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abstract

The Synthetic Control Method (SCM) was proposed to answer questions involving counter-
factuals when only one treated unit and a few control units are observed. Although this method
was applied in many empirical works, the formal theory behind its inference procedure is still
an open question. In order to fulfill this lacuna, we make clear the sufficient hypotheses that
guarantee the adequacy of Fisher’s Exact Hypothesis Testing Procedure for panel data, allow-
ing us to test any sharp null hypothesis and, consequently, to propose a new way to estimate
Confidence Sets for the SCM by inverting a test statistic, the first confidence set when we
have access only to finite sample, aggregate level data whose cross-sectional dimension may be
larger than its time dimension. Moreover, we analyze the size and the power of the proposed
test with a Monte Carlo experiment and find that test statistics that use the SCM outperforms
test statistics commonly used in the evaluation literature. We also extend our framework for the
cases when we observe more than one outcome of interest or more than one treated unit and
when heteroskedasticity is present. Furthermore, we propose a sensitivity analysis that allows
the researcher to verify the robustness of his or her empirical conclusions to one of our infer-
ence procedure’s underlying assumptions. Finally, we apply our theoretical developments to
reevaluate economic impact of ETA’s terrorism on the Basque Country.
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1 introduction

The Synthetic Control Method was proposed by Abadie and Gardeazabal [2003], Abadie
et al. [2010] and Abadie et al. [2015] to address counterfactual questions involving only one
treated unit and a few control units. Intuitively, this method constructs a weighted average of
control units that is as similar as possible to the treated unit regarding the pre-treatment outcome
variable and covariates. For this reason, this weighted average of control units is known as the
synthetic control. Although the empirical literature applying the Synthetic Control Method is
vast1, this tool’s theoretical foundation is still under development.

Our first contribution to this literature is to formalize the current existing inference proce-
dure proposed by Abadie et al. [2010]. Adapting the permutation test framework described by
Imbens and Rubin [2015] to a synthetic control context, we clearly state hypotheses that guar-
antee the validity of Fisher’s Exact Hypothesis Testing Procedure, a method that compares an
observed test statistic to its empirical distribution in order to verify whether there is enough
evidence to reject the null hypothesis. Particularly, our framework allow us to test not only the
null hypothesis of no effect whatsoever, but also any kind of sharp null hypothesis, generalizing
the current existing inference procedure. The possibility of testing any sharp null hypothesis

is relevant in order to approximate the intervention effect function by simpler functions that
can be used to predict its future behavior. Most importantly, being able to test more flexible
null hypothesis is fundamental to compare the costs and benefits of a policy. For example,
one can interpret the intervention effect as the policy’s benefit and test whether it is different
than its costs. It also enables the empirical researcher to test theories related to the analyzed
phenomenon, particularly the ones that predict some specific kind of intervention effect.

Based on our generalization of the current existing inference procedure, we propose a novel
way to estimate Confidence Sets for the Synthetic Control Estimator by inverting a test statistic.
We modify the method described by Imbens and Rubin [2015] to estimate confidence inter-
vals based on Fisher’s Exact Hypothesis Testing Procedure in order to apply it to a panel data
framework, using test statistics generated by the Synthetic Control Method. To the best of our
knowledge, this is the first work to propose Confidence Sets for the Synthetic Control Estimator
when we observe aggregate level data for only one treated unit and a few control units (i.e.,
small finite samples) in a context whose cross-section dimension may be larger than its time

1 This tool was applied to an extremely diverse set of topics, including, for instance, issues related to terrorism, civil
wars and political risk (Abadie and Gardeazabal [2003], Bove et al. [2014], Li [2012], Montalvo [2011], Yu and
Wang [2013]), natural resources and disasters (Barone and Mocetti [2014], Cavallo et al. [2013], Coffman and Noy
[2011], DuPont and Noy [2012], Mideksa [2013], Sills et al. [2015], Smith [2015]), international finance (Jinjarak
et al. [2013], Sanso-Navarro [2011]), education and research policy (Belot and Vandenberghe [2014], Chan et al.
[2014], Hinrichs [2012]), health policy (Bauhoff [2014], Kreif et al. [2015]), economic and trade liberalization
(Billmeier and Nannicini [2013], Gathani et al. [2013], Hosny [2012]), political reforms (Billmeier and Nannicini
[2009], Carrasco et al. [2014], Dhungana [2011] Ribeiro et al. [2013]), labor (Bohn et al. [2014], Calderon [2014]),
taxation (Kleven et al. [2013], de Souza [2014]), crime (Pinotti [2012a], Pinotti [2012b], Saunders et al. [2014]),
social connections (Acemoglu et al. [2013]), and local development (Ando [2015], Gobillon and Magnac [2016],
Kirkpatrick and Bennear [2014], Liu [2015], Severnini [2014]).
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dimension. With our confidence sets, a researcher can quickly show, by using a graph, not only
the significance of the estimated intervention effect, but also the precision of this point-estimate.
This plot summarizes a large amount of information that is important to measure the strength of
qualitative conclusions achieved after an econometric analysis.

Since this generalized inference method and the associated confidence sets can use many
different test statistics, we verify, by a Monte Carlo experiment, the size and the power of five
test statistics when they are used in this inference procedure. We choose them based on our
review of the empirical literature that applies the Synthetic Control Method. More specifically,
we compare test statistics that use the Synthetic Control Estimator to test statistics that use
simpler methods (e.g.: difference in means and a permuted differences-in-differences test that
are commonly used in the evaluation literature) and to the asymptotic inference procedure for
the difference-in-differences estimator proposed by Conley and Taber [2011]. We find that a
inference procedure based on a test statistic that uses the Synthetic Control Method performs
much better than the ones that do not use this method when we compare their size and power.

We also extend our framework to cover hypothesis testing and confidence set estimation for
a pooled effect among few treated units, as a formalization and a generalization of the test pro-
posed by Cavallo et al. [2013], and to simultaneously test null hypotheses for different outcome
variables. This last extension, that also expands the framework described by Anderson [2008]
to a panel data context, is important, for example, to evaluate political reforms (Billmeier and
Nannicini [2009], Billmeier and Nannicini [2013], Carrasco et al. [2014], Jinjarak et al. [2013],
Sanso-Navarro [2011]) that generally affect multiple outcomes variables, such as income lev-
els and investment. Moreover, we can also interpret each post-intervention time period as a
different outcome variable, allowing us to investigate the timing of an intervention effect — a
relevant possibility when the empirical researcher aims to uncover short and long term effects.
As one last extension, we make some brief comments about cases in which heteroskedasticity is
a concern. We stress that choosing a test statistic that is robust to this issue — e.g., the t-test or
a modified version of the RMSPE test statistic — allows us to apply our generalized inference
procedure and our confidence sets to empirical problems that present heteroskedasticity.

Moreover, since our inference procedure assumes that the probability of each unit being
treated is known, we propose a sensitivity analysis to check the robustness of the permutation
test’s decision to changes in this assumption. In particular, the basic form of our inference
procedure implicitly assumes that all treatment assignment probabilities are equal. In order to
verify the robustness of our permutation test’s decision to this specific assumption, we propose,
based on the work of Rosenbaum [2002] and Cattaneo et al. [2016], a parametric form to the
treatment assignment probabilities that allows the empirical researcher to compute p-values for
different assumptions regarding the treatment assignment probabilities.

At the end, we apply our generalized inference procedure, its associated new confidence sets,
its extension to the case of simultaneous hypothesis testing and its associated sensitivity analysis
to evaluate the statistical significance of the economic impact of ETA’s terrorism estimated by
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Abadie and Gardeazabal [2003]. With this empirical exercise, we illustrate how our proposed
confidence set summarizes a large amount of information in a simple graph. Differently from
Abadie and Gardeazabal [2003], we find a non-significant impact of ETA’s terrorism on Basque
Country’s GDP per-capita, implying that it is not possible to draw any conclusion about its size
or sign.

