of the long-run average payoff is strictly

greater than that of any mutant distribution within M . From the perspectives of the mean dynam-

ics12 (e.g., Sandholm, 2010), the strict inequality implies that the mutants’ share would decline.

The ESS (Maynard Smith and Price, 1973 and Maynard Smith, 1982) concept corresponds to the

case when the stage game is a normal form, M = ∆(S) and v is the one-shot payoff function u.

For strategy distributions containing a lot of (possibly countably many) pure strategies, we have

to settle with a differently weaker stability concept.

Definition 6. A stationary strategy distribution p in the matching pool is a Weakly Evolutionarily

Stable Distribution under mutants within M(⊂ ∆(S)) (p is a WESD(M)) if

(i’) p is a Nash equilibrium,

(iii) for any q ∈ M and any s′ ∈ supp(q) \ supp(p), there exist s̃ ∈ supp(p) and ϵ̄ ∈ (0, 1) such that

for any ϵ ∈ (0, ϵ̄),

v(s̃; (1− ϵ)p+ ϵ · q) > v(s′; (1− ϵ)p+ ϵ · q).

The condition (iii) requires that each mutant strategy is strictly outperformed by some in-

cumbent strategy head to head. A slightly stronger stability requires a “uniform winner” in the

incumbent distribution.

Definition 7. A stationary strategy distribution p in the matching pool is Stable with a Uniform

Winner under mutants within M(⊂ ∆(S)) (p is SUW(M)) if

(i) p is a locally stable Nash equilibrium,

(iii’) there exists s∗ ∈ supp(p) such that for any q ∈ M and any s′ ∈ supp(q) \ supp(p), there exists

ϵ̄ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ̄),

v(s∗; (1− ϵ)p+ ϵ · q) > v(s′; (1− ϵ)p+ ϵ · q).

Clearly, if p is SUW(M) then it is a WESD(M). If p is a Strong-ESD(M), then it is SUW(M),

and the converse is also true if p is a monomorphic distribution. However, WESD(M) and MSD(M)

are independent. Figure 3 illustrates the relationship among the various stability concepts and a

preview of our results. Recall that the larger M means a stronger stability. Hence there is no clear

order of stability between the c0-d0 equilibrium and the diverse-behavior equilibria.

12Izquierdo et al. (2014) gives an explicit mean dynamic within Markov strategies to support the fundamentally
asymmetric equilibrium of GOS.
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Figure 3: Relationship among stability concepts and our results
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It is possible to define the above stability concepts with the weak inequality, similar to the

neutrally stable distribution in Greve-Okuno. However, there is no Nash equilibrium in which all

players cooperate from the first period of new partnerships (Greve-Okuno, Lemma 1), thus we

cannot hope for an evolutionary folk theorem similar to that of the ordinary repeated Prisoner’s

Dilemma (see Bendor and Swistak, 1997 and Garc̀ıa and van Veelen, 2016) even at the level of

neutrally stable strategies. Allowing the weak inequality may only enlarge the sufficient set of

mutant distributions to include “neutral” strategies (those with the same play paths as one of the

existing strategies’, even if they enter the population by a positive measure) and the boundary of

the set for the strict inequality case. Instead, with the strict inequality, we can safely interpret that

mutant distributions in the sufficient set would be expelled.

2.3 Fundamentally Asymmetric Equilibrium

GOS showed the existence of the fundamentally asymmetric equilibrium consisting of conditional

cooperators and myopic defectors.

Definition 8. Let c0-strategy be a strategy as follows: in any period t = 1, 2, . . . of a partnership,

play C and keep the partnership if and only if (C,C) is observed in that period.

Let d0-strategy be a strategy as follows: in any period t = 1, 2, . . . of a partnership, play D and end

the partnership for any action combination in that period.

The c0-strategy is similar to the C-trigger strategy in the ordinary Folk Theorem (e.g., Fudenbeg

and Maskin, 1986) with ending the partnership as a punishment. The d0-strategy is the most

myopic strategy but constitutes a Nash equilibrium trivially.13 Since we have a new definition of

local stability, we extend the result of GOS and Izquierdo et al. (2014).

13See Greve-Okuno Section 2.3, where it is called the d̃-strategy.
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Figure 4: Locally stable c0-d0 equilibrium
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Lemma 1. There exists δc0d0 ∈ (0, 1) such that δ > δc0d0 if and only if there exists a unique

αcd(δ) ∈ (0, 1), such that the bimorphic distribution αcd(δ)c0 + {1− αcd(δ)}d0 is the unique locally

stable Nash equilibrium with the support {c0, d0}.

Proof. See Appendix.

The equilibrium share ratio αcd(δ) is going to be important, and we call it the C-D ratio.

The locally stable one exists uniquely for any δ > δc0d0 .

The intuition of Lemma 1 is depicted in Figure 4. The average payoff functions of the c0- and

the d0-strategy in the population of αc0 + (1− α)sD, where sD is any strategy that plays D in the

first period of a match, are computed as follows:

v(c0;α · c0 + (1− α)sD) =
α · c

1−δ2
+ (1− α)ℓ

α · 1
1−δ2

+ 1− α
; (2)

v(d0;α · c0 + (1− α)sD) = α · g + (1− α)d. (3)

(Note that these average payoffs only depend on the share of the c0-strategy.) The average payoff

of the c0-strategy is concave in its share α, while that of the d0-strategy is linear. The concavity

is due to the voluntary nature of partnerships. As the survival rate δ increases, the average payoff

of the c0-player increases for any α, because the c0-pairs last longer. Hence, the average payoff

function of the c0-strategy becomes more concave as δ increases. At some point, the average

payoff functions of the two strategies have two intersections and the one with the larger share

11



of the c0-strategy is locally stable as illustrated in Figure 4.14 Lemma 5 of GOS proves that if

v(c0;αc0 + (1−α)d0) = v(d0;αc0 + (1−α)d0), then the common payoff v∗ satisfies the Best Reply

Condition in Greve-Okuno with the strict inequality:

g + δ
v∗

1− δ
<

c

1− δ2
+

δ(1− δ)

1− δ2
· v∗

1− δ
.

The LHS is the payoff of one-period deviation from the c0-strategy when the partner is also the

c0-strategy, and the RHS is the payoff from following the c0-strategy. Since all other one-period

deviations have even lower payoff, the two-strategy combination is a Nash equilibrium.

3 Example: Diverse behaviors for two periods

To give an intuition of how the internalization of the matching pool distribution works, we give the

class of equilibria in which all action combinations over two periods are generated, as illustrated in

Figure 1 in the Introduction.

Definition 9. Let the Cc0-strategy be a strategy such that

t = 1 (Tolerant phase): Play C and keep for any observation;

t ≧ 2 (Commitment phase): Play the c0-strategy as the continuation strategy for any observation

in t = 1.

Let the Cd0-strategy be a strategy such that

t = 1: Play C and keep for any observation;

t ≧ 2: Play the c0-strategy as the continuation strategy if (C,C) was observed in t = 1, and play

the d0-strategy if (C,D) was observed in t = 1.

Let the Dc0-strategy be a strategy such that

t = 1: Play D and keep for any observation;

t ≧ 2: Play the c0-strategy as the continuation strategy for any observation in t = 1.

Let the Dd0-strategy be a strategy such that

t = 1: Play D and keep for any observation;

t ≧ 2: Play the d0-strategy as the continuation strategy for any observation in t = 1.

We call them the one-period tolerant strategies. They choose “keep” action in the tolerant

phase of one period regardless of the action combination, and in the second period of a match,

14For later references we denote the smaller payoff-equivalent share by αcd(δ).
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they commit to one of the c0- or the d0-strategy, unless (C,C) is established in t = 1, in which case

they follow the c0-strategy. Let S̃
1
0 = {c0, d0, Cc0 , Cd0 , Dc0 , Dd0} be the set of degenerate (0-period)

and one-period tolerant strategies. Although S̃1
0 does not exhaust all combinations of action plans

in two periods, they are sufficient to reproduce the c0-d0 equilibrium distribution in the second

period, when (C,D) or (D,D) is played in the first period of a match. For example, if a Cc0-player

experienced (C,D) and (keep, keep) in the first period of a match, the possible strategies by the

partner belongs to {Dc0 , Dd0}. If the share of Dc0 in {Dc0 , Dd0} is the C-D ratio in the matching

pool, then the continuation strategy combination is the c0-d0 equilibrium distribution from the

viewpoint of the Cc0-player.

A generic element of S̃1
0 is written as Xy0 where X ∈ {∅, C,D} is the tolerant phase action

and y0 ∈ {c0, d0} is the commitment strategy unless (C,C) is established during the tolerant phase,

with the convention that ∅c0 = c0 and ∅d0 = d0.

