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Abstract

This paper proposes nonparametric estimators for the bidders’ utility func-
tion and density of private values in a first-price sealed-bid auction model with
independent valuations. I study a setting with risk-averse bidders and adopt a
fully nonparametric approach by not placing any restrictions on the shape of the
utility function beyond regularity conditions. I propose a population criterion
function that has a unique minimizer, which characterizes the utility function
and density of private values. The resulting estimators emerge after replacing
the population quantities by sample analogues. These estimators are uniformly
consistent and their convergence rates are established. Monte Carlo experiments
show that the proposed estimators perform well in practice.
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1 Introduction

Risk aversion is essential to understanding economic decisions under uncertainty. In

first-price sealed-bid auctions, risk aversion plays a fundamental role in explaining

bidders’ behavior. Although several families of utility functions have been employed

to describe different attitudes toward risk, in practice, we do not know which one

accurately explains bidders’ behavior.

I consider a first-price sealed-bid auction with risk-averse bidders within the inde-

pendent private values paradigm. In this setting, each potential buyer has his own

private value for the item being sold and makes a sealed bid. The buyer who makes

the highest bid wins the item and pays the seller the amount of that bid. This model

is completely characterized by two objects. The first is the bidders’ utility function,

which describes bidders’ risk preferences. The second is the density of private values,

which describes the distribution of valuations for the auctioned item.

This paper develops consistent estimators for these two objects without imposing

parametric specifications. Only standard regularity conditions are assumed. These as-

sumptions are satisfied by linear (risk-neutral), constant relative risk aversion (CRRA),

and constant absolute risk aversion (CARA) utility functions, as well as, many others.

In this sense, my paper generalizes the empirical analysis of first-price auctions by

nesting many existing estimators within a fully nonparametric framework. The distin-

guishing feature of this paper is that the proposed estimator is based on assumptions

that are milder than those typically made in the literature. No restrictions on the

shape of the bidders’ utility function are imposed beyond strict monotonicity, concav-

ity, and differentiability. In particular, the bidder’s utility is not assumed to belong to

a specific family of risk aversion –such as constant relative risk aversion (CRRA) or

constant absolute risk aversion (CARA)–.
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This paper has two objectives. The first is to nonparametrically estimate the bid-

ders’ utility function. Empirical and experimental evidence indicates that risk aversion

is a fundamental component of bidders’ behavior.1 Despite its relevance, only a few

articles have proposed an estimator for the bidders’ utility function. Campo, Guerre,

Perrigne, and Vuong (2011), for instance, adopt a semi-parametric approach and pro-

pose an estimator for the bidders’ risk aversion parameter. Their approach requires

that the researcher imposes a parametric specification –such as CRRA or CARA– on

the bidders’ utility function before estimating the risk aversion parameter and the

density of private values. In real-world applications, the choice of the parametric spec-

ification may be arbitrary and not always realistic. There is no general agreement on

which specification is the right one.

The second objective is to estimate the latent density of private values following a

fully nonparametric perspective. To that end, I propose an estimator for the density

of private values that does not rely on any parametric specification of the bidders’

utility function. A common practice when estimating the valuation density is to first

assume a specific family of risk aversion for the bidders’ utility, and then, estimate

the latent density. The main advantage of this procedure is its low implementation

cost. However, it can be criticized because an incorrect choice of the family of risk

aversion undermines the asymptotic properties of the valuation density estimator and

may weaken the finite-sample performance.

Many papers have developed nonparametric estimators for the density of private

values under the assumption that bidders are risk-neutral. The pioneering work of

Guerre, Perrigne, and Vuong (2000) established the optimal rate of convergence for

estimating this density and constructed an estimator that attains this rate. Marmer

and Shneyerov (2012) proposed an alternative estimator that is asymptotically normal

1See e.g. Delgado (2008) whose findings are consistent with a role for risk aversion in the tendency
to bid too high.
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and also attains the optimal rate. Bierens and Song (2012) used integrated simulated

moments to propose an estimator and construct a test for the validity of the first-price

auction model. Recently, Hickman and Hubbard (2014) have proposed a boundary

correction that achieves uniform consistency on the entire support of the private value

density and improves the finite sample performance. Here, I build on previous work

by allowing bidders to be risk-averse. My estimator for the density of private values is

uniformly consistent and its rate of convergence is established. I derive this property

by extending the approach of Guerre et al. (2000) to accommodate risk aversion.

To my knowledge, only two papers have analyzed the identification of the bidders’

utility function from a nonparametric perspective. Lu and Perrigne (2008) identified

and estimated such a function by exploiting two auction designs, ascending and first-

price sealed-bid auctions. Guerre, Perrigne, and Vuong (2009) improved on Lu and

Perrigne (2008) and identified the bidders’ utility function by using the latter design

only. They showed that the bidders’ utility function is nonparametrically identified

under certain exclusion restriction. Exploiting this restriction, Guerre et al. (2009)

developed their constructive identification strategy. Such a strategy is recursive and

based on an infinite series of differences in quantiles, so it does not lead to a natural

estimator for the bidders’ utility function. Guerre et al. (2009) did not develop a formal

estimator and instead discussed various extensions such as endogenous participation

and asymmetries. My contribution here is to develop a uniformly consistent estimator

with its rate of convergence.

This paper is related to a vast literature on empirical industrial organization. First,

it relates to the literature on structural econometrics of auction data. This literature

is extensive and has expanded at an extraordinary rate; for example, see the surveys

of Hendricks and Paarsch (1995), Laffont (1997), Perrigne and Vuong (1999), Athey

and Haile (2007), and Hendricks and Porter (2007), as well as the textbook of Paarsch,
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Hong, and Haley (2006). I remark that nonparametric approaches have become very

popular as auction data has become more available. Second, this paper is also related

to the literature on recovering risk preferences from observed behavior. Within this

line of research, I highlight the working papers of Lu (2004) and Ackerberg, Hirano,

and Shahriar (2011). The former proposes a semiparametric method to estimate the

risk aversion parameter, as well as the risk premium, in the context of a first-price

sealed-bid auction with stochastic private values. The latter considers a buy price

auction framework and nonparametrically identifies both time and risk preferences of

the bidders. In a recent article, Kim (2015) suggests a method to nonparametrically

estimate the utility function in a first-price sealed-bid auction with risk-averse bidders

and its performance is studied by Monte Carlo experiments.

The results obtained in this paper are useful for public policy recommendations.

First-price sealed-bid auctions are used in many socio-economic contexts such as timber

sales, outer continental shelf wildcat auctions (Li, Perrigne, and Vuong (2003)), and

competitive sales of municipal bonds (Tang (2011)). To establish the optimal reserve

price (i.e., the one that maximizes the auctioneer’s revenue), we need valid estimators

for the bidders’ utility function and the density of private values. The estimators

proposed here can be useful to construct the set of optimal reserve prices when bidders

are risk-averse; Hu, Matthews, and Zou (2010) provide a characterization of this set.

The rest of the paper is organized as follows. Section 2 describes the auction model

together with the data degenerating process, and also, establishes the parameter of

interest. Section 3 develops a nonparametric estimator for the parameter of interest.

Section 4 provides estimators for the bidders’ utility function and the density of private

values. Section 5 provides an implementation guide and reports the results of Monte

Carlo experiments. Section 6 concludes with a discussion of possible extensions. Proofs

of lemmas, propositions, and theorems are relegated to the Appendix.
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2 Auction Model and Data Generating Process

This section is divided into two subsections. Subsection 2.1 describes briefly the bench-

mark model, which is standard in the auction literature: a first-price sealed-bid auction

with risk-averse bidders, independent private values, and a non-binding reserve price.2

Subsection 2.2 presents data generating process together with its assumptions and

resulting properties.

2.1 First-Price Auction Model

A single indivisible object is sold through a first-price sealed-bid auction with non-

binding reserve price. In other words, the object is sold to the highest bidder who

pays his bid to the seller and each bidder does not know others’ bids when forming his

bid. Within the independent private values (IPV) paradigm, each bidder knows his

own private value V , but not other bidders’ private values. There are I ≥ 2 bidders

and private values are drawn independently from a common cumulative distribution

function (c.d.f.) FV (⋅), which is independent of I. Such a distribution is twice contin-

uously differentiable with density fV (⋅) and has compact support [υ, ῡ] ⊆ R≥0. Both

the number of bidders I and FV (⋅) are common knowledge.

All bidders are identical ex ante and the game is symmetric. Each bidder has the

same univariate utility function U(⋅) that is independent of I. If a bidder with value V

wins and pays B ≥ 0, his utility is U(B − V ), and if he loses, his utility is U(0). Since

any bidder’s payment must be smaller or equal than his own valuation, the domain of

U(⋅) is restricted to R≥0. Each bidder maximizes his expected utility with respect to

his own bid. It is assumed that U(⋅) is twice continuously differentiable with U(0) = 0,

U ′(⋅) > 0, and U ′′(⋅) ≤ 0.

2For a detailed description of this auction model and additional results, see sec. 2 of Guerre et al.
(2009) and the references cited therein.
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Only symmetric Bayesian Nash equilibria are considered. As a consequence, there

exists a unique symmetric equilibrium bidding function s(⋅; I). Such a function is

strictly increasing, continuous on [υ, ῡ], and continuously differentiable on (υ, ῡ].

Moreover, it satisfies the differential equation

s′(v; I) = (I − 1)
fV (v)

FV (v)
λ [v − s(v; I)] (1)

for all v ∈ (υ, ῡ] with boundary condition s(υ; I) = υ, where s(v; I) is the optimal bid

for a valuation v, s′(v; I) = ∂s(v; I)/∂v, and λ(⋅) ≡ U(⋅)/U ′(⋅). From equation (1), the

equilibrium bid for a valuation V is

B = s(V ; I) = V − λ−1 [
s′(V ; I)FV (V )

(I − 1)fV (V )
] , (2)

where λ−1(⋅) stands for the inverse of λ(⋅). Observe that the equilibrium bid B and,

consequently, its quantile function depend on the numbers of bidders I despite the fact

that FV (⋅) and U(⋅) do not. The reason is that an increase in the number of bidders

results in higher and more aggressive bidding. Exploiting variations in the quantiles of

B from changes in I, while the corresponding quantiles of V remain the same, Guerre

et al. (2009) showed that λ−1(⋅) is identified.

2.2 Data Generating Process

In practice, the auctioned object can be heterogeneous, so here I introduce an ad-

ditional random vector X to account for the heterogeneity in the auctioned object.

The econometrician observes a random sample {(Bpl, Il,Xl) ∶ p = 1, . . . , Il, l = 1, . . . , L}

where Bpl is the bid placed by the pth individual in the lth auction, Il is the number of

bidders in the lth auction, Xl is a D-dimensional vector of continuous auction-specific
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covariates, and L denotes the number of auctions in the sample. The private values of

the bidders {Vpl ∶ p = 1, . . . , Il; l = 1, . . . , L} are unobservable, and also, the identity of

the bidders is unknown. From now on I suppose that the the data generating process

satisfies the following assumption. Let S be a positive integer related to the smoothness

of certain functions.

Assumption 1. The random vectors {(Vpl, Il,Xl) ∶ p = 1, . . . , Il, l = 1, . . . , L} satisfy

the following conditions.

1. {(V1l, . . . , VIll, Il,Xl) ∶ l = 1, . . . , L} are independent.

2. {(Il,Xl) ∶ l = 1,2, . . . , L} are identically distributed with joint density fIX(⋅, ⋅). Its

support is I × X ⊂ N≥2 × RD, where 2 ≤ #(I) < +∞ and X = ∏
D
d=1[xd, x̄d] is a

rectangular compact set with nonempty interior.

3. For each i ∈ I, fIX(i, ⋅) admits S +1 continuous bounded partial derivatives on X

and is bounded away from 0.

4. For each l = 1, . . . , L, {Vpl ∶ p = 1, . . . , Il} are independent and identically dis-

tributed conditionally on (Il,Xl). The conditional density of Vpl given (Il,Xl) is

independent of Il and denoted by fV ∣X(⋅∣⋅).

Conditions 1-3 are standard in the literature on empirical auctions. I remark that

the case D = 0 corresponds to the absence of covariates case. The fourth item is the key

condition. It establishes that private values are independent and imposes an exclusion

restriction on the bidders’ participation. More precisely, the conditional density of

private values must be conditionally independent of the number of bidders. As shown

by Guerre et al. (2009), Proposition 2, an exclusion restriction is necessary to identify

an auction model with risk-averse bidders.
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In addition to Assumption 1, I impose standard regularity conditions on the latent

conditional density fV ∣X(⋅∣⋅). With this aim, I define the following set of conditional

densities that contains fV ∣X(⋅∣⋅).

Definition 1. Let F∗
S be the set of conditional densities f(⋅∣⋅) satisfying the next con-

ditions: f(⋅∣⋅) has support SV X ≡ {(v, x) ∶ v ∈ [υ(x), ῡ(x)], x ∈ X} with 0 ≤ υ(x) <

ῡ(x) ≤ C̄υ for some constant C̄υ < +∞; f(⋅∣⋅) is bounded away from 0 on SV X ; and

f(⋅∣⋅) admits S continuous bounded partial derivatives on SV X .

The next assumption establishes fV ∣X(⋅∣⋅) ∈ F∗
S and formalizes the idea that the bids

are generated by a first-price auction within the IPV paradigm. It also establishes the

smoothness of the bidders’ utility function. Denote the conditional c.d.f. of valuations

by FV ∣X(v∣x) = ∫
v

υ(x) fV ∣X(t∣x)dt with υ(x) ≤ v ≤ ῡ(x).

Assumption 2. The bids {Bpl ∶ p = 1, . . . , Il, l = 1, . . . , L} are generated by the auction

model of subsection 2.1 with [U(⋅), fV ∣X(⋅∣⋅)] ∈ US×F
∗
S , where U(⋅) is a real function with

domain R≥0 and US is defined in Guerre et al. (2009). To be specific, Bpl = s(Vpl; Il,Xl)

where, for each (i, x) ∈ I × X , s(⋅; i, x) ∶ [υ(x), ῡ(x)] → R≥0 satisfies the differential

equation

s(v; i, x) = υ − λ−1 [
s′(v; i, x)FV ∣X(v∣x)

(i − 1)fV ∣X(v∣x)
]

for all v ∈ (υ(x), ῡ(x)] with boundary condition s[υ(x); i, x] = υ(x), λ(⋅) ≡ U(⋅)/U ′(⋅),

and s′(v; i, x) = ∂s(v; i, x)/∂v.

Our parameter of interest is the function λ−1(⋅). For instance, when the utility

function exhibits CRRA with parameter η ∈ [0,1), U(y) = y1−η/(1 − η), we have that

λ(y) = y/(1 − η) and λ−1(u) = (1 − η)u. When the utility function exhibits CARA

with parameter η > 0, U(y) = [1 − exp(−ηy)]/[1 − exp(−η)], we have λ(y) = [exp(ηy) −
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1]/η and λ−1(u) = log(ηu + 1)/η. The distinguishing feature of this paper is that no

parametric restrictions are imposed on λ−1(⋅) beyond standard regularity assumptions.

In particular, I do not assume that the bidder’s utility belongs to a specific family of

risk aversion –such as CRRA or CARA–.

Observe that U(⋅) can be recovered from λ−1(⋅) as the closed-form solution of the

differential equation λ(⋅)U ′(⋅) − U(⋅) = 0, with boundary condition U(0) = 0 and a

normalizing restriction such as U(1) = 1 for some . Now denote the conditional c.d.f. of

Bpl given (Il,Xl) by G(⋅∣⋅, ⋅) and let g(⋅∣⋅, ⋅) be the corresponding density. Then, private

values can be written as

Vpl = Bpl + λ
−1 [

1

(Il − 1)

G(Bpl∣Il,Xl)

g(Bpl∣Il,Xl)
] , (3)

and consequently, we can recover the conditional p.d.f. fV ∣X(⋅∣⋅) from λ−1(⋅) and the

conditional distribution of bids.

