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Abstract 
 

This paper examines the degree of interdependence among sovereign bond markets in 24 

developed and developing countries during times of stress or crisis using extreme value 

theory. We discuss tail behavior of individual sovereign bond spreads and compare the 

shape of that tail to exponential and power-law distributions. We proceed by estimating 

bivariate tail dependence index χ and search for the evidence of asymptotic tail dependence 

in sovereign bond spreads series. In order to establish the statistical significance of 

estimated bivariate tail dependence indices, we construct a bootstrap-based approach to 

searching for the presence of asymptotic tail dependence derived on the basis of Davis et al. 

(2012). Our empirical findings suggest that the US bond market does not exhibit extreme 

right tail co-movements with European sovereign bond market turbulences. Even though 

the UK did not adopt the euro, its sovereign bond market exhibits statistically significant 

right tail dependencies with a number of Eurozone bond markets, possibly indicating that it 

is not immune to financial distress originating from the EMU. New EU member states 

exhibit more frequent right tail dependencies with other new EU member states when 

compared to old EU members. 
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Introduction1 

Co-movements in international financial markets have been the subject of intensive 

empirical examination in the literature. Studies using multivariate GARCH models, regime-

switching models, extreme value theory and copulas such as Longin and Solnik (1995; 

2001), De Santis and Gerard (1997), Ang and Bekaert (2002), Poon et al. (2004), and 

Jondeau and Rockinger (2006) evidence the existence of asymmetry in extreme correlations 

for equity markets: large negative returns are more correlated than large positive returns. 

Longin and Solnik (2001) also show that in asymptotic terms extreme correlation is zero for 

very large positive returns and strictly positive for very large negative returns.  

Although asymmetric correlation structure is also documented for bond markets, and in 

particular for sovereign bond markets in studies such as Beber et al. (2009), Favero et al. 

(2010), Aßmann and Boysen-Hogref (2012), and Favero (2014), an extensive analysis that 

focuses on high frequency changes in sovereign bond markets has received far less 

attention. Instead, the emphasis was placed on the impact of economic news on conditional 

bond volatility, thus downplaying the importance that rare events such as sovereign debt 

crises, large changes in investment returns, or even defaults may inflict on sovereign bond 

yield movements. Our analysis is related to three earlier studies that measure extremal 

dependence on bond markets, which however focus on both bond and equity markets and 

assess not only their individual tail characteristics, but also extremal cross-dependence of 

these markets. 

Hartman et al. (2004) use extreme value theory to study the likelihood of crashes in equity 

and sovereign bond markets and extreme co-movements between those two markets. They 

derive nonparametric estimates for the expected number of market crashes given that at 

least one market crashes. Their results suggest that simultaneous crashes between equity 

markets in Germany, France, Japan, the UK, and the US are much more likely than between 

bond markets of those countries, even though the returns on both markets exhibit 

statistically significant tail dependence. Cappiello et al. (2006) use a Dynamic Conditional 

Correlation GARCH model to investigate presence of asymmetric volatility in international 

equity and bond returns for 21 developed countries. They show that national equity return 

                                                           
1 This work was supported by Croatian Science Foundation under the project 1356. 
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series exhibit asymmetry in conditional variance, while little evidence is present that would 

indicate asymmetry in bond returns variance. However, despite the lack of evidence of 

asymmetric conditional volatilities, bonds (as well as equities) exhibit asymmetry in 

conditional correlation. Garcia and Tsafack (2011) outline limits of using extreme value 

theory or bivariate GARCH models in characterizing extremal dependence and propose an 

alternative regime-switching copula model that includes one normal regime in which tail 

dependence is symmetric and a second regime characterized by asymmetric dependence 

and apply it to sovereign bond and equity markets in Canada, France, the US, and the UK. 

They reaffirm Hartman et al. (2004) findings and provide evidence that returns for both 

markets in both regimes are asymptotically tail dependent, albeit sovereign bond markets 

in both regimes exhibit smaller propensity for extreme co-movements when compared to 

equity markets.  

Since these three studies suggest that sovereign bond markets are indeed characterized by 

extreme movements and exhibit tail dependent behavior, the aim of this paper is to provide 

a comprehensive analysis of extremal dependence of international sovereign bond markets. 

