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1 Introduction

Imagine that an important public policy issue, involving the functioning of the entire economy,

could be settled by a simple formula together with only a few inputs estimated from data.

Imagine further that the simple formula, connecting the public policy variable to empirical

inputs, is general in that it holds within a wide class of theoretical models that are relevant to the

issue at hand. The scenario just described is the goal of the sufficient statistic approach. Chetty

(2009) states “The central concept of the sufficient statistic approach ... is to derive formulas

for the welfare [revenue] consequences of policies that are functions of high-level elasticities

rather than deep primitives.”

An important application of the sufficient statistic approach is to predict the tax rate at the

top of the Laffer curve (i.e. the revenue maximizing top tax rate). Thus, the public policy

variable under consideration is a tax rate on some component of income or expenditure. This

could be the tax rate on consumption, labor income, capital income or something more specific

such as the top federal tax rate on ordinary income.

One may want to predict the top of the Laffer curve for several reasons. First, it may be widely

agreed that setting a tax rate beyond the revenue maximizing rate is counterproductive. If so,

an accurate prediction usefully narrows the tax policy debate. Second, one may argue, as do

Diamond and Saez (2011), that the revenue maximizing tax rate on top earners closely approx-

imates the welfare maximizing top tax rate for some welfare criteria. From this perspective,

the revenue maximizing tax rate then becomes a quantitative policy guide.

From a quick look at the literature, one might conclude that the theoretical groundwork on

this issue is complete. There is a widely-used sufficient statistic formula τ ∗ = 1/(1 + aε) that

characterizes the revenue maximizing top marginal tax rate τ ∗ that applies beyond a threshold.

Moreover, there is also a closely related formula τ ∗ = (1 − g)/(1 − g + aε) for the welfare

maximizing marginal tax rate that applies beyond a threshold. This formula is stated in terms

of the same two empirical inputs (a, ε) and a social welfare weight g ≥ 0 put on the marginal

consumption of top earners. See Diamond and Saez (2011) and Piketty and Saez (2013a),

among many others, for a discussion of these formulae. The Mirrlees Review is an important

public policy document that applies these formulae to offer quantitative policy advice.1

A more critical reading of the literature suggests that the widely-used formula does not actually

apply to a wide class of relevant models. The widely-used formula τ ∗ = 1/(1 + aε) is not valid

in dynamic models. For example, it does not apply to steady states in either the infinitely-

lived agent or the overlapping generations versions of the neoclassical growth model. These

are the two workhorse models of macroeconomics. A large literature analyzes the taxation of

1See Brewer, Saez and Shephard (2010).
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consumption, labor income and capital income using these models.2 The widely-used formula

also does not apply to the class of heterogeneous-agent models that currently dominate as

positive models of the distribution of earnings, income, consumption and wealth.3

The sufficient-statistic formula in Theorem 1 of this paper applies to static models and to steady

states of dynamic models. It applies regardless of whether a specific model allows for general

equilibrium or only partial equilibrium responses. We apply the formula to the Mirrlees (1971)

model, to the two workhorse models of macroeconomics and to a human capital model. The

formula is stated below in terms of three elasticities, including the single elasticity ε1 of the

widely-used formula.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

One of the new elasticities ε2 captures the possibility that tax revenue from agent types below

the threshold will respond to changes in the top rate. For example, this can occur because

such agents anticipate the possibility of passing the threshold later in life and change their

decisions or because of factor price changes triggered by the decisions of agent types above the

threshold. The other new elasticity ε3 captures the possibility that agent types that are above

the threshold have incomes or expenditures that are taxed separately and that the tax revenue

from these sources changes when the top tax rate changes. For example, consumption and

various types of capital income are commonly taxed separately from labor income.

This paper makes two contributions. First, Theorem 1 provides a tax rate formula with wide

application and yet it is stated in terms of only three elasticities. It is a generalization of the

widely-used formula. Thus, the formula in Theorem 1 should replace the widely-used formula

in future work. It should also help guide future empirical work that estimates elasticities.

Currently, there are no estimates in the literature for two of the three elasticities that enter the

formula. Second, we bench test the formula using a human capital model. One message of the

bench test is that the formula accurately predicts the top of the Laffer curve even when the

formula inputs are calculated far from the top of the Laffer curve. Prediction is an important

use of the formula in applied work.

The paper is organized as follows. Section 2 presents the tax rate formula. Section 3 shows

that the formula applies in a straightforward way to several classic models. Section 4 bench

tests the formula using a quantitative human capital model. Section 5 concludes.

2Auerbach and Kotlikoff (1987) is an early quantitative exploration of tax reforms within overlapping gen-
erations models.

3Heathcote, Storesletten and Violante (2009) review this literature. The models that they review feature
agents that are ex-ante heterogeneous, face idiosyncratic risk and trade in incomplete financial markets.
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Related Literature

Our paper is most closely related to three literatures. First, it relates to the so called sufficient

statistics literature. Piketty and Saez (2013a) review the parts of this literature that focus on

formulae for labor income taxation in static models. Our formula is a generalization of the

revenue maximizing top rate formula from Saez (2001). Our formula applies to any component

of income and not just labor income. Recently, sufficient statistic formulae have been developed

that apply to steady states of dynamic models. For example, Piketty and Saez (2013b) present

formulae for welfare maximizing tax rates on inheritance that apply to steady states of a

specific dynamic model. We differ from this work in focus and in method. Our focus is revenue

maximization rather than welfare maximization. In terms of method, we derive a formula

based on an abstract modeling language rather than a specific model. A consequence is that

our formula has very wide application as it is easy to map equilibria in many specific static or

dynamic models into our abstract modeling language.

Second, it relates to the class of heterogeneous-agent models surveyed by Heathcote, Storeslet-

ten and Violante (2009). Our tax rate formula applies to many models in this large class.

For example, Badel and Huggett (2014) apply our tax rate formula to a specific model. Our

formula could also be applied to the models in Guner, Lopez-Daneri and Ventura (2014) and

Kindermann and Krueger (2014). The model counterparts to the three formula coefficients and

elasticities would be critical for understanding why these quantitative theoretical models have

substantially different revenue maximizing top tax rates.

Third, it relates to the elasticity of taxable income literature surveyed by Saez, Slemrod and

Giertz (2012). This literature provides elasticity estimates for sufficient statistic formulae.4

We conjecture that our formula will be helpful in the development of methods to estimate

the three relevant elasticities in dynamic models. This is because in specific economic models

the elasticities can be calculated independently of the specific regression framework proposed.

Badel and Huggett (2014) illustrate this point and assess existing regression methods for the

elasticity ε1 within a specific dynamic model.

