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Abstract 
We examine the links between startup performance and new measures of workforce human 
capital.  We apply machine learning techniques to a rich new source of longitudinally-linked data 
to characterize the research experienced workforce of new businesses.  Startups with more 
research experienced workforce are more likely to survive, become successful and more likely to 
grow. 
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Introduction 
The past decade has been characterized by a decline in both the formation and the success rate of 
new firms (1); the reasons for the decline are not fully understood. In this paper, we use new 
measures of human capital to investigate the contribution of human capital composition to 
declining dynamism. In doing so, we draw on the literature that suggests that economic growth 
can be significantly affected by workers specialized in R&D (2, 3)  and that has indirectly shown 
links between investments in research and innovation (4–6). The work complements an extensive 
literature that links regional economic development clusters with the presence of active research 
universities (6–9). The findings are consistent with the notion that an important source of 
knowledge transfer is the flows of research experienced workers from one firm to another (10, 
11). 
 
We incorporate new individual-level measures of R&D human capital, including research 
training, of the workforce at both startups and young firms to directly examine the connection 
between an R&D trained workforce and new business success. As such, the paper also 
demonstrates a new pilot approach to scaling and augmenting existing data collected at a local or 
regional level or for a subsample of firms and individuals. Using survey data to document the 
impact of research funds on local and national economic outcomes would both be prohibitive in 
terms of cost and uncertain in terms of quality. As such, we utilize machine learning to scale our 
sample and generate estimates of the workforce with research experience. 
 
The results suggest that a one-unit increase in the number of research experience employees in a 
startup firm’s workforce increases its probability of survival to the next period by 1.7%, and 
increases the likelihood of becoming a high-growth successful startup by 0.8%. Workers with 
experience in research increase the likelihood of startup success (defined as having survived for 
5-years with 10+ employees) by 2.9%, over and above workers who had been employed by 
universities, High Tech or R&D performing firms.  
 
These results are consistent with the view that there is a relationship between workforce 
experience and business startup and survival. Further work using these data will be necessary to 
examine temporal dynamics. It will be particularly interesting to understand whether changes in 
the fluidity of this type of workforce, changing patterns of firm-to-firm job flows, or changes in 
the nature of research funding, can be tied to the decline in business dynamism and changes in 
the distribution of employment growth rates.  

Literature 
There is a growing body of evidence about the decline in business dynamics in the past 30 years  
(12–14). At least some of this is due to the decline in responsiveness of both young and mature 
businesses to shocks, which have resulted in substantial changes  in  the  contribution of 
reallocation to productivity growth (15).   The findings are evident in all geographic areas as well 
as in narrowly defined industries.  In addition, the distribution of growth rates has narrowed 
substantially since the 1990’s, suggesting the relative returns to success have declined (15).  
While some research suggests that the decline is due to changes in demographics (16), the 
growth rate of labor supply (16) or due to the slowing of progress on the technological frontier 
(17–19), the core reasons are not well understood (1). 
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One possibility is that hitherto unmeasured workforce characteristics are contributing to changes 
in business dynamism.   The decision to start a business, and its subsequent productivity and 
success is associated with having an entrepreneurial workforce (7, 20).    It is  clear that the past 
40 years have also been characterized by declining labor market fluidity (21).  This finding is 
important since worker reallocation is one way in which economic growth occurs and there is a 
great deal of worker reallocation in the economy (22, 23). However, it has been difficult to use 
standard measures of workforce characteristics to explain the changes in business dynamism.   
Age, sex and marital status have limited explanatory power (21), and the standard measure of 
human capital – years of education – does not change rapidly.  However, Kerr et al. suggest that 
other measures of human capital, such as experimentation, may be important factors (13).  
Related work also suggests that highly innovative individuals make “exceptional” contributions 
to economic growth (24). 
 
There is a new opportunity to develop proxies for such other measures, particularly with the 
advent of new longitudinally linked datasets. Human capital in such areas as experimentation 
may be acquired through both formal training and on the job learning.  As such, sensible 
measures might include experience in R&D performing or High Tech businesses.  Linked 
employer-employee data, such as the LEHD data (25), can be used to construct such measures.   
Such data have been used in the past to generate different measures of individual experience at 
different types of businesses (22).   Barth et al., for example, show that there are returns to 
experience at R&D performing firms (26); Abowd et al. also use linked data to compute person 
specific measures of human capital (27).   
 
More direct measures of research human capital are now available, which include specific 
information on whether workers are trained in scientific research.   Arguably, the scientific 
method is the encapsulation of experimentation and refinement in the face of both success and 
failure. The new longitudinally linked data on the research trained workforce - the UMETRICS 
data, (28)  - have been used in other contexts and do suggest that research trained individuals are 
more likely to work at firms with characteristics closely linked to productivity (29). 