By applying extreme value theory, we analyze sovereign bond spreads for 23 EU member 

states and the US. The contribution to the literature of this study is threefold. First, in terms 

of methodology, our paper is somewhat related to Hartman et al. (2004) who develop a 

novel non-parametric test developed from extreme value theory in order to assess the 

expected number of market crashes and thus establish tail dependencies between bond and 

equity markets. Our methodological approach is similar to theirs insofar as it is also 

grounded in extreme value theory, but differs in terms of the choice of test statistics. We feel 

that extreme value theory in general is well suited to address tail dependence behavior of 

financial series than the frequently used conditional correlation analysis which is strongly 

predisposed towards multivariate normal distribution and thus might underestimate the 

frequency of rare events in the financial markets. We begin by assessing marginal tail 

behavior of individual spread changes using standard tools of extreme value theory: qq-

plots and Hill estimators. We proceed by estimating the bivariate tail dependence index chi 

(χ) along with the Pearson correlation measure for all country pairs in order to establish the 

degree of tail dependency. As we are only interested in whether large negative shocks 

(which we usually describe as sovereign debt crisis and which manifest in rising sovereign 
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spreads) on various sovereign bond markets are interdependent, we only observe what 

happens in the right tails of both countries. In order to establish the statistical significance 

of estimated bivariate tail dependence indices, we construct a bootstrap-based approach to 

searching for the presence of asymptotic tail dependence on the basis of Davis et al. (2012). 

To the best of our knowledge, this is the first paper that applies such a methodological 

approach.  

Second, unlike other studies, the analysis performed in this study covers the turbulent 

European sovereign debt crisis period. In the light of findings suggesting tail dependence of 

sovereign bond markets is significantly smaller when compared to equity markets, we feel 

that the European debt crisis can be viewed as one of those unprecedented tail events that 

have deeply shaken international sovereign bond markets. It can thus have the potential to 

significantly upend the nature of extreme co-movements of sovereign bond markets and 

provide new insight into interdependencies of sovereign bond markets during times of 

crises.  

Third, as extremal dependence of bond markets in developing countries was not studied in 

the past, our study also contributes to the literature by including ten developing European 

countries into the analysis. Due to the fact that financial instruments issued by developing 

countries generally record higher degree of volatility when compared to their developed 

counterparts, one could expect that developing countries´ sovereign bond spreads might 

also be characterized by heavier tails and more pronounced tail dependence.  

The rest of the paper is organized as follows. In the next section we explain the 

methodology used to assess the degree of extremal dependence in sovereign bond markets. 

In the third section we describe the data, while the fourth section discusses empirical 

findings. We summarize our conclusions in the last section. 

 

Methodology 

It is often suggested in the financial econometrics literature that relative returns of stock 

prices typically follow a distribution of the so-called “power—law type”. In statistics, these 
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distributions are also called regularly varying and they represent an extension of the Pareto 

distributions which are often used in economics. The behavior of exchange rates is also 

sometimes modeled by distributions in this class. The same modeling framework appears in 

many other areas of economics, finance, and insurance in particular. The use of such 

distributions is also justified by theoretical results showing that many standard time series 

such as GARCH or stochastic volatility models have distributions of that type. On the other 

hand, understanding tail behavior is of utmost importance for many applications, and risk 

assessment in particular. Motivated by all this, we explore tail behavior of sovereign spread 

movements using the regular variation assumption.  

Suppose that we have a stationary sequence 𝑋1, 𝑋2, … , 𝑋𝑛 of sovereign spreads movements 

with the same marginal distribution 𝐹(𝑥). In the case that 𝐹 exhibits heavy tail of a power-

law type, a good indicator for the mass in the tails is the tail index. In order to inference 

heavy tails for a set of one-dimensional data assumed to be stationary, we need to decide 

which heavy-tailed model is appropriate and then estimate the tail index of the marginal 

distribution.  

Distribution of a random variable 𝑋 is called regularly varying at the right tail if  

𝑃[𝑋 > 𝑥] = 1 − 𝐹(𝑥) = 𝑥−𝛼𝐿(𝑥),          𝑥 > 0                                                                           (1) 

where 𝐿 is a so-called slowly varying function, a function such that the lim (𝐿(𝑥𝑡)/𝐿(𝑡)) = 1, 

for all 𝑥 > 0 (see Embrechts et al., 1997). We begin our analysis by following the 

semiparametric assumption (1) of regular variation and estimate the tail parameter α. 

Estimation of the tail parameter α represents the main, but a rather nontrivial step in the 

statistical analysis of such data sets. The standard estimator of the parameter α>0 in 

statistical literature is the so-called Hill estimator (Hill, 1975), which is based on a certain 

number of the largest-order statistics. 

For 1 ≤ 𝑖 ≤ 𝑛 denote by 𝑋(𝑖) the i’th largest value in the sample 𝑋1, 𝑋2, … , 𝑋𝑛 so that  𝑋(1) ≥

𝑋(2) ≥ ⋯ ≥ 𝑋(𝑛). Then the Hill estimator of 1
𝛼⁄  based on 𝑘 upper-order statistics is 

calculated as 
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𝐻𝑘,𝑛 =
1

𝑘
∑ 𝑙𝑜𝑔

𝑋(𝑖)

𝑋(𝑘+1)

𝑘

𝑖=1

 

Alternatively one can use all order statistics above a given level 𝑢. Statistical properties of 

this estimator are quite well understood, as well as many pitfalls in its practical application 

(for details see Resnick (2007) or Embrechts et al. (1997)). They are mostly related to the 

choice of the number 𝑘 or equivalently the threshold 𝑢. This is typically performed by the 

exploration of the so-called Hill plot which plots 𝑘 against 𝐻𝑘,𝑛. An appropriate 𝑘 or the 

threshold 𝑢 is selected by finding a plateau in such a plot, i.e. an interval of k’s where the 

plot looks approximately stable. This is a somewhat subjective procedure, which can be 

aided by smoothing or rescaling of the Hill plot. Two alternatives to a Hill plot of this type 

are smooHill and altHill described in Resnick and Stărică (1997) and Drees et al. (2000). 

