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Abstract
This paper studies how to best incentivize owners to conserve rather than
deplete exhaustible resources. This is an important issue when it comes
to forest conservation agreements, but it may also become important for
other environmental problems, such as climate change. We present a
dynamic model where each resource owner benefits from extracting and
selling the resource over time. A third party, or principal, is harmed by
the extracted amount or she benefits from conservation. The principal
can set up payment schedules that incentivize the owners to conserve.
We show that the best contract induces the smallest resource stocks to
be depleted first, while the largest stock will be extracted from later. To
little is conserved permanently and the speed of extraction is too high.
These three results are reversed if and only if it is very costly to protect
the resource. By comparison, the first best would require that more is
conserved, and that extraction begins where the extraction cost is lowest.
The difference to the first best is magnified if some buyers boycott the
products.

Keywords: Supply-side environmental policies, exhaustible resources, exter-
nalities, climate change, deforestation, REDD, PES, contract theory, principal-
agent problems, dynamic games.
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1 Introduction

This paper derives the optimal contract when multiple agents benefit from de-

pleting and selling their resources on a common market, but extraction harms

a third party; the principal.

This problem arises in many situations. For example, the United Nation’s

REDD program (for Reducing Emissions from Deforestation and forest Degra-

dation) aims at financially compensating developing countries if they are suc-

cessful in reducing deforestation in the tropics. Unfortunately, there is little

theory guiding us when setting up such contracts. This is a serious problem,

since deforestation contributes to 10—20 percent of the global carbon dioxide

emissions, which cause global warming.1 The Economist claim that negative

externalities from forest loss and degradation cost between $2 trillion and $4.5

trillion a year according.2 Nevertheless, deforestation continues at a rate of 13

million hectares a year (FAO, 2010).

Similarly, when a climate coalition would like to reduce global emissions, it

could consider to pay or incentivize the owners of coal or oil reserves to reduce

extraction rates. Such a policy implements the first-best in the model analyzed

by Harstad (2012). That model is static, however, and it is not clear how

contracts should be designed in a dynamic context.

There are also examples beyond environmental economics: For example, the

head of an oil cartel (such as OPEC) benefits from a high price, and thus

less global production, and it faces the problem of convincing the other cartel

members to achieve this goal.

In all these examples, it is important to study the optimal contract design,

the amount that will be extracted, and where extraction will be located. To

study these issues, we analyze a simple dynamic model where there are multiple

owners of resources. Each owner, or "agent," has a private exhaustible resource

stock; the stocks are in general of different sizes and they can be associated

with different extraction costs and externalities. In every period, an agent can
1 IPCC (2007 and 2013).
2The Economist, September 23, 2010.
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extract from his stock and sell the extracted amount on the market. The market

price is a decreasing function of the aggregate quantity that is extracted in this

period.

In addition to these agents, there is a donor or a principal who faces harm

when the resource is extracted. The harm could reflect the present-discounted

cost of having more greenhouse gases in the atmosphere, or the present-discounted

loss of losing tropical forests and biodiversity for all future. As mentioned, it

may also be that the principal prefers less extraction for other reasons, such as

the high price this would lead to.

The problem for the principal is to offer a schedule of non-negative side

transfers that depends on the extraction rates. The principal can make such

offers at the start of a period, and we assume that the principal is committed

to honor these contracts. In reality, it is reasonable that there is a limit to

how much such a principal can commit. Thus, we do not assume that the

principal can commit to schedules or contracts in future periods. In this simple

game, we restrict attention to a Markov-perfect equilibria (MPEs) since they

are simple, robust, and renegotiation-proof. Furthermore, there is a unique such

equilibrium in our model.

As a useful benchmark, note that the first best dictates that the a stock

should be completely conserved if its extraction cost, plus the externality, is

larger than the marginal benefit of consumption. Furthermore, the first best

requires that the least expensive resources should be extracted from first, and

that the marginal social value of an extracted amount increases with the discount

factor.

The equilibrium we derive is very different from both these benchmarks.

First, the smallest stock will be exhausted first, and completely, before extrac-

tion begins with the stock that is somewhat larger. Second, even if the costs

are larger than the benefits, the resource may not be depleted but it will be

extracted from (unless the aggregate stock is already small). The principal ben-

efits from permitting extraction since this reduces the market price and thus

the outside option for all the agents; side payments can then be lowered ac-
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cordingly. Third, each stock is either conserved in full or completely exhausted.

Thus, although there may be an interior solution for resource extraction at the

aggregate level, there is a corner solution in steady state for every individual

stock: the smallest stocks will be depleted while the largest stocks will remain

untouched. We also describe how the equilibrium extraction level declines over

time and, thus, the price increases.

Our results point out that the optimal contracts should vary across agents

and over time. If the principal instead offered the same conservation incentive

to every agent, then the various stocks would be depleted over time in pararell.

The principal would then have to pay more, or get less conservation, relative

to the optimal contract which treats the agents asymmetrically. Since existing

REDD contracts are remarkably similar across countries, our results describe

how these can be improved upon.

We can make further predictions regarding the effect of regulating demand.

