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Dynamic Mechanism Design

Applications:

- revenue management (Courty and Li, 2000, Battaglini 2005, Boleslavsky and Said,
2013, Ely, Garrett and Hinnosaar, 2014, Board and Skrzypacz, 2015, Akan, Ata, and Dana,

2015,...)

- disclosure in auctions (Eso and Szentes, 2007, Bergemann and Wambach (2015), Li
and Shi (2015)...)

- experimentation (Bergemann and Välimäki, 2010, Pavan, Segal, and Toikka, 2014,
Fershtman and Pavan, 2015...)

- taxation (Farhi and Werning, 2012, Kapicka, 2013, Stantcheva, 2014, Makris and

Pavan,2015,...)

- managerial compensation (Garrett and Pavan, 2012, 2014,...)

- insurance (Hendel and Lizzeri, 2003, Handel, Hendel, Whinston, 2015,...)
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Static example

Price discrimination (Mussa-Rosen, Maskin & Riley, Myerson)

Principal: seller

Agent: buyer

Quasilinear payoffs

UP = p− c(q) and UA = θq− p

with θ drawn from F (density f ), privately observed by Buyer

Incentive compatibility:

V A(θ)≡ θq(θ)− p(θ) = sup
θ̂

{
θq(θ̂)− p(θ̂)

}
Envelope Th.

V A(θ) =V A(θ)+
∫

θ

θ

q(s)ds with q(·) nondecreasing
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Static example

Transfer (revenue equivalence)

p(θ) = θq(θ)−
{

V A(θ)+
∫

θ

θ

q(s)ds

}

Optimal quantity schedule maximizes expected "virtual surplus"

E
[(

θ − 1−F(θ)
f (θ)

)
q(θ)− c(q(θ))

]
s.t. q(·) nondecreasing (M)

Robust predictions (e.g., Hellwig, 2010):

1. participation constraint binds only for lowest type: V A(θ) = 0

2. no distortion at the top: q(θ̄) = qFB(θ̄)

3. downward distortions elsewhere: q(θ)< qFB(θ) ∀θ < θ̄

Binding (M): “ironing” (just more pooling)
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Dynamic Environment

t = 1, . . . ,T (possibly infinite)

Intertemporal payoffs

UP =∑
t

δ
t−1(pt − c(qt)) and UA =∑

t

δ
t−1(θ tqt − pt)

θ t privately observed by agent at beginning of period t
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Type process

type θ t drawn from (exogenous) Markov chain on Θ= [θ ,θ ]⊆ R+

transition probability kernels F ≡ (Ft)

Ft(· | θ): cdf of θ t , given θ t−1 = θ

F1 : cdf of initial distribution; density f1

stochastic monotonicity (FOSD): θ
′ > θ ⇒ Ft(· | θ ′)%FOSD Ft(· | θ)

ergodicity: ∃! invariant distribution π s.t., for all θ ∈Θ

sup
A∈B(Θ)

∣∣Ft(A,θ)−π(A)
∣∣→ 0 as t→ ∞

stationarity: F1 = π and Ft = Fs all t,s> 1.
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Principal’s problem

Principal designs χ = 〈q,p〉 to maximize

E
[
∑
t

δ
t−1(pt(θ

t)− c(qt(θ
t)))

]
subject to IR-1 and IC-t, all t ≥ 1

Stronger (periodic) IR

Complexity:

- different types have different beliefs about future

- multi-period deviations

IC-IR-extended
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State representation and impulse responses
Eso-Szentes (2007), Pavan, Segal, Toikka (2014)

Auxiliary shocks, orthogonal to initial private information

θ t = Zt(θ1,ε) where ε ≡ (εt) are iid r.v.s

Integral-transform-probability theorem (F−1
t inductively)

Impulse responses:

It(θ) =
∂

∂θ 1
θ t =

∂Zt (θ 1,ε)
∂θ 1

∣∣∣
Zt (θ 1,ε)=θ

t
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Examples

AR(1):

