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Abstract

This paper proposes a new strategy for the identification of all the marginal effects of an endoge-

nous multi-valued variable (which can be continuous, or a vector) in a nonparametric model with a

lower dimensional Instrumental Variable (IV), which may even be a single binary variable. Identifi-

cation is achieved by exploiting heterogeneity of the “first stage” in covariates through a new rank

condition that we term covariance completeness. The covariates themselves may be endogenous,

but their endogeneity does not affect the identification of the marginal effects of interest. This pa-

per also provides parametric and nonparametric Two-Stage Least Squares (TSLS) estimators which

are simple to implement, discusses their asymptotic properties, and shows that the estimators have

satisfactory performance in moderate samples sizes. Finally, we apply our methods to the problem

of estimating the effect of air quality on house prices, based on Chay and Greenstone (2005).
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1 Introduction

Instrumental Variables (IV) methods are well established as one of the most useful approaches to

identify causal effects in econometric models. Consider first the nonparametric additively separable

model

Y = g(X) + U, (1)

where Y is the dependent variable, g is an unknown measurable function of X, and U is an unobservable

error term. The vector X is endogenous, in the sense that E[U |X] 6= 0 with positive probability. In

addition to (Y,X), we also observe an instrument Z that is conditionally exogenous given a vector of

observed covariates W , i.e.

E[U |Z,W ] = E[U |W ] almost surely (a.s.). (2)

This paper studies nonparametric identification of the marginal effects of X on Y, i.e. identification of

the function g (up to a constant), in the model defined by (1)-(2).

Depending on the nature of X and functional form assumptions on g, a traditional IV approach

requires, among other things, that the instrument Z is sufficiently complex (see Newey and Powell

(2003)). For instance, if X is continuous and we wish to identify g nonparametrically, then Z must be

continuous. If X is discrete with q points of support and we wish to identify all of its marginal effects,

then Z needs to have at least q points of support. If X is a vector of continuous variables, then Z

must have at least as many components as X, even if we impose substantial restrictions on the shape

of g, such as linearity. Thus, the traditional IV order condition imposes restrictive assumptions on the

support of the instrument Z (relative to that of X), which may not hold in applications.

In this paper we propose a strategy for the identification of g in equation (1) (up to a constant)

which applies to cases in which the support of X is larger than that of Z (and thus it is impossible to

achieve identification with a traditional IV approach.) We focus first on the most difficult case in which

Z is a binary variable, say Z ∈ {0, 1}, while X takes 3 or more values, and may even be continuous, or a

vector. Our results for binary IV open up the possibility of the identification of all the marginal effects

of a complex variable X in cases where the instrument may be an experiment or a natural experiment.

Furthermore, we show that with almost no modifications our methodology can be extended to the

nonseparable model

Y = m(X,U), (3)

where m(x, u) is a strictly increasing function in u, for each x in the support of the distribution of X,

SX say. Model (3) allows for unobserved heterogeneous marginal effects, as in, e.g., wage equations

where returns to education depend on unobserved individual’s ability; see, e.g., Card (2001).

Identification holds in either (1) or (3) under a new rank condition that we term covariance com-

pleteness. This nonparametric/semiparametric identifying assumption imposes support restrictions on

covariates (relative to X) rather than on instruments and requires a semiparametric structural sepa-

rability condition of covariates. In our specifications W is not excluded from the structural equation

and may be endogenous (W is part of U). Thus, the support requirement is not too restrictive, being

certainly more plausible than a support requirement on the IV.
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The following example illustrates and formalizes some of these ideas in a simple model where

identification with a standard IV approach is not possible.

Example 1.1 (Bivariate linear case) Suppose that X = (X1, X2) and g is linear, so the model in (1)

is

Y = β1X1 + β2X2 + U

where E[U |X1, X2] 6= 0. Here X1 and X2 can be two different variables, such as “education” and “IQ,”

or a relaxation of the linearity of a variable, for example X1 is “education,” and X2 = 1(X1 ≥ 17)

captures the “sheepskin effect of graduating from high school.” The Standard IV methods are unable to

identify β1 and β2 with a single binary instrument Z, because the classical order condition fails.

For our approach, we require that the instrument Z be excluded from the structural equation condi-

tional on W, i.e. E[U |W,Z] = E[U |W ], but W itself may be endogenous. Then

E[Y |Z = 1,W ]− E[Y |Z = 0,W ] = β1 [E[X1|Z = 1,W ]− E[X1|Z = 0,W ]]

+ β2 [E[X2|Z = 1,W ]− E[X2|Z = 0,W ]] .

To identify β1 and β2 we need to invert this equation. The condition that guarantees that we can

invert it is what we call covariance completeness for the class G = {g(X1, X2) = β1X1 + β2X2;β1, β2 ∈
R}. In this example covariance completeness holds if there exists no pair (λ1, λ2) 6= (0, 0) such that

λ1 (E[X1|Z = 1,W ]− E[X1|Z = 0,W ]) + λ2 (E[X2|Z = 1,W ]− E[X2|Z = 0,W ]) = 0 a.s.

This condition states that the “first stage” effects of Z on X1 and X2 vary (in a linearly independent

manner) with W . In other words, our identification strategy exploits the heterogeneity in the “first

stages” to separate the marginal effects of X1 and X2.

Note that W itself may be endogenous and not excluded from the structural equation, i.e. we can

specify U = h(W, ε) for an unknown h and vector of unobservables ε. The nuisance parameter h is not

identified, but we are not concerned by this, as we are only interested in the marginal effects of X1 and

X2 on Y .

To clarify the structural separability requirement in the general case, consider the following example.

An individual’s earnings Y depend on schooling X and unobserved ability U as in model (3). Ability

is produced using parents’ education W and other observable and unobservable factors ε as inputs,

i.e U = h(W, ε). The structural separability assumption is that parents’ education is not a direct

input in wage equations, although returns to education may depend on parents’ education through its

impact in shaping ability. We may be giving the impression that all covariates must be structurally

separable, which in this example means that all covariates must be indirect inputs which affect wages

only through ability. That is not the case, our approach allows the inclusion of exogenous covariates

which are themselves direct inputs in the wage production function. The structural separability is

imposed only on those covariates which are used to implement our identification method, and those

covariates are allowed to be endogenous.
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Covariance completeness does not impose restrictions on the support of the instrument, which may

even be binary. For example, following Card (1995) we could use as Z a binary variable indicating

living close to a college, which is more likely to be exogenous after conditioning on parents’ education

W . We provide conditions under which returns to education, which are allowed to depend here on

ability, are nonparametrically identified with a single binary instrument and a standard conditional

exogeneity restriction.

The identification strategy is based on the observation that if the population is categorized according

to a covariate W , the discrete variation that Z induces on the distribution of X may vary with W . This

may allow us to recover a rich (e.g continuous) set of marginal effects. For example, in the returns to

education application living close to a college may have a differential impact on individual’s education

X depending on the level of parents’ education W. For instance, distance to college is likely to have a

relatively larger impact for individuals with less educated parents. By comparing the effects of different

changes in schooling across different parental education levels we can recover the effect of each year of

college on wages.

Based on our identification results, we propose parametric and nonparametric estimators of g up to a

constant. Our estimation approach avoids completely the need of estimating the propensity score or the

conditional variance, and can be immediately implemented using packaged software.1 In models that

are linear in parameters we show that our identification strategy can be straightforwardly implemented

with a simple Two-Stage Least Squares (TSLS) estimator that treats the possibly endogenous covariate

W as if it were exogenous and uses interaction terms between W and Z as instruments. Additionally,

we propose nonparametric estimators that relax the functional form assumptions, and discuss the rates

of consistency based on results by Blundell, Chen and Kristensen (2007). Our identification strategy

in the nonparameric separable case can also be implemented as a TSLS regression with off-the-shelf

econometric software.

Our results for separable models complement the classical nonparametric IV approach in, e.g.,

Newey and Powell (2003), Darolles, Fan, Florens and Renault (2011), Blundell, Chen and Kristensen

(2007) and Horowitz (2011). In the general case, our paper contributes to the literature of nonparamet-

ric identification of heterogeneous (observable and unobservable) marginal effects; see Matzkin (2013)

for a recent survey of this literature. Our results for nonseparable models complement alternative

identification strategies for binary instruments and continuous endogenous variables in Chesher (2003),

D’Haultfoeuille and Fevrier (2014), Torgovitsky (2014), D’Haultfoeuille, Hoderlein and Sasaki (2013)

and Masten and Torgovitsky (2014); and for continuous instruments in Altonji and Matzkin (2005),

Chernozhukov and Hansen (2005) and Florens, Heckman, Meghir and Vytlacil (2008), among others.

The main contribution of this paper is the way we use covariates for identification. In particular, none

of the papers mentioned above exploit the heterogeneity of the “first stage” conditional on possibly

endogenous covariates and discuss covariance completeness conditions. More broadly, traditional meth-

ods treat covariates as exogenous variables. If covariates turn out to be endogenous (see e.g. experience

or parents’ education in wage equations), then estimates of marginal effects of interest may be incon-

1Stata code to implement the parametric and nonparametric estimators of this paper is available at the first author’s

website.
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sistent; see, e.g., Frolich (2008). We provide explicit conditions under which endogeneity of covariates

does not affect consistency of marginal effects of interest with our methods and also with traditional IV

methods. Given the ubiquitous presence of endogenous covariates in applications this robustness is of

certain practical relevance. Both our identification method and estimators have empirical advantages

in that they can be adapted immediately to the idiosyncrasies of applied work, including incorporating

functional form restrictions, large number of covariates and fixed effects all without the need to modify

neither the method nor the estimator.

