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Abstract 

 

This essay develops a theoretical model to measure weather across different climates using panel 

methods. The model reveals that the effect of weather should vary across climates. Most panel 

models are also not estimated correctly. Because weather models are nonlinear, fixed effects do 

not properly control for time-invariant variables. The panel literature must demean variables 

before they are transformed in order to estimate unbiased weather effects. Current panel models 

also assume weather effects are the same across climates. Intertemporal panel studies need to 

include an interaction between weather and climate if they wish to measure weather effects 

accurately across space.  
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Introduction 

 

There are two major econometric approaches to measure the impacts of temperature and 

precipitation: cross sectional and intertemporal.  Cross sectional methods compare outcomes 

across space and evaluate how these outcomes vary with climate (Mendelsohn, Nordhaus, and 

Shaw 1994; Mendelsohn 2007).  The cross sectional approach could be biased if there are 

missing time-invariant variables that are correlated with both climate and impacts (Deschenes 

and Greenstone 2007).  In order to avoid this problem, Deschenes and Greenstone recommended 

using the weather variation in panels across time to estimate the climate sensitivity of economic 

outcomes.  From this suggestion, an extensive intertemporal weather literature has developed 

that relies on panels to estimate weather effects (see review by Dell, Jones, and Olken 2014). 

Intertemporal panel studies have been used to study crop yields (Schlenker and Roberts 2009), 

farm net revenue (Deschenes and Greenstone 2007), conflict (Hsiang, Meng, Cane 2011; Hsiang, 

Burke, Miguel 2013), health (Deschenes and Greenstone 2011), labor (Graff Zivin and Neidell 

2014), and GDP growth rates (Dell, Jones, Olken 2009; 2012; Burke, Hsiang, Miguel 2015).  

The advantage of the weather studies is that they depend solely on random weather variation and 

therefore should be immune to missing time-invariant variable bias.    

This paper develops a theoretical model that explains both climate and weather impacts. The 

paper argues that the response to weather should be more concave than the response to climate.  

Nevertheless, the two functions should be tangent when weather and climate are the same (when 

the actual weather happens to be equal to the long term average weather).  Because the marginal 

effect of climate varies with climate, the marginal effect of weather should vary across climate.  



Unfortunately, most intertemporal studies of weather have confused weather effects and climate 

effects. They fail to measure the impact of either weather or climate correctly.  They have made 

two fundamental mistakes. First, although the models are nonlinear, they have relied on fixed 

effects to remove time-invariant effects.  Because the resulting coefficients include an interaction 

term with climate, this error also makes the estimates vulnerable to missing time-invariant 

variables. Second, the studies have not explicitly modeled the interaction between weather and 

climate. The models have assumed that the marginal effect of weather is the same across 

climates. These two mistakes together imply that most studies have biased estimates of both the 

marginal and nonmarginal effects of weather.  

We begin the paper with a theoretical model that includes both weather and climate effects 

together.  The model distinguishes between the consequence of weather deviations around a 

climate and changes in climate. Empirical and laboratory evidence strongly suggests that both 

weather effects and climate effects are nonlinear with a concave shape.  The weather panel 

literature consequently allows weather variables to enter in a nonlinear fashion with either higher 

order polynomials or non-parametric approaches (bins).   

In theory, weather effects could be the same regardless of the underlying climate.  That is, 

weather could be independent of climate. However, this assumption also implies that the 

response of systems to weather would tell researchers nothing about climate responses.  But 

weather and climate are likely to be related to each other.  The response of crops or people to an 

unusually warm day is likely to be very different in a cold versus hot climate. For example, if 

one added 5°C (9°F) to a day that was normally 10°C (50°F), the resulting 15C (59°F) might seem 

quite pleasant.  In contrast, if one added 5°C (9°F) to a day that is normally 25°C (86°F), the 



resulting 30C (95°F) might seem quite hot.  The models therefore need to include an explicit 

interaction between climate and weather to capture weather effects properly across space.   