θ t = γθ t−1+ εt

= Zt(θ1,ε) = γ
t−1

θ1+ γ
t−2

ε2+ · · ·+ γεt−1+ εt

→ It(θ1,ε) = γ
t−1

ARIMA:

θ t = Zt(θ1,ε) = at,1θ1+at,2ε2+ · · ·+at,t−1εt−1+ εt

→ It(θ1,ε) = at,1

Multiplicative shocks

θ t = Zt(θ1,ε) = θ1× ε2×· · ·× εt

→ It(θ1,ε) = ε2×· · ·× εt

More generally,

It =∏
s≤t

∂

∂θ
F−1

s (εs | θ s−1)

Continuous-time (Bergemann and Strack, 2015)
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Local IC —heuristics

Assume T = 2

Fix period-1 report, θ̂1, and priod-2 reporting strategy, σ(ε)

Agent’s payoff

UA(θ1, θ̂1;σ)= θ1q1(θ̂1)− p1(θ̂1)+δE
[
Z2(θ1,ε)q2(θ̂1,σ(ε))− p2(θ̂1,σ(ε))

]
If χ = 〈q,p〉 is IC, then

V A
1 (θ1) = sup

θ̂ 1;σ

UA(θ1, θ̂1;σ)

Envelope theorem

∂V A
1

∂θ1
=

∂

∂θ1
UA(θ1,θ1;σ

truth) = q1(θ1)+δE
[

∂Z2(θ1,ε)

∂θ1
q2(θ1,ε))

]

= E

[
∑
s≥1

δ
s−1

Isqs | θ1

]
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Local IC —general case

More generally,

Theorem (Pavan, Segal, Toikka, 2014)

If χ = 〈q,p〉 is IC, then, for every truthful history θ
t−1, t ≥ 0, V A

t is
equi-Lipschitz-continuous in θ t and

∂V A
t

∂θ t
= E

[
∑
s≥t

δ
s−1

It→sqs | θ
t

]
a.e., (ICFOC)

where It→s =
d

dθ t
θ s (with It ≡ I1→t)

ICFOC-proof
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Suffi ciency and Integral Monotonicity

Envelope conditions necessary but not suffi cient

Appropriate monotonicity conditions

Theorem (PST, 2014)

Mechanism χ = 〈q,p〉 is IC iff, for all t ≥ 0,

∂V A
t

∂θ t
= E

[
∑
s≥t

δ
s−1

It→sqs | θ
t

]
a.e., (ICFOC)

and, for all θ
t and θ̂ t ,∫

θ t

θ̂ t

[Dt((θ
t−1,x);x)−D((θ t−1,x); θ̂ t)]dx≥ 0 (INT-M)

where

Dt(θ
t ; θ̂ t)≡ E

[
∑
s≥t

δ
s−1

It→sqs(θ
s
−t , θ̂ t) | θ

t

]

Int-M → one-stage deviations suboptimal
Int-M + Markov + continuity at ∞ → all deviations suboptimal

Int-M-Proof



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Suffi ciency and Integral Monotonicity

Envelope conditions necessary but not suffi cient
Appropriate monotonicity conditions

Theorem (PST, 2014)

Mechanism χ = 〈q,p〉 is IC iff, for all t ≥ 0,

∂V A
t

∂θ t
= E

[
∑
s≥t

δ
s−1

It→sqs | θ
t

]
a.e., (ICFOC)

and, for all θ
t and θ̂ t ,∫

θ t

θ̂ t

[Dt((θ
t−1,x);x)−D((θ t−1,x); θ̂ t)]dx≥ 0 (INT-M)

where

Dt(θ
t ; θ̂ t)≡ E

[
∑
s≥t

δ
s−1

It→sqs(θ
s
−t , θ̂ t) | θ

t

]

Int-M → one-stage deviations suboptimal
Int-M + Markov + continuity at ∞ → all deviations suboptimal