2 Tax Rate Formula

The tax rate formula is based on three model elements: (i) a distribution of agent types

(X,X ,P), (ii) an income choice y(x, τ) that maps an agent type x ∈ X and a parameter τ

of the tax system into an income choice and (iii) a class of tax functions T (y; τ) mapping

4The elasticities relevant in sufficient statistic formulae are sometime termed “policy elasticities” (see Hendren
(2015)) to emphasize that they are specific to changes in a specific policy variable.
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income choice and a tax system parameter τ into the total tax paid. Total tax revenue is then∫
X
T (y(x, τ); τ)dP . Our approach does not rely on specifying an explicit dynamic or static

equilibrium model up front. Instead, our tax rate formula can be applied in a straightforward

way by mapping equilibrium allocations of specific static or dynamic models into these three

basic model elements.

2.1 Assumptions

Assumption A1 says that the distribution of agent types is represented by a probability space

composed of a space of types X, a σ-field X on X and a probability measure P defined over

sets in X . Assumption A2 places structure on the class of tax functions. The tax functions

differ in a single parameter τ , where τ is interpreted as the linear tax rate that applies to

income beyond a threshold y. Below this threshold the tax function can be nonlinear but

all tax functions in the class are the same below the threshold. Assumption A3 says that

key aggregates are differentiable in τ . The aggregates are based on integrals over the sets

X1 = {x ∈ X : y(x, τ ∗) > y} and X2 = X − X1 in X , where τ ∗ ∈ (0, 1) is a fixed value that

serves to define and fix these sets.

A1. (X,X ,P) is a probability space.

A2. There is a threshold y ≥ 0 such that

(i) T (y; τ)− T (y; τ) = τ [y − y], ∀y > y,∀τ ∈ (0, 1) and

(ii) T (y; τ) = T (y; τ ′),∀y ≤ y,∀τ, τ ′ ∈ (0, 1).

A3.
∫
X1
y(x, τ)dP and

∫
X2
T (y(x, τ); τ)dP are strictly positive and are differentiable in τ .

We also consider a generalization where the tax system depends on multiple sources of income

or expenditure. The three elements of the generalized model are (i) a distribution of agent

types (X,X ,P), (ii) an n ≥ 2 dimensional income-expenditure choice (y1(x, τ), ..., yn(x, τ)) and

(iii) a class of tax functions T (y1, ..., yn; τ) mapping choices and a tax system parameter τ into

the total tax paid.

Assumptions A1′ − A3′ restate assumptions A1 - A3 for the generalized model. A2′ assumes

that the tax system is additively separable in that the first component of income y1 determines

a portion of the tax liability of an agent separately from the other components. For example,

this structure captures a situation where labor income y1 and capital income y2 are taxed using

separate tax schedules or where labor income y1 and consumption y2 are taxed separately. In

Assumption A3′ the integrals are calculated over the sets X1 = {x ∈ X : y1(x, τ ∗) > y} and

X2 = X −X1, where τ ∗ ∈ (0, 1) is a fixed value.
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A1′. (X,X ,P) is a probability space.

A2′. T is separable in that T (y1, ..., yn; τ) = T1(y1; τ) + T2(y2, ..., yn),∀(y1, ..., yn, τ). Moreover,

there is a threshold y ≥ 0 such that

(i) T1(y1; τ)− T1(y; τ) = τ [y1 − y],∀y1 > y,∀τ ∈ (0, 1) and

(ii) T1(y1; τ) = T1(y1; τ ′), ∀y1 ≤ y,∀τ, τ ′ ∈ (0, 1).

A3′.
∫
X1
y1dP,

∫
X1
T2(y2, ..., yn)dP and

∫
X2
T (y1, ..., yn; τ)dP are strictly positive and are differ-

entiable in τ .

2.2 Formula

Before stating the formula in Theorem 1, we express total tax revenue as the sum of tax revenue

from the set of agent types with incomes above a threshold X1 = {x ∈ X : y(x, τ ∗) > y} and

from all remaining types X2 = X −X1. Total tax revenue can be stated in the same manner

when the tax system depends on n ≥ 2 components of income or expenditure by again defining

two sets X1 = {x ∈ X : y1(x, τ ∗) > y} and X2 = X −X1. This is done below.

∫
X
T (y(x, τ); τ)dP =

∫
X1
T (y(x, τ); τ)dP +

∫
X2
T (y(x, τ); τ)dP

∫
X
T (y1, ..., yn; τ)dP =

∫
X1
T (y1, ..., yn; τ)dP +

∫
X2
T (y1, ..., yn; τ)dP

With these expressions in hand, we now state the theorem.

Theorem 1:

(i) Assume A1− A3. If τ ∗ ∈ (0, 1) is revenue maximizing, then τ ∗ = 1−a2ε2
1+a1ε1

, where

(a1, a2) = (

∫
X1
ydP∫

X1

[
y − y

]
dP

,

∫
X2
T (y; τ ∗)dP∫

X1

[
y − y

]
dP

) and (ε1, ε2) = (
d log

∫
X1
ydP

d log(1− τ)
,
d log

∫
X2
T (y; τ ∗)dP

d log(1− τ)
).

(ii) Assume A1′ − A3′. If τ ∗ ∈ (0, 1) is revenue maximizing, then τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

, where

(a1, a2, a3) = (

∫
X1
y1dP∫

X1

[
y1 − y

]
dP

,

∫
X2
T (y1, ..., yn; τ ∗)dP∫
X1

[
y1 − y

]
dP

,

∫
X1
T2(y2, ..., yn)dP∫
X1

[
y1 − y

]
dP

) and
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(ε1, ε2, ε3) = (
d log

∫
X1
y1dP

d log(1− τ)
,
d log

∫
X2
T (y1, ..., yn; τ ∗)dP

d log(1− τ)
,
d log

∫
X1
T2(y2, ..., yn)dP

d log(1− τ)
).

Proof:

(i) If τ ∗ ∈ (0, 1) maximizes revenue then it also maximizes τ
∫
X1

[y(x; τ)−y]dP+
∫
X2
T (y(x; τ), τ)dP .

This holds by subtracting the constant term
∫
X1
T (y; τ)dP from total revenue and using A2.

The following necessary condition then holds:

∫
X1

[
y(x, τ ∗)− y

]
dP − τ ∗

d
∫
X1
y(x; τ ∗)dP

d(1− τ)
−
d
∫
X2
T (y(x, τ ∗); τ ∗)dP

d(1− τ)
= 0

Divide the necessary condition by
∫
X1

[
y(x, τ ∗)− y

]
dP and rearrange using the elasticities

stated in the Theorem. This implies 1 − τ∗

1−τ∗a1ε1 − 1
1−τ∗a2ε2 = 0 which in turn implies

τ ∗ = 1−a2ε2
1+a1ε1

.