If consumers are taxed when purchasing the extracted amount, then extraction

becomes more valuable and more of the resource is conserved. If instead some

buyers boycott the good, then the demand curve becomes steeper and the price

more sensitive to changes in supply. This motivates the contract-provider to

allow for more extraction in order to reduce side payments to the other agents.

Consequently, less is conserved if some buyers boycott the harvested good.

The paper contributes to several strands of literature. The classic theory on

how to optimally extract from an exhaustible resource is described by Hotelling

(1931): the resource price should increase exponentially over time since later

consumption has a lower value when the discount rate is positive. When a

principal attempts to slow extraction, as in our paper, then we find that the

price increases over time also for two very different reasons. First, the principal

finds it very profitable to move extraction forward since this reduces today’s

price (and increases tomorrow’s price), which reduces the agents’temptation to

extract today. The reduced temptation means that side transfers can be reduced.

Second, once the other agents’aggregate stock becomes smaller, the temptation

to permit extraction in order to lower side payments to them weakens, and
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extraction decreases every time a new stock has been depleted.

We also contribute to the literature on contracts in the presence of exter-

nalities. Segal (1999) showed that with positive externalities, the principal’s

contract will be too weak. Since an agent benefits when the other agents con-

serve (because the price increases when supply is small), the contract generates

a positive externality which the principal cannot exploit. It follows that too

little is conserved, in equilibrium, relative to the effi cient level. This reason-

ing is present also in the analysis of REDD contracts by Harstad and Mideksa

(2016). However, the models of Segal (1999) and Harstad and Mideksa (2016)

are static, and they thus fail to characterize how the stocks are, or should be,

gradually and sequentially extracted from over time.

Finally, we contribute to the literature on how to design conservation con-

tracts. There are many theories explaining why there is ineffi cient deforestation

in the first place. See, for example, Alston and Andersson (2011) and Angelsen

(2010), and the references therein. For empirical studies of the determinants of

deforestation, see Burgess et al. (2011), Damette and Delacote (2012), or, for

an earlier overview, Angelsen and Kaimowitz (1999). The literature on conser-

vation contracts is small, but growing. For overviews, see Engel et al. (2008) or

Kerr (2013), which reveals that the standard approach is to focus on textbook

contract-theoretic problems (as surveyed by Bolton and Dewatripont, 2005) such

as moral hazard (Gjertsen et al., 2010), private information (Chiroleu-Assouline

et al., 2012; Mason, 2013; Mason and Plantinga, 2013), or observability (Dela-

cote and Simonet, 2013). Our approach is more related to the problems that

arise when contracts lead to externalities. Relative to that literature, which is

discussed above, our model is dynamic and thus captures effects that so far has

not been discussed in the literature.

The next section presents our dynamic model and derives some benchmark

results. Section 3 derives the equilibrium and our main results, while Section 4

shows when the results are reversed if it is costly to protect the resource (from

illegal extraction). Section 5 concludes.
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2 A Model of Conservation Contracts

The resource owners: There are n agents and an infinite number of periods.

At the beginning of period t ≥ 0, agent i ∈ N ≡ {1, ..., n} has a stock of

exhaustible resource measured by yti ≥ 0 and he can extract xti ∈ [0, yti ], leaving

yt+1i = yti − xti for the next period.

The extraction levels are decided on simultaneously and the price depends on

the aggregate level of extraction. We will below focus on the design of contracts,

rather than the market per se, so we here simplify by assuming that the demand

for xt =
∑
i∈N x

t
i is linear and the price p

t is given by:

pt = b− axt.

So, b > 0 is the benefit of the first marginal unit of xt, while a > 0 is the slope

of the demand curve.

If we let ci ≥ 0 be the unit cost of depleting i’s stock, i’s payoff in period t

is given by

uti =
(
pt − ci

)
xti + s

t
i,

where sti ≥ 0 is a possible side payment. Every agent seeks to maximize the

present discounted sum
∑
t′≥t δ

t′−tut
′

i , where the common discount factor is

δ ∈ (0, 1).

The principal: In addition to the agents, there is a principal who is harmed

by the extraction. We let ei > 0 measure the externality of xti on the principal.

The subscript indicates that we allow the externality to vary across the stocks.

Some stocks may be more valuable to the principal, or they may generate more

emission when extracted. The total environmental harm at time t is then e ·xt,

where e ≡ (e1, ..., en) and xt ≡ (xt1, ..., xtn).

For simplicity, we assume that the agents are exporters and do not internalize

the consumer surplus. The principal may or may not internalize the consumer

surplus: we let the parameter w ∈ [0, 1] measure the fraction of the consumer

surplus (which is a (xt)2 /2) that is internalized by the principal. Since the side

transfers to the agents, st≡
∑
i∈N s

t
i, are paid by the principal, the payoff to the
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principal in period t is

ut0 = −e · xt − st + w
a

2

(
xt
)2
.

Thus, we assume that the principal is harmed by the extraction levels. If

the principal benefitted from the stock of the resource at any point in time,

by receiving the benefit viyti , then we can set ei ≡ viδ/ (1− δ) and interpret ei
as the present discounted loss when another unit of the resource is extraction.