The rest of the paper is organized as follows. For simplicity, we introduce all the ideas on the

separable model, which is done in Section 2. There we present the identification results (Section 2.1)

and also show that the identification strategy can be implemented with a suitable TSLS estimator

(Section 2.2). Section 3 extends the identification results of the separable case to the nonseparable

model (see the implementation on the nonseparable case in Appendix A.2.3). Section 4 reports the

results of Monte Carlo experiments. Section 5 contains an empirical application of our method to

the problem of estimating the effect of air quality on house prices, based on Chay and Greenstone

(2005). Finally, we conclude in Section 6. Mathematical proofs of the main results are gathered in the

Appendix.

2 The Separable Case with Binary IV

2.1 Identification

Throughout this section we assume that the observed random vector (Y,X,W,Z) satisfies the model

Y = g(X) + U, (4)

where the following exclusion restriction holds

Assumption 1 (validity) E[U |W,Z] = E[U |W ] a.s.

We introduce the idea in the case where Z is binary, i.e. SZ = {0, 1}. Taking conditional means in (4)

and subtracting terms we can thus write

E[Y |W,Z = 1]− E[Y |W,Z = 0] = E[g(X)|W,Z = 1]− E[g(X)|W,Z = 0] a.s. (5)

Identifying g (up to location) from this implicit equation depends on our ability to invert it. To better

understand the conditions that guarantee the invertibility of equation (5) consider first the following

example for the case where X and W are discrete, which extends naturally to the general case. This

example is followed by an empirical example which clarifies how some of the requirements and ideas

translate to an actual applied problem.

Example 2.1 (X and W discrete) Denote by SX := {x1, ..., xq} and SW := {w1, ..., wl} the supports

of the distributions of X and W, respectively, with q <∞ and l <∞.
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Our identification strategy consists of inverting equation (5), which in this context can be written

as a linear system m = Ag, where, m := (m(w1), . . . ,m(wl))
′, (a′ denotes the transpose of a) with

m(w) := E[Y |Z = 1,W = w]−E[Y |Z = 0,W = w], w ∈ SW , the matrix A is given by P1 −P0, where

Pz = (pzij) is the l × q matrix with entries pzij = P[X = xj |Z = z,W = wi], i = 1, ..., l, j = 1, ..., q

and z = 0, 1, and g : = (g(x1), ..., g(xq))
′. Notice that since P0 and P1 are matrices of probabilities,

Aι = 0, where ι denotes the q × 1 vector of ones. Therefore, A is not full-rank, and thus g is not

identified from (5). However, in this context we can identify linear functionals c′g with c in a space of

dimension rank(A). In particular, if rank(A) = q − 1, then all linear functionals c′g with c′ι = 0 are

identified. In this case, all increment effects g(xh)− g(xj), h 6= j, are identified. Of course, this is only

possible if the order condition l ≥ q − 1 holds, so W needs to assume at least q − 1 different values.

In contrast, the classic nonparametric IV strategy is based on the equation

E[Y |Z] = E[g(X)|Z],

which translates into the system of equations r = Pg, where r := (E[Y |Z = 0],E[Y |Z = 1])′, and

P = (pZj) is the 2 × q matrix with entries pZj := P(X = xj |Z = z), z = 0, 1, j = 1, . . . , q. In this

classic setting the matrix P has a rank of at most 2, and so g is not identified if q > 2 (see Newey and

Powell (2003)). In fact, we can only identify linear functionals c′g where c is spanned by the two rows

of P (see Severini and Tripathi (2006, 2012)), which are not necessarily of interest.

Example 2.2 (Effects of maternal smoking on birth weight) Consider the problem of estimating the

marginal effect of the amount a woman smokes during pregnancy (average daily number of cigarettes) on

the baby’s weight at birth (see Almond and Currie (2011) and Lumley et al. (2011) for discussions of the

literature on this problem.) The following setup is entirely fictitious, but we believe that the association

of our notation to a real problem can be helpful. Suppose that smoking can take 3 values X ∈ {0, 1, 3}.
Later it will be immediate to see how the argument extends when X assumes more values. Suppose that

women are randomly divided in two groups, indexed by Z, and let the classification covariate W be the

mother’s years of education. Table 1 shows an overview of the situation. Column (I) represents the

Table 1: Identification Idea

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI)

W X̄0,W X̄1,W ∆Y(W) P0,W(0) P0,W(1) P0,W(3) P1,W(0) P1,W(1) P1,W(3) row #

6 3 2 10 0 0 1 0 1/2 1/2 (1)

10 3 2 22 0 0 1 1/5 1/5 3/5 (2)

17 3 2 30 0 0 1 1/3 0 2/3 (3)

years of education, and at first we are considering only 3 possibilities: 6, 10 and 17. Columns (II) and

(III) show the average amount smoked by the women in the control and treatment groups, respectively,

for the given number of years of education. Curiously, on average all groups reduced one cigarette
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because of the intervention. This is not a requirement of our method, we just want to show what can be

achieved even when the “first stages” do not vary at all across the different values of W . Column (IV)

shows the average difference (in grams) in the birth weight between the Z = 1 and the Z = 0 groups for

that level of education (∆Y (W ) = E[Y |Z = 1,W ] − E[Y |Z = 0,W ]). Columns (V) to (VII) show the

smoking distribution when Z = 0. In this example everyone in the Z = 0 group smokes 3 cigarettes,

which is just a simplification for explanation purposes. Columns (VIII) to (X) show the corresponding

fractions in the Z = 1 group. As we can see, each row is different. It means that Z affects each of the

education groups differently. It is this variation in the distributions that is at the heart of our approach.

It does not matter that all the average effects are the same, it would not even matter if there were no

first stage effects at all. As we show next, our ability to identify the marginal effects comes from the

fact that the instrument affected the distribution of X differently across the different W .

Following the previous example, we build the system m = Ag. Here m = ∆Y (W ), and each column

of A denotes the differences in the probabilities, e.g. column 1 is P1,W(0) − P0,W(0). The resulting

system of equations is

10 = 0.5g(1)− 0.5g(3) (6)

22 = 0.2g(0) + 0.2g(1)− 0.4g(3) (7)

30 = 0.33g(0)− 0.33g(3). (8)

Just as pointed out in the previous example, note that only two equations are linearly independent

(since 0.4(6)+0.6(8) = (7)). In fact, if we had used more values of the variable W , we could have more

equations, but it would not change the fact that at most two equations would be independent. This is

caused by the fact that the coefficients of each of these equations always add up to zero, since they are

the subtraction of probabilities, which themselves always add up to one.

Since we have 2 linearly independent equations, we cannot recover the values of g(0), g(1), and g(3),

but we can recover the value of any increment. It is straightforward to see in this example that, from

equation (6), g(3) − g(1) = −20, from equation (8), g(3) − g(0) = −90, and combining both results,

g(1)− g(0) = −70. In a situation where X assumes more values, say q, we can get all the increments

provided we have q− 1 linearly independent equations (and thus W must assume at least q− 1 values).

The discussion in Example 2.1 extends to the general case as follows. With some abuse of notation,

we write equation (5) also as

m = Ag, (9)

where now Ag := E[g(X)|W,Z = 1]−E[g(X)|W,Z = 0] is a continuous (i.e. bounded) linear operator,

A : L2(X)→ L2(W ), where henceforth, for a generic random vector ζ, L2(ζ) denotes the Hilbert space

of square-integrable functions with respect to the distribution of ζ, with support Sζ . We introduce our

identification assumption as follows. Define N (A) = {g ∈ L2(X) : Ag = 0}, the null space of A. Our

relevance condition requires that the null space of A is composed exclusively of the constant functions:

Assumption 2 (relevance) N (A) = {f ≡ c ∈ R}.
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Notice that the identification condition in Example 2.1 that rank(A) = q−1 is equivalent to Assumption

2 in the discrete support case, since dim (N (A))+rank(A) = q. The proof of the following identification

result can be found in the Appendix A.1.

Theorem 2.1 Under Assumptions 1 and 2, g is identified up to location.

In the general case, Assumption 2 is a nonparametric rank condition which is the analogue in our

setting of the L2−completeness condition required in nonparametric IV (see Newey and Powell (2003),

Blundell, Chen and Kristensen (2007), Andrews (2011) and D’Haultfoeuille (2011) for discussions on

completeness).

Note that we can also write our identification equation (5) as

C(Y,Z|W ) = C(g(X), Z|W ),

where C (V1, V2|W ) = E[(V1 − E[V1|W ]) (V2 − E[V2|W ]) |W ] is the conditional covariance of V1 and V2

given W . This way of writing equation (5) inspires the introduction of a rank condition equivalent

to Assumption 2, which we term “covariance completeness” and which naturally generalizes to cases

where Z is not binary, or the structural equation is not separable, as we show later. Next we define

covariance completeness in detail and compare it to the classical completeness used in nonparametric

IV. Some readers may prefer to skip to Examples 2.4 to 2.6, which translate the meaning of covariance

completeness to some important special cases.