Approach, Data and Measurement 
Our framework posits that startup outcomes (Y) such as the survival and subsequent success of a 
startup f at time t is driven by capital and technology (AK), quantity and quality of labor 
measures (L) such as human capital, and external factors (X) such as macroeconomic conditions 
and industry factors. Functionally, we can think of outcomes being written as: 
 

𝑌𝑌𝑓𝑓𝑓𝑓 = 𝑓𝑓�𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓, 𝐿𝐿𝑓𝑓𝑓𝑓,𝑋𝑋𝑓𝑓𝑓𝑓� 
 
For firm f at time t. We construct measures for each of these components using existing Census 
microdata on linked employee-employer data, longitudinal firm-level data, as well as existing 
surveys which indicate whether or not the firm is or was an R&D performing firm. We 
supplement this data with new data from UMETRICS, which identifies all individuals who were 
paid on research grants for 14 universities that account for approximately 15% of federally 
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funded research. Our primary focus is constructing components for the measure 𝐿𝐿𝑓𝑓𝑓𝑓, which 
consists of the attributes of the startup workforce at time t=0.  

Identifying Startups and Startup Outcomes 
We create a Startup Firm History File (2005-2014) based on a panel database of age zero 
establishment attributes. The primary frame for the data is the Longitudinal Business Database 
(LBD), supplemented with additional information from the Census Bureau’s Business Register 
upon which the LBD is based.  We utilize this file to identify startups by yearly cohort. Once the 
startups have been identified, we supplement the data with geocodes and EINs taken from the 
Business Register. These variables are used to subsequently characterize the workforce 
associated with each startup gathered from LEHD (Longitudinal Employee-Household 
Dynamics) and W2 records. The full file contains data on employment, payroll, industry, 
geography, firm-type and birth/date of the firm. 
 
Figure 1 below provides a graphical summary of the number of startups each year, including the 
share that fail in the subsequent years. 
 

 
Figure 1: Number of Startups and their Death Rates first 5 years4 

 
Figure 1 shows the counts of startups, as well as exits in each subsequent year, for the data 
sample.   It also shows how many “successful” startups there are (defining success as surviving 
to year 5 and having more than 10 employees). Consistent with earlier findings, the number of 
startups declined by more than 25% from 2005 and 2013.  More than 30% of startups fail before 
Year 2 and more than 50% of startups fail before Year 5. The rate of success for startups is 8% 
each year, meaning that more than 90% of all startups in any year either die or fail to hire more 
than 10 employees within 5 years. 
                                                 
4 Source: Business Dynamic Statistics and Startup History File.  
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Characterizing the Startup Workforce 
 
To characterize the workforce associated with each startup we create a Startup Worker History 
File (2005-2014) derived from individual level data on jobs.  Universe data on jobs come from 
administrative records.  Each paid job for each individual from 2005-2014 is reported at the 
Employer Identification Number (EIN) level via IRS form W2 and state-level Unemployment 
Insurance wage records.  The latter underlie the core LEHD infrastructure (25) and are necessary 
to identify the establishment for the bulk of multi-unit firms (30).   The combined data includes 
more than 2.6 billion person-EIN-year observations (approximately 1.83 billion match across the 
W2 and LEHD/UI universes, 550 million are found only in the W2 records and 320 million are 
only found in LEHD). We then enhance this data with the Individual Characteristics File (ICF), 
which includes demographic data on persons including sex, age, race and place of birth.5  We are 
able to link 48 million of the 2.6 billion person-EIN-year observations to startups, giving us an 
average of nearly 4.5 million person-startup observations each year.6  
 
We derive the human capital characteristics for each individual worker in the startup workforce 
at each time t from their work history in the previous three years. We create separate flags for 
whether the individual worked for (i) an R&D performing firm, (ii) a firm in a High Tech 
industry, (iii) a national research university and (iv) a national research university and paid on a 
research grant.  The individual level data are then aggregated to create human capital 
composition measures for each startup for each year.  The first three of these human capital 
measures are derived from a combination of different sources of internal Census Bureau data.   
The last is derived from new UMETRICS data combined with machine learning methods as 
described below.  
 
The R&D measure is created from adding firm-identifiers based on the Business Innovation and 
Research and Development Survey (BRDIS) and Survey of Industrial Research and 
Development (SIRD)7. A firm is classified as an R&D firm if it has positive R&D expenditures 
during the year the employee was affiliated with the firm. The High Tech industry classification. 
The High-Tech industries is derived from work by Hecker (31, 32), which is based on the 
relative concentration of STEM workers. The university measure is derived from data from 
IPEDS and the Carnegie Institute which provide a frame of universities in the United States. We 
then merge in national university research outlays collected by National Center for Science and 
Engineering Statistics at the National Science Foundation and keep the top 130 universities that 
comprise of 90% of total federally funded R&D research.  
 
