The Expanding Gender Earnings Gap:
Evidence from the LEHD-2000 Census

BY CLAUDIA GOLDIN, SARI PEKKALA KERR, CLAUDIA OLIVETTI AND ERLING BARTH*

* Goldin: Harvard University Cambridge MA (cgoldin@harvard.edu); Kerr: Wellesley College, Wellesley MA (skerr3@wellesley.edu); Olivetti: Boston College, Newton MA (olivettc@bc.edu); Barth: ISR Oslo NO (erling.barth@samfunnsforskning.no). Acknowledgments. Kerr and Barth thank the Research Council of Norway (#236770) for funding. The research was conducted while Kerr and Barth were Special Sworn Status researchers of the US Census Bureau, Boston Census Research Data Center. Research results and conclusions are the authors’ and may not reflect the views of the Census Bureau. This paper was screened to ensure that no confidential data are revealed.

The gender earnings gap is a shifting statistic. It widens with age, especially in the 15 to 20 years after school leaving. It expands more for those who are married and even more for those with young children. The increased gap is far greater among college graduates than others and in sectors known to penalize shorter hours and time off (see Bertrand, Goldin, and Katz 2010 on MBAs). It exists even when controls are added for hours worked per week and weeks per year.

The widening over the lifecycle, moreover, is substantial. Using the March Current Population Survey (CPS), Goldin (2014) shows that the gender earnings gap for college graduates born c.1970 (given hours, weeks and education controls) widened by 21.4 log points (from -0.10 to -0.314) from ages 25-29 to 40-44 and similarly for those born c.1960 between the same ages (from -0.133 to -0.343). Excluding hours and weeks controls, the gap expanded by 39 log points for both cohorts. Although there is evidence that the gender earnings gap narrows after cohorts are in their early to late 40s, our focus here is on the widening portion of the shifting statistic.

An extensive literature exploring the factors responsible for the widening has emphasized the role of children, tied movers and stayers, greater demand by women for work amenities such as flexibility, and less internal advancement for mothers. Given these possibilities, we use the Longitudinal Employer-Household Dynamics (LEHD) database linked to the 2000 Census to explore how much of the widening occurs within versus between establishments by mean establishment earnings (see Bayard, et al. 2003 for an analysis of the cross-sectional gender pay gap using earlier firm-level data).

We seek to know whether women are disproportionately in lower wage establishments and move with less frequency to higher wage ones or whether they are less apt to change their relative position within establishments. That is, we ask how much of the expanding gender earnings gap in the
decade and a half after schooling ends is due to shifting employment by men and women across establishments differing in mean earnings and how much is due to differential wage growth within establishments, for narrowly defined age and education groups.

Our main findings are that the gender earnings gap among college graduates in the LEHD, given basic demographic controls such as state and race, expanded by 33.7 log points from ages 26 to 39 (from 1995 to 2008, thus for a group born around 1970). But given, in addition, (ln) mean establishment earnings (MEE), industry and occupation (in 2000), the gender earning gap increases less: by 18.9 log points. Thus, 44 percent of the gap widening for college graduates is due to differential mobility between establishments by gender and 56 percent is due to differential earnings changes within establishments by gender. (See also Barth, Kerr and Olivetti 2017.)

For those who graduated high school but not college, the gap grows from ages 23 to 36 (1995-2008) by 15.6 log points but expands by just 8.1 log points given MEE (plus industry and occupation). The gap expands less than for the college group, but the percentage impact of including MEE, and thus the between and within percentages, are about the same.

We also explore changes among college graduates in several important sectors (FIRE and Technology) as well as differences by marital status. The bottom line is that the widening is due somewhat more to what happens within establishments, although there is much occurring because of differential moves by gender across establishments.

I. Exploring the Expanding Gender Earning Gap using the LEHD-Census

To understand some of the factors behind the increase in the gender earnings gap, we use the 2000 Census (one in six long form) linked to the LEHD database. The LEHD used here covers the years 1995 to 2008 and is a rich database of private-sector firms containing administrative earnings data from state unemployment insurance (UI) records. UI earnings are not top-coded and include wages, salary and taxable bonuses. The characteristics, virtues and deficiencies of the LEHD have been described in detail by others, (see, e.g., Barth et al. 2016), thus we will be succinct.