Covariance Completeness. We introduce a general definition of covariance completeness and provide

examples. To refine our identification result above and provide sufficient and necessary conditions for

identification, while allowing for the possibility of prior information on the parameter space for g,

we introduce the following class of functions. Let G be a subset of L2(X) with the properties: (i) if

g1, g2 ∈ G then g1 − g2 ∈ G; (ii) if g1, g2 ∈ G then g1 + g2 ∈ G; and (iii) elements in G satisfy the

normalization restriction g(x̄) = 0 for a fixed x̄ ∈ SX . In examples where G is a subspace, conditions

(i) and (ii) hold automatically. Condition (iii) is a location normalization.

Definition 2.1 We say (X,Z) given W is G-covariance complete if for each g ∈ G

C (g(X), Z|W ) = 0 a.s. =⇒ g = 0 a.s.

When G is unrestricted (except for the location normalization) we simply say (X,Z) given W is L2-

covariance complete or simply covariance complete.

The following assumptions are sufficient for covariances to be well-defined and for the equivalence with

Assumption 2.

Assumption 3 (moments) The variable Y has bounded second moment.

Assumption 4 (overlapping) The function p(w) = E[Z|W = w] satisfies 0 < p < 1 a.s.

8



The following result follows from the definition of covariance completeness. See the proof in Appendix

A.1.

Theorem 2.2 Let Assumptions 1, 3 and 4 hold. Then, g is point-identified in G if and only if (X,Z)

given W is G-covariance complete.

To compare covariance completeness with the classic concept of L2−completeness, we define the latter

formally; see Newey and Powell (2003), Blundell, Chen and Kristensen (2007), Andrews (2011) and

D’Haultfoeuille (2011) for further discussion on completeness.

Definition 2.2 We say that the conditional distribution of R given S is F−complete if for each f ∈ F
the following holds

E[f(R)|S] = 0 a.s. =⇒ f = 0 a.s.

When F = L2(R) we simply say that the distribution of R given S is L2−complete.

The following result provides a sufficient condition for covariance completeness in terms of tradi-

tional completeness. Define q(x,w) = E[Z|X = x,W = w] and k(x,w) = q(x,w) − p(w). Define the

class of measurable functions

F = {f(x,w) = g(x)k(x,w) : g ∈ G} .

The sufficient condition is a simple implication of the definition of covariance and the law of iterated

expectations, and therefore its proof is omitted.

Proposition 2.3 (X,Z) given W is G-covariance complete if the distribution of (X,W ) given W is

F−complete.

From Proposition 2.3 a necessary nonparametric relevance condition for covariance completeness is

that

E[Z|X,W ] 6= E[Z|W ] a.s. (10)

That is, covariance completeness can be understood as a weighted completeness between the endogenous

variables X and the covariates W, and the necessary condition (10) requires that X has to be a

nonparametrically significant predictor of Z conditional on W, so that the weights k(x,w) are nonzero.

These restrictions on k can be relaxed if G includes separametric or parametric assumptions.

Remark 2.1 Covariance completeness imposes restrictions on the support of covariates relative to that

of endogeneous variables, while L2−completeness of traditional IV imposes restrictions on the support of

the instrument relative to that of endogeneous variables. In general, a necessary condition for covariance

completeness is that both X and W have the same level of complexity (e.g. both are continuous). The

following example illustrates this point and compares the two (equivalent) rank conditions.
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Example 2.3 (X and W discrete, Example 2.1 cont.) Under Assumption 4, the system m = Ag, is

equivalent to c = Cg, where c = Dm, C = DA, and D is a full-rank diagonal matrix with i-th diagonal

term p(wi)(1 − p(wi)) > 0, i = 1, ..., l. Here L2(X) can be identified with Rq. Let G be the subspace

of vectors in Rq g : = (g(x1), ..., g(xq))
′ such that g(x1) = 0 (here x̄ = x1 without loss of generality).

Then, G satisfies covariance completeness in this example iff the homogeneous system Cg = 0 has a

unique solution in G, which boils down to rank(C) = q − 1 or equivalently rank(A) = q − 1. Again,

covariance completeness requires the order condition l ≥ q − 1, so it restricts the support of covariates

W relative to that of endogenous variables X. As mentioned earlier, traditional IV requires that the

suport of the instrument is larger than q for identification of g.

For certain distributions and classes of functions G, simple conditions for covariance completeness

can be established, as the following examples illustrate.

Example 2.4 (Gaussian variables) Suppose that (X,W ) is jointly normal conditionally on a binary

IV Z, i.e.

(X,W )|Z ∼ N

((
0

0

)
,

(
1 ρZ

ρZ 1

))
.

Following Dunker, Florens, Hohage, Johannes and Mammen (2014), we can compute

E[g(X)|W = w,Z = z] = (2π)−3/4 exp

(
−w

2

2

) ∞∑
j=0

µj(ρz)E[g(X)pj(X)]
wj√
j!
,

where pj are the Hermite functions, pj(x) = (j!2π)−1/2 exp
(
−0.5x2

)
Hj(x), with Hj the j-th Hermite

polynomial, and µ(ρ) = ρ/
√

1− ρ2. Therefore,

Ag(w) = (2π)−3/4 exp

(
−w

2

2

) ∞∑
j=0

{
µj(ρ1)− µj(ρ0)

}
E[g(X)pj(X)]

wj√
j!
.

By the completeness of the Hermite polynomials, L2-covariance completeness in this context translates

into ρ1 6= ρ0. Notice that if fX|Z,W denotes the density of X conditional on Z and W , then

fX|Z=z,W=w(x) =
1√

2π(1− ρ2z)
exp

(
−(x− ρzw)2

2(1− ρ2z)

)
.

Therefore, the condition ρ1 6= ρ0 is equivalent to saying that the difference between the distribution of

X when Z = 1 and when Z = 0 varies with W .

Example 2.5 (Exponential family) To illustrate how Proposition 2.3 can be applied consider the case

where q(·) satisfies an index restriction. That is, let dw denote the dimension of W and assume

E[Z|X,W ] = E[Z|X, η(W )] for a measurable function η : Rdw → Rdη . Set a(W ) = (η(W ), p(W ))′,

and assume that a.s. the distribution of X given W is absolutely continuous with density

fX|W=w(x) = s(x, a(w))t(w) exp (µ(w)× τ(x, a(w))) ,

with s(x, a(w)) > 0, τ(x, a(w)) is one-to-one in x, and the support of µ(w) given a(w) is an open set,

then if (10) holds, covariance completeness is satisfied. This follows from an application of Theorem

2.2 in Newey and Powell (2003) and Proposition 2.3 above.
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Example 2.6 (Linear multivariate model) Suppose G = {b′X : b ∈ Rd}, so that the model is

Y = β′X + U, E[U |W,Z] = E[U |W ], (11)

where X is a d-dimensional vector which does not include a constant and Z is binary. Note that U is

not required to have zero mean, so it may include an intercept and/or functions of W. In this model,

G−covariance completeness is equivalent to a unique solution for β in the equation

E[Y |W,Z = 1]− E[Y |W,Z = 0] = β′ (E[X|W,Z = 1]− E[X|W,Z = 0]) ,

or in short (using the generic notation ∆ξ = E[ξ|W,Z = 1]− E[ξ|W,Z = 0])

∆Y = β′∆X . (12)

Hence, G−covariance completeness is equivalent to

E[∆X∆′X ] is positive definite.

It is straightforward to see why β is identifiable under this condition, since from equation (12) β =

(E[∆X∆′X ])−1 E[∆X∆Y ]. In practice, this condition requires that the “first stages” of the several ele-

ments in the vector X vary with W in a linearly independent manner. Notice that in linear models we

can relax the conditions on the complexity of W . For example, even though X is multivariate, W may

be univariate (though it must assume at least d− 1 different values).

Remark 2.2 (Adding nonseparable covariates to the model) In this section’s separable model, a nec-

essary condition is that W must be additively separable from X. It is important to notice that not all

covariates in the model need to be structurally separable from X, just those which will be used as W

in our identification approach. To better understand how to make this choice, consider the extended

model

Y = g(X,Wc) + U,

where E[U |Z,Wc,W ] = E[U |W ]. In this model the researcher chose to separate the covariates into two

groups. The variables Wc are included into the model as exogenous controls. The variables W are used

as the classification variable.

The first question is why would the researcher include Wc in the first place. In some cases it may

be important to include such controls either because of suspected nonseparable effects or because it is

hard to argue the validity of the IV unless it is conditional on Wc as well.

The next question is which variables should be used as W and which should be used as Wc. There is

a trade-off: on the one hand, W can be endogenous, while Wc must be exogenous. On the other hand,

W must be separable from X, while Wc may interact with X in arbitrary ways.

Notice that W needs to be only as complex as X, and so, for example if X is one continuous

variable, it suffices to find just one continuous covariate which can be argued to be separable from X.

The application Section 5 provides an explicit example of such considerations in an empirical problem.

Note that if we assume a semiparametric structure for g, for example if g(X,Wc) = β(Wc)
′X, then we

can often drop the exogeneity requirement for Wc (see the example below).
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Example 2.7 (Linear model with heterogeneous effects in Wc) Consider the varying coefficient model

Y = β(Wc)
′X + U, E[U |Z,Wc,W ] = E[U |Wc,W ],

where X is a d-dimensional vector. In this model, covariance completeness holds if

E[∆X(wc,W )∆′X(wc,W )] is positive definite for a.s. wc.