We then develop an econometric model to estimate weather effects.  We show that fixed effects 

do not accurately estimate weather effects with nonlinear models. Fixed effects would remove 

time-invariant variables only if the underlying models were linear. The fixed effects estimates 

are biased by an interaction between weather and climate that comes from the nonlinear shape of 

both the weather and climate impacts. The fixed effects inadvertently include an interaction term 

in the weather coefficient.  The resulting model does not capture interactions or weather 

correctly.  The interaction term is also vulnerable to missing time-invariant variables that are 

correlated with climate.     

The third section develops a new model to estimate weather effects correctly using panel data. 

Two changes need to be made. First, the dependent and independent variables must be demeaned 

before they are transformed (see Moore and Lobell 2014).  For example, instead of including 

observed daily temperature which is a combination of the climate of a location and the weather 

that day, the researcher should include the deviation in the weather that day.  For example, if the 

underlying climate was 25C and the observed temperature that day was 30C, the researcher 

should include the +5C weather deviation, not the observed 30C.  It is the deviation that 

measures weather. It is this deviation that is time-variant. A similar principle would apply to 

bins. The correct bin to place this observation in is +5C, not 30C. 

Of course, this makes quite clear why climate-weather interactions are likely important. The +5C 

bin could well have a different effect if the underlying climate is 25C rather than 10C.  So in 



addition to the pure weather, the researcher should also include an explicit interaction between 

the weather and the climate.   

But if missing time-invariant variables are correlated with climate, they will be correlated with 

the sum of climate and weather. One needs to strip climate of undesired variation. One could 

regress climate variables (temperature and precipitation) on other climate variables (solar 

radiation, clouds, atmospheric pressure, month) and undesired time-invariant variables (such as 

soils, population density) and use the climate coefficients to predict climate. The predicted 

climate would then be entered in the interaction term.       

The paper then explores a few empirical examples to demonstrate that these changes make a 

difference. However, it is up to the literature to review each past panel study and re-estimate the 

results.  

I. Theoretical Model 

 

We begin the theory section by defining climate and weather. The technical definition of the 

climatology of temperature (t) and rainfall (r) is the probability distribution f(t, r) of both 

variables. In this paper, we will use the word “climate” to mean the expected value of this 

distribution. The expected value of temperature we label as T and the expected value of rainfall 

is R.  

 E[f(t)]=T    E[(f(p)]=R   (1) 

For the moment, we ignore that both variables also vary over the months of the year. We will 

return to this within year variation problem later.   



We ignore throughout the paper the fact that climate, the probability distribution of weather, has 

many moments.  We begin by focusing only on the first moment of the distribution, the expected 

value of weather. However, the literature has shown that the variance (second moment) of the 

climate distribution are important (Mendelsohn, Nordhaus and Shaw 1999; Mendelsohn et al. 

2007).   

Weather is the realization of the climate distribution at each moment in time (i).  So at each 

moment in time (i), one can observe (t(i), r(i)). Weather is the observed deviation from the 

expected value of weather, the first moment (T, R) of the climate distribution: 

 ti= T-t(i)    and   ri=R-r(i) 

Given this definition, the expected value of weather is zero: 

 E[ti]=0       and  E[ri]=0   

We now explore the impact of weather (intertemporal deviations) and climate (mean climate) on 

a net benefit function, Vj (T, R, K, ti, ri) to an actor (j) where K reflects a vector of capital that 

can be adjusted in the long term but not the short term. We define V so that higher levels are 

generally welfare improving (preferred). Weather and climate damages lead to a reduction in V.  

We assume that each sector has a unique function. For example, V could reflect an increase in 

yields, an increase in net revenue, a decrease in the energy required for interior comfort, an 

increase in health, or an increase in ecosystem productivity.  

Because the actor chooses K, we assume the actor chooses the value of K that leads to the 

highest V.  That is, dV/dK=0.  The resulting K* maximizes V given what is known in advance 

about T, R, and the probability distribution of weather.  However, the value of K must be chosen 



without knowing the realization of weather each year.  The value of K is optimized for the 

climate but not the weather.  Actors in each different consequently choose a unique K*.  K* 

changes as climate changes. However, K* does not change with each realization of weather.  The 

overall shape of V with respect to climate therefore cannot be the same as the overall shape of V 

to weather.  The only exception is when the realized weather is like the climate, that is when 

ti=ri=0.  In this sole circumstance, K* is optimized and the responmse to weather and climate can 

be the same.  