Int-M-Proof



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Suffi ciency and Integral Monotonicity

Envelope conditions necessary but not suffi cient
Appropriate monotonicity conditions

Theorem (PST, 2014)

Mechanism χ = 〈q,p〉 is IC iff, for all t ≥ 0,

∂V A
t

∂θ t
= E

[
∑
s≥t

δ
s−1

It→sqs | θ
t

]
a.e., (ICFOC)

and, for all θ
t and θ̂ t ,∫

θ t

θ̂ t

[Dt((θ
t−1,x);x)−D((θ t−1,x); θ̂ t)]dx≥ 0 (INT-M)

where

Dt(θ
t ; θ̂ t)≡ E

[
∑
s≥t

δ
s−1

It→sqs(θ
s
−t , θ̂ t) | θ

t

]

Int-M → one-stage deviations suboptimal
Int-M + Markov + continuity at ∞ → all deviations suboptimal

Int-M-Proof



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Suffi ciency and Integral Monotonicity

Envelope conditions necessary but not suffi cient
Appropriate monotonicity conditions

Theorem (PST, 2014)

Mechanism χ = 〈q,p〉 is IC iff, for all t ≥ 0,

∂V A
t

∂θ t
= E

[
∑
s≥t

δ
s−1

It→sqs | θ
t

]
a.e., (ICFOC)

and, for all θ
t and θ̂ t ,∫

θ t

θ̂ t

[Dt((θ
t−1,x);x)−D((θ t−1,x); θ̂ t)]dx≥ 0 (INT-M)

where

Dt(θ
t ; θ̂ t)≡ E

[
∑
s≥t

δ
s−1

It→sqs(θ
s
−t , θ̂ t) | θ

t

]

Int-M → one-stage deviations suboptimal

Int-M + Markov + continuity at ∞ → all deviations suboptimal
Int-M-Proof



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Suffi ciency and Integral Monotonicity

Envelope conditions necessary but not suffi cient
Appropriate monotonicity conditions

Theorem (PST, 2014)

Mechanism χ = 〈q,p〉 is IC iff, for all t ≥ 0,

∂V A
t

∂θ t
= E

[
∑
s≥t

δ
s−1

It→sqs | θ
t

]
a.e., (ICFOC)

and, for all θ
t and θ̂ t ,∫

θ t

θ̂ t

[Dt((θ
t−1,x);x)−D((θ t−1,x); θ̂ t)]dx≥ 0 (INT-M)

where

Dt(θ
t ; θ̂ t)≡ E

[
∑
s≥t

δ
s−1

It→sqs(θ
s
−t , θ̂ t) | θ

t

]

Int-M → one-stage deviations suboptimal
Int-M + Markov + continuity at ∞ → all deviations suboptimal

Int-M-Proof



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Stronger suffi cient conditions

Int-M holds if expected future output, discounted by impulse responses

Dt(θ
t ; θ̂ t) = E

[
∑
s≥t

δ
s−1

It→sqs(θ
s
−t , θ̂ t) | θ

t

]

is nondecreasing in current report θ̂ t .

Output need not be monotone history by history, enough to have
monotonicity on average over time and states.

Literature typically checks “strong monotonicity” (i.e., qt(θ
t)

nondecreasing in θ
t), but that’s stronger than necessary.
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Full program

Principal’s full program

max
χ=〈q,p〉

E
[
∑t

δ
t−1(pt − c(qt))

]
subject to

IR: V A
1 (θ1)≥ 0 all θ1

ICFOC-(t):
∂V A

t (θ
t)

∂θ t
= Dt(θ

t ;θ t)

Int-M:
∫

θ t

θ̂ t

[Dt((θ
t−1,x);x)−Dt((θ

t−1,x); θ̂ t)]dx≥ 0.



