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Abstract

This paper develops a New Keynesian model with a time-varying natural rate of inter-
est (r-star), i.e., the real interest rate that is consistent with full utilization of economic
resources and steady inflation at the central bank’s target rate. The time series process for
r-star is calibrated to approximate the path of the U.S. natural rate series estimated by
Laubach and Williams (2015). The zero lower bound (ZLB) on the nominal interest rate
gives rise to two long-run endpoints, as in Benhabib, Schmitt-Grohé and Uribe (2001a,b).
The representative agent in the model employs forecast rules that are constructed as a
weighted-average of the forecast rules associated with each of two local rational expecta-
tions equilibria, labeled the “targeted” and the “deflation” solutions, respectively. The
time-varying forecast rule weights are determined by recent performance, as measured by
the root mean squared forecast errors for inflation, the output gap, and the desired nom-
inal interest rate. Sustained periods when the exogenous real interest rate remains below
the central bank’s estimate of r-star can induce the agent to place a substantially higher
probability on the deflation equilibrium, causing it to occasionally become self-fulfilling.
These rare episodes are accompanied by highly negative output gaps and a binding ZLB,
reminiscent of the U.S. Great Recession. But even outside of recessions and when the ZLB
is not binding, the agent may continue to assign a nontrivial probability to the deflation
equilibrium, causing the central bank to consistently undershoot its inflation target, sim-
ilar to the U.S. economy since mid-2012. I show that raising the central bank’s inflation
target to 4% from 2% can mostly eliminate switches to the deflation equilibrium.
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1 Introduction

The period from 1988 onwards is generally viewed as an example of consistent U.S. monetary.

The nature of this policy is typically described in standard New Keynesian macroeconomic

models by a Taylor (1993, 1999) type rule in which movements in the federal funds rate are

driven by fluctuations in inflation and some real activity variable. Amazingly, the U.S. federal

funds rate has been pinned close to zero for about one-fourth of the elapsed time since 1988.

Moreover, the U.S. economy is not alone in experiencing an extended period of zero (or slightly

negative) nominal interest rates in recent decades.

Figure 1 plots three-month nominal Treasury bill yields in four countries, namely, the

United States, Japan, Switzerland, and the United Kingdom. Nominal interest rates in the

United States encountered the zero lower bound during the 1930s and from 2008.Q4 though

2015.Q4. Since 1998.Q3, nominal interest rates in Japan have remained near zero, except for

the period from 2006.Q4 to 2008.Q3. Nominal interest rates in Switzerland have been zero

or slightly negative since 2008.Q4. Nominal interest rates in the United Kingdom have been

approximately zero since 2009.Q1. Notice however, that outside of these episodes, all four

countries exhibit a strong correlation between nominal interest rates and inflation, consistent

with the Fisher relationship.

Benhabib, Schmitt-Grohé and Uribe (2001a,b) show that imposing a zero lower bound

(ZLB) on the nominal interest rate in a standard New Keynesian model gives rise to two

long-run endpoints (steady states).1 The basic idea is illustrated in Figure 2, which is adapted

from Bullard (2010). The two intersections of the ZLB-augmented monetary policy rule (solid

red line) with the Fisher relationship (dashed black line) define two long-run endpoints. I refer

to these as the “targeted equilibrium”and “deflation equilibrium,” respectively. Data since

2008.Q4 lie closer to the deflation equilibrium.

This paper develops a New Keynesian model with a time-varying natural rate of interest

(r-star), i.e., the real interest rate that is consistent with full utilization of economic resources

and steady inflation at the central bank’s target rate. The times series process for r-star is

calibrated to closely approximate the path of the U.S. natural rate series estimated by Laubach

and Williams (2015). The representative agent in the model employs forecast rules that are

constructed as a weighted-average of the forecast rules associated with each of the two local

1 I use the terminology “long-run endpoints”rather than “steady states”because the model developed here
allows for permanent shifts in the natural rate of interest which, in turn, can shift the long-run values of some
macroeconomic variables.
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equilibria. The time-varying forecast rule weights are determined by recent performance, as

measured by the root mean squared forecast errors for inflation, the output gap, and the

desired nominal interest rate.

The forecast rules associated with the deflation equilibrium induce more volatility in in-

flation and the real output gap in response to real interest rate shocks. Model variables in

the deflation equilibrium have distributions with lower means and higher variances than those

in the targeted equilibrium. But the significant overlap in the various distributions creates a

dilemma for an agent who seeks to determine the likelihood that a string of recent quarterly

observations comes from one equilibrium or the other. Sustained periods when the exogenous

real interest rate remains below the central bank’s estimate of r-star can induce the agent to

place a substantially higher probability on the deflation equilibrium, causing it to occasionally

become self-fulfilling. These rare episodes are accompanied by highly negative output gaps

and a binding ZLB, reminiscent of the U.S. Great Recession. But even outside of recessions

and when the ZLB is not binding, the agent may continue to assign a nontrivial probability

to the deflation equilibrium, causing the central bank to consistently undershoot its inflation

target, similar to the U.S. economy since mid-2012. I show that raising the central bank’s

inflation target to 4% from 2% can mostly eliminate switches to the deflation equilibrium.

The setup considered here is similar to that of Aruoba, Cuba-Borda, and Schorfheide

(2014). These authors construct a stochastic two-regime equilibrium in which the economy

may alternate between a targeted-inflation regime and a deflation regime, depending on the

realization of a sunspot variable. The probability of transitioning from one regime to the

other is independent of the realization of fundamental shocks or the level of macroeconomic

variables. In contrast, the transition between regimes here is not driven by a sunspot, but

rather by the recent performance of forecast rules that employ recent data on macroeconomic

variables. Hence, the transition probabilities that govern the switching between regimes are

endogenous, depending on the realization of fundamental shocks.