What do we know about V(T, R, K, ti, ri)? The cross sectional climate change and intertemporal 

weather literature suggests that V(T, R, K, t, r) is nonlinear and concave with respect to each of 

its arguments (Mendelsohn and Schlesinger 1999; Mendelsohn and Dinar 2009; Dell Jones and 

Olken 2014):   

 dV/dT(0)>0    dV2/dT2<0  dV/dR(0)>0    dV2/dr2<0   (2) 

 dV2/dti
2<0                       dV/dri

2<0   

Economic outcomes (V) are curtailed at cold temperatures and at hot temperatures. Economic 

activity is also curtailed in desert conditions and extreme wet conditions. But the optimal 

temperature and rainfall in the long run and the short run is different for different economic 

sectors.  The only feature that is somewhat ubiquitous is that the overall relationship is concave.  

One simple result that follows from (2) is that the marginal effect of a change in the expected 

temperature, T, depends on the level of that temperature: 

d(V(Tj,R)/dTj≠d(V(Tk, R)/dTk  for j≠k      (3) 

In fact, concavity implies that the marginal value consistently declines with T and with R: 



 d(V(Tj,R)/dTj<d(V(Tk,R)/dTk  for Tj>Tk      (4) 

d(V(T,Rj)/dRj<d(V(T,Rk)/dRk  for Rj>Rk      (5) 

What does V tell us about the interaction between impacts from weather versus impacts from 

climate? 

A. Independence Between Weather and Climate 
 

One possibility is that there is no interaction between weather and climate in V(T, R, ti,  ri) in 

which case. 

 V(T, R, ti,  ri)= F(T, R) + G(ti,  ri)      (6) 

The effect of weather, holding climate constant, is the same at every observed climate. In this 

case, weather effects G(ti,  ri) provide no information about climate effects F(T, R).  The impact 

of (t, r) in G(t, r) depends solely on the values of (t,r).  The value of (T, R) play no role in G(t,r).  

This is the implicit theoretical assumption of most intertemporal weather studies. They use fixed 

effects to remove climate from each observation and then assume that the resulting estimated 

function applies to every site regardless of its climate. More formally, Gj (t, r) is the same for all 

sites (j) no matter what the value of (Tj, Rj).  For example, the marginal value of dG(0,0)/dt and 

dG(0,0)/dr are the same for every observation no matter what the value of (T, R).  By assuming 

weather impacts are independent of climate impacts, one is also assuming there is no interaction 

between climate and weather impacts.  Weather has nothing to do with climate.   

Given this assumption, the marginal value of dF(T, R)/dT and dF(T, R)/dR are not revealed by 

estimating the marginal value of dG(0,0)/dt or dG(0,0)/dr even though both measures are being 

taken at the same place. Given the assumption of independence, the marginal value of weather 



provides no information about the marginal value of climate. Nor does it provide any 

information about the shape of F(T, R). By assumption, it provides no information about climate 

effects at all, just a uniform weather effect.  

B. Weather and Climate Interact 
 

An alternative hypothesis about V is that weather and climate interact.  In this case, the marginal 

effect of weather changes with climate.  The first derivative of dV/dti  (T) or dV/dri (R) would be 

a function of T and/or R.  For example, one could include an interaction term between T and ti:  

V(T, ti) = B0+ B1T + B2T
2

 + B3ti + B4ti
2

 + B5T*ti    (7) 

The marginal weather impact is:   

dV/dti= B3 + 2B4ti + B5T 

The derivative of weather would vary with the underlying climate.  If B5<0, there would be more 

damage from an unusually hot day if the climate was hot rather than if the climate was cold.  

Symmetrically, there would be more harm from an unusually cold day if the climate was cold 

rather than hot.   

When is the marginal value of weather and climate the same? Theory tells us when the weather 

deviation is zero V(T, R, t=0, r=0), these two functions could be tangent.  Taking the derivative 

of (7) when t=0 and r=0 leads to the following two marginal measures:   

dV/dT= B1 + 2B2T  

dV/dti= B3 + B5T 



For the marginal weather impact to be equal to the marginal climate impact: 

dV(T,0)/dT= B1 + 2B2T=dV(T,0)/dti= B3 + B5T 

For the marginal impact of weather and the marginal impact of climate to be the same in this 

model, there are two conditions. B1= B3 and 2B2= B5.  The marginal effect of weather (t=0, r=0) 

must depend on the value of climate (T, R). In order for a weather study to measure marginal 

climate impacts, it must include an interaction between weather and climate.  

