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1 Introduction

The assumption that firm productivity follows a Pareto distribution1 has become widely

used in theoretical work that builds on the Melitz (2003) heterogeneous firm international

trade model. The main reason is tractability. The Pareto distribution is “scale-free”, in

the sense that its shape is invariant to left-truncation. With this assumption the shape of

the productivity distribution of firms that export to a given destination does not depend

on the exact value of the minimal productivity cut-off. For instance, if one assumes a

Pareto distribution for firm productivity, trade between France and Germany on one hand

and France and The Philippines on the other hand has the exact same structure, up to a

rescaling depending on the size and distance of the export destination. In empirical work,

this unknown rescaling factor can easily be eliminated through the use of country-pair fixed

effects (see Head and Mayer, 2014, for an extensive literature review) and in theoretical

work by concentrating on elasticities, as in Chaney (2008). It even allows for a micro-

founded explanation of the gravity equation (Chaney, 2015; Arkolakis, Costinot, Donaldson,

and Rodr̀ıguez-Clare, 2015). Eaton, Kortum, and Kramarz (2011) show that the Pareto law

assumption allows for a very sparse parametrization of a generalized version of the Melitz

model such that it lends itself well to a structural estimation.2

All these results depend crucially on assuming a Pareto distribution for firm productivity.

In the Melitz model, the aggregate effects of moving a cut-off depend on where exactly this

cut-off is located on the productivity distribution. Hence, fixed cut-off’s generically make the

computation of trade elasticities and welfare effects difficult, and only a Pareto distribution

1A random variable X follows a Pareto distribution if its counter-cumulative distribution is a power law,
i.e., ∀x > xmin,P[X > x] = (x/xmin)−α, where xmin is the lower bound of the distribution and α is called
the Pareto, or power law, exponent. A random variable X follows a power law distribution, also called power
law tail or Pareto tail, if its counter-cumulative distribution is a power law times a slowly-varying function,

where f is defined as a slowly-varying function if and only if ∀a > 0, limx→∞
f(ax)
f(x) = 0.

2See footnote 22 in Arkolakis, Costinot, and Rodr̀ıguez-Clare (2012) for a list of the main papers using
this assumption in the international trade literature.
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allows to solve this issue elegantly.

However, this model predicts that destination-specific exports are also Pareto distributed

if productivity is, and recent empirical research has shown that the exports distribution is

better modeled by a log-normal distribution, with possibly a power law right tail, than by an

exact Pareto law. Head, Mayer, and Thoenig (2014) in particular argue that the empirical

evidence rejects the Pareto assumption for productivity and show that this matters along

an economically significant dimension, welfare, and thus cannot be ignored. In this respect,

the empirical justification for the use of a Pareto distribution for productivity in the Melitz

(2003) framework is increasingly seen as questionable, notwithstanding the Pareto’s very

useful properties for international trade models.

The motivation of this paper is to offer an alternative interpretation of the empirical evidence

on exports, precisely one that allows us to reconcile the Pareto law assumption for produc-

tivity with an exports distribution that is shaped differently, and to estimate the underlying

Pareto distribution using this (non-Pareto shaped) exports data.

We look at the problem as follows. We have exports data Y at hand and need to be informed

about the underlying distribution X of productivity, which is not directly observable. One

needs to resort to a structural intermediary to tease out information about productivity from

the distribution of firm exports. We write this problem as

Y = Ω ·X (1)

where Ω is a multiplicative stochastic wedge of unknown distribution, possibly correlated

with X.

We argue that little is known in practice about Ω, it is a nuisance factor, which rules out the
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distributional assumptions that deconvolution methods require.3 Conversely, without any

further structure on Ω, Y is useless as such to learn anything about X. For any strictly pos-

itive random variable X, an Ω can be found to accommodate the data Y . So identification

assumptions are necessary. In the canonical Melitz (2003) model, one has (up to an irrelevant

exponentiation and proportionality factor) Y = X, i.e. Ω ≡ 1. Then of course, there are

neither estimation nor identification problems, Y and X can be used interchangeably. How-

ever, it is a very strong claim to say that the (usually unobserved) productivity distribution

is exactly identified and matched with available export data.4 This one-to-one relationship

between exports data Y and productivity X is weakened as soon as one introduces an ele-

ment of heterogeneity to the Melitz model. Doing this drives a “wedge” between observed

exports and the underlying productivity distribution. We do not need to take a strong stance

on the nature of the deviation Ω from the Melitz model for our results. Quite the opposite,

we build on the Melitz model and provide several reduced-form stochastic wedges, without

making any strong assumptions on the underlying distribution of these wedges. It turns out

that any such wedge (or any combination) boils down to a non-degenerate Ω.5

This is the first take-away point of our paper. The identification of the productivity distri-

bution in the canonical Melitz model relies on very strong assumptions that are essential—

identification fails if they are relaxed—but knife-edge and therefore difficult to justify in

practice. One needs to be willing to assume away all forms of heterogeneity (other than pro-

ductivity), uncertainty and plain measurement error to use exports directly to characterize

3If one were willing to assume that the distribution of Ω belongs to a given family and that it is in-
dependent from X, the estimation of the Pareto law exponent of X is a deconvolution problem written in
multiplicative form. Maximum-likelihood methods would yield consistent estimates of the parameters of the
distribution of X. If one cannot assume that Ω is independent from X, estimating X by way of deconvolu-
tion methods is a problem that has barely been studied in the literature (Meister, 2009; Carroll, Ruppert,
Stefanski, and Crainiceanu, 2006).

4See, for instance, the complexity of the econometrics used in the industrial organization literature to
obtain reliable estimates of productivity, a seminal example being Olley and Pakes (1996).

5The idea that the link between productivity and exports must be distended is not novel as such.
Arkolakis (2010) has previously solved for an explicit example of a non-degenerate Ω (see equation 23 in his
paper). Our approach is more general and not geared towards explaining a given set of empirical facts.
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the productivity distribution. Adding any kind of heterogeneity, uncertainty or measurement

error breaks down the tight one-to-one link between exports and productivity, and exports

need no longer be Pareto distributed even if productivity is, and might well look log-normal.

We argue that it is therefore not surprising but quite natural that exports have failed to

be Pareto distributed over their whole range, this says very little about the productivity

distribution.

To illustrate this, let us give a simple introductory example: an international trade model

where firms have differing productivity and face heterogeneous fixed market access costs.

Compared to the productivity distribution, the bottom of the exports distribution will be

polluted by missing firms (i.e., high-enough productivity firms that “should” be exporting

but had an unlucky draw of market access costs) and the presence of firms that “should

not be there” (i.e., low productivity firms with a particularly favorable draw of market

access costs). This distorts the shape of the exports distribution away from the productivity

distribution.

What this example shows is that if the data is likely to be distorted by a non-degenerate Ω, X

is no longer identified by Y and standard econometric techniques that ignore Ω are obviously

misspecified. This issue is potentially very severe: one knows very little about unmodelled

heterogeneity, misspecification of the underlying model and measurement error, to name

but a few issues, so it is problematic to make precise assumptions about Ω. Furthermore,

our model and our introductory example show that it is hard to rule out that Ω is not

independent from X.

This matters in practice. Using QQ-plots, as is often done in the trade literature, we

show that exports data simulated by the estimated model of Eaton, Kortum, and Kra-

marz (2011)—which uses a Pareto law for productivity—fits a log-normal almost perfectly

and does very poorly when fitted to a Pareto distribution. In Appendix B, we use a formal
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testing procedure provided by Malevergne, Pisarenko, and Sornette (2011) and show that

indeed, quite often a log-normal distribution is a better fit than a Pareto distribution for

data simulated with a Pareto distribution for productivity X but with a non-degenerate

wedge Ω.