Another closely related paper is one by Dordal-i-Carrera et al. (2016). These authors

develop a New Keynesian model with volatile and persistent “risk shocks” (i.e., shocks that

drive a wedge between the nominal policy rate and the short-term bond rate) to account for

infrequent but long-lived ZLB episodes. A risk shock in their model is isomorphic to a real

interest rate shock. Large adverse risk shocks are themselves infrequent but long-lived. As the

binding ZLB becomes more frequent or more long-lived, the optimal inflation target increases.

Unlike here, their analysis does not consider model solutions near the deflation equilibrium,
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but rather focuses only on the targeted equilibrium.2 In contrast, the model developed here

accounts for infrequent but long-lived ZLB episodes via endogenous switching between two

local equilibria, i.e., the shock process itself is not the source of the infrequent, long-lived ZLB

episodes.3

1.1 Related Literature

A number of papers introduce backward-looking learning type mechanisms to examine the

dynamics of convergence to either the targeted or the deflation equilibrium. Examples include

Evans and Honkapohja (2005), Eusepi (2007), Evans, Guse, and Honkapohja (2008), and

Benhabib, Evans and Honkapohja (2014). Unlike here, these frameworks do not entertain the

possibility of switching between equilibria.

Armenter (2014) considers an extension of Benhabib, Schmitt-Grohé and Uribe (2001b)

in which monetary policy is governed not by a Taylor-type rule, but rather by the optimal

time-consistent rule that minimizes the central bank’s loss function. He shows that it may

not be possible to achieve the targeted equilibrium if agents’initial inflation expectations are

below the central bank’s inflation target.

Alstadheim and Henderson (2006) and Sugo and Ueda (2008) describe interest rate rules

that can preclude the deflation equilibrium.

Numerous papers consider optimal monetary policy in response to a time-varying natural

rate of interest. The models typically impose the ZLB (or effective lower bound), but the

deflation equilibrium is ignored, i.e., the analysis is local to the targeted equilibrium. Examples

include Eggertsson andWoodford (2003), Adam and Billi (2007), Nakov (2008), Nakata (2013),

Gust, Johannsen, López-Salido (2015), Hamilton, et al. (2016), Basu & Bundick (2015), and

Evans, et al. (2015). One finding of this literature is that more uncertainty about the future

natural rate implies looser monetary policy today or more policy inertia.

Finally, the model developed here shares some similarities with the work of Sargent (1999)

in which the model economy can endogenously switch between regimes of high versus low

inflation, depending on monetary policymakers’perceptions about the slope of the long-run

Phillips curve in light of recent data. Here, the endogenous regime switching depends on

agents’perceptions about whether recent data are more likely to have been generated by the

2This is also the methodology pursued by Reifschneider and Williams (2000), Schmitt-Grohé and Uribe
(2010), Chung et al. (2012) and Coibion, Gorodnichenko, and Wieland (2012).

3 In a New Keynesian model with physical capital, Dennis (2016) shows that the introduction of capital
adjustment costs can help to generate infrequent, long-lived ZLB episodes.
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targeted versus the deflation equilibrium.

2 Model

The framework for the analysis is a standard New Keynesian model, augmented by a zero

lower bound (ZLB) on the short-term nominal interest rate. The log-linearized version of the

New Keynesian model is taken to represent a set of global equilibrium conditions, with the

only nonlinearity coming from the ZLB.4 Private-sector behavior is governed by the following

equilibrium conditions:

yt = Et yt+1 − α[it − Et πt+1 − rt] + vt, vt ∼ N
(
0, σ2v

)
, (1)

πt = βEt πt+1 + κyt + ut, ut ∼ N
(
0, σ2u

)
, (2)

where yt is the output gap (the log deviation of real output from potential output), πt is the

inflation rate, it is the short-term nominal interest rate, rt is the exogenous real interest rate,

and Et is the rational expectations operator. Fluctuations in rt can be interpreted as arising

from changes in the representative agent’s rate of time preference or changes in the expected

growth rate of potential output.5 The terms vt and ut represent an aggregate demand shock

and a cost-push shock, respectively.

The time series process for the real rate of interest is given by

rt = ρr rt−1 + (1− ρr) r∗t + εt, εt ∼ N
(
0, σ2ε

)
, (3)

r∗t = r∗t−1 + ηt, ηt ∼ N
(
0, σ2η

)
, (4)

where r∗t is the unobservable “natural rate of interest,” i.e., the real interest rate that is

consistent with full utilization of economic resources and steady inflation at the central bank’s

target rate. Equations (3) and (4) summarize a “shifting endpoint”time series process since

the long-run endpoint r∗t can vary over time due to the permanent shock ηt. In any given

period, rt can deviate from r∗t due to the temporary shock εt. The persistence of the “real

interest rate gap”rt− r∗t is governed by the parameter ρr, where |ρr| < 1. Kozicki and Tinsely

(2012) employ this type of time series process to describe U.S. inflation. When ρr = 1, we

4Armenter (2016) adopts a similar approach in computing the optimal monetary policy in the presence of
two steady states. Eggertsson and Sing (2016) show that the log-linearized New Keynesian model behaves very
similar to the true nonlinear model in the vicinity of the targeted equilibrium.

