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Abstract

We build on the intuitive (static) modeling framework of Rosen (1974) and specify a

simple forward-looking model of location choice. We use this model, along with a series

of insightful graphs, to describe the potential biases associated with the static approach

and relate these biases to the time-series trend of the amenity of interest. We then

derive an adjustment factor that allows the biased static estimates to be converted into

estimates coming from a forward-looking model. Finally, we empirically motivate the

use of this adjustment factor in an application of estimating the willingness-to-pay to

avoid violent crime in California.
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1 Introduction

The standard hedonic model, drawing on Rosen’s classic 1974 paper, provides the workhorse

empirical approach used to value local public and private goods. It is straightforward to

estimate, usually involving a single least-squares regression of house prices on housing charac-

teristics and neighborhood amenities; applying the model has become ever-more feasible with

the increasing availability of detailed housing transactions data. Given its appeal, a myriad

of hedonic valuation exercises have been featured in the literature, focusing on school qual-

ity (Black (1999), Downes and Zabel (2002), Gibbons and Machin (2003)), climate (Albouy,

Graf, Kellogg, and Wolff (2016)), safety (Gayer, Hamilton, and Viscusi (2000), Davis (2004),

Greenstone and Gallagher (2008)), and environmental quality (Palmquist (1982), Chay and

Greenstone (2005), Bento, Freedman, and Lang (2015)), and many more.

An implicit assumption underlying the traditional model is that households are myopic

– that is, they do not account for the fact that housing and neighborhood amenities are likely

to be time-varying. In practice, though, given the significant costs associated with purchasing

a house and with moving, it is unlikely that households would not consider future levels of

local amenities when making their decisions. When households are forward-looking in this

manner, the traditional model will yield biased estimates of willingness-to-pay in many cases,

but not all, and the degree of bias will vary.

A recent literature has sought to quantify this bias empirically in specific applications,

comparing results from the traditional model to those obtained using fully-dynamic models of

location choice.1 Yet the estimation of dynamic models comes with substantial computational

costs, even when drawing on recent advances in the literature. Furthermore, fully dynamic

models often require very rich data that may exceed the detail of existing data sets. Thus,

it would be useful if applied researchers could determine in advance of a full-blown dynamic

estimation whether the resulting benefits were likely to outweigh the significant computational

and data costs involved.

In this paper, we provide a framework that allows such a pre-determination. Building

on the static modeling framework of Rosen (1974), we specify a simple forward-looking model

of location choice where households choose a residence based on the stream of associated

utility flows for a fixed number of years. Using this framework, we characterize more fully the

potential bias associated with the static approach and relate this bias to the time-series trend

1For recent papers that estimate dynamic models of location choice, see Kennan and Walker (2011), Bishop
(2012), Bayer, McMillan, Murphy, and Timmins (2015), Bishop and Murphy (2015), Caetano (2015), Davis,
Gregeory, Hartley, and Tan (2015), and Mastromonaco (2015).
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of the amenity of interest. In addition, we illustrate an empirically-relevant example where

the static model and the forward-looking model arrive at the same estimate of willingness to

pay, despite the fact that the amenity in question is time-varying.

To understand the potential bias arising from a static model, it is worthwhile revisiting

the intuitive identification strategy of the Rosen model which allows the researcher to recover

estimates of marginal willingness to pay for an amenity from information about (i) the quantity

of the amenity the household chooses to consume and (ii) the price schedule faced by the

household. First, the parameters of the housing price function (and, at the same time, the

parameters of the hedonic price gradient) are recovered through a regression of observed

housing prices on amenities. Second, the econometrician is able to back out the implicit price

of the amenities that each household actually paid using the family’s observed consumption of

the amenity and the parameters of the hedonic price gradient. The information provided by

the first-order condition for utility maximization (i.e., that marginal cost will equal marginal

benefit) allows the econometrician to arrive at the household’s marginal willingness to pay

for the amenity.

If, however, households are choosing where to live based on some average stream of

future amenities and not solely based on a measure of current amenities, as is likely, then the

traditional model will get both (i) and (ii) wrong, resulting in potentially biased estimates of

willingness to pay. It is straightforward to see that by using the incorrect measure of quantity

consumed, the static model will either under- or over-attribute the true quantity purchased.

We refer to this as the quantity effect. Less obvious is what we refer to as the price effect :

if the econometrician is recovering the implicit price of the amenity through the calculation

of the price differential under quantity mismeasurement, the implicit price of the amenity

will also be under- or over-stated. Using these quantity- and price-effect notions, we seek to

describe more fully the potential bias associated with the static approach and relate this bias

to the time-series properties of the amenity of interest.

More specifically, we show that in cases where the location-specific amenity levels are

mean-reverting over time within the choice set, the traditional static model will typically un-

derstate willingness-to-pay (i.e., coefficients will be biased toward zero). For example, consider

a household that purchases a house with a lower-than-mean amenity level in the current pe-

riod. As a result of the mean-reversion over time, the average stream of the consumed amenity

will be higher than the current level. In addition, the true implicit price of the amenity will be

higher than that obtained using the static approach. In other words, the household is buying

relatively more of the amenity at a relatively higher price and therefore the true willingness
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to pay is higher than is implied by the static model.2 Analogously, the traditional model will

typically overestimate willingness-to-pay (i.e., coefficients will be biased away from zero) in

cases where the levels of the amenity are diverging across locations.3 Intuitively, the size of

the bias is determined by how quickly the amenity is diverging through time.

Following this quantity- and price-effect intuition, we present a result where the forward-

looking model and the static model yield the same estimate of willingness to pay, even when

the amenity is evolving rapidly through time. This arises when the amenity of interest is

rising or falling without mean-reverting or mean-diverging, thereby causing the effect of the

misspecified quantity to exactly offset the effect of the misspecified price in the static model.

For example, if each house received a one-unit increase in the amenity, then amenity levels

would be increasing over time and the static model would understate quantity and overstate

price. We show that in the case of linear utility, these effects exactly offset one another and

the static model yields unbiased estimates of willingness to pay.

We then show that an adjustment factor may be easily derived. This adjustment factor,

which is based on the time-series properties of the amenity of interest, can be then be used

to convert the biased static estimates into the estimates that one would have obtained using

the forward-looking model. In the simplest case, this adjustment factor is a scalar which can

be obtained from a simple ordinary least squares regression.