This is our second take-away: in the presence of a wedge Ω, even a perfectly Pareto dis-

tributed X can yield observable data Y that “looks” log-normal, which is indeed what can

be observed in practice. Our result allows to reconcile the Pareto law assumption for pro-

ductivity with the empirical evidence that shows exports only have a power-law tail. In the

presence of a wedge such as Ω, a power-law tail in the data is exactly what one would expect

from Pareto distributed productivity X.

Finally, coming back to the misspecification issue when estimating the exponent of the Pareto

distribution of X, the previous empirical literature has either ignored the issue and used

exports data for the estimation procedure while relying on Melitz (2003) to make statements

about productivity (Head, Mayer, and Thoenig, 2014, for instance), or used an explicit model

to link these two, then relying on calibration (Arkolakis, 2010) or on a structural estimation

(Eaton, Kortum, and Kramarz, 2011). In all cases, this comes down to making an explicit

assumption on the link between productivity and exports (i.e., an explicit assumption on

Ω). Our last point is that such restrictive assumptions can be avoided.

At an intuitive level, one would think that, even if productivity is not exactly identified by

exports, surely exports are driven by productivity to a large enough extent that the former

is informative about the latter even in the presence of some unknown Ω. Using a theorem

from a companion paper (Amand and Pelgrin, 2016), we claim that a consistent estimation

of a Pareto distribution for X is still possible using data Y , provided the sample size is

large enough and the assumptions of our theorem are verified. Besides a technical condition

that avoids a degenerate case, this requires two assumptions that have a simple economic
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interpretation in the trade literature, namely that Ω is not “too” heavy tailed (less than X)

and not “too” correlated with X at the top. This allows one to apply the theorem using an

economic justification. The key idea of the proof is to build on the heavy tail of the Pareto

productivity distribution X: this tail will come to dominate the shape of the right of the

exports distribution Y almost no matter the distribution or dependence-structure of Ω.

The paper is organized as follows. Section 2 briefly reviews the previous empirical work on

identification and estimation of the Pareto distribution in the international trade context.

Section 3 introduces a very general Melitz-type model with heterogeneous wedges which

results in a data structure of the Y = ΩX type. In Section 4, we illustrate with an example

that the presence of Ω makes identification and estimation problematic when the presence

of Ω is ignored. Section 5 provides the formal results that allow one to identify and estimate

a Pareto distribution despite the presence of this wedge Ω. Section 6 concludes.

2 Pareto distributions in international trade

As stated in the introduction, considerable attention has been given to the empirical justifi-

cation of the Pareto assumption. The standard Melitz model predicts that the destination-

specific exports of a firm are proportional to an exponent of that firm’s productivity.6 Hence

the firm distribution of exports, denoted Y in this paper following the notation in (1), is equal

to the firm distribution of (an exponent of) productivity, denoted X (including the constant

proportionality factor). The implicit assumption here is that Ω ≡ 1. Since a Pareto distri-

bution is invariant by exponentiation (up to a change in exponent), this yields a testable

implication: it is necessary and sufficient to observe that the distribution of firm exports

6To be precise, ϕσ−1 is proportional to destination-specific exports, where 1/ϕ is the unit cost of pro-
duction (“productivity”) of the firm and σ is the elasticity of substitution of the CES utility function of
consumers.
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from an origin country to a target country Y follows a Pareto distribution to conclude that

using a Pareto distribution for the firm productivity distribution X in the origin country is

indeed supported by the data.7,8 Thus all one needs to do is to look at the distribution of

firm destination-specific exports.

Notably, several papers have shown, still under the implicit assumption that Ω ≡ 1, that the

right tail of destination-specific exports does indeed follow a Pareto law (see di Giovanni,

Levchenko, and Rancière, 2011, and references therein). It is much harder, though, to find

evidence that the complete distribution of destination-specific exports follows a Pareto law.

Until recently, it was unclear whether these mixed empirical results should be counted in

favor or against the Pareto law assumption for X. In an important recent paper using very

large micro data sets, Head, Mayer, and Thoenig (2014) show that the complete distributions

of exports from France to Belgium and China to Japan fit a log-normal distribution much

better than a Pareto law. Following Melitz (2003), this implies a log-normal distribution

for firm productivity. The authors show that, from a theoretical perspective, this has non-

negligible welfare consequences compared to a Pareto law distribution, and the left tail of the

distribution (i.e., the smaller firms) matters for this welfare calculation. Lastly, they show

that partial-equilibrium trade elasticities do also depend on the choice of the productivity

distribution. For a Pareto law, these are constant, for a log-normal distribution they are not

and hence estimation methods must be rethought (Bas, Mayer, and Thoenig, 2015). Said

differently, these authors show that one cannot simply assume a Pareto law in lieu of a log-

normal distribution for analytical convenience: the choice of the distribution to model firm

7di Giovanni, Levchenko, and Rancière (2011) make the important point that this reasoning does not
apply to the total sales (or total exports) of these firms, which generically do not follow a Pareto law even
if firm productivity does.

8Note that the exponent σ−1 plays no important role, switching between ϕ and ϕσ−1 is straightforward.
In particular, this exponent does not change the nature of a Pareto law or a log-normal law. This justifies
that we drop all reference to this exponent in our explanations and make claims such as “productivity is
equal to exports”, by which we mean Y = X, instead of writing “an exponent of the productivity distribution
is proportional to destination-specific exports”. This is commonly done in the literature through a change
of variables (in particular, see Head, Mayer, and Thoenig, 2014).
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productivity heterogeneity matters along important dimensions. Their empirical evidence

indicates firm exports to be log-normally distributed over the whole range of exports and

they show that only considering the top of the distribution when evaluating the empirical

relevance of the Pareto distribution is not a valid shortcut.

Subsequently, one direction of research has been to reconcile the empirical evidence that

exports Y seem to be either log-normally distributed or, at best, power-law distributed in the

right tail only with the assumption that productivity X is Pareto distributed over its whole

range. To do this, one needs to break the tight relationship between exports and productivity

as predicted by the Melitz model by arguing that exports have other determinants than just

productivity. This is what Arkolakis (2010) does by adding “market penetration costs”

that weigh heavier on larger firms. This allows for the existence of smaller exporting firms,

which yields a firm export distribution that has a right power-law tail but a density that

decreases at a lower rate than a Pareto density for smaller firms and which can even be hump-

shaped, depending on parameter values. Interestingly, trade elasticities remain constant

across destinations despite the non-Pareto aspect of exports. Although our paper shares

a common purpose with Arkolakis (2010), we differ along two dimensions. We allow for

more flexibility in the shape of the exports distribution whereas Arkolakis (2010) predicts

an exports distribution that has a closed form solution. Second, we take a reduced-form

approach with a more empirical emphasis.9

Lastly, a recent trend in the literature is to assume a right-truncated (i.e., bounded) Pareto

law for productivity. Using a right-truncated Pareto law distribution, Helpman, Melitz, and

Rubinstein (2008) obtain a gravity equation in trade that is consistent with the observed zero

trade flows between countries. Feenstra (2014) uses a bounded Pareto law distribution and a

novel class of preferences to build a tractable heterogeneous firm model with two additional

9The Arkolakis (2010) model is calibrated in the original paper and is structurally estimated by Eaton,
Kortum, and Kramarz (2011).
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“gains-of-trade margins”, an expansion of product variety and a pro-competitive reduction

in mark-ups, that are neutralized in the Melitz model. Capitalizing on our results, we discuss

in Appendix E some issues regarding the identification and estimation of a bounded Pareto

law for productivity in the presence of a wedge Ω.