5For the derivation, see Hamilton, et al. (2016) or Gust, Johannsen, and Lopez-Salido (2015).
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recover the random walk plus noise specification employed by Stock and Watson (2007) to

describe U.S. inflation.6

The real interest rate gap captures a concept that has been emphasized by Fed policymakers

in recent speeches, namely, a distinction between estimates of the “short-term natural of

interest”and its long-term counterpart (Yellen 2015, Dudley 2015, and Fischer 2016). In the

model, the agent’s rational forecast for the real interest rate gap at any horizon k ≥ 1 is given

by

Et
(
rt+k − r∗t+k

)
= (ρr)

k (rt − Etr∗t ) , (5)

where Etr∗t represents the agent’s current estimate of the natural rate computed using the

Kalman filter so as to minimize the mean squared forecast error. When |ρr| < 1, the real rate

gap is expected to shrink to zero as the forecast horizon increases. In Appendix A, I show

that the Kalman filter expression for Etr∗t is

Etr
∗
t = λ

[
rt − ρr rt−1

1− ρr

]
+ (1− λ) Et−1r

∗
t−1 (6)

λ =
− (1− ρr)2 φ+ (1− ρr)

√
(1− ρr)2 φ2 + 4φ

2
, (7)

where λ is the Kalman gain parameter and φ ≡ σ2η/σ
2
ε is the signal-to-noise ratio. For the

quantitative analysis, the values of ρr, σ
2
η, and σ

2
ε are chosen so that the time path of Etr

∗
t

from equation (6) approximates the path of the U.S. natural rate series estimated by Laubach

and Williams (2015) for the sample period 1988.Q1 to 2015.Q4. Their estimation strategy

assumes that the natural rate of interest exhibits a unit root, consistent with equation (4).

Hamilton, et al. (2016) present evidence that the U.S. ex-ante real rate of interest it−Etπt+1
is nonstationary, but they find that the gap between the ex-ante real rate and their estimate

of the world long-run real rate appears to be stationary. This evidence is also consistent with

equations (3) and (4) which imply that real interest rate gap rt − r∗t is stationary.
The central bank’s monetary policy rule is given by

i∗t = ρi∗t−1 + (1− ρ) [Et r
∗
t + π∗ + gπ (πt − π∗) + gy (yt − y∗)] , (8)

πt = ω πt + (1− ω) πt−1, (9)

it = max {0, i∗t } , (10)

6But unlike here, Stock and Watson (2007) allow for stochastic volatility in the permanent and temporary
shocks.
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where i∗t is the desired nominal interest rate that responds to deviations of recent inflation πt

from the central bank’s target rate π∗ and to deviations of the output gap from its targeted

long-run endpoint y∗. Recent inflation πt is a moving average of past inflation rates so as to

approximate the average inflation rate over the past 4 quarters– a typical central bank target

variable.7 The quantity Et r∗t +π∗ represents the long-run endpoint of i∗t which depends on the

central bank’s current estimate of the unobservable natural rate of interest. The parameter ρ

governs the degree of interest rate smoothing as i∗t adjusts partially each period toward the

value implied by the terms in square brackets. Equation (10) is the ZLB that constrains the

actual nominal interest rate it to be non-negative.

2.1 Long-run endpoints

The Fisher relationship is embedded in the non-stochastic version of equation (1). Conse-

quently, when gπ > 1, the model has two long-run endpoints (steady states) as shown originally

by Benhabib, Schmitt-Grohé, and Uribe (2001a,b). The novelty here is that the long-run end-

points can shift due to shifts in r∗t . Straightforward computations using the model equations

yields the following two sets of long-run endpoints that characterize the “targeted equilibrium”

and the “deflation equilibrium,”respectively.

Table 1. Long-run Endpoints

Targeted equilibrium Deflation equilibrium
πt = π∗ πt = −r∗t
yt = y∗ ≡ π∗ (1− β) /κ yt = −r∗t (1− β) /κ
i∗t = r∗t + π∗ i∗t = (r∗t + π∗) [1− gπ − gy (1− β) /κ]
it = r∗t + π∗ it = 0

In the targeted equilibrium, long-run inflation is at the central bank’s target rate π∗ and

the long-run output gap y∗ is slightly positive for typical calibrations with 0.99 < β < 1. The

long-run desired nominal interest rate i∗t conforms to the Fisher relationship.
8 The ZLB is not

binding such that it = i∗t > 0, provided that r∗t > −π∗. In the model simulations, I impose
bounds on fluctuations in r∗t that ensure r

∗
t ≥ 0, consistent with the natural rate estimates

of Laubach and Williams (2015) for the sample period 1988.Q1 to 2015.Q4. In the deflation

equilibrium, the long-run inflation rate, the long-run output gap, and the long-run desired

nominal interest rate are all negative when r∗t > 0.9

7Specifically, the value of ω is set to achieve πt ' 0.25 (πt + πt−1 + πt−2 + πt−3) .
8Cochrane (2015) shows that Fisherian effects appear to dominate Phillips curve effects for determining the

comovement between the nominal interest rate and inflation in the standard New Keynesian model.
9Evans Honkopoja and Mitra (2016) develop a New Keynesian models that imposes a lower bound on the

inflation rate that is more negative than −r∗ (which is assumed to be constant in their model). They show that
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2.2 Local forecast rules

Given the linearity of the model aside from the ZLB, it is straightforward to derive the agent’s

rational decision rules for πt, yt, and i∗t in the vicinity of the long-run endpoints associated with

each of the two equilibria. For the targeted equilibrium, the local decision rules are unique

linear functions of the four state variables rt − Etr∗t , πt−1 − π∗, vt, and ut. For the deflation
equilibrium, I solve for the minimum state variable (MSV) solution in terms of fundamental

state variables only, i.e., abstracting from extraneous sunspot variables.10 Given the decision

rules, we can construct the agent’s conditional forecast rules for Etπt+1, Etyt+1, and Eti∗t+1

for each of the two equilibria. Details are contained in Appendices B and C.