Demographic and some economic information (e.g., education, marital status, occupation) come from the 2000 U.S. Population Census long-form whereas some others (e.g., sex, age) come from the UI records. Individuals from the long-form records are matched, when possible, to their employer in the LEHD. A virtue of these data is that, in principle, all individuals working in
the private sector who filled out the 2000 Census long form can be linked to the establishments at which they were employed in each year from 1995 to 2008. A limitation is that occupation and marital status are recorded only for 2000 but may be time varying. Only the 23 states that provided state UI data can be included in the LEHD and we are, in addition, using firms only in the 50 largest Primary Metropolitan Statistical Areas (PMSA). There are 26 of these large PMSAs in 18 of the 23 states. Only those whose contemporaneous employer is in one of these 26 PMSAs can be tracked. To make certain that we are tracking individuals in our data for a sufficient period, we construct an analysis sample of individuals present in the sample (and having earnings that exceed ten hours per week at the minimum wage) for at least half the years, 1995 to 2008.

The analysis sample is divided into three education groups. For each group, age at the start of the data set in 1995 is chosen so that individual respondents would probably have completed their highest grade yet be young enough to be in their earliest jobs. Those who are not high school graduates are 20-22 years in 1995; those who are high school graduates but not college graduates are 23-25 years in 1995; and college graduates are 25-27 years in 1995. About 40 percent of the women are college graduates and 33 percent of the men are; 54 percent of both sexes are high school graduates but not college graduates and the rest, a small group, are in the less than high school graduate category.

Our dependent variable is the ln (mean quarterly earnings) = sum of quarterly earnings in the main job in year t divided by the number of quarters in the main job that year. Note that there is no information in the LEHD on hours or weeks worked.

II. Establishment Effects and the Expanding Gender Earnings Gap

We analyze the data by individuals (i) for each year (t) from 1995 to 2008. Given our data construction, calendar year also tracks the age of the individuals in each of the three education groups (j). We estimate the following equations for the 42 education-year (j x t) groups:

\[\ln (y_{ijt}) = \alpha_{jt} + \sum \beta_{kjt} X_{ijkt} + \varphi_{jt} F_{ij} + \epsilon_{ijt} \]

where \(y \) is mean quarterly earnings for individual \(i \) of education level \(j \) in year \(t \). \(X \) is a vector of \(k \) individual characteristics (time invariant: race, exact education; time varying: exact age, state) and \(F \) indicates female.

In eq. (2) we add \(\ln(MEE) \), log of mean establishment earnings, which is the (constant dollar) mean for each establishment across the full period for all employees (thus does not vary with time and is not calculated from only those in our analysis sample). We also add \(I \),
the (three-digit SIC level) industry (there are about 450) of the establishment and (time invariant) three-digit occupation dummies, O, from the 2000 census.

\begin{equation}
(2) \ln(y_{ijt}) = \alpha_{jt} + \Sigma_k \beta_{kjt} X_{ijkt} + \\
y_{jt} \ln(MEE)_{ijt} + \xi_{jt} I_{ijt} + \omega_{jt} O_{ij} + \\
\varphi_{jt} F_{ij} + \epsilon_{ijt}
\end{equation}

We graph, in Figure 1 panel A, the evolution of the estimated φ_{jt}, which gives the gender earnings gap by year (or age) and education group from eq. (1). In Figure 1 panel B we graph the same for eq. (2), which includes $\ln(MEE)$, industry and occupation. Because of the large sample sizes standard errors are small and have not been included in the figures.

We note that although the LEHD is a longitudinal data set, individuals can exit the data if they shift their employment away from one of the 26 PMSAs and for a host of other reasons. Because of that, we only use observations for individuals who are present at least half the years and we use the LEHD as a set of repeated cross sections. We use the longitudinal aspect of the establishment information and fix MEE for the entire period.

Data from the LEHD-Census clearly show a widening earnings gender gap for all education groups except the lowest in the 14 years considered. For the college graduate group, the gender earnings gap around age 26 is 10.9 log points but widens somewhat continuously to 44.6 log points by age 39 or by 33.7 log points. The expansion is a bit below that from the CPS we cited earlier without controls for hours and weeks worked, but our analysis sample from the LEHD imposes a minimum earnings level. The widening for the middle education group from around ages 23 to 37 is from 16.2 to 31.8 log points. The lowest education group begins with the largest gender earnings gap of 26.7 log points but it increases only slightly to 32.4.

Because the results for eq. (2) excluding industry and occupation are almost identical to those including them, we will more concisely refer to eq. (2) as adding $\ln(MEE)$. With the addition of $\ln(MEE)$, all gender earnings gap functions shift up, indicating that men are disproportionately employed in higher wage establishments.

More to the point, the addition twists the two higher-level education functions so that the gender earnings gap in Figure 1 panel B widens far less than in panel A. For college graduates, the initial gap with MEE is about zero (-0.017) but in 14 years it expands by 18.9 log points to -0.205. The basic gap had initially expanded by 33.7 log points, so that 14.9 log points (44 percent) are due to differential shifts of male and female workers across establishments by mean earnings levels and 18.9 log points (56
percent) to an expansion of the gender earnings gap within establishment.