Similarly, we can set ei ≡ vi/ (1− δ) also if the principal’s concern is the cost

of accumulated extraction levels, when this cost can be written as w
∑t−1
τ=0 x

t.

In other words, our model captures well the principal’s concern, whether

this concern relates to the remaining forest stock, the accumulated greenhouse

gases, or whether the principal simply likes the high price pt associated with a

small xt.

The contracts: At the start of each period, the principal offers each agent a

payment schedule sti (x
t) ≥ 0, xt = (xt1, ..., xtn), where the principal commits to

pay i the amount sti (x
t) if the vector of extraction levels is given by xt. We can

without loss of generality assume that the principal simply suggests a particular

vector, x̂t, as well as a set of side payments (scalars sti) to be paid if the outcome

is exactly this vector x̂t, and otherwise promises zero side transfers.

The principal cannot commit to future contracts, and we restrict attention

to Markov-perfect equilibria. When deriving the optimal contract in period t,

the agents’best outside option will be important. If an agent contemplates to

select any other xti 6= x̂ti, he will receive no side payment and he can thus ignore

the entire contract. In order to simplify, we will start out assuming that the

best outside option for every agent is simply to deplete the stock and extract

it all once and for all. This assumption could be justified if any deviation from

the agreement will induce the other agents to produce a lot in the following

periods (perhaps because the principal will no longer pay for reduced extraction

levels) since then an agent can expect that the price will be even smaller in the

future than in the period in which it contemplates to deviate. Alternatively,

we can check whether it will be the case that, in equilibrium, the best outside
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option is to extract it all, once and for all. It turns out that this is indeed

the best outside option if the stocks are small enough. Then, the marginal

revenue when extracting the last unit today is larger than the highest possible

present-discounted value of extracting a marginal unit in the future (which is

δb).

3 Analysis and Results

As a benchmark, consider the first best, maximizing aggregate utility. If b <

ci + ei∀i, the first best is straightforward: Nothing at all should be extracted,

since the highest possible value is smaller than the principal’s loss. If instead

b > ci+ei for some i, it is socially optimal to extract at least a marginal amount

of xti. Thus, eventually, and in finite time, we reach a stage when y
t
i = 0, so

that nothing is left. Naturally, it is socially optimal to first extract the resources

that can be extracted at the smallest social costs (ci + ei).

Proposition 0 The first-best outcomes have the following properties.

(i) The stocks with the smallest social costs ci + ei are extracted from first.

(ii) The steady state is reached in finite time T and, then, yTi = 0 for every
stock for which ci + ei < b, while yTi = y0i for every stock for which
ei + ci ≥ b.

(iii) Before the steady state is reached, the marginal social surplus increases
exponentially over time according to:

b− ci − ei − a (2− w)xt ≥ δ
[
b− ci − ei − a (2− w)xt+1

]
, (1)

if xti > 0. The equation (1) holds with equality if also xt+1i > 0, and
otherwise xti = yti .

Proof. To be added.

Note that part (1) simplifies to the standard Hotelling rule

pt = δpt+1
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in the special case in which w = 1 and ci = ei = 0. If instead w = 0, and ei = 0,

then (1) simplifies to the monopolists’ rule of letting marginal revenues grow

with exponentially (with the interest rate 1/δ).

Another interesting benchmark is the non-cooperative free-market equilib-

rium if everyone took prices as given. It is straightforward to show that the

market equilibrium will then be given by Proposition 0 if just every ei is re-

placed by zero. That is, the externalities will not be taken into account, but

otherwise the outcome is effi cient in that the least costly stocks will be depleted

first, for example.

When the agents are not taking the prices as given in the non-cooperative

equilibrium, then it is intuitive that several stocks may be extracted from si-

multaneously.3

3.1 The sequence of extraction

We are now ready to describe the equilibrium when the principal offers conser-

vation contracts that maximize her own utility. Following the sequence of the

three parts in Proposition 0, we will (1) describe the equilibrium ordering of

how the stocks are being depleted, (2) the steady state, and (3) the extraction

path over time before the steady state is reached.

Proposition 0 indicates that the first best cannot pin down the allocation

of the xti ’s, but only the aggregate x
t, if ci and ei are the same for every

country. In this case, it is irrelevant, as far as effi ciency is concerned, whether

one extracts from this or that stock first– or all stocks at the same time. In

equilibrium, however, the principal is unlikely to be indifferent. Instead, the

3Deriving the non-cooperative outcome is not the purpose of the present paper, but it is
simple to see that if δ = ci = 0 (i.e., there is only one relevant period), the non-cooperative
outcome would be given by the following:

xi = max

{
b− a

∑
j 6=i xj

2a
, 0

}

=
b

a (n+ 1)
if

b

a (n+ 1)
≤ y0i ∀i ∈ N .

In other words, the solution is interior and every agent will extract the exract same amount
(unless some stocks are too small).
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principal will prefer to allow for extraction from the smallest stock only, while

paying every other stock to be conserved until the smallest stock is completely

depleted. Thus, the smallest stock will be depleted first.