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Relax program —Myersonian/First-Order Approach

Principal’s relaxed program

max
χ=〈q,p〉

E
[
∑t

δ
t−1(pt − c(qt))

]
subject to

IR: V A
1 (θ1)≥ 0 all θ1 → V A

1 (θ)≥ 0

ICFOC-(t):
∂V A

t (θ
t)

∂θ t
= Dt(θ

t ;θ t) →
∂V A

1 (θ1)

∂θ1
= D1(θ1;θ1)

Int-M:
∫

θ t

θ̂ t

[Dt((θ
t−1,x);x)−Dt((θ

t−1,x); θ̂ t)]dx≥ 0 → ∅
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Relax program —Myersonian/First-Order Approach

Principal’s objective as "Dynamic Virtual Surplus"

max
q
E
[
∑t

δ
t−1
(

θ t − 1−F1(θ 1)
f1(θ 1)

It

)
qt − c(qt))

]

Pointwise maximization:

period-t virtual value = θ t − 1−F1(θ 1)
f1(θ 1)

It = c′(qt) = marginal cost

⇒ distortions driven by impulse responses It
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Validity of First-Order-Approach

Remaining IR constraints slack under FOSD and q≥ 0

V A
1 (θ1) =V A

1 (θ)+
∫

θ 1

θ

E
[
∑
t

δ
t
I1→tqt(θ

t) | x

]
dx≥ 0

Remaining IC constraints (equivalently, Int-M) slack if

E

[
∑
s≥t

δ
t
It→sqs(θ

t
−s, θ̂ t) | θ

t

]
nondecreasing in θ̂ t all t

Suppose c(q) = 1
2 q2. Solution to relaxed program

qt =max
{

θ t − 1−F1(θ 1)
f1(θ 1)

I1→t ;0
}

Monotone enough?

Example (AR-1)

qt = θ t − 1−F1(θ 1)
f1(θ 1)

φ
t−1 ⇒ suffi ces that F1 log-concave



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Validity of First-Order-Approach

Remaining IR constraints slack under FOSD and q≥ 0

V A
1 (θ1) =V A

1 (θ)+
∫

θ 1

θ

E
[
∑
t

δ
t
I1→tqt(θ

t) | x

]
dx≥ 0

Remaining IC constraints (equivalently, Int-M) slack if

E

[
∑
s≥t

δ
t
It→sqs(θ

t
−s, θ̂ t) | θ

t

]
nondecreasing in θ̂ t all t

Suppose c(q) = 1
2 q2. Solution to relaxed program

qt =max
{

θ t − 1−F1(θ 1)
f1(θ 1)

I1→t ;0
}

Monotone enough?

Example (AR-1)

qt = θ t − 1−F1(θ 1)
f1(θ 1)

φ
t−1 ⇒ suffi ces that F1 log-concave



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Validity of First-Order-Approach

Remaining IR constraints slack under FOSD and q≥ 0

V A
1 (θ1) =V A

1 (θ)+
∫

θ 1

θ

E
[
∑
t

δ
t
I1→tqt(θ

t) | x

]
dx≥ 0

Remaining IC constraints (equivalently, Int-M) slack if

E

[
∑
s≥t

δ
t
It→sqs(θ

t
−s, θ̂ t) | θ

t

]
nondecreasing in θ̂ t all t

Suppose c(q) = 1
2 q2. Solution to relaxed program

qt =max
{

θ t − 1−F1(θ 1)
f1(θ 1)

I1→t ;0
}

Monotone enough?

Example (AR-1)

qt = θ t − 1−F1(θ 1)
f1(θ 1)

φ
t−1 ⇒ suffi ces that F1 log-concave



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Validity of First-Order-Approach

Remaining IR constraints slack under FOSD and q≥ 0

V A
1 (θ1) =V A

1 (θ)+
∫

θ 1

θ

E
[
∑
t

δ
t
I1→tqt(θ

t) | x

]
dx≥ 0

Remaining IC constraints (equivalently, Int-M) slack if

E

[
∑
s≥t

δ
t
It→sqs(θ

t
−s, θ̂ t) | θ

t

]
nondecreasing in θ̂ t all t

Suppose c(q) = 1
2 q2. Solution to relaxed program

qt =max
{

θ t − 1−F1(θ 1)
f1(θ 1)

I1→t ;0
}

Monotone enough?