The identification of individuals working on research grants can be derived from UMETRICS 
data (33), which includes 14 universities accounting for 15% of federally funded research.  The 
UMETRICS data are universe data from the personnel and financial records of universities.  
Although four files are provided by the university, the key file of interest in this project is the 

                                                 
5 A detailed discussion on the matching process and match rates is provided in the appendix. 
6 This figure differs from the reported BDS statistics, which calculate employment at startups at a specific point in 
time (March 12). Our figures are higher, reflecting employee-employer transitions (i.e. workers who work briefly for 
a startup and then move to a different job). The 48 million observations represent 37.8 million unique individuals. 
7 We use the SIRD to identify R&D firms between 2005-2007 and BRDIS for 2008-2014 
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employee file. Briefly, for each funded research project, both federal and nonfederal, the file 
contains all payroll charges for all pay periods (identified by period start date and period end 
date) with links to both the federal award id (unique award number) and the internal university id 
number (recipient account number). In addition to first name and last name, and date of birth, the 
data include the employee’s internal de-identified employee number, and the job title (which we 
mapped into broad occupational categories). Each university provided data as far back as they 
had reliable records (see Appendix for more details).  We extend the measure to all universities 
and back to 2005 using machine learning approaches; that is discussed in the next section. 
 

Machine Learning and Identifying Individuals funded from research grants 
The current UMETRICS frame consists of 14 large research universities, with several 
concentrated in the Midwest.  Although some have provided data from the early 2000s, the bulk 
provide data in the latter years of our sample. The current UMETRICS frame consists of 140,000 
research trained individuals that can be linked to Census data and used to create a training dataset 
for machine learning purposes.    
 
The training dataset consists of the employment and earnings records of all 14 UMETRICS 
universities in the period in which they provide data.  By combining the UMETRICS and W2 
data, we can identify all 140,000 who were employed on research grants in those time periods as 
well as 1.4 million who are not. The out-of-sample set includes 6.8 million individuals paid by 
the top 130 research universities in our time frame. Importantly, the out-of-sample set includes 
years for some UMETRICS institutions outside of those provided by the universities.  
 
The link to Census data enables us to create a rich set of attributes that can be used to train the 
machine learning models. We are able to capture each employee’s earnings history before, 
during and after the employee’s time at the university, the dominant employer characteristics 
which include size, payroll, average earnings, industry, location and other-job earnings, in-state 
and out-of-state earnings, industry earnings, geographic variation (across all 50-states), 
university characteristics (collected from IPEDS, Carnegie Institute, NSF and NIH) which 
include average SAT scores, enrollment levels, public/private indicators, along with yearly 
variations and before/after/during (for the period t-2 until t+2 for the individual entering and 
exiting the university) across all variables. All of this is supplemented with demographic data 
collected from the Individual Characteristics File (ICF).  In total, we have over 1,500 person-EIN 
level features to train the machine learning algorithms. 
  
The success of our machine learning methods hinges on the extent to which there are measurable 
differences between research trained and non-research trained individuals. Table 1 below 
highlights some key differences between employees working on research grants and those not. 
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Table 1: Comparison of demographic and earnings characteristics 
 Research Trained Not Research trained 
Proportion Female 50.5 54.1 
Proportion White 73.2 77.2 
Proportion Hispanic 4.3 4.9 
Proportion Black 5.7 9.3 
Proportion Asian 14.1 6.2 
Proportion Foreign-Born 21.8 11.4 
Year of Birth 1977.7 1975.6 
Proportion in Professional/Scientific Services 18.4 14.3 
Professional/Scientific Earnings, t+1 42,500 33,700 
Source: W2 and UMETRICS data.  
Note: Each of these are significantly different at p<0.001.  
 
Research trained individuals tend to be disproportionately male, Asian, foreign-born and younger 
relative to non-research trained employees (employees at the same institution but not affiliated 
with research grants). Research trained individuals are also more likely to be employed in 
Professional and Scientific services subsequent to leaving the university and have an earnings 
premium that is 30% higher in Professional and Scientific services in the year immediately 
following their exit from the university.  
 
The quality of our classification methods will also depend on the extent to which our 
UMETRICS universities are broadly representative of the 130 out-of-sample research 
universities. Table 2 compares the national university sample with the UMETRICS sample. As 
we can see, the majority of universities included in the sample are large, public universities with 
medical schools attached to them. The UMETRICS sample is slightly larger on average and 
expends more on R&D. There are approximately 6.8 million Out-of-Sample individuals 
employed at these universities between 2005 and 2014. 
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Table 2: Comparison of university characteristics 
 130 Universities UMETRICS Sample8 
Mean R&D Expenditure ($000, 2014 424,600 661,700 
Mean Non-R&D Expenditures ($000), 2014 20,400 35,800 
Mean # of NIH Awards, 2014 270 440 
Mean Annual Enrollment 30,800 43,400 
Mean Amount of NIH Awards ($000), 2014 112,500 180,900 
Mean Undergraduate Enrollment, 2014 19,800 27,700 
Mean Bachelor Degrees Awarded, 2014 4,700 6,900 
Mean Graduate Enrollment, 2014 7,900 11,800 
Mean Master Degrees Awarded, 2014 1,900 3,100 
Mean Doctoral Degrees Awarded, 2014 700 1,100 
Mean Total Degrees Awarded, 2014 7,300 11,100 
Mean Faculty Number, 2014 1,400 2,200 
% Private 28.5 30.8 
% Land Grant 40 61.5 
% with Medical School 69.2 84.6 
Mean SAT Combined, 2014 1,140 1,190 
Source: IPEDS and the Carnegie Institute.  
 
