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I. Introduction

There is a large literature in economet-
rics and statistics on semiparametric esti-
mation of average treatment effects under
the assumption of unconfounded treatment
assignment. Recently this literature has
focused on the setting with many covari-
ates, where regularization of some kind is
required. In this article we discuss some of
the lessons from the earlier literature and
their relevance for the many covariate set-
ting.

II. The Set Up

We are interested in estimating an aver-
age treatment effect in a setting with a bi-
nary treatment. We use the potential out-
come or Rubin Causal Model set up (Ru-
bin [1974], Holland [1986], Imbens and Ru-
bin [2015]). Each unit in a large popula-
tion is characterized by a pair of potential
outcomes (Yi(0), Yi(1)), with the estimand
equal to the average causal effect:

τ = E[Yi(1)− Yi(0)],

or the average effect for the treated, τt =
E[Yi(1)− Yi(0)|Wi = 1]. The treatment as-
signment for unit i is Wi ∈ {0, 1}. For each
unit in a random sample from the popula-
tion we observe the treatment received and
the realized outcome,

Y obs
i =

{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1,
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and pretreatment variables or features Xi.
To identify τ we assume unconfoundedness
(Rosenbaum and Rubin [1983])

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi,

and overlap of the covariate distributions,

e(x) ∈ (0, 1),

where the propensity score (Rosenbaum
and Rubin [1983]) is e(x) = pr(Wi =
1|Xi = x). Define p = E[Wi], µ(w, x) =
E[Yi(w)|Xi = x], µw = E[Yi(w)], and
σ2(w, x) = V(Yi(w)|Xi = x). The efficient
score for τ , which plays a key role in the
discussion, is

φ(y, w, x; τ, µ(·, ·), e(·)) = w
y − µ(1, x)

e(x)
−

(1− w)
y − µ(0, x)

1− e(x)
+ µ(1, x)− µ(0, x)− τ,

(Hahn [1998]) and the implied semipara-
metric variance bound is

AV = E
[
φ(Y obs

i ,Wi, Xi; τ, µ(·, ·), e(·))2
]
.

For the average effect for the treated, τt, the
efficient score function is

φ′(y, w, x; τt, µ(·, ·), e(·)) =
w

p
(y−µ(0, x)−τ)

+
(1− w)e(x)

p(1− e(x))
(y − µ(0, x)).

A wide range estimators for τ have been
proposed in this setting, (see for a review
Imbens and Wooldridge [2009]). Some of
the proposed estimators rely on matching
(Abadie and Imbens [2006]). Others rely
on different characterizations of the average
treatment effect, using the propensity score,
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(Hirano et al. [2001]),

τ = E

[
Y obs
i ·Wi

e(Xi)
− Y obs

i · (1−Wi)

1− e(Xi)

]
,

the conditional expectation of the outcome,

τ = E
[
µ(1, Xi)− µ(0, Xi)

]
,

(Hahn [1998]), or the efficient score repre-
sentation

τ = E

[
Wi

Y obs
i − µ(1, Xi)

e(Xi)
+

(1−Wi)
Y obs
i − µ(0, Xi)

1− e(Xi)
+µ(1, Xi)−µ(0, Xi)

]
(van der Vaart [2000], Van Der Laan and
Rubin [2006], Chernozhukov et al. [2016]),
and similar estimators for the average effect
for the treated.

Because the unconfoundedness assump-
tion imposes no restrictions on the joint
distribution of the observed variables
(Y obs

i ,Wi, Xi), it follows by the general
results for semiparametric estimators in
Newey [1994] that all three approaches, us-
ing suitable nonparametric estimators of
the propensity score and/ or the condi-
tional expectations of the potential out-
comes, reach the semiparametric efficiency
bound.

III. Four Issues

First we wish to raise four issues that
have come up in the fixed-number-of-
covariate case, and which are even more rel-
evant in the many covariate setting.