(ii) If τ ∗ ∈ (0, 1) maximizes revenue then it also maximizes τ
∫
X1

(y1−y)dP+
∫
X1
T2(y2, ..., yn)dP+∫

X2
T (y1, ..., yn; τ)dP . This holds by subtracting the constant term

∫
X1
T1(y; τ)dP from total

revenue and using A2′. The following necessary condition then holds:

∫
X1

[
y1 − y

]
dP − τ ∗

d
∫
X1
y1dP

d(1− τ)
−
d
∫
X1
T2(y2, ..., yn)dP

d(1− τ)
−
d
∫
X2
T (y1, ..., yn; τ ∗)dP

d(1− τ)
= 0

Divide all terms in the previous equation by
∫
X1

[
y1 − y

]
dP and then rearrange using the

elasticities stated in the Theorem. This implies 1− τ∗

1−τ∗a1ε1 − 1
1−τ∗a2ε2 − 1

1−τ∗a3ε3 = 0 which

in turn implies τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

. ‖

Comments:

1. The formula is appealing from the perspective of the sufficient statistic approach. It is stated

in terms of at most three elasticities. Nevertheless, it applies to economies where taxes are

determined based on many different income or expenditure types. It applies to non-parametric

economic models analyzed in partial or in general equilibrium.
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2. The widely-used formula τ ∗ = 1/(1+aε) is effectively a special case of the sufficient statistic

formula in Theorem 1. What type of situations does the widely-used formula not address

that the formula in Theorem 1 successfully addresses? There are two general categories. The

first category includes situations where agent types below the threshold, in the set X2, have

their income and expenditures (y1, ..., yn) and corresponding tax liabilities change as τ changes.

This can happen, in static or dynamic models, when factor prices change due to the response

from agent types above the threshold. In dynamic models this can also happen because agents

transit through the income distribution. Thus, agents can be below the threshold at one age

and above it at a later age. This implies that agent types below the threshold can have income

or expenditure choices that vary with τ . In all these circumstances the tax revenue from agent

types in X2 changes as τ changes and thus the term a2ε2 is non-zero.

The second category covers scenarios in which many components of income or expenditure are

taxed in practice. Consider a change in the parameter τ that governs the taxation of component

y1. Then agent types above the threshold, in the set X1, will adjust other components (y2, ..., yn)

of income or expenditure. The revenue consequences of such adjustments need to be accounted

for. The term a3ε3 will be non-zero when these revenues change. The next two sections give

concrete examples of when the terms a2ε2 or a3ε3 are non-zero.

3. To state the formula using elasticities requires that each of the integrals (e.g.
∫
X2
T (y; τ)dP ),

over which the elasticity is taken, is non-zero. If any of the integral terms is zero, then the

result can still be stated in some cases. For example, if the integral
∫
X2
T (y; τ)dP is zero (i.e.

total net taxes on agent types at or below the threshold are zero) and the integral does not

vary on the margin as the tax rate τ varies, then the term a2ε2 in the formula in Theorem 1

can be replaced with a zero. Examples 1 and 3 in the next section illustrate this point.

3 Examples

We now consider three classic models: the Mirrlees model as well as the overlapping genera-

tions and infinitely-lived agent versions of the neoclassical growth model. We map equilibrium

elements in each model into the language of Theorem 1. While the examples associate the tax

rate parameter τ with a labor income tax rate, this is purely for convenience.

3.1 Mirrlees Model

Mirrlees (1971) considered a static model in which agents make a consumption and labor

decision. In our version of this model, the government runs a balanced budget where taxes

fund a lump-sum transfer Tr(τ). The model’s primitives are a utility function u(c, l), agent’s
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productivity x ∈ X, a productivity distribution P and proportional tax rates on consumption

τc and labor income τ .

Definition: An equilibrium is (c(x; τ), l(x; τ), T r(τ)) such that given any τ ∈ (0, 1)

1. optimization: (c(x; τ), l(x; τ)) ∈ argmax{u(c, l) : (1 + τc)c ≤ wxl(1− τ) + Tr(τ), l ≥ 0}

2. government: Tr(τ) = τ
∫
X
wxl(x; τ)dP + τc

∫
X
c(x; τ)dP

3. feasibility:
∫
X
c(x; τ)dP = w

∫
X
xl(x; τ)dP

We state equilibria in closed form using the following functional forms and restrictions:

u(c, l) = c− α l1+
1
ν

1+ 1
ν

and α, ν > 0

X = R+ and (X,X , P ) implies that
∫
X
x1+νdP is finite and P ({0}) = 0

Equilibrium allocations are straightforward to state:

l(x; τ) = [wx(1−τ)
α(1+τc)

]ν

c(x; τ) = [wx[wx(1−τ)
α(1+τc)

]ν(1− τ) + Tr(τ)]/(1 + τc)

Tr(τ) = (τ + τc)w
1+ν [ (1−τ)

α(1+τc)
]ν
∫
X
x1+νdP

We now map equilibrium allocations into the elements used to state Theorem 1.

Step 1: Set (X,X , P ) to that governing productivity.

Step 2: Set y1(x, τ) = wxl(x; τ) and y2(x, τ) = c(x; τ)

Step 3: Set T (y1, y2; τ) = τy1 + τcy2.

We now calculate the terms in the formula. It is clear that ε1 = ν by a direct calculation of the

elasticity and that a1 = 1 as the threshold is y = 0.5 It is also clear that
∫
X2
T (y1, y2; τ)dP = 0

as effectively all agent types are above the threshold as P (X2) = P ({0}) = 0. Thus, the term

a2ε2 in the formula can be replaced with a zero, consistent with Comment 3 to Theorem 1. It

is easy to see that (a3, ε3) = (τc, ν). Finally, it is also easy to calculate the revenue maximizing

tax rate directly and see that it agrees with the rate implied by the formula.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

=
1− 0− τcν
1 + 1× ν

=
1− τcν
1 + ν

5Theorem 1 directs one to calculate the elasticities and the related coefficients when the sets (X1, X2) are
defined at the revenue maximizing tax rate τ∗. We calculate (a1, ε1) = (1, ν) when these sets are specified for
any fixed value of τ ∈ (0, 1).
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3.2 Overlapping Generations Growth Model

Diamond (1965) analyzes an overlapping generations model with two-period lived agents and a

neoclassical production function F (K,L) with constant returns. In our version of this model,

age 1 and age 2 agents are equally numerous at any point in time and each age group has a mass

of 1. Agents solve problem P1, where they choose labor, consumption and savings when young.