Example (AR-1)

qt = θ t − 1−F1(θ 1)
f1(θ 1)

φ
t−1 ⇒ suffi ces that F1 log-concave



Introduction Environment IC and payoff equivalence Full and Relaxed Programs Robust Predictions Conclusions Extra

Robust predictions in Dynamic Screening
Garrett-Pavan-Toikka

Predictions that do not hinge on FOA

Full program: hard to solve

Idea: Let q be optimal allocation process. Any perturbation preserving
(Int-M) and IR constraints must be suboptimal

Variational approach → robust predictions for average distortions
Existence
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Robust predictions

Assume IR binds only at θ1 = θ (always under FOSD and q≥ 0) and
interior solutions.

Simple perturbation: add constant a ∈ R to period-t allocation
(equivalently, Gateux derivative in direction (0, . . . ,0,1,0, . . .))

FOC for optimum at a= 0:

E
[
θ t − 1−F1(θ 1)

f1(θ 1)
It

]
= E

[
c′(qt)

]
⇒ average virtual value equals average marginal cost

Same prediction as under FOA, but only in expectation!

E[period-t distortion] ≡ E[θ t − c′(qt)]

= E
[

1−F1(θ 1)
f1(θ 1)

It

]
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Handicap Dynamics

Theorem (Garrett, Pavan, Toikka)

Assume F is ergodic. Then

E
[

1−F1(θ1)

f1(θ1)
It

]
→ 0.

Moreover, if F satisfies FOSD, then convergence is from above.

If, in addition, F is stationary, then convergence is monotone in t.

Handicap-proof
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More general bounds

When IR binds only at bottom and q interior

E[distortion] = E[handicap] = E
[

1−F1(θ 1)
f1(θ 1)

It

]

More generally,

Theorem (Garrett-Pavan-Toikka)

If F is ergodic, then

limsup
t→∞

E[θ t − c′(qt)]≤ 0 (limit upward distortions)

If, in addition, q eventually strictly interior, then

lim
t→∞

E[θ t − c′(qt)] = 0

Finally, if distortions are eventually downward, then

qt
p→ qFB

t

Corollary

Failure to converge → over-consumption and exclusion eventually infinitely
often.
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Summary

Optimal dynamic screening contracts:
output maximizes expected dynamic virtual surplus s.t. integral
monotonicity, ICFOC-(t) and period-0 IR.

FOA → path-wise predictions

Variational approach: robust predictions for average dynamics

ergodicity → average distortions eventually upwards (weakly)

ergodicity + interiority → vanishing distortions (in expectations)

ergodicity + interiority + FOSD → expected distortions are downward in all
periods

ergodicity + interiority + FOSD + stationarity → convergence to FB
monotone in t

ergodicity + downward distortions → convergence in probability

...more remains to be done
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Thank You!
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Mechanisms and Principal’s problem

direct mechanism χ = 〈q,p〉, with qt : Θt →Q and pt : Θt → R
principal designs χ to maximize

E
[
∑
t

δ
t−1(pt − c(qt))

]
subject to

E
[
∑
t

δ
t−1(θ tqt − pt) | θ1

]
≥ 0 for all θ1 ∈Θ (IR-1)

E

[
∑
s≥t

δ
s−1(θ sqs− ps) | θ

t

]
≥ E

[
∑
s≥t

δ
s−1(θ sq

σ
s − pσ

s ) | θ
t

]
(IC-t)

for all σ , all θ
t = (θ1, ...,θ t) ∈Θ

t

IC-IR-simple
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ICFOC: Proof Sketch

Agent’s payoff in terms of state representation:

E
[
∑
t

δ
t−1(θ tqt − pt) | θ1

]
= Ẽ

[
∑
t

δ
t−1(q̃t(θ1,ε

t)Zt(θ1,ε
t)− p̃t(θ1,ε

t)) | θ1

]
Thus,

V1(θ) =max
θ̂

U(θ̂ ;θ)

where

U(θ̂ ;θ)≡ Ẽ
[
∑
t

δ
t−1
(
q̃t(θ̂ ,ε

t)Zt(θ1,ε
t)− p̃t(θ̂ ,ε

t)
)
| θ

]
For fixed θ̂ ,

d

dθ
U(θ̂ ;θ) = Ẽ

[
∑
t

δ
t−1

q̃t(θ̂ ,ε
t)It | θ

]
Envelope theorem then gives result

Corollary: q pins down V1 up to constant even if ε publicly observable ⇒
Eso-Szentes’irrelevance result ICFOC
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Integral Monotonicity: Proof sketch

Fix t and θ
t−1.

Let U(θ̂ ;θ) = continuation utility of period-t type θ from one-stage
deviation to θ̂ .

Markov and full support → IC equivalent to

V (θ)≡U(θ ;θ) =max
θ̂

U(θ̂ ;θ) all θ ∈Θ.

Equivalently,

θ̂ ∈ argmax
θ

{
U(θ̂ ;θ)−V (θ)

}
for all θ̂ ∈Θ.

ICFOC implies that, for θ̂ fixed, g(θ) =U(θ̂ ,θ)−V (θ) is Lipschitz with
g′(θ) =U2(θ̂ ,θ)−V ′(θ) =U2(θ̂ ,θ)−U2(θ ,θ) a.e., so

g(θ̂)−g(θ) =
∫

θ̂

θ

[U2(θ̂ ,x)−U2(x,x)]dx,

Because U2(θ̂ ,x) = Dt((θ
t−1,x); θ̂), θ̂ maximizes g(θ) iff (Int-M).

Int-M
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Existence

Let g(q) = E
[
∑t δ

t−1
(

qt ·
(

θ t − 1−F1(θ 1)
f1(θ 1)

It

)
− c(qt)

)]
and consider

sup
q∈L2

g(q) s.t. (Int-M)

where L2 = L2(RT ) is space of square integrable processes with discounted

measure, q ∈ L2 iff ‖q‖= E
[
∑t δ

t−1
q2

t

]
< ∞.

Assume c(q)≥ q2 for |q|> q̄, for some q̄

Then g(q)→−∞ as ‖q‖→ ∞.

Moreover, g is concave and Gateux differentiable, and feasible set is
closed, convex, and nonempty since defined by bounded linear operators.

So supremum is achieved, because in a Hilbert space, every concave
Gateux-differentiable functional that is “minus infinite at infinity” achieves
its maximum on a closed convex set.

robust
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Handicap Dynamics —Proof sketch

Recall that E[It | θ1] =
d

dθ 1
E[θ t | θ1].

Thus,

E
[

1−F1(θ 1)
f1(θ 1)

It

]
= E

[
1−F1(θ 1)

f1(θ 1)
E[It | θ1]

]
=
∫

θ̄

θ

(1−F1(θ1))E[It | θ1]dθ1

= (1−F1(θ1))E[θ t | θ1]|θ 1=θ̄

θ 1=θ
+
∫

θ

θ

f1(θ1)E[θ t | θ1]dθ1

= E[θ t ]−E[θ t | θ ]→ 0

by ergodicity.

If F monotone (FOSD),

E[θ t ]−E[θ t | θ ]≥ 0

If, in addition, F1 = π, then

E
[

1−F1(θ 1)
f1(θ 1)

It

]
−E

[
1−F1(θ 1)

f1(θ 1)
Is

]
= E[θ s | θ ]−E[θ t | θ ]≤ 0

for t > s.

handicap-dynamics
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