The latter turns out to be often useful because it dedicates more of the plot space to the 

interval around the true tail parameter than the conventional Hill plot. We use the altHill 

plot estimated as 

{(𝜃, 𝐻
⌈𝑛𝜃⌉,𝑛
−1 ) , 0 ≤ 𝜃 ≤ 1}, 

where we write ⌈𝑦⌉ for the smallest integer greater than or equal to 𝑦 ≥ 0.  

However, an uncritical application of these procedures to data which do not have a 

distribution of a regularly varying type is often encountered in the literature. It seems 

advisable to perform at least some sort of goodness-of-fit procedure to see if assumption (1) 

actually fits the data at all. One of the standard and most illustrative procedures of this kind 

is based on the fact that the tail behavior of the data above a large threshold 𝑢 is actually 

approximately log exponential whenever assumption (1) holds. We therefore compare the 

logarithm of sovereign spread changes with the exponential distribution on a qq-plot in 

order to verify whether sovereign spread series actually fit assumption (1).  

From our perspective it is very interesting not only to study the individual distribution of 

sovereign spread movements, but also their joint behavior and their statistical association. 

A canonical measure of dependence between two numerical variables in statistics is the 

(Pearson) correlation coefficient. Although the correlation coefficient can be estimated 
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quite well on the basis of time series data, this coefficient is a rather unreliable measure of 

dependence, especially when applied to heavy-tailed data such as sovereign spread changes. 

It is also very interesting to determine the association between countries during the time of 

crises, i.e. when one or both spreads make strong upward movements. 

An alternative measure of statistical dependence at an arbitrary high level 𝑢 is provided by 

the coefficient of bivariate tail dependence index chi - χ (Coles et al., 1999; Poon et al., 

2004). It is defined for two variables 𝑋 and 𝑌 with the same marginal distribution as  

 

χ = lim
𝑢→∞

𝑃(𝑋𝑡 > 𝑢|𝑌𝑡 > 𝑢)                                                                                 (2) 

where we also assume that the marginal distribution has unbounded support on the right, 

as it is the case with nearly all commonly used distributions such as the normal, 

exponential, or power-law. Furthermore, from equation (2) it follows that chi is a 

nonnegative value with values in the interval [0,1]. If the degree of dependence vanishes in 

the limit, as 𝑢 → ∞, then χ = 0 and in this case we say that the variables are asymptotically 

tail independent. Roughly speaking chi aims to assess the degree of dependence that may 

eventually prevail in the limit. The assumption of equality of marginal distributions seems 

relatively strong, but it can be easily satisfied by transforming individual series to have the 

same marginal distribution e.g. normal or unit Fréchet as it is commonly done in extreme 

value theory. Prior to measuring dependence in extreme levels of variables 𝑋 and 𝑌, 

representing sovereign spread changes of two countries of interest, the data are converted 

into an appropriate common scale as for example the unit Pareto margins (see for example 

Straetmans et al. (2008)) to make fair comparisons possible. This can be accomplished by 

converting the original pair (𝑋, 𝑌) into 

(�̃�, �̃�) = ((1 − 𝐹𝑋)−1, (1 − 𝐹𝑌)−1)                  (3) 

where 𝐹𝑋 , 𝐹𝑌  denote marginal distribution functions of variables 𝑋, 𝑌. They are typically 

unknown so that in practice the empirical distribution functions �̂�𝑋 and �̂�𝑋 are plugged into 

equation (2). In that case, the order of magnitude of the high quantiles of one variable 

becomes comparable with those of the other. 
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As de Carvalho and Rua (2014) point out, chi measures joint dependence between two 

variables under very extreme circumstances. Because of the limiting part in the definition of 

the tail dependence coefficient chi, it is actually not so straightforward to estimate this 

quantity, although a natural estimator can be obtained by fixing 𝑢 = 𝑢𝑛 at a very high 

threshold and calculating a nonparametric estimator of chi as 

�̂� =
∑ 𝕀𝑋𝑖 > 𝑢𝑛

𝑛
𝑖=1 𝕀𝑌𝑖 > 𝑢𝑛

∑ 𝕀𝑋𝑖 > 𝑢𝑛
𝑛
𝑖=1

                                                                                (4) 

The properties of the χ estimator are well understood; see Schmidt and Stadtmüller (2006) 

or Davis et al. (2012), where this estimator appears as a special case of the cross-

extremogram. Theory developed in Davis et al. (2012) allows one even to construct a 

bootstrap-based procedure for the interval estimation of chi that allows one to search for 

the presence of asymptotic tail dependence between the changes of the two spreads.  