The objective of our machine learning approach is to classify individuals in the out-of-sample set 
as to whether or not they participated in (were paid by) grant funded research. Our methodology 
proceeds as follows. First, we execute several feature selection models. Second, we estimate a 
series of supervised learning classification models with different parameterizations. Third, we 
perform a number of cross validation exercises to assess the sensitivity and robustness of the in-
sample predictions. Finally, we use our preferred specification to predict which of the 6.8 million 
out-of-sample individuals participated in grant-funded research.  
 
We perform a series of feature selection exercises to reduce the number of attributes considered 
by each learning model. Feature selection can provide a number of benefits including avoiding 
over-fitting, reducing computational burden, and improving prediction quality by filtering low 
value added features and/or selecting a subset of the most valuable featured based on prediction 
quality(34). We explore several univariate feature selection methodologies including k-best chi 
squared and univariate k-best by decision tree precision. We also use mean decreased impurity in 
a multivariate random forest model(35). Finally, we develop some hand-curated feature sets 
based on iterative implementation and testing. Each of the resulting feature subsets are used to 
train the classification models. 
 
For each of the k-best methods we select the top 50 features.9 The k-best chi squared method 
estimates the chi-square test statistic between each feature and class (research training status) and 
selects the top k features based on those estimates. This method measures the dependence 
                                                 
8Ohio State University, Penn State, Purdue, Michigan State, New York University and the Universities of Arizona,  
Illinois (Champaign-Urbana), Iowa, Michigan, Missouri, Wisconsin. 
9 In the future, we plan to experiment with the 100 and 200 best by each method.  
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between each feature and class removing those that are most likely to be independent of research 
training status and therefore less useful for classification. The k-best decision tree method 
estimates a decision tree classifier for each feature and class individually and evaluates the 
quality of in-sample predictions based on that single feature. Intuitively, features that have less 
predictive value will produce lower quality predictions when used in a univariate classification 
model. Features are ranked according to the mean stratified 3-fold cross-validated precision 
score from fitting the decision tree classification model for each feature-class combination. 
Precision, discussed in more detail below, captures the probability that a randomly selected 
positive predicted research training status is true. For our purposes, precision is the most relevant 
measure since we are most interested in measuring economic outcomes associated with 
positively classified individuals in the out-of-sample set.  
 
Multivariate feature selection methods improve upon univariate methods by incorporating the 
complex interactions that can occur between features in supervised learning classification 
models. We calculate the k-best features by mean decreased impurity (Gini importance) in a 
random forest classifier(36). The Gini importance measure is derived from the Gini index used to 
split the data at each node, which captures the level of impurity/inequality among samples 
assigned to a node based on the split from its parent node(37).  
 
We estimate several classification models including logistic regression, decision tree, and 
random forest. The first classification model we estimate is a logistic regression classifier, a 
classic supervised learning method for binary classifications problems(38, 39). This model 
serves as a baseline from which we compare the performance of the tree-based methods. The 
second classification model we estimate is the decision tree model(36). Finally, we estimate a 
series of random forest models with different parameterizations (40). We explore a series of 
evaluation metrics for in-sample predictions resulting from different parameterizations of the 
random forest classifier. 
 
To evaluate our predictions, we calculate several quality measures including accuracy, precision, 
recall. We also use the share of false positives and false negatives to guide model selection and 
parameter tuning. Accuracy captures how often the model is correct with respect to both positive 
and negative classifications. This measure will tend to be less useful for our purposes since we 
are most concerned about correctly identifying positives (those that participated in grant funded 
research). Accuracy is defined in the following way.  
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 =
𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑡𝑡 + 𝑓𝑓𝑡𝑡
 

 
Where tp, tn, fp, and fn are true positives, true negatives, false positives, and false negatives 
respectively.  Precision can be thought of as the probability that a randomly selected person 
predicted to have participated in grant funded research actually did. Recall, on the other hand, 
captures the probability that a randomly selected grant funded researcher was correctly 
classified. Since we are primarily interested in the quality of positive classifications, in the 
discussion that follows precision will be our primary measure of quality. 
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𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑡𝑡
 

 

𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿 =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑡𝑡
 

 
The accuracy, precision, and recall measures estimated by training and predicting using the 
entire training set will suffer from over-fitting. To avoid this issue, and obtain a more accurate 
measure of model quality, we perform several cross validation exercises. First, we execute a 
stratified K-fold cross validation strategy. Second, we perform “Leave-One-Out” cross validation 
at the university level. 
 
Using stratified K-fold cross validation, we segment the data into 10 folds stratified in such a 
way that each sample contains approximately the same relative frequency of observations within 
each class (research trained (1s) and non-research trained (0s)). We then cycle through each fold, 
training the classification algorithm using the K-1 samples and test on the Kth. For the “Leave-
One-Out’ cross validation we iterate over the UMETRICS universities leaving one out, training 
the model using the remaining universities and predict on the excluded university. This allows us 
to simulate the addition of a new university to the UMETRICS data.  
 