Note that λ−1(⋅), as well as the utility function, does not depend on the number

of bidders nor the auction-specific covariates. This assumption is standard in the

literature; see e.g. Lu and Perrigne (2008) and Campo et al. (2011). Observe also that

λ(0) = 0 and λ′(⋅) ≥ 1 because U(0) = 0, U ′(⋅) > 0, and U ′′(⋅) ≤ 0; consequently, the

first derivative of λ−1(⋅) satisfies 0 < λ−1′(⋅) ≤ 1.

Before proceeding, I mention some useful results that can be derived from Lemma

3 of Guerre et al. (2009) and Lemma 1 of Campo et al. (2011). First, the conditional

density g(⋅∣i, ⋅) is continuously differentiable on its support SBX(i) ≡ {(b, x) ∈ R≥0×RD ∶

b ∈ [b(x), b̄(i, x)], x ∈ X} for i ∈ I, where υ(x) = b(x) < b̄(i, x) ≤ C̄B and C̄B > 0

is a finite constant. Second, it can be shown that inf{b̄(i, x) − b(x) ∶ x ∈ X} > 0.

Third, g(⋅∣i, ⋅) is bounded away from 0 on SBX(i); more specifically, there exists a

constant cg > 0 such that g(⋅∣i, ⋅) ≥ cg on SBX(i) for all i ∈ I. Fourth, Observation
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1 below summarizes additional useful results. Let b(⋅∣i, x) ∶ [0,1] → [b(x), b̄(i, x)] and

υ(⋅∣x) ∶ [0,1]→ [υ(x), ῡ(x)] denote the (conditional) quantile functions of G(⋅∣i, x) and

FV ∣X(⋅∣x), respectively. Define the set I∗ = {(i1, i2) ∈ I2 ∶ i1 < i2} and the function

R(α∣i, x) = αb′(α∣i, x)/(i−1) for (α, i, x) ∈ [0,1]×I ×X , being b′(α∣i, x) the conditional

quantile density function, i.e., b′(α∣i, x) = ∂b(α∣i, x)/∂α.

Observation 1. Under Assumptions 1-2, the following statements hold.

1. For each i ∈ I, the next properties are satisfied.

(a) G(⋅∣i, ⋅) admits S + 1 continuous bounded partial derivatives on SBX(i).

(b) g(⋅∣i, ⋅) admits S + 1 continuous partial derivatives on {(b, x) ∈ R≥0 ×RD ∶ b ∈

(b(x), b̄(i, x)], x ∈ X}.

(c) limb↓b(x) ∂s [
G(b∣i,x)
g(b∣i,x) ] /∂

sb exists and is finite for s = 1, . . . , S + 1 and x ∈ X .

2. For all (α,x) ∈ (0,1] × X and (i1, i2) ∈ I∗, b(α∣i1, x) < b(α∣i2, x). Moreover,

b(0∣i, x) does not depend on i ∈ I.

3. (a) For all (α,x) ∈ [0,1] ×X and (i1, i2) ∈ I∗, the compatibility condition

b(α∣i2, x) − b(α∣i1, x) = λ
−1[R(α∣i1, x)] − λ

−1[R(α∣i2, x)] (4)

is satisfied.

(b) For each i ∈ I, the function ξi ∶ SBX(i)→ R≥0 defined by

ξi(b, x) = b + λ
−1 [

1

(i − 1)

G(b∣i, x)

g(b∣i, x)
]

satisfies ∂ξi(b, x)/∂b > 0 for every (b, x) and υ(α∣x) = ξi[b(α∣i, x), x].
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This observation also follows directly by combining the results of Guerre et al.

(2009) and Campo et al. (2011), hence its proof is omitted. Its innovation just consists

in adding an auction covariate to Lemma 3 of Guerre et al. (2009). Part 1 states

smoothness properties of the bids distribution and follows directly from Lemma 1 in

Campo et al. (2011). Parts 2, 3, and 4 follow by adding an auction covariate to Lemma

3 in Guerre et al. (2009). As Part 2 does not depend on unknown functions, λ−1(⋅)

and ξi(⋅, ⋅), it provides a testable implication that can be verified with a first-order

stochastic dominance test.

The next lemma constitutes the main contribution of this section as it establishes

crucial properties of R(⋅∣⋅, ⋅). Write R′(α∣i, x) = ∂R(α∣i, x)/∂α.

Lemma 1. Under Assumptions 1-2, there exist finite constants cR, c′R > 0 and 0 < α̃′′ ≤

α̃′ ≤ α̃ ≤ 1 such that

1. R′(α∣i, x) ≥ cR for all (α, i, x) ∈ [0, α̃] × I ×X ;

2. R′(α∣i1, x) −R′(α∣i2, x) ≥ c′R for all (α,x) ∈ [0, α̃′] ×X and (i1, i2) ∈ I∗;

3. for every (i1, i2) ∈ I∗,

0 < max
x∈X

[
max{R′(α∣i2, x) ∶ α ∈ [0, α̃′′]}

min{R′(α∣i1, x) ∶ α ∈ [0, α̃′′]}
] < 1.

Proof. See Appendix A.1.

The function R(α∣i, x) can be interpreted as the equilibrium markup associated

with the α-quantile of FV ∣X(⋅∣x) when there are i bidders; specifically, R(α∣i, x) =

λ[υ(α∣x) − b(α∣i, x)]. The first item of Lemma 1 implies that this markup is strictly

increasing for small values of α. The second establishes that the markup increases

faster when the number of bidders decreases. The third implies that the ratio of the
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speeds at which markups increase is uniformly bounded on some neighborhood of 0.

This last result is technical and will be used later in the proof of Lemma 2 to determine

the effects of deviating from the compatibility condition.

3 Nonparametric Estimation

The purpose of this section is to build a nonparametric estimator of λ−1(⋅), the param-

eter of interest. All asymptotic properties are established taking L → +∞, while the

set I is fixed.

Consider the interval [0, R̄] as the domain of λ−1(⋅), where R̄ = maxα∈[0,1]R(α∣i, x),

i = min{I}, and x ∈ interior(X ).3 The value of x is fixed and chosen by the researcher.

The parameter space is defined as follows. Denote the sup-norm of a function φ(⋅) over

a set Z by ∥φ∥Z,∞ = supz∈Z ∣φ(z)∣ and, when φ is a real function, write its sth derivative

by φ(s) whenever exists.

Definition 2. Let HS be the space of functions φ ∶ [0, R̄] → R≥0 that satisfy the next

conditions: φ(0) = 0, φ(⋅) admits S + 1 continuous derivatives on [0, R̄], 0 < φ′(⋅) ≤ 1,

and ∥φ(s)∥[0,R̄],∞ ≤ C̄H for s = 2, . . . , S + 1 and some large constant C̄H > 0.

As a measure of distance between a function φ(⋅) and λ−1(⋅), I consider the sup-

norm over the interval [0, ū], where ū ∈ (0, R̄) is fixed and arbitrarily close to R̄. The

constant C̄H is taken to be large enough so that λ−1 ∶ [0, R̄] → R≥0, belongs to HS.

This is a technical requirement that can be ignored for practical purposes, i.e., working

with real-world data.

3By Proposition 3 in Guerre et al. (2009), λ−1(⋅) is nonparametrically identified on [0, R̄] and it
can be shown that λ−1(u) is not identified when u > R̄. The reason is that λ−1(R̄) = max{v−s(v; i, x) ∶
v ∈ [υ(x), ῡ(x)]}, where v − s(v; i, x) represents the monetary gain of bidding s(v; i, x). Intuitively,
the identification region [0, R̄] cannot be improved because bidders cannot obtain a monetary gain
greater than its maximum, λ−1(R̄).

13



3.1 Population Criterion Function

In this subsection, I propose a population criterion function that will allow us to build

a consistent estimator of λ−1(⋅) and obtain its convergence rate.

As a starting point, define the functional Qε(⋅∣i) ∶ HS → R≥0 as

Qε(φ∣i) = max
α∈[ε,1−ε]

∣b(α∣i, x) − b(α∣i, x) + φ[R(α∣i, x)] − φ[R(α∣i, x)]∣ ,

where ε ∈ [0,1), i ∈ I/{i}, and x ∈ interior(X ) is fixed. The functional form of Qε(⋅∣i) is

based on the compatibility condition (4). Since I may contain more than two elements,

I define the population criterion function Qε ∶ HS → R≥0 as

Qε(φ) = ∑
i∈I/{i}

Qε(φ∣i)

= ∑
i∈I/{i}

max
α∈[ε,1−ε]

∣b(α∣i, x) − b(α∣i, x) + φ[R(α∣i, x)] − φ[R(α∣i, x)]∣ .

Note that Qε(λ−1) = 0 for any ε ∈ [0,1) due to eq. (4). Furthermore, the criterion

function satisfies the following property.

Lemma 2. Suppose that Assumptions 1-2 hold. There exists a constant cQ > 0 so that

the next implication holds: for every φ ∈ HS and ε > 0 sufficiently small,

∥φ(⋅) − λ−1(⋅)∥[0,ū],∞ ≥ ε ⇒ Qε(φ) ≥ cQ
ε

log(ε−1)
. (5)

Proof. See Appendix A.2.

This lemma is essential to construct a valid estimator for λ−1(⋅) with its rate of

convergence. We already know that λ−1(⋅) is the unique function satisfying Q0(λ−1) = 0

due to Guerre et al. (2009)’s identification result, which proves that there exists only
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one function that satisfies eq. (4). Lemma 2 establishes that Qε(⋅) is bounded below,

over a neighborhood of λ−1(⋅), by certain function in the distance from λ−1(⋅). This

result is crucial to derive the convergence rate as it parallels, e.g., Condition 3.1 in

Chen (2007) and Condition C.2 in Chernozhukov, Hong, and Tammer (2007). An

implication of Lemma 2 is that the parameter of interest can be approximated by any

sequence of functions (φL)L∈N ⊂ HS satisfying Qε(φL) → 0 as L → +∞ and ε → 0, i.e.,

Qε(φL) → 0 implies φL → λ−1. Intuitively, this feature helps us develop an estimator

for λ−1(⋅) as estimation involves approximating a parameter using sample analogues.

Before proceeding to the next subsection, I highlight that there are different alter-

natives to the shape of the criterion function Qε(⋅). For instance, one can use different

weights for Qε(⋅∣i). Note also that Qε(⋅) employs the sup-norm to penalize deviations

from the compatibility condition. So another alternative would be to use an Lp-norm

with 1 ≤ p < +∞ to penalize these deviations. However, in such a case the resulting

rate of convergence would be slower due to the inequalities between norms; see e.g.

Theorem 1 in Gabushin (1967).

3.2 Preliminary Nonparametric Estimators

This subsection constructs nonparametric estimators for the quantile function b(⋅∣i, x)

and its derivative, b′(⋅∣i, x). Since R(α∣i, x) = αb′(α∣i, x)/(i − 1), R(⋅∣i, x) will be esti-

mated by plugging in the estimator for b′(⋅∣i, x). The proposed estimators for b(⋅∣i, x)

and R(⋅∣i, x) will be used later to compute the empirical counterpart of Qε(⋅).

Let k(⋅) be a univariate kernel, hX and hµ bandwidths, (JL)L∈N an increasing

sequence of positive integers, and hε a positive sequence that converges to zero as

L → +∞. These objects will be employed throughout this subsection to construct

preliminary nonparametric estimators. I make the following assumptions about them.

Denote the ceiling function by ⌈y⌉ = min{n ∈ Z ∶ n ≥ y} for y ∈ R.
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Assumption 3. The kernel k(⋅) is symmetric with S + 1 continuous derivatives on

R, has support [−1,1], and satisfies ∫ k(v)dv = 1. The order of k(⋅) is S + 1, i.e.,

∫ v
sk(v)dv = 0 for s = 1, . . . , S and 0 < ∫ v

S+1k(v)dv < +∞.

Assumption 4. Let γX , γµ, γJ , and γε be positive constants. The bandwidths hX and

hµ are given by hX = γX[log(L)/L]1/(2S+D+2) and hµ = γµL−1/(2S+D+2), respectively. The

sequence (JL)L∈N is of the form

JL = ⌈γJL
2(S+1)

(2S+3)(2S+D+2) ⌉

and hε satisfies hε = γεL−(S+1)/(2S+D+3).

Following closely Marmer and Shneyerov (2012), we employ a kernel approach to

estimate fIX(⋅, ⋅) and G(⋅∣⋅, ⋅):

f̂IX(i, x) =
1

LhDX

L

∑
l=1

1{Il = i}K (
x −Xl

hX
) and

Ĝ(b∣i, x) =
1

f̂IX(i, x)LhDX

L

∑
l=1

1

Il

Il

∑
p=1

1{Blp ≤ b, Il = i}K (
x −Xl

hX
) , (6)

respectively, where (b, i, x) ∈ R≥0 × I ×RD and K(⋅) is the product kernel, i.e., K(x) =

∏
D
j=1 k(xj). The conditional quantile function b(α∣i, x) is estimated by

b̂(α∣i, x) = inf{b ≥ 0 ∶ Ĝ(b∣i, x) ≥ α} (7)

for α ∈ (0,1). The order of k(⋅) and the form of the bandwidth hX have been chosen

according to the smoothness of fIX(⋅, ⋅) and G(⋅∣⋅, ⋅). Such choices allow the estimators

f̂IX(i, x) and Ĝ(⋅∣i, x) to attain the fastest possible convergence rates.

Due to the shape of the criterion function, we need a uniformly consistent estimator

for b′(⋅∣i, x) = 1/g[b(⋅∣i, x)∣i, x] over the interval [ε,1 − ε], where ε > 0 approaches zero
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in a suitable manner as L → +∞; we will set ε = hε in the next subsection. To

build such an estimator, it suffices to construct a uniformly consistent estimator for

g(⋅∣i, x) over [b(x), b̄(i, x)]. Estimating g(⋅∣i, x) by kernel methods would generate

a boundary bias problem because hε will converge to zero faster than the optimal

bandwidth (Assumption 4). In contrast, a series approach would not suffer from this

problem.

The conditional density of equilibrium bids, g(⋅∣i, x), is estimated by extending

Barron and Sheu (1991)’s approach to conditional densities. To simplify the discussion,

this section assumes that the boundaries b(x) and b̄(i, x) are known for (i, x) ∈ I ×X ;

subsection 5.1 below suggests estimators for b(x) and b̄(i, x). Let g∗(⋅∣i, x) be the

conditional density of

B∗
lp ≡

Blp − b(Xl)

b̄(Il,Xl) − b(Xl)

given (Il,Xl) = (i, x). Note that the support of g∗(⋅∣i, x) is [0,1] and

g(b∣i, x) = [b̄(i, x) − b(x)]
−1
g∗ (

b − b(x)

b̄(i, x) − b(x)
∣i, x)

by the transformation formula. Then, the conditional density g(⋅∣i, x) is estimated by

ĝ(b∣i, x) = [b̄(i, x) − b(x)]
−1
ĝ∗ (

b − b(x)

b̄(i, x) − b(x)
∣i, x) ,

being ĝ∗(⋅, ⋅∣i) a conditional exponential series estimator of g∗(⋅∣i, x). To be specific,

ĝ(b∗∣i, x) =
exp [∑1≤j≤JL θ̂j(i, x)πj (b

∗)]

∫
1

0 exp [∑1≤j≤JL θ̂j(i, x)πj(y)]dy
,

where b∗ ∈ [0,1] and {πj(⋅) ∶ 1 ≤ j ≤ JL} are the orthonormal Legendre polynomials on
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[0,1] with respect to the Lebesgue measure:

πj(y) = (−1)j
√

2j + 1
j

∑
τ=0

(
j

τ
)(
j + τ

j
)(−y)τ

with y ∈ [0,1]. The coefficients {θ̂j(i, x) ∶ 1 ≤ j ≤ JL} are obtained by solving the

following system of nonlinear equations:

∫
1

0 πj(y) exp [∑1≤j≤JL θ̂j(i, x)πj(y)]dy

∫
1

0 exp [∑1≤j≤JL θ̂j(i, x)πj(y)]dy
= µ̂j(i, x) (8)

for j = 1,2, . . . , JL, where

µ̂j(i, x) =
L

∑
l=1

[
1

Il

Il

∑
p=1

πj (B
∗
lp)]ωl(i, x)

and the weights are

ωl(i, x) =
1{Il = i}K (

x−Xl
hµ

)

∑
L
m=1 1{Im = i}K (x−Xmhµ

)
.