Finally, using a rich data set on housing transactions, we apply our adjustment factor to

illustrate examples where the static model yields large biases and examples where the static

model yields small biases. In particular, we use data from the San Francisco Bay Area to

estimate the marginal willingness to pay to avoid crime. We calculate the bias separately

by county and find that the static model produces a small bias in Alameda County, while

producing large biases in both Marin and San Mateo counties. In fact, the static model

understates willingness to pay to avoid crime by a factor of two in the latter cases. The

heterogeneity across counties is driven by the fact that there is only a small amount of mean

reversion in Alameda County, while crime mean-reverts quickly in Marin and San Mateo

Counties. This geographic heterogeneity provides an empirical example which supports our

assertions that, depending on the application, the bias generated by specifying a static model

2If the household started out consuming a high level of the amenity at present, the quantity and price
effects would go in opposite directions. That is, relative to the static model, the household would be consuming
less of the amenity but at a higher price. We will show that, in this case, the price effect dominates and the
static model would underestimate willingness to pay.

3Consider again the household that purchases a house with a low level of an amenity at present. Now,
both the consumption and the true implicit price of the amenity will be overstated by the static model. In
other words, the household is buying relatively less of the amenity and paying a lower price and as such, the
true willingness to pay is lower.
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may be large or may be small and that it is straightforward to get a sense of this bias without

estimating a fully-dynamic model.

The remainder of the paper is organized as follows: Section 2 describes the traditional

static model as well as a simple forward-looking model of hedonic demand; Section 3 describes

the bias induced by the misspecified model under various transitions of the amenity of in-

terest and provides guidance when trying to answer the question, “when is the static model

sufficient?”; Section 4 applies the framework to estimate the willingness to pay to avoid crime;

and Section 5 concludes.

2 Model

In this section, we provide an overview of the traditional, Rosen-style static model, as well as

a simple forward-looking model of willingness to pay.

2.1 The Traditional, Static Model of Willingness to Pay

We first consider the static model of willingness to pay for a house or neighborhood amenity.

In this model, households maximize current utility with respect to their choice of amenity

consumption.4 We choose a simple specification of household utility where household i has

an individual-specific preference parameter, αi, describing their preference for consumption

of the amenity of interest, xi. The household also receives utility from the consumption of

the numeraire good, Ci.

U(xi) = αixi + Ci (1)

For simplicity, we consider a model where utility is increasing at a linear rate in the

amenity x.5 Broadly speaking, the intuition developed here applies to non-linear specifica-

tions, which we present in the Appendix.

Households purchase x as part of the bundle of goods described by housing. Households

must pay an annual user cost for housing, which we denote ri. One could think of the annual

4Implicitly assumed in this modeling framework is the assumption of free mobility (or zero transaction
costs). This means that households can freely reoptimize at the beginning of each period, so the problem of
maximizing lifetime utility may be described as a series of independent, sequential decisions.

5While this is done to simplify the analysis, it also means that the identification issues discussed in Brown
and Rosen (1982), Mendelsohn (1985), and Ekeland, Heckman, and Nesheim (2004), as well as the estimation
issues discussed in Epple (1987) and Bartik (1987), do not apply here.
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user cost of housing as capturing either a rent or mortgage payment.6 The function that

relates the level of amenity consumption, x, to the annual user cost of housing, ri, is the

housing price function, ri = r(xi). Incorporating the household’s budget constraint, i.e., that

their numeraire consumption, Ci, is equal to income, Ii, minus annual user cost of housing,

ri, yields:

U(xi) = αixi + Ii − r(xi) (2)

According to the assumptions underlying the static model, households only consider

current levels of the amenity x and, therefore, maximize current utility with respect to their

current choice of x.7 Thus, the first-order condition for the optimal choice of x is given by:

U ′(xi) = αi − r′(xi) = 0 (3)

The first-order condition described by Equation 3 may then be used to solve for αi,

household i’s marginal willingness to pay for amenity x.8 In other words, at their chosen level

of x consumption, household i’s marginal utility of x will equal the implicit price of x, i.e.,

the marginal cost:

αi = r′(x)∣∣∣x=x∗
i

(4)

which naturally suggests the (static) estimator,

α̂s
i = r̂′(x)∣∣∣x=x∗

i

, (5)

for the per-annum willingness to pay for a one-unit increase in the amenity, x.

In addition to this analytical solution, the estimation framework may be described intu-

itively through a series of graphs. In a first stage, the parameters of the housing price function

and, at the same time, the parameters of the implicit price function (hedonic price gradient),

r′(x), are recovered through a regression of annual user costs of housing on amenity levels.

These relationships are shown in Figure 1.9

In a second stage, the econometrician is able to back-out the implicit price of x that

6The annual user cost of housing could also capture other costs of home ownership such as taxes, mainte-
nance, and depreciation. See Poterba (1984) for a discussion of user cost.

7If x is time-varying, this assumption is analogous to an assumption regarding households’ moving costs; in
a world with zero moving costs, households may costlessly reoptimize in every period (so looking to the future
yields no benefit). However, many papers, including Kennan and Walker (2011), find evidence of substantial
moving costs.

8See Bajari and Benkard (2005) and Bajari and Kahn (2005) for an insightful discussions of the interpre-
tation of αi as a structural parameter of the utility function, rather than simply a local estimate of marginal
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Figure 1: Graphical Representation of the First-Stage Estimation

(a) The Housing Price Function, r(x)

(b) The Implicit Price Function, r′(x) = ∂r(x)
∂x

each family actually paid, using the family’s observed consumption of x and the implicit

price function. The information provided by the first-order condition for utility maximization

allows the econometrician to equate this implicit price to arrive at the preference parameter,

willingness to pay at the point of consumption.
9In the figures, we illustrate a quadratic housing price function (linear implicit price function) and an

amenity that may be considered a “good”. However, the intuition and results hold for any form of the
housing price function.
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αi. This second stage is depicted in Figure 2.

It is important to note that this static model will only return unbiased estimates of

αi when either moving is costless or when amenity levels are fixed through time. However,

in any realistic application, a household would face positive moving costs and time-varying

amenities. Thus, we describe a forward-looking model in the next section.

Figure 2: Graphical Representation of the Second-Stage Estimation

(a) Household i’s Observed Amenity Consumption

(b) Household i’s Marginal Willingness to Pay
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2.2 A Simple, Forward-Looking Model of Willingness to Pay

We now move to a forward-looking framework where households maximize the discounted sum

of annual utility flows with respect to their current choice of x. Our goal is to specify a model

that captures the key determinants of forward-looking behavior but is still simple enough to

retain analytical tractability. To do this, we abstract away from some of the finer details of

dynamic behavior that would substantially complicate the analysis and preclude an analytical

decomposition of the bias. In the empirical application of Section 4, we compare results from

the simple forward-looking model presented here with those found in the fully-dynamic model

of Bishop and Murphy (2011).