Table 3 shows the in-sample evaluation metrics for the logistic regression and decision tree 
classification models using several feature selection sets. 
 
Table 3: Logistic Regression and Decision Tree Classification Results 
 Logistic Regression Decision Tree 
Feature Set Chi-

Squared  
Decision 

Tree  
Impurity  Chi-

Squared  
Decision 

Tree  
Impurity  

In-Sample Accuracy 88.405  88.431 88.422 99.984 97.847 99.996 
In-Sample Precision 32.090 30.000 33.566 99.991 99.254 99.995 
In-Sample Recall 0.274 0.064 0.170 99.872 81.987 99.970 
Mean 10-Fold 
Precision 30.034 36.656 36.852 28.158 27.386 31.542 
Source: UMETRICS, W2, LEHD, LBD, ICF and BR. 
 
The results in Table 3 show that while accuracy is relatively high with the logistic regression 
classifier, it generally fails to predict research trained individuals with precision of roughly 31 
across the different feature sets. Moreover, the recall for the logistic regression model is very 
poor. The decision tree results for all three feature sets, on the other hand, appear very promising 
with nearly perfect accuracy and precision. However, in the stratified 10-fold validation we see 
that while the logistic regression model retains its precision scores of roughly 30 in the cross 
validation, the decision tree model performs significantly worse in cross validation. This 
suggests that the decision tree tends to over-fit the training sample. Table 4 shows the results 
from the random forest classifier across the feature sets. 
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Table 4: Random Forest Classification Results 
 Random Forest 
Feature Set Chi-

Squared  
Decision 

Tree  
Impurity  Hand-

Curated 
Estimators 50 50 50 50 
Maximum Depth 50 50 50 50 
In-Sample Accuracy 99.703 97.277 99.950 99.924 
In-Sample Precision 99.990 98.971 99.991 99.981 
In-Sample Recall 97.443 77.248 99.580 99.365 
Mean 10-Fold Precision 99.849 70.816 99.806 62.222 
Mean University-Fold 
Precision 86.873 86.661 86.710 

 

Source: UMETRICS, W2, LEHD, LBD, ICF and BR. 
Note: Fewer than 50 estimators and lower maximum depth results in significant loss of 
precision and accuracy while additional estimators and depth yield little additional quality 
improvements and entail significant additional computational resources. The hand-curated set 
includes demographic variables and demeaned earnings for individuals during their time at 
the university. 
 
The results in Table 4 suggest that the random forest classifier, by aggregating many different 
decision trees, avoids some of the over-fitting issues in the decision tree results. The accuracy, 
precision, and recall across the different features sets are high, with exception of the recall score 
for the univariate decision tree feature set, which drops from over 97 to about 77. This pattern is 
also evident in Table 3, where we see the univariate decision tree produces lower recall scores 
for both the logistic regression and decision tree classifiers. We also show in Table 4 the results 
using a hand-curated set of features, which includes demographic variables and demeaned 
earnings. We create this hand curated set by iteratively experimenting with different 
combinations of features to balance the quality of in-sample predictions with the number of out-
of-sample positive predictions. 
 
Applying our preferred classification model, the random forest estimator with the hand-curated 
feature set, to the out-of-sample set identifiers an additional 188,000 individuals who are likely 
to be research trained. Table 5 below compares the out-of-sample results with the in-sample and 
individuals not likely to be research-trained. 
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Table 5: Comparison of Economic and Demographic Characteristics  
 Research Trained Not research 

trained In Sample Out of Sample 
Proportion Female 50.5 47.8 54.1 
Proportion White 73.2 67.6 77.2 
Proportion Hispanic 4.3 7.1 4.9 
Proportion Black 5.7 5.6 9.3 
Proportion Asian 14.1 16.2 6.2 
Proportion Foreign-Born 21.8 25.6 11.4 
Year of Birth 1977.7 1976.2 1975.6 
Proportion in Professional/Scientific 
Services 

18.4 18.4 14.3 

Professional/Scientific Earnings, t+1 42,500 41,250 33,700 
Note: Each of the differences listed in this table are statistically significantly different at p<0.001. 
 
The out-of-sample prediction of research training compares favorably with the known in-sample 
group of research trained individuals. There are a couple of notable differences however. The 
out-of-sample is significantly more likely to be male, Hispanic and foreign-born than the in-
sample.  
 
Our combined data consists of a national sample of Startups and their outcomes between the 
years 2005 and 2014, as well as a national sample of all workers affiliated with these startups, 
along with 4- main designations of human capital attributes assigned to each worker. The next 
section explores some basic summary tables and findings for these different types of workers and 
their potential impact on startups.  

Basic Facts 
This section establishes some basic facts on the human capital composition of the startups by 
year, as well as startup outcomes. As Figure 1 shows, the majority of Startups fail within 5-years 
and more than 90% of Startups either die or hire fewer than 10 employees within the first 5-years 
of existence. Of course, not all startups are the same and since we are primarily interested in the 
dynamism of the US economy, we will also focus on high growth startups within sectors likely 
to employ a research trained workforce including “industrial” startups (defined as being a startup 
engaged in either manufacturing, information technology, finance, professional/scientific 
services and health care), and High Tech startups (classified according to STEM concentration).  
  