An intuition for this result is that it is very costly for the principal to deal

with multiple districts. Conserving in one district reduces aggregate supply and

the other agents become more tempted to extract. This temptation is lowered

when the principal lets i extract a little bit more, since the market price decreases

accordingly. The reduced price means that the principal can reduce every other

agent’s side payment, and the total reduction in side payment is proportional

to the aggregate stock– minus the stock of district i (i.e., yt−1 = yt − yti).

Conditional on yt being the same, the stock yt−i is largest when i has the smallest

stock.

This reasoning continues to hold even when the stocks ci and ei differ. As

long as these differences are relatively small, the principal still prefers to extract

from the smallest stock first.

Proposition 1 The stocks with the smallest sizes are depleted first: Stock i is
depleted before stock j is extracted from if

y0j − y0i ≥
(
1− δ
a

)
(ci − cj + ei − ej) . (2)

Proof. The side transfers sti must be set such as to compensate i for de-

laying exhausting i’s resource. Thus, at any point in time, we have sti =(
b− ci − axt−i − ayti

)
yti−

(
b− ci − axt−i − axti

)
xti−δ

(
b− ci − axt+1−i − ay

t+1
i

)
yt+1i ,

so

sti + δs
t+1
i =

(
b− ci − axt−i − ayti

)
yti −

(
b− ci − axt−i − axti

)
xti (3)

− δ
(
b− ci − axt+1−i − ax

t+1
i

)
xt+1i − δ2

(
b− ci − axt+2−i − ay

t+2
i

)
yt+2i .

Departing from any contract x, consider a slight perturbation x̃ given by

x̃ti = xti+ ε, x̃
t+1
i = xt+1i − ε, x̃tj = xtj − ε, and x̃t+1j = xt+1j + ε, while every other

extraction level stays unchanged. If ε → 0, the marginal increase in total side
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payments
∑
t′≥t

∑
j∈{1,...,n} δ

t′−tstj is given by the following:

∂
∑
j s
t
j + δs

t+1
j

∂ε
= ayti − aytj −

(
b− ci − axt

)
+
(
b− cj − axt

)
+ δ

(
b− ci − axt+1

)
− δ

(
b− cj − axt+1

)
= a

(
yti − ytj

)
+ (1− δ) (ci − cj)

In addition, the principal receives the environmental benefit (1− δ) (ej − ei),

so her total the benefit is

a
(
ytj − yti

)
+ (1− δ) (ej + cj − ei − ci) .

It follows that when this expression is positive, the principal benefits from

extracting from i first: Suppose for contradiction the contrary, i.e., xτi · xtj > 0

for τ > t. Make the above perturbation at t, t+ 1, . . . , τ − 1 (cancelling out for

times t + 1, . . . , τ − 1). Then the principal has a strict improvement, and the

strategy could not be optimal. Finally, we can let τ → +∞ to improve on the

case where xtj > 0 while x
τ
i = 0 for all τ > t (provided that yτ > 0).

3.2 The steady state

Based on the previous subsection, it is natural to order all the stocks according

to decreasing values of size or, more precisely, y0j +
(
1−δ
a

)
(cj + ej), so that

y0j +
(
1−δ
a

)
(cj + ej) > y0j+1 +

(
1−δ
a

)
(cj+1 + ej+1) for every j ∈ N\n. Thus,

stock n is depleted first, and then stock n − 1 is depleted before stock n − 2,

etc. Some stocks may be conserved forever. Our next result characterizes the

steady state, or the long-run outcome, of the game, corresponding to the second

part of Proposition 0. It is convenient to define Y ti ≡
∑
j≤i y

t
i as the sum of the

stocks larger than stock i.

Proposition 2 A unique steady state is reached in finite time. In the steady
state, the ı̂ stocks with the largest y0j +

(
1−δ
a

)
(ej + cj) are conserved while the

stocks with smaller y0j +
(
1−δ
a

)
(ej + cj) are exhausted. A necessary condition

characterizing the threshold is

y0ı̂ +
eı̂ + ĉı − b

a
≥ Y 0ı̂ ≥

eı̂+1 + ĉı+1 − b
a

, (4)
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if ı̂ ∈ {1, n− 1}, while the second inequality is skipped if ı̂ = n, and ı̂ = 0 if
e1 + c1 − b < 0. Condition (4) is also suffi cient if the heterogeneity in ei + ci is
relatively small, i.e., if for every i,

(ei − ei−1) + (ci − ci−1) /∈
(
ay0i−1,

a

1− δ
(
y0i−1 − y0i

))
.

Proof. The claim that steady-state is reached in a finite number of steps, will

follow from Proposition 3.

Define πi (x) = x (b− ax− ci). Conserving every stock forever requires that,

in every period, sti = (1− δ)πi (yti) for every i. By Proposition 1, consider the

remaining stock with the largest number i. Suppose the principal considers

to extract from i where the aggregate size of the larger/remaining stocks is

Y ti−1 =
∑
j<i y

t
j . Extracting a marginal unit of size x

t
i = ε reduces stj by εay

t
j

units in this period, while the present-discounted value of the future si’s will be

reduced from πi (y
t
i) to πi (y

t
i)−πi (ε)−δπi (yti − ε)+δπi (yti − ε). This marginal

extraction is not strictly beneficial to the principal if

εei ≥ πi (ε) +
∑
j 6=i

εaytj ,

and, when ε→ 0, this condition becomes:

ei ≥ b− ci +
∑
j 6=i

aytj ⇔
∑
j 6=i

ytj = Y ti − yti ≤
ei + ci − b

a
.