Note that µ̂j(i, x) estimates the conditional expectation of πj (B∗
lp) given (Il,Xl) =

(i, x), which is denoted by µj(i, x) ≡ E [πj (B∗
lp)∣Il = i,Xl = x]. I remark that ĝ∗(⋅∣⋅)

coincides with Barron and Sheu (1991)’s estimator when D = 0.

From the precedent discussion, the quantile density function b′(⋅∣i, x) is estimated

by b̂′(α∣i, x) = 1/ĝ[b̂(α∣i, x)∣i, x]. Naturally, R̂(α∣i, x) = αb̂′(α∣i, x)/(i − 1) becomes the

estimator of R(α∣i, x). The asymptotic properties of b̂(⋅∣i, x), ĝ(⋅∣i, x), and R̂(⋅∣i, x) are

stated in the next lemma. We abbreviate ‘with probability approaching 1’ and write

‘w.p.a.1’ instead.

Lemma 3. Under Assumptions 1-4, the following statements hold for any (i, x) ∈

I × interior(X ).
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1. ∥b̂(⋅∣i, x) − b(⋅∣i, x)∥[hε,1−hε],∞ = OP ([
log(L)
L ]

S+1
2S+D+2

).

2. There exists a unique solution {θ̂j(i, x) ∶ 1 ≤ j ≤ JL} to eqs. (8) w.p.a.1 and

∥ĝ(⋅∣i, x) − g(⋅∣i, x)∥[b(x),b̄(i,x)],∞ = OP (L−
2S(S+1)

(2S+3)(2S+D+2)) .

3. ∥R̂(⋅∣i, x) −R(⋅∣i, x)∥[hε,1−hε],∞ = OP (L−
2S(S+1)

(2S+3)(2S+D+2)).

Proof. See Appendix A.3.

The first part of this lemma is similar to Lemma 1.(d) of Marmer and Shneyerov

(2012). The difference is that here the support of the sup-norm is expanding, while

in Marmer and Shneyerov (2012) is fixed. The second part, the main contribution of

Lemma 3, establishes existence and uniform consistency of ĝ(⋅∣i, x). In case of having

D = 0, the obtained rate can be improved by using Theorem 7 in Wu (2010); see also

subsection 3.3.1 for a discussion about improving the convergence rate when D ∈ {0,1}.

The third part states that R̂(⋅∣i, x) inherits the rate of ĝ(⋅∣i, x). This result follows by

exploiting certain inequalities derived from the shape of R(⋅∣i, x).

3.3 The Estimator: Definition and Uniform Consistency

From the discussion of subsection 3.1, the parameter of interest can be characterized

as the unique argument that minimizes Q0(⋅) over HS:

λ−1(⋅) = arg min
φ∈HS

Q0(φ).

Given this characterization and Lemmas 2-3, in this subsection, I build the estimator

of λ−1(⋅) as the argument that minimizes the empirical counterpart of Qε(⋅) over a sieve

space (a finite-dimensional approximation space) with ε→ 0.
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First, we construct the empirical criterion function Q̂(⋅), which is the empirical

counterpart of Qε(⋅) after replacing ε by the sequence hε of Assumption 4:

Q̂(φ) = ∑
i∈I/{i}

max
α∈[hε,1−hε]

∣̂b(α∣i, x) − b̂(α∣i, x) + φ[R̂(α∣i, x)] − φ[R̂(α∣i, x)]∣

with φ ∈ HS. Lemma 4 below states that Q̂(⋅) converges uniformly in probability to its

population counterpart. More specifically, Q̂(⋅) inherits the rate of convergence asso-

ciated with the slowest term, ĝ(⋅∣i, x). The proof of this lemma exploits the restriction

0 < φ′(⋅) ≤ 1 and combines it with Lemma 3.

Lemma 4. Under Assumptions 1-4,

sup
φ∈HS

∣Q̂(φ) −Qhε(φ)∣ = OP (L−
2S(S+1)

(2S+3)(2S+D+2)) .

Proof. See Appendix A.4.

Second, we consider a sequence of sieve spaces {H (L) ∶ L ∈ N} to approximate HS

and impose the following assumption.

Assumption 5. {H (L) ∶ L ∈ N} is a sequence of finite-dimensional approximation

spaces that satisfy H (L) ⊆ HS for every L sufficiently large and

inf
φ∈H (L)

∥φ − φ̃∥[0,R̄],∞ = O (L−
2S(S+1)

(2S+3)(2S+D+2)) (9)

for any φ̃ ∈ HS as L→ +∞.

Regarding the choice of the sieve basis, I suggest using Bernstein polynomials.4

4See ch. 10 of DeVore and Lorentz (1993) for a detailed discussion. Chen (2007) also suggests
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Denote the Bernstein basis over the interval [0, Ū] by

PM,m(u) = (
M

m
)(

u

Ū
)
m

(1 −
u

Ū
)
M−m

,

where u ∈ [0, Ū], Ū is a constant (chosen by the researcher) such that Ū ≥ R̄, and

M ≥m are positive integers. Let ML be a sequence of positive integers such that

ML = ⌈γML
2S(S+1)

(2S+3)(2S+D+2) ⌉ (10)

for some constant γM > 0.5 The sieve H (L) can be taken to be the space of functions

φ ∶ [0, R̄]→ R≥0 of the form

φ(u) =
ML

∑
m=1

βmPML,m(u),

where the coefficients {βm ∶m = 1, . . . ,ML} satisfy the next conditions:

ŪL−2 ≤ βm+1 − βm ≤ ŪM−1
L (11)

for 0 ≤m ≤ML − 1 with β0 ≡ 0, and

∣
S+1

∑
τ=0

(−1)S+1−τ(
S + 1

τ
)βm+τ ∣ ≤ (

Ū

ML

)

S+1

C̄H (12)

for 0 ≤ m ≤ ML − S − 1. Note that ML indicates the dimension of the sieve space.

Conditions (11)-(12) guarantee that the proposed sieves satisfy Assumption 5. To be

specific, condition (11) implies 0 < φ′(⋅) ≤ 1, while (12) implies ∥φ(s)∥[0,ū],∞ ≤ C̄H for all

Cardinal B-splines wavelets as shape-preserving sieves. As noted by Matzkin (1994), shape-preserving
estimators have several advantages, e.g., they decrease the variance and improve the quality of an
extrapolation beyond the support of the data.

5Suggestions for Ū and γM are given in subsection 5.1 below.
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φ ∈ H (L) and s = 2, . . . , S+1. Since φ(0) = 0 by construction, H (L) ⊆ HS. Requirement

(9) is satisfied by the form of ML in eq. (10); see Theorem 3.1 in ch. 10 of DeVore and

Lorentz (1993).

Third, we define the estimator of λ−1(⋅) as

λ̂−1(⋅) = arg min
φ∈H (L)

Q̂(φ). (13)

Computational aspects are discussed in subsection 5.1 below. Theorem 1 below estab-

lishes the uniform consistency of λ̂−1(⋅) with its rate of convergence. Its proof uses ar-

guments similar to that of Theorem 3.1 in Chen (2007). Let ϕ−1(⋅) be the inverse of the

function ϕ(x) ≡ x log(x) and denote the convergence rate by r∗L = ϕ
−1 (L

2S(S+1)
(2S+3)(2S+D+2)).

Theorem 1. Under Assumptions 1-5, r∗L ∥λ̂−1(⋅) − λ−1(⋅)∥[0,ū],∞ = OP (1).

Proof. See Appendix A.5.

Regarding existing literature results, in the absence of covariates (D = 0), Guerre

et al. (2009) characterized λ−1(u) as an infinite series of differences in quantiles:

λ−1(u) =
+∞
∑
t=0

[b(at∣i) − b(at∣i)] (14)

where u ∈ (0, ū], i ∈ I/{i}, and (at)t∈N ⊆ (0,1) is a strictly decreasing sequence

that satisfies the nonlinear recursive relation R(at∣i) = R(at−1∣i) with initial condi-

tion R(a0∣i) = u. Since R(⋅∣i) is not necessarily increasing outside [0, α̃] (see Lemma

1.1), the sequence (at)t∈N is not necessarily unique. At this point, it is not known

whether expression (14) can lead to a consistent estimator of λ−1(u).6 Obtaining the

asymptotic properties of an estimator based on (14) would have several difficulties.

6Guerre et al. (2009), pp. 1216, state that “a nonparametric estimation for [U,FV ∣X] or, equiva-
lently, [λ−1, FV ∣X] clearly needs to be developed” but do not develop a formal estimator. Then, they
discuss possible estimation strategies with their difficulties.
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First, expression (14) does not provide a rate at which λ−1(u) can be estimated. Even

if the empirical counterpart of each summand converges at a given rate, the sum-

mation may not converge as there are infinitely many terms. Second, since there is

no “polynomial minorant” for R(⋅∣i), we cannot establish the rate at which ã0 and,

consequently, λ−1(u)) can be estimated; see e.g., Condition C.2 and Theorem 3.1 in

Chernozhukov et al. (2007). Third, an estimator based on (14) would have the problem

of accumulating estimation errors because (at)t∈N is recursively defined.

More recently, Kim (2015) proposed a method to nonparametrically estimate λ−1(⋅)

when there are no covariates. He characterized λ−1(⋅) as the unique fixed point of a

mapping T ∶ H1 →H1 implicitly defined by the transformation

T (φ)[R(α∣i)] = b(α∣i) − b(α∣i) + φ[R(α∣i)]

for α ∈ [0,1], and also he established that there exists a metric over H1 for which T (⋅)

is a contraction. Then, λ−1(⋅) is estimated by replacing [b(⋅∣⋅),R(⋅∣⋅)] with their sample

analogues and iterating the contraction operator T (⋅). The performance of this method

is studied by Monte Carlo simulations and, at this point, the asymptotic properties

have not been established. I remark two differences between Kim (2015)’s approach and

mine. First, the former characterizes λ−1(⋅) as a fixed point of a contraction mapping

(λ−1 = T (λ−1)), whereas the latter represents λ−1(⋅) as the argument that minimizes

a criterion function. Second, Kim (2015)’s estimation method is iterative, while the

estimation procedure proposed here involves minimizing the empirical counterpart of

a criterion function (to avoid accumulating estimation errors).

23



3.3.1 Discussion: Improving Theorem 1’s Rate of Convergence

This subsection considers the case D ∈ {0,1} and discusses how Theorem 1’s conver-

gence rate can be improved.

When there is no covariates, D = 0, the conditional bids density g(⋅∣i) can be

estimated following Stone (1990)’s log-spline approach. In such a case, it can be shown

that

sup
φ∈HS

∣Q̂(φ) −Qhε(φ)∣ = OP

⎛

⎝
[
log(L)

L
]

S+1
2S+3⎞

⎠
.

The reason is that Q̂(φ) inherits the rate of convergence associated with the estimator

of g(⋅∣i) and Stone (1990)’s estimator achieves the optimal rate of uniform convergence,

[L/ log(L)](S+1)/(2S+3). Similarly, when D = 1, the conditional density of bids g(⋅∣i, x)

can estimated following Stone (1991)’s procedure and we can show that

sup
φ∈HS

∣Q̂(φ) −Qhε(φ)∣ = OP

⎛

⎝
[
log(L)

L
]

S+1
2S+4⎞

⎠
.

The next observation establishes the rate of convergence of λ̂−1(⋅) when D ∈ {0,1} and

the conditional density of bids is estimated as suggested above.

Observation 2. Suppose that Assumptions 1-4 hold, D ∈ {0,1}, and the sequence of

sieves {H (L) ⊂ HS ∶ L ∈ N} satisfies

inf
φ∈H (L)

∥φ − φ̃∥[0,R̄],∞ = O
⎛

⎝
[
log(L)

L
]

S+1
2R+D+3⎞

⎠

for any φ̃ ∈ HS. Using an appropriate estimator for the conditional density of bids, i.e.
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Stone (1990) or Stone (1991), we obtain

ϕ−1

⎧⎪⎪
⎨
⎪⎪⎩

[
L

log(L)
]

S+1
2S+D+3

⎫⎪⎪
⎬
⎪⎪⎭

∥λ̂−1(⋅) − λ−1(⋅)∥[0,ū],∞ = OP (1).

The proof of this observation is omitted as it follows immediately from the proof

of Theorem 1 and the precedent discussion. Note that ϕ−1(x) < x when x > e, so the

obtained rate of convergence is slower than [L/ log(L)](S+1)/(2R+D+3), which is Stone

(1982)’s optimal uniform rate when there are D covariates. But for any fixed c ∈ (0,1),

we still have that ϕ−1(x) > xc whenever x > 0 is sufficiently large. So when D ∈ {0,1},

up to a exponent, Theorem 1’s rate can be arbitrarily close to Stone (1982)’s rate.

Formally, for any fixed c ∈ (0,1) and D ∈ {0,1}, we have that

[
L

log(L)
]

c(S+1)
2S+D+3

∥λ̂−1(⋅) − λ−1(⋅)∥[0,ū],∞ = oP (1).

To extend this result to the general case D > 1, we require an estimator for g(⋅∣i, x) that

attains a uniform rate of [L/ log(L)](S+1)/(2S+D+3) over [b(x), b̄(x, i)]. To my knowledge,

such an estimator has not been developed yet and it is not known whether it is possible.

4 Estimating the First-Price Auction Model

The previous section developed an estimator for λ−1(⋅), this section applies it to the

auction model of Section 2. Exploiting the uniform consistency of λ̂−1(⋅), I propose

estimators for the bidders’ utility function and density of private values.

To estimate the utility function U(⋅), pick any ȳ ∈ (0, λ−1(ū)) with 0 < ū < R̄.7

Consider the normalizing restrictions U(0) = 0 and U(ȳ) = 1. Then, U(⋅) becomes the

7Since R̄ and λ−1(ū) are unknown but can be estimated from data, next section suggests how to
choose their values.
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unique solution of the differential equation λ(⋅)U ′(⋅) − U(⋅) = 0 on [0, ȳ]; specifically,

U(y) = exp{− ∫
ȳ

y [1/λ(t)]dt} for y ∈ [0, ȳ]. As λ̂−1(⋅) is strictly increasing on [0, ū],

the proposed estimator for λ(⋅) is simply the inverse of λ̂−1(⋅), i.e., λ̂(y) = (λ̂−1)−1(y).

Then, U(y) is estimated by

Û(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y = 0,

exp{− ∫
ȳ

y [1/λ̂(t)]dt} if 0 < y < ȳ,

1 if y ≥ ȳ.

(15)

Before proceeding, I remark that λ̂(⋅) is well-defined and λ̂′(⋅) ≥ 1 by 0 < λ̂−1′(⋅) ≤ 1

on [0, ū]. Observe that Û(⋅) is continuous because λ̂(⋅) is continuous, λ̂(0) = 0, and

∫
1

y [1/λ̂(t)]dt → +∞ as y → 0+. Moreover, Û(⋅) is a shape-preserving estimator in the

sense that it is strictly increasing and concave on [0, ȳ] regardless of the sample size;

note that Û ′(y) = Û(y)/λ̂(y) > 0 for y ∈ (0, ȳ).

To estimate the conditional density of private values fV ∣X(⋅∣⋅), I extend Guerre et al.