III. Estimating Panel Weather Models  
 

Existing intertemporal panel studies looking at temperature estimate the following model: 

V(T+ti, R+ri) = ΣBk(T+ti)
k

 +θX +ε      (8) 

where B and θ are coefficients and X includes control variables. Using fixed effects, they 

subtract the mean of each moment from the dependent and independent variables: 

V= B1 [T+t-T] + B2 [(T+t)2-E[(T+t)]2]+ B3 [(T+t)3-E[(T+t)]3]+…+θX+ε 

V=B1 [t] + B2[T
2+2Tt +t2 –T2] +B3[T

3+3T2t+3Tt2+t3-T3] + …+θX+ε 

V=B1t + B2[2Tt+t2] +B3[3T2t+3Tt2+t3] + …+θX+ε    (9) 

In contrast, the model that is consistent with the theory is: 

 V=B1t + B2[t
2] +B3[t

3] + …+θX+ε      (10) 

Fixed effects cannot remove the influence of time invariant variables if the models are nonlinear 

(McIntosh and Schlenker 2006).  It is evident that (9) and (10) are the same only if the panel 



model is linear. Nonlinear models of (T+t) (9) whether they be polynomials, loglinear, or 

nonparametric will not estimate the desired model (10).  The coefficients of the nonlinear terms 

will invariably be biased by interaction terms between t (time variant) and T (time invariant) 

variables.  Any missing time invariant variable that is correlated with the dependent variable and 

T will also influence the coefficients.  As estimated, the panel weather studies are also vulnerable 

to the same omitted time invariant variable problem as cross sectional studies.  

This particular problem is relatively easy to reverse.  Instead of using (T+t) as the independent 

variable, researchers can simply use (t) and estimate equation (10) as in (Moore and Lobell 

2014).  Weather temperature could be introduced as the deviation from the mean. This applies to 

nonparametric approaches as well. The temperature bins could be defined in terms of (t) instead 

of (T+t).     

Once the weather model is properly estimated as in (10), it makes clear that there is an additional 

problem.  The model does not include an interaction term between weather and climate.  The 

underlying assumption in this model is that weather effects are the same at all climates.  The 

second change that must happen in weather models for them to even capture marginal climate 

effects is that they must allow an interaction between weather and climate.  Of course, this 

explicitly introduces the problem that omitted time invariant variables could be correlated with 

both climate and V. The interaction term will be biased unless the omitted variable problem can 

be controlled. 

One simple approach to this problem is to find some instrumental variables, Z, that might control 

for these unwanted time invariant variables.  One could first regress climate on these 

instrumental variables: 



T= f(Z)+δ          (11) 

The resulting predicted value of climate, �̂�, could then be used to create interaction terms with ti 

in (10): 

V=B1t + B2[t
2] +B3[t

3] + …+ γ1 [�̂�𝑥 t] + θX + ε                 (12) 

III. Empirical Example  
 

It is helpful to see whether the concerns raised in this paper are trivial and would lead to almost 

identical results as in the literature.  It is not the intent of this paper to review the entire panel 

literature.  It is expected that each author can make the relevant changes in their study on their 

own and re-estimate their paper.  The intent of this section is merely to examine an important 

case to see whether estimating these models correctly might matter.  

We use Deschenes and Greenstone (2007) because this was the first paper to suggest using 

intertemporal weather variation instead of cross-sectional variation.  We rely on the data in 

Deschenes and Greenstone (2012) rather than the original paper because of errors in the original 

data set. Using the data and programs on farm incomes in US counties by Deschenes and 

Greenstone (2012), we first estimate the following equation: 

    V(DD+ddi, R+ri) = ΣBk(DD+ddi)
k

 + Σγk(R+ri)
k

 +θX +ε        (13) 

using just US counties with dryland farms east of the 100th meridian.  V is farm income, DD is 

long run degree days, dd is the deviation of monthly degree days that year, R is long run rainfall, 

r is the deviation in monthly rainfall that year, X are control variables including year dummies, β, 

γ, and θ are coefficients, and ε is an error term.  DD+dd is the sum of observed degree days that 



year and R+r is the sum of observed rainfall that year.  We examine both a linear and quadratic 

term for weather.  