3 Observed exports and productivity: a general model

In this section, our goal is to justify the presence of a non-degenerate Ω in the data. To do

this, we provide a very general Melitz-type model in which observed exports Y are related to

the productivity distribution X as in equation (1), with Ω correlated with X. In Appendix

A, we provide an additional model where Ω is independent from X.

Setup. Our starting point is the canonical Melitz model with endogenous variable market

access costs following Arkolakis (2010). We follow the standard notation of Melitz and

Redding (2014), dropping the index i used for the home country as we are not interested

in general equilibrium here and do not need to distinguish between home countries. The

consumer side is CES with elasticity of substitution σ. The wage level is normalized to 1

and all costs are expressed in terms of domestic (i.e., exporting-country) wages. The firm

side consists of firms producing horizontally-differentiated goods, each with firm-specific

productivity ϕ. The variable production cost of producing quantity q is
q

ϕ
. Firms export

from the home country to country n (possibly the same country). Firms are risk-neutral,

and to exist, a firm has to pay fE and subsequently draws its productivity ϕ from a known

distribution. To export to country n, a firm has to pay an additional market access cost fn

composed of a fixed cost and a variable cost that increases with the proportion of the market

targeted by the exporting firm. By assumption, firms must serve the domestic market before
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exporting.10

We introduce three sources of ex-ante destination- and firm-specific heterogeneity in addi-

tion to productivity: heterogeneity in fixed market access costs εf, heterogeneity in variable

market access costs εm and heterogeneity in demand εd. Specifically, the market access costs

are defined as follows: a firm accesses a fraction m ∈ [0, 1] of a market n by paying the

following cost:

fn(m, ε) = εf + εm
1− (1−m)1−1/λ

1− 1/λ
. (2)

and the total market size (i.e., demand) for this firm in the target country is εdRn with

E[εf] = εf

E[εm] = εm

E[εd] = 1.

The last equation is justified by the fact that total demand in country n accross all products

is Rn. These heterogeneities are denoted collectively as ε, are all known in advance and vary

per destination n for a given firm.11

10It is easy to endogenize this assumption by redefining the fixed cost slightly. It is clearer though to
expose the model as is done here, with domestic sales and exports playing identical roles.

11It is straightforward to add (many) more sources of heterogeneity than just three, say, heterogeneity in
marginal production costs, heterogeneity in iceberg costs, the need to pay a tax/bribe proportional to sales
that varies per firm, etc. However, this does not add generality. A firm has only three degrees of liberty:
whether to enter a market, what size of the market to target (m) and how much to sell (q). These three
decisions are driven by three equations, an inequality (positive net profits) and two first-order conditions
(profit maximization for m and q, given downward-sloping demand). So two firms can only differ along a
maximum of three dimensions (in addition to productivity). Note that any one type of heterogeneity is
enough to obtain our results, we introduce all three types to cover all possibilities. We have chosen these
three heterogeneities such that the algebraic solutions are simple and (mostly) linear. Lastly, note that,
aside from possible general equilibrium dimensions, our model contains the original Melitz (2003) model, the
Arkolakis (2010) model, the Chaney (2008) model, the di Giovanni, Levchenko, and Rancière (2011) model
and the Eaton, Kortum, and Kramarz (2011) model.
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Optimal strategy for an exporting firm. Given the CES demand structure, the market-

clearing price p charged by a firm selling q to fraction m of market n is given by the demand

curve:

q = mεdRnP
σ−1
n p−σ (3)

with Pn the standard CES price index. To streamline notation, we introduce the variable

πn:

πn =
1

σ
RnP

σ−1
n τ 1−σ

which is such that πnϕ
σ−1 is the optimal profit before market access costs (i.e., sales minus

production and iceberg costs, but not marketing or fixed entry costs) while keeping demand

heterogeneity at its expected value of 1. Notice that πn only depends on parameters of

the model, and not on any firm heterogeneity. With this new notation, we now have the

following results for a firm’s optimal policy:

pn(ϕ, ε) =
σ

σ − 1

τ

ϕ

qn(ϕ, ε) = mn(ϕ, ε)εd
ϕ(σ − 1)

τ
πnϕ

σ−1,

εm
(
1−mn(ϕ, ε)

)− 1
λ = εdπnϕ

σ−1.

Notice that, as usual, firms charge a fixed mark-up above marginal cost. This results in sales

in profits as follows:

Sales: rn(ϕ, ε) = εdσmn(ϕ, ε)πnϕ
σ−1 (4)

Profits before market access costs: πn(ϕ, ε) = εdmn(ϕ, ε)πnϕ
σ−1 (5)
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Entry decision. Firms enter a market n only if their profits πn(ϕ, ε) minus market access

costs are positive. Given πn is strictly increasing in ϕ for all ε, the entry condition is

ϕ ≥ ϕn(ε) with πn
(
ϕn(ε), ε

)
= fn(mn(ϕ, ε), ε),

where ϕn(ε) is the minimal productivity threshold. Lastly, the initial entry decision is

E

 ∑
n

ϕ≥ϕn(ε)

πn(ϕ, ε)

 ≥ fE. (6)

Taking both the optimal sales condition and the entry condition, we are now in position to

write the model in the form Y = ΩX. Let δn(ϕ, ε) be defined as

δn(ϕ, ε) =


1 if ϕ ≥ ϕn(ε)

0 if not.

(7)

Then for each draw (ϕ, ε), observed sales are:

rn(ϕ, ε) = δn(ϕ, ε)εdmn(ϕ, ε)σπnϕ
σ−1. (8)

Over the space of realizations (ϕ, ε), let Y denote the random variable equal to the function

rn, X denote the random variable ϕσ−1 and Ω denote the random variable δn(ϕ, ε)εdmn(ϕ, ε)σπn.

Then, in the notation of our framework, sales are distributed as Y = ΩX. Note that Ω is

not independent of X and does not behave as a measurement error. It is composed of three

stochastic processes: a “selection” process δn(ϕ, ε), a “market share” process mn(ϕ, ε) and

a “market size” process εd. The first two are clearly dependent on X, both the decision to

export and the decision to target a certain market size depend on productivity. Any of these
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three sources of heterogeneity is enough for a non-degenerate Ω.12

Welfare and trade elasticities. Interestingly, if one assumes that the fixed entry cost εf

is 0, our model boils down to the Eaton, Kortum, and Kramarz (2011) model without any

functional assumptions, and it is straightforward to show that the results from Arkolakis,

Costinot, and Rodr̀ıguez-Clare (2012) apply: if productivity is Pareto distributed, aggre-

gate trade elasticities are constant and welfare changes can be computed using a simple

formula. This illustrates again the importance (and convenience) of the Pareto assumption

for productivity.

4 The Pareto/log-normal debate in the presence of

misspecification: a numerical example

In order to shed some light on past empirical work, we now turn to the econometric impli-

cations of the general formulation Y = ΩX in the case where the presence of Ω is ignored

by or unknown to the econometrician.

A QQ-plot exploration. To highlight the misspecification issue, we assume that Ω and

X are correlated and distributed as in Eaton, Kortum, and Kramarz (2011). Specifically, we

set the parameter of the Pareto law generating ϕσ−1 at 2.46, λ = 0.91, εf = 0 and assume

that ln εd and ln εd
εm

are joint normally distributed with variances of resp. 1.69 and 0.34 and

correlation −0.65. These values come directly from Eaton, Kortum, and Kramarz (2011).