Because the widening is largest for the college graduate group, we also explore the evolving gender earnings gap for college graduates in several important sectors. In Figure 2 we graph the evolution of the estimated φ_{jt} from eq. (2) for college graduates in the (two-digit SIC) Finance, Insurance and Real Estate (FIRE) sector and Technology industries (using the NSF definition). Occupation from the 2000 Census. Three-digit industry and occupation are added as covariates so that gender differences within sectors are not solely due to industry and occupational differences between men and women.

The gender gap in earnings is just -0.030 log points in Technology and -0.015 in FIRE around age 26 (within narrow industry and occupation groups) but grows to -0.321 in Technology and -0.350 in FIRE during the next 14 years. Adding MEE reduces the gap at 14 years to -0.22 in Technology and -0.234 in FIRE, showing that around 24 to 30 percent of the initial widening was the result of differential changes in earnings by sex between establishments (given industry and occupation). Most of the expansion is due to the greater advancement of men than women within establishments. But it is also the case that in the first half of the period there is a greater shift of men than women into higher paying establishments in FIRE and Tech and the impact on wage growth of being in a high wage establishment also increases. Note that the MEE adjusted lines (dotted) for both FIRE and Tech level off after an increase in the gender earnings gap (decrease in the line).

Yet another way of cutting the data is to compare the evolution of the estimated φ_{jt} for those ever-married in 2000 (using Census data) versus those never-married in 2000 and then to observe the impact of the mean establishment earnings variable. We noted before that the widening of the gender earnings gap has been found to be greater for women who are or have ever been married. Using the LEHD-Census data from 1995 to 2008 the gender earnings gap for college graduates widened by 39 log points for those who were ever-married in 2000 whereas it widened by 22 log points for those who were never-married in 2000. Years married would be a better specification but that is not available for this dataset.

III. Discussion and Conclusions

An important literature has developed around the increase in earnings inequality across establishments and the increase in sorting of workers by firms (see Barth et al. 2016 and Song et al. 2016 on the U.S.). High wage establishments are employing relatively
more high wage workers. Because higher wage firms have more rent sharing with their employees, greater sorting by wages has increased earnings inequality (see also Card, Cardoso, and Kline 2016 on rent sharing segmentation, and gender gaps in Portugal).

In our analysis, the question is whether we are measuring, as we would like to believe, the growth of the gender earnings gap with age or whether we are picking up an increase in inequality. Because age and year are collinear in our analysis, the answer is not immediately clear. We test the possibility by estimating the gender earnings gap for the same age group but changing the year and vice versa. We find that the gender earnings gap during the 1995 to 2008 period increased with age but not by year. That is, the gender earnings gap was virtually the same for each age independent of the year and these results are maintained with the establishment and industry controls. Thus, we have demonstrated that the gender earnings gap widens considerably during the first decade and a half after schooling ends particularly for college graduates, those in certain sectors, and those who were ever-married.

More revealing is that we also show the degree to which the gap widens given mean establishment earnings. Somewhat more than 40 percent of the increased gender gap in earnings is because men disproportionately shift into higher paying establishments. Around 60 percent can be attributed to women’s lesser capability to advance their earnings within firms. Our bottom line is that the widening is somewhat split between men’s greater ability or preference to move to higher paying firms and positions and their better facility to improve their circumstances within firms. Both factors increase with women’s greater family responsibilities.

REFERENCES

FIGURE 1. GENDER EARNINGS GAP FOR THREE EDUCATION GROUPS: 1995-2008

Notes: Panel A gives coefficients on female, φ_{jt}, from eq. (1). Panel B gives coefficients on female, φ_{jt}, from eq. (2) and includes $\ln MEE$ (mean establishment earnings), three-digit SIC industry and occupation (from 2000 Census). < HS Grad are 20-22 years old in 1995; HS Grads & Some Coll are 23-25 in 1995; College grad+ are 25-27 years old in 1995. Estimation uses LEHD-Census 2000. See text for analysis sample selection.

FIGURE 2. GENDER EARNINGS GAP FOR COLLEGE GRADUATES IN TWO SECTORS: 1995-2008 (AGES 25-27 TO 38-40)

Notes: Solid lines give coefficients on female, φ_{jt}, from eq. (2) with three-digit SIC industry and occupation. Dashed lines also include MEE (mean establishment earnings). College graduates are 25-27 years old in 1995 and 38-40 years old in 2008. FIRE = financial, insurance, and real estate; Tech = technology industries as defined by the NSF. Estimation uses LEHD-Census 2000. See text.