Literature Review

Regarding the inference of the Synthetic Control Method, other authors have surely made
important previous contributions. Abadie et al. [2010]2 are the first authors to propose a infer-
ence procedure that consists in estimating p-values through permutation tests and Abadie et al.
[2015] suggest a different test statistic for the same procedure. However, they do not make
clear the sufficient hypotheses that guarantee that their proposed p-values are valid. One re-
cent advancement in this direction is Ando and Sävje [2013], who discuss the importance of the
Identical and Independent Distribution hypothesis for the inference procedure3 and propose two
new test statistics that have adequate size and more power when applied to the above mentioned
hypothesis test than the ones proposed by Abadie et al. [2010] and Abadie et al. [2015].

Bauhoff [2014], Calderon [2014] and Severnini [2014] propose a way to apply the Synthetic
Control Estimator to many treated and control units that is similar to a matching estimator for
panel data, but none of them discusses its statistical properties in detail. Following a similar but
more formal approach, Wong [2015] extends the synthetic control estimator to a cross-sectional
setting where individual-level data is available and derives its asymptotic distribution when
the number of observed individuals goes to infinity. Wong [2015] also explores the synthetic
control estimator when panel data (or repeated cross-sections) are available in two levels: an
aggregate level (regions), where treatment is assigned, and an individual level, where outcomes
are observed. In this framework, he derives the asymptotic distribution of the synthetic control
estimator when the number of individuals in each region goes to infinity. Finally, Cavallo et al.
[2013] and Dube and Zipperer [2013] develop different ways to apply the Synthetic Control
Estimator when there are more than one treated unit and propose tests4 that are similar to the
ones proposed by Abadie et al. [2010], although they do not address the statistical properties of
their inference procedures either.

Gobillon and Magnac [2016], also working on a context with more than one treated unit,
propose a way to compute confidence intervals for their synthetic control estimator based on
bootstrapping the point estimate. Although the authors have not clearly stated the assumptions
behind their inference procedure either, it requires a large number of treated and control regions

2 They also discuss the asymptotic unbiasedness of their method. Kaul et al. [2015] deepen this topic by arguing that
using all pre-intervention outcomes as economic predictors might provoke bias by forcing the synthetic control
estimator to ignore all other predictor covariates.

3 Our hypotheses are different than the ones advocated by Ando and Sävje [2013]. In particular, we do not assume
that units are independent and identically distributed.

4 Acemoglu et al. [2013] follows a procedure similar to the one proposed by Cavallo et al. [2013]. However, the
former is less computationally demanding than the latter.
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in order to be valid and focus exclusively on the time average of the post-intervention effect.
Our approach differs from theirs in two ways: it is valid in small samples and allow the con-
struction of confidence sets for the post-intervention effect as a function of time. Consequently,
while their inference procedure allows the empirical researcher to test only constant in time
intervention effects, our generalized inference procedure allows the empirical researcher to test
any function of time as the intervention effect.

Moreover, Carvalho et al. [2015] propose the Artificial Counterfactual Estimator (ArCo), that
is similar in purpose to the Synthetic Control Estimator, and derive its asymptotic distribution
when the time dimension is large (long panel data sets). However, many of the problems to
which the Synthetic Control Method is applied present a cross-section dimension larger than
their time dimension, making it impossible to apply the ArCo to them. Wong [2015] also
conducts an asymptotic analysis when the pre-intervention period goes to infinity.

Finally, our approach is similar to the way Conley and Taber [2011] estimate confidence in-
tervals for the difference-in-differences estimator in the sense that we also construct confidence
sets by inverting a test statistic. However, we differ from them in many aspects. Firstly, while
they make a contribution to the difference-in-differences framework, our contribution is inserted
in the Synthetic Control literature. Secondly, they assume a functional form for the potential
outcomes — imposing that the treatment effect is constant in time — and an arbitrarily large
number of control units, while we assume a fixed and (possibly) small number of control units
and make no assumptions concerning the potential outcome functional form — i.e., treatment
effects can vary in time.

This paper is divided as follows: section 2 explains the Synthetic Control Method as pro-
posed by Abadie and Gardeazabal [2003], Abadie et al. [2010] and Abadie et al. [2015], and
formalizes and generalizes its inference procedure; section 3 proposes a way to estimate Confi-
dence Sets for the Synthetic Control Estimator; section 4 analyzes size and power of different
tests statistics employed in this hypothesis test through a Monte Carlo experiment; section 5
develops possible extensions to our framework; section 6 proposes a sensitivity analysis related
to a underlying assumption of our inference procedure; section 7 applies our proposed inference
procedure to the data set about the Basque Country made available by Abadie et al. [2011] and
section 8 concludes. Finally, in the appendices, we didactically explain how to compute the test
statistics described in section 2, expand the results of our Monte Carlo Experiment and offer a
guide to empirical researchers who wish to employ the synthetic control method in their studies.

2 synthetic control method

This section is organized in three subsections. The first one presents the Synthetic Control
Estimator, while the second one explains its inference procedure based on permutation tests.
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The ideas and notation that are used in the next two subsections are mostly based on Abadie
et al. [2010]. Finally, in the third subsection, we clearly state the hypotheses that guarantees that
the current existing inference procedure is valid, generalizing it to test any sharp null hypothesis

using any test statistic.

2.1 Synthetic Control Estimator

Suppose that we observe data for (J+ 1) ∈ N regions5 during T ∈ N time periods. Addi-
tionally, assume that there is an intervention6 that affects only region 17 from period T0 + 1 to
period T uninterruptedly8, where T0 ∈ (1, T) ∩N. Let the scalar YNj,t be the potential outcome
that would be observed for region j in period t if there were no intervention for j ∈ {1, ..., J+ 1}
and t ∈ {1, ..., T }. Let the scalar YIj,t be the potential outcome that would be observed for region
j in period t if region j faced the intervention at period t. Define

αj,t := Y
I
j,t − Y

N
j,t (1)

as the intervention effect (or gap) for region j in period t and Dj,t as a dummy variable that
assumes value 1 if region j faces the intervention in period t and value 0 otherwise. With this
notation, we have that the observed outcome for unit j in period t is given by

Yj,t := Y
N
j,t +αj,tDj,t.

Since only the first region faces the intervention from period T0 + 1 to T , we have that:

Dj,t :=

{
1 if j = 1 and t > T0,
0 otherwise.

We aim to estimate (α1,T0+1, ...,α1,T ). Since YI1,t is observable for t > T0, equation (1)
guarantees that we only need to estimate YN1,t to accomplish this goal.

5 We use the word "region" instead of more generic terms, such as "unit", because most synthetic control applications
analyze data that are aggregated at the state or country level. We use the term donor pool to designated the entire
group of (J+ 1) observed regions.

6 Although the treatment effect literature commonly uses the more generic expression "treated unit", we adopt the
expression "the region that faced an intervention" because it is more common in the comparative politics literature,
an area where the synthetic control method is largely applied.

7 In subsection 5.2, we extend this framework to include the case when multiple units face the same or a similar
intervention.

8 Two famous examples of interventions that affect uninterruptedly a region are Proposition 99 — an Tobacco Con-
trol Legislation in California — and the German Reunification, that were studied by Abadie et al. [2010] and
Abadie et al. [2015]. If the intervention is interrupted (e.g.: ETA’s Terrorism in the Basque Country studied by
Abadie and Gardeazabal [2003]), we just have to interpret our treatment differently. Instead of defining the treat-
ment as "region 1 faces an intervention", we define treatment as "region 1 have been exposed to an event that
potentially has long term consequences". For example, instead of defining our treatment as "the Basque Country
faces constant bombings perpetrated by ETA", we define our treatment as "the Basque Country suffered some
bombings perpetrated by ETA".
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Let Yj :=
[
Yj,1...Yj,T0

] ′ be the vector of observed outcomes for region j ∈ {1, ..., J+ 1} in the
pre-intervention period and Xj a (K× 1)-vector of predictors of Yj.9 Let Y0 =

[
Y2...YJ+1

]
be a

(T0 × J)-matrix and X0 =
[
X2...XJ+1

]
be a (K× J)-matrix.