(2000)’s approach to accommodate for risk aversion. In view of eq. (3), I construct the

pseudo private values

V̂pl = Bpl + λ̂
−1 [

ψ̂ (Blp, Il,Xl)

Il − 1
] , (16)

where ψ̂(⋅, ⋅, ⋅) is defined in Guerre et al. (2000), eq. (19). Then, the latent density

fV ∣X(v∣x) is estimated by f̂V ∣X(v∣x) = f̂V X(v, x)/f̂X(x), where

f̂V X(v, x) =
1

LhD+1
f

L

∑
l=1

1

Il

Il

∑
p=1

k (
v − V̂pl
hf

)K (
x −Xl

hf
) , (17)

f̂X(x) = ∑i∈I f̂I(i)f̂IX(i, x), f̂I(i) = (1/L)∑
L
l=1 1{Il = i}, and hf is a bandwidth.

The next proposition states the asymptotic properties of the proposed estimators.
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Proposition 1. Under Assumptions 1-5, the following statements hold.

1. r∗L∥λ̂(⋅) − λ(⋅)∥[0,ȳ],∞ = OP (1) and r∗L∥Û(⋅) −U(⋅)∥[0,ȳ],∞ = OP (1).

2. If hf → 0 and hfr∗L → +∞, then

∥f̂V ∣X(⋅∣⋅) − fV ∣X(⋅∣⋅)∥C,∞ = OP

⎛

⎝
hS+1
f +

¿
Á
ÁÀ log(L)

LhDf
+

1

hfr∗L

⎞

⎠

for any inner compact subset C ⊂ SV X .

Proof. See Appendix A.6.

As a corollary of the first item, we have that Û ′(⋅) inherits the convergence rate of

Û(⋅) because U ′(⋅) = U(⋅)/λ(⋅). Regarding the estimation of the density, as expected,

the rate of convergence is affected by the term λ̂−1(⋅). The reason is that the pseudo

private values, V̂pl, inherit the rate of convergence of λ̂−1(⋅); see Appendix A.6 for a

detailed discussion. In particular, if we set

hf = γf [ϕ
−1 (L

2S(S+1)
(2S+D+2)(2S+3))]

−1
S+2

, (18)

for some constant γf > 0, we obtain ∥f̂V ∣X(⋅∣⋅) − fV ∣X(⋅∣⋅)∥C,∞ = OP (hS+1
f ). Furthermore,

when D ∈ {0,1}, the results of subsection 3.3.1 can be easily applied to Proposition 1

and improve the obtained rates of convergence.

An alternative approach to estimating fV ∣X(⋅∣⋅) would be to extend Marmer and

Shneyerov (2012)’s procedure to allow for risk-averse bidders. Such an approach is

based on the equality 1/fV ∣X(v∣x) = υ′[FV ∣X(v∣x)∣x] being υ′(α∣x) = ∂υ(α∣x)/∂α. This
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equality yields the formula

1

fV ∣X(v∣x)
= b′[FV ∣X(v∣x)∣i, x]

+λ−1′ {
FV ∣X(v∣x)b′[FV ∣X(v∣x)∣i, x]

i − 1
}(

1

i − 1
)

×{b′[FV ∣X(v∣x)∣i, x] −
FV ∣X(v∣x)g′{b[FV ∣X(v∣x)∣i, x]∣i, x}

[g{b[FV ∣X(v∣x)∣i, x]∣i, x}]3
} ,

where i ∈ I and g′(b∣i, x) = ∂g(b∣i, x)/∂b; see eq. (3) in Marmer and Shneyerov (2012).

Note that the right hand side depends on λ−1′(⋅), the first derivative of λ−1(⋅). The

alternative estimator of fV ∣X(⋅∣⋅) consists in replacing the unknown functions on the

right-hand side with their empirical counterparts. The rate of uniform convergence in

probability would be given by the slowest convergent term, i.e., the estimator of λ−1′(⋅).

5 Implementation Guide and Simulations

5.1 Implementation Guide

The proposed estimators for λ−1(⋅), U(⋅), and fV ∣X(⋅∣⋅) involve many nonparametric

estimation steps. This subsection provides an implementation guide to compute these

estimators: λ̂−1(⋅), Û(⋅), and f̂V ∣X(⋅∣⋅). Suggestions about how to choose bandwidths

and tuning parameters are provided. These suggestions are based on computational

simplicity and the performance in simulations (subsection 5.2 below).

Pick a fixed value of x ∈ X such that the compatibility condition (4) holds. The

degree of smoothness is set at S = 1. With respect to the kernel k(⋅), I suggest using

the triweight kernel over [−1,1]: k(t) = (35/32)(1 − t2)31{∣t∣ ≤ 1}. To compute the

proposed estimators, follow the next steps that can be implemented using a matrix-

oriented software such as MATLAB.
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Step 1 For each i ∈ I, compute f̂IX(i, x) from eq. (6). The suggested bandwidth

is hX = (hX,1, . . . , hX,D), where hX,d = 1.06σ̂dL−1/(3D+3) and σ̂d denotes the

sample standard deviation of {X1,d, . . . ,XL,d} with d = 1, . . . ,D.

Step 2 Set hε = L−2/(D+5) and construct an equally spaced grid A(L) = {a1 ≡ hε <

a2 < a3 < ⋯ < a⌈TA⌉ ≡ 1 − hε} of size TA. I suggest TA = ⌈L6/5⌉.

Step 3 For each i ∈ I and t = 1, . . . , TA, calculate bi,t ≡ b̂(at∣i, x) from eq. (7).

Step 4 To estimate the boundaries b(x) and b̄(i, x) for i ∈ I, I suggest using the

estimators proposed by Guerre et al. (2000), eqs. (16)-(17). Such estimators

can be computed in two steps.

Step 4A Construct the following hypercube containing x = (x1, . . . , xD):

Π = [x1 − h∂,1, x1 + h∂,1] ×⋯ × [xD − h∂,D, xD + h∂,D]

with h∂,d = σ̂d[log(L)/L]1/(D+1).

Step 4B b(x) and b̄(i, x) are estimated by

b̂(x) = min
p,l

{Bpl ∶Xl ∈ Π}

and ˆ̄b(i, x) = maxp,l{Bpl ∶ Il = i,Xl ∈ Π,}, respectively.8

Step 5 For each i ∈ I, compute the coefficients associated with ĝ∗(⋅∣i, x) following

the next steps.

8These estimators converges uniformly over X at a rate of [log(L)/L]1/(D+1). Alternatively, as in
Campo et al. (2011), one can use Korostelev and Tsybakov (1993)’s approach to estimate b(x) and
b̄(i, x). This approach leads to a faster convergence rate, but is computationally intensive. I remark

that both procedures lead to the same estimators when there are no covariates: b̂(x) = minp,l{Bpl}
and ˆ̄b(i, x) = maxp,l{Bpl ∶ Il = i}.
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Step 5A Construct a set of positive integers whose elements are candidates

for JL; e.g., J(L) = {5,10, . . . , ⌈L1/4⌉}.

Step 5B For each JL ∈ J(L), compute the coefficients that solve eqs. (8) and

denote them by θ̂(JL)(i, x) = (θ̂
(JL)
1 (i, x), . . . , θ̂

(JL)
JL

(i, x)). Such

coefficients can be obtained using a standard Newton-Raphson

algorithm; in MATLAB e.g., use the command ‘fsolve’ with zeros

as initial values. To speed up this procedure, series basis can be

employed instead of Legendre polynomials.

Step 5C Let ĝ∗(JL)(⋅∣i, x) be the conditional density estimator associated

with θ̂(JL)(i, x). Choose the value of JL ∈ J(L) that minimizes the

expression

∫

1

0
ĝ∗(JL)(b∗∣i, x)2db∗ (19)

−
2

f̂IX(i, x)iLhDX

L

∑
l=1

Il

∑
p=1

ĝ∗(JL) (B̂∗
lp∣i, x)1{Il = i}K (

x −Xl

hX
) .

Denote it by J̃L and let θ̂(J̃L)(i, x) be the corresponding vector

of coefficients.9

Step 6 For each i ∈ I and t = 1, . . . , TA, calculate

ĝ (bi,t∣i, x) = [ˆ̄b(i, x) − b̂(x)]
−1

ĝ∗(J̃L)
⎡
⎢
⎢
⎢
⎢
⎣

bi,t − b̂(x)

ˆ̄b(i, x) − b̂(x)

RRRRRRRRRRR

i, x

⎤
⎥
⎥
⎥
⎥
⎦

and Ri,t ≡ R̂(at∣i, x) = at/ [(i − 1)ĝ (bi,t∣i, x)], using θ̂(J̃L)(i, x) from Step 5C.

Step 7 Compute the coefficients associated with λ̂−1(⋅) following the next steps.

9Expression (19) is associated with integrated squared difference between ĝ∗(JL)(⋅∣i, x) and
g∗(⋅∣i, x); see eqs. (19)-(20) in Li and Racine (2007). In the absence of covariates, D = 0, JL can
be chosen according to Wu (2010)’s suggestion, which consists in minimizing a Akaike information
criterion.
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Step 7A Construct a set of positive integers whose elements are potential

values for ML; e.g., M(L) = {5,10, . . . , ⌈L1/2⌉}.

Step 7B Pick Ū = max{Ri,t ∶ i ∈ I, t = 1, . . . , TA}(1 + 0.01 3
√

1/L) and let

B(ML) denote the set of coefficients (β1, . . . , βML
) satisfying linear

conditions (11).10 For each ML ∈ M(L), compute the coefficients

that solve

min
β∈B(ML)

∑
i∈I/{i}

max
t=1,...,TA

∣bi,t − bi,t +
ML

∑
m=1

βm [PML,m (Ri,t) − PML,m (Ri,t)]∣

and denote them by β̂(ML) = (β̂
(ML)
1 , . . . , β̂

(ML)
(ML)

). This minimiza-

tion problem can be solved using a minimax optimization algo-

rithm such as Stocco, Salcudean, and Sassani (1998). In MAT-

LAB e.g., use the command ‘minimax’ included in the optimiza-

tion toolbox. I suggest βm =mŪ/(2ML) as initial values.

Step 7C From the set {β̂(ML) ∶ ML ∈ M(L)}, choose the vector of coef-

ficients that minimizes the sum of squared deviations from the

compatibility condition:

∑
i∈I/{i}

TA

∑
t=1

{bi,t − bi,t +
ML

∑
m=1

β̂
(ML)
m [PML,m (Ri,t) − PML,m (Ri,t)]}

2

Denote such a vector by β̂(M̃L) = (β̂
(M̃L)
1 , . . . , β̂

(M̃L)
(M̃L)

).

Step 8 The estimator of λ−1(u) is given by

λ̂−1(u) =
M̃L

∑
m=1

β̂
(M̃L)
m PM̃L,m

(u).

10Since C̄H > 0 can be taken to arbitrarily large, condition (12) can be ignored.
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Researchers interested only in the density of private values can skip Step

9 and move directly to Step 10 .

Step 9 Computation of Û(y) can be done in two steps.

Step 9A Pick ū = Ū/(1 + 0.02 3
√

1/L), ȳ = λ̂−1(ū)/1.01, and construct an

equally spaced grid Λ(L) = {y1 ≡ y < y2 < ⋅ ⋅ ⋅ < yTΛ
≡ ȳ} of size TΛ.

I suggest TΛ = L2. Then, calculate λ̂(yt) for each t = 1, . . . , TΛ.

Step 9B The estimator of U(y) is given by

Û(y) = exp [−
ȳ − y

TΛ − 1

TΛ

∑
t=1

1

λ̂(yt)
] .

Step 10 Compute f̂V ∣X(v∣x) following the next steps.

Step 10A Use formula (16) to obtain the pseudo private values V̂pl. To avoid

trimming observations, when D = 0, I suggest computing V̂pl as fol-

lows:

V̂pl = Bpl + λ̂
−1 [

1

(Il − 1)

Ĝ(Bpl∣Il)

ĝ(Bpl∣Il)
] , (20)

being Ĝ(⋅∣⋅) and ĝ(⋅∣⋅) the estimators proposed in subsection 3.2. To

ensure that pseudo private values are monotone in bids, use the pro-

cedure suggested in sec. 4 of Henderson, List, Millimet, Parmeter, and

Price (2012).

Step 10B Use formula (17) to obtain f̂V ∣X(v∣x) = f̂V X(v, x)/f̂X(x). The sug-

gested bandwidth is hf = 1.06σ̂V̂L
−1/(3D+6), being σ̂V̂ the sample stan-

dard deviation of the pseudo private values.
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Table 1: Sensitivity Analysis of λ̂−1(⋅) based on IMSE

Design L = 450 L = 900
fV (⋅) −U(⋅) ML = 3 6 9 13 M∗

L ML = 3 6 9 13 M∗

L

D1 - U1 4.43 4.19 3.96 3.79 3.81 2.39 2.35 2.24 2.20 2.18
U2 4.96 4.67 4.36 4.15 4.17 3.04 2.68 2.42 2.30 2.29
U3 4.70 3.82 3.71 3.69 3.64 3.12 2.19 2.04 1.92 1.89
U4 2.53 3.09 5.70 11.37 3.91 1.28 1.71 5.51 12.53 1.92

D2 - U1 5.01 5.07 4.88 4.75 4.75 2.52 2.90 2.69 2.60 2.59
U2 5.23 5.19 4.92 4.66 4.73 3.39 3.23 2.97 2.70 2.72
U3 5.74 4.99 4.90 4.81 4.72 3.78 2.93 2.78 2.75 2.65
U4 3.41 4.47 6.85 12.80 5.59 1.39 1.97 4.93 13.38 2.71

All numbers have been multiplied by 10.

5.2 Monte Carlo Experiments

This subsection presents Monte Carlo simulations to investigate the finite sample per-

formance of the proposed estimators. The evaluation criteria are the integrated mean

squared error (IMSE), bias, and mean squared error (MSE). The proposed nonpara-

metric estimators are compared with Campo et al. (2011)’s CARA semiparametric

estimator.

The design of the experiment is as follows. It is assumed that there are no covariates

(D = 0). We consider the next two densities of valuations for fV (⋅).

D1: Truncated lognormal density with parameters 0 and 1, truncated at 0.055

and 2.5, and rescaled so that it has support [0,10].

D2: Truncated exponential density with parameter 1/5 and truncated at 10.

We set ū = 4 and ȳ = 1. The functional forms of λ−1(⋅) and U(⋅) are given by λ−1(u) =

log(1 + u/η2)/η1 and

U(y) = exp(
ȳ − y

η2

)[
1 − exp(η1y)

1 − exp(η1ȳ)
]

1
η1η2

,

respectively, being (η1, η2) the risk-aversion parameters. The choices of fV (⋅) and U(⋅)

are convenient because the corresponding bidding functions have closed-form expres-
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Table 2: Performance of Û(⋅) based on IMSE, Bias, and MSE

Design / Estimator
L = 450 L = 900

IMSE
U(0.33) U(0.67)

IMSE
U(0.33) U(0.67)

Bias MSE Bias MSE Bias MSE Bias MSE

D1 - U1) Nonparam. 0.111 -0.145 0.156 -0.123 0.038 0.077 -0.121 0.110 -0.090 0.025
CARA 0.241 -2.068 0.437 -1.206 0.153 0.230 -2.024 0.417 -1.163 0.142

U2) Nonparam. 0.140 -0.387 0.180 -0.184 0.035 0.090 -0.306 0.108 -0.131 0.019
CARA 0.659 -3.340 1.121 -1.817 0.335 0.659 -3.343 1.122 -1.819 0.334

U3) Nonparam. 0.069 0.451 0.111 0.184 0.033 0.037 0.315 0.063 0.130 0.020
CARA 0.010 -0.239 0.016 -0.228 0.014 0.008 -0.171 0.012 -0.164 0.011

U4) Nonparam. 0.068 0.422 0.102 0.229 0.028 0.038 0.277 0.058 0.150 0.016
CARA 0.002 0.090 0.003 0.086 0.003 0.002 0.081 0.002 0.079 0.002

D2 - U1) Nonparam. 0.136 -0.110 0.190 -0.121 0.047 0.089 -0.059 0.123 -0.073 0.028
CARA 0.239 -2.064 0.434 -1.201 0.151 0.228 -2.015 0.413 -1.154 0.139

U2) Nonparam. 0.159 -0.420 0.208 -0.209 0.042 0.109 -0.342 0.136 -0.159 0.024
CARA 0.660 -3.344 1.123 -1.820 0.335 0.662 -3.351 1.126 -1.827 0.337

U3) Nonparam. 0.099 0.565 0.158 0.229 0.045 0.057 0.423 0.095 0.177 0.029
CARA 0.010 -0.225 0.015 -0.215 0.013 0.007 -0.151 0.012 -0.146 0.010

U4) Nonparam. 0.095 0.555 0.143 0.298 0.039 0.055 0.367 0.083 0.196 0.022
CARA 0.002 0.093 0.003 0.090 0.003 0.001 0.077 0.002 0.075 0.002

All numbers have been multiplied by 10.

sions. Observe that the case η2 = 1/η1 corresponds to a CARA utility function with

parameter η1. The next four values of (η1, η2) are considered.11

U1: η1,= 0.3 and η2 = 6.