They face proportional labor income and consumption taxes with rates τ and τc, respectively.

The government collects taxes and makes a lump-sum transfer Tr(τ) to young agents.

(P1) maxU(c1, c2, l) s.t.

(1 + τc)c1 + k ≤ w(τ)zl(1− τ) + Tr(τ), (1 + τc)c2 ≤ k(1 + r(τ)) and l ∈ [0, 1]

Age 1 agents are heterogeneous in labor productivity z ∈ Z ⊂ R+. The distribution of labor pro-

ductivity is given by a probability space (Z,Z, P̂ ). Define two aggregates K(τ) =
∫
Z
k(z; τ)dP̂

and L(τ) =
∫
Z
zl(z; τ)dP̂ .

Definition: A steady-state equilibrium is (c1(z; τ), c2(z; τ), l(z; τ), k(z; τ)), a transfer Tr(τ)

and factor prices (w(τ), r(τ)) such that for any τ ∈ (0, 1)

1. optimization: (c1(z; τ), c2(z; τ), l(z; τ), k(z; τ)) solve P1.

2. prices: w(τ) = F2(K(τ), L(τ)) and 1 + r(τ) = F1(K(τ), L(τ))

3. government: Tr(τ) = τc
∫
Z

(c1(z; τ) + c2(z; τ))dP̂ + τ
∫
Z
w(τ)zl(z; τ)dP̂

4. feasibility:
∫
Z

(c1(z; τ) + c2(z; τ))dP̂ +K(τ) = F (K(τ), L(τ))

We now map equilibrium allocations into the language used to state Theorem 1.

Step 1: Define the probability space of agent types. An agent type is x = (z, j) consisting of

the agent’s productivity z when young and the agent’s current age j.

x = (z, j) ∈ X = Z × {1, 2} and P (A) =

∫
Z

[
1

2
1{(z,1)∈A} +

1

2
1{(z,2)∈A}]dP̂ ,∀A ∈ X

Step 2: Define choices (y1, y2) as labor income and consumption, respectively.

(y1(x; τ), y2(x; τ)) =

(w(τ)zl(z; τ), c1(z; τ)) for x = (z, 1),∀z ∈ Z

(0, c2(z; τ)) for x = (z, 2),∀z ∈ Z
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Step 3: Set T (y1, y2; τ) = τy1 + τcy2. Aggregate taxes
∫
X
T (y1, y2; τ)dP are proportional to

the right-hand side of equilibrium condition 3.

The coefficients premultiplying each of the elasticities are easy to determine. The threshold

is y = 0 as the tax τ is a proportional labor income tax. The coefficients are (a1, a2, a3) =

(1,
τc

∫
Z c2(z;τ∗)dP̂

w(τ∗)L(τ∗)
,
τc

∫
Z c1(z;τ∗)dP̂

w(τ∗)L(τ∗)
). The coefficient a2 from Theorem 1 is the ratio of the total tax

revenue from agent types in X2 to the total incomes y1 above the threshold y for agent types

in X1. This equals the ratio of total consumption taxes paid by age 2 agents to total labor

income. The coefficient a3 is the ratio of total tax revenue from agents in X1 on types of income

or expenditure other than type y1 to total incomes y1 above the threshold.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

=
1− τc

∫
Z c2(z;τ∗)dP̂

w(τ∗)L(τ∗)
× ε2 −

τc
∫
Z c1(z;τ∗)dP̂

w(τ∗)L(τ∗)
× ε3

1 + 1× ε1

The take-away point from Example 2 is that the formula in Theorem 1 applies to steady states

of dynamic models once an agent type is viewed in the right way.6

3.3 Infinitely-Lived Agent Growth Model

Trabandt and Uhlig (2011) analyze Laffer curves using the neoclassical growth model. The

model features a production function F (k, l) and an infinitely-lived agent. They calibrate

some model parameters so that steady states of their model match aggregate features of the

US economy and 14 European economies and preset other model parameters. They calculate

Laffer curves by varying either the tax rate on labor income, capital income or consumption to

determine how the steady-state equilibrium lump-sum transfer responds to the tax rate. We

show that our sufficient statistic formula applies to Laffer curves in their model. We focus on

the Laffer curve related to varying the labor income tax rate, but our formula also applies to

the Laffer curves arising from varying the other tax rates in their model.

The equilibrium concept given below differs from that in Trabandt and Uhlig in that it abstracts

from steady-state growth and imports in order to simplify the exposition.

(P1) max
∑∞

t=0 β
tu(ct, lt) s.t.

(1 + τc)ct + (kt+1 − kt(1− δ)) + bt+1 ≤ (1− τl)wtlt + kt(1 + rt(1− τk)) + btR
b
t + Trt

6For transparency we abstract from long-run growth. It is straightforward to add a constant growth rate
of labor augmenting technological change and analyze equilibria displaying balanced growth. The tax system
parameter τ will alter the “level” but not the growth rate of balanced-growth equilibrium variables. The formula
can then be applied to these “level variables”. The tax rate produced by the formula will maximize revenue
each period among all the balanced-growth equilibria indexed by the tax rate τ .
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lt ∈ [0, 1] and k0 is given

Definition: A steady-state equilibrium is an allocation {ct, lt, kt}∞t=0, prices {wt, rt, Rb
t}∞t=0 fiscal

policy {gt, bt, T rt}∞t=0 such that

1. optimization: (ct, lt, kt, bt) = (c̄, l̄, k̄, b̄), ∀t ≥ 0 solves P1.

2. prices: wt = w̄ = F2(k̄, l̄), rt = r̄ = F1(k̄, l̄)− δ and Rb
t = R̄b,∀t ≥ 0

3. government: (gt, bt, T rt) = (ḡ, b̄, T̄ r),∀t ≥ 0 and ḡ + b̄(R̄b − 1) + T̄ r = τlw̄l̄ + τcc̄+ τkk̄r̄

4. feasibility: c̄+ k̄δ + ḡ = F (k̄, l̄)

We map equilibrium allocations into the language of Theorem 1. Denote the labor income

tax rate τl = τ . Bars over variables denote steady-state quantities so that c̄(τ) denotes the

steady-state equilibrium consumption associated with labor income tax rate τl = τ , fixing the

other tax rates (τc, τk) and government spending and debt (ḡ, b̄). Transfers T̄ r(τ) adjust to

changes in revenue when τ is varied.