We assume that households choose a residence based on the stream of associated utility

flows for the next T years.10 This is akin to assuming prohibitively high moving costs for

the next T years. For simplicity, we assume households cannot reoptimize within the period

of T years and we abstract away from any considerations about the post-T utility. In the

specification laid out here, we do not consider future reoptimization in order to simplify the

problem, yet we retain the primary insights and intuition of a fully-dynamic model – that is,

households know that amenities are time varying and that their choice of amenity today will

influence the amount of the amenity they consume in subsequent periods.11

The housing price function still maps the consumption of the amenity into the annual

user cost of housing. As this price is determined in the current period, t, it is a function of

current amenity levels and denoted r(xi,t). For homeowners, who are our group of interest, it

is natural to think of this annualized user cost of housing as a mortgage payment: determined

at the time of sale, it is a function of amenity levels in the period in which a household buys.12

The amenity of interest, x, is evolving through time and households form expectations

about future levels of x. Denoting the current period as t (and current choice of amenity level

as xi,t) we can write the discounted sum of annual utility flows over the next T years (i.e.,

10In the application, we set T to seven years, which is approximately the median household tenure in the
United States over this period. See Section 4 for a discussion.

11In a fully-dynamic model, households would also maximize the discounted sum of annual utility flows
(i.e., lifetime utility), but would face positive, yet feasible, moving costs in each period. Households would
then account not only for future utility flows, but for possible future endogenous reoptimization from their
current choice.

12A more general model would allow the user cost to vary over time, which would complicate the model
and analysis. As discussed above, the goal of the paper is to derive simple analytical results for the simplest
model that still captures the key component of dynamic behavior. In that spirit, it is natural to restrict the
user cost to be time invariant, but to allow utility from the amenity to vary over time.
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the value function) as:

v(xi,t) = E[
T∑

s=1

βs−1(αixi,t+s−1 + Ii − r(xi,t))|xi,t] (6)

which can be rewritten as:

v(xi,t) = αi

T∑
s=1

βs−1E[xi,t+s−1|xi,t] +
T∑

s=1

βs−1Ii −
T∑

s=1

βs−1r(xi,t) (7)

For exposition purposes, we define a measure of expected average x consumption over

the horizon T with the following weighted average:

x̄i,t = x̄(xi,t) =

∑T
s=1 β

s−1E[xi,t+s−1|xi,t]∑T
s=1 β

s−1

We also define the function r̃(x̄) which maps the expected average stream of amenity

flows into the annual user cost of housing, ri,t:

ri,t = r̃(x̄(xi,t)) = r(xi,t) (8)

To make this concrete, consider a given house has an annual user cost of $10,000, then

ri,t = 10, 000. If this house has a current level of amenities equal to 90 and an expected

average level of amenities of 115, then r̃(115) = r(90) = 10, 000.

Defining ṽ(x̄) analogously (i.e., that ṽ(x̄(xi,t)) = v(xi,t)), allows us to rewrite Equation

(7) in terms of this average x:

ṽ(x̄i,t) = αi

T∑
s=1

βs−1x̄i,t +
T∑

s=1

βs−1Ii −
T∑

s=1

βs−1r̃(x̄i,t) (9)

The household’s problem is then equivalent to choosing x̄i,t to maximize ṽ(x̄i,t), yielding

the first-order condition:13

ṽ′(x̄i,t) = αi

T∑
s=1

βs−1 −
T∑

s=1

βs−1r̃′(x̄i,t) = 0 (10)

13If one were to work with xi,t instead of x̄i,t, the first-order condition would be given by: ∂ṽ(x̄i,t)/∂xi,t =
αi∂x̄i,t/∂xi,t − r̃′(x̄i,t)∂x̄i,t/∂xi,t = 0 which is equivalent to Equation 10.
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The first-order condition described by Equation 10 may then be used to solve for house-

hold i’s marginal willingness to pay for amenity x. In other words, at their chosen level of x̄

consumption, household i’s individual-specific preference parameter, αi, can be recovered as:

αi = r̃′(x̄)∣∣∣x̄=x̄∗
i,t

(11)

which naturally suggests the (forward-looking) estimator,

α̂f
i = ˆ̃r′(x̄)∣∣∣x̄=x̄∗

i,t

, (12)

for the per-annum willingness to pay for a one-unit increase in the amenity, x.

When compared with the analogous solution from the static model (described by Equa-

tion (5)), Equation (12) highlights the two effects that we previously referred to as the price

effect and the quantity effect. The price effect is captured by the use of r̃(·) rather than r(·).
The quantity effect is captured by the fact that we evaluate the function at x̄i,t rather than

xi,t. In the following section, we discuss the bias induced by each of these effects and show

an interesting result where these two effects cancel one another out.

Note that graphically the recovery of αi for the forward-looking model appears similar

to that of the static model depicted in Figures 1 and 2, but defined in (r̃′(x̄), x̄) space.

3 Understanding and Predicting the Bias

When the amenity of interest is time-varying and reopimization is not without cost, estimates

of willingness to pay recovered using the static model may be biased. In this section, we

provide a detailed decomposition of the bias by relating it to the time-series properties of

the amenity of interest, x. We do this using a series of intuitive graphs and by discussing

the mathematical difference between the estimate of marginal willingness to pay recovered

from the static model (Equation 5) and the estimate of marginal willingness to pay from the

forward-looking model (Equation 12).

The transition properties of the amenity of interest will determine the sign and size of

the bias and will, therefore, determine when the estimation of the dynamic model is most

warranted. When considering the time trend of the amenity, it is sufficient to describe two

key features: (i) what is the overall trend over the next T years, i.e, is the expected average

amenity level higher or lower than current amenity level? and (ii) is the amenity level mean
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reverting or mean diverging? In the remainder of this section, we walk through the various

potential paths of housing amenities and discuss their impacts on willingness-to-pay estimates.

3.1 The Amenity is Rising or Falling Through Time

We first consider the case where the amenity of interest, x, is either simply rising or falling

through time in a manner that preserves the variance in x across locations. In other words,

the relationship between xit and x̄it can be expressed as:

x̄(xi,t) = φ+ xi,t (13)

In this example, φ can be either positive or negative and we put no restrictions on its

magnitude. When φ > 0, the amenity is rising over the T -year horizon and the average future

amenity level, x̄i,t will be higher than the current amenity level, xi,t. This would be the case if

the amenity were local expenditure on public schools and all schools received the same dollar

increase in budget. Alternatively, when φ < 0, the amenity is falling through time. In either

case, this ensures that a change in current xi,t produces a one-for-one change in average future

amenity consumption, x̄. An alternative way of stating this is that for any two choices of

current x, denoted xa and xb: |x̄(xa)− x̄(xb)| = |xa − xb|.