Under this covariance completeness assumption, we can estimate β(·) nonparametrically from local least

squares regressions. Alternatively, we could specify β(Wc) as a linear function of Wc, say β(Wc) =

β0 +β′1Wc, which results in a linear-in-parameters model with endogenous variables X and interactions

between X and Wc, which can be dealt with as in Example 2.6 above. By comparing β(·) with the

estimator obtained from β = (E[∆X∆′X ])−1 E[∆X∆Y ] we can test for heterogenous marginal effects in

Wc. In the linear specification, this can be done by simply testing if β1 = 0. Section 3 below considers

a generalization that allows for unobserved as well as observed heterogeneity of marginal effects of the

form ∂m(x, h(W, ε))/∂x at x = X, for nonparametric functions m and h.

2.2 Estimation

In this section we discuss estimation when g and E[U |W ] are linear in parameters. To see the discussion

of the estimation in the nonparametric case, refer to Appendixes A.2.1 and A.2.2. As shown in the

Appendix, the nonparametric sieve estimator is also linear in parameters, therefore the implementation

of this section is also relevant for the nonparametric case.

Our identification strategy in the linear multivariate model is based on the identity ∆Y = β′∆X as

derived in Example 2.6. This identity suggests a three-step estimator for β : Step 1, estimate ∆X by

∆̂X using regression methods; Step 2, estimate ∆Y by ∆̂Y using regression methods; and Step 3, run

a regression of ∆̂Y on ∆̂X by ordinary least squares (OLS) to obtain an estimate β̂3Step.

It turns out that this estimation strategy can be easily implemented as a TSLS. Specifically, given

a random sample {(Yi, Xi,Wi, Zi)}ni=1 of (Y,X,W,Z), we propose to estimate β with the coefficient

of the Xi on a TSLS regression of Yi onto Xi and Wi, using Zi and ZiWi as instruments for Xi, and

treating Wi as exogenous. This estimator, which we denote by β̂, can be implemented with off-the-shelf

econometric software. Additionally, the standard errors are correctly estimated as the standard errors

of the TSLS regression proposed above, without the need for any correction.

To see why β̂3Step = β̂, suppose that g(X) = β′X and E[U |W ] = α+ γ′W. Then, we can write the

model (1), by adding and subtracting E[U |W ], as

Y = α+ β′X + γ′W + u, (13)

where u = U − E[U |W ]. We can see from this representation that W is different from a classical

“control” variable, since X is still correlated with u even after controlling for W . Note that our

validity condition, E[U |W,Z] = E[U |W ], can be equivalently written as

E[u|W,Z] = 0 a.s., (14)
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and thus β in (13) can be identified as in a standard instrumental variable model, and estimated with a

TSLS regression as β̂ described above, provided the relevance condition holds; see Theorem 2.4 below.

Explicitly, let the “first-stage” regression fitted value be Ê[X|W,Z] = α̂0X+α̂1XZ+α̂′2XW+α̂′3XWZ

and the “reduced-form” fitted value be Ê[Y |W,Z] = α̂0Y + α̂1Y Z + α̂′2YW + α̂′3YWZ, then it is well

known that the TSLS estimator is related to the reduced form fits through the equation

Ê[Y |W,Z] = α̂+ β̂′Ê[X|W,Z] + γ̂′W.

If we evaluate this empirical equation at Z = 1 and Z = 0 and subtract, we arrive at

∆̂Y = β̂′∆̂X .

Thus, by definition of OLS, β̂3Step must be equal to β̂.

The next result shows the consistency of β̂ under our identification assumptions. In particular, the

result shows that endogeneity of W does not affect the consistency of the TSLS estimator β̂. Its proof

can be found in the Appendix A.1.

Theorem 2.4 Let Assumptions 1, 3, 4 and (14) hold. If (X,Z) given W is G-covariance complete

with G = {b′X : b ∈ Rd} then
√
n(β̂ − β)→d N (0,Σ) ,

where Σ is the classical TSLS asymptotic variance (which is assumed to be finite).

Remark 2.3 Note that the TSLS can be applied without any modification in the cases when Z is not

binary.

Remark 2.4 The same arguments as those used in the proof of Theorem 2.4 show that, when X is

univariate, the standard TSLS that treats W as exogenous but does not consider interactions is in fact

robust to endogeneity of W under our conditions.

Remark 2.5 Our TSLS will be consistent for β even when E[X|Z,W ] is non-linear, as long as g(X)

is a linear function of X and the conditions above hold. The proof of Theorem 2.4 shows formally this

robust property of the TSLS, which is later confirmed in simulations.

Remark 2.6 In the parametric setting of this section, the relevance condition is a standard TSLS

rank condition that can be tested by traditional methods. The order condition here is that dimension

of W needs to be at least d − 1 (the dimension of X minus one). Therefore, if there are several

variables which satisfy the identification conditions, we recommend that W be chosen as the variable

(or variables) for which Z and ZW make up the strongest instruments. Additionally, comparisons of

results using different W are an informal test of the functional form assumption.

13



3 Nonseparable Case

This section extends our previous identification strategy to the nonseparable model (3), repeated here

for convenience:

Y = m(X,U), (15)

where m(x, u) is a strictly increasing function in u, for each x in SX . The following example motivates

this model in an economic setting.

Example 3.1 Consider the following extension of the model in Imbens and Newey (2009) (where W

was absent). Let Y denote some outcome such as firm revenue or individual lifetime earnings. Let X

be inputs chosen by the agent, and let h(W, ε) represent other inputs that are at most partially observed

by agents (W is observed but ε is not). The agent chooses X by maximizing expected outcome, minus

the cost associated with choosing X given her information set. At the time of the decision on X, the

agent already observes W, which in turn was used to produce the inputs h(W, ε). The variable W can be

endogenous in the sense of being dependent on ε (as is likely to be the case, since W and ε are inputs

used to produce h(W, ε)). In addition, the agent also observes a cost shifter Z and a vector of shocks

εx (proxies for ε observed by the agent, but not by the econometrician). The cost function is C(x,w, z).

The input X is the solution to the economic agent’s problem

X = s(W,Z, εx) ≡ arg max
x∗
{E[m(x∗, h(W, ε))|W, εx]− C(x∗,W,Z)} .

The final outcome is given by Y = m(X,h(W, ε)). Here U = h(W, ε) is the partially unobserved input.

What is special about this setup is that (i) production is monotonic in U ; (ii) there are some observed

factors W and some unobserved factors ε which only enter the production function as components of

one of its inputs, h, and (iii) there exist another observable variable Z which influences the choice of

X (a cost shifter), but is excluded from the production of Y , in the sense that it is neither a direct

input in the production of Y , nor a direct or indirect input in the production of h (Z ⊥ ε|W ). As we

will show below, properties (i) to (iii) are fundamental to our identification strategy. Properties (i) and

(ii) imply the structural separability in covariates that we need for our approach. The fact that prior

imputs W do not enter final production in arbitrary ways helps to justify our structural separability

assumption, and imply the type of exclusion restrictions we exploit. In (iii) we further require that first

stages are heterogenous. Informally speaking, the cross derivative of s(w, z, εx) in w and z is non-zero.

Conditions for this are hard to find analytically, but this condition is likely to hold if the marginal cost

has cross variation in w and z, i.e. the cross derivative ∂3C(x,w, z)/∂x∂w∂z is non-zero.

We now investigate identification in the nonseparable model (see how to implement our method

in the nonseparable case in Appendix A.2.3). We show that a similar identification strategy as used

for separable models allows for nonparametric identification in this more general setting. Suppose

that Assumption 1 holds. Let m−1 denote the inverse of m with respect to the u argument, so that

m−1(Y,X) = U a.s., then

C
(
m−1(Y,X), Z|W

)
= 0 a.s. (16)
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We note that these restrictions are valid for a general instrument Z, not necessarily binary. It turns

out that a simple reparametrization transforms the nonseparable case into a problem with a similar

mathematical structure as that of the separable case, but where (Y,X) replaces X. That is, defining

g(Y,X) := Y −m−1(Y,X),

the homogeneous system in (16) can be written as

C (Y,Z|W ) = C (g(Y,X), Z|W ) . (17)

Then, identifying g from this equation is equivalent to identifying m in (16). In the nonseparable case,

however, under the standard conditional independence assumption considered in the literature

Z ⊥ U |W, (18)

there is an additional normalization assumption we need to impose. Following Matzkin (2003), we

introduce the following normalization m−1(y, x̄) = y for all y ∈ SY and some known x̄ ∈ SX , which

after our reparametrization is equivalent to the convenient g(y, x̄) = 0.

Thus, we introduce formally our identification conditions for the nonseparable case. Let G be a

subset of L2(Y,X) with the properties: (i) if g1, g2 ∈ G then g1 − g2 ∈ G; and (ii) elements in G satisfy

the normalization restrictions, i.e. if g ∈ G then g(y, x̄) = 0. Note that the normalization rules out the

trivial solution g(y, x) = y of (17).

Definition 3.1 We say (Y,X,Z) given W is G-covariance complete if for each g ∈ G

Cov (g(Y,X), Z|W ) = 0 =⇒ g = 0 a.s.