Step 1: (X,X ,P) is X = 1,X = {{1}, ∅},P({1}) = 1,P(∅) = 0

Step 2: y1(x, τ) = w̄(τ)l̄(τ), y2(x, τ) = c̄(τ) and y3(x, τ) = r̄(τ)k̄(τ)

Step 3: T (y1, y2, y3; τ) = τy1 + τcy2 + τky3

With the tax system in step 3, total taxes
∫
X
T (y1, y2, y3; τ)dP equal the right-hand side of

equilibrium condition 3. Therefore, the Laffer curve for transfers Tr(τ) equals total taxes less

government spending and interest payments on the debt. Since R̄b(τ) = 1/β, ∀τ ∈ [0, 1) follows

directly from the Euler equation in steady state, transfers are a monotone function of total

taxes in this model.

Given the mapping, the coefficients pre-multiplying the elasticities are easy to calculate. The

two relevant coefficients are (a1, a3) = (1, τcc̄(τ
∗)+τkk̄(τ∗)r̄(τ∗)

w̄(τ∗)l̄(τ∗)
). The representative-agent structure

implies that there is just one agent type. Thus, the term a2ε2 is zero in this model as there are

no agent types in the set X2 having y1 at or below the threshold y = 0. Thus, the revenue from

these types is zero at all tax rates. The coefficient a3 is non-zero as there are other sources of

taxes besides the labor tax on agent types in the set X1. When the labor tax moves these other

sources of tax revenue can move as well.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

=
1− τcc̄(τ∗)+τkk̄(τ∗)r̄(τ∗)

w̄(τ∗)l̄(τ∗)
× ε3

1 + 1× ε1

12



The take-away point is that for each of the model economies considered by Trabandt and Uhlig

(2011), there are two high-level elasticities (ε1, ε3) and one coefficient a3 that determine the

top of the model Laffer curve. Thus, for the purpose of determining the top of the Laffer curve

with respect to a specific tax rate, the empirical strategy could be quite different. Instead

of calibrating the many parameters of a specific parametric version of the Trabandt-Uhlig

model, one could focus on estimating the two high-level elasticities that are directly relevant

for determining the top of the model Laffer curve.

4 Bench Testing the Formula

We now bench test the formula. One use of the formula in applied work is to predict the tax

rate at the top of a Laffer curve. Prediction is based on using values of the three elasticities

and the related coefficients determined away from the maximum.7 The bench test determines

the accuracy properties of the formula when the relevant inputs are determined away from the

maximum.

4.1 A Human Capital Model

We bench test the formula using a version of the Ben-Porath (1967) model.8 Agents maximize

lifetime utility by choosing time allocation decisions (nj, lj, sj) and by choosing consumption

and asset choices (cj, aj+1). Leisure nj, work time lj and learning time sj are distinct activities.

Labor market earnings whjlj are the product of a wage rate w, worker skill hj and work time

lj before retirement. Worker skill evolves according to a function H which depends on current

skill hj, learning time sj and learning ability a. Taxes are determined by a tax function Tj and

by a lump-sum transfer Tr.

Problem P1: max
∑J

j=1 β
j−1u(cj, nj) subject to

cj + kj+1 = ej + kj(1 + r)− Tj(ej, cj, kjr; τ) + Tr and cj, kj+1, nj, sj, lj ≥ 0

ej = whjlj for j < Retire and ej = 0 for j ≥ Retire

hj+1 = H(hj, sj, a) and nj + sj + lj = 1, given (h1, a) and k1 = 0.

7Clearly, tax rate formulae are designed to hold at the maximum. Diamond and Saez (2011), and others,
use such formulae to predict the revenue maximizing top tax rate.

8This is a central model in the analysis of the distribution of earnings (see Weiss (1986), Neal and Rosen
(2000) and Rubinstein and Weiss (2006)). See Huggett, Ventura and Yaron (2006) and Huggett, Ventura and
Yaron (2011) for a quantitative analysis of such models.
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The economy has an overlapping generations structure. The fraction µj of age j agents in

the population satisfies µj+1 = µj/(1 + n), where n is a population growth rate. There is

an aggregate production function F (K,L). Physical capital depreciates at rate δ. Aggregate

capital, labor and consumption (K(τ), L(τ), C(τ)) are straightforward functions of the decisions

of agents, population fractions and the distribution of initial conditions. Decisions are functions

of age and initial conditions. Initial conditions are initial skill and learning ability level (h1, a).

The distribution of initial conditions is given by a probability measure P .

K(τ) =
J∑
j=1

µj

∫
kj(h1, a; τ)dP and L(τ) =

J∑
j=1

µj

∫
hj(h1, a; τ)lj(h1, a; τ)dP

Definition: An equilibrium consists of decisions (cj, kj, nj, lj, sj, hj), factor prices (w(τ), r(τ))

and government transfers Tr(τ) such that (1)-(4) hold, given government spending G: (1)

optimization: (cj, kj, nj, lj, sj, hj) solve P1, (2) prices: w(τ) = F2(K(τ), L(τ)) and r(τ) =

F1(K(τ), L(τ))− δ, (3) government: Tr(τ) +G =
∑J

j=1 µj
∫
Tj(ej, cj, kjr; τ)dP and (4) feasi-

bility: C(τ) +K(τ)(n+ δ) +G = F (K(τ), L(τ)).

4.2 Setting Model Parameters

Table 1 presents functional forms and model parameter values. Parameters are set in three

main steps. First, demographic, technology and tax system parameters are set without solving

the model. Demographic parameters are set so that agents begin life at a real-life age of 23,

retire at age 65 and live up to a real-life age of 85. The population growth rate is n = 0.01.

Technology parameters (A, γ, δ) are set so that (i) γ matches the US value for capital’s share,

(ii) δ is consistent with the US investment-output ratio and the capital-output ratio, given n

and (iii) A is normalized so that the equilibrium wage rate is w = 1.0. US values for capital’s

share, the investment-output ratio and the capital-output ratio equal (.352, .174, 3.22) based

on averages from national accounts data over the period 1960-2015. The tax system consists

of a progressive tax on earnings T , proportional tax rates (τc, τk) on consumption and capital

income and a lump-sum retirement transfer. Tax system parameters are based on the US

evidence presented below. In the benchmark model the common lump-sum transfer Tr in the

definition of equilibrium is zero.