Graphically, a uniform increase in x (φ > 0) is represented in Figure 3. In Figure 3a,

one can see that the increase in x results in a forward-looking price function that lies (in a

parallel manner) to the right of the static price function. In other words, for any given level

of housing expenditure, the associated average amenity level, x̄i,t, is higher than the current

amenity level, xi,t. Correspondingly, the forward-looking implicit price function, which is

depicted in Figure 3b, lies (in a parallel manner) to the right of the static implicit function.

In other words, the implicit price of the amenity is lower than the static model would imply.

As can be noted in Figure 3b, the quantity effect and the price effect work in opposite

directions and exactly offset one another; there is no bias associated with the static modeling

framework, even when facing an amenity with potentially strong time-trends (as long as the

time-trend affects all locations of the choice set uniformly). Even with the static modeling

framework, the econometrician will recover the true estimate of willingness to pay.
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Figure 3: The Amenity is Rising Through Time

(a) The Housing Price Functions

(b) The Implicit Price Functions and Household i’s MWTP

Graphically, the quantity and price effects are labeled in Figure 4.14 As Figure 4 shows,

the household’s average consumption of x is higher than than the static model would imply,

leading to a positive quantity effect. The implicit price of the amenity is lower than the static

model would imply, leading to a negative price effect.

14The order is which we illustrate the quantity effect and the price effect is arbitrary. That is, we could
have alternatively defined the quantity effect as moving from r̃′(x∗) to r̃′(x̄∗) and price effect as moving from
r′(x∗) to r̃′(x∗). In either case, the net result is the same.
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Figure 4: The Competing Effects When x is Increasing

We additionally illustrate a simple decrease in the amenity in Figure 5.

Figure 5: The Competing Effects When x is Decreasing

This figure again shows the quantity effect and the price effect working in opposite direc-

tions and exactly offsetting one another. In this case, the household’s average consumption

of the amenity is lower than the static model would predict, leading to a negative quantity ef-
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fect. However, the implicit price of the amenity is higher than the static model would predict,

leading to a positive price effect.

Analytically, we can derive an expression for the difference between that static and

forward-looking estimates. Using the definition that appears in Equation 8, that r̃(x̄(xi,t)) =

r(xi,t), and differentiating with respect to xi,t yields:

r̃′(x̄i,t)
∂x̄i,t
∂xi,t

= r′(xi,t) (14)

It follows that:

r̃′(x̄)∣∣∣x̄=x̄∗
i,t︸ ︷︷ ︸

MWTP forward-looking model

=
1

∂x̄i,t

∂xi,t

r′(x)∣∣∣x=x∗
i,t︸ ︷︷ ︸

MWTP static model

(15)

It can be easily seen in Equation 15 that a single, scaling term captures the difference

between the marginal willingness-to-pay estimate from the static model and that from the

forward-looking model; the quantity and price effects are both captured by a single term

which fully describes the bias. This term, ∂x̄i,t/∂xi,t, explicitly shows that both the sign and

size of the bias are driven by how a household’s current choice of amenity level affects the

average future stream of amenity levels. If one were to recover this term in a separate first

stage, it presents a simple and practical adjustment to estimates from the static model: divide

through by ∂x̄i,t/∂xi,t. This expression will be used in our empirical application to convert

static estimates into the estimates one would have obtained using the forward-looking model.

Returning to the simply rising- (or falling-) amenity case where x̄(xi,t) = φ + xi,t, it is

clear that:

∂x̄i,t/∂xi,t = 1 (16)

Based on Equation 15, this implies that the bias term, ∂x̄i,t/∂xi,t, drops out and the willingness

to pay derived using the static model is identical to that derived using the dynamic one:

r̃′(x̄)∣∣∣x̄=x̄∗
i,t

= r′(x)∣∣∣x=x∗
i,t

(17)
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3.2 The Amenity is Mean Reverting or Mean Diverging

We now consider changes in the amenity of interest that are not uniform across the locations

of the choice set. In other words, we consider cases where amenity levels are either mean

reverting or mean diverging over the T -year horizon. The simplest case of mean reversion

would arise if shocks to amenity levels arrive through time and these shocks decay. More

complicated cases of mean reversion could be the result of targeted policy; for example, in the

case of school quality, resources may be diverted to districts with the lowest performance in the

prior period. Another example would be tipping points. Tipping points in neighborhood racial

composition would be an example of an amenity displaying mean divergence; neighborhoods

with minority levels above some tipping point will experience more in-migration of minorities,

while neighborhoods with minority levels below some tipping point will experience more

out-migration of minorities. For our purposes, however, we do not distinguish between the

underlying causes of mean reversion or mean divergence.

We now consider a relationship between xit and x̄it which can be expressed as:

x̄(xi,t) = φ+ γxi,t (18)

With γ < 1, the amenity will be mean-reverting. Therefore, for any two choices of x, denoted

xa and xb: |x̄(xa) − x̄(xb)| < |xa − xb|. Given this setup, the necessary adjustment to the

willingness to pay from the static model is given by:

∂x̄i,t/∂xi,t = γ (19)

implying that:

r̃′(x̄)∣∣∣x̄=x̄∗
i,t

=
1

γ
r′(x)∣∣∣x=x∗

i,t

(20)

or that the estimate derived by the static model is biased downward by the factor γ. Note

that this holds for any level of the trend term, φ, which is consistent with the discussion

in Section 3.1. Finally, the linearity specified in Equation 18 is done solely for expositional

purposes. The adjustment factor (i.e., the derivative given in Equation 19) can easily be

allowed to depend upon xi,t.

Graphically, the bias can be seen in Figures 6, 7, and 8, where, for illustrative purposes,

φ is defined so that the mean of x is equal to the mean of x̄. In Figure 6a, it can be seen that

mean reversion results in a forward-looking housing price function that is everywhere steeper

than the one from the static model: r̃(x̄) is increasing at a faster rate than r(x) because

16



Figure 6: The Amenity is Mean Reverting Through Time

(a) The Housing Price Functions

(b) The Implicit Price Functions
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each additional dollar spent on housing gets you smaller increase in x̄ than it does in x.15

Correspondingly, r̃′(x̄) lies always above r′(x) as shown in Figure 6b. In other words, the

implicit price of the amenity is higher in the forward-looking model.