The decision rule coeffi cients applied to the state variable rt − Etr∗t are much larger in
magnitude in the deflation equilibrium than in the targeted equilibrium. Consequently, the

deflation equilibrium exhibits more volatility and undergoes a more severe recession in response

to an adverse shock sequence that causes rt − Etr∗t to become negative. This is due to the
binding ZLB in the deflation equilibrium which prevents the central bank from taking action

to mitigate the consequences of the adverse shock sequence.

2.3 Endogenous regime switching

The linear forecast rules for the targeted equilibrium are derived under the assumption that

i∗t > 0 and hence do not take into account the possibility that a shock could be large enough

to cause the ZLB to become binding in the future. The error induced by this assumption will

depend on the frequency and duration of ZLB episodes in the targeted equilibrium. Based

on model simulations, the targeted equilibrium experiences a binding ZLB in only 2.6% of

the periods, with an average duration of only 2.2 quarters. Consequently, the agent’s use of

forecast rules that assume i∗t > 0 in the targeted equilibrium seems reasonable.11 Similarly,

the linear forecast rules for the deflation equilibrium are derived under the assumption that

i∗t ≤ 0 and hence do not take into account the possibility that a shock could be large enough

to cause the ZLB to become slack in the future. Based on model simulations, the targeted

equilibrium experiences a binding ZLB in 63% of the periods, with an average duration of 7.6

quarters. The higher volatility of the deflation equilibrium causes the assumption of i∗t ≤ 0

this additional constraint gives rise to a third steady state in which the ZLB binds but the Fisher relationship
does not hold.
10For background on MSV solutions, see McCallum (1999).
11Richter and Throckmorton (2016) compare linear model solutions for the targeted equilibrium in which

agents ignore the possibility of future ZLB episodes to nonlinear model solutions that account for this possibility.

7



to be violated in 37% of the periods. Hence, the error induced by the agent’s use of linear

forecast rules would appear to be more significant in the deflation equilibrium.12 Nevertheless,

as shown in the quantitative analysis of Section 4, the agent’s forecast errors in the deflation

equilibrium are close to white noise.

Now consider a more sophisticated agent who contemplates the possibility of switching

between equilibria, implying that one set of linear forecast rules might perform better than the

other. Along the lines of Brock and Hommes (1997, 1998), I postulate that the agent employs

forecast rules that are constructed as a weighted-average of the forecast rules associated with

different future scenarios. Here, the scenarios pertain to the two local rational expectations

equilibria. The time-varying forecast rule weights are determined by recent performance, as

measured by the root mean squared forecast errors for inflation, the output gap, and the

desired nominal interest rate.

Êt yt+1 = µtE
targ
t yt+1 + (1− µt)Edeflt yt+1, (11)

Êt πt+1 = µtE
targ
t πt+1 + (1− µt)Edeflt πt+1, (12)

Êt i
∗
t+1 = µtE

targ
t i∗t+1 + (1− µt)Edeflt i∗t+1, (13)

µt =
exp

[
ψ
(
RMSFEdeflt−1 −RMSFEtargt−1

)]
1 + exp

[
ψ
(
RMSFEdeflt−1 −RMSFEtargt−1

)] , (14)

where RMSFE is the root mean squared forecast error computed over a moving window of

recent data and ψ is the “intensity of choice”parameter. As ψ becomes larger, the resulting

sequence for µt takes on values approaching either 1 or 0, with intermediate values less likely.

In the simulations, forecast performance is computed as follows:

RMSFE i
t−1 = 1

Tw

Tw∑
i=1

[(
yt−j − E i

t−j−1 yt−j
)2

+
(
πt−j − E i

t−j−1 πt−j
)2

+
(
i∗t−j + E i

t−j−1 i
∗
t−j
)2]

,

(15)

where the superscript “i”indicates either the targeted or the deflation equilibrium.

Given the current forecasts from equations (11) through (13), the realizations of the macro-

12Aruoba Cuba-Borda, Schorfheide (2014) solve for piece-wise linear decision rules in both the targeted
equilibrium and the deflation equilibrium to account for the occasionally binding nature of the ZLB constraint.
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economic variables are determined by the following global equilibrium conditions:

i∗t =
1

ρ

{
Êti
∗
t+1 − (1− ρ)

[
Etr
∗
t + π∗ + gπ ω

(
Êtπt+1 − π∗

)
+ (1− ω) gπ (πt − π∗) + gy

(
Êtyt+1 − y∗

)]}
, (16)

it = max {0, i∗t } , (17)

yt = Êtyt+1 − α
[
it − Êtπt+1 − rt

]
+ vt, (18)

πt = βÊtπt+1 + κyt + ut, (19)

where πt = ω πt + (1− ω) πt−1. Equation (16) is obtained by iterating equation (8) ahead one

period, taking expectations of both sides, and then solving for i∗t .