The proof of the next theorem is the same as that of Theorem 2.2 and therefore is omitted.

Theorem 3.1 Suppose (15), (18) and Assumption 3 hold. Then, g is point-identified in G if (Y,X,Z)

given W is G-covariance complete.

Remark 3.1 Theorem 3.1 provides sufficient conditions for identification in the nonseparable case.

These conditions are, however, not necessary for two reasons. First, these conditions do not exploit

that y − g(y, x) (i.e. m−1(y, x)) is monotonic in y, for each x ∈ SX . Second, they do not exploit

higher order implications from the conditional independence (18). A method to incorporate the latter is

described in the Appendix A.3. Thus, identification of g may hold under more general conditions than

those given in Theorem 3.1.

We extend Example 2.1 to the nonseparable case. For simplicity, we consider the binary IV case, other

cases can be treated similarly.

Example 3.2 (W discrete) Suppose Z ∈ {0, 1} is a binary instrument. To simplify notation denote

V = (Y,X) and its support by SV := {v1, ..., vq}, and let SW := {w1, ..., wl} denote the support of
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W , with q < ∞ and l < ∞. Without loss of generally the normalization restrictions are g(vj) = 0,

1 ≤ j ≤ qy, where qy denotes the cardinality of the support of Y. Likewise, let qx denote the cardinality

of the support of X, so q = qyqx. Covariance completeness and the normalization restrictions imply the

homogenous system of linear equations

Bg =

[
B1

B2

]
g = 0,

where with some abuse of notation, we denote by g = (g(v1), ..., g(vq))
′ the q-dimensional vector of

parameters of interest, B1 is a (l + qy)× q matrix with ij − th element

b1ij = P[V = vj |Z = 1,W = wi]− P[V = vj |Z = 0,W = wi],

and B2 =
[
Iqy 0

]
is a qy × q matrix, with Iqy denoting the identity matrix of dimension qy. In the

discrete case a necessary and sufficient condition for covariance completeness when G is unrestricted

(beyond the normalization constraints) is then

rank (B) = q − 1.

The order condition is l ≥ qy(qx − 2) − 1. If covariance completeness fails, still our method provides

identification power depending on the value of rank (B) in qy ≤ rank (B) < q. With our method we

can identify linear functionals c′g with c in a space of dimension rank(B).

In general, necessary conditions for covariance completeness in the nonparametric nonseparable case

are that (Y,X) and W have the same level of complexity. For example, if Y is continuous but X is

discrete, then W needs to be continuous, which is a different requirement than the one in separable

models, where the support of Y did not play a role.

When the model is nonseparable but the assumption of monotonicity does not hold, our identifica-

tion strategy still identifies a weighted marginal effect, as shown in the following example.

Example 3.3 (Random coefficients). Consider the random coefficient model

Y = β0 + β1X,

X = α0 + α1Z,

where now β = (β0, β1)
′ and α = (α0, α1)

′ are random coefficients, satisfying with θ = (β′, α′)′,

Cov (θ, Z|W ) = 0 a.s.

Define the conditional variance σ2(W ) = V ar (Z|W ) , and for a generic random variable ζ,

∆ζ =
C (ζ, Z|W )

σ2(W )
.

Then, in the random coefficients model above

∆Y = E[α1β1|W ]
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and

∆X = E[α1|W ].

Therefore, under covariance completeness

β = E[w(W,α1)β1],

where

w(W,α1) =
E[α1|W ]α1

E[E[α1|W ]α1]

are weights that integrate up to one. Therefore, our estimand has an interpretation as a weighted

marginal effect in this random coefficients model. Note that without further assumptions the weights

can be negative, although they are conditionally positive in the sense that E[w(W,α1)|W ] > 0 a.s. If

α1 ⊥ β1|W then β = E[β1].

4 Monte Carlo Simulations

This Section investigates the finite sample performance of our TSLS proposed in Section 2.2. In

particular, we aim to investigate the sensitivity of our TSLS to the endogeneity of covariates and

misspecification of the first stages.

We begin with a linear model with three endogenous variables and one binary instrument:

Y = α+ β1X1 + β2X2 + γWW + u,

W = αWu+ UW ,

X1 = α01 + α11Z + α21W + α31Z ·W + U1,

X2 = α02 + α12Z + α22W + α32Z ·W + U2,

where (u, UW , U1, U2) are independent standard normal random variables independent of Z, which is

distributed as Bernoulli random variable with probability p = 0.5. The classical order condition of

standard IV does not hold in this model, and hence, classical IV is unable to identify the marginal

effects β1 and β2. For identification of the marginal effects, our method requires that Assumption

2 holds, which in this case is equivalent to E[∆X∆′X ] being positive definite (see Example 2.6) or

explicitly

det

∣∣∣∣∣ α11 α31

α12 α32

∣∣∣∣∣ 6= 0.

The parameters in the structural equation are set at α = 0, β1 = 1, β2 = 2 and γW = 1. We set

α01 = α02 = α21 = α22 = 0, and αW = 1, so W is endogenous. Table 2 provides the average bias

and Mean Squared Error (MSE) based on 10,000 Monte Carlo simulations, sample sizes n = 100, 300,

500 and 1000, and several values for (α11, α31, α12, α32). There are three variables in the structural

equation and three in each reduced form equation, and therefore, the TSLS estimator is an IV estimator

that treats Z and the interaction term Z ·W as instruments. We note that Table 2 does not offer a
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comparison with existing methods such as IV because they are not applicable (e.g. classical IV’s order

condition fails).

We observe a satisfactory bias performance uniformly over all parameter values. For the first two

cases (α11 = 1, α31 = 0, α12 = 0, α32 = 1) and (α11 = 0, α31 = 1, α12 = 1, α32 = 0) the sample

variance of the estimators is already small for small sample sizes as 100, and it decreases to zero

with the sample size, in accordance with the consistency of the estimator. For the parameter values

(α11 = 1.25, α31 = 1, α12 = 1, α32 = 1.25) identification is much weaker, and larger sample sizes are

required for a good performance, as expected. Overall, these results provide supporting evidence of

the robustness of our identification strategy to the endogeneity of W.

Table 2: IV Case

α11 α31 α12 α32 n Bias(β1) MSE(β1) Bias(β2) MSE(β2)

1 0 0 1

100 -0.0041 0.0252 0.0013 0.0123

300 0.0015 0.0070 0.0000 0.0034

500 -0.0014 0.0041 0.0000 0.0020

1000 0.0001 0.0020 0.0003 0.0010

0 1 1 0

100 -0.0002 0.0121 0.0009 0.0243

300 -0.0004 0.0035 0.0002 0.0070

500 0.0002 0.0020 0.0000 0.0041

1000 -0.0001 0.0010 0.0004 0.0020

1.25 1 1 1.25

100 0.1247 259.7900 -0.0897 193.4900

300 0.0528 11.1740 -0.0434 7.2709

500 -0.0065 0.2693 0.0053 0.2085

1000 0.0007 0.0157 -0.0003 0.0136

10000 Monte Carlo Simulations.

In the second set of simulations we show how the estimator performs when the first stages are not

linear. Consider now the DGP:

Y = α+ β1D + β2D1(D > 0) + γWW + u,

W = αWu+ UW ,

D = αdW + γdZ ·W + Ud,

where (u, UW , Ud) are independent standard normal random variables, independent of Z, which is again

distributed as Bernoulli with probability p = 0.5. This corresponds to a linear model

Y = α+ β′0X + U,
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where β0 = (β1, β2)
′, X = (D,D1(D > 0))′ and U = γWW + u. Here

E[D|W,Z = 1]− E[D|W,Z = 0] = γdW,

so γd controls the identification strength. Since there is only one binary IV, Z, standard IV methods

cannot be applied in this example. Note also that under this DGP the difference of conditional means

∆X is nonlinear in W in its second component. In Remark 2.5 we discuss that our estimator is still

consistent, and we illustrate this in the present experiment. This shows the robustness of our estimator

to the failure of the linearity assumption in the conditional mean E[X|W,Z].

Table 3 provides the average bias and MSE based on 10000 Monte Carlo simulations. In all cases

α = 0, γW = 1, β1 = 1, β2 = 2, αW = 1, αd = 1. We consider two levels of identification, “moderate”

(γd = 1) and “high” (γd = 2).

Table 3: IV Case - Misspecified Model

γd n Bias(β1) MSE(β1) Bias(β2) MSE(β2)

1

100 0.00107 0.48403 -0.01446 2.64655

300 -0.00067 0.01124 0.00039 0.03006

500 0.00001 0.00638 0.00042 0.01664

1000 0.00003 0.00303 -0.00072 0.00802

2

100 -0.00160 0.00924 0.00320 0.02321

300 -0.00065 0.00252 0.00089 0.00645

500 0.00000 0.00148 0.00024 0.00385

1000 0.00031 0.00074 -0.00019 0.00189

10000 Monte Carlo Simulations.

The reported results show that the estimator is still consistent even though the conditional means

are not linear. Estimates of β2 require larger sample sizes than those of β1 to achieve the same level

of precision and bias performance. There is an efficiency loss in estimating β2 relative to β1, probably

due to the nonlinearities in E[D1(D > 0)|W,Z = j] for j = 0, 1. As expected, the results improve with

the identification strength. In sum, these simulations provide finite sample evidence of a satisfactory

performance of the TSLS estimator and its robustness to the endogeneity of the covariates and the

nonlinearity of the first stages.