Observe that one still has to select the threshold 𝑢𝑛 in an appropriate way for the practical 

application algorithm. One can do this again by the plateau finding procedure as in the case 

of the Hill estimator, as recommended by Schmidt and Stadtmüller (2006). We adopt this 

approach, but for the purpose of our study, we select 𝑢𝑛 as the upper 10 percent empirical 

quantile of our data (cf. Davis et al. (2012)). In this case �̂� has a rather natural interpretation 

as an estimator of the conditional probability of spread changes in a country above the level 

of the 10 percent quantile, given that the spread in the other country already moved above 

the corresponding quantile. To test if the chi values are significantly different from zero, we 

use a bootstrap based approach derived on the basis of results in Davis et al. (2012). For 

each pair of countries, using stationary bootstrap algorithm, we generate two independent 

bootstrap time series of the same length which have similar marginal distributions and 

time-varying dependence as the two series corresponding to the pair of countries. 

Repeating this many times and estimating χ for each of these bootstrap samples, we can 

approximate the p-value of the originally estimated χ. Note that this procedure is different 

from the permutation tests used in Davis et al. (2012). 

 

Data 
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We use weekly sovereign bond spreads for 23 EU countries and the US. Data for the US and 

the UK span from April 1990 to April 2015 (altogether 1,306 observations), while other 

countries in the dataset are spanned somewhere in that time period, with Slovenia having 

the smallest number of observations (214 observations). The data for developed and some 

developing countries are obtained from Bank of America Merrill Lynch government bond 

yields collected from Bloomberg. However, for Bulgaria, Croatia, Hungary, Latvia and 

Lithuania, Emerging Market Bond Index (EMBI) is used, as Bank of Amerika Merrill Lynch 

database does not include these five countries. The EMBI spread is a typical and widely used 

proxy for emerging countries’ sovereign bond spreads calculated by J.P. Morgan. EMBI 

spreads and Bank of America Merrill Lynch sovereign bond spreads are expressed in basis 

points and percentage points respectively. 

Prior to conducting extremal analysis of sovereign spreads, we used differencing in order to 

transform each individual time series 𝑌1, 𝑌2,… Such a transformation produces the series of 

sovereign spread changes 𝑋𝑛 = 𝑌𝑛 − 𝑌𝑛−1, which to a reasonable extent appear to be 

stationary. For some countries however, the assumption of stationarity might be 

questionable even after the transformation, as the volatily in the series appears to change 

abruptly during and after the 2008 financial crisis. Stationarity might still be justified if one 

allows for the influence of the unobserved state of the economy as in Markov switching 

models for instance (Lange and Rahbek, 2009), so we keep this assumption throughout, but 

caution is advised in the interpretation. 

 

Results 

In order to analyze if our sovereign bond spread distributions are heavy-tailed, we use the 

approach described in the methodology section. First of all, we use graphical representation 

to detect if our data follow a power-law distribution. Next we evaluate the tail dependencies 

between different pairs of countries.  

We compare the distribution of our observations above a chosen threshold with the 

exponential and power-law distribution on a qq-plot (see Appendix 1 for more details). It 

turns out that for at least some countries, the fit to the power–law distribution looks 
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reasonable. These countries are Hungary, Latvia, Lithuania, Slovakia, and Slovenia. For 

several other countries it seems that the exponential distribution would be a better fit. 

Countries such as France, Italy, Poland, and Spain, seem to be significantly less heavy-tailed 

as the movements in sovereign bond spreads in these countries are extremely well 

described by simple exponential tails. For some countries such as Belgium, Ireland, 

Portugal, and Romania there is reason to suspect either exponential or power-law tails. 

More formally, Table 1 that presents summary statistics for the analyzed time series 

suggests excess kurtosis and greater mass in the tails for all the countries except for the US. 

Although some of the countries may exhibit power-law tail behavior only in the very 

extreme right tail, we keep this assumption for the time being for all our data sets. Even in 

countries where the power-law tail behavior seems to be hard to justify, movements of 

spreads appear to have tails significantly heavier than normal. Table 2 presents the results 

obtained using Hill and altHill plots (see Appendix 2 for more details). Parameter alpha for 

Greece is estimated at 1.5 approximately; on the other hand the alpha for Denmark is 

relatively high at 3.0. Observe that the lower value of alpha indicates a heavier tail of spread 

movements. It appears from our table that countries with less sustainable public finance 

(Greece and Hungary for example) have significantly heavier tails in general and therefore 

more violent upward movements of the spreads. Hence a reasonable econometric model of 

the movements should take all this into account. 