3.1 Average payoff function decomposition

For notational simplicity, for each y0 ∈ {c0, d0}, we write Vcd(y0;α) := V (y0;α · pc0 + (1 − α)pD),

Lcd(y0;α) := L(y0;α · pc0 + (1 − α)pD) and vcd(y0;α) := v(y0;α · pc0 + (1 − α)pD), where pc0 is

any strategy distribution in the “C-start strategies” in S̃1
0 , {c0, Cc0 , Cd0} and pD is any strategy

distribution consisting of strategies that play D in t = 1. The average payoffs of the c0- and the

d0-strategies only depend on this structure.

We first show that the average payoff functions of all strategies in S̃1
0 decompose into a weighted

sum of vcd(c0;α)’s and vcd(d0;α)’s. To show that, we express a strategy distribution p ∈ ∆(S̃1
0) by

the “relative ratio form” as follows.

p =p({c0, Cc0 , Cd0})
[ p(c0)

p({c0, Cc0 , Cd0})
· c0

+
[
1− p(c0)

p({c0, Cc0 , Cd0})
]
·
[ p(Cc0)

p({Cc0 , Cd0})
· Cc0 +

p(Cd0)

p({Cc0 , Cd0})
· Cd0

]]
+ p({d0, Dc0 , Dd0})

[ p(d0)

p({d0, Dc0 , Dd0})
· d0

+
[
1− p(d0)

p({d0, Dc0 , Dd0})
]
·
[ p(Dc0)

p({Dc0 , Dd0})
·Dc0 +

p(Dd0)

p({Dc0 , Dd0})
·Dd0

]]
. (4)

To simplify the notation, we sort the strategies in S̃1
0 with respect to initial actions: C+ :=

{c0, Cc0 , Cd0}, D+ := {d0, Dc0 , Dd0}, CC+ := {Cc0}, CD+ := {Cd0}, DC+ := {Dc0}, and DD+ :=

{Dd0}. The last four sets are singletons within S̃1
0 but will contain many strategies as we enlarge

the scope of tolerant strategies in the main analysis. The idea is that a set X+ contains strategies

13



Table 2: Play paths among S̃1
0 strategies

you\partner c0 Cc0 Cd0 d0 Dc0 Dd0

c0 (C,C) . . . (C,C) . . . (C,C) . . . (C,D) (C,D) (C,D)

Cc0 (C,C) . . . (C,C) . . . (C,C) . . . (C,D) (C,D), (C,C) . . . (C,D), (C,D)

Cd0 (C,C) . . . (C,C) . . . (C,C) . . . (C,D) (C,D), (D,C) (C,D), (D,D)

d0 (D,C) (D,C) (D,C) (D,D) (D,D) (D,D)

Dc0 (D,C) (D,C), (C,C) . . . (D,C),(C,D) (D,D) (D,D), (C,C) . . . (D,D), (C,D)

Dd0 (D,C) (D,C), (D,C) (D,C),(D,D) (D,D) (D,D), (D,C) (D,D), (D,D)

which start with action X in a match. A set XY+ contains strategies which start with action X

in t = 1, keep regardless of the observation, and choose action Y in t = 2 unless (C,C) is estab-

lished in t = 1 (in which case it plays the c0-strategy). Furthermore, let C∗+ = CC+ ∪ CD+ and

D∗+ = DC+ ∪DD+.

Then (4) becomes

p = p(C+)
[
p(c0 | C+) · c0

+ {1− p(c0 | C+)}
{
p(CC+|C∗+) · Cc0 + p(CD+|C∗+) · Cd0

}]
+ p(D+)

[
p(d0 | D+) · d0

+ {1− p(d0 | D+)}
{
p(DC+|D∗+) ·Dc0 + p(DD+|D∗+) ·Dd0

}]
. (5)

By (2) and (3), the average payoffs of the c0- and the d0-strategy only depend on the share

p(C+) of the C-start strategies.

v(c0; p) = vcd(c0; p(C+));

v(d0; p) = vcd(d0; p(C+)).

Next, consider the one-period tolerant Cc0-strategy. As Table 2 shows, if it meets any partner

using a strategy in C+, they establish (C,C) in t = 1 and continue (C,C) as long as the partners

live. If (C,D) is observed in t = 1, the match continues to t = 2 if the partner’s strategy belongs to

D+ \{d0} and both partners survive. This probability is δ2p(D+)[1−p(d0|D+)]. In t = 2, (C,C). . .

obtains if the partner has the Dc0-strategy (with the conditional probability p(DC+|D∗+)) and,
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otherwise, (C,D) occurs and the Cc0-player ends the match. Hence,

V (Cc0 ; p) = p(C+)
c

1− δ2
+ [1− p(C+)] · ℓ

+ δ2p(D+)[1− p(d0|D+)] ·
[
p(DC+|D∗+) ·

c

1− δ2
+ [1− p(DC+|D∗+)] · ℓ

]
= Vcd(c0; p(C+)) + δ2p(D+)[1− p(d0|D+)] · Vcd(c0; p(DC+|D∗+)).

Similarly,

V (Cd0 ; p) = Vcd(c0; p(C+)) + δ2p(D+)[1− p(d0|D+)] · Vcd(d0; p(DC+|D∗+)).

The expected payoff of a D-start one-period tolerant strategy has more terms because the play

path diverges after (D,C) and (D,D) (see Table 2).

V (Dc0 ; p) = Vcd(d0; p(C+)) + δ2p(C+)[1− p(c0|C+)] · Vcd(c0; p(CC+|C∗+))

+ δ2p(D+)[1− p(d0|D+)] · Vcd(c0; p(DC+|D∗+);

V (Dd0 ; p) = Vcd(d0; p(C+)) + δ2p(C+)[1− p(c0|C+)] · Vcd(d0; p(CC+|C∗+))

+ δ2p(D+)[1− p(d0|D+)] · Vcd(d0; p(DC+|D∗+)).

To simplify all the above payoff formulas into one general formula, for each X ∈ {C,D} (the first

period action by the relevant player), define

ρp(Z1;X) =

{
p(C+)[1− p(c0|C+)] · 1X=D if Z1 = C

p(D+)[1− p(d0|D+)] if Z1 = D,

where 1X=D is the indicator function which takes the value 1 if X = D and 0 if X = C. Also, we

simplify the conditional probability as

πp(XY+) := p(XY+|X∗+).

Then, for any one-period tolerant strategy Xy0 , its expected payoff facing the matching pool

distribution p is written as simply as

V (Xy0 ; p) = Vcd(x0; p(C+)) + δ2
∑

Z1=C,D

ρp(Z1;X)Vcd(y0;πp(Z1C+)), (6)

where x0 = c0 (resp. d0) if X = C (resp. D). Analogously, the expected length of the partnerships

that a one-period tolerant player experiences can be written as

L(Xy0 ; p) = Lcd(x0; p(C+)) + δ2
∑

Z1=C,D

ρp(Z1;X)Lcd(y0;πp(Z1C+)).
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Figure 5: Payoff-Equivalence of c0-d0 and some strategies in p̄ ∈ P̄1
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(p(d0))

other Dc0 d, c, c, . . .
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Dd0 d, ℓ, vM , . . .
(1− αcd(δ))

Therefore, the average payoff is

v(Xy0 ; p) =
Vcd(x0; p(C+)) + δ2

∑
Z1=C,D ρp(Z1;X)Vcd(y0;πp(Z1C+))

Lcd(x0; p(C+)) + δ2
∑

Z1=C,D ρp(Z1;X)Lcd(y0;πp(Z1C+))

=

Vcd(x0;p(C+))
Lcd(x0;p(C+)) + δ2

∑
Z1=C,D ρp(Z1;X)

Lcd(y0;πp(Z1C+))
Lcd(x0;p(C+)) vcd(y0;πp(Z1C+))

1 + δ2
∑

Z1=C,D ρp(Z1;X)
Lcd(y0;πp(Z1C+))
Lcd(x0;p(C+))

= vcd(x0; p(C+))

+ δ2
∑

Z1=C,D

ρp(Z1;X)
Lcd(y0;πp(Z1C+))

L(Xy0 ; p)

[
vcd(y0;πp(Z1C+))− vcd(x0; p(C+))

]
. (7)

3.2 Nash equilibrium and the two-period richness result

Remark 1. Take any δ ∈ (δc0d0 , 1). Any p ∈ ∆(S̃1
0) such that p(C+) = πp(CC+) = πp(DC+) =

αcd(δ) is a payoff-equivalent Nash equilibrium to αcd(δ) · c0 + {1− αcd(δ)}d0.

Proof. Because p(C+) = αcd(δ), vcd(c0;αcd(δ)) = vcd(d0;αcd(δ)). In view of (7), v(Xy0 ; p) =

vcd(c0;αcd(δ)) or vcd(d0;αcd(δ)) as well (because the second component is 0). Lemma 1 then implies

that the common payoff satisfies the Best Reply Condition so that p is a Nash equilibrium.