We proceed with an horse-race between the log-normal and the Pareto distribution to best

12Note that even a stochastic ε is not necessary. Arkolakis (2010) introduces a market share process with
finite non-zero λ to obtain a non-degenerate Ω. This is enough to distort Y towards log-normality using a
Pareto-distributed X. Results are not reported here but are available upon request.

14



fit Y . To do this, we use a QQ-regression as suggested in the trade literature (Head, Mayer,

and Thoenig, 2014). This comes down to visually comparing the QQ-plot of the best-fitting

member of each family of distributions with the 45 degree line.13 Note however that there

are no tabulated test-statistics in the literature that allow to assess the goodness-of-fit of a

QQ-plot or compare competing QQ-plots.

To avoid small-sample bias, we simulate 200, 000 draws of Y—a sample size somewhat larger

than those most often encountered in international trade data. Then we estimate the log-

normal and Pareto law distribution that best fit Y using a QQ-regression and show the

QQ-plots in the top panel of Figure 1. Moreover, we also report the QQ-plot of Y using

the true distribution of X. Following the literature, the conclusion is straightforward: Y

is much closer to the best-fitting log-normal distribution (in blue) than to the best-fitting

distributional Pareto law (in red), which is not the actual distribution of X (in green). As

mentioned earlier, Head, Mayer, and Thoenig (2014) apply this procedure using actual firm-

level data on exports from France to Belgium and from China to Japan and come to the

same conclusion: the log-normal distribution is a far better fit than the Pareto law for their

exports distributions.

The fact that Y “looks” log-normal and not Pareto distributed on a QQ-plot is driven by the

thick base of the Pareto law. At the left, the Pareto law packs a lot of data points close to the

minimum (the log of the minimum is 0.00, the log of the median is 1.33). This means that

most of the variation on the left will be driven by Ω, even if it has a small standard deviation

itself. Hence, even for a small-variance Ω, the bottom of the distribution of Y is essentially

13For a given dataset, a QQ-plot can help assess the goodness of fit of a candidate distribution by plotting
the theoretical quantiles of the distribution v. the empirical quantiles of the data. A perfect fit would be
the 45 degree line: each quantile of the candidate distribution aligns perfectly with the observed quantile
in the data. The QQ-estimator (or QQ-regression) minimizes the distance (in the sense of least squares)
between the 45 degree line and the theoretical QQ-plots of a parametric family of distributions. See Kratz
and Resnick (1996), and Schultze and Steinebach (1996) for an extended explanation of the link between
QQ-plots and the QQ-estimator, Head, Mayer, and Thoenig (2014) for a first use in the international trade
literature and Section C in the appendix for a brief summary.
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Figure 1: QQ-plots of data Y = ΩX generated by a Pareto law for X and a correlated Ω
wedge as in Eaton, Kortum, and Kramarz (2011). See Section 4 for the exact data generating
process.
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shaped by Ω. This is what the left part of the QQ-plot picks up. Furthermore, the best fitting

Pareto law (in red) is not the true Pareto law of X (in green), indicating the inconsistency

of the QQ-regression. The conclusion of this numerical example is that mistaking Y for X

can lead to conclude that X is probably log-normally distributed and, should one overcome

this hurdle and model X and Y as Pareto laws, to consider the parameter of the Pareto law

that best fits Y as a consistent estimate of the Pareto law underlying X, which is wrong.

In practice, unless one is willing to assume the absence of Ω, this means one should not

treat the failure to identify a Pareto law in Y (i.e., in exports) as a reason for rejecting the

hypothesis of a Pareto distribution for productivity.

A formal test. One should note that our example is not driven by small sample bias.

In Figure 4 in Appendix D, we show that our results are identical if one uses a very large

sample of 20, 000, 000 data points. Furthermore, these results hold even with a Pareto

law distribution having infinite variance (i.e., with an exponent less than 2). Lastly, these

results are not particular to the QQ-plot approach. To assess the reliability of the visual

inspection, we conduct the uniformly most powerful unbiased test proposed by Malevergne,

Pisarenko, and Sornette (2011).14 This test is known as the Wilks’ test and can be viewed

as a likelihood ratio test in which the Pareto distribution is considered as a ”limit case” of

the log-normal distribution. The test proceeds as follows. In a first step, one needs to find

the optimal threshold such that the profile (composite) likelihood (for the whole sample) of

the maximum likelihood estimates of the distribution parameters is maximized. In a second

step, the clipped sample coefficient of variation is used and a critical threshold (to reject

the null hypothesis) can be obtained by a saddle point approximation (the method used in

14One may be tempted to look for tests that test Y directly for a given distribution (say, Pareto or
log-normal). But without a distributional assumption on Ω, all tests would be misspecified by nature. This
includes a formal goodness-of-fit test (e.g., Anderson-Darling) for Y ; such a test would most likely reject a
log-normal and a Pareto law, whether bounded or unbounded, given the presence of Ω (it does for our data).
Lastly, note that, in any case, a QQ-plot horse race is not a valid statistical test.
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our experiments) or by Monte Carlo simulations. In this respect, the results show that the

Pareto distribution cannot be identified in Y even if X is exactly Pareto distribution as in

our data generating process. Especially, there is strong evidence in favor of the log-normal

distribution.15

Estimating a power law exponent using Y . Ignoring for one moment the identifi-

cation issues raised in the preceding paragraphs, can Y be used to estimate the power law

coefficient of X? We concentrate on four very common estimators: two versions of maximum

likelihood, namely the unconditional Hill estimator (Hill, 1975) and the conditional Hill esti-

mator (Aban, Meerschaert, and Panorska, 2006), the log-size log-rank regression (Gabaix and

Ibragimov, 2011) and the QQ-regression (Kratz and Resnick, 1996; Schultze and Steinebach,

1996). We recapitulate these estimation methods in Appendix C. Misspecification implies

that it is not econometrically valid to use Y to infer the parameter values of X’s Pareto

law, this leads to inconsistent (not merely biased) estimates. We illustrate this by running a

Monte-Carlo simulation; we estimate the power law exponent of Y on 5, 000 independently

drawn datasets drawn from the same data generating process as in the previous section with

an attenuated Ω for expositional purposes.16 Moreover, since a well-known recommendation

of previous empirical work is to work with only the top of the distribution, we also run each

estimation procedure again on left-truncated data by progressively dropping more and more

(from 10% to 99.9%) of the leftmost data points. The results are shown in Figure 2.

If the goal is to estimate the power law exponent of X, it is clear from these results that

all estimators are inconsistent when the data is Y and not X. However, our simulations

15Other results of this test are provided in Appendix B, where we look at different parameter values in the
specific case of an uncorrelated Ω, i.e., measurement errors. Appendix A provides an alternative theoretical
justification for the relevance of this case.

16Specifically, we set εf = 0 and the parameter of the Pareto law generating ϕσ−1 at 2.46 as before, but
with λ = 10 and assume that ln εd and ln εd

εm
are joint normally distributed with variances of resp. 0.4 and

0.1 and correlation −0.65. We do this strictly for the sake of the clarity of the graphics: the misspecification
is actually worse with the original values.
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also illustrate that left-truncating the data (i.e., dropping the lowest points) does allow for

consistent estimates, which is actually a general result (see Section 5). Note that this is done

in practice by many papers without further justification.

5 Estimation and identification

The preceding section illustrates that Ω causes both estimation and identification issues. In

this section, we ask these two questions more generally and formally. Once one has concluded

that the data Y is distributed as in (1), with Ω determined by some version of our model,

can the tail of Y be used to estimate X if one is willing to assume that X is exactly Pareto

distributed? Second, if Y has a power law tail, can we use this to conclusively identify a

power law for X?