As a check, I also compute the time-varying weight µt using the standard classification

formula for the conditional probability that a given observation comes from one of two popu-

lations with known densities.13 In this model, the standard formula takes the form

µt =
µt−1 pdf

targ (πt−1)

µt−1 pdf
targ (πt−1) +

(
1− µt−1

)
pdf defl(πt−1)

, (20)

where pdf targ and pdf defl are the probability density functions for the inflation distributions

under the targeted equilibrium and the deflation equilibrium, respectively, which are assumed

known to the agent. For the quantitative analysis, I run a pre-simulation to compute the

moments of the inflation distributions in each of the two equilibria.

3 Parameter Values

Table 2 shows the parameter values used in the model simulations.

13See Anderson (1958), Chapter 6.
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Table 2. Parameter Values

Parameter Value Description/Target
α 0.2 Interest rate coeffi cient in Euler equation.
β 0.995 Discount factor in Phillips curve.
κ 0.025 Output gap coeffi cient in Phillips curve.
π∗ 0.02 Central bank inflation target.
ω 0.684 πt ' 4-quarter inflation rate.
gπ 1.5 Policy rule response to inflation.
gy 0.5 Policy rule response to output gap.
ρ 0.80 Interest rate smoothing parameter.
ρr 0.857 Persistence parameter for natural rate.
σε 0.0099 Std. dev. of temporary shock to natural rate.
ση 0.0016 Std. dev. of permanent shock to natural rate.
λ 0.0226 Optimal Kalman gain for Etr∗t .
σv 0.008 Std. dev. of aggregate demand shock.
σu 0.016 Std. dev. of cost push shock.
Tw 8 Window length in qtrs. for forecast evaluation.
ψ 75 Intensity of choice parameter for forecast evaluation.

The low value of α implies a very small sensitivity of consumption to changes in the

interest rate, consistent with the empirical findings of Campbell and Mankiw (1989). Evans

et al. (2015) employ β = 0.995 and κ = 0.025.

Table 3 compares the properties of the U.S. real interest rate to those implied by the

model. The U.S. real interest rate is defined as the nominal federal funds rate minus expected

inflation computed from a rolling 40-quarter vector autoregression that includes four lags each

of the annualized funds rate, annualized PCE inflation, and the output gap computed using

real GDP and potential output from the Congressional Budget Offi ce (CBO).

Table 3. Properties of Real Interest Rate: Data versus Model

Statistic
U.S. Data

1988.Q1 to 2015.Q4 Model
Std Dev (∆rt) 0.0103 0.0103
Std Dev

(
∆2rt

)
0.0151 0.0178

Corr (∆rt ∆rt−1) −0.088 −0.070
Corr (∆rt ∆rt−2) −0.194 −0.060

Notes: The real interest rate in U.S. data is defined as the nominal federal funds rate

minus expected inflation from a vector autoregression. Model statistics are computed

analytically from the laws of motion (3) and (4).

Figure 3 plots the two-sided estimate of the U.S. natural rate series (dashed red line) from

Laubach and Williams (2015, updated). The series shows a downward-sloping trend. This

pattern is consistent with the declines in global real interest rates observed over the same
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period (International Monetary Fund 2014, Rachel and Smith 2015). The time series process

for the natural rate in the model (dotted green line) is calibrated so that Etr∗t from equation

(6) approximates the Laubach-Williams series for the data sample 1988.Q1 to 2015.Q4, with

rt given by the U.S. real interest rate (blue line).14 For the simulations, I impose the bounds

0.002 ≤ r∗t ≤ 0.0298, but Etr∗t can exceed these bounds.

4 Quantitative analysis

Figure 4 shows that the U.S. real interest rate has remained below the Laubach-Williams

estimate of the natural rate since early 2009. The nominal federal funds rate was pinned at

zero from 2008.Q4 through 2015.Q4. A Taylor-type rule using the parameter values shown

in Table 2 and the Laubach-Williams estimate of the natural rate of interest implies that the

desired nominal funds rate was negative during this time. PCE inflation was briefly negative

in 2009 and has remained below the Fed’s 2% inflation target since 2012.Q2. The Great

Recession was very severe, pushing the CBO output gap down to −6.5% at the business cycle

trough in 2009.Q2. The output gap remains negative at −1.7% in 2015.Q4, more than six

years after the Great Recession ended. The endpoints plotted in the figure are computed

using the expressions in Table 1, with r∗t given by the Laubach-Williams estimate.

Figure 5 shows that when the exogenous real interest gap rt−Etr∗t is negative for a sustained
period, the resulting downward pressure on πt, yt , and i∗t serves to reduce the recent RMSFE

of the deflation forecast rules and increase the recent RMSFE of the targeted forecast rules.

The shift in relative forecast performance can induce the agent to place a substantially higher

weight on the deflation forecast rules, causing the deflation equilibrium to occasionally become

self-fulfilling. Qualitatively similar results are obtained if the agent employs Bayes law (20) to

compute the likelihood that a string of recent quarterly inflation observations comes from one

equilibrium or the other.

Figure 6 shows that model variables in the deflation equilibrium have distributions with

lower means but higher variances than those in the targeted equilibrium. But the significant

overlap in the various distributions creates a dilemma for an agent who seeks to determine

the likelihood that a string of recent quarterly observations comes from one equilibrium or the

other. Variables in the switching model have means that are somewhat lower and variances

14Similar results are obtained if the model is calibrated to approximate the natural rate series estimated
by Lubik and Matthes (2015). For a comparison of Lubik-Mathhes series to the Laubach-Williams series, see
Lansing (2016).
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that are somewhat higher than those in the targeted equilibrium. Consequently, the central

bank in the switching model undershoots its inflation target and the economy underperforms,

as measured by the average value of the output gap.