Table 1: Summary statistics 

Country N Mean 
Standard 
deviation 

Skewness Kurtosis 

Austria 832 0.000 0.060 2.100 32.580 

Belgium 911 0.000 0.080 -1.100 41.420 

Bulgaria 676 -0.090 14.980 5.070 92.580 

Croatia 782 0.110 12.640 1.560 14.090 

Czech Republic 424 0.000 0.140 0.640 4.750 

Denmark 1,162 0.000 0.070 -2.530 56.690 

Finland 1,140 0.000 0.100 -15.700 418.110 

France 1,288 0.000 0.060 0.060 4.790 

Greece 424 0.030 1.080 -6.700 102.550 

Hungary 797 0.120 22.320 1.560 25.250 

Ireland 806 0.000 0.240 -6.000 98.530 

Italy 806 0.000 0.130 -0.600 14.590 

Latvia 797 -0.210 32.530 -0.750 28.500 

Lithuania 281 -0.980 21.090 0.840 6.510 

Netherlands 832 0.000 0.030 0.660 5.810 
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Poland 829 0.000 0.200 -4.260 67.350 

Portugal 832 0.000 0.280 -0.190 14.820 

Romania 250 -0.010 0.190 -2.830 25.990 

Slovakia 669 0.000 0.120 1.770 17.800 

Slovenia 214 0.000 0.180 0.980 4.950 

Spain 1,149 0.000 0.140 -1.060 17.110 

Sweden 431 0.000 0.060 -0.190 6.310 

United Kingdom 1,306 0.000 0.090 -0.690 6.910 

United States 1,306 0.000 0.100 0.110 0.850 

 

Next we calculate Pearson correlations for all possible pairs of countries. Pearson 

correlation is useful in this exercise since it captures dependence completely in the context 

of multivariate normal distributions, but it is less useful as a measure of dependence in the 

context of heavy tailed distributions. Right tail dependence is presented by the right tail chi 

indicator which was calculated using top 10 percent observations in the right tail.  

Table 2: Number of tail observations and the value of the Hill tail index 

Country Sample period alpha Threshold 
Tail 

observations 
Hill 

(1/alpha) 
Number of 

observations 

Share of 
observations in 

the tail 
(in %) 

Austria 05:99 - 15:04 1.547 0.030 100 0.646 832 12 

Belgium 11:97 - 15:04 1.678 0.060 80 0.596 911 9 

Bulgaria 05:02 - 15:04 2.066 15.000 43 0.484 676 6 

Croatia 05:00 - 15:04 1.888 10.200 95 0.530 782 12 

Czech 
Republic 

07:03 - 15:04 2.061 0.110 63 0.485 424 15 

Denmark 93:01 - 15:04 3.013 0.130 32 0.332 1,162 3 

Finland 93:06 - 15:04 2.053 0.070 70 0.487 1,140 6 

France 90:08 - 15:04 2.814 0.075 84 0.355 1,288 7 

Greece 03:07 - 15:04 1.506 0.340 86 0.664 424 20 

Hungary* 01:00 - 15:04 1.892 15.000 98 0.529 797 12 

Ireland 99:11 - 15:04 1.502 0.100 94 0.666 806 12 

Italy 11:99 - 15:04 1.945 0.100 91 0.514 806 11 

Latvia* 01:00 - 15:04 1.701 15.000 153 0.588 797 19 

Lithuania* 12:09 - 15:04 1.870 12.000 56 0.535 281 20 

Netherlands 05:99 - 15:04 1.697 0.025 98 0.589 832 12 

Poland 99:05 - 15:04 3.095 0.250 46 0.323 829 6 

Portugal 05:99 - 15:04 1.283 0.090 134 0.779 832 16 

Romania 07:10 - 15:04 2.194 0.100 42 0.456 250 17 

Slovakia* 02:06 - 15:04 2.135 0.110 65 0.468 669 10 
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Slovenia* 11:03 - 15:04 2.207 0.200 19 0.453 214 9 

Spain 04:93 - 15:04 1.501 0.060 188 0.666 1,149 16 

Sweden 07:01 - 15:04 2.449 0.070 38 0.408 431 9 

United 
Kingdom 

90:04 - 15:04 2.899 0.100 105 0.345 1,306 8 

United States 04:90 - 15:04 3.216 0.100 189 0.311 1,306 14 

Note: Germany is the benchmark country; * represents evidence of heavy-tailed behavior. 

Table 3 provides values of the estimated Pearson correlations and the right tail chi 

indicators for all pairs of countries. For easier comparison we also provide a heat map of 

Pearson correlation and right tail dependence of sovereign bond spreads (Figure 1). Figure 

1 shows somewhat darker colors for the right tail dependence indicator when compared to 

Pearson correlations. More formally, by comparing the two corresponding values of 

Pearson correlation and right tail chi, we see that for 209 out of 276 pairs (or 75.7 percent) 

right tail dependence is above Pearson correlation, although this is difficult to interpret. The 

highest right tail chi was depicted for Italy and Spain – most probably due to large spillovers 

from the EU sovereign debt crisis at its peak in 2012. The smallest right tail chi was 

obtained for the Denmark and Greece pair suggesting that the two countries might be 

experiencing negative dependencies in the tails – possibly because when risk perception 

increases in Greece, investors turn to safer markets such as the one in Denmark which 

results in spreads moving upwards in Greece and downwards in Denmark. However, to get 

a complete picture one would need to check the right to left tail dependencies.   