5.1 Estimation

Regarding estimation, we build on a theorem result from our companion paper, Amand and

Pelgrin (2016), where we show the following result.

Theorem 1. Let Y = ΩX, with X a Pareto distributed random variable on [xmin,+∞)

with exponent α, and Ω a random variable on R+ with ΦΩ|X(·|x) denoting the conditional

counter-cumulative given X = x. If there exist constants C > 0 and κ > 0 and a function

Φ0 such that:

∀ω ≥ 0, ∀x ≥ xmin ΦΩ|X(ω|x) < Cω−α−κ (thin-tailed condition)

∀ω ≥ 0 lim
x→∞

ΦΩ|X(ω|x) = Φ0(ω) (pseudo-independence condition)

∃ω′ > 0 Φ0(ω′) > 0 (non-degeneracy of Φ0)
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then there exists a non-random sequence kn such that for any sequence of independent random

draws {Y1, . . . , Yn, . . .} of Y , we have

lim
n→∞

kn
n

= 0

plim
n→∞

α̂kn,n = α

where α̂kn,n is any of the four most common estimators of α of Appendix C computed using

the kn highest order statistics of the n first observations.

The interpretation is that, provided Ω fulfills the conditions of the theorem, each estimator

can get arbitrarily close (in probability) to the true value of α by just using the right tail

(the highest order statistics) as long as one has a sufficiently large sample. Intuitively, this

theorem allows one to estimate the power law exponent of X using Y as long as one assumes

a underlying model that generates an appropriate Ω. The first two assumptions relate to the

“top” of the conditional distribution of Ω; as far as the left end of Ω is concerned, anything

is possible. The third assumption is there to avoid situations in which Φ0 is degenerate.

This means that no assumptions on the economic explanation or the exact structure of Ω

are needed to apply this theorem, one can stay entirely agnostic about the causes of the

presence of Ω. As long as Ω satisfies the three conditions, which only concern its limiting

behavior, the estimates of the power law exponent α using the tail of Y will be consistent.17

The economic interpretation of the three conditions is as follows. The first condition is that,

whatever the productivity draw (X = x in our notation), the distribution of the wedge for

a certain type of productivity x is thinner-tailed than X. The second condition is that, for

sufficiently high values of productivity, the wedge is “almost” independent of productivity.

Intuitively, these two conditions mean respectively that the top of the exports distribution is

17Note that the first two conditions are related to the concept of (quasi-) asymptotic independent random
variables, see Resnick (2002, 2007) and Maulik, Resnick, and Rootzén (2002).
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not polluted by low productivity firms that had an extremely favorable draw of Ω, and that

we do not need to worry that the tail of Y is distorted by interactions between Ω and X. In

our model, equation (8) shows that both market share and the selection process are bounded

by 1. Thus the first condition is true as long as the demand heterogeneity is thinner tailed

than X.18 The second condition is also true given that shocks are either independent from

x (such as market size) or converge to 1 (such as market access) for high productivity. The

third condition is in this particular case merely technical and always verified.

More generally, how realistic is it that Ω fulfills all three criteria? Ω would need to be a wedge

that is thicker tailed than productivity to contradict the first assumption. An example would

be fixed market access costs that are thicker-tailed distributed than productivity. Then,

the tail of the exports distribution will identify the tail of the fixed-cost distribution and

productivity plays the role of the wedge, but it seems natural to assume that perturbations

are thinner-tailed than a power law. To contradict the second assumption, Ω would have

to not converge point-wise for x → ∞. An example of the second case would be a wedge

that is very different for very similar high-productivity firms. It is hard to come up with a

realistic economic example of a cost structure where this is the case. To contradict the third

assumption, Ω would have to converge point-wise to 0 for x → ∞. This would be the case

if the Pareto distribution is not truncated but the data is truncated by Ω. We deal with

a truncated Pareto distribution X in Appendix E. It is possible to construct an example

where X would be untruncated and Y truncated, but this would require assumptions (say,

decreasing returns to scale and an upper bound to production) that are at a large distance

from standard international trade models.

Our conclusion is that assumptions of Theorem 1 regarding the wedge Ω are very likely to

be satisfied in our generalized version of the Melitz model. Therefore—provided that the

18The normal, log-normal, Laplace, exponential and gamma distribution all fulfill this condition.
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sample size of the left-truncated export data is large enough—estimates of the exponent of

the power-law tail of productivity X are consistent if the right tail of exports Y is used, even

if the exports data is perturbated (compared to productivity) by all the heterogeneities we

mentioned in Section 3. This absence of bias justifies the approach of theoretical papers that

rely on precise estimates of the value of the exponent (e.g., Chaney, 2008, 2015).

5.2 Identification

The last question is identification. To what extent can Y help in identifying some distribu-

tional properties of X? The previous theorem provides an immediate corollary:

Corollary 1. Let Y = ΩX with X a random variable on [xmin,+∞) and Ω a random

variable on R+ such that Ω fulfils the three conditions of Theorem 1. Then X can only be

power-law distributed with exponent α if Y displays a power law tail with the same exponent

α.

According to Corollary 1, if one is willing to make the aforementioned assumptions on the

wedge Ω, then the absence of a power-law tail in Y rules out the possibility of a Pareto

distribution (or even a power-law tail) in X. We have a “necessary-condition test”, one that

can rule out Pareto distributions. One should note, however, that this is a weak test: one

needs to be sure that the absence of a power law tail in Y is not due to the limited size of the

dataset at hand. We show in the next section that this can in practice be the case. Lastly,

it is worth noting that sufficient conditions on Y that imply a power law tail for X cannot

be obtained when Ω is not independent from X.19

19See lemma 4.3 in Jessen and Mikosch (2006) and the explanation in Amand and Pelgrin (2016).
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5.3 Applications

One application of our theorem is di Giovanni, Levchenko, and Rancière (2011). They show

that the firm sales distribution in a country is not Pareto distributed because it is the sum

of Pareto-distributed sales in each exporting destination (including the home country), and

a sum of Pareto distributions with identical exponent but different cut-offs is not a Pareto

distribution. It has a much thicker base, which leads to inconsistent estimates of the Pareto

exponent. However, if one defines Ω as the stochastic fraction of the world market targeted by

a firm (which will depend on productivity, idiosyncratic market-access costs per destination

country, etc.) and X as productivity then it is easy to see that limx→∞P[ Ω = 1 |X = x ] = 1,

meaning the largest firms export everywhere. Hence Ω trivially fulfills all conditions of the

theorem and the tail of the firm size distribution is identical to the tail of the firm productivity

distribution, irrespective of the fact that more productive firms export more and to more

countries.