Since we want to make region 1’s synthetic control as similar as possible to the actual region
1, the Synthetic Control Estimator of YN1,t is given, for each t ∈ {1, ..., T }, by

ŶN1,t :=

J+1∑
j=2

ŵjYj,t, (2)

where Ŵ = [ŵ2...ŵJ+1]
′ := Ŵ(V̂) ∈ RJ is given by the solution to a nested minimization

problem:

Ŵ(V) := arg min
W∈W

(X1 − X0W) ′V(X1 − X0W) (3)

where W :=
{

W = [w2...wJ+1]
′ ∈ RJ : wj > 0 for each j ∈ {2, ..., J+ 1} and

∑J+1
j=2 wj = 1

}
and V is a diagonal positive semidefinite matrix of dimension (K×K) whose trace equals one.
Moreover,

V̂ := arg min
V∈V

(Y1 − Y0Ŵ(V)) ′(Y1 − Y0Ŵ(V)) (4)

where V is the set of diagonal positive semidefinite matrix of dimension (K× K) whose trace
equals one.

Intuitively, Ŵ is a weighting vector that measures the relative importance of each region in
the synthetic control of region 1 and V̂ measures the relative importance of each one of the K
predictors. Consequently, this technique makes the synthetic control of region 1 as similar as
possible with the actual region 1 considering the K predictors and the pre-intervention values
of the outcome variable when we choose the Euclidean metric (or a reweighed version of it) to
evaluate the distance between the observed variables for region 1 and the values predicted by
the Synthetic Control Method.10

9 Some lines of matrix Xj can be linear combinations of the variables in Yj.
10 Abadie and Gardeazabal [2003], Abadie et al. [2010] and Abadie et al. [2015] propose two other ways to choose

V̂. The first and most simple one is to use subjective and previous knowledge about the relative importance of each
predictor. Since one of the advantages of the Synthetic Control Method is to make the choice of comparison groups
in comparative case studies more objective, this method of choosing V is discouraged by those authors. Another
choice method for V̂ is to divide the pre-intervention period in two sub-periods: one training period and one
validation period. While data from the training period are used to solve problem (3), data for the validation period
are used to solve problem (4). Intuitively, this technique of cross-validation chooses matrix Ŵ(V̂) to minimize the
out-of-sample prediction errors, an advantage when compared to the method described in the main text. However,
the cost of this improvement is the need of a longer pre-intervention period. Moreover, the Stata command made
available by those authors also allows the researcher to use a regression-based method in order to compute matrix
V̂. It basically regress matrix Y1 on X1 and imposes vk = |βk|/

(∑K
k′=1 |βk′ |

)
, where vk is the k-th diagonal

element of matrix V and βk is the k-th coefficient of the regression of Y1 on X1. The choice method that we have
chosen to present in the main text is the most used one in the empirical literature.



synthetic control method 8

Finally, we define the Synthetic Control Estimator of α1,t (or the estimated gap) as

α̂1,t := Y1,t − Ŷ
N
1,t (5)

for each t ∈ {1, ..., T }.

2.2 Hypothesis Testing

Abadie et al. [2010] propose a inference procedure that

examines whether or not the estimated effect of the actual intervention is large rel-
ative to the distribution of the effects estimated for the regions not exposed to the
intervention. This is informative inference if under the hypothesis of no interven-
tion effect the estimated effect of the intervention is not expected to be abnormal
relative to the distribution of the placebo effects. (p. 497)

In order to do that, they run a permutation test, i.e., they permute which region is assumed
to be treated and estimate, for each j ∈ {2, ..., J+ 1} and t ∈ {1, ..., T }, α̂j,t as described in
subsection 2.1. Then, they compare the entire vector α̂1 =

[
α̂1,T0+1...α̂1,T

] ′ with the empirical
distribution of α̂j =

[
α̂j,T0+1...α̂j,T

] ′ estimated through the permutation test. If the vector of
estimated effects for region 1 is very different (i.e., large in absolute values), they reject the null
hypothesis of no effect.

Abadie et al. [2015] note a problem with this approach: |α̂1,t| can be abnormally large when
compared to the empirical distribution of

∣∣α̂j,t∣∣ for some t ∈ {T0 + 1, ..., T }, but not for other
time periods. In this case, it is not clear at all whether one should reject the null hypothesis of no
effect or not. In order to solve this problem, they recommend to use the empirical distribution
of

RMSPEj :=

∑T
t=T0+1

(
Yj,t− Ŷ

N
j,t

)2/(T − T0)

∑T0
t=1

(
Yj,t− Ŷ

N
j,t

)2/T0
where the acronym RMSPE stands for ratio of the mean squared prediction errors. Moreover,
they propose to calculate a p-value

p :=

∑J+1
j=1 1

[
RMSPEj > RMSPE1

]
J+ 1

, (6)

where 1[�] is the indicator function of event �, and reject the null hypothesis of no effect if p is
less than some pre-specified significance level, such as the traditional value of 0.1.

Although this RMSPE test statistic solve the problem generated by the time dimension of the
Synthetic Control Estimator, Abadie et al. [2015] does not state the sufficient conditions that
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guarantee the validity of this procedure11 nor discuss this test’s size and power. We address the
former issue in the next subsection and the latter in section 4.

2.3 Formalizing and Generalizing the Inference Procedure

In this section, we follow Imbens and Rubin [2015], adapting their framework to a synthetic
control context. We want to formalize and generalize the inference procedure described in
subsection 2.2. The first hypothesis that we make is the stable unit treatment value assumption

(SUTVA):

Assumption 1. The potential outcome vectors YIj :=
[
YIj,1...Y

I
j,T

] ′
and YNj :=

[
YNj,1...Y

N
j,T

] ′
for

each region j ∈ {1, ..., J+ 1} do not vary based on whether other regions face the intervention
or not (i.e., no spill-over effects in space) and, for each region, there are no different forms or
versions of intervention (i.e., single dose treatment), which lead to different potential outcomes
[Imbens and Rubin, 2015, p. 19].

The second assumption12 concerns the treatment assignment:

Assumption 2. The choice of which unit will be treated (i.e., which region is our region 1)
is random conditional on the choice of the donor pool, the observable variables included as

predictors and the unobservable variables captured by the path of the outcome variable during

the pre-intervention period.13

Assumption 2 is closely related to the literature about selection on unobservables. The analo-
gous assumption for the difference-in-differences estimator would be (Assumption DID) “The
choice of which unit will be treated (i.e., which region is our region 1) is random conditional
on the choice of the donor pool, the observable variables included as control variables and the

unobservables variables that are common among all the observed units (but varies over time)".
Since the differences-in-differences estimator controls only for the unobservables variables

that are common among all the observed units (but varies over time) while the synthetic con-
trol estimator controls for unobservable variables captured by the path of the outcome variable
during the pre-intervention period, assumption 2 is weaker than assumption DID.14

Regarding the applicability of assumption 2, it holds true for many empirical applications
of the Synthetic Control Estimator. For example, Barone and Mocetti [2014], Cavallo et al.

11 Particularly, it is not clear at all what they mean by "the hypothesis of no intervention effect" [Abadie et al., 2010,
p. 497]. Is it a null average effect? Or a null median effect? Or even a null effect for all units in all time
periods? Moreover, asking what these authors mean by "the estimated effect of the intervention is not expected to
be abnormal" [Abadie et al., 2010, p. 497] is also a valid question.

12 This assumption is our precise definition of "not expected to be abnormal" in footnote 11.
13 The unobservable variables captured by the path of the outcome variable during the pre-intervention period are

denoted by unobserved common factors, λt, and unknown factor loadings, µi in the factor model discussed by
Abadie et al. [2010].