We contrast this with a model that relies on monthly deviations: 

V(ddi, ri) = ΣBk(ddi)
k

 + Σγk(ri)
k

 +θX +ε                 (14) 

This model is also a quadratic where dd and r is the sum of monthly deviations that year.  We 

also add an interaction term between weather and climate: 

    V(ddi, ri) = ΣBk(ddi)
k

 + Σγk(ri)
k

 + δ1(ddixDD)+ δ2(rixR) +θX +ε                                  (15) 

The results for all three models are reported in Table 1.  The estimation of (13) suggests that the 

coefficients of degree days and precipitation are not significant.  Nonetheless, the marginal effect 

of a degree day is significant and reduces income by $1.20. The marginal effect of precipitation 

is also significant and reduces income by $.57 per mm/month.  When the model is estimated 

using just weather deviations, however, the coefficients of degree days and precipitation are 

significant. The marginal harm of a degree day falls to $1.02 and the marginal harm of 

precipitation falls to $.50.  When the interaction term with climate is introduced into the model, 

the only coefficient that loses significance is the linear degree day term.  The interaction term for 

degree days is negative though not significant and the interaction term for precipitation is 

positive and significant.  The sign of the temperature and precipitation effects are as expected.  

An especially warm month is more harmful in a warm climate or season. An especially dry 

month is especially harmful in a dry climate or season. The marginal effect of degree days 

becomes $.95 and the marginal effect of precipitation becomes -$.88.  Both marginal values 

using (15) are significantly different from the original marginal estimates using (13).   



Variable Original D&G Weather Deviation Weather Deviation and 

Interaction 

Degree Days -0.0140 

(2.87) 

-0.0102 

(5.25) 

-.0038 

(.95) 

Degree Days Sq .022e-5 

(0.31) 

2.7e-5 

(6.85) 

2.6e-5 

(6.63) 

Degree Days 

Interaction 

…. …. -0.19e-5 

(1.62) 

Precipitation  -0.705 

(1.24) 

-0.499 

(4.74) 

-1.611 

(4.44) 

Precipitation Sq 4.86e-3 

(0.36) 

-62.5e-3 

(3.35) 

61.4e-3 

(3.29) 

Precipitation  

Interaction 

… … 55.2e-3 

(2.91) 

F test 28.3 41.7 36.0 

Root MSE 33.0 28.6 28.5 

Marginal Degree Day -1.27 

(5.15) 

-1.02 

(5.23) 

-0.95 

(5.16) 

Marginal Precipitation -0.57 

(2.43) 

-0.50 

(4.75) 

-0.88 

(6.24) 

Table 1 Impact of Weather on Farm Income for Dryland Farms 

(Data and original regression Deschenes and Greenstone 2012- county clustered and weighted 

regression) 



We now examine the same data using bins.  We import temperature and precipitation data from 

NARR to match with the economic data in Deschenes and Greenstone.  We start by creating bins 

that reflect the range of temperature and precipitation in the data set and estimate the following 

bin model: 

V(T+t, R+r) = ΣBk(T+t)k + Σγk(R+r)k +θX +ε        (16) 

Where each (T+t)k  represents a bin of observed temperature with a 3C range. For example, the 

reference bin that is omitted is a bin from 16.5C-19.5C. Each (R+r)k bin represents a bin of 

observed precipitation with a range of 20mm/mo. The reference bin that is omitted is a bin from 

60-80mm/mo.  Both reference bins were chosen to include the median temperature and 

precipitation.  

The second bin model (17) uses measurements of the monthly deviation that year from the long 

term value for that month.  Each temperature deviation is then included in a bin of 1C range. The 

omitted reference bin is a bin from -.5C to +.5C.  The precipitation bins are generally 20mm/mo 

wide and the omitted bin is from -20 to 0 mm/mo.  The second bin model examines bins of all of 

these deviations: 

  V(t, r) = ΣBk(t)k + Σγk(r)k +θX +ε         (17) 

 The third bin model (18) includes bins of deviations and interaction terms. The temperature 

interaction term is between the underlying climate (T) and the reference bin temperature. It 

measures the marginal effect of weather at the reference bin across climates. The model also 

includes a parallel interaction term for precipitation.   