A. Double Robustness

A consistent finding from the observa-
tional study literature with a fixed num-
ber of pretreatment variables is that the
best estimators in practice involve both es-
timation of the conditional expectations of
the potential outcomes and estimation of
the propensity score, rendering them less
sensitive to estimation error in either, al-
though this does not appear to be neces-

sary in the case of a randomized experi-
ment, where simply estimating the condi-
tional expectation of the outcome is suffi-
cient (Wager et al. [2016]). An important
notion in the observational study literature
is that of so called “doubly robust” estima-
tors (Robins and Rotnitzky [1995], Robins
et al. [1995], Scharfstein et al. [1999]) that
rely for consistency only on consistent esti-
mation of either the propensity score or the
conditional outcome expectations, but not
both. As a simple example to develop intu-
ition for this, consider the standard omitted
variable bias formule when estimating a re-
gression function

Y obs
i = Wiτ +X ′iβ + εi.

Omitting Xi from this regression leads to
a bias if the included regressor Wi and the
omitted regressor Xi are correlated, and the
omitted regressor has a non-zero coefficient.
In this setting weighting by the inverse of,
or conditioning on, the propensity score re-
moves the correlation between Wi and Xi.
Therefore it eliminates the sensitivity to the
parametric form in which Xi is included,
without introducing bias if the weights are
misspecified but the regression function is
correct.

Here we view estimators as at least ap-
proximately doubly robust if they attempt
to adjust directly for the association be-
tween the treatment indicator and the co-
variates, through balancing, weighting, or
otherwise, and adjust directly for the as-
sociation between the potential outcomes
and the covariates. There are multiple ways
of obtaining such estimators. One can do
so by subclassification on the propensity
score in combination with regression within
the subclasses, or weighting in combina-
tion with regression. For example, sup-
pose we parametrize the conditional means
as µ(w, x) = wτ + x′β, and the propen-
sity score as e(x) = 1/(1 + exp(x′γ)),
and estimate the regression by weighted
linear regression with weights equal to
Wi/

√
e(Xi; γ̂) + (1−Wi)/

√
(1− e(Xi; γ̂)),

then the estimator for τ is consistent if ei-
ther the propensity score or the conditional
expectations of the potential outcomes are
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correctly specified. Similarly, using the effi-
cient score, if we estimate the average treat-
ment effect by solving

1

N

N∑
i=1

φ
(
Y obs
i ,Wi, Xi; τ, µ̂(·, ·), ê(·)

)
= 0,

as a function of τ given estimators µ̂(·, ·)
and ê(·), then as long as either the estima-
tor for either µ(w, x) or e(x) is consistent,
the resulting estimator for τ is consistent.

If we use general nonparametric estima-
tors for µ(·), ·) and e(·), this last estima-
tor also has the property that the estima-
tor for the finite dimensional component τ
is asymptotically uncorrelated with the es-
timator for the nonparametric components
µ(w, x) and e(x). This orthogonality prop-
erty (Neyman and Scott [1948], Lancaster
[2000], Chernozhukov et al. [2016]) is an im-
portant feature of the targeted maximum
likelihood approach in Van Der Laan and
Rubin [2006] and Van der Laan and Rose
[2011], and, as noted in Chernozhukov et al.
[2016], follows directly from the representa-
tion of the estimator in terms of the efficient
score. Note that the properties are distinct:
not all estimators that have the orthogonal-
ity property are doubly robust.

B. Modifying the Estimand

A second issue is the choice of estimand.
Much of the literature has focused on the
average treatment effect E[Yi(1)−Yi(0)], or
the average effect for the treated. A practi-
cal concern is that these estimands may be
difficult to estimate precisely if the propen-
sity score is close to zero for a substantial
fraction of the population. This is a partic-
ular concern in settings with many covari-
ates because regularization based on predic-
tion criteria may downplay biases that are
present in estimation of µ(w, x) in parts of
the (w, x) space with few observations, even
if those values are important for the estima-
tion of the average treatment effect. In that
case one may wish to focus on a weighted
average effect of the treatment. One can do
so by trimming or weighting. Crump et al.
[2006, 2009] and Li et al. [2014] suggest es-

timating

τω(·) =
E [ω(Xi) · (Yi(1)− Yi(0))]

E [ω(Xi)]
,

for ω(x) = e(x)(1 − e(x)) or ω(x) =
1α<e(x)<1−α. The semiparametric efficiency
bound for τω(·) is (Hirano et al. [2001])

AV =
1

E[ω(Xi)2]
E

[
ω(Xi)

2σ2(1, Xi)

e(Xi)

+
ω(Xi)

2σ2(0, Xi)

1− e(Xi)

+ω(Xi)
2
(
µ(1, Xi)− µ(0, Xi)− τω(·)

)2]
,

which can be an order of magnitude smaller
than the asymptotic variance bound for τ
itself.