14 The differences-in-differences model is actually nested in the factor model discussed by Abadie et al. [2010].
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[2013], Coffman and Noy [2011] and DuPont and Noy [2012] evaluate the economic effect of
large scale natural disasters, such as earthquakes, hurricanes or volcano eruptions. Although
the regions in the globe that frequently faces these disasters are not random, the specific region
among them that will be hit by a natural disaster and the timing of this phenomenon is fully ran-
dom.15 Moreover, Pinotti [2012a] and Pinotti [2012b] evaluate the economic and political cost
of organized crime in Italy exploring the increase in Mafia activities after two large earthquakes.
Two other examples of the plausibility of assumption 2 are Smith [2015], who argues that the
discovery of large natural resources reserves is as-if-random, and Liu [2015], who argues that
the location of land-grand universities in the 19th century is as-if-random too.16

The third assumption is related to how we interpret the potential outcomes:

Assumption 3. The potential outcomes YIj :=
[
YIj,1...Y

I
j,T

] ′
and YNj :=

[
YNj,1...Y

N
j,T

] ′
for each

region j ∈ {1, ..., J+ 1} are fixed but a priori unknown quantities.17

Implicitly, we assume that we observe the realization of a random variable for the entire

population of interest instead of a random sample of a larger superpopulation.18
We note that assumptions 2 and 3 implies that the units in the donor pool are exchangeable.

In reality, exchangeability is the weakest assumption that guarantees the validity of our formal
and generalized inference procedure, because it is simply based in a permutation test. However,
we believe that, although stronger, assumptions 2 and 3 makes interpretation easier, providing
a useful framework in order to discuss the validity of the synthetic control method in applied
topics. In particular, assumption 2 justifies one of the robustness checks described in appendix
C.

Finally, our null hypothesis is given by a sharp null hypothesis:

H0 : Y
I
j,t = Y

N
j,t + fj(t) for each region j ∈ {1, ..., J+ 1} and time period t ∈ {1, ..., T } , (7)

where fj : {1, ..., T }→ R is a function of time that is specific to each region j.
Observe that a sharp null hypothesis allows us to know all potential outcomes for each region

regardless of its treatment assignment. Note also that the exact null hypothesis

H0 : Y
I
j,t = Y

N
j,t for each region j ∈ {1, ..., J+ 1} and time period t ∈ {1, ..., T } , (8)

15 In this example, the donor pool contains all countries that frequently faces natural disasters. Conditional on being
in the donor pool, being treated (i.e., being hit by a natural disaster in the analyzed time window) is random.

16 Even in randomized control trials, the synthetic control method may be more interesting than traditional statistical
methods when there are only a few treated units — an issue that may emerge due to budget constraints. As we
show in section 4, test statistics that use the synthetic control estimator are more powerful than the ones that do not
use it.

17 As a consequence of this assumption, all the randomness of our problem come from the treatment assignment.
18 See Imbens and Rubin [2015] for details regarding this interpretation.
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is a particular case of the sharp null hypothesis (7) and can be interpreted as an hypothesis
of no intervention effect whatsoever. We underscore that equation (8) is our precise definition
of "no intervention effect" in footnote 11.19 We also note that, under assumptions 1-3 and the
null hypothesis (8), the p-value in equation (6) is valid and known as Fisher’s Exact p-Value,
after Fisher [1971]. In this sense, our inference procedure with the sharp null hypothesis is a
generalization of the inference procedure proposed by Abadie et al. [2015].

Although the sharp null hypothesis (7) is theoretically interesting due to its generality, we
almost never have a meaningful null hypothesis that is precise enough to specify individual
intervention effects for each observed region. For this reason, we can simply assume a simpler
sharp null hypothesis20:

H0 : Y
I
j,t = Y

N
j,t + f(t) for each region j ∈ {1, ..., J+ 1} and time period t ∈ {1, ..., T } , (9)

where f : {1, ..., T }→ R.
After formally stating conditions that guarantee the validity of the inference procedure pro-

posed by Abadie et al. [2010] and Abadie et al. [2015], we generalize it to other test statistics
and to any sharp null hypothesis. We, again, follow Imbens and Rubin [2015].

We define a test statistic θf as a known positive real-valued function θf(ι, τ, Y, X, f) of:

1. the vector ι := [ι1...ιJ+1]
′ ∈ RJ+1 of treatment assignment, where ιj = 1 if region j faces

the intervention at some moment in time and zero otherwise;

2. τ := [τ1...τT ]
′ ∈ RT , where τt = 1 if t > T0 and zero otherwise;

3. the matrix

Y :=


YI1,1ι1τ1 + Y

N
1,1(1− ι1τ1) ... YI1,T ι1τT + YN1,T (1− ι1τT )

. . .

YIJ+1,1ιJ+1τ1 + Y
N
J+1,1(1− ιJ+1τ1) ... YIJ+1,T ιJ+1τT + YNJ+1,T (1− ιJ+1τT )


of observed outcomes;

4. the matrix X := [X1 X0] of predictor variables;

5. the intervention effect function f : {1, ..., T }→ R given by the sharp null hypothesis (9).

The observed test statistic is given by θobsf := θ(e1, τ, Y, X, f) and, under assumptions 1-
3 and the sharp null hypothesis (9), we can estimate the entire empirical distribution of θf
by permuting which region faces the intervention, i.e., by estimating θf(ej, τ, Y, X, f) for each

19 Observe that the exact null hypothesis (8) is stronger than assuming that the typical (mean or median) effect across
regions is zero.

20 We stress that the exact null hypothesis is still a particular case of the simpler sharp null hypothesis (9).
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j ∈ {1, ..., J+ 1}, where ej is the j-th canonical vector of RJ+1.21 We reject the sharp null

hypothesis (9) if

pθf :=

∑J+1
j=1 1

[
θ(ej, τ, Y, X, f) > θobsf

]
J+ 1

6 γ (10)

γ is some pre-specified significance level.22,
23 Note that rejecting the null hypothesis implies

that there is some region with a non-zero effect for some time period. Moreover, observe that
RMSPE and any linear combination of the absolute estimated synthetic control gaps are test
statistics according to this definition. Consequently, the hypothesis tests proposed by Abadie
et al. [2010] and Abadie et al. [2015] are inserted in this framework.24

Regarding the choice of function f, there are many interesting options for a empirical re-
searcher. For example, after estimating the intervention effect function (α̂1,1, ..., α̂1,T0+1, ..., α̂1,T ),
the researcher may want to fit a linear, a quadratic or a exponential function to the estimated
points associated with the post-intervention period. He or she can then test whether this fitted
function is rejected or not according to our inference procedure. This possibility is useful in
order to predict, in a very simple way, the future behavior of the intervention effect function.

Another and possibly the most interesting option for function f is related to cost-benefit anal-
ysis. If the intervention cost and its benefit are in the same unit of measurement, function f can
be the intervention cost as a function of time and our inference procedure allows the researcher
to test whether the intervention effect is different than its costs.

Moreover, function f can be chosen in order to test a theory that predicts a specific form
for the intervention effect. For example, imagine that a researcher is interested in analyzing
the economic impact of natural disasters (Barone and Mocetti [2014], Cavallo et al. [2013],
Coffman and Noy [2011], DuPont and Noy [2012]). Theory predicts three different possible
intervention effects in this case: (i) GDP initially increases due to the aid effect and, then,
decreases back to its potential level; (ii) GDP initially decreases due to the destruction effect
and, then, increases back to its potential level; and (iii) GDP decreases permanently due to a
reduction in its potential level. The researcher can choose a inverted U-shaped function fi, a U-
shaped function fii and a decreasing function fiii and apply our inference procedure to each one
of those three sharp null hypotheses in order to test which theoretical prediction is not rejected
by the data.

21 For a step-by-step guide on how to compute the test statistic and its empirical distribution, see appendix A.
22 In order to compute the p-value pθf , we implicitly assume that all regions can be chosen to be the one that faces

the intervention with equal probability. In section 6, we propose a sensitivity analysis to measure the robustness of
the test’s decision to this implicit assumption.

23 Yates [1984] stresses that γ should be chosen carefully and always clearly reported since the discreteness of data
(the number of regions is always a finite, usually small, natural number) may preclude the choice of the usual
significance levels of 10% or 5%.