Figure 7: The Quantity and Price Effects When x is Mean Reverting

The bias is unambiguously toward zero in the case of mean reversion, regardless of

whether or not the overall trend is of increasing or decreasing amenity levels. This is despite

the fact that quantity and price effects work in opposite directions for some households in

the market. Households that purchase a below-mean level of xi,t will experience a level of x̄i,t

that is greater than xi,t and both the quantity and the price effect are positive. This is shown

in Figure 7. However, households that purchase an above-mean level of xi,t will experience

a level of x̄i,t that is less than xi,t; while the price effect is positive, the quantity effect is

negative.16 However, the overall effect is unambiguous; their true willingness-to-pay is higher.

This is shown in Figure 8.17

15In other words, when comparing two houses, the user cost difference is fixed, but the difference reflects a
smaller change in x̄ than x. So the slope of r̃(x̄) must be larger than r(x) since the horizontal difference is
smaller for the same vertical difference.

16We have illustrated the case where the mean of x is equal to the mean of x̄. More generally, if the amenity
is trending through time, mean reversion will imply that low-amenity houses will improve at a faster rate than
high-amenity houses.

17It can also be seen in Equation 20.
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Figure 8: The Quantity and Price Effects When x is Mean Reverting

Analogously, with γ > 1, the amenity will be mean diverging.18 As before, the mean

divergence can take place whether the overall mean of x is rising, falling, or constant. In this

case, the willingness to pay derived by the static model will be unambiguously biased away

from zero by the factor γ (as γ > 1). Mean divergence results in a forward-looking housing

price function that is everywhere flatter and an implicit price function that is everywhere

lower in the forward-looking model.

Households that purchase a below-mean level of xi,t will experience a level of x̄i,t that

is less than xi,t and both the quantity and price effects are negative. This can be seen in

Figure 9. Households that purchase an above-mean level of xi,t will experience a level of x̄i,t

that is greater than xi,t; while the price effect is still negative, the quantity effect is positive.

However, the overall effect is unambiguous; the static model’s estimate of willingness-to-pay

is biased away from zero. This is shown in Figure 10.19

18Therefore, for any two choices of x, denoted xa and xb: |x̄(xa)− x̄(xb)| > |xa − xb|.
19As in the mean-reversion case, it can also be seen in Equation 20.
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Figure 9: The Quantity and Price Effects When x is Diverging

Figure 10: The Quantity and Price Effects When x is Diverging
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3.3 Nonlinear Utility

In the Appendix, we derive the nonlinear case in greater detail. However, we summarize the

key insights here. The effects discussed in Section 3.1 still hold: the price and quantity effects

still work in opposite directions. However, due to the nonlinearity of the utility function, they

no longer exactly cancel one another out. A natural assumption is that utility is increasing

and concave in the amenity. In this case, with an increasing trend in the amenity, the static

model will underestimate the marginal willingness to pay. Analogously, with a decreasing

trend in the amenity, the static model will overestimate the marginal willingness to pay.

Likewise, the effects discussed in Section 3.2 still hold. If the amenity is mean reverting

through time, the static model will tend to underestimate the marginal willingness to pay. If

the amenity is mean diverging through time, the static model will tend to overestimate the

marginal willingness to pay.

4 Application: The Willingness to Pay to Avoid Crime

We now demonstrate the intuition laid out in Sections 2 and 3 in an empirical setting. In

particular, we calculate the willingness to pay to avoid violent crime in the Bay Area of

California separately by county using the adjustment factor that scales estimates from the

static modeling framework.

4.1 Data

In our application, we use a dataset describing housing transactions and violent crime rates

for five counties in the Bay Area of California (Alameda, Contra Costa, Marin, San Mateo,

and Santa Clara) over the period 1990 to 2008. As this is the same data used in Bishop

and Murphy (2011), we can compare the results obtained using the simple adjustment factor

approach derived here with the fully dynamic approach used there. Our data are richer than

required for illustrating the concepts discussed in this paper, as they allow the econometrician

to follow households through time. This richness, however, is needed for the fully-dynamic

model.

The real estate transactions data were purchased from DataQuick and include dates,

prices, loan amounts, and buyers’, sellers’, and lenders’ names for all transactions. In addition,

the data for the final observed transaction for each house include characteristics such as exact

street address, the Census tract in which the house is located, square footage, year built, lot
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size, and number of rooms.20 The process of cleaning the data involves a number of cuts

which we discuss in more detail in the Appendix.

Crime statistics come from the RAND California database. These data are organized

by city and are measured as incidents per 100,000 residents.21 The data describe annual

violent crime rates for each of the cities within the San Francisco Metropolitan area. In this

dataset, violent crime is defined as “crimes against people, including homicide, forcible rape,

robbery, and aggravated assault.” Crime rates are imputed for each house in our dataset

using an inverse-distance weighted average of the crime rate in each city using the “great

circle” calculation. Figure A.1 in the Appendix illustrates the location of these city centroids.

Figures 11 and 12 illustrate the county-specific cross-sectional distributions of violent

crime rates and county-specific time-series of violent crime rates, respectively. There is a

noticeable downward trend in violent crime, consistent with the decrease experienced by

most of the US over this period.

Figure 11: Pooled Cross-Sectional Variation in Violent Crimes per 100,000 Residents

20According to the Census Bureau, tracts are small, relatively permanent statistical subdivisions of 1,200
to 8,000 residents.

21There are 75 reporting cities in the five counties of analysis.
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Figure 12: Pooled Time-Series Variation in Violent Crimes per 100,000 Residents

The final sample includes 541,415 transactions which are used to estimate the hous-

ing price function separately by county. We then calculate household-specific estimates of

marginal willingness to pay, αi, for each of the 372,334 households in the sample. Summary

statistics for both the housing transactions dataset and the merged household dataset may

be found in Tables A.1 and A.2 in the Appendix.

4.2 Empirical Specification

While the assumed form of the housing price function is important for correctly estimating

households’ marginal willingness to pay,22 the ratio of static and forward-looking estimates is

invariant to the choice of functional form and is solely determined by the transition process

of the amenity of interest. In this application, we estimate the transition of violent crime by

assuming that it follows an AR(1) process:

xj,k,t = ρ0,k + ρ1,kxj,k,t−1 + ρ2,kt+ εj,k,t (21)

22See Cropper, Deck, and McConnell (1988) for a discussion of the choice of functional form in hedonic
regressions.
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which we estimate separately for each county, k. j denotes the house and t denotes the year

of sale. With this simple transition process, x̄ may be expressed as x̄j,k,t = φk,t+γkxj,k,t where

γk is given by the weighted average:

γk =

∑T
s=1 β

s−1ρs−1
1,k∑T

s=1 β
s−1

(22)

The bias is determined solely by this γk parameter following the intuition laid out in Section

3.23

We assume the familiar, log specification for the housing price function, which we esti-

mate separately for each county, k:

log(rj,k,t) = θ0,k + θ1,kxj,k,t + θ2,kx
2
j,k,t +H ′j,k,tθ3,k + εj,k,t (23)

To convert observed sales prices of houses into annual user costs of housing, we follow

the literature and multiply sales prices through by 0.075. The vector of housing attributes,

Hj,k,t, includes property age, square footage, lot size, number of rooms, and a set of dummies

for year of sale. We also include a set of fixed effects at the Census-tract level to control

for any tract-level, time-invariant unobservables that may be correlated with our measure of

violent crime.24 Taking the exponent of Equation 23 yields r(x), i.e., how the user cost of

housing, r, varies with x. As x̄j,k,t = φk,t + γkxj,k,t, it is straightforward to recover r̃(x̄), i.e.,

how the user cost of housing, r, varies with x̄, given values of φk,t and γk.