Figure 1: Heat map of Pearson correlation and right tail dependence of sovereign bond 

spreads 
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Note: AU - Austria, BE - Belgium, BU - Bulgaria, CR - Croatia, CZ – Czech Republic, DE - Denmark, FI - Finland, FR - 

France, GR - Greece, HU - Hungary, IR - Ireland, IT - Italy, LA - Latvia, LI - Lithuania, NL - Netherlands, PL - 

Poland, PR - Portugal, RO - Romania, SK - Slovakia, SL - Slovenia, SP - Spain, SW - Sweden, UK – United Kingdom, 

US – United States; Pearson correlation is presented below the diagonal, while the right-tail dependence (chi) is 

presented above the diagonal; for two pairs (LI and DE, and LI and the US) the value of chi was estimated to be 

zero. 
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Table 3: Pearson correlation and right tail dependence of sovereign bond spreads 

  FR UK IR SW FI DE CZ PL SK SL RO GR IT SP PR BE NL US AU BU HU CR LI LA 

FR - 0.201 0.273 0.084 0.190 0.264 0.308 0.176 0.210 0.328 0.205 0.280 0.606 0.474 0.291 0.677 0.527 0.058 0.643 0.209 0.182 0.121 0.315 0.117 

UK 0.248 - 0.097 0.219 0.089 0.092 0.092 0.042 0.027 0.120 0.096 0.006 0.110 0.128 0.091 0.026 0.136 0.232 0.040 0.091 0.005 
-

0.042 
-

0.066 
-

0.003 

IR 0.442 0.185 - 0.106 0.194 0.069 0.218 0.168 0.018 0.390 0.217 0.268 0.373 0.325 0.408 0.281 0.182 0.038 0.198 0.158 0.114 0.058 0.224 0.090 

SW 0.163 0.225 0.163 - 0.061 0.116 0.118 0.208 0.119 0.156 0.056 
-

0.060 0.122 0.044 0.071 
-

0.046 0.107 0.195 
-

0.011 0.249 0.041 
-

0.001 
-

0.066 0.027 

FI 0.363 0.220 0.333 0.186 - 0.153 0.204 0.093 0.129 0.167 0.133 0.172 0.346 0.126 0.172 0.483 0.563 0.017 0.470 0.132 0.094 0.109 0.268 0.136 

DE 0.299 0.214 0.173 0.163 0.306 - 0.127 0.097 0.082 0.038 
-

0.079 0.036 0.008 0.146 
-

0.019 0.066 0.202 
-

0.046 0.061 0.150 0.075 0.036 
-

0.063 0.120 

CZ 0.256 0.175 0.256 0.233 0.279 0.186 - 0.586 0.313 0.299 0.384 0.173 0.341 0.354 0.155 0.320 0.231 0.035 0.355 0.271 0.346 0.293 0.395 0.372 

PL 0.229 0.205 0.235 0.233 0.183 0.195 0.372 - 0.383 0.378 0.407 0.268 0.254 0.211 0.141 0.171 0.124 0.010 0.165 0.247 0.212 0.210 0.420 0.324 

SK 0.269 0.138 0.313 0.209 0.246 0.222 0.256 0.328 - 0.307 0.442 0.232 0.328 0.267 0.225 0.224 0.132 
-

0.069 0.220 0.281 0.252 0.180 0.359 0.253 

SL 0.200 0.136 0.545 0.238 0.318 0.091 0.409 0.500 0.455 - 0.378 0.292 0.535 0.410 0.319 0.274 0.195 0.132 0.235 0.476 0.327 0.311 0.279 0.277 

RO 0.320 0.200 0.320 0.120 0.348 0.160 0.360 0.542 0.458 0.545 - 0.256 0.399 0.306 0.241 0.287 0.106 0.095 0.232 0.448 0.345 0.288 0.335 0.341 

GR 0.302 0.100 0.256 0.047 0.233 0.023 0.163 0.190 0.186 0.227 0.280 - 0.352 0.300 0.375 0.341 0.141 
-

0.010 0.271 0.193 0.290 0.183 0.427 0.222 

IT 0.571 0.222 0.444 0.140 0.438 0.167 0.349 0.259 0.299 0.591 0.520 0.372 - 0.789 0.452 0.626 0.363 0.076 0.469 0.281 0.286 0.248 0.386 0.170 

SP 0.509 0.236 0.469 0.140 0.297 0.237 0.279 0.205 0.224 0.318 0.400 0.372 0.691 - 0.425 0.549 0.290 0.039 0.446 0.213 0.266 0.216 0.344 0.135 