More generally, a practical question is how high the cut-off should be for the estimates of the

Pareto exponent of X to be consistent. Heuristically, a good rule of thumb is to progressively

drop more and more data points on the left until the estimates stabilize. Figure 2 illustrates

this very well. Formally, using a weighted least squares algorithm, Beirlant et al. (1996)

show that tail index estimates can be obtained from estimates of the slope at the right

upper tail of a Pareto quantile plot. Notably, algorithms based on the root mean squared

errors can be constructed in order to search for the optimal order statistic to the right of

which one obtains an optimal linear fit of the quantile plot. There is, however, no guarantee

that one has enough data points for the estimates to stabilize before the sample becomes too

small. One very telling example is the model of Eaton, Kortum, and Kramarz (2011). Figure

3 shows the estimates of the exponent of X depending on which level of left-truncation is

chosen. Even truncating 99.9% of the lowest data points does not yield a consistent estimate.
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This means that it is not possible to estimate the power law coefficient of X using a single

set of bilateral trade data.20

Interestingly, this discussion of Corollary 1 implies that identification of the Pareto distri-

bution itself is actually inconclusive with just one set of bilateral trade data. Head, Mayer,

and Thoenig (2014) do not find a power law tail in their French exports data and conclude

from a QQ-plot that this rules out a Pareto distribution in productivity. Our results show

that their conclusion is indeed formally warranted, and this in a very general setting, i.e.

as long as Ω fulfills the conditions of the theorem. They conclude that the log-normal is a

better fit for X. An alternative possibility for X would be a truncated Pareto distribution,

which generates similar QQ-plots as we show in Appendix E. In any case, their discussion of

the welfare implication of X being thinner-tailed than a Pareto distribution remains valid.

But a last possible interpretation of Head, Mayer, and Thoenig’s (2014) result is that their

dataset may not be large enough to rule out the possibility that there is a power tail in their

data generating process, only higher than their highest data points. As we have shown in

the previous paragraph with our simulations of the (estimated) model of Eaton, Kortum,

and Kramarz (2011), this is not an unlikely possibility, even with a large sample size.

6 Conclusion

The main message of this paper is that identifying and estimating the productivity distri-

bution using the Melitz (2003) model and exports data requires knife-edge assumptions.

These assumptions do not hold if one allows for heterogeneity or uncertainty in the model

or measurement error in the data. Therefore, conclusions about productivity that rely solely

20Note that in their paper, the authors use a complete set of bilateral trade data, i.e. data on exports of
each French firm to every possible destination. Heuristically, this allows for the identification of the power
law exponent of ϕ because heterogeneity in ε “averages out” across countries, but heterogeneity in ϕ does
not.
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on exports data may be more fragile than first thought. However, we also show that, under

assumptions that we claim should in practice be very reasonable from an economic view-

point, it is possible to use the right tail of exports to identify and estimate the right tail of

productivity without further knowledge of the wedge Ω. The question of identification (can

we conclusively affirm or rule out the existence of a Pareto distribution for productivity?)

remains in our view undecidable given the current state of knowledge. Even large datasets

do not allow a conclusion to go one way or the other. Importantly, this means that rejecting

the assumption of a Pareto distribution based on log-normal exports data is not warranted.
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l’Institut Mathématique, 79(93), 1–23.

Kratz, M., and S. Resnick (1996): “The Q-Q estimator and heavy tails,” Stochastic

Models, 12(4), 699–724.

Malevergne, Y., V. Pisarenko, and D. Sornette (2011): “Testing the Pareto against

the Log-normal Distributions with the Uniformly Most Powerful Unbiased Test Applied

to the Distribution of Cities,” Physical Review, E 83(3), 1–11.

Maulik, K., S. I. Resnick, and H. Rootzén (2002): “Asymptotic independence and a

network traffic model,” J. Appl. Probab., 39(4), 671–699.

Meister, A. (2009): Deconvolution Problems in Nonparametric Statistics, vol. 193 of Lec-

ture Notes in Statistics. Springer Verlag.

Melitz, M. J. (2003): “The Impact of Trade on Intra-Industry Reallocations and Aggregate

Industry Productivity,” Econometrica, 71(6), 1695–1725.

Melitz, M. J., and S. J. Redding (2014): “Heterogeneous Firms and Trade,” in Handbook

of International Economics, ed. by G. Gopinath, E. Helpman, and K. Rogoff, vol. 4,

chap. 1, pp. 1–54. Elsevier.

Olley, G. S., and A. Pakes (1996): “The Dynamics of Productivity in the Telecommu-

nications Equipment Industry,” Econometrica, 64(6), 1263–97.

Resnick, S. I. (2002): “Hidden Regular Variation, Second Order Regular Variation and

Asymptotic Independence,” Extremes, 5(4), 303–336.

30



(2007): Heavy-Tail Phenomena, Springer Series in Operations Research and Finan-

cial Engineering. Springer Verlag.

Schultze, J., and J. Steinebach (1996): “On least squares estimates of an exponential

tail coefficient,” Statistics & Risk Modeling, 14(4), 353–372.

31



A A special case: Ω behaving as measurement error

One possible interpretation of Ω in equation (1) is measurement error, there is no reason

to assume that the reporting by firms is done flawlessly. If one assumes that the data is

distorted by an additive measurement error that is normally distributed of mean 0 and with

a standard deviation proportional to the true value X (i.e., the standard deviation is constant

if expressed as a percentage of the true value), a first order approximation21 shows that the

observed data Y is Y = XΩ with Ω distributed log-normally and independent from X.

Within the confines of the Melitz model, measurement error is enough to generate observed

exports that are not distributed as a Pareto law even if productivity is. We argue that

such a “measurement error interpretation” of Ω can also be justified from a theoretical

perspective.22 We show this by introducing uncertainty about aggregate local demand and

uncertainty about iceberg losses to the Melitz model. The story goes as follows. Firms

decide whether and how much to export to a given country, and it is only after the entry

and the exporting decisions have irrevocably been made that the firm discovers how high or

low local demand is and how much of exports have been lost in transit. The firm can then

adjust prices to account for the new demand curve and available quantities. This differs from

previous literature, which has modelled ex-ante cost and demand heterogeneity (see Eaton,

Kortum, and Kramarz, 2011), but not uncertainty.

This approach highlights the fact that the observed sales are the final result of a firm op-

timizing and re-optimizing over its different control variables sequentially, as it learns more

about the environment it operates in. Only one of these optimizing decisions, the first one,

which we call “intended sales”, is purely driven by productivity and thus very informative on

21Let Y = X + Xε with ε normally distributed, centered in 0 and with a small variance. Then lnY =
lnX + ln (1 + ε) hence Y ≈ Xeε.

22Note that this does not rule out actual measurement error, which should still be a worry by itself for
anyone using observed sales to identify or estimate the productivity distribution. Actual measurement in
our set-up would compound multiplicatively with the “theoretical” Ω.
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X. All subsequent firm decisions distort the observed data compared to this ideal variable.

To be more precise, we show that intended sales are nil below a certain cut-off, and above

this cut-off are indeed an exponent of the distribution of firm productivity, exactly as in the

Melitz model. But the data does not give us intended exports. Only the realized exports are

reported, after firms have re-optimized prices, and we show that, in our specification, realized

exports are distributed according to intended sales X multiplied by a distribution Ω (driven

by the local demand uncertainty and the iceberg cost shocks) that takes the structure of an

independent multiplicative measurement error.

Setup. We again follow the notation of Melitz and Redding (2014). The canonical Melitz

model is modified by adding multiplicative uncertainty about the exact value of demand

in the target country and multiplicative uncertainty about the iceberg costs. Both of these

uncertainties are revealed upon arrival in the destination country, when the quantity decision

has already been made but prices can still be adjusted. More specifically, the demand in

country n that a firm can access is not exactly aggregate demand Rn and is uncertain: εdRn

with E[εd] = 1, and the iceberg costs are also uncertain and written as εsτn with E[εs] = 1.

Aside from this uncertainty, iceberg costs have the usual effect: firms decide on how much

to export, k, but upon arrival the available quantity diminishes to q = k
εsτn

, which is now

uncertain. Only then do firms decide about the selling price p and earn revenue r = pq.

Note that both sources of uncertainty are firm- and destination-dependent. Without loss of

generality we normalize τn for n the home country to 1, and it is furthermore assumed that

τn ≥ 1 for all n.