5 An Application to the Estimation of the Effects of Air Pollution

on House Prices

We apply our identification strategy to the problem of estimating the effects of pollution on house

prices, as in Chay and Greenstone (2005). The concern with endogeneity in this problem is warranted,
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since counties may differ from each other in many ways which may not be accounted by their observable

characteristics and amenities. Chay and Greenstone base their identification strategy on an instrumen-

tal variable approach, which takes advantage of the quasi-experiment generated by the Clean Air Act

around the time it was first implemented.

As explained in Remark 2.2, even when using a separable model, it is not necessary that all the

covariates be separable from X in the model. Let Y denote the change between 1970 and 1980 in the

logs of the county’s median property values, X is the change between 1970 and 1980 in the geometric

mean total suspended particulates (TSP) across all monitors in the county, Z is the county’s attainment

status in 1975 according to the Clean Air Act, and Wc and W denote vectors of further variables which

are used by Chay and Greenstone as controls in their model specification (2) (Chay and Greenstone

(2005), p. 411). We can estimate a model

Y = g(X,Wc) + U,

with the exclusion restriction E[U |Z,Wc,W ] = E[U |W ], thus allowing a set of covariates Wc to be

non-separable from X as long as they are exogenous. We can generalize Chay and Greenstone (2005)’s

approach in two directions. First, even though the instrument Z is binary we are able to identify g

when it is more general than simply linear. Second, since W in our approach may be endogenous, the

covariates which we choose to use as W need no longer be assumed exogenous.

In choosing which covariates are part of W , we must be concerned with their separability from X.

The issue is that counties’ preference for pollution may differ as a function of some of the covariates.

Because of this, it is unadvisable to use covariates such as, for example, the percent change in income,

education levels, racial composition and unemployment in the county population, as these could be

reasonably assumed to influence the population’s taste in pollution. The covariates which we believe are

most likely to be separable are the county’s changes between 1970 and 1980 in the percent spending in

highways, health and education. We considered estimators of our method with each of those variables

separately and also together, as can be seen in Table 4.

The estimation is done using the same data set as in Chay and Greenstone (2005) as well as the

exact same covariate specification. The first column in Table 4 shows the results of a standard IV

estimation of the effects of pollution change, which is what is done in Chay and Greenstone (2005).

The replicated results are, not surprisingly, identical to that paper. Columns A to D show the results of

our estimation approach using different variables as the separable classification covariate W . Row I uses

a specification without exogenous control variables. Although in specification I our results are of similar

magnitude to the standard IV, they are slightly smaller and vary depending on the covariate. They

are particularly smaller when all three covariates are used. We believe that this happens because when

covariates Wc are not used, the classic IV operates under the assumption that the IV is unconditionally

valid, while our estimator operates under the assumption that the IV is valid only conditional on the

separable covariate (E[U |Z,W ] = E[U |W ]). That said, Chay and Greenstone never suppose that their

IV is valid, but only that it is valid conditional on controls. Row II shows the results conditional

on controls. There the identifying assumption of the classic IV approach is that E[U |Z,Wc,W ] = 0,
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Table 4: Estimation Results - Linear Case, Binary IV

IV A B C D

I
-.347 -.340 -.327 -.317 -.327

(.140) (.138) (.136) (.134) (.135)

II
-.203 -.208 -.202 -.203 -.208

(.093) (.094) (.093) (.093) (.093)

Table 4: Columns A to D use our approach with Z equal to the change from 1970 to 1980 in the % spending on highways

(A), health (B), and education (C). In column (D), W is the vector of all three variables. Specification I has no exogenous

covariates Wc. Specification II uses as exogenous covariates Wc the exact same specification as in Chay and Greenstone

(2005) excluding the covariates which we are using as W .

while our identifying assumption is that E[U |Z,Wc,W ] = E[U |W ]. Nevertheless, our results generally

confirm the estimates found by Chay and Greenstone.

As a robustness check of the separability of the variables we chose as W , we ran the same regressions

using each of the other covariates in the model as W instead. The results are extremely similar and

thus confirm the separability assumption. The 5 covariates which yielded the most different results are

the number of houses built between 1970 and 1980, the rate of vacancies in 1980, change in income per-

capita, the change in government revenue per-capita and the change in the fraction of the population

with at least a college degree, but even in these cases the differences between our estimates and -.203

was always less than .1. In comparison, Chay and Greenston’s RDD estimate is -.275, which they

consider to be a confirmation of their results. We note that the observed robustness of our method to

the specification of W in this application can be theoretically justified by the overidentification of our

method even in cases where classical IV just-identifies.

The comparative advantages of our method are better showcased in the nonlinear case, where

the classical instrumental variables methods cannot identify marginal effects with a single instrumental

variable. In order to compare our results to Chay and Greenstone’s we maintain their specification in all

aspects, but allowX to have richer marginal effects on Y . The model is thus Y = g(X)+W ′cγc+W
′γ+U ,

assuming that E[U |Z,Wc,W ] = E[U |W ], where g is a connected piecewise linear function and Wc is

the entire specification of controls in Chay and Greenstone (2005) except for the variables in W . We

recognize that this model is also separable in Wc, but the separability of Wc is incidental, and not

fundamental for the identification, as only the terms in W are used as classification covariates in our

method. This model is also consistent with Chay and Greenstone’s own specification, which provides

a closer comparison with their results. Figure 1 has three linear pieces, which connect at the ter-

ciles of the distribution of X. Hence, we can write g(x) = a1ψ
3
1(x) + a2ψ

3
2(x) + a3ψ

3
3(x), where the

ψ3
j (x) are the elements of a B-spline basis of degree 1 and smoothness 0 with knots at the terciles

just described. In practice this is the same as if we had three endogenous variables ψ3
1(X), ψ3

2(X)
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Figure 1: 3 pieces
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Figure 2: 4 pieces
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Figure 3: 5 pieces
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Figure 4: 6 pieces
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Figures 1 to 4: Nonlinear case – IV approach. Curves are the results of our approach with exogenous covariates,

and Z as in column D in Table 4. The domain of each piece is determined by the quantiles. For instance, Figure 2’s

pieces connect at the 25th, 50t and 75th quantiles of the change in the geometric Mean TSP between 1970 and 1980.

and ψ3
3(X). For W we used the three variables in column D in Table 4 (call them High, HealZh

and Educ) expanded into the elements of the B-spline basis. So, with some abuse of notation W =

(ψ3
1(High), ψ3

2(High), ψ3
3(High), ψ3

1(HealZh), ψ3
2(HealZh), ψ3

3(HealZh), ψ3
1(Educ), ψ3

2(Educ), ψ3
3(Educ))′.

Figures 2 to 4 are obtained analogously.

In Figure 1 the standard errors are calculated as the standard error of the predicted ĝ(x) =

â1ψ
3
1(x) + â2ψ

3
2(x) + â3ψ

3
3(x), so SE(ĝ(x)) = (ψ3

1(x), ψ3
2(x), ψ3

3(x))′Ω(ψ3
1(x), ψ3

2(x), ψ3
3(x)), where Ω

is the estimated covariance matrix of (â1, â2, â3)
′. In a pre-packaged software the standard errors can

be obtained directly as the standard errors of the predicted g. Standard errors in Figures 2 to 4 are

obtained analogously.

Our results qualitatively confirm the findings of the linear case, but it is important to notice that

the effect may be even more negative than predicted in the linear case in the majority of the domain.

Also, interestingly, for an important part of the domain the effect seems to go in the opposite direction.

In fact, for small reductions in pollution, all regressions show derivatives which are not only positive,
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but rather high.

Figures 1 to 4 are representative of the patterns we found when we tried other strategies. For exam-

ple, we also used as W each of the elements used in columns A to C in Table 4 separately (i.e. for g with

three pieces we did W =
(
ψ3
1(High), ψ3

2(High), ψ3
3(High)

)′
, and we also expanded the elements of W in

other ways, for example into two piece B-splines (W = (ψ2
1(High), ψ2

2(High), ψ2
1(HealZh), ψ2

2(HealZh),

ψ2
1(Educ), ψ2

2(Educ))′), four piece B-splines, etc., all with very similar results. The standard errors get

substantially larger as we increase the number of pieces in g, but they are not affected (and seem in

fact to decrease) as we increase the number of elements in W .

Our application on the effect of air pollution on house prices confirms the findings of Chay and

Greenstone (2005) when a constant marginal effect model is considered, but also uncovers substantial

heterogeneity in the effect of pollution on house prices when richer marginal effects are entertained. The

impact of air quality on house prices is much larger for counties that significantly change their behaviour

as a result of the Clean Air Act than for other counties that experience a minor decrease or an increase

in pollution during the 1970-1980 period. Thus, our results are consistent with a nonparametric local

average treatment effect interpretation where for the population of compliers the marginal effect is

larger than the overall average marginal effect (averaged over the whole population) documented in

Chay and Greenstone (2005).