PR 0.440 0.190 0.519 0.140 0.349 0.072 0.186 0.169 0.224 0.227 0.240 0.465 0.543 0.536 - 0.292 0.138 0.039 0.223 0.158 0.194 0.123 0.304 0.110 

BE 0.626 0.176 0.494 0.140 0.455 0.187 0.279 0.229 0.254 0.455 0.520 0.279 0.568 0.571 0.506 - 0.427 
-

0.014 0.653 0.138 0.265 0.144 0.390 0.139 

NL 0.500 0.214 0.358 0.186 0.542 0.253 0.349 0.217 0.254 0.227 0.240 0.116 0.444 0.381 0.301 0.471 - 0.051 0.460 0.147 0.140 0.065 0.155 0.129 

US 0.093 0.234 0.136 0.093 0.162 0.114 0.163 0.193 0.104 0.182 0.240 0.093 0.111 0.174 0.120 0.132 0.099 - 0.010 0.037 
-

0.172 
-

0.023 
-

0.255 
-

0.155 

AU 0.631 0.202 0.432 0.140 0.542 0.193 0.302 0.229 0.254 0.227 0.320 0.233 0.420 0.429 0.422 0.600 0.531 0.107 - 0.137 0.233 0.184 0.319 0.100 

BU 0.397 0.231 0.299 0.302 0.303 0.281 0.326 0.397 0.373 0.500 0.480 0.116 0.448 0.412 0.313 0.368 0.343 0.162 0.279 - 0.149 0.124 0.270 0.250 

HU 0.260 0.127 0.192 0.116 0.228 0.104 0.256 0.212 0.209 0.318 0.280 0.256 0.342 0.300 0.212 0.262 0.212 0.075 0.244 0.235 - 0.403 0.643 0.247 

CR 0.208 0.115 0.256 0.163 0.260 0.200 0.302 0.320 0.239 0.409 0.320 0.163 0.273 0.282 0.231 0.231 0.244 0.115 0.231 0.250 0.296 - 0.396 0.243 

LI 0.286 0.111 0.321 0.185 0.333 0.000 0.357 0.370 0.333 0.318 0.240 0.286 0.393 0.321 0.286 0.357 0.250 0.000 0.250 0.250 0.423 0.393 - 0.651 

LA 0.143 0.076 0.141 0.116 0.190 0.130 0.140 0.275 0.299 0.318 0.280 0.186 0.177 0.138 0.063 0.150 0.138 0.063 0.115 0.324 0.278 0.253 0.481 - 

Note: AU - Austria, BE - Belgium, BU - Bulgaria, CR - Croatia, CZ – Czech Republic, DE - Denmark, FI - Finland, FR - France, GR - Greece, HU - Hungary, IR - Ireland, IT - Italy, LA - Latvia, LI - Lithuania, NL - 

Netherlands, PL - Poland, PR - Portugal, RO - Romania, SK - Slovakia, SL - Slovenia, SP - Spain, SW - Sweden, UK – United Kingdom, US – United States; Pearson correlation is presented above the 

diagonal, while the right-tail dependence (chi) is presented below the diagonal; for two pairs (LI and DE, and LI and the US) the value of chi is estimated to be zero; the dark-shaded cells represent 

statistical significance at the 1, medium-dark-shaded at the 5 and light-shaded at the 10 percent level (obtained by 1,000 bootstrap replications). 
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As one would expect the lowest right tail chi's in general were depicted for either very liquid 

markets such as the UK and the US or for economies that are perceived stable in terms of public 

finance such as Denmark and Sweden. Also interesting is the case of Slovenia – a small Central 

European country that appears in 25 percent of pairs with highest right tail dependence 

indicators. Slovenia shows evidence of very high positive tail dependence with Bulgaria, Croatia, 

the Czech Republic, Slovakia and Romania. This country has experienced significant public 

finance and banking troubles in the past few years which culminated after the 2013 Cyprus 

financial crisis when Slovenia was not able to issue new sovereign bonds as the sovereign bond 

market shut down for that country and it was forced to turn to private placement financing 

instead.  

The shaded areas in Table 3 represent statistical significance of right tail chi at the 1, 5 and 10 

percent level obtained by applying bootstrap-based approach derived on the basis of theoretical 

analysis in Davis et al. (2012). There are 229 pairs of countries for which the observed right tail 

dependence is statistically significant at the 10 percent level. This corresponds to 83 percent of 

all pairs explored here. Among developing sovereign markets there are several interesting 

findings. The US sovereign bond market exhibits significant and strongest right tail dependence 

with the UK market and appears to be less prone to extreme spread co-movements with 

continental EU sovereign bond market. 