U2: η1 = −0.1 and η2 = −30.

U3: η1 = 0.5 and η2 = 2, i.e., CARA case with λ−1(u) = log(1 + u/2)/0.5 and

U(y) = [1 − exp(0.5y)]/[1 − exp(0.5)].

U4: η1 = 0 and η2 = +∞, i.e., risk-neutral case with λ−1(u) = u and U(y) = y.

For each combination of density and risk-aversion parameters, we study two sample

sizes. A small sample of L = 450 auctions: 300 auctions with 2 bidders and 150 auctions

with 4 bidders, giving a total of 1,200 bids. A large sample of L = 900 auctions: 600

11The values of ū and ȳ have been chosen so that ū < R̄ and ȳ < λ−1(ū) hold for each case.
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Figure 1: Estimating U(⋅) –cases U1 and U2 under density D1–

auctions with 2 bidders and 300 auctions with 4 bidders, giving a total of 2,400 bids.

Each experiment employs 2,000 replications.

In each replication, first, we generate independent valuations from either D1 or D2.

Second, we compute the associated bids according to the values of (η1, η2) and using

the equilibrium bidding function (2). Third, we compute λ̂−1(⋅) using the generated

bids and following Steps 1-8 of previous subsection. Fourth, we compute Û(⋅) and

f̂V (⋅) following Steps 9-10. Several remarks are noteworthy. In Step 5, we consider

J(L) = {3,5,7} and series basis are employed instead of Legendre polynomials. In Step

7, we consider M(L) = {3,6,9,13} as potential candidates for ML. In Step 10, pseudo
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Table 3: Performance of f̂V (⋅) based on IMSE, Bias, and MSE

Design / Estimator
L = 450 L = 900

IMSE
fV (3) fV (7)

IMSE
fV (3) fV (7)

Bias MSE Bias MSE Bias MSE Bias MSE

D1 - U1) Nonparam. 0.020 -0.002 0.002 0.000 0.002 0.010 0.004 0.001 0.014 0.001
CARA 0.019 -0.097 0.003 0.041 0.002 0.015 -0.081 0.002 0.052 0.001
Neutral 0.028 -0.228 0.006 -0.051 0.001 0.025 -0.233 0.006 -0.057 0.001

U2) Nonparam. 0.024 0.001 0.003 -0.001 0.003 0.011 0.004 0.001 0.012 0.001
CARA 0.034 -0.182 0.005 0.097 0.003 0.029 -0.182 0.005 0.096 0.002
Neutral 0.037 -0.263 0.008 0.013 0.001 0.033 -0.265 0.008 0.004 0.000

U3) Nonparam. 0.020 -0.029 0.002 -0.029 0.003 0.009 -0.010 0.001 0.008 0.001
CARA 0.016 -0.090 0.003 -0.041 0.001 0.011 -0.059 0.002 -0.028 0.001
Neutral 0.025 -0.211 0.005 -0.111 0.002 0.023 -0.209 0.005 -0.116 0.002

U4) Nonparam. 0.032 -0.013 0.003 -0.049 0.006 0.016 -0.008 0.002 0.004 0.003
CARA 0.030 0.039 0.004 -0.082 0.005 0.020 0.043 0.002 -0.053 0.004
Neutral 0.021 -0.010 0.002 -0.024 0.004 0.012 -0.002 0.001 -0.004 0.002

D2 - U1) Nonparam. 0.019 -0.009 0.002 -0.020 0.003 0.009 -0.009 0.001 -0.001 0.001
CARA 0.016 -0.083 0.003 0.034 0.002 0.011 -0.068 0.002 0.040 0.001
Neutral 0.025 -0.213 0.005 -0.058 0.001 0.022 -0.220 0.005 -0.060 0.001

U2) Nonparam. 0.022 0.003 0.002 -0.004 0.003 0.011 0.000 0.001 0.001 0.001
CARA 0.027 -0.150 0.004 0.094 0.003 0.022 -0.154 0.003 0.087 0.002
Neutral 0.029 -0.230 0.006 0.008 0.001 0.025 -0.234 0.006 0.002 0.001

U3) Nonparam. 0.020 -0.029 0.002 -0.037 0.003 0.009 -0.024 0.001 -0.002 0.001
CARA 0.015 -0.081 0.003 -0.041 0.001 0.010 -0.059 0.002 -0.033 0.001
Neutral 0.026 -0.206 0.005 -0.115 0.002 0.023 -0.212 0.005 -0.114 0.002

U4) Nonparam. 0.036 -0.018 0.003 -0.066 0.006 0.018 -0.016 0.002 -0.011 0.003
CARA 0.034 0.039 0.004 -0.091 0.006 0.021 0.036 0.002 -0.061 0.004
Neutral 0.024 -0.013 0.002 -0.019 0.004 0.013 -0.010 0.001 -0.019 0.002

All numbers have been multiplied by 10.

private values are constructed using formula (20).

Table 1 reports the IMSE of λ̂−1(⋅) over [0,4] and explores the sensitivity of the

results to different values of ML. The column M∗
L corresponds to the choice of ML

based on Step 7C of previous subsection. Increasing ML reduces the IMSE except

for the risk-neutral case U4. The intuition behind this exception is that the identity

function is a (series) polynomial of degree 1, so increasing the degree of the polynomial

rises the IMSE due to overfitting. I highlight that choosing M∗
L as the degree of the

Bernstein polynomial works as a solution to this problem.

Table 2 provides the IMSE of Û(⋅) over [0,1] together with the bias and MSE at

certain points. It also includes Campo et al. (2011)’s CARA semiparametric estimator
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Figure 2: Estimating fV (⋅) –cases D1 and D2 under utility function U1–

(row ‘CARA’) for comparison purposes. As expected, the nonparametric estimator has

the best performance IMSE under U1 and U2, whereas the semiparametric competitor

performs better under U3 and U4 (cases in which the CARA assumption holds). For

the cases U1 and U2 under D1, Figure 1 presents the utility function (solid line) and

the pointwise mean of Û(⋅) (dashed line) along with the 5th/95th percentiles (dotted

lines). As can be noted, Û(⋅) has a good finite-sample performance in terms of bias.

Table 3 analyses the performance of f̂V (⋅) and studies the consequences of misspec-

ifying the shape of λ−1(⋅). The row ‘Nonparam.’ reports the results of estimating fV (⋅)

from formula (17) using the pseudo private values (20). The row ‘CARA’ repeats the

same exercise but, when generating the pseudo private values, λ̂−1(⋅) is replaced with

the CARA semiparametric estimator. Similarly, in the row ‘Neutral’, λ̂−1(⋅) is replaced

with the identity function. The nonparametric estimator performs very well in terms
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of bias and has the lowest IMSE under U2 when L = 450, as well as, under U1 and U2

when L = 900. For the cases D1 and D2 under U1, Figure 2 shows the private value

density (solid line) and the pointwise mean of the nonparametric estimator (dashed

line) along with the 5th/95th percentiles (dotted lines).

6 Concluding Remarks

This paper has studied a first-price sealed-bid auction with risk-averse bidders, in-

dependent private values, and a non-binding reserve price. In this context, I have

proposed nonparametric estimators for the bidders’ utility function and the density of

private values. The key idea has been to characterize both functions by an argument

that minimizes certain criterion function. After estimating this minimizer by its empir-

ical counterpart, estimators for the bidders’ utility function and the density of private

values have been constructed from the estimator of such a minimizer.

The method proposed in this paper allows us to estimate bidders’ risk preferences

without placing any parametric restrictions –such as CARA or CRRA– on the utility

function. In this way, this paper extends the literature on structural econometrics of

first-price auctions by developing an estimator for the bidders’ utility function that can

incorporate any type of risk preference. The relevance of this contribution relies on

the fact that evidence suggests that risk aversion is an essential component of bidders’

behavior, but there is no consensus on which concept of risk aversion is the most

appropriate to describe such behavior.

There are many possible directions for further research. The first is to establish

the optimal convergence rate for the parameters of the model, i.e., the fastest rate at

which U(⋅) and fV ∣X(⋅∣⋅) can be estimated nonparametrically. Second, the asymptotic

distribution of the proposed estimators needs to be determined. The difficulty relies on
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the fact that the criterion function is a nonsmooth functional based on the sup-norm.

Third, since the density of private values is over-identified when #(I) ≥ 3, it would be

possible to construct a test to verify whether or not bidders’ participation is exogenous.

In a recent working paper, Liu and Luo (2014) develop such a test under risk-neutral

bidders.

Independent private values is a maintained assumption in this paper. However, the

obtained results can be extended to allow affiliated private values. To do so, we should

construct a criterion function based on eq. (9) of Guerre et al. (2000) and extend the

results of Section 3. Considering a more general setting with correlated private values,

it would be interesting to apply Aradillas-Lopéz, Gandhi, and Quint (2013)’s approach

to first-price auctions with risk-averse bidders and study whether economic measures

of interest –such as profits and optimal reserve price– could be partially identified.

In view of future empirical applications, the proposed estimators can be employed

to recover the set of optimal reserve prices. This set depends on both the bidders’

risk aversion and the distribution of valuations. So far, the optimal reserve price has

been obtained only under the assumption that bidders are risk-neutral. For instance,

Li et al. (2003) have considered a first-price auction with affiliated private values, but

assuming that bidders are risk-neutral. Their approach may be extended by allowing

bidders to be risk-averse.
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A Appendix: Proofs

This appendix provides the proofs of all lemmas, propositions, and theorems stated in

the body of the text. Proofs of the auxiliary lemmas are given in Appendix B.

A.1 Proof of Lemma 1

I start the proof with an auxiliary lemma.

Lemma A.1. Suppose Assumptions 1-2 hold and pick any (i, x) ∈ I ×X . Then, b(⋅∣i, ⋅)

admits S + 1 continuous partial derivatives on [0,1] × X , b(S+2)(⋅∣i, x) is continuous

on (0,1], and b′(⋅∣i, x) is bounded away from 0 uniformly on x ∈ X . Furthermore,

b′(0∣i1, x)/(i1 − 1) > b′(0∣i2, x)/(i2 − 1) for every (i1, i2) ∈ I∗ and x ∈ X .

Proof. See Appendix B.1.

1. Pick any i ∈ I. Note that

R′(α∣i, x) ≡
∂R(α∣i, x)

∂α
=

1

i − 1
[b′(α∣i, x) − αb′′(α∣i, x)] (A.1)

by definition of R(α∣i, x), stated in Observation 1.3.(a). By Lemma A.1, b′(⋅∣i, x) is

bounded away from 0 uniformly on x ∈ X and also ∣b′′(⋅∣i, x)∣ is bounded above uniformly

on x ∈ X because b(⋅∣i, ⋅) admits (at least) 2 continuous partial derivatives on [0,1]×X

and this set is compact. Then, we pick

α̃ =
min{b′(α∣i, x) ∶ (α,x) ∈ [0,1] ×X}

2 max{∣b′′(α∣i, x)∣ ∶ (α,x) ∈ [0,1] ×X}
;
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if the numerator is bigger than the denominator, we choose α̃ = 1. From expression

(A.1), for any (α,x) ∈ [0, α̃] ×X , R′(α∣i, x) can be bounded below by

1

i − 1
[min{b′(α∣i, x) ∶ (α,x) ∈ [0,1] ×X} − α̃max{∣b′′(α∣i, x)∣ ∶ (α,x) ∈ [0,1] ×X}]

≥
1

2(i − 1)
min{b′(α∣i, x) ∶ (α,x) ∈ [0,1] ×X},

so cR > 0 can be taken to be the right hand side. This inequality follows by construction

of α̃ and becomes an equality when α̃ < 1. Recall that I is finite, thus the dependence

of cR on i is irrelevant.

2. Pick any (i1, i2) ∈ I∗. For (α,x) ∈ [0,1] × X , define the nonnegative function

δ(α,x) = R(α∣i1, x) −R(α∣i2, x) = δ̃(α,x)α, being

δ̃(α,x) ≡
b′(α∣i1, x)

i1 − 1
−
b′(α∣i2, x)

i2 − 1
> 0. (A.2)

Then, we can write R′(α∣i1, x) −R′(α∣i2, x) = δ̃′(α,x)α + δ̃(α,x), where δ̃′(⋅, ⋅) stands

for the partial derivative of δ̃(⋅, ⋅) with respect to its first argument. This difference

can be bounded as follows:

R′(α∣i1, x) −R
′(α∣i2, x) = δ̃

′(α,x)α + δ̃(α,x) ≥ −C̄δα +∆(α),

where C̄δ ≡ max{∣δ̃′(α,x)∣ ∶ (α,x) ∈ [0,1] × X} < +∞ by Lemma A.1 and ∆(α) ≡

minx∈X δ̃(α,x). Considering the second term on the right-hand side, note that ∆(⋅) is

continuous on [0,1]; see e.g. Theorem 3.6 in Stokey, Lucas, and Prescott (1989). It also

satisfies ∆(0) = minx∈X δ̃(0, x) > 0 because δ̃(0, ⋅) is strictly positive (Lemma A.1) and

continuous, while X is compact. By continuity of ∆(⋅), there is α̃′∆ ∈ (0, α̃] such that

∆(α) ≥ ∆(0)/2 > 0 for all α ∈ [0, α̃′∆]. Now pick α̃′ = min{∆(0)/(4C̄δ), α̃′∆} ∈ (0, α̃], so
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for every α ∈ [0, α̃′] we have

R′(α∣i1, x)−R
′(α∣i2, x) ≥ −C̄δα+∆(α) ≥ −C̄δα̃

′ +
∆(0)

2
≥ −C̄δ

∆(0)

4C̄δ
+

∆(0)

2
=

∆(0)

4
.

To complete the proof, choose c′R = ∆(0)/4 and note that it is independent of x.

3. First, define the function

∆̃1(α) = min
x∈X

[R′(α∣i1, x) −R
′(0∣i2, x)]

for α ∈ [0, α̃′], which satisfies ∆̃1(0) ≥ c′R due to the second item. By continuity of ∆̃1(⋅),

there is α̃′′1 ∈ (0, α̃′] such that ∆̃1(α) > c′R/2 for all α ∈ [0, α̃′′1 ]. By construction of ∆̃1(⋅)

and α̃′′1 , we have R′(α∣i1, x) −R′(0∣i2, x) ≥ ∆̃1(α) > c′R/2 for every (α,x) ∈ [0, α̃′′1 ] × X

and therefore

R′(α∣i1, x) >
c′R
2
+R′(0∣i2, x). (A.3)

Second, proceeding in a similar manner, define the function

∆̃2(α) = max
x∈X

[R′(α∣i2, x) −R
′(0∣i2, x)]

for α ∈ [0, α̃′], which clearly satisfies ∆̃2(0) = 0. By continuity of ∆̃2(⋅), there is

α̃′′2 ∈ (0, α̃′] such that ∆̃2(α) < c′R/2 for all α ∈ [0, α̃′′2 ]. Hence, we have R′(α∣i2, x) −

R′(0∣i2, x) ≤ ∆̃2(α) < c′R/2 for every (α,x) ∈ [0, α̃′′2 ] ×X and, as a result,

R′(α∣i2, x) <
c′R
2
+R′(0∣i2, x). (A.4)
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After taking α̃′′ = min{α̃′′1 , α̃
′′
2} ∈ (0, α̃′], it follows that

cR ≤ max
α∈[0,α̃′′]

R′(α∣i2, x) <
c′R
2
+R′(0∣i2, x) < min

α∈[0,α̃′′]
R′(α∣i1, x).

for every x ∈ X , where cR > 0 was obtained in item 1 and α̃′′ is clearly independent of

x. The first inequality follows by Lemma 1.1, the second by eq. (A.4), and the third

by eq. (A.3). The desired result finally emerges by min{R′(α∣i1, x) ∶ α ∈ [0, α̃′′]} > 0,

compactness of X , and continuity of

max{R′(α∣i2, ⋅) ∶ α ∈ [0, α̃′′]}

min{R′(α∣i1, ⋅) ∶ α ∈ [0, α̃′′]}
∈ (0,1).