Second, the utility function parameter is set to ν = 0.35 for the benchmark case. This implies

a Frisch elasticity of leisure with respect to human capital of −0.35 and a Frisch elasticity of

total labor time (i.e. sj + lj) with respect to human capital equal to ν(nj/(lj + sj)). Thus,

the Frisch elasticity of total labor time is 0.525 when total labor time is 40 percent of the time

14



Table 1 - Benchmark Model Parameter Values

Category Functional Forms Parameter Values

Demographics µj+1 = µj/(1 + n) n = 0.01, J = 63, Retire = 43
j = 1, ..., 63 (ages 23-85)

Technology F (K,L) = AKγL1−γ (A, γ, δ) = (0.877, 0.352, 0.044)
Tax System T (e; τ) + τcc+ τkkr for j < Retire T (e; τ) is based on Figure 1

τcc+ τkkr − transfer for j ≥ Retire τc = 0.10 and τk = 0.20
transfer = 18115

Preferences u(c, n) = log c+ φn
1−1/ν

1−1/ν
β = 0.967, φ = 0.618, ν = 0.35

Human Capital H(h, s, a) = h(1− δh) + a(hs)α (α, δh) = (0.677, 0.0043)
Initial a ∼ PLN(µa, σ

2
a, λa) and ε ∼ LN(0, σ2) (µa, σa, λa) = (−0.977, 0.167, 3.45)

Conditions log h1 = β0 + β1 log a+ log ε (β0, β1, σ) = (4.68, 0.939, 0.711)
Note: PLN and LN denote the Pareto-Lognormal and the Lognormal distributions respectively. The joint

distribution of initial conditions is constructed by assuming that ε is independent of learning ability, which

follows a PLN distribution.

endowment. Third, all remaining model parameters ((δ, β, φ, α, δh) and initial conditions) are

chosen so that a model equilibrium best matches the US targets that we document below.

The remainder of this section discusses the model tax system, US targets and the model fit.

Tax System

We input earnings in thousand dollar increments into TAXSIM for a couple filing jointly that

is living in a specific state in the 2010 tax year. TAXSIM calculates total taxes, which include

federal and state income taxes and the employee and employer parts of social security and

medicare taxes.9 We calculate a marginal tax rate as the change in total taxes divided by the

change in total earnings, where total earnings also include the employer part of social security

and medicare taxes.

Figure 1 plots the relationship between earnings and marginal tax rates when averaged across

states.10 The model marginal tax rate function is a piecewise-linear function that passes through

the empirical rate schedule. The top tax rate in the model is 0.422 which is the empirical

marginal tax rate at an income of 319.5 thousand dollars. Appendix A.2 calculates that this is

the 99-th percentile threshold for income in the US in 2010 based on our income measure.

The consumption tax rate τc = 0.10 is the ratio of taxes on production in 2010 to total

consumption expenditures.11 These taxes include sales, excise and property taxes. The capital

income tax is set to τk = 0.20. We enter long-term capital gains in thousand dollar increments

9See Feenberg and Coutts (1993).
10Averages are computed using state employment as weights. Source: http://www.bls.gov/lau/rdscnp16.htm
11See Bureau of Economic Analysis Table 3.1 and Table 1.1.5.

15



into TAXSIM for a couple filing jointly with earnings of 160 thousand dollars in 2010 that lives

in a specific state. We compute a marginal tax rate as the change in taxes divided by the change

in income. The resulting schedule, when averaged across states, is flat beyond 280 thousand

dollars of capital gains and the marginal rate at this threshold equals τk = 0.20. The federal

rate on long-term capital gains was 15 percent in 2010. We set the common social security

benefit to 18.115 thousand dollars. This is the yearly old-age benefit for a worker retiring in

2010 based on an earnings history equal to average earnings.12

US Targets

We target several features of US data. First, we target earnings and hours profiles. Second, we

target the 99th percentile of income in 2010 and the Pareto statistic at the 99th percentile of

income in 2010. We describe next how these targets are constructed from US data. Earnings

and hours profiles based on US data are displayed in Figure 2.

Earnings and hours profiles are based on the estimated age polynomials from a regression of

the earnings statistic of interest on a third-order polynomial in age and a time dummy variable

for each year. We run this regression on tabulated US Social Security Administration (SSA)

male earnings data from Guvenen, Ozkan and Song (2014). The earnings facts are age profiles

for (i) median earnings, (ii) the 99-50, 90-50 and 10-50 earnings percentile ratios and (iii) the

Pareto statistic at the 99th percentile. The facts on the average fraction of time spent working

are based on Panel Study of Income Dynamics (PSID) male hours data from Heathcote, Perri

and Violante (2010).13 Appendix A.1 describes the SSA and PSID data sets.14

We document that the 99th percentile of income is 319.5 thousand dollars in 2010 and that the

Pareto statistic at this percentile is 1.70 in 2010. The Pareto statistic in cross-section data at a

given threshold is the data counterpart to the formula coefficient a1 in Theorem 1. The Pareto

statistic of a distribution is ȳ/(ȳ− y), where ȳ is the mean for observations beyond a threshold

y. We use Statistics of Income (SOI) data and a definition of income to determine these two

income facts. Appendix A.2 states the income measure that we use, the categories of income

in SOI data and our methods for calculating (y, ȳ).

12The old-age benefit is from Table 2.A26 in the 2010 Annual Statistical Supplement of the Social Security
Bulletin. See https://www.ssa.gov/policy/docs/statcomps/supplement/2010/2a20-2a28.pdf

13The average fraction of time spent working is total work hours per year in PSID data divided by discretionary
time (i.e. 14 hours per day times 365 days per year).

14The age polynomials from the regression on earnings data are normalized to pass through the data statistics
at age 45 in 2010, with the exception of median earnings. We regress the log of median earnings as indicated
above, exponentiate the estimated age polynomial and then scale the result so that median earnings equal 1 at
age 25. The age coefficients from the PSID hours regression are normalized to pass through the average value
across years at age 45 in the way specified in Appendix A.1.
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Model Fit

Figure 2 plots US targets and the corresponding model implications. The model produces a

fairly flat total hours profile (i.e. sj + lj) as in the data and at the same time produces an

increasing median earnings profile. Two model forces contribute to the upward sloping median

earnings profile: (1) agents accumulate human capital with age because they invest time in

learning and (2) agents shift time to market work and away from learning as they age. The

model produces a strong increase in the 99-50 earnings ratio with age and the decrease in the

Pareto statistic with age. Both model features are due to the fact that agents with higher

learning ability have steeper age-earnings profiles than agents with lower learning ability, other

things equal.

4.3 Model Laffer Curves

Figure 3 presents Laffer curves for the benchmark model with ν = 0.35 and for a model with

an alternative value for the preference parameter ν = 0.25.15 We vary the parameter ν so that

the top of the Laffer curve potentially occurs at a different top tax rate or produces a different

magnitude for the lump-sum transfer.16

The peak of the Laffer curve in both models occurs at a top tax rate of approximately 57

percent. This top tax rate raises extra revenue of roughly a tenth of one percent of output in

the original steady state in the benchmark model and of slightly more in percentage terms in

the model with ν = 0.25. The extra revenue funds a lump-sum transfer.