Each household’s marginal willingness to pay to avoid violent crime is then recovered as

the value of the implicit price function (i.e., the value of the hedonic gradient) at their chosen

level of violent crime exposure. For the static estimates, the annual marginal willingness to

pay to avoid one additional crime per 100, 000 residents is recovered according to Equation 5:

α̂s
i = r̂′(x)∣∣∣x=x∗

i

For the forward-looking estimates, the annual marginal willingness to pay to avoid one

additional crime per 100, 000 residents is recovered using Equation 15 to adjust each house-

23The values of φk,t may be recovered analytically, but do not influence the bias.
24See Kuminoff, Parmeter, and Pope (2010), who use Monte Carlo evidence to suggest that including spatial

fixed effects is the most appropriate way to deal with neighborhood-level unobservables.
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hold’s static estimate by the county-specific estimate of γk:

α̂f
i =

1

γ̂k
r̂′(x)∣∣∣x=x∗

i

This method is, by construction, equivalent to using Equation 12 directly, following the dis-

cussion in Section 3. We set β to 0.95 and T set to seven years.

4.3 Results

We first estimate the transition process for violent crime separately for each of the five counties.

The transition probability parameters, i.e., ρ0,k, ρ1,k, and ρ2,k, are reported in Table A.4

in the Appendix. Running the estimation separately by county allows us to calculate the

corresponding county-specific values of γk according to Equation 22. The estimates of these

γk parameters, which determine both the size and sign of the bias, are presented in Table 1.

It is useful to note that all values of γk are strictly less than one, indicating that violent crime

is mean reverting through time in each of the counties.25

Table 1: County-Specific Estimates of γ

γk

Alameda 0.875
(.0015)

Contra Costa 0.831
(.0010)

Marin 0.509
(.0017)

San Mateo 0.508
(.0013)

Santa Clara 0.746
(.0018)

Standard errors in parenthesis

25The corresponding values of φk,t take the form φ0,k + φ1,kt and are shown in Table A.5 in the Appendix.
These values imply that, in each of our nineteen years of the sample, expected crime is falling over a seven-year
horizon. For Figure 13 (as well as the additional price figures in the Appendix) we use the median value of φk,t,
which is in 1999. However, as discussed in Section 3, this trend term will not affect how our forward-looking
model differs from the static model.
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We then estimate the housing price function, r(x), separately for each of the five coun-

ties. The estimates (and standard errors) are reported in Table A.3 in the Appendix. For

exposition, Figure 13 shows both the estimated housing price function and the estimated

implicit price function for the most populous county in our sample, Santa Clara.26 To keep

these figures consistent with our earlier theoretical framework (i.e., with first-quadrants plots

describing a “good”), we plot how annual user cost of housing varies with the rate of safety,

where the safety rate is defined as the negative of the violent crime rate plus a constant (to

make the safety rate positive). We plot the housing price functions from the 5th percentile

to the 95th percentile of county-specific safety rates, holding the control variables, Hj,k,t, at

their means. Thus, the domains of the plots show both the overall change in safety, as well

as the extent of mean reversion in safety rates.27

Figure 13: The Housing Price Functions and Implicit Price Functions for Santa Clara

26As the price function is estimated very precisely, we don’t include confidence intervals in Figure 13. The
precision of the estimates may be seen in the small standard errors reported in Table A.3 in the Appendix.

27The county-specific constant that we add to make the safety rate positive is the 95th percentile of violent
crime. Thus, the lowest value of the safety rate shown in the graphs is, by construction, zero.
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It is clear from Figure 13 that the annual user cost of housing is increasing faster in

expected average safety than in current safety. In other words, the implicit price of safety is

higher than the static model would suggest. Graphically, this can be seen by the fact that

r̃′(x̄) lies above r′(x) for all values of x. Figures describing these functions for the other four

counties are presented in the Appendix. They appear similar in spirit with the same implied

biases and intuition. In all cases, the annual user cost of housing is increasing in safety at an

increasing rate (implying an upward-sloping implicit price function).

We find mean reversion in violent crime (and therefore in safety) over the period of our

sample. Thus, relative to the mean, households that are currently consuming low levels of

violent crime are consuming more on average (in expectation). This translates to a positive

quantity effect. Analogously, relative to the mean, households that are currently consuming

high levels of violent crime are actually consuming less on average (in expectation). This

translates to a negative quantity effect. In both cases, however, households experience a

positive price effect; the static model understates the implicit price of violent crime. Thus,

the overall effect is that all values of marginal willingness to pay recovered from the static

model are biased toward zero.

The static model’s estimate of αi is equal to the estimated implicit price of violent

crime (i.e., the value of the hedonic gradient) at each household’s observed level of crime

exposure. We obtain an estimate for each household in the dataset. The sample mean of the

distribution of these estimates is -$10.66.28 In other words, the static model implies that the

average household dislikes violent crime and is willing to pay $10.66 per year to avoid one

additional crime per 100,000 local residents. This translates to a willingness to pay of $374.08

per year to reduce total violent crime by ten percent at the mean level of violent crime (350.92

incidents per 100,000 residents).

The forward-looking model’s estimate of αi is obtained by adjusting each household’s

static estimate by the county-specific term γk. As all values of γk are estimated to be strictly

less than one (i.e., violent crime rates are mean reverting), our forward-looking willingness-to-

pay measures will be larger in absolute value. The sample mean of the distribution of these

estimates is -$14.28. The average household is willing to pay $14.28 per year to avoid one

additional crime per 100,000 local residents. This implies that the traditional static approach

leads to estimates that are almost thirty-percent lower in absolute terms.