A.2 Proof of Lemma 2

Pick any i ∈ I/{i} and x ∈ interior(X ). This proof starts with an auxiliary lemma.

Consider α̃′′ > 0 obtained in Lemma 1.3 and denote the ceiling function by ⌈⋅⌉.

Lemma A.2. For each u ∈ [0, R̄], define recursively the following sequence: α0(u) =

min{α ∈ [0,1] ∶ R(α∣i, x) = u} and

αt(u) = min{α ∈ [0,1] ∶ R(α∣i, x) = R[αt−1(u)∣i, x]} (A.5)

for t ∈ N. Under Assumptions 1-2, the following statements hold.

1. There exists a finite T̃ ∈ N, which is independent of (u,x), such that αt(u) ≤ α̃′′

for all t ≥ T̃ and u ∈ [0, R̄].

2. Using Lemma 1.3, define

κ̄ = max
x∈X

[
max{R′(α∣i, x) ∶ α ∈ [0, α̃′′]}

min{R′(α∣i, x) ∶ α ∈ [0, α̃′′]}
] ∈ (0,1)
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and Tε = 4⌈log(ε−1)/ log(κ̄−1)⌉ with ε > 0. For any ε > 0 sufficiently small, we

have αTε(u) ≤ ε for all u ∈ [0, R̄].

Proof. See Appendix B.2.

Choose ε ∈ (0,1) sufficiently small (according to Lemma A.2.2) and pick any φ ∈ HS

such that ∥φ − λ−1∥[0,ū],∞ ≥ ε. Consider any i ∈ I/{i}. By the compatibility condition,

we have

b(α∣i, x) − b(α∣i, x) = λ−1[R(α∣i, x)] − λ−1[R(α∣i, x)]

for every α ∈ [0,1], so we can write

Qε(φ∣i) = max
α∈[ε,1−ε]

∣φ̃[R(α∣i, x)] − φ̃[R(α∣i, x)]∣ = ∥φ̃[R[(⋅∣i, x)] − φ̃[R(⋅∣i, x)]∥[ε,1−ε],∞

with φ̃(u) ≡ φ(u) − λ−1(u). Note that ∥φ̃∥[0,ū],∞ ≥ ε. In what follows, I show that

Qε(φ) ≥ ∥φ̃[R[(⋅∣i, x)] − φ̃[R(⋅∣i, x)]∥[ε,1−ε],∞ ≥
cQε

log(ε−1)
, (A.6)

where the constant cQ > 0 can be taken to be cQ = min{c′R, log(κ̄−1)/16}. The rests of

the proof is divided into two cases: ∣φ̃′(0)∣ ≥ ε1/3 and ∣φ̃′(0)∣ < ε1/3. I show next that in

either case (A.6) holds.

Case 1: Suppose that ∣φ̃′(0)∣ ≥ ε1/3. Then,

∣φ̃[R(ε1/2∣i, x)] − φ̃[R(ε1/2∣i, x)]∣ = ∣φ̃′(u∗ε)∣[R(ε1/2∣i, x) −R(ε1/2∣i, x)]

= ∣φ̃′(u∗ε)∣[R
′(ε∗∣i, x) −R′(ε∗∣i, x)]ε1/2

≥ ∣φ̃′(u∗ε)∣c
′
Rε

1/2
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for some u∗ε ∈ [R(ε1/2∣i, x),R(ε1/2∣i, x)] and ε∗ ∈ [0, ε1/2], where c′R > 0 was obtained in

Lemma 1.2. Observe that

0 < u∗ε ≤ R(ε1/2∣i, x) ≤ R̄′ε1/2

where R̄′ ≡ max{R′(α∣i, x) ∶ (α, i, x)) ∈ [0,1] × I × X} is strictly positive, finite, and

independent of ε. By Lipschitz continuity of φ̃′(⋅) with constant 2C̄H from Definition

2, it follows that

∣φ̃′(0)∣ − ∣φ̃′(u∗ε)∣ ≤ ∣φ̃′(u∗ε) − φ̃
′(0)∣ ≤ 2C̄H ∣u∗ε ∣ ≤ 2C̄H R̄′ε1/2.

As ∣φ̃′(0)∣ ≥ ε1/3, these inequalities imply ε1/3 − 2C̄H R̄′ε1/2 ≤ ∣φ̃′(u∗ε)∣ and therefore

∥φ̃[R[(⋅∣i, x)] − φ̃[R(⋅∣i, x)]∥[ε,1−ε],∞ ≥ ∣φ̃′(u∗ε)∣c
′
Rε

1/2 ≥ (ε1/3−2C̄H R̄′ε1/2)c′Rε
1/2 ≥ c′Rε.

Last inequality follows by taking ε > 0 sufficiently small so that ε1/3−2C̄H R̄′ε1/2 > ε1/2.

Case 2: Suppose ∣φ̃′(0)∣ < ε1/3. Consider ε > 0 sufficiently small so that

max{1, R̄′}ε4/3 + C̄H ε2 < ε/2

and ∥R(⋅∣i, x)∥[0,1−ε],∞ > ū. Observe that there is u∗ ∈ (0, ū] such that ∣φ̃(u∗)∣ = ε due

to continuity of φ̃(⋅), φ̃(0) = 0, and ∥φ̃∥[0,ū],∞ ≥ ε. Since φ̃(0) = 0 and ∣φ̃′(0)∣ < ε1/3,

we have ∣φ̃(u) − φ̃′(0)u∣ ≤ u2C̄H (error of Taylor series) and ∣φ̃(u)∣ < ∣φ̃′(0)∣ε + C̄H ε2 ≤

ε4/3 + C̄H ε2 < ε/2 for any u ∈ [0, ε). So we must have that u∗ > ε.

Now consider the sequence {αt(u∗) ∶ t ∈ N} defined by (A.5) and denote αt ≡ αt(u∗)

for the rest of the proof. Define T ∗
ε = min{t ∈ N ∶ αt ≤ ε} and observe that T ∗

ε ≤ Tε =

4⌈log(ε−1)/ log(κ̄−1)⌉ for any u∗ ∈ (0, ū] by Lemma A.2.2. Since R(α0∣i, x) = u∗ and
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R(αt∣i, x) = R(αt−1∣i, x) for every t ∈ N, by repeated triangular inequalities, it follows

ε < u∗ = ∣φ̃[R(α0∣i, x)]∣ ≤ ∣φ̃[R(α0∣i, x)] − φ̃[R(α1∣i, x)]∣ + ∣φ̃[R(α1∣i, x)]∣

= ∣φ̃[R(α0∣i, x)] − φ̃[R(α0∣i, x)]∣ + ∣φ̃[R(α1∣i, x)]∣

≤

T ∗ε −1

∑
t=0

∣φ̃[R(αt∣i, x)] − φ̃[R(αt∣i, x)]∣ + ∣φ̃[R(αT ∗ε ∣i, x)]∣.

By construction of T ∗
ε , αt ∈ (ε,1 − ε] for all t ≤ T ∗

ε − 1 and therefore

ε − ∣φ̃[R(αT ∗ε ∣i, x)]∣ ≤ T
∗
ε ∥φ̃[R(⋅∣i, x)] − φ̃[R(⋅∣i, x)]∥[ε,1−ε],∞ . (A.7)

We have T ∗
ε ≤ Tε = 4⌈log(ε−1)/ log(κ̄−1)⌉. By construction of T ∗

ε , we also have that

αT ∗ε ≤ ε and consequently R(αT ∗ε ∣i, x) < R̄
′ε. Since ∣φ̃′(0)∣ < ε1/3 and ε > 0 is sufficiently

small, we have that ∣φ̃[R(αT ∗ε ∣i, x)]∣ < ε/2. From eq. (A.7) and the fact that T ∗
ε ≤ Tε ≤

8 log(ε−1)/ log(κ̄−1), we obtain

ε

2
≤ 8

log(ε−1)

log(κ̄−1)
∥φ̃[R[(⋅∣i, x)] − φ̃[R(⋅∣i, x)]∥[ε,1−ε],∞ ,

which implies [log(κ̄−1)ε]/[16 log(ε−1)] ≤ ∥φ̃[R[(⋅∣i, x)] − φ̃[R(⋅∣i, x)]∥[ε,1−ε],∞.

A.3 Proof of Lemma 3

1. The proof of this item is mainly based on Lemma 1 of Marmer and Shneyerov

(2012).12 From part (c) of this lemma, we obtain

∥Ĝ(⋅∣i, x) −G(⋅∣i, x)∥[b(x),b̄(i,x)],∞ = OP

⎛

⎝
[

log(L)

LhDX
]

1/2

+ hS+1
X

⎞

⎠
= OP (h

S+1
X ); (A.8)

12I emphasize that Marmer and Shneyerov (2012) uses a different notation: the smoothness of the
valuation density is R − 1, being R an integer greater than 1, while the density of covariates has
smoothness R. In this paper, the densities of private values and covariates have smoothness S and
S + 1, respectively.
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the last equality is due to the form of the bandwidth hX ; specifically, [log(L)/(LhDX)]
1/2

and hS+1
X are of the same order by Assumption 4. As a result,

P [b̂(hε∣i, x) ≤ b(x)] = P [ inf
b∈R≥0

{Ĝ(b∣i, x) ≥ hε} ≤ b(x)] ≤ P [Ĝ[b(x)∣i, x] ≥ hε] = o(1);

the last equality follows from eq. (A.8) and the fact hε/hS+1
X → +∞ as L → +∞. In

words, Ĝ[b(x)∣i, x] converges in probability to zero faster than hε. Symmetrically, it can

be shown that P [b̂(1−hε∣i, x) ≥ b̄(i, x)] = o(1). Hence, b(x) < b̂(hε∣i, x) ≤ b̂(1−hε∣i, x) <

b̄(i, x) w.p.a.1. The rest of the proof follows exactly by the same arguments of eqs.

(40)-(48) in the appendix of Marmer and Shneyerov (2012).

2. Pick any (i, x) ∈ I × interior(X ). Before proceeding, we state an auxiliary lemma.

Write (g∗)(S+1)(b∗∣i, x) = ∂S+1g∗(b∗∣i, x)/∂S+1b∗ for b∗ ∈ (0,1].

Lemma A.3. Under Assumptions 1-2, ∫
1

0 [(g∗)(S+1)(y∣i, x)]2[y(1 − y)]S+1dy < +∞.

Proof. See Appendix B.3.

To prove existence (w.p.a.1) of the conditional exponential series estimator ĝ∗(⋅∣i, x),

consider the information projection of g∗(⋅∣i, x):

g̃∗(b∗∣i, x) ≡
exp [∑1≤j≤JL θ̃j(i, x)πj (b

∗)]

∫
1

0 exp [∑1≤j≤JL θ̃j(i, x)πj(y)]dy
,

where b∗ ∈ [0,1] and the coefficients {θ̃j(i, x) ∶ 1 ≤ j ≤ JL} are obtained by solving

∫
1

0 πj(y) exp [∑1≤j≤JL θ̃j(i, x)πj(y)]dy

∫
1

0 exp [∑1≤j≤JL θ̃j(i, x)πj(y)]dy
= µj(i, x) (A.9)

for j = 1,2, . . . , JL. In words, g̃∗(⋅∣i, x) is characterized as the unique density in the

exponential family that satisfies ∫
1

0 πj(y)g̃
∗(y∣i, x)dy = µj(i, x) for all j = 1,2, . . . , JL.
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Combining Lemma A.3 with Barron and Sheu (1991), Theorem 3 and eqs. (7.4)-(7.5),

we obtain that there exists a unique solution to (A.9) when L is sufficiently large.

Moreover, the information projection satisfies

∥ log[g̃∗(⋅∣i, x)] − log[g∗(⋅∣i, x)]∥[0,1],∞ = O (J−SL ) . (A.10)

By Lemma 5 of Barron and Sheu (1991) and the next lemma., we can now affirm that

there exists a unique solution {θ̂j(i, x) ∶ 1 ≤ j ≤ JL} to eqs. (8) w.p.a.1.

Lemma A.4. Under Assumptions 1-4,

{
JL

∑
j=1

[µ̂j(i, x) − µj(i, x)]
2
}

1/2

= OP (J
1/2
L L−

S+1
2S+D+2) .

I remark that the sequences J
1/2
L L−

S+1
2S+D+2 and J

−(S+1)
L are of the same order.

Proof. See Appendix B.4.

To obtain the desired rate of convergence, since g∗(⋅∣i, x) is bounded away from 0,

it suffices to show that

∥ log[ĝ∗(⋅∣i, x)] − log[g∗(⋅∣i, x)]∥[0,1],∞ = OP (L−
2S(S+1)

(2S+3)(2S+D+2)) .

By the triangle inequality, ∥ log[ĝ∗(⋅∣i, x)] − log[g∗(⋅∣i, x)]∥[0,1],∞ is bounded above by

∥ log[ĝ∗(⋅∣i, x)] − log[g̃∗(⋅∣i, x)]∥[0,1],∞ + ∥ log[g̃∗(⋅∣i, x)] − log[g∗(⋅∣i, x)]∥[0,1],∞.

The limiting behavior of the second term was already addressed in eq. (A.10). Regard-

48



ing the first term, we have

∥ log[ĝ∗(⋅∣i, x) − log[g̃∗(⋅∣i, x)]∥[0,1],∞ ≤ C̄BSJL {
JL

∑
j=1

[µ̂j(i, x) − µj(i, x)]
2
}

1/2

(A.11)

for some finite constant C̄BS > 0; see eq. (5.7) in Barron and Sheu (1991). The desired

result then emerges from Lemma A.4 and the form of JL.