We now relate the top of the Laffer curves in Figure 3 to the top as predicted by the tax rate

formula. To do this, we map equilibrium variables from the model into the three elements used

in Theorem 1. This is done in three steps.

Step 1: x = (h1, a, j) ∈ X = R+ ×R+ × {1, ..., J}

Step 2: y1(x, τ) = w(τ)hj(h1, a; τ)lj(h1, a; τ), y2(x, τ) = cj(h1, a; τ), y3(x, τ) = r(τ)kj(h1, a; τ)

and y4(x, τ) = transfer when j ≥ Retire and zero otherwise.

Step 3: T (y1, y2, y3, y4; τ) = T (y1; τ) + τcy2 + τky3 − y4

Based on Steps 1-3, we calculate the coefficients (a1, a2, a3) and the elasticities (ε1, ε2, ε3) for

each model.17 Table 2 presents the results. The coefficient a1 in both models is near the

15The model Laffer curve is calculated (see Appendix A.3) by varying the top tax rate τ , computing the
model equilibrium for each value of τ and plotting the resulting equilibrium total tax revenue.

16After varying ν, we adjust the model parameters (β, φ) and (β0, β1) to best match US targets.
17First, calculate X1 = {x ∈ X : y1(x; τ) > y} using the benchmark value τ = .422 and the threshold y
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Table 2: Revenue Maximizing Top Tax Rate Formula

Terms Benchmark Model Alternative Model
ν = 0.35 ν = 0.25

a1 × ε1 1.70× .267 = .454 1.75× .265 = .465
a2 × ε2 2.04× .057 = .116 2.39× .032 = .076
a3 × ε3 .076× .403 = .031 .080× .493 = .040

τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

0.59 0.60

τ at peak of 0.57 0.57
Laffer curve

Note: The coefficients (a1, a2, a3) are calculated at the equilibrium with top tax rate τ = 0.422. The elasticities

(ε1, ε2, ε3) are calculated as a difference quotient. Individual terms are rounded to three digits. The tax rate τ

at the peak of the Laffer curve is taken from Figure 3.

value aUS1 = 1.70 at the 99th percentile of income in 2010 that was calculated in the previous

subsection. This value was a target of the calibration exercise. The coefficients (a2, a3) are

positive in both models. The coefficient a2 is the ratio of all the (net) tax revenue from agents

below the threshold to the aggregate earnings that is taxed at the top rate, whereas a3 is the

ratio of the consumption and capital income taxes paid by agents above the threshold to the

aggregate earnings that is taxed at the top rate.

Table 2 also presents the value of the model elasticities (ε1, ε2, ε3). All three elasticities are

positive. Thus, the two extra terms in the numerator of the tax rate formula are positive and

act to reduce the revenue maximizing top tax rate. The fact that the two extra terms are

positive tells one that as the top tax rate τ increases, and (1 − τ) decreases, less tax revenue

is collected from the bottom 99 percent of agent types and that less tax revenue is collected

from the top 1 percent in the form of consumption and capital income taxes. This is intuitive

as higher top tax rates coincide with smaller aggregate capital and labor inputs. Thus, there

is less aggregate consumption and capital income subject to taxation.

Table 2 also shows that the predicted top of the model Laffer curve is not far from the actual

top in both models. Thus, one conclusion of this bench test is that the formula accurately

predicts the top of the Laffer curve within these specific models. A separate conclusion is that

the two extra terms, that are absent from the widely-used formula, are not negligible. For

example, the numerator term in the formula for the benchmark model is approximately 0.85.

The additional terms depress the revenue maximizing tax rate by an extra 15 percent from

what the widely-used formula would suggest. Thus, abstracting from these forces would lead

one to overstate the revenue maximizing top tax rate in a quantitatively relevant way.

from Figure 1. X1 is determined by the grid on (h1, a) used to compute equilibria - see Appendix A.3. Second,
calculate elasticities as a difference quotient based on τ = 0.422 and 0.447. Third, calculate (a1, a2, a3) by
computing the ratios in Theorem 1, using the set X1 and X2.
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5 Discussion

This paper presents a formula for the revenue maximizing top tax rate that applies broadly

to static models and to steady states of dynamic models. We raise two issues related to this

sufficient statistic formula:

Issue 1: The formula applies to many model frameworks that have been used within macroeco-

nomics, labor economics and public economics. Within a given framework, the formula applies

without making parametric assumptions and applies to partial or general equilibrium models.

Thus, the use of this sufficient statistic formula would not appear to be very restrictive. This

raises the methodological issue of whether estimating three high-level elasticities may be a su-

perior research strategy, compared to estimating the many primitive parameters of a specific

parametric economic model and then computing policy counterfactuals, for the purpose of pre-

dicting the top of the Laffer curve and providing quantitative guidance for setting a top tax

rate.

Issue 2: Suppose that we adopt the view that the long-term response to a permanent tax

reform is of most interest for policy making. This view seems to be widely shared. The policy

focus is then on the steady-state effects of a permanent change in the top tax rate.

Given this view, are existing elasticity estimates, from the elasticity of taxable income literature,

ready to be used as direct inputs into our sufficient statistic formula? We provide three reasons

to be cautious in doing so. First, the literature has focused on estimating short-term responses.

Saez et al. (2012, p. 13) state “The long-term response is of most interest for policy making ...

The empirical literature has primarily focused on short-term (one year) and medium-term (up

to five year) responses ...”. Second, Badel and Huggett (2014) find that, within their dynamic

human capital model, commonly employed regression methods underestimate the elasticity ε1.

Thus, from the perspective of that model framework, there are reasons to believe that existing

reduced-form estimates are biased downwards. Third, marginal tax rates applying to US top

earners display strong mean reversion. For example, Mertens (2015) uses proxies for exogenous

variation in top tax rates and concludes that shocks to US average marginal tax rates for the top

1 percent lead to transitory movements in top tax rates in practice. This raises the important

issue of how to estimate long-run elasticities corresponding to a permanent change in the top

tax rate when exogenous innovations in top marginal rates lead to movements in top tax rates

that are transitory.
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A Appendix

A.1 Data

SSA Data We use tabulated Social Security Administration (SSA) earnings data from Guvenen, Ozkan

and Song (2014). We use age-year tabulations of the 10, 25, 50, 75, 90, 95 and 99th earnings percentile for

males age j ∈ {25, 35, 45, 55} in year t ∈ {1978, 1979, ..., 2011}. These tabulations are based on a 10 percent

random sample of males from the Master Earnings File (MEF). The MEF contains all earnings data collected

by SSA based on W-2 forms. Earnings data are not top coded and include wages and salaries, bonuses and

exercised stock options as reported on the W-2 form (Box 1). The earnings data is converted into real units

using the 2005 Personal Consumption Expenditure deflator.