Figure 2 shows the size distribution for all startups, along with their average earnings distribution 
at time t=0. 
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Figure 2: Startup Size and Earnings Distribution at time t=0 

 
 

The vast majority of Startups are extremely small in their first year as 75% of all startups have 
fewer than 5 employees at time t=0, with more than 50% of startups having 2 or fewer 
employees. Fewer than 5% of Startups hire more than 20 employees in the initial period. This is 
consistent across all startup types as well. Also, most Startups offer relatively small earnings, 
with startups in High Tech industries typically offering the highest earnings. These two findings, 
combined with the high-rate of failure suggest that startups face significant capital. The small 
size also highlights the importance of human capital in the initial period. 

Human capital composition 
 
Table 6 below provides the total number of startup employees, along with the proportion of 
employees that have R&D experience, High-Tech experience, University experience and 
research grant experience10 within the 3-years prior to joining the startup.  
 
Table 6: Startup Employment Composition11 
Year Total ever 

employed at 
startup 

R&D 
Experience 

High Tech 
Experience 

University 
Experience 

Research 
experienced 

2006 6.82M    0.09 
2007 6.47M    0.09 
2008 5.74M    0.09 
2009 4.7M 19.3 11.1 2.6 0.09 
2010 4.56M 20.3 12 2.2 0.10 
2011 4.37M 21.2 13.7 2.4 0.10 
2012 4.53M 21.1 13.4 2.6 0.09 
2013 4.4M 22.2 14.2 2.7 0.09 

                                                 
10 Note that about 25,000 of the research experienced individuals working in startups are directly identified through 
UMETRICS data.  The balance are derived from the machine learning algorithm 
11 Since we focus on the prior 3-years work experience, the table is left-censored 
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Source: Startup Worker History and Startup Firm History Files.  

Approximately one in five workers in a startup has experience in an R&D performing firm and 
one in ten has experience in a High Tech firm.   About 3% of the startup workforce is affiliated 
with a university in the 3-years prior to the startup, and roughly 5% of the university affiliated 
workforce has worked on a research grant.  
 
Table 7 shows the human capital composition by startup type. 
 
Table 7: Human-Capital Composition by Startup Type  
 Former High-

Tech 
Employees 

Former R&D 
Employees 

Former University 
Employees 

All Startups 10% 17% 2% 
High Tech Startups 94% 26% 4% 
Industrial Startups 16% 20% 3% 
Source: Startup Worker History and Startup Firm History Files. 

 
The table makes it clear that High Tech startups are nearly entirely composed of High Tech 
employees and have much greater proportions of workers who were previously at R&D 
performing firms.  They also have twice as many former university employees as other startups.  
Similarly, industrial startups have higher proportions of employees with experience at High Tech 
and R&D performing firms, as well as more employees with university experience. 
 

Startup Outcomes and workforce characteristics 
 
This section provides some initial descriptive results about the link between workforce 
experience and startup outcomes. 
 
The outcome variables of interest are measured as follows:  

1. Survival to period t+1,  
2. Success (defined as having survived for at least 5-years and employ 10+ employees at 

time t+5),  
3. High Growth (defined as having survived for at least 5-years, employ 10+ employees at 

time t+5 and be in top ten percentile of employment growth among your cohort 
(conditional on employing 5+ employees at time t=0)),  

4.  Employment Growth to t+1 (conditional on having at least 5+ employees at time t=0),  
5.  Employment Growth to t+5 (conditional on having at least 5+ employees at time t=0).  

 
We standardize our descriptive analysis by defining a startup’s workforce as “intensive” in one 
of our human capital dimensions if it employs more of a certain type of worker than the median 
startup within a size group. This means that for all startups of size 10 at time t=0 for example, we 
compare the outcomes of startups that employ disproportionately more R&D workers to startups 
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that employ disproportionately less R&D workers. The results for survival outcomes are reported 
below in Figure 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Survival by Human capital intensity 
 
Figure 3 is consistent with the view that startups with higher proportions of high human capital 
employees are more likely to survive. We see a clear separation in the survival probabilities of 
startups that hire University employees and research trained (UMETRICS) employees intensely. 
There is minor separation in the survival probabilities for High Tech startups and almost no 
difference in the survival probabilities between employees with and without experience in R&D 
performing firms.  
 
Figure 4 shows the results of a similar analysis using a measure of whether the startup was 
successful (defined as having 10+ employees and surviving for 5+ years). 
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Figure 4: Startup Success and Human Capital Intensity 
 
There are minor differences in the probability of startup success for those startups that hire R&D 
employees intensively, as well as startups that hire High Tech employees intensively. 
Interestingly, there is almost no difference in the success outcomes for startups that hire 
university employees intensively. However, there is a substantial difference in the success 
outcomes for startups that hire research trained (UMETRICS) employees.  
 