24 In section 4, we analyze five different test statistics that were previously proposed in the synthetic control literature
in order to select the ones that have power against an alternative hypothesis similar to Ha : YI1,t = YN1,t + ct for
all time periods t ∈ {T0 + 1, ..., T }, where ct ∈ R.
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3 confidence sets for the synthetic control esti-
mator

Following the inference procedure described at the end of subsection 2.3, we can test many
different types of sharp null hypothesis. Consequently, we can invert the test statistic to estimate
confidence sets for the treatment effect function. Formally, under assumptions 1-3, we can
construct a γ-confidence set in the space R{1,...,T } as

CSγ,θ :=
{
f ∈ R{1,...,T } : pθf > γ

}
. (11)

Note that it is easy to interpret CSγ,θ: it contains all intervention effect functions whose asso-
ciated sharp null hypotheses are not rejected by the inference procedure described in subsection
2.3.

However, although theoretically possible to define such a general confidence set, null hy-
pothesis (9) might be too general for practical reasons since the space R{1,...,T } is too large to
be informative and estimating such a confidence set would be computationally infeasible. For
these reasons, we believe that it is worth focusing in two subsets of CSγ,θ.

Firstly, we propose to assume the following null hypothesis:

H0 : Y
I
j,t = Y

N
j,t + c× 1(t > T0 + 1) (12)

for each region j ∈ {1, ..., J+ 1} and time period t ∈ {1, ..., T }, where c ∈ R. Intuitively, we
assume that there is a constant (in space and in time) intervention effect. Note that we can apply
the inference procedure described in subsection 2.3 to any c ∈ R, estimating the empirical
distribution of θc. Under assumptions 1-3, we can then construct a γ-confidence interval for the
constant intervention effect as

CIγ,θ :=
{
f ∈ R{1,...,T } : f (t) = c and pθc > γ

}
⊆ CSγ,θ (13)

where c ∈ R and γ ∈ (0, 1) ⊂ R. It is easy to interpret CIγ,θ: it contains all constant in time
intervention effects whose associated sharp null hypotheses are not rejected by the inference
procedure described in subsection 2.3.

Secondly, we can easily extend (12) and (13) to a linear in time intervention effect (with
intercept equal to zero). Assume

H0 : Y
I
j,t = Y

N
j,t + c̃× (t− T0)× 1(t > T0 + 1) (14)

for each region j ∈ {1, ..., J+ 1} and time period t ∈ {1, ..., T }, where c̃ ∈ R. Intuitively, we
assume that there is a constant in space, but linear in time intervention effect (with intercept
equal to zero). Note that we can apply the inference procedure described in subsection 2.3 to
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any c̃ ∈ R, estimating the empirical distribution of θc̃. Under assumptions 1-3, we can then
construct a γ-confidence set for the linear intervention effect as

C̃Sγ,θ :=

{
f ∈ R{1,...,T } : f(t) = c̃× (t− T0)× 1(t > T0 + 1)

and pθc̃ > γ

}
⊆ CSγ,θ (15)

where γ ∈ (0, 1) ⊂ R. It is also easy to interpret C̃Rγ,θ: it contains all linear in time inter-
vention effects (with intercept equal to zero) whose associated sharp null hypotheses are not
rejected by the inference procedure described in subsection 2.3.

We also note that extending our confidence intervals to two-parameter functions (e.g.: quadratic,
exponential and logarithmic functions) is theoretically straightforward as equation (11) makes
clear. However, since we believe that computationally estimating such confidence sets would
be extremely time consuming for the practitioner, we opted for restricting our main examples
to one-parameter functions (equations (13) and (15)).

Moreover, we highlight that confidence sets (13) and (15) summarizes a large amount of
relevant information since they not only show the statistical significance of the estimated inter-
vention effect, but also provide a measure of the precision of the point-estimate, indicating the
strength of qualitative conclusions. Section 7 exemplifies the communication efficacy of this
graphical device.25

Finally, we note that our confidence sets are uniform in the sense that they combine infor-
mation about all time periods in order to describe which intervention effect functions are not
rejected by the data. If the empirical researcher is interested in only computing point-wise con-
fidence intervals for each period intervention effect, he or she can apply our inference procedure
and confidence sets separately for each post-intervention time period t′ ∈ {T0 + 1, ..., T } using
the
∣∣α̂1,t′∣∣ as a test statistic.

4 analyzing size and power

In this section, we analyze the size and the power of five different test statistics when they
are applied to the inference procedure described in subsection 2.3.26 In order to do that, we
assume seven different intervention effects, simulate 5,000 data sets for each intervention effect
through a Monte Carlo experiment and, for each data set, we test, at the 10% significance level,
the exact null hypothesis (equation (8)), following the mentioned inference procedure and using
each test statistic. Firstly, we explain how we generated our data sets. Then, we describe our
five test statistics. Finally, at the end of this section, we present and discuss the results of our
Monte Carlo experiment.

25 In this empirical example, we used a R function that implements confidence sets (13) and (15) using the RMSPE
as a test statistic. This R function is available at the authors’ webpage (https://goo.gl/4Jvd2W).

26 In appendix 2, we discuss the size and the power of other thirteen test statistics.

https://goo.gl/4Jvd2W
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The first step in our Monte Carlo experiment is to decide the values of the parameters: J+ 1
(number of regions), T (number of time periods), T0 (number of pre-intervention time periods)
and K (number of predictors). In our review of the empirical literature, we found that typical
values of these parameters are, approximately, T = 25, T0 = 15 and K = 10 (nine control
variables and the pre-intervention average of the outcome variable). We also set J+ 1 = 20

(one treated region and nineteen control regions). Our data generating process follows equation
(5) of Abadie et al. [2010] and is different from the one used by Ando and Sävje [2013]:

YNj,t+1 = δtY
N
j,t +βt+1Zj,t+1 + uj,t+1

Zj,t+1 = κtYNj,t +πtZj,t + vj,t+1
(16)

for each j ∈ {1, ..., J+ 1} and t ∈ {0, ..., T − 1}, where Zj,t+1 is a (K− 1)× 1-dimension vector
of control variables27. The scalar uj,t+1 and each element of the (K− 1)× 1-dimension vector
vj,t+1 are independent random draws from a standard normal distribution. The scalars δt and
κt and each element of βt+1 and πt are independent random draws from a uniform distribution
with lower bound equal to -1 and upper bound equal to +1. We make Zj,0 = vj,0 and YNj,0 =

β0Zj,0 + uj,0. Finally, the potential outcome when region 1 faces the intervention in period
t ∈ {1, ..., T } is given by

YI1,t = Y
N
1,t + λ× sd(YN1,t|t 6 T0)× (t− T0)× 1 [t > T0 + 1] , (17)

where λ ∈ {0, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0} is the intervention effect and sd(♣|�) is the standard
deviation of variable ♣ conditional on event �. Hence, our alternative hypothesis is that there
is a linear intervention effect only for region 1, implying that our Monte Carlo experiment
investigates what are the most powerful test statistics against this alternative hypothesis28.

Note that, in each one of the 35,000 Monte Carlo repetitions, we create an entire population
of regions. Hence, after realizing the values of the potential outcome variables, we can interpret
them as fixed but a priori unknown quantities in accordance to assumption 3.29

Now that we have explained our data generating process for our 35,000 Monte Carlo repeti-
tions (5,000 repetitions for each different intervention effect λ), we describe the five different
test statistics that we use to analyze the size and the power of the inference procedure described
in subsection 2.3:

• θ1 := mean
(∣∣∣α̂j̃,t∣∣∣ |t > T0 + 1) is implicitly suggested by Abadie et al. [2010].

• θ2 := RMSPE
j̃

is used by Abadie et al. [2015].

27 Xj is a vector that contains the pre-intervention averages of the control variables and the outcome variable.
28 In a previous version of this text, that circulated under the title Synthetic Control Estimator: A Walkthrough with

Confidence Intervals, we used a constant in time intervention effect. The results of that smaller Monte Carlo
experiment were similar to the ones presented below.