When is this condition also suffi cient? Suppose it is not: That is, even if the

condition holds for some i,

a
(
Y ti − yti

)
≤ ei + ci − b,

it does not hold for i− 1, because

a
(
Y ti − yti−1 − yti

)
≥ ei−1 + ci−1 − b.

12



Figure 1: The largest stocks are conserved, while the smallest stocks are depleted.

Combined, this means,

ei + ci − b ≥ a
(
Y ti − yti

)
≥ ayti−1 + ei−1 + ci−1 − b⇒

ei + ci ≥ ayti−1 + ei−1 + ci−1 ⇒

ei + ci − (ei−1 + ci−1) ≥ ayti−1 ⇒
a

1− δ
(
yti−1 − yti

)
≥ ei + ci − (ei−1 + ci−1) ≥ ayti−1,

where we have added the condition from Proposition 1. For both equalities to

hold, we must have δyti−1 ≥ yti , which is violated for δ small.

If ci + ei < b∀i, everything will eventually be extracted, just as in the first

best. If ci + ei > b∀i, however, the first best dictates that everything should

be conserved, but this will be true in equilibrium only if cn + en − b > aY 0n−1.

Note that the conservation condition coincides with the first-best condition if

and only if there is only a single agent, since then Y 0n−1 = Y 00 = 0.

If n > 1, however, the principal will in general permit extraction even if

this is socially suboptimal. The reason is that by allowing for a little bit of

extraction, say xti = ε > 0, the equilibrium price falls and this reduces every

agent’s temptation to opt for the outside option. Starting from the steady

state, the net side payment to i himself can be reduced by the profit he makes,

ε (b− aε). In addition, j 6= i realizes that the price is reduced by aε units, and

thus j’s reduced temptation to extract implies that the principal can reduce the
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side payment stj without violating j’s incentive to conserve: the sum
∑
j 6=i s

t
j can

be reduced by aε
∑
j 6=i y

t
j . Thus, the larger is

∑
j 6=i y

t
j , the larger is the benefit

of allowing xti = ε > 0. Since
∑
j 6=i y

t
j is largest for the smallest possible y

t
i , we

confirm the intuition that it is optimal to first let the smallest agent extract.

Furthermore, since
∑
j 6=i y

t
j stays unchanged as y

t
i is depleted, it is optimal to

completely exhaust i’s stock if it is optimal to start extracting from him in the

first place. This explains why the steady state is always a corner solution where

every stock is either left untouched or completely exhausted, as illustrated in

Figure 1. However, once there is a suffi ciently small number of stocks left, the

cost-savings aε
∑
j 6=i y

t
j of allowing for x

t
i > 0 is reduced and it may eventually

be optimal for the principal to pay for conservation of every remaining stock.

Note that the condition for suffi ciency always hold when ci + ei is the same

for every country. In this case, the proposition simplifies.

Corollary 1 Suppose ci = c and ei = e.

(i) The first best is that nothing is extracted if b < c+ e.

(ii) In equilibrium, every stock is depleted except for the ı̂ largest stocks, where

ı̂ is given by

y0ı̂ +
c+ e− b

a
≥ Y 0ı̂ ≥

c+ e− b
a

(ii) With a large number of small stocks ( yı̂ → 0), the steady-state conserva-

tion level is

yT = max

{
0,
c+ e− b

a

}
.

The last equation emphasizes (as should also be clear from formula (4)) that

more is conserved if e is large, if b is small, and if a is small. As noted already,

the large a means that the stj’s can be reduced by quite a lot if x
t
i > 0, and it

then becomes beneficial for the principal to allow for more extraction.
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3.3 The speed of extraction

We are now ready to characterize the extraction path over time. As hinted to

already, the principal prefers to allow for more extraction than what is socially

optimal since this reduces every agent’s temptation to go for the outside option

and extract more. This reduced temptation means that the principal can lower

the side payments to these agents, without fearing that they will extract more.

In line with the intuition above, the equilibrium path coincides with the first-

best path if there is only one stock left in the game, but otherwise the speed of

extraction will be too high.

Proposition 3 Let lt denote the largest i such that xti > 0.

(i) Extraction xt is decreasing in t.

(ii) The marginal social surplus increases more than exponentially in time.
For any two consecutive periods, we have:[
b− el − cl − a (2− w)xt

]
+ ayt−l ≥ δ

[
b− el − cl − a (2− w)xt+1

]
(5)

with equality if xtl < ytl .