The UK bond market on the other hand records extreme sovereign bond spread upswings when 

extreme spread upswings are recorded in French, Irish, German, Finish, Italian, Spanish, 

Portuguese, Belgian, Dutch, and Austrian sovereign spreads. We can thus conclude that British 

government bonds might be exposed to turmoil taking place in the European Monetary Union, 

even though it is not a member of the Monetary Union. Extreme upswings in Swedish bonds also 

appear to be less frequently correlated with upswings taking place in sovereign bond markets in 

the EMU countries, as we found evidence of significant and strong right tail dependence with the 

Bulgarian, Czech, and Polish bond markets. In comparison, right-tail cross-country co-movement 

structures for other developed European economies are more complex as they include 

significant extremal dependencies with other developed EMU and non-EMU countries, but also 

with developing countries. One also has to note the lack of right tail dependencies between the 

Greek sovereign bond market and sovereign markets of other countries, but this is probably due 

to the fact that we could only obtain Greek spreads for the most turbulent period (e.g. from 2007 

to 2014), which in turn might mean that even though 20 percent of the time Greek sovereign 

bonds exhibited extremal weekly surges, many extreme changes in Greek spreads possibly did 
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not even end up in the tail.  

According to the results of the test of presence of asymptotic tail dependence, developing 

European countries which are also often referred to as the new EU member states show 

statistically significant strong positive tail dependence with a number of countries. Extreme 

increases in sovereign bond spreads in all new member states seem to be equally exposed to 

corresponding increases in both developed and developing countries. The only exception is 

Latvia for which extreme increases in sovereign bond markets are not correlated with changes 

of the similar magnitude in the Czech sovereign bond market, or with similar changes in other 

nine developed countries. It is also quite interesting to note that bond markets of all new 

member states except Latvia exhibit significant right tail dependence with the Greek, Italian, 

Portuguese, and Spanish sovereign bond markets, which might mean that they are vulnerable to 

adverse sovereign bond developments in the European periphery.  

 

Concluding remarks 

The aim of this study is to assess the linkages among sovereign bond markets during crises 

periods using univariate and bivariate statistics derived from extreme value theory. In the first 

part of the empirical analysis we show that for at least some countries sovereign bond changes 

are well described by a regularly varying heavy tailed distribution. For some other countries it 

seems that the exponential function would be a better fit. Although for some countries there is 

no sign of power-law-tail behavior, spread changes for each and every one of them have tails 

significantly heavier than normal. But, as one might expect, they do not belong to the same class 

of distributions. 

Statistical significance of right tail chi at the 1, 5, and 10 percent level obtained by applying 

bootstrap-based approach derived on the basis of theoretical analysis in Davis et al. (2012) is 

detected for 229 pairs of countries. This corresponds to 83 percent of all pairs. 

The results suggest that the US sovereign bond market exhibits significant and strong right tail 

dependence with the UK market and appears not to share much extreme right tail co-

movements with sovereign bond markets of continental European countries. The UK bond 

market on the other hand does exhibit joint right tail co-movements with French, Irish, German, 

Finish, Italian, Spanish, Portuguese, Belgian, Dutch, and Austrian sovereign spreads, thus 

suggesting that European debt crisis might have adversely affected British government bonds 
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even though the UK is not a member of the European Monetary Union. Extreme increases in 

sovereign bond spreads in new EU member states appear in all pairs of these countries instead 

of the Latvia-Czech Republic pair. Bond markets of all new member states except Latvia exhibit 

significant right tail dependence with the Greek, Italian, Portuguese, and Spanish sovereign bond 

markets, which makes them vulnerable to adverse sovereign bond developments in the 

European periphery. 

The results of our investigation suggest that national borders do not seem to matter much for 

sovereign bond market spillovers. As a result of financial account liberalization and consequent 

free movement of capital and financial integration, financial turmoil quickly spreads across 

borders. From the standpoint of national financial stability, extremal dependence of sovereign 

bond markets can thus be regarded as a drawback of intensified financial integration that 

requires surveillance that cannot be limited to national borders.  
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Appendix 1 

Qq-plots are presented on the left and a modified version of the qq-plot (one in which the data 

are in logarithms) are presented on the right. Both plots are designed for threshold data and 

compared either to the exponential distribution or to the Pareto (or power-law) distribution. 

The straight line on the graph is shown to help the interpretation of the graph. If the figure on 

the left shows that the data above a chosen threshold diverge from the straight line in a concave 

form, there is a reason to suspect heavier tail in the data than in the theoretical exponential 

model. The figure on the right then compares the data with a power-law distribution. A good fit 

is again indicated by accumulation of points near the straight line. 

The X axis presents ordered data, while the Y axis for the graph on the left presents exponential 

quantiles and for the graph on the right it presents exponential quantiles of the logarithm of the 

time series observed. 
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Appendix 2 

The figure on the left presents the Hill plot while the figure on the right shows the alternative 

Hill plot or altHill (with the ordered statistics in logarithms). 

The Y axis presents the tail index (alpha) together with a 95 percent confidence interval (the 

latter available only for the Hill plot), while the X axis for the graph on the left presents order 

statistics and for the graph on the right it presents the logarithm of order statistics. Numbers 

above the Hill plot suggest the threshold level. 
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