Remark 1 shows a continuum of Nash equilibria because the shares p(c0) and p(d0) are ar-

bitrary. Only the relative shares of the classes of the strategies of the form Z1C+ (which are

C+ = {c0, Cc0 , Cd0}, CC+ = {Cc0}, and DC+ = {Dc0} in S̃1
0) matter. See Figure 5 for an intuition

of the payoff equivalence.
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Although Remark 1 encompasses the two-strategy distribution of c0 and d0 (when p(c0) =

p(d0) = 1), the four strategy distribution of the one-periond tolerant strategies only (when p(c0) =

p(d0) = 0), and a continuum of six strategy distributions, we focus on the set of Nash equilibria

within S̃1
0 such that all strategies are present:

P̄1 :=
{
p̄ ∈ ∆(S̃1

0) | p̄(C+) = πp̄(CC+) = πp̄(DC+) = αcd(δ), p̄(c0|C+), p̄(d0|D+) ∈ (0, 1)
}
.

The subscript 1 indicates that the distributions have up to one-period tolerance. Any strategy

distribution in P̄1 generates all action profile sequences for two periods (with the condition that if

(C,C) is established, the partners keep the partnership and play C again), as in Figure 1.

To state this formally, for any n = 1, 2, . . ., let the set of n-period action profile sequences with

the cooperative property as follows.

An
co := {((x1, x′1), . . . , (xn, x′n)) ∈ [{C,D}2]n |

(xm, x′m) = (C,C) ⇒ (xm+1, x
′
m+1) = (C,C)}.

For any pair of pure strategies (s, s′), let the on-path action profile sequence generated by the

pair be

x(s, s′) = ((x1(s, s
′), x′1(s, s

′)), . . . , (xT (s,s′)(s, s
′), x′T (s,s′)(s, s

′))) ∈ [{C,D}2]T (s,s′),

where T (s, s′) is the planned length of the partnership (s, s′). (However, the path continues with

probability δ2 each period.)

Remark 2. For any δ ∈ (δc0d0 , 1), there exists a class of Nash equilibria P̄1 such that, for any

((x1, x
′
1), (x2, x

′
2)) ∈ A2

co and any p̄ ∈ P̄1, there are s, s′ ∈ supp(p̄) such that ((x1, x
′
1), (x2, x

′
2)) is

the first two period action profiles in x(s, s′).

3.3 Evolutionary stability

Since the stage game is an extensive form game, it is desirable to investigate whether the above

strategy combinations satisfy a stronger stability than Nash equilibrium. As we discussed in the

Introduction, we consider evolutionary stability as a refinement, to avoid excessive assumptions

about each player’s belief formation after each private history.

First, notice that any strategy that do not create a new play path by entering the population

with a positive measure cannot overtake the population. Hence we exclude them from consideration.

Moreover, any strategy that defects after establishing (C,C) on the play path would do strictly
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Figure 6: Secret-Handshake and Exploitation
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worse than the strategy continuing (C,C) thereafter, because any p̄ ∈ P̄1 satisfies the Best Reply

Condition with the strict inequality. Thus we do not consider those strategies, either.

Therefore relevant mutant strategies are the ones that do “secret handshake” by keeping the

partnership when incumbents end it and cooperating among them, and the ones that exploit such

secret-handshakers, such as Cc0 and Cd0 (resp. Dc0 and Dd0) towards the c0-strategy (resp. the

d0-strategy). The secret-handshake and exploitation can take a further hierarchical structure. (See

Figure 6.) To keep the example simple, let us only add the following two-period tolerant strategies

into consideration.

Definition 10. For any X = (X1, X2) ∈ {C,D}2 and any y0 ∈ {c0, d0}, the two-period tolerant

Xy0-strategy is a strategy such that

t = 1: play X1 ∈ {C,D} and keep for any observation:

t = 2: if (C,C) is observed in the previous period, play the c0-strategy as the continuation strategy,

and otherwise play X2 ∈ {C,D} and keep for any observation:

t ≧ 3: if (C,C) is observed in the previous period, play the c0-strategy as the continuation strategy,

and otherwise play the y0-strategy as the continuation strategy.
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Note that if Xt is not C, then the condition “if (C,C) is observed ...” is to be ignored. All two-

period tolerant strategies are either a secret-handshaker of some shorter-period tolerant strategy

or an exploiter of a cooperative two-period tolerant strategy. For example, the CDc0-strategy is a

secret-handshake version of the Cd0-strategy, and the CDd0-strategy is an exploiter of the CDd0-

strategy. Therefore, they are “effective” mutant strategies which create new play paths in the

population and may earn higher payoffs than that of the zero- and one-period tolerant strategies.

Let the set of 0, 1, 2-period tolerant strategies be

S̃2
0 = {Xy0 ∈ S | X ∈ {∅, C,D} ∪ {C,D}2, y0 ∈ {c0, d0}}.

Again, we sort the strategies with respect to the initial action sequences. For example, in S̃2
0 ,

the strategies which play C in t = 1 and t = 2 for sure are CC+ = {Cc0 , CCc0 , CCd0}. (Note

that the Cc0-strategy also plays C twice for sure with any partner.) In general, define XY+ :=

{Xy0 , XYc0 , XYd0} and XY Z+ := {XYz0}, for any X,Y, Z ∈ {C,D} with the convention that

y0 = c0 (resp. d0) if Y = C (resp. D) and z0 = c0 (resp. d0) if Z = C (resp. Z = D). Let also

XY ∗+ = XY C+ ∪XYD+. We also simplify the notation of the conditional probabilities. For any

k = 1, 2, . . . and any initial k action sequence of Z1 · · ·Zk ∈ {C,D}k, the conditional probability that

the partner has a strategy in the set Z1 · · ·ZkC+ after the partner’s action sequence of (Z1, . . . , Zk)

is

πp(Z1 · · ·ZkC+) := p(Z1 · · ·ZkC+|Z1 · · ·Zk∗+).

The relative-share form of a mutant distribution q ∈ ∆(S̃2
0) can be inductively written as follows.

q = q(C+)
[
q(c0 | C+) · c0

+ {1− q(c0 | C+)}
{
πq(CC+) · q |CC +πq(CD+) · q |CD

}]
+ q(D+)

[
q(d0 | D+) · d0

+ {1− q(d0 | D+)}
{
πq(DC+) · q |DC +πq(DD+) · q |DD

}]
, (8)

where q |XY is a distribution of tolerant strategies starting with the initial action sequence XY ;

q |XY = q(Xy0 | X∗+) ·Xy0

+ {1− q(Xy0 | X∗+)}
{
πq(XY C+) ·XYc0 + πq(XYD+) ·XYd0

}
.

This inductive definition (see Figure 7 for an intuition) will be useful when we consider arbitrary

periods of tolerance later.
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Figure 7: Relative share structure of two-period tolerant strategy distributions
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To formulate the average payoff of a two-period tolerant strategy Xy0 (facing a stationary

distribution p in the matching pool) with the initial action sequence X = (X1X2), we introduce

one more notation. For any observation of the partner’s action history Z1, Z2, and your own action

X2 in t = 2, we define the probability that the payoff sequence branches out as follows.

ρp(Z1Z2;X2) =

{
p(Z1C+){1− p(Z1c0 | Z1C+)} · 1X2=D if Z2 = C

p(Z1D+){1− p(Z1d0 | Z1D+)} if Z2 = D.

Then we can write the expected payoff of a two-period tolerant strategy Xy0 facing a stationary

distribution p in the matching pool as

V (Xy0 ; p) = Vcd(x10; p(C+))

+ δ2
∑

Z1=C,D

ρp(Z1;X1)Vcd(x20;πp(Z1C+))

+ δ4
∑

Z1=C,D

ρp(Z1;X1)
∑

Z2=C,D

ρp(Z1Z2;X2)Vcd(y0;πp(Z1Z2C+))

with the convention that xt0 = c0 (resp. d0) if Xt = C (resp. D). To compare with the one-period

tolerant strategy Xy0 , consider a two-period tolerant strategy XYw0 (where XY is the initial action

sequence). When the stationary strategy distribution in the matching pool is p, its average payoff
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is written as follows. (See also Figure 7.)

v(XYw0 ; p) = vcd(x0; p(C+))

+ δ2
∑

Z1=C,D

ρp(Z1;X)
Lcd(y0;πp(Z1C+))

L(XYw0 ; p)
[vcd(y0;πp(Z1C+))− vcd(x0; p(C+))]

+ δ4
∑

Z1=C,D

ρp(Z1;X)
∑

Z2=C,D

ρp(Z1Z2;Y )

· Lcd(w0;πp(Z1Z2C+))

L(XYw0 ; p)
[vcd(w0;πp(Z1Z2C+))− vcd(x0; p(C+))]. (9)

To explain (9), the first component vcd(x0; p(C+)) is the payoff of playing the initial action X.