Proof. Similarly to the proof of Proposition 1, consider a small perturbation,

now referred to as x̂, where x̂ti = xti + ε and x̂t+1i = xt+1i − ε, while every other

extraction level stays unchanged. With (3), the marginal increase in total side

payments
∑
t′≥t

∑
j∈{1,...,n} δ

t′−tstj (when ε→ 0) is given by the following:

∂
∑
j s
t
j + δs

t+1
j

∂ε
= −ayt−i −

(
b− ci − axt−i − 2axti

)
+ axt−i

+ δ
(
b− ci − axt+1−i − 2ax

t+1
i

)
− δaxt+1−i

= −ayt−i −
(
b− ci − 2axt

)
+ δ

(
b− ci − 2axt+1

)
Moving extraction forward in this way is also implying an environmental

loss to the principal given by (1− δ) ei, and a consumer surplus gain given by

wa
(
xt − δxt+1

)
. Thus, the total benefit of moving forward a marginal amount

is

wa
(
xt − δxt+1

)
− (1− δ) ei + ayt−i +

(
b− ci − 2axt

)
− δ

(
b− ci − 2axt+1

)
≥ 0⇒

b− ei − ci − a (2− w)xt ≥ −ayt−i + δ
[
b− ei − ci − a (2− w)xt+1

]
.
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Clearly, this equation holds with equality if it is optimal with xtix
t+1
i > 0,

while if the equality is strict, then xt+1i = 0.

One should remember here that [b− el − cl − a (2− w)xt] is simply the mar-

ginal social value when extracting one more unit of stock l. In the special case

in which cl = 0 and w = 1, this term equals pt − el, and the equation then

becomes (pt − el) + aY tl−1 = δ
(
pt+1 − el

)
if xtlx

t+1
l > 0. So, the term (pt − el)

increases very fast in t, not only because of the discount factor, but also thanks

to the term aY tl−1: the principal finds it optimal to move extraction forward in

time to save on side transfers to the other agents. This is particularly beneficial

to the principal when there are many other agents/stocks around. Hence, the

speed of extraction is more different from the first best if Y tl−1 is large, i.e., early

in the game.

As corollaries, we obtain the following:

Corollary 2

(i) The speed of extraction (xt − δxt+1) is too large relative to the first best

if and only if n > 1.

(ii) The extraction level xt is piecewise concave in t, and the price pt is piece-

wise convex in t.

Another comparison between the first best and the equilibrium path concerns

the concavity of xt, as a function of t. Suppose ci = c and bi = b. In the first

best, xt is always concave, implying that the equilibrium price is convex, as a

function of t. In equilibrium, however, xt is concave only as long as we keep on

extracting from the same agent. The concavity can be seen from Proposition

3 by noting that xt is a weighted average of xt+1 and
yt−l

(1−δ)(2−w) −
el+cl−b
2a .

As soon as ytl = 0, however, and extraction begins with xtl−1 > 0, then xt

becomes a weighted average of xt+1 and
yt−(l−1)

(1−δ)(2−w) −
el+cl−b
2a , where the first
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term is reduced. Thus, xt, as a function of t, becomes piecewise— and not

globally– concave. As a consequence, the price becomes piecewise– but not

globally– convex as a function of t.

3.4 Comparative static and policy implications

There are several interpretations of the model and of who the principal may be.

The principal could be the World Bank, the UN, or individual countries such

as Norway. However, when it comes to forest and land conservation, also non-

governmental organizations (NGOs) are offering conservation contracts. Clearly,

the preferences of the principal may be different if the principal is an NGO or

whether it should be interpreted as the UN. If the principal is "benevolent"

and takes the agents’profit into account, then the outcome is clearly first best,

as described by Proposition 0. In other words, suppose the principal has a

preference not only for conservation, but also for the resource-owners profit (by

maximizing vt0 =
∑n
i=0 u

t
0). Then, perhaps paradoxically, the principal decides

to conserve more– not less. Intuitively, when the principal does not internalize

the profit to the agents, then she permits more extraction since this reduces the

agent’s outside-option payoffs and thus the side transfers which the principal

must pay.

Corollary 3. Suppose the principal internalizes the profits uti’s. Compared to

the results above,

(i) extraction may switch from a small stock j to a large stock i if just cj+ej >

ci + ei;

(ii) the stock that is conserved forever increases.

In the model above, the market for the extracted good is parametrized by

a and b. If demand decreases, b will decrease or a will increase. Policies that

influence the market may influence b or a, depending on the policy instrument.

A boycott, where a fraction of the buyers will exit the market, will be similar
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to a larger a. The explanation is particularly straightforward when all the m

buyers are identical and associated with a demand function b − a′ . The total

demand is then given by b − a, where a ≡ a′/m. Clearly, a smaller m implies

that a will increase.

Note that the larger a is beneficial to the principal. The reason is that when a

is large, then when the principal permits one agent to extract a marginal amount,

the side payments to the other agents are lowered by quite a lot (namely, by

an amount proportional to a). While this effect is beneficial to the principal, it

also motivates her to take advantage of this effect by indeed allowing an agent

to extract a little bit more. This means that a larger amount is eventually

extracted, and the steady state level that is conserved forever is reduced.

Corollary 4. A boycott increases a and has the following consequences:

(i) extraction may switch from a large stock j to a small stock i, even if

cj + ej < ci + ei;

(ii) the stock that is conserved forever declines.