Hills, Nakata, and Schmidt (2016) show that the risk of encountering the zero lower bound

in the future can shift agents’expectations such that the central bank undershoots its inflation

target in the present. Something similar is at work here; when the agent increases the subjec-

tive weight on the deflation forecast rules, this can cause realized inflation to undershoot the

central bank’s target for a sustained period even when the ZLB is not binding.

Table 4 provides a quantitative comparison between the U.S. data and the results of model

simulations. Figure 7 plots the distribution of ZLB durations in each model version. Unlike

the targeted equilibrium, the switching model can produce infrequent, but long-lived ZLB

episodes in response to normally distributed shocks. To account for infrequent but long-

lived ZLB episodes, the targeted equilibrium would require large shocks that are themselves

infrequent but long-lived, as in Dordal-i-Carreras, et al. (2016).

Table 4. Unconditional Moments: Data versus Model

U.S. Data Model Simulations
Statistic 1988.Q1-2015.Q4 Targeted Deflation Switching

Mean
∑3

i=0 πt−i 2.20% 1.99% −1.60% 1.21%
Std. Dev. 1.09% 0.81% 1.27% 1.08%
Corr. Lag 1 0.89 0.75 0.90 0.86

Mean yt −1.51% 0.40% −0.32% 0.24%
Std. Dev. 2.02% 0.97% 2.83% 1.34%
Corr. Lag 1 0.96 0.27 0.78 0.55

Mean i∗t 3.45% 3.59% −2.15% 2.42%
Std. Dev. 2.84% 1.84% 6.35% 3.46%
Corr. Lag 1 0.99 0.88 0.85 0.89

% periods it = 0 25.9% 2.59% 63.3% 17.5%
Mean ZLB duration 29 qtrs. 2.2 qtrs. 7.6 qtrs. 4.0 qtrs.
Max. ZLB duration 29 qtrs. 20 qtrs. 96 qtrs. 67 qtrs.
Notes: The ZLB episode in U.S. data is from 2008.Q4 through 2015.Q4. Model results are computed from

a 300,000 period simulation.

Figure 8 plots simulations from each of the three model versions: targeted, deflation, and

switching. All versions employ the same sequence of stochastic shocks. Around period 1455

in the switching model, the weight on the targeted forecast rules approaches zero, causing the

deflation equilibrium to become temporarily self-fulfilling. The episode results in a negative

desired nominal interest rate, brief deflation followed by below-target inflation, and a highly

negative output gap, reminiscent of the U.S. Great Recession and its aftermath.
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The severity of the recession is due to the higher response coeffi cient on the real interest

rate gap in the deflation equilibrium decisions rules. These decision rules receive more weight

as µt → 0, causing the effects of an adverse real interest rate shock to be transmitted much

more forcefully to macro variables in the deflation equilibrium. Evans, Honkapohja, and Mitra

(2015) argue that the deflation equilibrium is not a convincing explanation of the U.S. Great

Recession since the steady state level of real activity in the deflation equilibrium is not much

below the steady state level of real activity in the targeted equilibrium. However, their analysis

fails to consider the significant difference in the dynamic responses to an adverse real interest

rate shock that is implied by the two sets of local decision rules.

Table 5 summarizes the properties of the agent’s forecast errors in each of the three model

versions. Equations (16) through (19) show that there are three endogenous variables that

the agent must forecast: πt+1, yt+1, and i∗t+1. For variable xt+1 ∈
{
πt+1, yt+1, i

∗
t+1

}
, the

forecast error is given by errxt+1 = xt+1 − Ft xt+1, where Ft xt+1 is the value predicted by the
linear forecast rule. As noted earlier in Section 2.3, the agent’s use of linear forecast rules in a

nonlinear environment subject to an occasionally binding ZLB would be expected to introduce

errors, particularly in the deflation equilibrium, which is more volatile. Nevertheless, Table

5 shows that the agent’s forecast errors in all three model versions are close to white noise,

giving no clear indication to the agent that the linear forecast rules are misspecified.

Table 5. Comparison of Forecast Errors

Model Simulations
Targeted Deflation Switching

Corr(errπt+1, err
π
t ) 0.0004 0.0005 0.0175

Corr(erryt+1, err
y
t ) −0.0002 −0.0029 0.0134

Corr(erri
∗
t+1, err

i∗
t ) −0.0032 −0.0031 0.0572

Notes: Model results are computed from a 300,000 period simulation.

4.1 Effect of Raising the Inflation Target

Table 6 shows that raising the central bank’s inflation target to 4% from 2% can mostly

eliminate switches to the deflation equilibrium.
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Table 6. Effect of Raising the Inflation Target

Switching Model
Statistic π∗ = 0.02 π∗ = 0.03 π∗ = 0.04 π∗ = 0.05

Std. Dev. 14
∑3

i=0 πt−i 1.08% 1.04% 0.91% 0.83%
Std. Dev. yt 1.34% 1.12% 1.01% 0.98%
Std. Dev. i∗t 3.46% 2.72% 2.14% 1.92%

% periods it = 0 17.5% 5.72% 0.99% 0.11%
Mean ZLB duration 4.0 qtrs. 3.3 qtrs. 2.9 qtrs. 3.1 qtrs
Max. ZLB duration 67 qtrs. 55 qtrs. 38 qtrs. 32 qtrs
Note: Model results computed from a 300,000 period simulation.