The second component is the sum of extra payoffs by playing Y in t = 2 after the first period

histories (X,C) and (X,D), not counted in vcd(x0; p(C+)). If X = C, the payoff after the history

(X,C) is already included in vcd(x0; p(C+)), and hence it is not present in this component. The

third component is the sum of extra payoffs after four possible histories over the two periods,

((X,Z1), (Y, Z2)), not counted in vcd(x0; p(C+)) and vcd(y0;πp(Z1C+)).

Note that the formula (9) embeds the average payoff of a one-period tolerant strategy (7) in

the first two components. Hence it is easy to compare the average payoffs of Xy0-strategy and

XYw0-strategy. When the incumbent distribution is p̄ ∈ P̄1 and mutant distributions have up to

two-period tolerant strategies in the support, in view of the definition of WESD, it suffices to show

that a two-period tolerant strategy XYw0 has less post-entry payoff than that of the one-period

tolerant strategy Xy0 .

Remark 3. Take any δ ∈ (δc0d0 , 1). Let

M2(δ) :=
{
q ∈ ∆(S̃2

0) | q(Z1Z2C+|Z1Z2∗+) < αcd(δ), ∀Z1, Z2 ∈ {C,D}
}
.

Fix any p̄ ∈ P̄1 and any mutant distribution q ∈ M2(δ). For any ϵ ∈ (0, 1), let the post-entry

distribution be pPE = (1− ϵ) · p̄+ ϵ · q.

(i) For any Z1, Z2 ∈ {C,D}, there exists ϵ1 ∈ (0, 1) such that, for any ϵ ∈ (0, ϵ1),

pPE(Z1Z2C+|Z1Z2∗+) < pPE(C+), or πpPE (Z1Z2C+) < pPE(C+).

(ii) For any Z1, Z2 ∈ {C,D}, there exists ϵ2 ∈ (0, 1) such that, for any ϵ ∈ (0, ϵ2),

vcd(c0;πpPE (Z1Z2C+)) < vcd(d0; p
PE(C+)).

(iiI) For each XYw0 ∈ S̃2
0 , there exists Xy0 ∈ S̃1

0 and ϵ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ),

v(XYw0 ; (1− ϵ) · p̄+ ϵ · q) < v(Xy0 ; (1− ϵ) · p̄+ ϵ · q).
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Hence p̄ is a WESD(M2(δ))).

Proof. See Appendix.

The key of the proof is that post-entry shares of two-period tolerant strategies with the c0-

strategy in t = 3 are the same as the mutants’, so that they do not depend on ϵ, that is

pPE(Z1Z2C+|Z1Z2∗+) = q(Z1Z2C+|Z1Z2∗+), or πpPE (Z1Z2C+) = πq(Z1Z2C+), (10)

because the class of Z1Z2∗+ contains only mutants. Since q ∈ M2(δ), we have that

pPE(Z1Z2C+|Z1Z2∗+) < αcd(δ),

while the post-entry share of the C-start class converges to the C-D ratio as ϵ → 0, i.e.,

lim
ϵ→0

pPE(C+) = αcd(δ).

This implies (i). Then, for any ϵ ∈ (0, ϵ1),

vcd(c0;πpPE (Z1Z2C+)) < vcd(c0; p
PE(C+)),

vcd(d0;πpPE (Z1Z2C+)) < vcd(d0; p
PE(C+)).

Local stability and πpPE (Z1Z2C+) < αcd(δ) imply also that

vcd(d0;πpPE (Z1Z2C+)) < vcd(c0;π
PE
1 (c0)).

Hence it remains to prove (ii) in order to show that the third component of (9) is negative (which

implies (iii)).

To prove (ii), we use the fact that πpPE (Z1Z2C+) does not depend on ϵ again. Because

πpPE (Z1Z2C+) < αcd(δ), there exists α̂ such that πpPE (Z1Z2C+) < α̂ < αcd(δ) and

vcd(d0;πpPE (Z1Z2C+)) = vcd(c0; α̂).

This α̂ is also independent of ϵ. Hence for sufficiently small ϵ, (ii) holds. (See Figure 8 in the

Appendix.) Therefore the third component of (9) is negative for all ϵ < min{ϵ1, ϵ2} =: ϵ.

An interpretation of M2(δ) is that the mutant distributions are “sufficiently random” so that

the weight on {Z1Z2c0} is not so high (to reach the C-D ratio) within {Z1Z2c0} ∪ {Z1Z2d0}, for

any Z1, Z2 ∈ {C,D}. In other words, if mutant distributions are sufficiently spread-out among all

tolerant strategies, they belong to M2(δ).
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We cannot strengthen the stability, or enlarge M , because the boundary of M2(δ) includes mu-

tant distributions consisting only of two-period tolerant strategies and having exactly πq(Z1Z2C+) =

αcd(δ) for all Z1, Z2 ∈ {C,D}. They have the same post-entry payoff to any strategy in p̄ ∈ P̄1 so

that p̄ is no longer a WESD.

4 Diverse Equilibrium Behaviors

4.1 Tolerant Equilibria

To generalize, we consider k-period tolerant strategies which play a certain sequence of actions and

keep the partnership, until either (C,C) is established (then play the c0-strategy thereafter) or the

k-period is over (then play one of the c0- or the d0-strategy).

Definition 11. For any k = 1, 2, . . ., any k-sequence of Prisoner’s Dilemma actions X ∈ {C,D}k,

and any y0 ∈ {c0, d0}, the k-period tolerant15 Xy0-strategy is a strategy such that

t = 1: play X1 ∈ {C,D} and keep for any action combination;

2 ≦ t ≦ k: if (C,C) is observed in the previous period, play the c0-strategy as the continuation

strategy, and otherwise play Xt ∈ {C,D} and keep for any observation;

t = k + 1: if (C,C) is observed in the previous period, play the c0-strategy as the continuation

strategy, and otherwise play the y0-strategy as the continuation strategy.

Recall that we also interpret the c0- and the d0-strategy as the degenerate (0-period) tolerant

strategies. The set of m- to n-period tolerant strategies (m < n) is

S̃n
m = {Xy0 ∈ S | X ∈ {C,D}k, k = m,m+ 1, . . . , n, y0 ∈ {c0, d0}},

and the set of all tolerant strategies is denoted as S̃∞
0 .

The set S̃∞
0 is constructed to cover any initial action sequence for arbitrary finite periods, and,

for each element Xy0 ∈ S̃∞
0 , there is a secret-handshake strategy XYc0 ∈ S̃∞

0 (where Y = C if

y0 = c0 and Y = D if y0 = d0), and an exploiter XYd0 ∈ S̃∞
0 of the secret-handshake strategy

as well. Both of these are effective mutant strategies, just like the Dc0-strategy is an effective

mutant towards the d0-strategy but it can be exploited by the Dd0-strategy. In other words, the

set S̃∞
0 is constructed by adding (one-more-period tolerant) strategies which add a new play path

in the society, when they enter by a positive measure. Hence all elements (with k > 0) in S̃∞
0

15In particular, if X = (D, . . . ,D) and y0 = c0, it is a tolerant version of k-period trust-building strategy in
Greve-Okuno.
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have different average payoff formula (see the proof of Proposition 1) and are non-trivial mutant

strategies against some strategy in S̃∞
0 . Moreover, the set S̃∞

0 does not contain strategies such

that, even if they enter by a positive measure, no new play path is generated in the society. Such

strategies can earn the same payoff as the strategies in S̃∞
0 but never overtake the population.

We use an inductive form to describe any strategy distribution p ∈ ∆(S̃∞
0 ) as follows.

p = p(C+)
[
p(c0|C+) · c0 + [1− p(c0|C+)]

{
πp(CC+) · p |CC +πp(CD+) · p |CD (π)

}]
+ p(D+)

[
p(d0|D+) · d0 + [1− p(d0|D+)]

{
πp(DC+) · p |DC +πp(DD+) · p |DD

}]
, (11)

where p |XY is a distribution starting with a one-period tolerant strategy Xy0 such that

p |XY = p(Xy0 |X∗+) ·Xy0 + {1− p(Xy0 |X∗+)}

·
{
πp(XY C+) · p |XY C +πp(XYD+) · p |XYD (π)

}
,

and p |XY Z is a distribution starting with a two-period tolerant strategy XYz0 of the same form

p |XY Z= p(XYz0 |XY ∗+) ·XYz0 + {1− p(XYz0 |XY ∗+)}

·
{
πp(XY ZC+) · p |XY ZC +πp(XY ZD+) · p |XY ZD

}
,

and so on. (Recall Figure 7.) This formulation makes payoff decomposition of each strategy and

payoff comparison among different strategies easy.