In contrast, an emission tax, or a consumption tax, will be similar to a

reduction in b: that is good for effi ciency and conservation as well as for the

principal, it turns out. A smaller b will reduce the temptation to extract and the

principal will be able to motivate conservation at a smaller price. In equilibrium,

a larger fraction of the resource will be conserved forever.

Corollary 5. A consumer tax decreases b and has the following consequences:

(i) there is no influence on whether stock i or stock j will be depleted first, as

long as both will be depleted;

(ii) the stock that is conserved forever becomes larger.
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3.5 Alternative contracts

Above, we allowed the principal to set the side payment schedules as arbitrary

functions of the vector of extraction levels. Thus, the principal cannot do better

than with these contracts, if the agents are free to opt out and cannot be forced

to participate. However, the principal can certainly be much worse of if there

are (realistic) constraints to the contracts that are offered.

Real-world REDD contracts have two features. First, they are linear, in

that they specify a baseline level xti and a rate φ
t
i such that the subsidy is

linear in the amount that deforestation is reduced relative to this baseline level:

sti = φti
(
xti − xti

)
. While the incentives will be influenced by the rate φti, the

baseline will not affect xti, on the margin, but just ensure that i does not prefer

to ignore the contract. In principle, these linear subsidy schemes can achieve

the same outcome as the general contracts offered above. However, to ensure

that xti > 0 for the smallest stock, while x
t
j = 0 for the largest stock, it may be

necessary to set φtj > φti. Furthermore, φ
t
i may need to be reduced in time, t,

in order to implement the increase in xti which we have proved to be optimal

above.

The second feature of real-world contracts is that they are remarkably similar

across countries. In particular, the subsidy rate φti is fixed over i. For the

REDD contracts offered by the Norwegian government, for example, φti is for

every country set equal to the amount of avoided carbon dioxide emissions,

multiplied by five dollar a ton. When φti is the same for every i, then it is

reasonable that when xti > 0, we also have x
t
j > 0. Thus, several resource stocks

will be depleted in pararell, even though the optimal contract requires that the

smallest stock is depleted before one begins extraction from a larger stock. In

other words, requiring φti = φtj leads to too little conservation conditional on

the money that is spent, or too much money being spent conditional on the

amount of conservation that is achieved. Our results illustrate how real-world

contracts can be improved upon by letting the contracts vary over time as well

as over districts.
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Corollary 6

(i) The optimal contracts vary across countries and change when resources

are being depleted.

(ii) Harmonized contracts achieve too little conservation and at too high costs

to the principal.

4 Alternative Outside Options and Models of
Extraction

This section extends the model above by (i) allowing resource extraction to

be illegal or protection costly and (ii) letting the outside option be different

than simply depleting the entire resource once and for all. We study these two

generalizations together because, it turns out, none of them will make much of

a difference in isolation. Combined, however, they shed light on the limitations

of the above results. To concentrate on the new results, we here assume agents

are identical except for size, so that the principal’s direct utility depends only

on aggregates (ci = c and ei = e). (We remark though, that it is possible

to generalize the result to heterogeneous agents by modifying the size ranking

criterion in a similar way to the previous section.)

Costly protection. For some resources, such as tropical forests, extraction

may not be easily regulated by the local governments. Instead, there may be

a lot of pressure from illegal loggers on the forest that is to be conserved. The

profit from illegally cutting a unit of the forest is the equilibrium price minus

the extraction cost, pt − c, and this must be compared to the expected penalty

which the loggers are facing. The expected penalty can be raised by raising the

fine or the number of years in jail, but there is a limit to how much the penalty

can be increased in this way. For a given penalty level, the expected penalty is

instead raised by increasing the monitoring probability. Since this is costly, we

can let α ≥ 0 measure the cost of raising the expected penalty. To be effective,

the expected penalty must be at least as large as the profit when cutting, pt−ci,
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and in equilibrium it will be exactly so large. Thus, if agent i wants to protect

the remaining amount yti − xti, i’s payoff in a period is given by the following:

uti = β
(
pt − c

)
xti − α

(
pt − c

) (
yti − xti

)
+ sti,

where parameter β ≥ 0 measures the benefit of sales revenues, while α measures

the cost of monitoring the remaining forest. This utility function is better

defended in Harstad and Mideksa (2016) who study contracts in a static model.

Outside option. An important simplifying assumption above was to sup-

pose that if an agent deviates from the principal’s contract, then he sells the

entire stock, once and for all. We presented a condition suggesting that this

assumption could be reasonable when the stocks were small, and argued that

it could also hold if one could expect "everything to break down" if an agent

cheats and breaks the contract. More generally, however, one should allow an

agent to consider any extraction level xti ≤ yti at any point in time. At the

moment, we are working on such a model, where an agent can deviate by any

amount he wants before entering a new period where the principal re-optimizes

by offering new contracts. In this section, however, we will grossly simplify

by assuming that an agent’s outside option is to extract xti and leave unex-

tracted yt+1i = yti −xti = F (yti), where F (·) is an exogenous increasing function

which takes values on [0, yti ]. This function could measure some capacity con-

straints, and we thus assume that also the principal must take the constraint

xti ≤ yti − F (yti) into account. Although assuming an exogenous F is a severe

shortcut, it is still a generalization relative to the analysis above, were F (yti) = 0

for any yti . If an agent has deviated in a particular period, then the principal

will re-optimize by suggesting new contracts in the following period. After all,

we consider Markov-perfect strategies and deviations from the contract in the

past is not payoff relevant when going forward

None of these exensions would make much of a difference in isolation. With

the outside option given by (a suffi ciently well-behaved) F (·), it would still be

the case that extraction will start with the smallest stock if α = 0. The same

would be true if we allowed for α > 0 but had F (·) = 0. Together, however, it
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turns out that the principal may want to extract from the largest stock first if