We construct the Pareto statistic at the 99th earnings percentile for age j and year t as follows. We assume

that the earnings distribution follows a Type-1 Pareto distribution beyond the 99th percentile for age j and

year t. We construct the parameters describing this distribution via the method of moments and the data

values for the 95th and 99th earnings percentiles (e95, e99) for a given age and year. The c.d.f. of a Pareto

distribution is F (e;α, λ) = 1 − ( eα )−λ. We solve the system .95 = F (e95;α, λ) and .99 = F (e99;α, λ). This

implies λ = log .05−log .01
log e99−log e95

. To construct the Pareto statistic at the 99th percentile for age j and year t, it remains

to calculate the mean earnings for earnings beyond the 99th percentile that is implied by the Pareto distribution

for that age and year. The mean follows the formula E[e|e ≥ e99] = λe99
λ−1 .

PSID Data We use Panel Study of Income Dynamics (PSID) data provided by Heathcote, Perri and

Violante (2010), HPV hereafter. The data comes from the PSID 1967 to 1996 annual surveys and from the

1999 to 2003 biennial surveys.

Sample Selection We keep only data on male heads of household between the ages of 23 and 62 reporting to

have worked at least 260 hours during the last year with non-missing records for labor earnings. In order to

minimize measurement error, we delete records with positive labor income and zero hours of work or an hourly

wage less than half of the federal minimum in the reporting year.

Variable Definitions The annual earnings variable provided by HPV includes all income from wages, salaries,

commissions, bonuses, overtime and the labor part of self-employment income. Annual hours of work is defined

as the sum total of hours worked during the previous year on the main job, on extra jobs and overtime hours.

This variable is computed using information on usual hours worked per week times the number of actual weeks

worked in the last year.

Age-Year Cells We split the dataset into age-year cells and compute the relevant moment within each cell.

We put a PSID observation in the (a, y) cell if the interview was conducted during year y and the reported

head of household’s age was in the interval [a, a + 4] in year y. The life-cycle profiles we calculate correspond

to (β23 + d, β24 + d, β25 + d, ..., β63 + d), where the βa are the estimated age coefficients and d is a vertical

displacement selected in the manner described in section 4.

A.2 Income Threshold and Pareto Statistic

We calculate (y, ȳ) - the 99-th percentile of income in the US in 2010 and the mean income above this threshold

in four steps. We use tax units as the unit of measurement and an income concept that is the sum of the

following income sources from tabular Statistics of Income (SOI) data: (i) wages and salaries, (ii) interest, (iii)
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non-qualified dividends, (iv) business income, (v) IRA distributions, (vi) pensions and annuities, (vii) total rent

and royalty, (viii) partnership and S-corporation income and (ix) estate and trust income.18 We exclude capital

gains and qualified dividends. Qualified dividends and long-term capital gains are taxed at preferential rates in

2010.

1. SOI Table 1.4 tabulates income, by type of income, for tax units sorted by adjusted gross income (AGI)

bins. SOI Table 1.4 also reports the number of tax units in various AGI bins. In 2010, 250 and 500

thousand dollars are the p1 = .9823 and p2 = .9947 percentiles of AGI based on the number of potential

tax units in 2010 reported in Piketty and Saez (2003 update).

2. Assume that tax units in the [250, 500) and [500,∞) AGI bins (in thousands of dollars) are also the tax

units that would fall in the two corresponding bins based on the same percentiles for our definition of

income. Assume that income is distributed Pareto beyond the p1 percentile of income. The Pareto cdf

is F (y) = 1− (α/y)λ. Conditional means satisfy E[y|y > yi] = yi(λ/(λ− 1)).

3. Denote (y1, y2) the (p1, p2) percentiles of our income measure and (ȳ1, ȳ2) the respective means, condi-

tional on income exceeding (y1, y2). Calculate (ȳ1, ȳ2) based on tabulated income types in the [250,∞)

and [500,∞) AGI bins. Solve the equations below to get (α, λ, y1, y2):

1− p1 = (α/y1)λ, 1− p2 = (α/y2)λ, ȳ1 = y1(λ/(λ− 1)), ȳ2 = y2(λ/(λ− 1))

4. Solve (y, ȳ) = (319.5, 775.8) using step 3 and the equations: .99 = 1− (α/y)λ and ȳ = y(λ/(λ− 1)).

A.3 Computation

The algorithm to compute the model Laffer curve is given below. This computation takes all model parameters

and the structure of the tax system below the threshold as given.

Algorithm:

1. Guess (Tr(τ),K(τ)/L(τ)) for any top tax rate τ ≥ 0.422, keeping all other features of the tax system

unchanged. Tr(τ) denotes the lump-sum transfer given to all agents.

2. Compute the agent’s decision rules, given Tr(τ) and the factor prices (w, r) implied by K(τ)/L(τ) from

step 1.

3. Compute the implied values of (Tr,K/L) using the decision rules from step 2, the distribution of initial

conditions, the government budget constraint and the fixed initial value for G. If the guessed and implied

values are within tolerance, then stop. Otherwise, revise the guess and repeat steps 1-3.

4. The model Laffer curve is the relationship between τ and Tr(τ).

The distribution of initial conditions employed in Table 1 is discretized. We employ six values for learning

ability and fifty values for initial human capital that are conditional on the value of learning ability. Human

capital values are equispaced on a log grid following log h1 = β0 + β1 log a + log ε and vary from −2.5 to 2.5

standard deviations of the log shock innovation. Conditional probabilities are set using a Tauchen procedure

based on the parameters in Table 1.

18https://www.irs.gov/uac/soi-tax-stats-individual-income-tax-returns-publication-1304-complete-report
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Figure 1: Model Tax System
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Note: The dashed line is the US schedule produced by TAXSIM. Circles describe the marginal tax rate schedule
in the model. Income is in thousand dollar units.
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Figure 2: Life-Cycle Profiles: Data and Model

(a) Median Earnings (b) Earnings Percentile Ratios
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(c) Pareto Statistic at 99th percentile (d) Mean Hours
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Note: Open circles describe profiles for the US economy. The small crosses and the solid line describe profiles
for the two model economies with ν = 0.35 and ν = 0.25, respectively. The ratios in Figure 2(b) correspond to
the 99-50, 90-50 and the 10-50 earnings percentile ratios.
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Figure 3: Laffer Curves
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Note: Crosses describe the Laffer curve in the benchmark model with ν = 0.35. Circles describe the Laffer
curve in the alternative model with ν = 0.25. The vertical axis plots the aggregate transfer-output ratio, where
output is the level under the tax system with top rate equal to τ = 0.422.
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