29 If we treat our hypothesis test as conditional on the realized outcome variable, assumption 3 holds automatically.
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• θ3 is the absolute value of the statistic of a t-test that compares the estimated average
post-intervention effect against zero. More precisely,

θ3 :=

∣∣∣∣αpost/(T − T0)

σ̂/
√
T − T0

∣∣∣∣

where αpost :=

(∑T
t=T0+1

α̂
j̃,t

)
(T − T0)

=: θ1 and σ̂ :=

(∑T
t=T0+1

(
α̂
j̃,t −αpost

)2)
(T − T0)

. This test

statistic is used by Mideksa [2013].

• θ4 :=

∣∣∣∣∣mean(Ỹj,t|t > T0 + 1)−
∑T
t=T0+1

∑
j 6=j̃ Yj,t

(T − T0)× J

∣∣∣∣∣ is a simple difference in means

between the treated region and the control regions for the realized outcome variable dur-
ing the post-intervention period. This test statistic is suggested by Imbens and Rubin
[2015].

• θ5 is the coefficient of the interaction term in a differences-in-differences model. More
precisely, we estimate the model

Yj,t = η1×1
[
j = j̃

]
+η2×1

[
j = j̃

]
×1 [t > T0 + 1] +Zj,t× ζ+ ξj+µt+ εj,t, (18)

where ξj and µt are, respectively, region and time fixed effects, and we make θ̂5 = |η̂2|.

where j̃ is the region that is assumed to face the intervention in each permutation, mean(♣|�)
is the mean of variable♣ conditional on event �. We construct the empirical distribution of each
test statistic for each Monte Carlo repetition and test the null hypothesis at the 10% significance
level. In practice, we reject the null hypothesis if the observed test statistic is one of the two
largest values of the empirical distribution of the test statistic.

Note that, although test statistic θ4 and θ5 do not use the synthetic control method, they are
included in our Monte Carlo Experiment for being commonly used in the literature about permu-
tation tests. Since the synthetic control estimator is a time-consuming and computer-demanding
methodology, it is important to analyze whether it outperforms much simpler methods that are
commonly used in the evaluation literature and that are also adequate in our framework. For
this same reason, we also report rejection rates for the differences-in-differences inference pro-
cedure proposed by Conley and Taber [2011] (CT)30.

Table 1 shows the results of our Monte Carlo Experiment. Each cell presents the rejection
rate of the permutation test described in subsection 2.3 that uses the test statistic in each row or
the rejection rate of the test proposed by Conley and Taber [2011] when the true intervention

30 We estimate model (18) and test the null hypothesis H0 : η2 = 0 using the confidence intervals recommend by
Conley and Taber [2011]. Since their inference procedure uses only the control regions in order to estimate the test
statistic distribution, the true nominal size of this test is 10.53%.
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effect is given by the value mentioned in the column’s heading. Consequently, while column
(1) presents tests’ sizes31, the columns (2)-(7) present their power.

Table 1: Monte Carlo Experiment’s Rejection Rates

Intervention Effect

(1) (2) (3) (4) (5) (6) (7)
Test Statistic λ= .0 λ= .05 λ= .1 λ= .25 λ= .5 λ= 1.0 λ= 2.0

θ̂1 0.10 0.19 0.23 0.35 0.45 0.59 0.69
θ̂2 0.10 0.30 0.37 0.48 0.56 0.70 0.77
θ̂3 0.10 0.62 0.71 0.79 0.88 0.93 0.95
θ̂4 0.10 0.20 0.27 0.37 0.46 0.57 0.65
θ̂5 0.10 0.19 0.23 0.37 0.45 0.60 0.70
CT 0.06 0.15 0.24 0.36 0.38 0.60 0.64

Source: Authors’ own elaboration. Notes: Each cell presents the rejection rate of the test as-
sociated to each row when the true intervention effect is given by the value λ in the columns’
headings. Consequently, while column (1) presents tests’ sizes, the columns (2)-(7) present their
power. θ̂1-θ̂3 are associated to permutation tests that uses the Synthetic Control Estimator. θ̂4-
θ̂5 are associated to permutation tests that are frequently used in the evaluation literature. CT is
associated with the asymptotic inference procedure proposed by Conley and Taber [2011].

Analyzing column (1), we note that the five permutation tests of our Monte Carlo Experiment(
θ1-θ5

)
present the correct nominal size as expected by the decision rule of Fisher’s Exact

Inference Procedure. The most interesting result in this column is the conservativeness of the
inference procedure proposed by Conley and Taber [2011] (CT), that under-rejects the null
hypothesis. This finding can be explained by the fact that, while our sample size is small
(J+ 1 = 20), their inference procedure is an asymptotic test based on the number of control
regions going to infinity.

Analyzing the other columns, we note that the test statistic RMSPE, proposed by Abadie et al.
[2015]

(
θ2
)
, is uniformly more powerful than the simple test statistics

(
θ4, θ5

)
that are com-

monly used in the evaluation literature. This result suggests that, in a context where we observe
only one treated unit, we should use the synthetic control estimator even if the treatment were
randomly assigned. We also stress that the hypothesis test based on the statistic RMSPE

(
θ2
)

outperforms the test proposed by Conley and Taber [2011] (CT) in terms of power, suggesting
that, in a context with few control regions, we should use the synthetic control estimator instead
of a differences-in-differences model.

We also underscore that the most powerful test statistic is the t-test, θ3. This result makes
clear the gains of power when the researcher chooses to use the synthetic control estimator
instead of a simpler method, such as the difference in means

(
θ4
)

or the permuted differences-
in-differences test

(
θ5
)
. We also note that the large power of the t-test have been previously

observed in contexts that are different from ours: Lehmann [1959] looks to a simple test of

31 Note that one possible measure of the coverage rate of our confidence set is one minus the rejection rates presented
in column (1).



extensions to the inference procedure 18

mean differences, Ibragimov and Muller [2010] analyzes a two-sample test of mean differences
where samples’ variances are different from each other, and Young [2015] focus on a linear
regression coefficient.

Finally, we note that the simple average of the absolute post-intervention treatment effect(
θ1
)
, despite using the synthetic control method, is as powerful as the simple test statistics that

are commonly used in the evaluation literature
(
θ4, θ5

)
. Consequently, we do not recommend

to use it to conduct inference, because it is as time-consuming to estimate as the more powerful
test statistics that uses the synthetic control method,

(
θ2 and, specially, θ3

)
. We avoid making

any stronger suggestion about which test statistic the empirical researcher should use, because,
as [Eudey et al., 2010, p. 14] makes clear, this choice is data dependent since the empirical
researcher’s goal is to match the test statistic to the meaning of the data. For example, if outliers
are extremely important, θ2 may be a better option than θ3 even though the latter is more
powerful than the former.

In appendix B.1, we expand the results of this section to other test statistics.

5 extensions to the inference procedure

5.1 Simultaneously Testing Hypotheses about Multiple Outcomes

Imbens and Rubin [2015] states that the validity of the procedure described in subsection 2.3
depends on a prior (i.e., before seeing the data) commitment to a test statistic. Moreover, Ander-
son [2008] shows that simultaneously testing hypotheses about a large number of outcomes can
be dangerous, leading to an increase in the number of false rejections.32 Consequently, apply-
ing the inference procedure described in subsection 2.3 to simultaneously test hypotheses about
multiple outcomes can be misleading, because there is no clear way to choose a test statistic
when there are many outcome variables and because our test’s true size may be smaller than
its nominal value in this context. After adapting the familywise error rate control methodology

suggested by Anderson [2008] to our framework, we propose one way to test any sharp null

hypothesis for a large number of outcome variables, preserving the correct test size for each
variable of interest.

First, we modify the framework described in section 2, assuming that there are M ∈ N

observed outcome variables — Y1, ..., YM — with their associated potential outcomes. We
change assumptions 1-3 to:

Assumption 4. The potential outcome vectors Ym,I
j :=

[
Ym,I
j,1 ...Ym,I

j,T

] ′
and Ym,N

j :=
[
Ym,N
j,1 ...Ym,N

j,T

] ′
for each region j ∈ {1, ..., J+ 1} and each outcome variablem ∈ {1, ...,M} do not vary based on

32 List et al. [2016] argues that false rejections can harm the economy since vast public and private resources can
be misguided if agents base decisions on false discoveries. They also point that multiple hypothesis testing is a
especially pernicious influence on false positives.
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whether other regions face the intervention or not (i.e., no spill-over effects in space) and, for
each region, there are no different forms or versions of intervention (i.e., single dose treatment),
which lead to different potential outcomes.