As previously noted, the model laid out here is not fully dynamic in that households

may not reoptimize within the seven-year time horizon. However, given the empirical setting,

28In less than one percent of cases, θ1,k + 2θ2,kxj,k,t > 0 which implies positive gradients. We exclude these
households from the calculation of utility parameters, which yields utility estimates for 369,015 households.
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we are able to directly compare the estimates here to those obtained in Bishop and Murphy

(2011). In that paper, a fully dynamic model is estimated using the same data. Interestingly,

the forward-looking estimate of willingness to pay found here (-$14.28) is reasonably close

to the fully dynamic estimate of willingness to pay found in Bishop and Murphy (2011) of

(-$13.45).

Table 2: Average Marginal Willingness to Pay by County

Static MWTP Forward-Looking MWTP Implied Bias
in $ per year) in $ per year in percentage points

(= γk − 1)

Alameda -5.60 -6.40 -12
Contra Costa -16.54 -19.90 -17
Marin -16.00 -31.42 -49
San Mateo -4.24 -8.35 -49
Santa Clara -11.61 -15.55 -25

Importantly, our specification allows us to explore heterogeneity in the difference in

the willingness-to-pay estimates. We estimate all key equations separately for each county

in the dataset, recovering county-specific estimates of the parameters of the implicit price

function (i.e., the hedonic gradient) and, therefore, of the values of γk. Table 2 shows the

mean marginal willingness-to-pay estimates separately for each county. The first thing to

note is that there are large differences across counties in ratio of static to forward-looking

estimates. For example, in Alameda and Contra Costa counties, the static and forward-

looking models yield similar results; while crime is falling in both those counties, there is

only a small amount of mean reversion, which is the key parameter driving the bias. There

is, however, a substantial difference between the estimates of the static and forward-looking

models in both Marin and San Mateo counties. While crime is also falling in these counties,

there is a considerable amount of mean reversion in crime rates.

Thus, we provide an empirical example which supports the central claims laid out in this

paper. As we analyze trends for five separate counties, we find considerable heterogeneity

in the size of the bias caused by estimating the static model when the underlying process is

forward-looking. That is, (i), even when an amenity is changing over time, the bias gener-

ated by specifying the static model may be large or may be small and, (ii), that it is both
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straightforward and easy to get a sense of this bias through a cursory analysis of the amenity

of interest.

5 Conclusion

Researchers in a wide variety of applied fields have relied on Rosen’s intuitive 1974 model to

recover individuals’ marginal willingness to pay for a myriad of implicitly-traded goods and

services. In the majority of these applications, researchers have applied the hedonic model to

the housing market, recovering estimates of willingness to pay for house- and neighborhood-

specific amenities. This housing-market application, however, is also the one most at risk of

substantially-biased estimates, given the underlying assumption of free-mobility in the Rosen

framework. And, despite many recent advances in the estimation of dynamic models, there

continues to exist a substantial burden on the econometrician in terms of both computation

and data requirements for the estimation of a dynamic model.

In this paper, we seek to more fully describe the costs and benefits associated with

estimating Rosen’s familiar model. We illustrate the bias under the assumption that the true,

data-generating model is forward-looking using both a series of intuitive graphs and simple

algebraic calculations. We then propose a systematic approach to diagnosing the sign and size

of the potential bias for a given empirical application based on the time trend of the amenity of

interest. We highlight the interesting result where, without reversion to (or divergence from)

the average trend through time, there will be no bias (even with changing amenity levels

and forward-looking agents). Finally, we propose an adjustment factor which transforms the

willingness-to-pay estimate from the static model into that from the forward-looking model.

We highlight these concepts with an empirical application of valuing safety in each of

five counties in the Bay Area of California. Employing data describing housing transactions

and rates of violent crime, we find considerable heterogeneity (across counties) in the bias

associated with specifying the traditional, static model. The results support our suggestion

that it may be prudent for the researcher to use a simple analysis of the time-series properties

of an amenity to asses the potential benefits prior to adopting a dynamic framework.
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Appendix A: Nonlinear Utility

A.1 Static Problem

Households choose xi to maximize U(xi), where U(xi) is given by:

U(xi) = u(xi) + Ii − r(xi) (A.1)

This yields the first order condition:

U ′(xi) = u′(xi)− r′(xi) = 0 (A.2)

Econometrician can recover u′(xi) as

u′(x)∣∣∣x=x∗
i

= r′(x)∣∣∣x=x∗
i

(A.3)

A.2 Forward-Looking Problem

Households choose xi,t to maximize v(xi,t), v(xi,t) is given by:

v(xi,t) = E[
T∑

s=1

βs−1(u(xi,t+s−1) + Ii − r(xi,t))|xi,t] (A.4)

we can rewrite (A.4) as:

v(xi,t) =
T∑

s=1

βt−1E[u(xi,t+s−1)|xi,t] +
T∑

s=1

βs−1Ii −
T∑

s=1

βs−1r(xi,t)) (A.5)

Choosing xi,t to maximize the value function yields the first order condition:

v′(xi,t) =
T∑

s=1

βs−1∂E[u(xi,t+s−1)|xi,t]
∂xi,t

−
T∑

s=1

βs−1r′(xi,t) = 0 (A.6)

For notational convenience, let B =
∑T

s=1 β
s−1. We can then rewrite (A.6) as:

r′(xi,t) =
1

B

T∑
s=1

βs−1∂E[u(xi,t+s−1)|xi,t]
∂xi,t

(A.7)
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The bias is determined by whether or not 1
B

∑T
s=1 β

s−1 ∂E[u(xi,t+s−1)|xi,t]

∂xi,t
>

∂u(xi,t)

∂xi,t
. As

∂E[u(xi,t+s−1)|xi,t]

∂xi,t
=

∂u(xi,t)

∂xi,t
for s = 1, we need to compare

∂E[u(xi,t+s−1)|xi,t]

∂xi,t
with

∂u(xi,t)

∂xi,t
for

s = {2, 3, ..., T}.

The intuition developed in Section 3.2 for mean reverting and mean diverging cases still

holds. The conclusion, derived in Section 3.1, that there is no difference between the static

and forward looking estimates no longer holds. While the price and quantity effects work still

work in opposite directions, they do not exactly offset each other when the utility function is

non-linear. We sketch below the direction of the bias for various cases of variance-preserving

trends under the assumption that utility is increasing and concave in the amenity.

The first case to consider is where E[xi,t+s−1|xi,t] = xi,t. As utility is concave, Jensens’s

Inequality means E[u(xi,t+s−1)|xi,t] < u(E[xi,t+s−1|xi,t]). However, as u′ > 0 and u′′ < 0,

the difference gets smaller as xi,t increases. As such, E[u(xi,t+s−1)|xi,t] is steeper in xi,t com-

pared with u(E[xi,t+s−1|xi,t]). If E[xi,t+s−1|xi,t] = xi,t, then E[u(xi,t+s−1)|xi,t] = u(xi,t) and
∂E[u(xi,t+s−1)|xi,t]

∂xi,t
>

∂u(xi,t)

∂xi,t
. Therefore, for E[xi,t+s−1|xi,t] = xi,t the static model overstates the

marginal willingness to pay.