3. By construction of R̂(⋅∣⋅, ⋅), we have

∣R̂(α∣i, x) −R(α∣i, x)∣ =
α

i − 1
∣

1

ĝ[b̂(α∣i, x)∣i, x]
−

1

g[b(α∣i, x)∣i, x]
∣ (A.12)

for any (α, i, x). Since g(⋅∣i, x) is bounded away from zero, b(x) < b̂(hε∣i, x) ≤ b̂(1 −

hε∣i, x) < b̄(i, x) w.p.a.1, and ĝ(⋅∣i, x) is uniformly consistent on [b(x), b̄(i, x)], it follows

that inf{ĝ[b̂(α∣i, x)∣i, x] ∶ α ∈ [hε,1 − hε]} ≥ cg/2 w.p.a.1; recall that cg > 0 has been

obtained in subsection 2.2 and satisfies g(⋅∣⋅, ⋅) ≥ cg. Consequently, for any α ∈ [hε,1 −

hε], the difference R̂(α∣i, x) −R(α∣i, x) can be bounded w.p.a.1 as follows:

∣R̂(α∣i, x) −R(α∣i, x)∣ ≤ ∣
1

ĝ[b̂(α∣i, x)∣i, x]
−

1

g[b(α∣i, x)∣i, x]
∣

=
1

ḡ2
∣ĝ[b̂(α∣i, x)∣i, x] − g[b(α∣i, x)∣i, x]∣

≤
4

c2
g

∣ĝ[b̂(α∣i, x)∣i, x] − g[b(α∣i, x)∣i, x]∣ (A.13)

for some ḡ that lies between ĝ[b̂(α∣i, x)∣i, x] and g[b(α∣i, x)∣i, x], so it satisfies ḡ ≥ cg/2

w.p.a.1. The first inequality is a consequence of eq. (A.12). The second equality follows

after applying the mean value theorem to the function f(t) = 1/t: for any t̂, t > 0, we

have (1/t̂)−(1/t) = (−1/t̄2)(t̂−t) for some t̄ that lies between t̂ and t. The third equality

is due to ḡ2 ≥ c2
g/4.
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To complete the proof, observe that

∣ĝ[b̂(α∣i, x)∣i, x] − g[b(α∣i, x)∣i, x]∣ ≤ ∣ĝ[b̂(α∣i, x)∣i, x] − g[b̂(α∣i, x)∣i, x]∣

+ ∣g[b̂(α∣i, x)∣i, x] − g[b(α∣i, x)∣i, x]∣

≤ ∥ĝ(⋅∣i, x) − g(⋅∣i, x)∥[b(x),b̄(i,x)],∞

+ C̄g′ ∣̂b(α∣i, x) − b(α∣i, x)∣

≤ ∥ĝ(⋅∣i, x) − g(⋅∣i, x)∥[b(x),b̄(i,x)],∞ (A.14)

+ C̄g′ ∥b̂(⋅∣i, x) − b(⋅∣i, x)∥[hε,1−hε]

where α ∈ [hε,1−hε], C̄g′ ≡ max{∣g′(b∣i, x)∣ ∶ i ∈ I, (b, x) ∈ SBX(i)} < +∞ by Observation

1.1.(a), and g′(b∣i, x) = ∂g(b∣i, x)/∂b. After combining together inequalities (A.13) and

(A.14) with items 1 and 2 of this lemma, we obtain the desired result. Since ĝ(⋅∣i, x)

converges slower than b̂(⋅∣i, x), we write

∥R̂(⋅∣i, x) −R(⋅∣i, x)∥[hε,1−hε],∞ = OP (∥ĝ(⋅∣i, x) − g(⋅∣i, x)∥[b(x),b̄(i,x)],∞) .

A.4 Proof of Lemma 4

Choose any φ ∈ HS. Write

Q̂(φ) = ∑
i∈I/{i}

∥b̂(⋅∣i, x) − b̂(⋅∣i, x) + φ[R̂(⋅∣i, x)] − φ[R̂(⋅∣i, x)]∥[hε,1−hε],∞
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and Qhε(φ) = ∑i∈I/{i} ∥b(⋅∣i, x) − b(⋅∣i, x) + φ[R(⋅∣i, x)] − φ[R(⋅∣i, x)]∥[hε,1−hε],∞. By the

triangle inequality, the difference Q̂(φ) −Qhε(φ) can be bounded by

∣Q̂(φ) −Qhε(φ)∣ ≤ ∑
i∈I/{i}

∣∥b̂(⋅∣i, x) − b̂(⋅∣i, x) + φ[R̂(⋅∣i, x)] − φ[R̂(⋅∣i, x)]∥[hε,1−hε],∞

− ∥b(⋅∣i, x) − b(⋅∣i, x) + φ[R(⋅∣i, x)] − φ[R(⋅∣i, x)]∥[hε,1−hε],∞∣

(A.15)

As ∥⋅∥[hε,1−hε],∞ is a norm, each summand on the right-hand side satisfies the inequalities

∣∥b̂(⋅∣i, x) − b̂(⋅∣i, x) + φ[R̂(⋅∣i, x)] − φ[R̂(⋅∣i, x)]∥[hε,1−hε],∞

− ∥b(⋅∣i, x) − b(⋅∣i, x) + φ[R(⋅∣i, x)] − φ[R(⋅∣i, x)]∥[hε,1−hε],∞∣

≤ ∥{b̂(⋅∣i, x) − b̂(⋅∣i, x) + φ[R̂(⋅∣i, x)] − φ[R̂(⋅∣i, x)]}

− {b(⋅∣i, x) − b(⋅∣i, x) + φ[R(⋅∣i, x)] − φ[R(⋅∣i, x)]}∥[hε,1−hε],∞

≤ ∥b̂(⋅∣i, x) − b(⋅∣i, x)∥[hε,1−hε],∞
+ ∥b̂(⋅∣i, x) − b(⋅∣i, x)∥[hε,1−hε],∞

(A.16)

+ ∥φ[R̂(⋅∣i, x)] − φ[R(⋅∣i, x)]∥[hε,1−hε],∞
+ ∥φ[R̂(⋅∣i, x)] − φ[R(⋅∣i, x)]∥[hε,1−hε],∞

.

Observe that ∣φ[R̂(α∣i, x)] − φ[R(α∣i, x)]∣ = φ′ (R̃) ∣R̂(α∣i, x) −R(α∣i, x)∣ for some R̃ > 0

between R̂(α∣i, x) and R(α∣i, x), and since 0 ≤ φ′(⋅) ≤ 1, it follows

∥φ[R̂(⋅∣i, x)] − φ[R(⋅∣i, x)]∥[hε,1−hε],∞
≤ ∥R̂(⋅∣i, x) −R(⋅∣i, x)∥[hε,1−hε],∞

. (A.17)

Combining together inequalities (A.15)-(A.17), ∣Q̂(φ) −Qhε(φ)∣ can be bounded by

∑
i∈I/{i}

∥b̂(⋅∣i, x) − b(⋅∣i, x)∥[hε,1−hε],∞
+ ∥b̂(⋅∣i, x) − b(⋅∣i, x)∥[hε,1−hε],∞

+ ∑
i∈I/{i}

∥R̂(⋅∣i, x) −R(⋅∣i, x)∥[hε,1−hε],∞
+ ∥R̂(⋅∣i, x) −R(⋅∣i, x)∥[hε,1−hε],∞

.
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This upper bound does not depend on φ, hence the desired conclusion emerges from

items 1 and 3 of Lemma 3.

A.5 Proof of Theorem 1

To simplify the exposition, I set γε = 1. Pick any constant C̄ > 0 and observe

P {r∗L ∥λ̂−1 − λ−1∥[0,ū],∞ ≥ C̄} = P {∥λ̂−1 − λ−1∥[0,ū],∞ ≥
C̄

r∗L
}

≤ P {Q1/r∗L(λ̂
−1) ≥

cQC̄

r∗L log(r∗L)
}

≤ P {Qhε(λ̂
−1) ≥

cQC̄

r∗L log(r∗L)
}

= P {Qhε(λ̂
−1) ≥ cQC̄L

− 2S(S+1)
(2S+3)(2S+D+2)} . (A.18)

The first equality is trivial. The second inequality employs Lemma 2 with φ(⋅) = λ̂−1(⋅)

and ε = 1/r∗L. The third one follows by hε ≤ 1/r∗L (Assumption 4), which implies

Qhε ≥ Q1/r∗L . The last equality combines together the definition r∗L and the fact that

ϕ−1(⋅) log[ϕ−1(⋅)] is equal to the identity function.

To complete the proof, since cQ > 0 and C̄ can be taken to arbitrarily large, it

suffices to show that Qhε(λ̂
−1) = OP (L−

2S(S+1)
(2S+3)(2S+D+2)). For this purpose, observe that

there exists a sequence of functions {λ−1
(L) ∈ H (L) ∶ L ∈ N} satisfying

∥λ−1
(L) − λ

−1∥[0,R̄],∞ = O (L−
2S(S+1)

(2S+3)(2S+D+2)) (A.19)
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by Assumption 5. Then, consider the inequalities

Qhε(λ̂
−1) ≤ Q̂(λ̂−1) + ∣Q̂(λ̂−1) −Qhε(λ̂

−1)∣

≤ Q̂(λ−1
(L)) + sup

φ∈HS

∣Q̂(φ) −Qhε(φ)∣

≤ Qhε(λ
−1
(L)) + 2 sup

φ∈HS

∣Q̂(φ) −Qhε(φ)∣ .

The first inequality follows by the triangle inequality. The second by construction of

λ̂−1(⋅), which minimizes Q̂(⋅), and definition of supremum. The third is due to

Q̂(λ−1
(L)) ≤ ∣Q̂(λ−1

(L)) −Qhε(λ
−1
(L))∣ +Qhε(λ

−1
(L)) ≤ sup

φ∈HS

∣Q̂(φ) −Qhε(φ)∣ +Qhε(λ
−1
(L)).

We already know that supφ∈HS
∣Q̂(φ)−Qhε(φ)∣ = OP (L−

2S(S+1)
(2S+3)(2S+D+2)) by Lemma 4, so to

complete the proof, we have to show that Qhε(λ
−1
(L)) = O (L−

2S(S+1)
(2S+3)(2S+D+2)). Following the

notation of Appendix A.4 and using the compatibility condition, b(α∣i, x) − b(α∣i, x) =

λ−1[R(α∣i, x)] − λ−1[R(α∣i, x)], we write

Qhε (λ
−1
(L)) = ∑

i∈I/{i}
∥b(⋅∣i, x) − b(⋅∣i, x)

+λ−1
(L)[R(⋅∣i, x)] − λ−1

(L)[R(⋅∣i, x)]∥
[hε,1−hε],∞

= ∑
i∈I/{i}

∥λ−1[R(⋅∣i, x)] − λ−1[R(⋅∣i, x)]

+ λ−1
(L)[R(⋅∣i, x)] − λ−1

(L)[R(⋅∣i, x)]∥
[hε,1−hε],∞

.
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Then, the triangle inequality and condition (A.19) yields the desired result:

Qhε (λ
−1
(L)) ≤ ∑

i∈I/{i}
∥λ−1[R(⋅∣i, x)] − λ−1

(L)[R(⋅∣i, x)]∥
[hε,1−hε],∞

+ ∑
i∈I/{i}

∥λ−1[R(⋅∣i, x)] − λ−1
(L)[R(⋅∣i, x)]∥

[hε,1−hε],∞

≤ 2[#(I) − 1] ∥λ−1(⋅) − λ−1
(L)(⋅)∥[0,R̄],∞

= O (L−
2S(S+1)

(2S+3)(2S+D+2)) .

A.6 Proof of Proposition 1

1. The next auxiliary lemma establishes the uniform consistency of λ̂(⋅).

Lemma A.5. Under Assumptions 1-5, r∗L∥λ̂(⋅) − λ(⋅)∥[0,ȳ],∞ = OP (1).

Proof. See Appendix B.5.

To prove the second statement, just note that there is constant C̄U > 0 such that

∥Û(⋅) −U(⋅)∥[0,ȳ],∞ ≤ C̄U∥λ̂(⋅) − λ(⋅)∥[0,ȳ],∞.

2. This part follows closely the proof of Theorem 3 in Guerre et al. (2000). Pick any

any inner compact subset C ⊂ SV X and consider the unfeasible kernel estimator

f̃V X(v, x) =
1

LhD+1
f

L

∑
l=1

1

Il

Il

∑
p=1

k (
v − Vpl
hf

)K (
x −Xl

hf
) .

By standard arguments, we know that

∥f̃V X(v, x) − fV X(v, x)∥C,∞ = OP

⎛

⎝
hS+1
f +

¿
Á
ÁÀ log(L)

LhDf

⎞

⎠
,

so it suffices to prove

∥f̂V X(v, x) − f̃V X(v, x)∥C,∞ = OP (
1

r∗Lhf
) .

54



We observe that V̂pl inherits the rate of λ̂−1(⋅); more specifically,

sup
p,l

1{(Vpl,Xl) ∈ C
′} ∣V̂pl − Vpl∣ = OP (

1

r∗L
)

for any inner compact subset C′ ⊂ SV X . This result is based on arguments similar to

that of Proposition 3.(ii) in Guerre et al. (2000). Finally, the desired result emerges by

implementing the inequalities of eq. (23) in this reference.

B Appendix: Proofs of Auxiliary Lemmas

B.1 Proof of Lemma A.1

As a starting point, recall from Subsection 2.2 that g(⋅∣i, ⋅) ≥ cg > 0 on its support

SBX(i). Moreover, we know that g(⋅∣i, ⋅) admits S continuous partial derivatives on

SBX(i) by Observation 1.1.(a). So first, as b′(α∣i, x) = 1/g[b(α∣i, x)∣i, x], we have

that b(⋅∣i, ⋅) admits S + 1 continuous partial derivatives on [0,1] × X . Second, since

g(S+1)(⋅∣i, x) is continuous on (b(x), b̄(i, x)] by Observation 1.1.(b), b(S+2)(⋅∣i, x) is con-

tinuous on (0,1]. Third, as g(⋅∣i, ⋅) is continuous on SBX(i) and this set is compact,

there is a finite constant C̄g > 0 such that g(⋅∣i, ⋅) ≤ C̄g on SBX(i). Then,

0 <
1

C̄g
≤ b′(α∣i, x) =

1

g[b(α∣i, x)∣i, x]
≤

1

cg
< +∞

for all (α,x) ∈ [0,1] ×X .

The last statement, b′(0∣i1, x)/(i1 − 1) > b′(0∣i2, x)/(i2 − 1) for all (i1, i2) ∈ I∗ and

x ∈ X , is derived from Observation 1.3.(b). Pick any (i1, i2) ∈ I∗ and x ∈ X . Observe

that υ(α∣x) ≡ ξi1[b(α∣i1, x), x] = ξi2[b(α∣i2, x), x] for all α ∈ [0,1]. Moreover, υ′(0∣x) =

ξ′ij[υ(x), x] × b
′(0∣ij, x) > 0 because b′(⋅∣⋅, ⋅) is bounded away from 0 and ξ′ij[υ(x), x] =
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1 + 1/[λ′(0)(ij − 1)] > 0, where j = 1,2 and ξ′ij(v, x) = ∂ξij(v, x)/∂v. Since ξij(⋅, x) is

strictly increasing, it follows that b(α∣ij, x) = ξ−1
ij

[υ(α∣x), x], where ξ−1
ij

(⋅, x) stands for

the inverse of ξij(⋅, x). After taking the derivative with respect to α and evaluating at

α = 0, we obtain

b′(0∣ij, x) = (ξ−1
ij

)′[υ(x), x] × υ′(0∣x). (B.20)

At the same time, we have that

(ξ−1
ij

)′[υ(x), x] =
1

ξ′ij[υ(x), x]
=

λ′(0)(ij − 1)

λ′(0)(ij − 1) + 1
, (B.21)

so combining together (B.20) and (B.21) yields

b′(0∣i1, x)

i1 − 1
=

λ′(0)υ′(0∣x)

λ′(0)(i1 − 1) + 1
>

λ′(0)υ′(0∣x)

λ′(0)(i2 − 1) + 1
=
b′(0∣i2, x)

i2 − 1
.

The strict inequality is due to i2 > i1, λ′(0) > 0, and υ′(0∣x) > 0.

B.2 Proof of Lemma A.2

Before proceeding, note that the sequence {αt(⋅) ∶ t ∈ N} is well-defined because

R(0∣i, x) = 0, R(⋅∣i, x) is continuous, and by definition of R̄. Observe also that parts 1

and 2 of Lemma 1 hold for α ∈ [0, α̃′′] as α̃′′ ≤ α̃′ ≤ α̃.

1. Define ∆R = min{R(α∣i, x) − R(α∣i, x) ∶ (α, i, x) ∈ [α̃′′,1] × I/{i} × X} > 0 and

T̃ = ⌈R̄/∆R⌉ + 1. Note that T̃ is independent of (u,x). Pick any u ∈ (0, R̄] and write

αt ≡ αt(u) to simplify the notation. By construction and since R(⋅∣i, x) > R(⋅∣i, x) on

(0,1], we have that αt+1 < αt for all t ∈ N. On the one hand, if αT̃ ≤ α̃′′, the desired

result follows immediately. On the other hand, if αT̃ > α̃′′, we have αt > α̃′′ for all t ≤ T̃
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because (αt)t is strictly decreasing. As a result,

R̄ ≥ R(α0∣i, x) −R(αT̃ ∣i, x)

= [R(α0∣i, x) −R(α0∣i, x)] +R(α1∣i, x) −R(αT̃ ∣i, x)

=
T̃

∑
t=0

[R(αt∣i, x) −R(αt∣i, x)]

≥ (T̃ + 1) ×∆R,

which is a contradiction by construction of T̃ . The first line follows immediately by

definition of R̄ and R(αT̃ ∣i, x) ≥ 0. The second is due to R(α1∣i, x) = R(α0∣i, x). The

third employs an inductive argument; specifically, R(αt∣i, x) = R(αt−1∣i, x) for all t.