In settings with limited or no heterogene-
ity in the treatment effects as a function
of the covariates, these weights are par-
ticularly helpful and the weights ω(x) =
e(x)(1 − e(x)) lead to efficient estimators
for τ in that case.

C. Weighting versus Balancing

Although weighting by the inverse of the
treatment assignment balances pretreat-
ment variables in expectation, it does not
do so in finite samples. Recently there have
been a number of estimators proposed that
focus directly on balancing the pretreat-
ment variables, bypassing estimation of the
propensity score (Hainmueller [2012], Zu-
bizarreta [2015], Graham et al. [2012, 2016],
Athey et al. [2016]). Specifically, given a set
of pretreatment variables Xi, one can look
for a set of weights λi such that

1

Nt

N∑
i=1

λi ·Wi ·Xi ≈
1

Nc

N∑
i=1

λi ·(1−Wi) ·Xi,

where Nc and Nt are the number of control
and treated units respectively. The advan-
tage of such weights is that they eliminate
any biases associated with linear and addi-
tive effects in the pretreatment variables in
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the estimator

τ̂ =

∑N

i=1 λiWiY
obs
i∑N

i=1 λiWi

−
∑N

i=1 λi(1−Wi)Y
obs
i∑N

i=1 λi(1−Wi)
,

whereas using the propensity score weights
λi = Wi/e(Xi) + (1−Wi)/(1− e(Xi)) does
so only in expectation.

D. Sensitivity

Consider the simple difference in aver-
age outcomes by treatment status as an
estimator for the average treatment effect.
The bias in this estimator arises from the
presence of pretreatment variables that are
associated with both the treatment and
the potential outcomes. Pretreatment vari-
ables that are associated solely with the
treatment, or solely with the potential out-
comes may make it difficult to estimate the
propensity score or the conditional expec-
tations of the potential outcomes, but such
variables do not compromise the estimates
of the average treatment effects. As a result
it is not so much sparsity of the propen-
sity score or sparsity of the conditional ex-
pectations, but sparsity of the product of
the respective coefficients that matter. A
summary measure of this association is the
characterization of the bias as an expected
value,

B =
(
E[Y obs

i |Wi = 1]−E[Y obs
i |Wi = 0]

)
−τ

=
1

p(1− p)
)E [b(Xi)] ,

where the bias funcction b(·) is

b(x) = (e(x)− p)

×(p(µ(0, x)− µ0) + (1− p)(µ(1, x)− µ1).

Hence the bias is proportional to the covari-
ance of the propensity score and a weighted
average of the conditional expectations of
the potential outcomes,

Cov(e(Xi), pµ(0, Xi) + (1− p)µ(1, Xi).

The bias function at x measures the contri-
bution to the overall bias B, coming from
units with Xi = x. It is flat in a randomized

experiment, or in cases where the pretreat-
ment variables are not associated with the
outcome. Settings where the bias B is large
relative to the difference in average out-
comes by treatment effects, or b(·) is very
variable, are particularly challenging for es-
timating τ . In our calculations below we
report summary statistics of b̂(Xi), scaled
by the standard deviation of the outcome.

IV. Three Estimators

Here we briefly discuss three of the most
promising estimators that have been pro-
posed for the case with many pretreatment
variables. All three address biases from the
association between pretreatment variables
and potential outcomes and between pre-
treatment variables and treatment assign-
ment. There are other estimators using ma-
chine learning methods that focus only on
one of these associations, for example in-
verse propensity score weighting estimators
that estimate the propensity score using
machine learning methods (McCaffrey et al.
[2004]), but we do not expect those to per-
form well. The first two estimators we dis-
cuss assume linearity of the conditional ex-
pectation of the potential outcomes in the,
potentially many, covariates. How sensitive
the results are in practice to this linearity
assumption in settings with many covari-
ates, where some of the covariates may be
functions of underlying variables, remains
to be seen.