If E[xi,t+s−1|xi,t] < xi,t, there is a decreasing trend in the amenity. In that case, in

addition to the effect described in the above paragraph, the concavity of utility will lead

E[u(xi,t+s−1)|xi,t] to be steeper than u(xi,t). This will lead the static model will overestimate

the marginal willingness to pay.

Analogously, if there is an increasing trend in the amenity and E[xi,t+s−1|xi,t] > xi,t,

E[u(xi,t+s−1)|xi,t] the concavity of utility will lead E[u(xi,t+s−1)|xi,t] to be flatter than u(xi,t),

which will lead the static model will understate the marginal willingness to pay. If this effect

is large enough, it will overcompensate for the E[xi,t+s−1|xi,t] = xi,t effects discussed above

and the static model will understate marginal willingness to pay.

34



Appendix B: Data Cleaning Details

The process of cleaning the data involves a number of cuts. Many of these are made in

order to deal with the fact that we only see housing characteristics at the time of the last

assessment, but we need to use housing characteristics from all sales as controls in our he-

donic price regressions. We therefore seek to eliminate any observations that reflect major

housing improvement or degradation. First, to control for land sales or re-builds, we drop all

transactions where “year built” is missing or with a transaction date that is prior to “year

built”. Second, in order to control for property improvements (e.g., an updated kitchen) or

degradations (e.g., water damage) that do not present as re-builds, we drop any house that

ever appreciates or depreciates in excess of 50 percentage points of the county-year mean

price change. We also drop any house that moves more than 40 percentile points between

consecutive sales in the county-year distribution. Additionally, we drop transactions where

the price is missing, negative, or zero. After using the consumer price index to convert all

transaction prices into 2000 dollars, we drop one percent of observations from each tail to

minimize the effect of outliers. Finally, as we merge-in data describing local crime rates using

each property’s geographic coordinates, we drop properties where latitude and longitude are

missing.

A number of additional cuts were made to create the data for Bishop and Murphy

(2011). Using the common variables of date, Census tract, loan value, and lender, we merge-

in data describing household race and income from the Home Mortgage Disclosure Act dataset

(available for all households taking out a mortgage). We successfully match approximately

75% of individuals in the transactions sample to the HMDA sample. Based on the algorithm

for tracking households through time, we keep only those households observed to purchase

three or fewer times during the sample period. We also drop households in the top and

bottom 2% based on exposure to crime. Finally, we drop households where race or income

are missing and households with income less than $25,000 or more than $500,000 income (in

2000 dollars). Note that this accounts for less than two percent of the remaining sample.
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Figure A.1: Cities within the San Francisco Metropolitan Area
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Table A.1: Property Transactions Summary Statistics

N = 541,415
Variable Mean Median Std. Dev. Min. Max.
Sales Price (year 2000 dollars) 434,357 380,138 237,601 75,984 1,662,877
Year of Sale 1999 1999 5.12 1990 2008
Violent Crime Rate (per 100,000 residents) 380 323 263 12.82 3,834
House Square Footage 1,687 1545 662 160 9,130
Lot Square Footage 7,175 6,000 8,034 0 130,680
House Age 32.03 31 20.52 0 147
Number of Rooms 6.68 7 2.33 0 15

Table A.2: Household Summary Statistics

N = 372,334
Variable Mean Median Std. Dev. Min. Max.
Income (year 2000 dollars) 118,825 102,000 68,110 25,000 500,000
White 0.58 1 0.49 0 1
Black 0.03 0 0.07 0 1
Asian 0.26 0 0.44 0 1
Hispanic 0.12 0 0.33 0 1
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Appendix C: Results

Table A.3: Hedonic Regression – Parameter Estimates

Alameda Contra Costa Marin San Mateo Santa Clara

Violent Crime Rate -0.20903 -0.70398 -0.96640 -0.12529 -0.46180
(0.01361) (0.00803) (0.08403) (0.01014) (0.01977)

Violent Crime Rate Squared 0.02600 0.18787 1.26898 0.02091 0.22928
(0.00660) (0.00274) (0.11632) (0.00357) (0.01556)

House Square Footage 0.29287 0.29286 0.37959 0.22190 0.30755
(0.00140) (0.00154) (0.00259) (0.00230) (0.00153)

Lot Square Footage 0.00862 0.00826 0.00418 0.00865 0.00654
(0.00012) (0.00008) (0.00018) (0.00014) (0.00007)

House Age -0.00151 -0.00133 0.00090 0.00076 0.00054
(0.00004) (0.00005) (0.00009) (0.00005) (0.00003)

Number of Rooms 0.01839 0.03168 0.00143 0.05140 0.03693
(0.00039) (0.00050) (0.00055) (0.00079) (0.00048)

Tract Dummies Yes Yes Yes Yes Yes
Year Dummies Yes Yes Yes Yes Yes
Observations 103,902 138,732 26,255 80,066 192,460
R2 0.87 0.86 0.75 0.83 0.83
OLS estimates of Equation 23. Standard errors in parentheses.

Violent Crime, House Square Footage, and Lot Square Footage are measured in 1000s of units.
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Table A.4: Transition Probability Estimates

Alameda Contra Costa Marin San Mateo Santa Clara

Constant 30.4772 17.1805 110.6628 94.5984 49.5586
(0.6115) (0.4939) (0.6863) (1.0404) (0.4800)

Lagged Violent Crime Rate 0.9518 0.9329 0.7387 0.7375 0.8926
(0.0006) (0.0004) (0.0015) (0.0011) (0.0009)

t -1.2274 0.0473 -3.8823 -0.5867 -2.3091
(0.0379) (0.0349) (0.0334) (0.0685) (0.0235)

Observations 3,978,774 3,690,648 611,946 1,762,668 4,551,678
R2 0.93 0.96 0.69 0.73 0.89
OLS estimates of Equation 21. Standard errors in parentheses.

Table A.5: County- and Year-Specific Estimates of ck,t

Alameda Contra Costa Marin San Mateo Santa Clara

1990 68.49 43.18 178.82 175.18 97.58
(1.24) (0.96) (0.77) (1.35) (0.83)

t -3.23 0.15 -7.20 -1.32 -5.45
(0.10) (0.09) (0.06) (0.13) (0.05)

Standard errors in parentheses.
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Figure A.2: Alameda

Figure A.3: Contra Costa
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Figure A.4: Marin

Figure A.5: San Mateo
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