F ′ (·) and α are suffi ciently large.

The intuition for why Proposition 1 may be overturned is the following.

Remember that the principal receives the sum of payoffs minus every agent’s

outside option. If the protection cost α is large, then it is costly for agent i

to protect the remaining amount F (yti), but this cost is reduced if the price is

smaller, e.g., if another agent j is allowed to extract. Thus, there is a positive

(pecuniary) externality from xtj to i’s outside option. This externality is larger

if F (yti) is large, so, if y
t
i is large. Since improving i’s outside option is costly

to the principal, it is better for her to instead let the large district extract. In

short, the (pecuniary) externality from j’s extraction on i’s outside option is

positive when α is large, but it is negative when α is small, as in Sections 2-3.

This difference overturns the result from Proposition 1.

Proposition 4 Let Zt ≡ [0,max yti ] and assume that F ′ (z) ∈ [0, 1/δ)∀z ∈ Zt.
Then, the smallest stocks are extracted first at t if

α < α ≡ β · min
z∈Zt

{
1− δF ′(z)

[1− δF ′(F (z))] · F ′(z) − 1
}
,

while the largest stocks are extracted first if

α > α ≡ β ·max
z∈Zt

{
1− δF ′(z)

[1− δF ′(F (z))] · F ′(z) − 1
}
,

where both ratios are interpreted as +∞ if F ′(z) = 0.

Proof. Since we consider homogeneous agents, we can normalize ci to zero

without loss of generality. Consider the following perturbation of an arbitrary

strategy: at time t, increase the contractual extraction xti from a single agent

i, and, provided the agent takes the contract, decrease extraction in the next

period —and for some agent j 6= i, perform the opposite perturbation. That is,

we consider the marginal effect of a partial decrease in yt+1i and a partial increase

(of same size) in yt+1j . By the envelope theorem we can disregard everything

from period t+2 on, and because aggregates are kept constant, neither prices nor

the principal’s direct utility change, nor the sum of the agents’direct utilities
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in the contract. Neither do the outside values change for any other agents than

i and j.

The principal will therefore minimize the sum of those agents’outside options

to minimize side transfers. Agent i’s outside option will benefit from agent j’s

initially reduced supply, but take a hit from the subsequent increased supply, a

net effect of a times βyti − (β + α)F (yti) − δ[βF (yti) − (β + α)F (F (yti))]. The

principal’s transfer expenditure will thus increase by the difference between this,

and the corresponding expression for j. It suffi ces to differentiate wrt. stock:

d

dz
[βz − (β + α)F (z)− δ[βF (z)− (β + α)F (F (z))]]

= β[1− δF ′(z)]− (β + α)[1− δF ′(F (z))]F ′(z)

which is positive iff β + α < β[1 − δF ′(z)]/([1 − δF ′(F (z))]F ′(z)), by the sign

of F ′ and 1− δF ′(F (z)). The conclusion follows.

5 Conclusions

This paper analyses a model in which a principal tries to slow or reduce the

agents’extraction levels of their privately owned exhaustible resources. This is

relevant for conservation contracts regarding tropical forests, for example, but

it may also become an important policy tool when dealing with other problems,

such as climate change.

Even when the first best dictates that nothing or everything should be ex-

tracted in the long run, the equilibrium outcome is likely to be interior. While

the first best requires that one should first extract from the stocks that have

the lowest emissions or extraction costs, it is the smallest stock(s) that will be

depleted first, in equilibrium. The principal’s optimal contract is very asym-

metric in that it treats relatively similar resource owners very differently. This

suggests a way of improving existing conservation contracts on deforestation,

which currently treat every country in the same way. In particular, if the sub-

sidy rate for reducing deforestation is the same for every country, then too little

is conserved for every dollar that is spent, relative to the effi cient contract. We
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have also noted that other policies, such as boycotts, are likely to worsen the

problem and encourage a contract-provider to conserve less and to switch ex-

traction from stocks that are inexpensive to stocks that are instead small (even

though they may be associated with larger emissions and extraction costs).

Our model is just a first cut when studying optimal conservation contracts

in dynamic settings. We make a large number of strong assumptions that ought

to be relaxed in future research. In particular, one should allow for alternative

outside options than we have done in this analysis, and one may also want to

study more carefully the market for the extracted product. In this way, future

research will bring us another few steps forward in understanding the best way

of conserving natural resources.
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