Assumption 5. The choice of which unit will be treated (i.e., which region is our region 1)
is random conditional on the choice of the donor pool, the observable variables included as

predictors for each outcome variable m ∈ {1, ...,M} and the unobservable variables captured

by the path of the outcome variables during the pre-intervention period.

Assumption 6. The potential outcomes Ym,I
j :=

[
Ym,I
j,1 ...Ym,I

j,T

] ′
and Ym,N

j :=
[
Ym,N
j,1 ...Ym,N

j,T

] ′
for each region j ∈ {1, ..., J+ 1} and each outcome variablem ∈ {1, ...,M} are fixed but a priori

unknown quantities.

Now, our null hypothesis is slightly more complex than the one described in equation (9):

H0 : Y
m,I
j,t = Ym,N

j,t + fm(t) (19)

for each region j ∈ {1, ..., J+ 1}, each time period t ∈ {1, ..., T } and each outcome variable
m ∈ {1, ...,M}, where fm : {1, ..., T }→ R is a function of time that is specific to each outcome
m. Note that we could index each function fm by region j, but we opt not to do so because
we almost never have a meaningful null hypothesis that is precise enough to specify individual
intervention effects. Observe also that it is important to allow for different functions for each
outcome variable because the outcome variables may have different units of measurement or
different scales.

Under assumptions 4-6 and the null hypothesis (19), we can, for each m ∈ {1, ...,M}, cal-
culate an observed test statistic, θobsfm

= θm(e1, τ, Ym, X, fm), and their associated observed
p-value,

pobsθfm
:=

∑J+1
j=1 1

[
θm(ej, τ, Y, X, fm) > θobsfm

]
J+ 1

where we choose the order of the indexm to guarantee that pobsθf1
< pobsθf2

< ... < pobsθfM
.

Since this p-value is itself a test statistic, we can estimate, for each outcome m ∈ {1, ...,M},

its empirical distribution by computing pj̃θfm :=

∑J+1
j=1 1

[
θm(ej, τ, Y, X, fm) > θm,̃j

]
J+ 1

for each

region j̃ ∈ {1, ..., J+ 1}, where θm,̃j := θm
(
ẽ
j
, τ, Ym, X, fm

)
. Our next step is to calculate

p
j̃
θfm ,∗ := min

{
p
j̃
θfm

,pj̃θfm+1
, ...,pj̃θfM

}
for each m ∈ {1, ...,M} and each j̃ ∈ {1, ..., J+ 1}.

Then, we estimate pfwer∗
θobsfm

:=

∑J+1
j=1 1

[
p
j
θfm ,∗ 6 p

obs
θfm

]
J+ 1

for each m ∈ {1, ...,M}. We enforce

monotonicity one last time by computing pfwer
θobsfm

:= min
{
pfwer∗
θobsfm

,pfwer∗
θobsfm+1

, ...,pfwer∗
θobsfM

}
for each
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m ∈ {1, ...,M}. Finally, for each outcome variable m ∈ {1, ...,M}, we reject the sharp null

hypothesis (19) if pfwer
θobsfm

6 γ, where γ is a pre-specified significance level.

It is important to observe that rejecting it for some outcome variable m ∈ {1, ...,M} implies
that there is some region whose intervention effect differs from fm(t) for some time period
t ∈ {1, ..., T } for that specific outcome variable.

We also note that, when we observe only one outcome variable of interest as in section 2,
we can reinterpret it as case with multiple outcome variables where each post-intervention time
period is seem as a different outcome variable. With this interpretation, the inference procedure
described in subsection 2.3 is still valid and is similar in flavor with the summary index test

proposed by Anderson [2008], because we summarized the entire time information in a sin-
gle test statistic. Since Anderson [2008] argues that the summary index test33 has more power
than the familywise error rate control approach, we recommend that the empirical researcher
uses the inference procedure described in subsection 2.3 if he or she is interested in knowing
whether there is an intervention effect or not, but is not interested in the timing of this effect.
If the empirical researcher is interested in the timing of this effect, he or she should interpret
each post-intervention time period as a different outcome variable and apply the inference pro-
cedure described in this subsection. Both approaches deliver valid statistical inference in small
samples.

5.2 Hypothesis Testing and Confidence Sets with Multiple Treated Units

Cavallo et al. [2013] extend the Synthetic Control Method developed by Abadie and Gardeaz-
abal [2003] and Abadie et al. [2010] to the case when we observe multiple treated units. Firstly,
we explain their innovation and, then, we clearly state the hypotheses that guarantee the validity
of their method since they have not done it either. We also generalize their inference procedure
in order to test any kind of sharp null hypothesis and, then, propose a way to estimate confidence
sets for the pooled intervention effect.

Assume that there are G ∈N similar interventions that we are interested in analyzing simul-
taneously. For each intervention g ∈ {1, ...,G}, there are Jg+ 1 observed regions and we denote
the region that faces the intervention as the first one, 1g. Following the procedure described in
subsection 2.1, we define the Synthetic Control Estimator of α1g,t as

α̂1g,t := Y1g,t − Ŷ
N
1g,t (20)

33 The summary index test can also be adapted to our framework of multiple outcomes and be applied in place of
the procedure described in this subsection. In order to do that, the researcher must aggregate all the information
contained in test statistics θ1, ..., θM in a single index test statistic θ̃ and use θ̃ as the test statistic for the inference
procedure described in subsection 2.3. In this case, a rejection of the null hypothesis implies that there is some
region whose intervention effect differs from fm(t) for some time period t ∈ {1, ..., T } for some specific outcome
variablem ∈ {1, ...,M}.
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for each t ∈ {1, ..., T } and each intervention g ∈ {1, ...,G}. The pooled intervention effect
according to the Synthetic Control Estimator is given by:

α̂1,t :=

∑G
g=1 α̂1g,t

G
(21)

for each t ∈ {1, ..., T }.
In order to run hypothesis testing for each time period t ∈ {T0 + 1, ..., T }, Cavallo et al. [2013]

suggests the following procedure:

1. For each intervention g ∈ {1, ...,G}, permute which region is assumed to be treated and
estimate, for each control region jg ∈ {2, ..., Jg + 1}, α̂jg,t as described in subsection 2.1.

2. Estimate a placebo pooled intervention effect as α̂q,t :=

∑G
g=1 α̂j̃g,t

G
, where q ∈ N

indexes placebo estimations and j̃g ∈ {1, ..., Jg + 1} for each intervention g ∈ {1, ...,G}.
Note that there are Q :=

∏G
g=1 (J

g + 1) possible placebo pooled intervention effects.

3. Compute pCGNP,t :=

∑Q
q=1 1

[
|α̂q,t| > |α̂1,t|

]
Q

for each t ∈ {T0 + 1, ..., T }.

4. Reject the null hypothesis if pCGNP,t is less than some pre-specified significance level.

We want to formalize and generalize this inference procedure. Moreover, differently from
Cavallo et al. [2013], we summarize the entire time information in a single test statistic in order
to avoid over-rejecting the null hypothesis as pointed out by Anderson [2008]34. We need to
assume:

Assumption 7. The potential outcome vectors YIjg :=
[
YIjg,1...Y

I
jg,T

] ′
and YNjg :=

[
YNjg,1...Y

N
jg,T

] ′
for each intervention g ∈ {1, ...,G} and each region jg ∈ {1, ..., Jg + 1} do not vary based on
whether other regions face the intervention or not (i.e., no spill-over effects in space) and, for
each region, there are no different forms or versions of intervention (i.e., single dose treatment),
which lead to different potential outcomes.