Optimal strategy for an exporting firm. We solve by backward induction. A firm

that has already committed to exporting to country n needs to solve for the optimal level of

exports kn (before iceberg costs), bearing in mind it can adjust prices after uncertainty has
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been revealed.

We proceed with the standard resolution of demand and monopoly pricing in a CES frame-

work. A firm selling a net quantity of exports q given (known) aggregate local demand εdRn

sets its price pn such that:

q = εdRnP
σ−1
n pn(q, εd, εs)

−σ (9)

with Pn the standard CES price index. Hence for given gross exports k and realized shocks,

variable profits are k
εsτn

pn

(
k

εsτn
, εd, εs

)
− k

ϕ
.

When deciding on optimal gross exports kn, the firm does not know εd nor εs yet, and thus

maximizes expected variable profits:

kn(ϕ) = argmax
k

E

[
k

εsτn
p

(
k

εsτn
, εd, εs

)]
− k

ϕ
.

Solving for optimal k using (9) for the optimal ex-post price:

kn(ϕ) =

(
σ − 1

σ

)σ
RnP

σ−1
n ϕστ 1−σ

n εσ

with ε = E
[
ε

1
σ
d ε

1
σ
−1

s

]
.

Note that in the non-stochastic case, εs = εd = 1, this result is identical to the one obtained

in the standard Melitz model. Furthermore, using this result and the definition of sales, the

observed sales are:

rn(ϕ, εd, εs) =

(
σ − 1

σ

)σ−1

RnP
σ−1
n ϕσ−1τ 1−σ

n εση
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with the following notation:

η =
(εdεs)

1
σ

εsε
, and E[η] = 1.

By introducing the quantity Bn =
(
σ−1
σ

)σ−1
Rnε

σP σ−1
n τ 1−σ

ni which only depends on parame-

ters and the local aggregate demand structure, we highlight that the distribution of intended

sales is proportional to ϕσ−1 but the distribution of realized sales is not, it is perturbed by

η:

intended sales: E[ rn(ϕ, εd, εs) |ϕ ] = Bnϕ
σ−1 (10)

realized sales: rn(ϕ, εd, εs) = Bnϕ
σ−1η. (11)

Finally, expected and realized variable profits for this particular trade destination are:

expected profits: E[ πn(ϕ, εd, εs) |ϕ ] =
Bn

σ
ϕσ−1 (12)

realized profits: πn(ϕ, εd, εs) =
Bn

σ
ϕσ−1 ·

(
σ(η − 1) + 1

)
. (13)

Entry decision. Firms choose to enter a market before discovering the values of εs and

εd. Thus, they reason in terms of expected profits instead of actual profits. This leads to

the same entry selection criteria as in Melitz (2003): a firm enters market n if and only if

ϕ ≥ ϕ∗n with E[ πn(ϕ, εd, εs) |ϕ = ϕ∗n ] = fn. (14)

The initial entry decision, i.e., the decision whether to draw a ϕ or not, is again based on

expected profits. A potential firm with productivity ϕ pays the initial fixed cost to exist if
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and only if:

E

[∑
n

max
(

0,E[ πn(ϕ, εd, εs) |ϕ ]− fn
)]
≥ fE. (15)

Equation (10) establishes the tight link between productivity and intended sales: it is if and

only if intended country-specific exports follow a distributional Pareto law that the same

can be said about the distribution of firm productivity (at least, above the cut-off). This

is true in both our set-up and in the Melitz model. What is not true in our set-up is that

one can use realized sales as a stand-in for intended sales. As (11) shows, if we denote the

distribution of expected sales as X and η as Ω, realized sales exactly follow our measurement

error structure Y = ΩX with Ω independent from X. Hence no conclusion can be drawn

a priori from the fact that realized sales do or do not follow a Pareto law distribution.

Furthermore, cut-off’s are determined by (14), which depend on unobserved expected profits

(12) whereas realized profits are given by (13) and do not follow the same distribution as

expected profits. Hence the data will show firms with sales below the productivity cut-off:

these are firms that expected to be above the zero-profit cut-off but had an unlucky draw of

η.

Lastly, the trade elasticities in this model follow the literature summarized by Head and

Mayer (2014). The firm-level (“micro”) elasticity of trade to a change in variable trade costs

(τ) is obvious from equation (10), it is 1 − σ. The aggregate (“macro”) elasticity of trade

to a change in trade costs, i.e. the percentage change of aggregate trade between the home

country and country n when trade costs rise by 1%, is less obvious since a change in trade

costs also implies an increase or decrease in the mass of exporters. In general, there is no

reason for this aggregate elasticity to be independent of n. In the particular case where

productivity is distributed as a Pareto law, Chaney (2008) shows that this macro-elasticity

is independent of n and is equal to −α, with α the exponent of the Pareto law density. This
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result is valid in our setting, as all entry decisions are made before uncertainty is revealed.

B A formal test when Ω and X are independent

Using the model of Appendix A, we assume that Ω andX are independent and are distributed

as log-normal and Pareto, respectively. We proceed with an horse-race for Y between the

log-normal and the Pareto distribution. To further highlight the misspecification issues, we

conduct the uniformly most powerful unbiased test proposed by Malevergne, Pisarenko, and

Sornette (2011) instead of a QQ-plot. More specifically, we consider a grid for (α,σ), where

α takes values between 1 and 4 and σ between 0.2 and 1.2. For each couple, we run 1, 000

simulations and test the null hypothesis that, beyond some threshold, the upper tail of the

size distribution is a Pareto law against the alternative that it is a (truncated from below)

log-normal distribution. For each simulation, we run the test and count the number of

times the null hypothesis is rejected. Interestingly, almost all couples (α,σ) lead to clear-cut

conclusions, i.e. when the null hypothesis of a Pareto distribution is rejected for some values

of the Pareto distribution exponent and the standard deviation of the log of the log-normal

distribution of Ω, this concerns roughly 95% of the number of simulations. As Table 1 shows,

using a formal testing procedure, our first result is robust; in the presence of an independent

wedge, one can fail to identify a Pareto law in Y even if X is exactly Pareto distributed. As

could be expected, the lower α, i.e., the thicker the tail of X, the higher σ needs to be for

the log-normal to be a better fit of the data. But even for a low α such as 1, Y becomes

more log-normal than Pareto distributed for no more than σ = 0.8.
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α \ σ 0.2 0.4 0.6 0.8 1
1 Pa

(0.99)
Pa

(0.92)
Pa

(0.86)
Ln

(0.36)
Ln

(0.14)

1.5 Pa
(0.98)

Pa
(0.87)

Ln
(0.28)

Ln
(0.05)

Ln
(0.01)

2 Pa
(0.92)

Ln
(0.37)

Ln
(0.055)

Ln
(0.01)

Ln
(0.00)

2.5 Pa
(0.89)

Ln
(0.16)

Ln
(0.02)

Ln
(0.00)

Ln
(0.00)

3 Pa
(0.86)

Ln
(0.03)

Ln
(0.00)

Ln
(0.00)

Ln
(0.00)

4 Ln
(0.35)

Ln
(0.01)

Ln
(0.00)

Ln
(0.00)

Ln
(0.00)

Table 1: Pareto versus Log-normal distribution in the presence of Ω

Note: Pa and Ln stand for the Pareto and log-normal distribution, respectively, and denote the evidence of
the Wilks’ test (Malevergne, Pisarenko, and Sornette, 2011). Values in parentheses denote the acceptance
rate for the null hypothesis that data are Pareto-distributed.