6 Conclusions

In this paper we have proposed a strategy to identify marginal effects of “complex” variables using a

lower dimension IV, in the presence of other possible endogenous covariates. The strategy hinges on

the heterogeneity of the “first stages” and a structural separability of some covariates, and it can be

extended to nonseparable models with unobserved marginal effects. It can be applied to parametric,

semiparametric and nonparametric settings. In models that are linear in parameters (which also include

nonparamatric models estimated by sieves), the identification strategy can be implemented with a

simple TSLS estimator that treats the covariates as if they were exogenous, and runs a first stage with

interactions between the Binary IV and the covariates. Thus, our identification strategy can be readily

implemented with off-the-shelf econometric software. Monte Carlo simulations show that this TSLS

estimator performs well in practice, and it is robust to endogeneity of covariates and misspecification

of the first stage linear conditional expectation.

There are several extensions of our methods that deserve further investigation. First, as the first

version of this paper shows, the proposed methods can be extended to the Regression Discontinuity

Design (RDD) setting. In that setting a practically convenient semiparametric estimator is proposed

that uses a varying coefficients specification of the first stages. Identification and semiparametric

estimation in the RDD setting will be investigated in a companion paper.
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A Appendix

A.1 Proofs of the Main Results

Proof of Theorem 2.1: Note that Ag̃ = m, with g̃(X) = g(X)− E[g(X)] and A is invertible on the

orthocomplement of N (A), which by Assumption 2 is given by N⊥ = {λ ∈ G : E[λ(X)] = 0}. Thus,

since g̃ ∈ N⊥ it holds that g̃ = A−1m and therefore g̃ is identified. �

Proof of Theorem 2.2: Note that under Assumption 4, the equation m = Ag is equivalent to

C (Y,Z|W ) = C (g(X), Z|W ) . (19)

Suppose (X,Z) given W is G-covariance complete and let g1 ∈ G such that

C (Y,Z|W ) = C (g1(X), Z|W ) a.s.

Thus, C (g1(X)− g0(X), Z|W ) = 0 a.s. Then, property (i) above and covariance completeness imply

g0 = g1 a.s. This proves identification. The reciprocal also holds. Suppose that (X,Z) given W is

not G-covariance complete, then we can find g1 ∈ G, g1 6= 0, such that C (g1(X), Z|W ) = 0. Then,

identification of g0 in G fails, because g2 ≡ g0 + g1 ∈ G by property (ii) above and g2 satisfies (19). �

Proof of Theorem 2.4: We prove the consistency of the TSLS estimator. Its asymptotic distribu-

tion follows standard arguments, which are therefore omitted. TSLS identifies the coefficients of the

regression of Y on a constant, X∗ and W, where X∗ is the population fitted value

X∗ = α0X + α1XZ + α′2XW + α′3XWZ.

By the Frisch-Waugh-Lowell Theorem, the slope of X∗, say β∗, is given by

β∗ =
(
E[ΠWΠ′W ]

)−1 E[ΠWY ],

where ΠW = X∗ − E[X∗|W ] = E[X|Z,W ] − E[X|W ]. We prove that is legitimate to take the inverse

of E[ΠWΠ′W ] under our conditions, by showing that E[ΠWΠ′W ] is invertible if and only if E[∆X∆′X ] is

invertible. To see that, suppose E[∆X∆′X ] is singular. Then, there exists a λ 6= 0 such that, a.s.

E[λ′X|Z = 1,W ] = E[λ′X|Z = 0,W ].

Then,

E[λ′X|Z,W ] = E[λ′X|W ],

and therefore, λ′ΠW = 0 a.s. (i.e. E[ΠWΠ′W ] is singular). The reciprocal follows the same arguments.

Then, using that E[ΠW ] = E[ΠWW ] = E[ΠWu] = 0, and substituting (13) into β∗, yields

β∗ =
(
E[ΠWΠ′W ]

)−1 E[ΠWX
′]β

=
(
E[ΠWΠ′W ]

)−1 E[ΠWE[X ′|Z,W ]]β

= β,
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thereby proving the consistency of the TSLS for β. We note that the arguments above do not depend

on the linearity of E[X|Z,W ], as we can replace the expectation operator above by the linear projection

operator without affecting the conclusions. That is, with L[X|W ] denoting the linear projection of X on

W (and similarly for other variables), it follows that X∗ = L[X|Z,W,ZW ] and ΠW = X∗ − L[X∗|W ].

Then, write

Y = α+ β′X + γ′W + u,

where u = U − E[U |W ] and E[U |W ] = α + γ′W. Then, using E[ΠW ] = E[ΠWW ] = E[ΠWu] = 0, we

obtain

β∗ =
(
E[ΠWΠ′W ]

)−1 E[ΠWX
′]β

=
(
E[ΠWΠ′W ]

)−1 E[ΠWL[X ′|Z,W,ZW ]]β

= β,

This shows the robustness of the TSLS to misspecification of the first stages. �

A.2 Nonparametric Estimators

A.2.1 Separable and Binary IV Case

We first introduce some notation that will be used throughout this Section. Henceforth, A′, rank(A),

A−, T r(A) and |A| := (Tr(A′A))1/2 denote the transpose, rank, Moore-Penrose generalized inverse,

trace and the Euclidean norm of a matrix A, respectively. For generic random vectors ζ and ξ, let

Fζ and Fζ/ξ be the cumulative distribution function (cdf) and conditional cdf of ζ and ζ given ξ,

respectively. Denote the corresponding densities with respect to a σ-finite measure µ by fζ and fζ/ξ.

Unless otherwise stated, the underlying measure will be the Lebesgue measure. Let Sζ denote the

support of ζ. Let L2(ζ) denote the Hilbert space with inner product 〈h, g〉 :=
∫
f(x)g(x)dFζ(x) and

the corresponding norm ‖g‖22 := 〈g, g〉. Henceforth, sometimes we drop the domain of integration for

simplicity of notation. For a linear operator K : L2(X)→ L2(Y ), denote the subspaces R(K) := {f ∈
L2(Y ) : ∃s ∈ L2(X),Ks = f} and N (K) := {f ∈ L2(X) : Kf = 0}. Let D(K) denote the domain of

definition of K. Let K∗ denote the adjoint operator of K. We will use some basic results from operator

theory and Hilbert spaces. See Carrasco, Florens and Renault (2006) for an excellent review of these

results.

Equation (9) provides an integral equation of the first kind that can be used for estimating g.

Related estimators have been proposed before in Newey and Powell (2003), Hall and Horowitz (2005),

Blundell, Chen and Kristensen (2007), Darolles, Fan, Florens and Renault (2011), Horowitz (2011),

Chen and Pouzo (2012) and Santos (2012), to mention just a few. Here, we follow closely Blundell,

Chen and Kristensen (2007). Although, strictly speaking, our model is not given by a conditional

moment restriction on a unique set of covariates, we can easily adapt the existing results to make them

applicable in our setting. For simplicity, we focus here on the univariate W and X case.

There are many nonparametric methods that can be used to estimate m and A. Here we follow

Blundell, Chen and Kristensen (2007) and use a sieve OLS estimator (SLS), see also Ai and Chen
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(2003) and Newey and Powell (2003). Optimally weighted estimators can be obtained applying ideas in

Blundell, Chen and Kristensen (2007). We assume we have a random (i.e. independent and identically

distributed, in short iid) sample {(Yi, Xi,Wi, Zi)}ni=1 of size n ≥ 1, with the same distribution as the

fourth-dimensional vector (Y,X,W,Z). We assume g is in a suitable space of smooth functions. Suppose

SX is a bounded interval of R, with non-empty interior. For any smooth function h : SX ⊂ R→ R and

some r > 0, let [r] be the largest integer smaller than r, and

‖h‖∞,r := max
j≤η

sup
x∈SX

∣∣∇jh(x)
∣∣+ sup

x 6=x′

∣∣∇[r]h(x)−∇[r]h(x′)
∣∣

|x− x′|r−[r]
.

Further, let Crc (SX) be the set of all continuous functions h with ‖h‖∞,r ≤ c. Since the constant c

is irrelevant for our results, we drop the dependence on c and denote Cr(SX). We shall assume that

g ∈ Cr(SX) for some r and approximate Cr(SX) with a sieve space Gn satisfying some conditions

below. Define kn = dim(Gn). Given an integer s > 0 define the Sobolev norm ‖h‖2s :=
∑s

l=0

∥∥h(s)∥∥2
2
,

where h(s)(x) := ∂sh(x)/∂xs, with h(0) ≡ h.
We approximatemz(w) ≡ m(w, z) := E[Y |W = w,Z = z] by the function m̃(w, z) :=

∑
j∈Jnmzjp0j(w, z),

where p0j are some known basis functions and Jn := # (Jn) → ∞ as n → ∞. We write m̃(w, z) =

pJn(w, z)′mJn(z), where pJn(w, z) = (p01(w, z), ..., p0Jn(w, z))′ and mJn(z) = (mz1, ...,mzJn). Define

P := (pJn(w1, z1), ..., p
Jn(wn, zn))′. Then, the SLS is

m̂(w, z) = pJn(w, z)′(P ′P )−
n∑
i=1

pJn(Wi, Zi)Yi.

More precisely, we take pJn(w, z) = (BJ2n(w), z ·BJ2n(w)), where BJ2n(w) is a J2n ·1 vector of univariate

B-splines or polynomial splines and Jn = 2J2n. We define m̂(w) := m̂(w, 1)− m̂(w, 0).