Finally, Figure 5 shows the results of a similar exercise that compares the outcomes for whether 
a startup is a high growth startup (defined as having 10+ employees and being in the top 10% of 
the employment growth rate distribution within their startup year cohort). 
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Figure 5: High-Growth Success and Human Capital Intensity 

 
There are clear differences in the probability of high growth success across all designations of 
human capital.   The results are consistent with those shown in Figures 3 and 4, but do display 
more dispersion.  This may be due to the fact that these high growth firms make up fewer than 
1% of the total number of startups, creating more volatility and disclosure restrictions for the 
subset of firms that hire more than 20 employees in the initial period. 

Analytical Results 
The basic framework was provided in Equation (1). We assume that the functional form of 
Equation (1) is a linear combination of exponential functions, allowing us to use a log-linear 
estimation and calculate multiple outcome measures for each startup (survival, “success”, “high-
growth success” and employment growth) both one and five years after the birth of the firm. We 
regress these outcomes against the startup’s workforce and other characteristics in the year of 
firm birth (t=0). 
 
Our main empirical specification is as follows 
 

𝑌𝑌𝑓𝑓 =  𝛼𝛼 +  𝛽𝛽1 ln𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑓𝑓0 + �𝛿𝛿𝑘𝑘𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑘𝑘𝑓𝑓0

9

𝑘𝑘=1

+  𝛽𝛽2 ln𝐴𝐴𝐴𝐴𝑃𝑃𝑓𝑓0�������� +  𝛽𝛽3 ln𝐹𝐹𝑃𝑃𝐹𝐹𝐴𝐴𝐿𝐿𝑃𝑃𝑓𝑓0

+  𝛽𝛽4 ln𝐹𝐹𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑓𝑓0 +   𝛽𝛽5 ln𝐴𝐴𝑅𝑅𝑓𝑓0 +  𝛽𝛽6 ln𝐻𝐻𝐻𝐻𝑓𝑓0 + 𝛽𝛽7 ln𝐴𝐴𝑃𝑃𝑃𝑃𝑓𝑓0
+  𝛽𝛽8 ln𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ 𝑃𝑃𝐸𝐸𝑡𝑡𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑓𝑓0 +  𝜀𝜀 
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The key measures of interest are the workforce human capital measures – the number of workers 
who have worked in R&D performing firms, High Tech firms, universities – as well as the 
number who have direct research experience. Since the Census Bureau does not have direct 
measures of technology, we control for industry, detailed geography and year.  We also include 
mean earnings of the workforce as well as firm employment size categories. External 
macroeconomic conditions are proxied by zip code-year fixed effects and industry fixed effects.  
 
The first specification separates all of the human capital designations in order to separately 
describe the relationship between each type of human capital and startup outcomes before 
applying control factors.    
 
Figure 6 reports the coefficient estimates of the standalone human capital designations by firm-
size for 2 separate outcomes: survival and success. The results show that the standalone human 
capital coefficients decline as the firm gets bigger, highlighting that there may be diminishing 
marginal returns to the employment of each additional type of worker. The returns to each type 
of worker declines very rapidly for the survival outcome, with a more modest and steady decline 
in the success rates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Coefficient Values of Standalone Human Capital Measures by Firm Size 
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Table 8 provides the key results associated with the full regression, including all control variables. Briefly, all measures of workforce 
R&D experience are positively and significantly related with startup survival and success.  A one unit increase in the worker-type 
leads to approximately 0.07%-2.45% increase in the survival rate to year t+1, a 1.6%-7.7% increase in the probability of becoming a 
high-growth success and between 2-6% increase in the employment growth rate. The effects are less dramatic depending on the 
human capital measure, but each measure shows a consistent positive relationship.  Interestingly, the strongest effect appears to be for 
employment growth both one and five years from birth.  The results are very similar regardless of whether interaction terms are or not 
included, or whether startups are classified by starting size (see Appendix for details). 
 
Table 8: OLS on All Startup Outcomes, 2005-2014 

Outcome Variable Survival, year 1 Success, year 5 
High Growth Success, 

year 5 
Employment Growth, 

year 1 
Employment Growth, 

year 5 
ln𝐴𝐴𝑅𝑅𝑓𝑓0 0.0245*** 0.0149*** 0.00564*** 0.195*** 0.177*** 

 
(0.000528) (0.000306) (0.000135) (0.00146) (0.00335) 

ln𝐻𝐻𝐻𝐻𝑓𝑓0 0.000708 0.00747*** 0.00444*** 0.0586*** 0.0784*** 

 
(0.000685) (0.000396) (0.000175) (0.00179) (0.00422) 

ln𝐴𝐴𝑃𝑃𝑃𝑃𝑓𝑓0 0.0130*** -0.00347*** 0.00160*** 0.0570*** 0.0550*** 

 
(0.00112) (0.000648) (0.000287) (0.00266) (0.00649) 

ln 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ 𝑅𝑅𝐸𝐸𝑡𝑡𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑓𝑓0 0.0169*** 0.0285*** 0.00766*** 0.00841 0.0245 