C Estimators of a power law exponent

Assume X is a random variable that follows a Pareto distribution with exponent α and

possibly truncated at xmax:

P[X > x] =



1 if x < xmin

x−α − (xmax)−α

(xmin)−α − (xmax)−α
if xmin ≤ x ≤ xmax

0 if x > xmax

(16)

with xmax infinite except for the last estimation method, and assume we have a set of

independent random draws X1, . . . , XN of X. We summarize the main estimation methods

of the power law exponent α. In terms of notation, we denote the order statistics as X(1) ≥

· · · ≥ X(N).

Log-size log-rank regression. The basic idea underlying a log-rank regression is that

P
[
X > X(i)

]
≈ i

N
for any i ∈ {1, N}, where the right hand side is simply the empirical
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cumulative distribution function. Hence, using the definition of a Pareto law and taking

logs:

ln
i

N
≈ lnC − α lnX(i). (17)

In other words: if X follows a Pareto distribution, one can simply regress log-size on log-rank

to obtain a estimate of α. This estimate is consistent and Gabaix and Ibragimov (2011) show

that by using ln
(
rank− 1

2

)
, one minimizes bias.

QQ-regression. A QQ (“quantile-quantile”) estimation finds the parameter(s) that min-

imize the sum of squared errors between the N empirical quantiles of the data and the

N theoretical quantiles predicted by the parametrized distribution one wishes to estimate

(Kratz and Resnick, 1996). In turns out that in the case of a Pareto law, the relationship

between empirical quantiles and the parameter of interest, α, is linear. Indeed, the i’th

quantile (out of N) is X(i) in the data and Qi according to a Pareto law, with Qi solving

P[X > Qi] = i
N+1

. This is straightforward to solve:

lnQi =
lnC

α
− 1

α
ln

i

N + 1
(18)

Minimizing the sum of squared errors between lnQi and lnX(i) is by definition a regres-

sion of lnX(i) on lnQi, meaning we regress lnX(i) on ln i
N+1

and a constant. This is the

QQ-regression. Two points worth noticing: first, the QQ-regression is nothing more than

the reciprocal regression of the log-rank regression, which should be obvious from the two

equations (17) and (18). This explains why the standard errors and biases shown in Figures

6 and 2 are very similar. Second, the relationship between the empirical quantiles and the

parameters of a log-normal distribution is also linear, which makes a QQ-regression of a

log-normal distribution equally easy.
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The Hill estimator (maximum likelihood for an non right-truncated Pareto law).

The Hill estimator (Hill, 1975) α̂ is the maximum-likelihood estimator of the power law

exponent, which has a closed-form expression:

α̂ =
N∑N

i=1

[
lnX(i) − lnX(N)

] (19)

Note that Aban and Meerschaert (2004) show that α̂−1, the inverse of the Hill estimator,

is the best linear unbiased estimator and the best uniformly minimum variance unbiased

estimator of α−1.

Maximum likelihood for a right-truncated Pareto law. In the event one suspects

the data at hand to be generated by a right-truncated Pareto law with unknown upper

bound (i.e., xmax is possibly finite), Aban, Meerschaert, and Panorska (2006) show that the

maximum likelihood estimator of the power law exponent is the solution of the following

equation:

N

α̂
+
N
[
X(N)/X(1)

]α̂
ln
[
X(N)/X(1)

]
1−

[
X(N)/X(1)

]α̂ −
N∑
i=1

[
lnX(i) − lnX(N)

]
= 0 (20)

D Extensions of the simulated example of Section 4

See Figure 4.

E Productivity as a truncated Pareto law

As mentioned in the literature review in Section 2, a recent trend in international trade is

to use a right-truncated Pareto law distribution to model productivity in order to generate
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Figure 4: QQ-plots of data Y = ΩX generated by a Pareto law for X and a correlated Ω
wedge as in Eaton, Kortum, and Kramarz (2011), using a very large sample (20, 000, 000
data points). See Section 4 for the exact data generating process.
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effects—such as an expansion of product variety and a pro-competitive reduction in mark-

ups—that are absent in the original Melitz model with an unbounded Pareto law. Given

none of our work in Section 3 relies on any specific assumption for X, we explore in this

appendix whether anything can be inferred about X in the presence of Ω if one assumes X

follows a bounded Pareto law and X and Ω are uncorrelated.

Our answer is that the assumption of a bounded Pareto law for productivity is even more

difficult to test using exports data, and identification might often not be feasible. Formally,

without any assumptions on Ω nothing can be said about X. But contrary to Section 5,

Theorem 1 does not apply,23 so even with Ω not too heavy-tailed (say, log-normal) there is

no formal result that allows us to consistently estimate X using only the right tail of Y .24

The following illustration may be revealing and useful. We look at a simple example that

mimics the simulations from Appendix B, where we generate the data for X using a bounded

Pareto law. We use only a small variance for Ω (1.50) and we bound X at the very top, we

only drop the top 0.1% of the distribution. The results are in Figures 5 and 6. In the first

figure, we run a horse-race between a log-normal and a Pareto distribution on the data Y .

Of course, as in the previous section, this horse-race is misspecified. What is interesting is

that the log-normal clearly outperforms the Pareto law again. In other words, evidence (even

strong evidence) in favor of a log-normal distribution in exports should not be construed as

evidence against the assumption of a bounded Pareto law in productivity. With a wedge Ω

in the data, it is entirely possible for the log-normal to be a much better fit.

In the second figure, we estimate the exponent of the bounded Pareto law driving X using

Y . Given the misspecification, it is unsurprising that all results are inconsistent, including

23See our companion paper. The proof fails if X is bounded. Using the notation from that proof, g will
never be a slowly-variating function.

24In the statistics literature, Beirlant, Fraga Alves, Gomes, and Meerschaert (2014) do offer some guidance
for the estimation of bounded-Pareto-type distributions, but their statistical framework, although similar, is
not identical to ours and their results do not carry over in a simple manner.
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Figure 5: QQ-plots of a truncated Pareto law with a multiplicative log-normal error (large
sample)

Note: Data Y is generated according to the following generating process: Y = X · Ω, where X is a Pareto
law with α = 1.2 and truncated at the top 0.1%, xmin = 1.0 and Ω the exponential of a normal distribution
of mean 0 and standard deviation 1.50. The size of the dataset is large, 1, 000, 000 draws.
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if one only uses the top of the distribution, and including the maximum likelihood method

of Aban, Meerschaert, and Panorska (2006) that supposedly accounts for right-truncation.

There is currently no known estimation method of a bounded Pareto law in the presence of

a wedge Ω.25 In practice, a warning sign that X may be truncated-Pareto should be the

fact that one runs the estimation on data that is successively more left-truncated (as in the

previous subsection) and observes that the estimated value α does not stabilize (contrary

to what one sees in Figure 2 in the case of a non-truncated distribution for X). If the

estimate of α keeps increasing, one is dealing with data Y that is thinner tailed than a

Pareto law. According to Corollary 1, this means that X is also thin-tailed, one possibility

being a truncated-Pareto,26 although we know of no identification strategy to decide between

different thin-tailed candidate distributions for X. In addition, as indicated in Section 5.3,

a thin tail in Y could also be the consequence of a too-small data set. In conclusion, we do

not see in practice how the identification of a truncated Pareto can be done conclusively if

the data is perturbated by a non-degenerate Ω.

25Preliminary simulations show that, if Ω is “sufficiently” thin-tailed and X not “too” bounded, it may
be possible to find a window in the data that allows for the estimation of α. This is left for future research.

26Note that a truncated Pareto law is by definition thin-tailed, since the density is equal to 0 for high
enough values.
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