By a generalization of Remark 1, for each T = 1, 2, . . ., any p ∈ ∆(S̃T
0 ) such that

p(C+) = αcd(δ) and πp(XC+) = αcd(δ), ∀X ∈ {C,D}k, k = 1, . . . , T

is a payoff-equivalent Nash equilibrium to the fundamentally asymmetric equilibrium αcd(δ) · c0 +

{1− αcd(δ)}d0. (See the proof of Proposition 1.) In particular, the class that all T -period tolerant

strategies are present generates all action combination sequences over T + 1 periods:

P̄T :=
{
p̄ ∈ ∆(S̃T

0 ) | p̄(C+) = αcd(δ), πp̄(XC+) = αcd(δ),

0 < p̄(Xy0 |X∗+) < 1, ∀X ∈ {C,D}k, ∀k = 1, 2, . . . , T, ∀y0 ∈ {c0, d0}
}
.

We call this set the diverse-behavior equilibrium class of T -periods (DBEC-T ) generated by

the c0-d0 equilibrium.

Proposition 1. (i) For any δ ∈ (δc0d0 , 1), any T < ∞, and any p̄ ∈ P̄T , p̄ is a Nash equilibrium

and, for any s ∈ supp(p̄),

v(s; p̄) = v(c0;αcd(δ)c0 + {1− αcd(δ)} · d0) = v(d0;αcd(δ)c0 + {1− αcd(δ)} · d0).
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(ii) For any δ ∈ (δc0d0 , 1), define

M∞(δ) :=
{
q ∈ ∆(S̃∞

0 ) | πq(XC+) < αcd(δ), ∀X ∈ {C,D}k, k = 1, 2, . . . ,
}
.

Then for any δ ∈ (δc0d0 , 1) and any T < ∞, each p̄ ∈ P̄T is a WESD(M∞(δ)) and generates all

T + 1-period action combination sequences in AT+1
co .

Proof. See Appendix.

The proof of Proposition 1 (ii) is a generalization of that of Remark 3. It shows that for any

mutant T + k-period tolerant strategy (with k = 1, 2, . . .), there is a T -period tolerant strategy in

P̄T , which plays the same action sequence for the first T periods, shifts to the c0- (if XT+1 = C)

or the d0-strategy (if XT+1 = D), and outperforms the mutant.

Proposition 1 encompasses countably many DBEC-T ’s, where each DBEC-T is a continuum of

WESD(M∞(δ))’s, since p̄(c0), p̄(d0), p̄(Xy0 | X∗+), . . . can vary arbitrarily. Overall, we have shown

that it is weakly evolutionarily stable that (i) a lot of pairs eventually achieve long-term cooperation

until a random death, (ii) the period it takes to establish long-term cooperation varies from 1 to any

finite number, and (iii) in the meantime any action combination sequence can be played. Moreover,

the WESD’s are all payoff-equivalent to each other as well as to the c0-d0 equilibrium.

The set M∞(δ) of “sufficiently random” mutant distributions has a similar structure as the set

M2 for the two-period example, but the property that the mutant distributions should not have too

high weights on Xc0-strategies is weaker, since there are always longer-period tolerant strategies

in S̃∞
0 . In a large society, it is plausible that mutant strategies are not concentrated on particular

type of strategies. The set M∞(δ) includes distributions that put a positive probability on all

tolerant strategies. In a finite population, coordination game context like Kandori et al. (1993),

such a random mutation leads eventual coordination. In our context, the random mutation makes

coordination difficult among secret-handshakers by the presence of exploiters, and thus mutants

are “self-defeated”.

As δ increases, αcd(δ) increases and M∞(δ) becomes larger. This means that with higher

survival rates, any equilibrium p̄ in the DBEC’s is more stable because even relatively coordinated

mutant distributions (those with high weights on Xc0-strategies) cannot de-stabilize the incumbent

distribution. The logic is that higher αcd(δ) increases the payoff of the “base” strategies, c0 and

d0, which makes it easy for them to outperform mutants.

One might wonder if WESD concept is too weak. To show that the concept of WESD selects
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among Nash equilibria, denote a k-period tolerant Xd0-strategy in which only D is played in the

first k periods by Dk
d0

(k = 0, 1, . . .). We can also consider the D∞
d0
-strategy, which never initiates

termination of a match and keeps playing D. Each of these strategies played by all players trivially

constitutes a Nash equilibrium for any δ ∈ (0, 1).

Remark 4. For any δ ∈ (0, 1),

(i) for each k < ∞, the monomorphic Nash equilibrium consisting of the Dk
d0
-strategy is not a

WESD({q ∈ ∆({Dk+1
c0 , Dk+1

d0
}) | q(Dk+1

c0 ) > 0}); and

(ii) the monomorphic Nash equilibrium of the D∞
d0
-strategy is not a WESD({q ∈ ∆({c0, d0}) |

q(c0) > 0}).

Proof. See Appendix.

Hence always-D type Nash equilibria are not stable even in a very weak form of WESD with

only two-strategy mutant distributions are allowed to emerge in the population.

Finally, recall that all equilibria in P̄T for any T are payoff-equivalent to the c0-d0 equilibrium.

GOS showed that, under some payoff condition, the c0-d0 equilibrium is more efficient than any

Nash equilibria consisting of “trust-building” strategies (which are essentially Dk
c0-strategies

16).

Remark 5. (GOS, Proposition 4) For any Prisoner’s Dilemma such that g − c < (c− d)2/(c− ℓ),

there exists δ̂ ∈ [δc0d0 , 1) such that for any δ ∈ (δ̂, 1), any Nash equilibrium distribution q ∈

∆({Dk
c0 | k = 1, 2, . . .}), any s ∈ {c0, d0} and any s′ ∈ supp(q), vcd(s;αcd(δ)) > v(s′; q).

Therefore, if the deviation gain g − c is not so large in the Prisoner’s Dilemma, any diverse-

behavior equilibrium is also more efficient than all trust-building equilibria.

4.2 Other stability concepts for weaker richness result

The fundamentally asymmetric equilibrium of the c0- and the d0-strategy itself generates any action

combination of (C,C), (C,D)/(D,C), and (D,D) every period in the society. Therefore in a weaker

sense the equilibrium behaviors are rich. Since there are only two strategies in the fundamentally

asymmetric equilibrium, it satisfies stronger evolutionary stabilities. (This subsection is also an

extension of the stability analysis of GOS.)

16However, the original definition of the trust-building strategies in Greve-Okuno is “intolerant” in the sense that
they keep the partnership if and only if (D,D) is played in the first k periods of a partnership. This intolerance makes
a stability difference, see Concluding Remarks.
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Proposition 2. For any δ ∈ (δc0d0 , 1), let

M(δ) := {q ∈ ∆(S̃∞
0 ) | sup

X∈{C,D}k, k=1,2,...

πq(XC+) < αcd(δ)}.

Then p∗ = αcd(δ) · c0 + {1− αcd(δ)}d0 is SUW(M(δ)).

Proof. See Appendix.

Proposition 2 shows that there is a stable distribution with a uniform winner against any mutant,

generated in a slightly smaller set M(δ)(⊊ M∞(δ)), such that (i’) in any pair, if (C,C) is achieved

once, then the partners continue to play (C,C) until a random death, and (ii’) in any period, any

action combination of the Prisoner’s Dilemma is played by a positive fraction of the society. In the

aggregate, the society has all action combinations in every period, in both Propositions 1 and 2.

If we require additionally that mutant distributions must include some non-degenerate tolerant

strategy, which is not a strong requirement, the c0-d0 equilibrium is a Mean Stable Distribution.

Proposition 3. For any δ ∈ (δc0d0 , 1), let

M+(δ) :=
{
q ∈ ∆(S̃∞

0 ) | sup
X∈{C,D}k, k=1,2,...

πq(XC+) < αcd(δ),

q(Xy0) > 0, ∃Xy0 ∈ S̃∞
1

}
.

Then p∗ = αcd(δ) · c0 + {1− αcd(δ)}d0 is a MSD(M+(δ)).

Proof. See Appendix.

Finally, if we exclude mutants using the C-start tolerant strategies, so that mutant strategies

are only of the form Dk
w0
, then the c0-d0 equilibrium is a Strong-ESD for some set. Let

SD = {Xy0 ∈ S̃∞
0 | X = Dk, k = 0, 1, . . . , w0 ∈ {c0, d0}}.

This set consists of c0, d0, trust-building strategies Dk
c0 for k = 1, 2, . . ., and their exploiters Dk

d0
.

These were the focus of GOS.

Corollary 1. For any δ ∈ (δc0d0 , 1), let

D(δ) := {q ∈ ∆(SD) | q(C+) ≦ αcd(δ), sup
k=1,2,...

πq(D
kC+) < αcd(δ)}.

Then p∗ = αcd(δ) · c0 + {1− αcd(δ)}d0 is a Strong-ESD(D(δ)).
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Proof. See Appendix.

In summary, the weaker richness result that any action combination of (C,C), (C,D)/(D,C),

and (D,D) is played every period with a positive fraction in the society is sustained in a variety

of stability notions. However, because all of such stabilities require a smaller mutant distribution

set than that of the DBEC’s, we cannot say that the c0-d0 equilibrium is more stable than the

equilibria in DBEC’s.