Numerous papers make the case for a higher inflation target using frameworks that ignore

the deflation equilibrium.15 This methodology likely understates the benefits of a higher

inflation target because the analysis does not take into account the important model feature

that a higher target can prevent switching to the volatile deflation equilibrium where recessions

are more severe.

Aruoba and Schorfheide (2015) consider the welfare implications of a 4% inflation target

in a framework that considers the possibility of switching to the deflation equilibrium via a

sunspot shock. They conclude (p. 40) that “the overall benefits of this policy are far from

clear.”

5 Conclusion

This paper develops a New Keynesian model with a shifting natural rate of interest and an

occasionally binding ZLB. It is well known that this class of models exhibits two long-run

endpoints associated with two local rational expectations equilibria. I examine a version of

this setup with endogenous forecast rule switching based on past performance. The model

can produce severe recessions when the real interest rate gap is negative, causing the agent

to place a significant weight on the forecast rules associated with the deflation equilibrium.

Escape from the deflation equilibrium occurs endogenously when the real interest rate gap

eventually starts rising. In normal times, a non-trivial weight on the deflation forecast rules

may cause central bank to undershoot its inflation target. But with an inflation target of 4%,

the probability of ZLB episode is very small ' 1% and the average duration of a ZLB episode

is only 2.9 quarters.

15See, for example, Blanchard, Dell’Ariccia, and Mauro (2010), Ball and Mazumder (2011), and Ball (2013).
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A Appendix: Kalman filter estimate of r-star

To be added.

B Appendix: Targeted equilibrium forecast rules

The targeted equilibrium assumes i∗t = it > 0. Iterating equation (8) ahead one period, taking

expectations of both sides, and then solving for i∗t yields:

i∗t =
1

ρ

{
Eti
∗
t+1 − (1− ρ)

[
Etr
∗
t+1 + π∗ + gπ ω (Etπt+1 − π∗) + gπ ω (1− ω) (πt − π∗)

+ gπ (1− ω)2 (πt−1 − π∗) + gy (Etyt+1 − y∗)
]}

, (A.1)

where I have used equation (9) to eliminate πt+1 and πt. The law of motion (4) implies

Etr
∗
t+1 = Etr

∗
t , where Etr

∗
t is the Kalman filter estimate from equation (6).

Equation (A.1) together with the Euler equation (1) and the Phillips curve equation (2)

form a linear system of three equations in the three unknown decision rules for πt, yt, and

i∗t .The four state variables are rt−Etr∗t , πt−1−π∗, vt, and ut. Standard techniques yield a set
of linear decision rules of the form πt − π∗

yt − y∗
i∗t − Etr∗t − π∗

 = A


rt − Etr∗t
πt−1 − π∗

ut
vt

 , (A.2)

where y∗ ≡ π∗ (1− β) /κ andA is a 3×4matrix of decision rule coeffi cients. For the parameter

values shown in Table 2, the matrix A is

A =

 0.0582 0.0007 1.0015 0.0250
0.3421 0.0186 0.0403 1.0010
0.8086 −0.0635 −0.1373 −0.0034

 . (A.3)

Iterating the decision rules in (A.2) ahead one period and then taking the conditional

expectation of both sides yields the following set of forecast rules for the targeted equilibrium:

Etπt+1 = π∗ +A11ρr (rt − Etr∗t ) +A12 (πt − π∗) , (A.4)

Etyt+1 = y∗ +A21ρr (rt − Etr∗t ) +A22 (πt − π∗) , (A.5)

Eti
∗
t+1 = Etr

∗
t + π∗ +A31ρr (rt − Etr∗t ) +A32 (πt − π∗) , (A.6)

where Ai j represents the corresponding element of the matrix A and I have substituted in

Et
(
rt+1 − Et+1r∗t+1

)
= ρr (rt − Etr∗t ).
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C Appendix: Deflation equilibrium forecast rules

The deflation equilibrium assumes i∗t ≤ 0 such that it = 0, i.e., the ZLB is always binding.

Equation (A.1) applies unchanged to the deflation equilibrium, as does the Phillips curve

equation (2). However, due to the binding ZLB, the Euler equation (1) now becomes

yt = Et yt+1 + α[Et πt+1 − rt] + vt. (B.1)

Equation (B.1) together with equations (A.1) and (2) form a linear system of three equa-

tions in the three unknown decision rules for πt, yt, and i∗t .The four state variables are rt−Etr∗t ,
πt−1−π∗, vt, and ut. The minimum state variable (MSV) solution yields a set of linear decision
rules of the form πt − (−Et r∗t )

yt − (−Et r∗t ) (1− β) /κ

i∗t − (Et r
∗
t + π∗)

[
1− gπ − gy(1−β)

κ

]
 = B


rt − Etr∗t

πt−1 − (−Et r∗t )
ut
vt

 , (B.2)

where B is a 3× 4 matrix of constant coeffi cients. The MSV solution implies B12 = B22 = 0.