The fourth line follows by definition of ∆R and αt > α̃′′ for all t ≤ T̃ .

2. Pick any arbitrary u ∈ (0, R̄] and ε ∈ (0,1) small enough so that Tε > 2T̃ , where

T̃ was obtained in the previous item. Write αt ≡ αt(u) to simplify the notation. I will

next show that αTε ≤ ε. By item 1 of this lemma and the way ε > 0 was chosen above,

we have that αt ≤ α̃′′ for all t ≥ Tε/2 > T̃ . Since R(⋅∣i, x) is strictly increasing on [0, α̃′′]

(Lemma 1.1), αt can be defined as αt = R−1[R(αt−1∣i, x)∣i, x] whenever t ≥ Tε/2. As a

result,

αt = R−1[R(αt−1∣i, x)∣i, x]

≤ R−1[αt−1 max{R′(α∣i, x) ∶ α ∈ [0, α̃′′]}∣i, x]

≤ αt−1
max{R′(α∣i, x) ∶ α ∈ [0, α̃′′]}

min{R′(α∣i, x) ∶ α ∈ [0, α̃′′]}
≤ αt−1κ̄.

The second line follows by ∣R(α∣i, x)∣ ≤ α∥R′(⋅∣i, x)∥[0,α̃′′],∞ for any α ∈ [0, α̃′′] and the

third employs a similar argument. Since αTε/2 ≤ α̃
′′ and αt ≤ κ̄αt−1 for all t ≥ Tε/2, it

follows by induction that ατ ≤ κ̄τ−Tε/2α̃′′ for any integer τ ≥ Tε/2. So taking τ = Tε, we
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obtain

αTε ≤ κ̄
Tε−Tε/2α̃′′ = κ̄Tε/2α̃′′ ≤ κ̄2 log(ε−1)/ log(κ̄−1)α̃′′ ≤ ε.

The last inequality follows by construction of Tε. More specifically,

κ̄2 log(ε−1)/ log(κ̄−1)α̃′′ ≤ ε ↔
2 log(ε−1)

log(κ̄−1)
log(κ̄) + log(α̃′′) ≤ log(ε)

↔
2 log(ε)

log(κ̄)
log(κ̄) + log(α̃′′) ≤ log(ε)

↔ 2 log(ε) + log(α̃′′) ≤ log(ε)

↔ (2 − 1) log(ε) + log(α̃′′) ≤ 0;

the last inequality holds because 0 < ε, α̃′′ ≤ 1.

B.3 Proof of Lemma A.3

We prove the result for S = 1, the general case S ≥ 1 follows by the same arguments.

We remark that the results of Observation 1.1 also hold for g∗(⋅∣i, x). Let G∗(⋅∣i, x) be

the conditional c.d.f. associated with g∗(⋅∣i, x). We have that

∂ [
G∗(y∣i,x)
g∗(y∣i,x) ]

∂y
= 1 −

G∗(y∣i, x)

g∗(y∣i, x)2
g∗′(y∣i, x)

with y ∈ [0,1] and

∂2 [
G∗(y∣i,x)
g∗(y∣i,x) ]

∂2y
= −

g∗′(y∣i, x)

g∗(y∣i, x)
+ 2

G∗(y∣i, x)

g∗(y∣i, x)3
g∗′(y∣i, x)2 −

G∗(y∣i, x)

g∗(y∣i, x)2
(g∗)(2)(y∣i, x),
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so we can write

(g∗)(2)(y∣i, x) ×G∗(y∣i, x) = − g∗(y∣i, x)2
∂2 [

G∗(y∣i,x)
g∗(y∣i,x) ]

∂2y
− g∗′(y∣i, x)g∗(y∣i, x)

+ 2G∗(y∣i, x)
g∗′(y∣i, x)2

g∗(y∣i, x)
. (B.22)

Since g∗(⋅∣i, x) is bounded away from 0 on [0,1], there is a finite constant c∗G > 0 such

c∗Gy ≤ G
∗(y∣i, x) for every y ∈ [0,1]. Thus,

[(g∗)(2)(y∣i, x)]2[y(1 − y)]2 ≤
1

c∗2
G

[(g∗)(2)(y∣i, x) ×G∗(y∣i, x)]2

for any y ∈ (0,1). The desired result follows by noting that the right-hand side is

integrable over the interval (0,1) because expression (B.22) is bounded in absolute

value; limy↓0 ∂2[G∗(y∣i, x)/g∗(y∣i, x)]/∂2y exists and is finite by Observation 1.1.(c).

B.4 Proof of Lemma A.4

Along the lines of Li and Racine (2007), pp. 61-63, define

m̂j(i, x) = f̂IX,hµ(i, x) [µ̂j(i, x) − µj(i, x)]

for j ∈ N, where f̂IX,hµ(i, x) is a kernel estimator of fIX(i, x) using bandwidth hµ:

f̂IX,hµ(i, x) =
1

LhDµ

L

∑
l=1

1{Il = i}K (
x −Xl

hµ
)

Note that {∑
JL
j=1 [µ̂j(i, x) − µj(i, x)]

2
}

1/2
= [∑

JL
j=1 m̂j(i, x)2]

1/2
/f̂IX,hµ(i, x). Pick an ar-

bitrary large constant C̄ > 0 and consider the expression

P
⎛

⎝

1

f̂IX,hµ(i, x)
[
JL

∑
j=1

m̂j(i, x)
2]

1/2

≥ C̄J
1/2
L L−

S+1
2S+2+D

⎞

⎠
. (B.23)
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By Assumption 1.3 and since f̂IX,hµ(i, x) is a consistent estimator of fIX(i, x), there

is a constant cIX > 0 such that the event f̂IX,hµ(i, x) > cIX occurs w.p.a.1. Hence,

expression (B.23) can be bounded above by

P
⎛

⎝
[
JL

∑
j=1

m̂j(i, x)
2]

1/2

> cIX
C̄J

1/2
L

L
S+1

2S+2+D

⎞

⎠
+ P (f̂IX,hµ(i, x) ≤ cIX) .

As the second term converges to 0, the rest of the proof focuses only on the first one.

Observe that

µ̂j(i, x) − µj(i, x) =
L

∑
l=1

1

Il

Il

∑
p=1

[πj (B
∗
lp) − µj(i, x)]ωl(i, x)

because of ∑
L
l=1(1/Il)∑

Il
p=1 ωl(i, x) = 1. Then, write m̂j(i, x) = m̂j,1(i, x)+m̂j,2(i, x) with

m̂j,1(i, x) =
1

LhDµ

L

∑
l=1

1

Il

Il

∑
p=1

[µj(Il,Xl) − µj(i, x)]1{Il = i}K (
x −Xl

hµ
)

=
1

LhDµ

L

∑
l=1

[µj(Il,Xl) − µj(i, x)]1{Il = i}K (
x −Xl

hµ
) ,

m̂j,2(i, x) =
1

LhDµ

L

∑
l=1

1

Il

Il

∑
p=1

Wj,lp1{Il = i}K (
x −Xl

hµ
) ,

Wj,lp = πj (B̃∗
lp) − µj(Il,Xl), and µj(Il,Xl) = E [πj (B̃∗

lp)∣Il,Xl]. By a standard triangle

inequality, we can bound

P
⎛

⎝
[
JL

∑
j=1

m̂j(i, x)
2]

1/2

> cIX
C̄J

1/2
L

L
S+1

2S+2+D

⎞

⎠
≤

2

∑
τ=1

P
⎛

⎝
[
JL

∑
j=1

m̂j,τ(i, x)
2]

1/2

≥
cIX
2

C̄J
1/2
L

L
S+1

2S+2+D

⎞

⎠
.

For each τ = 1,2, observe that

P
⎛

⎝
[
JL

∑
j=1

m̂j,τ(i, x)
2]

1/2

≥
cIX
2

C̄J
1/2
L

L
S+1

2S+2+D

⎞

⎠
≤

4L
2(S+1)
2S+2+D

(cIXC̄)2JL

JL

∑
j=1

E [m̂j,τ(i, x)
2]

≤
4L

2(S+1)
2S+2+D

(cIXC̄)2
sup
j∈N

E [m̂j,τ(i, x)
2] .
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In what follows, for each τ = 1,2, we show that there exists a constant C̄µ,τ > 0 such

that sup{E [m̂j,τ(i, x)2] ∶ j ∈ N} ≤ C̄µ,τL
−2(S+1)
2S+2+D . We employ Li and Racine (2007)’s

arguments. For simplicity and without loss of generality, the rest of the proof assumes

γX = 1 and that L is sufficiently large so that x+hµt ∈ interior(X ) for every t ∈ [−1,1]D.

Consider first m̂j,1(i, x) and write E [m̂j,1(i, x)2] = E [m̂j,1(i, x)]
2
+ var [m̂j,1(i, x)].

Let [−c℘, c℘]D be a rectangle such that c℘ > 0 and x + y ∈ interior(X ) for any y ∈

[−c℘, c℘]D. Define the function ℘j(y) = [µj(i, x + y) − µj(i, x)] fIX(i, x + y) for y ∈

[−c℘, c℘]D, so we can write

E[m̂j,1(i, x)] =
1

hDµ
E {[µj(Il,Xl) − µj(i, x)]1{Il = i}K (

x −Xl

hµ
)}

=
P (Il = i)

hDµ
E {[µj(i,Xl) − µj(i, x)]K (

x −Xl

hµ
)∣Il = i}

=
1

hDµ
∫
RD

[µj(i, y) − µj(i, x)]K (
x − y

hµ
) fIX(i, y)dy

= ∫
[−1,1]D

℘j(hµt)K(t)dt.

By Assumption 1.3, ℘j(⋅) admits S + 1 continuously bounded partial derivatives on

[−c℘, c℘]D for every j ∈ N. Moreover,

∣℘j(y)∣ = ∣∫

1

0
πj(t)[g

∗(t∣i, x + y) − g∗(t∣i, x)]dt∣ fIX(i, x + y)

≤ {∫

1

0
πj(t)

2dt}
1/2

{∫

1

0
[g∗(t∣i, x + y) − g∗(t∣i, x)]2dt}

1/2
fIX(i, x + y).

Since ∫
1

0 πj(t)
2dt = 1 for all j, ∣℘j(⋅)∣ is uniformly bounded across j ∈ N. Proceeding in

a similar manner, we can show that the partial derivatives of ℘j(⋅) are also uniformly

bounded across j ∈ N. As the kernel K(⋅) is of order S+1, using a Taylor expansion for

℘j(hµt), it can be shown that ∣E[m̂j,1(i, x)]∣ ≤ C̄℘hS+1
µ for any j ∈ N and some constant

C̄℘ > 0. This implies E[m̂j,1(i, x)]2 ≤ C̄2
℘h

2(S+1)
µ for every j ∈ N; see Li and Racine

(2007), eq. (2.8).
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Regarding the variance of m̂j,1(i, x), we can write

var [m̂j,1(i, x)] =
1

Lh2D
µ

var{[µj(Il,Xl) − µj(i, x)]1{Il = i}K (
x −Xl

hµ
)}

=
1

Lh2D
µ

E

⎡
⎢
⎢
⎢
⎢
⎣

{[µj(Il,Xl) − µj(i, x)]1{Il = i}K (
x −Xl

hµ
)}

2⎤
⎥
⎥
⎥
⎥
⎦

−
1

Lh2D
µ

[E {[µj(Il,Xl) − µj(i, x)]1{Il = i}K (
x −Xl

hµ
)}]

2

.

The first term in the second equality can be written as

1

LhDµ
∫

[−1,1]D
[

℘j(hµt)

fIX(i, x + hµt)
K(t)]

2

dt = h
2(S+1)
µ ∫

[−1,1]D
[

℘j(hµt)

fIX(i, x + hµt)
K(t)]

2

dt

by a change of variables and by the form of the bandwidth hµ (Assumption 4); recall

that here we are assuming γX = 1. The second term equals {E[m̂j,1(i, x)]}2/L, so it

can be bounded above by C̄2
℘h

2(S+1)
µ . Combining together all previous results and by

the form of the bandwidth, we obtain sup{E [m̂j,1(i, x)2] ∶ j ∈ N} ≤ C̄µ,1L
−2(S+1)
2S+2+D with

C̄µ,1 = 2C̄2
℘ + ∫

[−1,1]D
[

℘j(hµt)

fIX(i, x + hµt)
K(t)]

2

dt < +∞,

which is clearly independent of j.

Now consider m̂j,2(i, x) and note E [m̂j,2(i, x)] = 0 by the law of iterated expecta-

tions. Using standard arguments, we write

E [m̂j,2(i, x)
2] =

1

iLh2D
µ

E

⎡
⎢
⎢
⎢
⎢
⎣

W 2
j,lp1{Il = i}K (

x −Xl

hµ
)

2⎤
⎥
⎥
⎥
⎥
⎦

=
1

iLh2D
µ
∫
RD

Σj(i, y)K (
x − y

hµ
)

2

fIX(i, y)dy

=
1

iLhDµ
∫

[0,1]D
Σj(i, x + hµt)K (t)

2
fIX(i, x + hµt)dt
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where Σj(i, x) ≡ E (W 2
j,lp∣Il = i,Xl = x) = E [πj (B̃∗

lp)
2
∣Il = i,Xl = x]−µj(i, x)2. Observe

that

E [πj (B̃
∗
lp)

2
∣Il = i,Xl = x] = ∫

1

0
πj(y)

2g∗(y∣i, x)dy ≤ C̄B∗ ∫

1

0
πj(y)

2dy = C̄B∗ ,

for every (j, i, x), where C̄B∗ = max{g∗(y∣i, x) ∶ (y, i, x) ∈ [0,1]×I×X} < +∞. Moreover,

∣µj(i, x)∣ = ∣∫

1

0
πj(y)g

∗(y∣i, x)dy∣ ≤ [∫

1

0
πj(y)

2dy]
1/2

[∫

1

0
g∗(y∣i, x)2dy]

1/2
≤ C̄B∗ .

by Cauchy-Schwarz inequality. By the form of the hµ and as C̄B∗ is independent of

(j, x), we obtain sup{E [m̂j,2(i, x)2] ∶ j ∈ N} ≤ C̄µ,2L
−2(S+1)
2S+2+D with

C̄µ,2 = (C̄B∗ + C̄2
B∗) max

(i,x)∈I×X
fIX(i, x)∫

[0,1]D
K (t)

2
dt < +∞. (B.24)

B.5 Proof of Lemma A.5

This proof follows closely the arguments of Matzkin (2003)’s Theorem 1. Pick any

y ∈ [0, ȳ]. After applying the mean value theorem to λ−1(⋅), we obtain

[λ̂(y) − λ(y)] × (λ−1)
′
(λ∗) = λ−1[λ̂(y)] − λ−1[λ(y)]

for some λ∗ ≥ 0 that lies between λ̂(y) and λ(y). Since λ(y) ≤ λ(ȳ) < ū, λ̂(y) ≤ λ̂(ȳ) ≤ ū

w.p.a.1, and (λ−1)′(λ∗) is bounded away from zero on [0, ū], there is a finite constant

C̄ > 0 such that

∣λ̂(y)−λ(y)∣ ≤ C̄ ∣λ−1[λ̂(y)]−λ−1[λ(y)]∣ = ∣λ−1[λ̂(y)]− λ̂−1[λ̂(y)]∣ ≤ ∥λ̂−1−λ−1∥[0,ū],∞.
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The equality follows by λ−1[λ(y)] = y = λ̂−1[λ̂(y)], while the second inequality holds

w.p.a.1 because λ̂(y) ≤ λ̂(ȳ) ≤ ū w.p.a.1.
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