5 Concluding Remarks

We have shown that the C-D ratio generates an immense variety of payoff-equivalent equilibria,

which admit all action combination histories over an arbitrary length of time, when mutant dis-

tributions are sufficiently spread-out. The sufficiently random mutant distributions, which do not

concentrate on the class of strategies of the form Xc0 , are plausible in a large, anonymous society

we consider. Therefore, the VSRPD is rich in equilibrium modes of behavior. We also clarified

different stabilities among the payoff-equivalent equilibria.

Diverse behaviors in a homogeneous population are not rare observations. Many markets and

societies admit a variety of long-term behaviors. We have given a rationale such that some players

are trying to coordinate at some point and they can tolerate mis-coordination for a while, and

others are trying to exploit the former and tolerate mis-coordination as well. In our laboratory

experiment (Okuno-Fujiwara et al., 2016), we observed that subjects tolerated mis-coordination

often up to two periods.

Tolerance, not to terminate a partnership even if mis-coordination in the Prisoner’s Dilemma

happens, can be useful in another way. The original definition of trust-building strategies of k-

periods in Greve-Okuno was to play D for t ≦ k and keep if and only if (D,D) is observed, and

then to shift to the c0-strategy. For sufficiently large k, the monomorphic distribution of the k-

period trust-building strategy is neutrally stable, when mutants are pure-strategy distributions in

S (Greve-Okuno, Proposition 1). However, an “intolerant” trust-building strategy distribution can

be invaded by two-tolerant-strategy mutant distributions. For example, the one-period intolerant

trust-building strategy (denoted as c1) can be neutrally stable among pure-strategy mutants (see

Remark 2 of GOS) but is de-stabilized by any mutant distribution of the form β ·Cc0 + (1− β)Dc0

with β > 0 in the sense that, for any ϵ ∈ (0, 1),

v(c1; (1− ϵ)c1 + ϵ{β · Cc0 + (1− β)Dc0}) < v(Dc0 ; (1− ϵ)c1 + ϵ{β · Cc0 + (1− β)Dc0}).
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This is because the intolerant c1-strategy terminates a match with Cc0 to miss the opportunity to

cooperate from the second period on.

Let us also mention other advantages of our equilibria. Clearly, players need no precise co-

ordination to play the c0-d0 equilibrium. By contrast, a monomorphic trust-building equilibrium

requires that the length of the initial trust-building periods should be common knowledge or a

group convention, but the source of such knowledge or convention is unclear. The DBEC’s have

many modes of behavior inside, and thus we can also interpret that players are not very coordinated

and yet reach an equilibrium.

There are may interesting future research directions. An important extension is a two population

model of firms and workers, to make a closed model of efficiency wage theory (e.g., Okuno, 198117

and Shapiro and Stiglitz, 1984). If there is an equilibrium with the fundamentally asymmetric

strategy distribution on the worker side, i.e., cooperative workers and myopic workers co-exist, it

gives a further rationale to equilibrium unemployment in a homogeneous worker population (i.e.,

in the absence of adverse selection).

In the context of social games, the VSRPD approach is a first step towards the research of

endogenous network formation with consideration of within-network strategic behavior. There is a

large literature of network formation (see for example, Jackson, 2008), but the strategic behavior

within a network and dynamic change of the network are usually separately analyzed.18 We showed

that a huge variety of pairwise cooperative networks (between Xc0-players) and non-networking d0-

players19 can co-exist in the society over the long horizon. This also implies that it is not guaranteed

that all agents in the society end up in a (long-term) network (cf. Cho and Matsui, 2012).

Appendix: Proofs

PROOF OF LEMMA 1. GOS essentially showed the following.

There exists δc0d0 ∈ (0, 1) such that δ > δc0d0 if and only if there exists a unique αcd(δ) ∈ (0, 1),

17The English version is Okuno-Fujiwara (1987), but we cite the Japanese version to show that it precedes Shapiro
and Stiglitz (1984).

18An exception is Immorlica et al. (2014). Restricting their attention to “consistent strategies” (similar to our c0-
and d0-strategies that play the same action every period), they investigate dynamic formation of networks and show
co-existence of cooperators and defectors.

19The exploiters, Xd0 -players, can be an intermediate type of short-term networking players.
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such that the bimorphic distribution p∗ = αcd(δ)c0 + {1− αcd(δ)}d0 is a Nash equilibrium and

∃ϵc0 ∈ (0, 1), ∀ϵ ∈ (0, ϵc0), v(d0; (1− ϵ)p∗ + ϵ · c0) > v(c0; (1− ϵ)p∗ + ϵ · c0), (12)

∃ϵd0 ∈ (0, 1), ∀ϵ ∈ (0, ϵd0), v(c0; (1− ϵ)p∗ + ϵ · d0) > v(d0; (1− ϵ)p∗ + ϵ · d0). (13)

It suffices to prove the condition (ii) of Definition 3. Since we have only two pure strategies in

the support of p∗, any q ∈ Q(p∗) has either q(c0) > αcd(δ) or q(c0) < αcd(δ).

For any q ∈ Q(p∗) such that q(c0) > αcd(δ), Sp∗(q) = {c0}. The inequality (12) and the property

that the average payoffs of the c0- and d0-strategy are increasing in the share of the c0-strategy

imply that there exists ϵc0 ∈ (0, 1) such that for any ϵ ∈ (0, ϵc0),

v(d0; (1− ϵ)p∗ + ϵ · q) ≧ v(d0; (1− ϵ)p∗ + ϵ · c0)

> v(c0; (1− ϵ)p∗ + ϵ · c0) ≧ v(c0; (1− ϵ)p∗ + ϵ · q).

Similarly, for any q ∈ Q(p∗) such that q(c0) < αcd(δ), Sp∗(q) = {d0} and (13) implies that there

exists ϵd0 ∈ (0, 1) such that for any ϵ ∈ (0, ϵd0),

v(c0; (1− ϵ)p∗ + ϵ · q) ≧ v(c0; (1− ϵ)p∗ + ϵ · d0)

> v(d0; (1− ϵ)p∗ + ϵ · d0) ≧ v(d0; (1− ϵ)p∗ + ϵ · q).

Finally take ϵ := min{ϵc0 , ϵd0}.

PROOF OF REMARK 3. (i) Take any two-period tolerant strategy Zc0 which belongs to supp(q) \

supp(p̄). The first two period actions are Z1, Z2. Because q ∈ M2(δ),

πpPE (Z1Z2C+) = πq(Z1Z2C+) < αcd(δ).

On the other hand, the post-entry share of the C-start satisfies (regardless of whether p(C+) ≦

αcd(δ) or not)

lim
ϵ→0

πpPE (C+) = lim
ϵ→0

[(1− ϵ)αcd(δ) + ϵ · q(C+)] = αcd(δ).

Hence there exists ϵ1 ∈ (0, 1) such that

πpPE (Z1Z2C+) < πpPE (C+), ∀ϵ ∈ (0, ϵ1).

(ii) Case 1: If πq(Z1Z2C+)(= πpPE (Z1Z2C+)) ≦ αcd(δ), then

vcd(c0;πpPE (Z1Z2C+)) ≦ vcd(c0;αcd(δ)) = vcd(d0;αcd(δ)) < vcd(d0;αcd(δ)).
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Figure 8: Local stability and the existence of α̂
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(See Figure 8.) As ϵ approaches to 0, vcd(d0;πpPE (C+)) → vcd(d0;αcd(δ)). Hence there exists

ϵ2 ∈ (0, 1) such that for any ϵ ∈ (0, ϵ2),

vcd(c0;πpPE (Z1Z2C+)) < vcd(d0; p
PE(C+)).

Case 2: Suppose that πq(Z1Z2C+) > αcd(δ). Since πq(Z1Z2C+) < αcd(δ) by q ∈ M2(δ),

vcd(c0;πpPE (Z1Z2C+)) < vcd(c0;αcd(δ)) = vcd(d0;αcd(δ)).

By the Intermediate Value Theorem, there exists a constant α̂ < αcd(δ) such that

vcd(c0;πpPE (Z1Z2C+)) = vcd(c0;πq(Z1Z2C+)) = vcd(d0; α̂).

(See Figure 8.) Again, vcd(d0;πpPE (C+)) → vcd(d0;αcd(δ)) as ϵ → 0 and α̂ < αcd(δ) imply that

there exists ϵ2 ∈ (0, 1) such that for any ϵ ∈ (0, ϵ2), vcd(d0; α̂) < vcd(d0; p
PE(C+)) so that

vcd(c0;πpPE (Z1Z2C+)) < vcd(d0; p
PE(C+)).

(iii) We show that the last component of (9) is negative for any w0, x0 ∈ {c0, d0}.

If w0 = x0, (i) implies that there exists ϵ1 ∈ (0, 1) such that for any ϵ ∈ (0, ϵ1),

vcd(c0;πpPE (Z1Z2C+)) < vcd(c0; p
PE(C+)), vcd(d0;πpPE (Z1Z2C+)) < vcd(d0; p

PE(C+)).