A. The Double Selection Estimator (DSE)

Belloni et al. [2013] propose using LASSO
(Tibshirani [1996]) as a covariate selection
method. They do so first to select pre-
treatment variables that are important for
explaining the outcome, and then to se-
lect pretreatment variables that are impor-
tant for explaning the treatment assign-
ment. They then combine the two sets of
pretreatment variables and estimate a re-
gression of the outcome on the treatment
indicator and the union of the selected pre-
treatment variables.
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B. The Approximate Residual Balancing
Estimator (ARBE)

Athey et al. [2016] suggest using elastic
net (Zou and Hastie [2005]) or LASSO (Tib-
shirani [1996]) to estimate the conditional
outcome expectation, and then using an ap-
proximate balancing approach in the spirit
of Zubizarreta [2015] to further remove bias
arising from remaining imbalances in the
pretreatment variables.

C. The Targeted Maximum Likelihood
Estimator (TMLE) and the Double

Machine Learning Estimator (DMLE)

In the general discussion of semiparamet-
ric estimation van der Vaart [2000] suggest
estimating the finite dimensional compo-
nent as the average of the influence func-
tion, with the infinite dimensional compo-
nents estimated nonparametrically. In the
specific context of estimation of average
treatment effects Van Der Laan and Rubin
[2006] propose this estimator as a special
case of the targeted maximum likelihood
approach suggesting various machine learn-
ing methods for estimation of the condi-
tional outcome expectation and the propen-
sity score. Chernozhukov et al. [2016], in
the context of much more general estima-
tion problems, propose a closely related es-
timator focusing on the orthogonality prop-
erties arising from the use of the efficient
score. In the Chernozhukov et al. [2016]
approach the sample is partitioned into K
subsamples, with the nonparametric com-
ponent estimated on one subsample, and
the parameter of interest estimated as the
average of the influence function over the
remainder of the sample. This is repeated
K times, and the estimators for the param-
eter of interest averaged to obtain the final
estimator. We report both the simple ver-
sion of the TMLE and the averaged version
DMLE.

V. Outstanding Challenges and
Practical Recommendations

Here we present some practical rec-
ommendations for researchers estimating
treatment effects, and discuss some of the

remaining challenges for the theoretical re-
searchers.

A. Recommendations

The main recommendation is to report
analyses beyond the point estimates and
the associated standard errors. Supporting
analyses should be presented to convey to
the reader that the estimates are credible
(Athey and Imbens [2016]). By credible we
do not mean whether the unconfoundedness
property holds, but whether the estimates
effectively adjust for differences in the co-
variates. Here are four specific recommen-
dations to do so.

1) (Robustness) Do not rely on a sin-
gle estimation method. Many of the
methods have attractive properties un-
der slightly different sets of regularity
conditions but rely on the same funda-
mental set of identifying assumptions.
These regularity conditions are diffi-
cult to assess in practice. Therefore, if
the substantive results are not robust
to the specific choice of estimator, it is
unlikely that the results are credible.

2) (Overlap) Assess concerns with over-
lap by comparing the variance bound
for τ and τω(·) for a choice of ω(·) that
de-emphasizes parts of the covariate
space with limited overlap. If there
is a substantial efficiency difference be-
tween the τ and τω(·), report results for
both.

3) (Bootstrap Bias) Report bootstrap
estimates of the bias of the estimator,
calculated as the estimator minus the
average of estimates based on boot-
strap samples, created by randomly
splitting the original sample into two
equal-sized subsamples. Asymptotic
results rely on bias components of
the asymptotic distribution vanishing.
Bootstrap estimates may shed light on
the validity of such approximations.
For example, it could reveal sensitivity
to the choice of regularization parame-
ter.



6 PAPERS AND PROCEEDINGS MONTH YEAR

4) (Specification Sensitivity) Split the
sample based on median values of each
of the covariates in turn, estimate the
parameter of interest on both subsam-
ples and average the estimates to as-
sess sensitivity to the model specifica-
tion (e.g., Athey and Imbens [2015a]).