 
(0.00394) (0.00228) (0.00101) (0.00832) (0.0189) 

Zip Code-Year FE Yes Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes Yes 

Observations 3,730,000 3,730,000 3,730,000 757,000 259,000 
R-squared 0.110 0.151 0.034 0.209 0.148 
 
Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; controls included for size and average earnings, proportion of workforce that is female, 
foreign born, and interactions of female, foreign born with research experience.  Full results in the appendix 
 
Tables 9 and 10 report the results for two different categories of startups - industrial startups and high-tech startups.    The results are 
substantively unchanged but there are a few noticeable differences. 
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Table 9: OLS on Industrial Startup Outcomes, 2005-2014 

Outcome Variable Survival, year 1 Success, year 5 
High-Growth 

Success, year 5 

Employment 
Growth, year 

1 
Employment 

Growth, year 5 
ln𝐴𝐴𝑅𝑅𝑓𝑓0 -0.00611*** 0.0151*** 0.00771*** 0.195*** 0.201*** 

 
(0.00105) (0.000649) (0.000315) (0.00317) (0.00744) 

ln𝐻𝐻𝐻𝐻𝑓𝑓0 0.0162*** 0.0190*** 0.00573*** 0.142*** 0.182*** 

 
(0.00104) (0.000648) (0.000314) (0.00341) (0.00803) 

ln𝐴𝐴𝑃𝑃𝑃𝑃𝑓𝑓0 0.00908*** -0.000379 0.00144* 0.0787*** 0.0908*** 

 
(0.00186) (0.00115) (0.000559) (0.00510) (0.0129) 

ln 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ 𝑅𝑅𝐸𝐸𝑡𝑡𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑓𝑓0 0.00476 0.0100* 0.00803*** -0.0372* 0.0365 

 
(0.00683) (0.00423) (0.00206) (0.0170) (0.0411) 

Zip Code-Year FE Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes 
Observations 1,134,000 1,134,000 1,134,000 194,000 73,000 
R-squared 0.107 0.164 0.052 0.303 0.205 
Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; controls included for size and average earnings, proportion of workforce that is female, 
foreign born, and interactions of female, foreign born with research experience.  Full results in the appendix 
 
We find that employing workers that worked previously for R&D firms has a negative and significant impact on survival for 
“industrial” startups, but an extremely strong impact on employment growth rates (especially, relative to the other human capital 
measures). This is consistent with the idea that hiring of these worker-types is especially risky. The impact of high-tech workers 
however is positive and significant across all outcomes and especially high. The impact of university-affiliated employees on 
industrial startups is also positive, while the impact of university-affiliated workers with research experience is modest, but very high 
in terms of yielding high-growth successful startups. 
 
Turning now to high-tech startups, we have Table 10. 
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Table 10: OLS on High Tech Startup Outcomes, 2005-2014 

Outcome Variable Survival, t+1 Success, t+5 
High-Growth Success, 

t+5 
Employment 
Growth, t+1 

Employment 
Growth, t+5 

ln𝐴𝐴𝑅𝑅𝑓𝑓0 -0.0436*** 0.00979*** 0.00748*** 0.0558*** 0.146*** 

 
(0.00262) (0.00153) (0.000776) (0.0101) (0.0269) 

ln𝐻𝐻𝐻𝐻𝑓𝑓0 0.0827*** 0.0493*** 0.00992*** 0.531*** 0.488*** 

 
(0.00247) (0.00145) (0.000733) (0.0126) (0.0342) 

ln𝐴𝐴𝑃𝑃𝑃𝑃𝑓𝑓0 -0.00359 -0.0178*** -0.00591*** 0.0494*** -0.0568 

 
(0.00435) (0.00254) (0.00129) (0.0146) (0.0439) 

ln 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ 𝑅𝑅𝐸𝐸𝑡𝑡𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑓𝑓0 0.00765 0.0154 0.0122** -0.0325 0.0140 

 
(0.0152) (0.00885) (0.00450) (0.0443) (0.123) 

Zip Code-Year FE Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes 
Observations 148,000 148,000 148,000 17,000 6,400 
R-squared 0.144 0.168 0.095 0.522 0.427 
Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; controls included for size and average earnings, proportion of workforce that is female, 
foreign born, and interactions of female, foreign born with research experience.  Full results in the appendix 
 
 
We see a mostly similar ordering of human capital coefficients as the previous table, with the exception of the high-tech worker 
coefficients, which are the key drivers of employment growth, survival and success for high-tech startups. Given the plethora of 
anecdotal evidence on the reliance of high-tech startups on previous high-tech experience, the importance of hiring high-tech workers 
in determining outcomes makes  plenty of sense.
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Summary 
This paper leverages new data about workforce human capital that can be used to provide more 
insights into the survival and employment growth of new businesses.    These results are 
consistent with the view that there is a relationship between workforce experience and business 
startup and survival.   Further work using these data will be necessary to examine temporal 
dynamics.  It will be particularly interesting to understand whether changes in the fluidity of this 
type of workforce, or changes in the nature of research funding, can be tied to the decline in 
business dynamism.  
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