If w0 = d0, x0 = c0, and αcd(δ) < πpPE (Z1Z2C+) < αcd(δ)), then the local stability and (i)

imply that for any ϵ ∈ (0, ϵ1),

vcd(d0;πpPE (Z1Z2C+)) < vcd(c0;πpPE (Z1Z2C+)) < vcd(c0; p
PE(C+)).
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If w0 = d0, x0 = c0, and πpPE (Z1Z2C+) ≦ αcd(δ), then for any ϵ ∈ (0, ϵ1) (see Figure 8),

vcd(d0;πpPE (Z1Z2C+)) ≦ vcd(d0;αcd(δ)) = vcd(c0;αcd(δ)) < vcd(c0; p
PE(C+)).

Finally, (ii) implies that when w0 = c0 and x0 = d0, the last component is negative for any

ϵ ∈ (0, ϵ2). Let ϵ = min{ϵ1, ϵ2}. Then we have that v(XYw0 ; p
PE) < v(Xy0 ; p

PE), ∀ϵ ∈ (0, ϵ).

PROOF OF PROPOSITION 1. (i) By an analogous derivation as that of (9), for any t = 1, 2, . . . , T ,

the average payoff of a t-period tolerant strategy Xy0 ∈ supp(p̄) with the initial t-period action

sequence X = X1 · · ·Xt is decomposed as follows. For each k = 1, . . . , t, let xk0 = c0 if Xk = C

and xk0 = d0 if Xk = D.

v(Xy0 ; p̄) = vcd(x10; p(C+))

+ δ2
∑

Z1=C,D

ρp̄(Z1;X1)
Lcd(x20;πp̄(Z1C+))

L(Xy0 ; p̄)
[vcd(x20;πp̄(Z1C+))− vcd(x10; p̄(C+))]

+ δ4
∑

Z1=C,D

ρp̄(Z1;X1)
∑

Z2=C,D

ρp̄(Z1Z2;X2)

· Lcd(x30;πp̄(Z1Z2C+))

L(Xy0 ; p̄)
[vcd(x30;πp̄(Z1Z2C+))− vcd(x10; p̄(C+))]

+ · · · + δ2t
∑

Z1=C,D

ρp̄(Z1;X1) · · ·
∑

Zt=C,D

ρp̄(Z1 · · ·Zt;Xt)

· Lcd(y0;πp̄(Z1 · · ·ZtC+))

L(Xy0 ; p̄)
[vcd(y0;πp̄(Z1 · · ·ZtC+))− vcd(x10; p̄(C+))].

For any p̄ ∈ P̄T , p̄(C+) = αcd(δ) and πp̄(ZC+) = αcd(δ) for any Z ∈ {C,D}k for any k = 1, 2, . . . , T .

Hence all subtraction terms in the above formula is zero, and the C-D ratio implies that v(Xy0 ; p̄) =

vcd(c0;αcd(δ)) = vcd(d0;αcd(δ)).

(ii) Fix any δ ∈ (δc0d0 , 1), any T < ∞, and any p̄ ∈ P̄T . Take any q ∈ M∞(δ) and let pPE =

(1 − ϵ)p̄ + ϵ · q. Any strategy in supp(q) \ supp(p̄) is a T + k-period tolerant strategy with some

k ≧ 1. It suffices to prove that for any T + k-period tolerant strategy Xy0 (where X = X1 · · ·XT+k

is the sequence of initial T + k period actions), there exists a T -period tolerant strategy which

outperforms the Xy0-strategy for sufficiently small ϵ. Note that any T -period tolerant strategy

belongs to the support of p̄.

Given a T + k-period tolerant strategy Xy0 , for each t = 1, 2, . . . , T + k, let xt0 = c0 (resp. d0)
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if Xt = C (resp. D). The average payoff is decomposed as follows.

v(Xy0 ; p
PE) = vcd(x10; p(C+))

+ δ2
∑

Z1=C,D

ρpPE (Z1;X1)
Lcd(x20;πpPE (Z1C+))

L(Xy0 ; p̄)
[vcd(x20;πpPE (Z1C+))− vcd(x10; p̄(C+))]

+ δ4
∑

Z1=C,D

ρpPE (Z1;X1)
∑

Z2=C,D

ρpPE (Z1Z2;X2)

·
Lcd(x30;πpPE (Z1Z2C+))

L(Xy0 ; p
PE)

[vcd(x30;πpPE (Z1Z2C+))− vcd(x10; p
PE(C+))]

+ · · · + δ2T
∑

Z1=C,D

ρpPE (Z1;X1) · · ·
∑

ZT=C,D

ρpPE (Z1 · · ·ZT ;XT )

·
Lcd(y0;πpPE (Z1 · · ·ZTC+))

L(Xy0 ; p
PE)

[vcd(xT+10;πpPE (Z1 · · ·ZTC+))− vcd(x10; p
PE(C+))]

+ δ2(T+1)
∑

Z1=C,D

ρpPE (Z1;X1) · · ·
∑

ZT+1=C,D

ρpPE (Z1 · · ·ZT+1;XT+1)

·
Lcd(xT+20;πpPE (Z1 · · ·ZT+1C+))

L(Xy0 ; p)
[vcd(xT+20;πpPE (Z1 · · ·ZT+1C+))− vcd(x10; p

PE(C+))]

+ · · · + δ2(T+k)
∑

Z1=C,D

ρpPE (Z1;X1) · · ·
∑

ZT+k=C,D

ρpPE (Z1 · · ·ZT+k;XT+k)

·
Lcd(y0;πpPE (Z1 · · ·ZT+kC+))

L(Xy0 ; p)
[vcd(y0;πpPE (Z1 · · ·ZT+kC+))− vcd(x10; p

PE(C+))].

As the average payoff of a two-period tolerant strategy XYw0 embeds that of the one-period tolerant

strategy Xy0, the above embeds the average payoff of the T -period tolerant strategy X′
w0 such that

X′ = X1 · · ·XT and w0 = c0 (resp. d0) if XT+1 = C (resp. D) in the first T + 1 terms. Hence it

suffices to show that the last k components of the above formula are negative, or

vcd(xT+n 0;πpPE (Z1 · · ·ZT+n−1C+))− vcd(x10; p
PE(C+)) < 0, n = 2, 3, . . . , k,

vcd(y0;πpPE (Z1 · · ·ZT+kC+))− vcd(x10; p
PE(C+)) < 0.

Recall that supp(p̄) includes only up to T -period tolerant strategies. Hence the post-entry relative

shares of the Z1 · · ·ZT+n−1C+-class (for n = 2, 3, . . . , k) are mutant’s share:

πpPE (Z1 · · ·ZT+n−1C+) = πq(Z1 · · ·ZT+n−1C+).

Hence, by an analogous argument as that of Remark 3 (and because there are only finite varieties

of Z1 · · ·ZT+n−1C+-classes), there exists ϵ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ), all the above are

negative.
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PROOF OF REMARK 4. (i) Take an arbitrary k < ∞ and consider any mutant distribution q =

γ ·Dk+1
c0 +(1−γ)Dk+1

d0
such that γ > 0. Let pPE = (1− ϵ)Dk

d0
+ ϵq. Clearly, v(Dk

d0
; pPE) = d, while

v(Dk+1
d0

; pPE) =
(1 + δ2 + · · ·+ δ2T )d+ ϵδ2(T+1){γ · g + (1− γ)d}

(1 + δ2 + · · ·+ δ2T ) + ϵδ2(T+1)
(14)

= d+
ϵδ2(T+1){γ · g + (1− γ)d− d}
(1 + δ2 + · · ·+ δ2T ) + ϵδ2(T+1)

> d, because γ > 0.

(ii) Consider any mutant distribution γ · c0+(1− γ)d0 such that γ > 0. Let pPE = (1− ϵ)D∞
d0

+ ϵq.

By computation,

v(D∞
d0 ; p

PE) =
(1− ϵ) d

1−δ2
+ ϵ{γ · g + (1− γ)d}

(1− ϵ) 1
1−δ2

+ ϵ

= d+
ϵ

(1− ϵ) 1
1−δ2

+ ϵ
γ(g − d).

On the other hand,

v(d0; p
PE) = (1− ϵ)d+ ϵ{γ · g + (1− γ)d} = d+ ϵγ(g − d).

Note that the denominator of the coefficient of the second term of v(D∞
d0
; pPE) is

(1− ϵ)
1

1− δ2
+ ϵ = (1− ϵ) + (1− ϵ)

δ2

1− δ2
+ ϵ > 1.

Hence v(d0; p
PE) > v(D∞

d0
; pPE).