B. Some Illustrations

Here we illustrate these recommenda-
tions with three data sets widely used in
the evaluation literature, the experimen-
tal Lalonde data, the non-experimental
Lalonde data (LaLonde [1986], Dehejia and
Wahba [1999]), both with ten covariates,
and the Connors et al. [1996] heart cather-
ization data, with 72 covariates.

Four each of the data sets we report six
estimators, the simple difference in average
outcomes by treatment status, the OLS es-
timator with all covariates, the DS estima-
tor ( Belloni et al. [2013]), the ARB esti-
mator (Athey et al. [2016]), and the closely
related TML and DML estimators (Van
Der Laan and Rubin [2006], Chernozhukov
et al. [2016]). In addition to the point esti-
mates, we report simple bootstrap standard
errors, a goodness of fit measure for the
potential control outcome (the square root
of the average squared error), the scaled
bootstrap bias (SBB, calculated as the aver-
age difference between the estimates based
on equal size sample splits and the over-
all estimate, scaled by the bootstrap stan-
dard error, and an estimate of the bias),

B̂, equal to the difference between the es-
timator and the naive estimator equal to
the difference in average outcomes by treat-
ment status. In addition we report average
of the estimator based on sample splits., one
for each covariate, where we split the sam-
ple by the median value of each covariate in
turn. Given the splits we calculate the esti-
mator for each of the two subsamples, and
then average those. See Athey and Imbens
[2015a] for details. We also report summary

statistics of b̂(Xi), the average, the median
and the 0.025 and 0.975 quantiles, based on
random forest methods. We also present
histograms of b̂(x) for the three data sets.

For the Connors et al. [1996] data the

methods do vary substantially, with the
four estimators (ignoring the naive differ-
ence in means and the ols estimator) rang-
ing from 0.038 to 0.062. This range is sub-
stantial compare to the difference relative
to the naive estimator of 0.074. Trimming
does not reduce this range substantially.
The bootstrap bias is as large as 34% of
the standard error, so coverage of confi-
dence intervals may not be close to nom-
inal. Splitting systematically on the 70 co-
variates generates substantial variation in
the estimates, with the standard deviation
of the estimates of the same order of mag-
nitude as the standard errors of the original
estimates. The tentative conclusion is that
under unconfoundedness the average effect
is likely to be positive, but with a range
substantially wider than that captured by
the confidence intervals based on any of the
estimators.

C. Challenges

There are now more credible methods
available for estimating average treatment
effects under unconfoundedness with many
covariates than there used to be, but there
remain challenges in making these methods
useful to practitioners. Here are some of
the challenges remaining.

1) (Choice of Regularization) The
regularization methods used continue
to be based on optimal prediction for
the infinitely dimensional components
of the influence function. Although in
some cases this may be optimal in large
samples, e.g., Wager et al. [2016], in
many cases these methods do not fo-
cus on the ultimate object of interest,
the average treatment effect, and the
implication that not all errors in esti-
mating the unknown functions matter
equally. See for some discussion of this
issue Athey and Imbens [2015b].

2) (Choice of Prediction Methods)
The leading estimators allow for the
use of many different prediction meth-
ods of the infinitely dimensional com-
ponents, without guidance for prac-
tioners how to choose among these
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Table 1—Three Illustrations

Heart Catherization Data
Covariate Split

τ̂ (s.e.) trimmed SBB mean s.t.d.
Y t − Y c 0.074 (0.014) 0.038 0.00 0.069 (0.015)
OLS 0.064 (0.014) 0.056 0.01 0.063 (0.009)

DSE 0.062 (0.014) 0.058 -0.24 0.059 (0.009)
ARBE 0.061 (0.015) 0.050 -0.16 0.060 (0.011)
TMLE 0.038 (0.012) 0.039 -0.07 0.042 (0.010)
DMLE 0.045 (0.014) 0.036 -0.29 0.042 (0.010)

Quantiles
mean 0.025 0.25 0.5 0.75 .975

b̂(Xi)/std(Yi) 0.07 -1.29 -0.54 0.25 0.58 1.29

methods in practice.

3) (Supporting Analyses) There is
more work needed on supporting anal-
yses that are intended to provide evi-
dence that in a particular data analysis
the answer is credible.
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