For the parameter values shown in Table 2, the matrix B is

B =

 0.2969 0 1 0.0250
1.7516 0 0 1
4.1230 −0.0620 −0.1341 −0.0034

 . (B.3)

Iterating the decision rules in (B.2) ahead one period and then taking the conditional

expectation of both sides yields the following set of forecast rules for the deflation equilibrium:

Etπt+1 = −Et r∗t +B11ρr (rt − Etr∗t ) , (B.4)

Etyt+1 = −Et r∗t (1− β) /κ+B21ρr (rt − Etr∗t ) , (B.5)

Eti
∗
t+1 = (Et r

∗
t + π∗)

[
1− gπ − gy(1−β)

κ

]
+B31ρr (rt − Etr∗t ) +B32 [πt − (−Et r∗t )] ,

(B.6)

where I have imposed the MSV restrictionB12 = B22 = 0 and substituted in Et
(
rt+1 − Et+1r∗t+1

)
=

ρr (rt − Etr∗t ).
For the special case when β, ω → 1 and gy → 0, it is straightforward to derive the following

analytical relationship between the decision rule coeffi cients for the two local equilibria:

B11
A11

=
B21
A21

=
B31
A31

= 1 +
(1− ρ) gπ
(ρr − ρ)

ακρr[
(1− ρr)2 − ακρr

] . (B.7)
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For the the baseline calibration, the right side of equation (B.5) is approximately equal to 5,

which means that a shock to rt − Etr∗t will be transmitted much more forcefully to macro
variables in the deflation equilibrium.
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Figure 1: Nominal Interest Rates and Inflation in Four Countries

Nominal interest rates in the United States encountered the zero lower bound during the 1930s and from 2008.Q4
though 2015.Q4. Since 1998.Q3, nominal interest rates in Japan have remained near zero, except for the period
from 2006.Q4 to 2008.Q3. Nominal interest rates in Switzerland have been zero or slightly negative since
2008.Q4. Nominal interest rates in the United Kingdom have been approximately zero since 2009.Q1. Outside
of these episodes, all four countries exhibit a strong correlation between nominal interest rates and inflation,
consistent with the Fisher relationship.
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Figure 2: U.S. Nominal Interest Rates and Inflation

The two intersections of the ZLB-augmented monetary policy rule (solid red line) with the Fisher relationship
(dashed black line) define two long-run endpoints, labeled the “targeted equilibrium” and “deflation equilib-
rium,”respectively. The monetary policy rule is it = r∗ + π∗ + gπ (πt − π∗) with r∗ = π∗ = 0.02 and gπ = 1.5.
The Fisher relationship is it = r∗ + πt. Data since 2008.Q4 lie closer to the deflation equilibrium.
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Figure 3: U.S. Real Interest Rates

The real interest rate (blue line) is defined as the nominal federal funds rate minus expected quarterly inflation
computed from a rolling 40-quarter vector autoregression that includes the funds rate, PCE inflation, and the
CBO output gap. The time series process for the natural rate of interest in the model (dotted green line) is
calibrated to approximate the two-sided estimate of the U.S. natural rate series (dashed red line) from Laubach
and Williams (2015, updated) for the data sample 1988.Q1 to 2015.Q4– a period of consistent monetary policy.

23



Figure 4: U.S. Data

The U.S. real interest rate has remained below the Laubach-Williams estimate of r-star since early 2009. The
nominal federal funds rate was pinned at zero from 2008.Q4 through 2015.Q4. A Taylor-type rule using the
parameter values shown in Table 2 and the Laubach-Williams estimate of the natural rate of interest implies
that the desired nominal funds rate was negative during this time. PCE inflation was briefly negative in 2009
and has remained below the Fed’s 2% inflation target since 2012.Q2. The Great Recession was very severe,
pushing the CBO output gap down to −6.5% at the business cycle trough in 2009.Q2. The output gap remains
negative at −1.7% in 2015.Q4, more than six years after the Great Recession ended. The endpoints plotted in
the figure are computed using the expressions in Table 1, with r∗t given by the Laubach-Williams estimate.
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Figure 5: Model Simulation: Endogenous Regime Switching

When the exogenous real interest gap rt − Etr
∗
t is negative for a sustained period, the resulting downward

pressure on πt, yt , and i∗t serves to reduce the recent RMSFE of the deflation forecast rules and increase
the recent RMSFE of the targeted forecast rules. The shift in relative forecast performance can induce the
agent to place a substantially higher weight on the deflation forecast rules, causing the deflation equilibrium to
occasionally become self-fulfilling. Qualitatively similar results are obtained if the agent employs Bayes law (20)
to compute the likelihood that a string of recent quarterly inflation observations comes from one equilibrium or
the other.
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Figure 6: Model Simulations: Distributions of Endogenous Variables

Model variables in the deflation equilibrium have distributions with lower means but higher variances than
those in the targeted equilibrium. But the significant overlap in the various distributions creates a dilemma for
an agent who seeks to determine the likelihood that a string of recent quarterly observations comes from one
equilibrium or the other. Variables in the switching model have means that are somewhat lower and variances
that are somewhat higher than those in the targeted equilibrium. Consequently, the central bank in the switching
model undershoots its inflation target and the economy underperforms, as measured by the average value of the
output gap.
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Figure 7: Model Simulations: Distribution of ZLB Durations

Unlike the targeted equilibrium, the switching model can produce infrequent, but long-lived ZLB episodes in
response to normally distributed shocks. To account for infrequent but long-lived ZLB episodes, the targeted
equilibrium would require large shocks that are themselves infrequent but long-lived, as in Dordal-i-Carreras,
et al. (2016).
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Figure 8: Model Simulations: Comparing Three Model Versions

All three model versions employ the same sequence of stochastic shocks. Around period 1455 in the switching
model, the weight on the targeted forecast rules approaches zero, causing the deflation equilibrium to become
temporarily self-fulfilling. The episode results in a negative desired nominal interest rate, brief deflation followed
by below-target inflation, and a highly negative output gap, reminiscent of the U.S. Great Recession and its
aftermath.
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