PROOF OF PROPOSITION 2. All non-degenerate tolerant strategies (Xy0 with X ∈ {C,D}k, k =

1, 2, . . .) are mutants. Take any T -period tolerant mutant strategyXy0 and a stationary distribution

p in the matching pool. Its average payoff embeds vcd(x10; p(C+)), where x10 = c0 (resp. d0) if

X1 = C (resp. D) as follows.

v(Xy0 ; p)

= vcd(x10; p(C+))

+ δ2
∑

Z1=C,D

ρp(Z1;X1)
Lcd(x20;πp(Z1C+))

L(Xy0 ; p)
[vcd(x20;πp(Z1C+))− vcd(x10; p(C+))]

+ δ4
∑

Z1=C,D

ρp(Z1;X1)
∑

Z2=C,D

ρp(Z1Z2;X2)

· Lcd(x30;πp(Z1Z2C+))

L(Xy0 ; p)
[vcd(x30;πp(Z1Z2C+))− vcd(x10; p(C+))]

+ · · ·+ δ2T
∑

Z1=C,D

ρp(Z1;X1) · · ·
∑

ZT=C,D

ρp(Z1 · · ·ZT ;XT )

· Lcd(w0;πp(Z1 · · ·ZTC+))

L(Xy0 ; p)
[vcd(w0;πp(Z1 · · ·ZTC+))− vcd(x10; p(C+))]. (15)
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Take an arbitrary q ∈ M(δ) and let pPE = (1−ϵ)p∗+ϵ·q. Denote α∗ := supX∈{C,D}k, k=1,2,... πq(XC+),

which is strictly less than αcd(δ). Hence there exists ϵq ∈ (0, 1] such that for any ϵ ∈ (0, ϵq),

max{αcd(δ), α
∗} < (1− ϵ)αcd(δ) + ϵ · q(C+)(= pPE(C+)).

Since vcd(w0;α) is increasing in α for both w0 = c0, d0, for any ϵ ∈ (0, ϵq) and any Zc0 with

Z ∈ {C,D}k, k = 1, 2, . . .,

vcd(w0;πpPE (ZC+)) ≦ vcd(w0;α
∗) < vcd(w0; p

PE(C+)), ∀ w0 = c0, d0.

Step 1: For any ϵ ∈ (0, ϵq), any k = 1, 2, . . . , and any Z ∈ {C,D}k,

vcd(d0;πpPE (ZC+)) < vcd(c0; p
PE(C+)).

Proof of Step 1: Fix ϵ ∈ (0, ϵq) and Z ∈ {C,D}k for an arbitrary k = 1, 2, . . ..

Case 1: πpPE (ZC+) ≦ αcd(δ). (See Figure 8.) Since vcd(d0;α) is increasing in α, and at αcd(δ), the

c0- and the d0-strategy have the same average payoff,

vcd(d0;πpPE (ZC+)) ≦ vcd(d0;αcd(δ)) = vcd(c0;αcd(δ)) < vcd(c0; p
PE(C+)).

Case 2: αcd(δ) < πpPE (ZC+) ≦ α∗. By the local stability,

vcd(d0;πpPE (ZC+)) < vcd(c0; πpPE (ZC+)) < vcd(c0; p
PE(C+)).

This completes the proof of Step 1. //

Step 2: There exists ϵα∗ ∈ (0, 1) such that for any ϵ ∈ (0, ϵα∗), any k = 1, 2, . . ., and any Z ∈

{C,D}k,

vcd(c0;πpPE (ZC+)) < vcd(d0; p
PE(C+)).

Proof of Step 2:

Case 1: vcd(c0;α
∗) ≦ vcd(d0;α

∗).

Then

vcd(c0;πpPE (ZC+)) ≦ vcd(c0;α
∗) ≦ vcd(d0;α

∗) < vcd(d0; p
PE(C+))

for any ϵ ∈ (0, ϵq). Hence let ϵα∗ = ϵq.

Case 2: vcd(d0;α
∗) < vcd(c0;α

∗).

Note that vcd(d0;αcd(δ)) = vcd(c0;αcd(δ)). By the Intermediate Value Theorem, there exists

α̂ ∈ (α∗, αcd(δ)) such that

vcd(d0; α̂) = vcd(c0;α
∗).
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Thus, there exists ϵα∗ ∈ (0, 1) such that

α̂ < (1− ϵ)αcd(δ) + ϵ · q(C+)(= pPE(C+)), ∀ϵ ∈ (0, ϵα∗).

Then

vcd(c0;πpPE (ZC+)) ≦ vcd(c0;α
∗) = vcd(d0; α̂) < vcd(d0; p

PE(C+)), ∀ϵ ∈ (0, ϵα∗).

This completes the proof of Step 2. //

Finally, let ϵ := min{ϵq, ϵα∗} ∈ (0, 1). Then for any ϵ ∈ (0, ϵ), all the subtraction terms in (15)

are negative in the post-entry distribution, so that

v(Xy0 ; p
PE) < vcd(x10; p

PE(C+)) = v(x10; p
PE), ∀ϵ ∈ (0, ϵ).

Since x10 is either c0 or d0, if v(c0; p
PE) ≧ v(d0; p

PE), then the c0-strategy is the uniform winner

and vice versa.

PROOF OF PROPOSITION 3. The social mean of the average payoffs under the incumbent distribution

is ∑
s∈S

p∗(s) · v(s; pPE) = αcd(δ) · v(c0; pPE) + {1− αcd(δ)} · v(d0; pPE).

This is because p∗ has only two strategies in the support.

To compute the mean of the average payoffs of the mutant distributions, recall first that the

mutant distribution is inductively written (recall (11)):

q = q(C+)
[
q(c0|C+) · c0 + [1− q(c0|C+)]

{
πq(CC+) · q |CC +πq(CD+) · q |CD (π)

}]
+ q(D+)

[
q(d0|D+) · d0 + [1− q(d0|D+)]

{
πq(DC+) · q |DC +πq(DD+) · q |DD

}]
, (16)

where q |XY is a distribution starting with a one-period tolerant strategy Xy0 such that

q |XY = q(Xy0 |X∗+) ·Xy0 + {1− q(Xy0 |X∗+)}

·
{
πq(XY C+) · q |XY C +πq(XYD+) · q |XYD (π)

}
,

and so on.

The first component in (16) is the C-start class and the second terms is the D-start class. In the

proof of Proposition 2, we have shown that, there exists ϵ ∈ (0, 1) such that, for any ϵ ∈ (0, ϵ), all

C-start (resp. D-start) non-degenerate tolerant strategies have less post-entry average payoff than
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that of the c0-strategy (resp. the d0-strategy). By the replacement of the average payoffs of the

tolerant strategies with that of v(c0; p
PE) and v(d0; p

PE) (and there is at least one such strategy

in q ∈ M+(δ)), the social mean under the mutant distribution satisfies∑
s∈S

q(s) · v(s; pPE) < q(C+) · v(c0; pPE) + (1− q(C+)) · v(d0; pPE).

Case 1: q(C+) ≧ αcd(δ).

Then pPE(C+) = (1− ϵ)αcd(δ)+ ϵ · q(C+) ≧ αcd(δ) for any ϵ ∈ (0, ϵ). In this case, v(d0; p
PE) ≧

v(c0; p
PE) (for any ϵ ∈ (0, 1)) by the local stability and also the weight on the d0-strategy is weakly

larger (1− q(C+)) ≦ (1− αcd(δ)) in p∗. Hence (for any ϵ ∈ (0, 1)),∑
s∈S

q(s) · v(s; pPE)

<q(C+) · v(c0; pPE) + (1− q(C+)) · v(d0; pPE)

≦αcd(δ) · v(c0; pPE) + {1− αcd(δ)} · v(d0; pPE) =
∑
s∈S

p∗(s) · v(s; pPE).

Case 2: q(C+) < αcd(δ).

In this case, for sufficiently small ϵ ∈ (0, ϵ), v(d0; p
PE) < v(c0; p

PE), and the weight on the

c0-strategy is also higher in p∗. Again,∑
s∈S

q(s) · v(s; pPE)

<q(C+) · v(c0; pPE) + (1− q(C+)) · v(d0; pPE)

<αcd(δ) · v(c0; pPE) + {1− αcd(δ)} · v(d0; pPE) =
∑
s∈S

p∗(s) · v(s; pPE).

PROOF OF COROLLARY 1. There exists ϵ ∈ (0, 1) such that for any ϵ ∈ (0, ϵ), pPE(C+) is close to

αcd(δ) so that by the local stability,

vcd(c0; p
PE) > vcd(d0; p

PE).

Since there are only D-start mutants in D(δ), by the same argument as the proof of Proposition

2, there exists ϵD ∈ (0, 1) such that for any ϵ ∈ (0, ϵD),

vcd(d0; p
PE) > v(Dk

w0
; pPE), ∀w0 ∈ {c0, d0}, ∀k = 1, 2, . . . .

Hence both incumbents, c0 and d0, have strictly greater post-entry average payoff than all mutants

for any ϵ ∈ (0,min{ϵ, ϵD}).
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