  V(t, r) = ΣBk(t)k + Σγk(r)k + γ1 [𝑇𝑥 t]+ γ2 [𝑃𝑥 p] +θX +ε        (18)  



 The temperature results for the standard panel approach are shown in Figure 2.  The figure 

describes how farm income changes depending on observed temperatures each month.  The 

results look very similar to the agricultural results reported in the literature (for example, 

Schlenker and Roberts 2009), with cool months having indecisive effects and warm months 

beyond 20C looking increasingly harmful.     

Figure 2: Farm Income by Temperature 
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In contrast, when the bin model is estimated using temperature deviations, the results change to 

Figure 3. The unusually cool months remain indecisive but unusually warm months are only 

harmful for a short range and then become beneficial.  Why they become beneficial when 

counties experience an extraordinary high temperature for a month is not clear.    

Figure 3: Farm Income Change by Temperature Change 

(Weather deviations)  
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Finally, the temperature interaction term is added to the model and shown in Figure 4.  Figure 4 

implies that the marginal effect of weather varies with climate.  The marginal effect is harmful 

for both cooler counties and warmer counties.  This interaction effect is from cross sectional 

variation and is not yet controlled in Figure 4 for omitted variables.  However, one interesting 

feature of this cross sectional variation is that it explains the warm effects found in Figure 2 

using the standard panel estimation approach.  However, Figure 4 also implies that there are 

harmful effects associated with cool temperatures that are not visible in Figure 2.    

 

Figure 4: Marginal Weather Effects by Long Term Temperature 

(Evaluated at reference weather deviation) 
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IV. Conclusion 

 
This paper set out to develop a general theory explaining both climate and weather impacts.  There is 

both a response to climate (long term weather) and to the immediate weather.  The theory suggests 

that actors adapt their stock of capital to the climate (long run weather) but not to immediate weather 

realizations.  The two response functions are consequently generally not the same.  The weather 

response function should be more concave than the climate response function.  However, when the 

immediate weather is similar to the average long term climate, the two response functions should be 

tangent, suggesting a similar marginal response.  

Unfortunately, intertemporal models have done a poor job of measuring weather effects.  They have 

over relied on fixed effects to control for time invariant variation.  Fixed effects cannot completely 

remove the influence of time invariant factors when models are nonlinear.  All weather models are 

nonlinear.  Most of the panel weather models that have been estimated to date are mispecified.  The 

coefficients are biased as they include interaction terms between climate and weather deviations. 

The correct way to estimate these models is to use demeaned weather variables.  The weather should 

measure the deviation of weather from the climate (expected weather).  These demeaned variables can 

then be transformed or used in bin models.    

However, the theoretical model suggests that there is a second problem with the intertemporal studies 

if they wish to use the resulting weather effects to study climate.  A weather model can estimate 

marginal effects at a single location. However, theory suggests that the marginal effect of climate varies 

with climate. The marginal effect of weather in a panel must also vary with climate if the model wishes 

to capture climate effects. The estimated panel models must include an explicit interaction with climate 

to capture the effect of weather at each climate. 



Of course, it is difficult to include an explicit interaction term with climate because that means the 

model is vulnerable to omitted time-invariant variables that are correlated with climate.  The panel 

method consequently cannot avoid the omitted variable problem associated with cross sectional 

models.  

Using data from Deschenes and Greenstone (2012), the paper reveals that there is a big difference 

between using actual weather versus using the deviation in weather each year.  The mispecification is 

not a trivial matter.  Specifically, the marginal effects change.   

The interaction between weather and climate suggests that the marginal effect of weather may indeed 

vary across climates. Unless, the panel weather model begins to include this effect, it cannot even argue 

that it gets the marginal effects correct.   

Although the paper suggests a deep problem with the existing literature, it also suggests a path to 

correct these errors.  All the weather panel studies can be re-estimated with weather deviations. They 

all can begin to model the interaction between weather and climate. It will be very interesting to see 

how the panel weather literature changes as authors return to their original studies and correct these 

mistakes.     
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