Similarly, for a fixed g, we consider the sieve estimator of Ag as Âg = Â1g − Â0g, where

Âzg = pJn(w, z)′(P ′P )−
n∑
i=1

pJn(Wi, Zi)g(Xi).

Finally, the SLS for g is given by the solution of

ĝn = arg min
g∈Gn

1

n

n∑
i=1

(
m̂(Wi)− Âg(Wi)

)2
.

We assume the sieve space Gn is of the form

Gn = {gn : SX → R, sup
x
|gn(x)| < c, sup

x

∣∣∣∇[r]gn(x)
∣∣∣ < c

gn(x) = ψkn(x)′Π, gn(x̄) = 0},

where ψkn(·) is a kn × 1 vector of known basis that are at least γ = ([r] + 1) times differentiable

and Π is a kn × 1 vector of coefficients to be estimated. In the application we use B-splines for ψkn .

Blundell, Chen and Kristensen (2007) discussed practical ways to incorporate the constraints into the

computation of ĝn. For large samples the unconstrained estimator performs well. Note that gn(x̄) = 0

is a normalization restriction (location), where x̄ is an arbitrary point in SX .
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The following sieve measure of ill-posedness plays a crucial role in the asymptotic theory of sieve

estimators, see Blundell, Chen and Kristensen (2007),

τn := sup
g∈Gn

‖g‖∥∥(A∗A)1/2g
∥∥ .

Consider the following assumptions, which are the same as in Blundell, Chen and Kristensen (2007),

and are discussed extensively there.

Assumption 5 Suppose that

1. The data {(Yi, Xi,Wi, Zi)}ni=1 are iid and Assumption 2 holds.

2. (i) g ∈ Cr(SX) for r > 1/2 and g(x̄) = 0; (ii) E[|X|2a] <∞ for some a > r.

3. For z = 0, 1, mz ∈ Crm(SW ) with rm > 1/2 and E[gn(X)|W = ·, Z = z] ∈ Crm(SW ) for any

gn ∈ Gn.

4. (i) The smallest and the largest eigenvalues of E[BJ2n(W ) · BJ2n(W )′] are bounded and bounded

away from zero for each J2n; (ii) BJ2n(W ) is a B-spline basis of order γ > rm > 1/2; (iii) the

density of W is continuous, bounded, and bounded away from zero over its support SW , which is

a compact interval with non-empty interior.

5. (i) kn →∞, J2n/n→ 0; (ii) limn→∞ (J2n/kn) = c0 > 1 and limn→∞
(
k2n/n

)
= 0.

6. There is gn ∈ Gn such that τ2n ‖A(g − gn)‖2 ≤ C ‖g − gn‖2.

The following Theorem establishes rates for ‖ĝn − g‖ . Its proof is the same as that of Theorem 2 in

Blundell, Chen and Kristensen (2007), hence it is omitted.

Theorem A.1 Let Assumption 5 hold. Then,

‖ĝn − g‖ = OP

(
k−rn + τn ·

√
kn
n

)
.

A.2.2 Separable and General IV Case: Implementation as TSLS

It turns out that the nonparametric estimator discussed earlier can be applied to a general instrument,

not necessarily binary, and more importantly can be implemented as a TSLS, similar to that used in

the parametric setting. For simplicty of exposition we consider the univariate case for X and W (the

multivariate case is analogous and only introduces more notation). The structural equation is now

Y = α+ β′ψkn(X) + γ′BJn(W ) + εn, (20)

where ψkn(·) and BJn(w) are a kn× 1 and a Jn× 1 vector, respectively, of known basis (e.g. univariate

B-splines or polynomial splines) satisfying some conditions below. Consider the first-stages and reduced

form as

Ê[ψkn(X)|W,Z] = α̂0x + α̂1xZ + α̂′2xB
Jn(W ) + α̂′3xB

Jn(W )Z
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and

Ê[Y |W,Z] = α̂0y + α̂1yZ + α̂′2yB
Jn(W ) + α̂′3yB

Jn(W )Z.

These OLS fits are used to nonparametrically estimate ∆Y and the linear operator

Ag(W ) =
C (g(X), Z|W )

σ2(W )
,

by

∆̂Y = α̂1y + α̂′3yB
Jn(·)

and, for g(X) = β′ψkn(X),

Âg(·) = β′
(
α̂1x + α̂′3xB

Jn(W )
)
.

Then, the three-step nonparametric estimator is the solution of

ĝn = arg min
g∈Gn

1

n

n∑
i=1

(
∆̂Y (Wi)− Âg(Wi)

)2
,

where Gn is a sieve space of the form

Gn = {gn : SX → R, sup
x
|gn(x)| < c, sup

x

∣∣∣∇[r]gn(x)
∣∣∣ < c

gn(x) = β′ψkn(x), gn(x̄) = 0},

and the vector ψkn(·) is at least γ = ([r]+1) times differentiable and β is a kn×1 vector of coefficients to

be estimated. The estimator ĝn can be also computed as a simple TSLS where the endogenous variables

ψkn(X) in (20) are instrumented with Z and BJn(W )Z and BJn(W ) are treated as exogenous variables.

Here, the order condition Jn ≥ kn − 1 needs to hold.

This TSLS nonparametric estimator is much simpler to compute that the somewhat more natural

two-step least squares estimator based on equation (17), i.e.

ĝ = arg min
g∈Gn

E[
(
ĈY − (Ĉg)(W )

)2
], (21)

where ĈY is a consistent estimator of C (Y,Z|W ) and (Ĉg)(W ) is a consistent estimator of

(Cg) (W ) = C (g(X), Z|W ) .

Estimators for ĈY and Ĉg in turn would require estimating the conditional mean p(·) and the condi-

tional variance in a first step.

A.2.3 Nonseparable Case

We note that the nonparametric separable estimator can be extended to the nonseparable case following

the same arguments above but replacing ψkn(X) by ψkn(V ) and incorporating the normalizations in

the new sieve space Gn

Gn = {gn : SV → R, sup
v
|gn(v)| < c, sup

v

∣∣∣∇[r]gn(v)
∣∣∣ < c

gn(v) = β′ψkn(v), gn(y, x̄) = 0 for all y}.
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That is, consider the first-stages and reduced form as

Ê[ψkn(V )|W,Z] = α̂0v + α̂1vZ + α̂′2vB
Jn(W ) + α̂′3vB

Jn(W )Z

and

Ê[Y |W,Z] = α̂0y + α̂1yZ + α̂′2yB
Jn(W ) + α̂′3yB

Jn(W )Z.

Then, we estimate the linear operator

Ag(W ) =
C (g(V ), Z|W )

σ2(W )
,

for g(v) = β′ψkn(v) by

Âg(·) = β′
(
α̂1v + α̂′3vB

Jn(W )
)
,

and ∆Y by

∆̂Y = α̂1y + α̂′3yB
Jn(·)

Then, the three-step nonparametric estimator is the solution of

ĝn = arg min
g∈Gn

1

n

n∑
i=1

(
∆̂Y (Wi)− Âg(Wi)

)2
,

where Gn is the sieve space given above. The asymptotic theory for the nonseparable case follows from

the same steps as those of the separable case with X replaced by V . This has the same impact as

increasing the number of endogenous variables in Blundell, Chen and Kristensen (2007), which leads

to qualitatively the same method of proof, except that the exponent r in the bias term is replaced by

r/(d + 1), where d is the dimension of X. This is a straightforward extension of Blundell, Chen and

Kristensen (2007) and hence we omitt details. The implementation in the nonseparable case is different

from the separable case due to the different normalizations. It is a TSLS with linear restrictions on

parameters. Specifically, the normalizations β′ψkn(y, x̄) = 0 for all y can be implemented as a simple

quadratic constraint on a least squares problem in the same way as in p.1635 in Blundell, Chen and

Kristensen (2007), by adding to their equation (21) the term

µβ′

(
1

n

n∑
i=1

ψkn(Yi, x̄)ψkn′(Yi, x̄)

)
β,

where µ is the corresponding Lagrange multiplier for the normalizations. We refer to Blundell, Chen

and Kristensen (2007) for details.

A.3 Identification with Conditional Independence

We show in this section how our approach can be modified to accommodate all restrictions imposed by

the conditional independence restriction in (18) when the instrument is binary. Here it is convenient

to use an equivalent normalization to g(y, x̄) = 0, which is discussed in Matzkin (2003). We assume

that U follows a U [0, 1] distribution. Then, conditional independence is equivalent to

C (1(U ≤ u), Z|W ) = 0 a.s. for all u ∈ [0, 1]. (22)
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Let U∗ be an auxiliary random variable distributed as U [0, 1] and independent of (Y,X,Z,W,U). Then,

by independence (22) is equivalent to

C (1(U ≤ U∗), Z|W,U∗) = 0 a.s.

Note that by monotonicity 1(U ≤ U∗) = 1 (Y ≤ m(X,U∗)) a.s. Let M be a class of measurable

functions for m, and define the class

G = {Y − 1 (Y ≤ m(X,U∗)) : m ∈M}.

Then, identification of m holds if (Y,X,U∗, Z) given (W,U∗) is G-covariance complete. Thus, by

creating an artificial sample from U∗ we transform the infinite number of moment restrictions in (22)

to a covariance restriction similar to that used for the nonseparable case (but with a common component

that is exogenous).
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