Assumption 8. The choice of which unit will be treated in each intervention (i.e., which region
is our region 1g for each g ∈ {1, ...,G}) is random conditional on the choice of the donor

pool of each intervention g ∈ {1, ...,G}, the observable variables included as predictors and the

unobservable variables captured by the path of the outcome variable during the pre-intervention

period of each intervention g ∈ {1, ...,G}.

Assumption 9. The potential outcomes YIjg :=
[
YIjg,1...Y

I
jg,T

] ′
and YNjg :=

[
YNjg,1...Y

N
jg,T

] ′
for

each intervention g ∈ {1, ...,G} and each region jg ∈ {1, ..., Jg + 1} are fixed but a priori un-
known quantities.

34 For more information about over-rejecting the null hypothesis, see the articles mentioned in subsection 5.1.
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Finally, our sharp null hypothesis is now given by:

H0 : Y
I
jg,t = Y

N
jg,t + f(t) (22)

for each intervention g ∈ {1, ...,G}, each region jg ∈ {1, ..., Jg + 1} and time period t ∈ {1, ..., T },
where f : {1, ..., T } → R. Note that we could index the function f by intervention g and region
jg, but we opt not to do so because we almost never have a meaningful null hypothesis that is
precise enough to specify individual intervention effects for each observed region.

Now, we define a test statistic θpld,f as a known positive real-valued function θpld((ιg, τg, Yg, Xg)Gg=1, f)
that summarizes the entire information of the post-intervention period.

The observed test statistic is given by θobspld,f := θpld((e1g , τg, Yg, Xg)Gg=1, f), where ejg is
the jg-th vector of the canonical base of RJg+1. Under assumptions 7-9 and the sharp null

hypothesis (22), we can estimate the entire empirical distribution of θpld,f by estimating the
test statistics θq := θpld((ejg , τg, Yg, Xg)Gg=1, f) associated to each possible placebo treatment
assignment35 q ∈ {1, ...,Q}. We, then, reject the null hypothesis (equation (22)) if

pθpld,f :=

∑Q
q=1 1

[
θq > θobspld,f

]
Q

6 γ (23)

where γ is some pre-specified significance level.36 Note that rejecting the null hypothesis im-
plies that there is some intervention with some region whose intervention effect differs from
f(t) for some time period t ∈ {1, ..., T }.

Now, we extend our confidence sets to the pooled intervention effect. Under assumptions 7-9,
we can then construct a γ-confidence set for the pooled intervention effect as

CSγ,θpld :=
{
f ∈ R{1,...,T } : pθpld,f > γ

}
. (24)

Note that it is easy to interpret CSγ,θpld: it contains all pooled intervention effect functions
whose associated sharp null hypotheses are not rejected by the inference procedure described
in this subsection.

However, although theoretically possible to define such a general confidence set, null hy-
pothesis (22) might be too general for practical reasons since the space R{1,...,T } is too large to
be informative and estimating such a confidence set would be computationally infeasible. For
these reasons,we believe that it is worth focusing in two subsets of CSγ,θpld .

Firstly, we propose to assume the following null hypothesis:

H0 : Y
I
jg,t = Y

N
jg,t + c× 1(t > T0 + 1) (25)

35 Note that each possible placebo treatment assignment q is just a possible combination of (ej1 , ..., ejG).
36 In order to compute the p-value pθpld,f , we implicitly assume that all placebo treatment assignments q ∈ {1, ...,Q}

are equally likely. In section 6, we propose a sensitivity analysis to measure the robustness of the test’s decision to
this implicit assumption.
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for each intervention g ∈ {1, ...,G}, each region jg ∈ {1, ..., Jg + 1} and time period t ∈ {1, ..., T },
where c ∈ R, and estimate the empirical distribution of θpld,c following the procedure described
in this subsection. Under assumptions 7-9, we can then construct a γ-confidence interval for
the constant pooled intervention effect as

CIγ,θpld :=
{
f ∈ R{1,...,T } : f (t) = c and pθpld,c > γ

}
⊆ CSγ,θpld (26)

where c ∈ R and γ ∈ (0, 1) ⊂ R. It is easy to interpret CIγ,θpld: it contains all constant in
time pooled intervention effects whose associated sharp null hypotheses are not rejected by the
inference procedure described in this subsection.

Secondly, We can easily extend (25) and (26) to a linear in time pooled intervention effect.
Assume

H0 : Y
I
jg,t = Y

N
jg,t + c̃× (t− T0)× 1(t > T0 + 1) (27)

for each intervention g ∈ {1, ...,G}, each region jg ∈ {1, ..., Jg + 1} and time period t ∈ {1, ..., T },
where c̃ ∈ R. Note that we can apply the inference procedure described above to any c̃ ∈ R,
estimating the empirical distribution of θpld,c̃. Under assumptions 7-9, we can then construct a
γ-confidence set for the linear pooled intervention effect as

C̃Sγ,θpld :=

{
f ∈ R{1,...,T } : f(t) = c̃× (t− T0)× 1(t > T0 + 1)

and pθpld,c̃ > γ

}
⊆ CSγ,θpld

(28)

where γ ∈ (0, 1) ⊂ R. It is also easy to interpret C̃Rγ,θpld: it contains all linear in time pooled
intervention effects whose associated sharp null hypotheses are not rejected by the inference
procedure described in this subsection.

Finally, if the researcher wants to analyze each intervention g ∈ {1, ...,G} separately in order
to investigate heterogeneous effects, he or she can apply our framework for multiple outcomes
(see subsection 5.1) instead of implementing the pooled analysis describe in this subsection.
The more detailed analysis based on the multiple outcomes framework has the cost of losing
statistical power since the framework described in this subsection is based on the summary index

test while the procedure explained in subsection 5.1 is based on the familywise error rate.37

5.3 Hypothesis Testing and Confidence Sets under Heteroskedasticity

Assumption 3 and its equivalent assumptions 6 and 9 under different contexts may be consid-
ered too strong for empirical applications since they implicitly impose homoskedasticity among
different regions. In particular, Ferman and Pinto [2016] stress that a common source of het-

37 Anderson [2008] offers a detailed discussion about the differences between inference procedures based on the
summary index test or on the familywise error rate.
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eroskedasticity in empirical contexts is that regions with larger population sizes present smaller
variances in their potential outcome values.

Fortunately, assumption 3 is stronger than needed. In order to have a valid inference pro-
cedure, we only need exchangeability between the control units and the treated unit. If we
want to allow for heteroskedasticity, we can use test statistics that are robust to heterogeneity
in the variance of the potential outcome values. For example, Hahn et al. [2013] and Pauly
et al. [2015] conclude that permutation tests using a t-test statistic are robust to heteroskedas-
ticity. Moreover, Ferman and Pinto [2016] propose a modified RMSPE test statistic that is also
robust to heteroskedasticity when not all pre-intervention outcome values are used to construct
the synthetic control region since, in this case, its denominator is a measure of each region’s
variance. More generally, Canay et al. [2015] argues that permutation tests are valid under
heteroskedasticity if the approximate symmetry assumption holds. They also show that this
assumption implies that the test statistic distribution does not depend on which unit is treated or
not and that it holds for the t-statistic.38

Finally, we stress that this section is another example of the importance of a careful choice
of test statistic as pointed out by Eudey et al. [2010]. If the data present heteroskedasticity, the
empirical researcher should use a test statistic that is robust to this issue.

6 sensitivity analysis

When we propose the rejection rules (10) and (23), we implicitly assume that all regions have
the same probability to be chosen to face the intervention. In observational studies such as the
most common applications of the Synthetic Control Method, this assumption may be consid-
ered too strong since the researcher does not know the true data generating process, i.e., the
underlying experimental design. If the true probabilities associated to each treatment assign-
ment vector differs from the assumed discrete uniform distribution, we suffer from hidden bias

according to Rosenbaum [2002]. Consequently, our test will present a true size that is different
from its nominal size. Fortunately, there are, in the literature39, a common sensitivity analysis
that allows the empirical researcher to measure the robustness of his or her conclusions (i.e.,
the test’s decision regarding rejecting the sharp null hypothesis) to this implicit assumption.
We present this sensitivity analysis step-by-step in the framework of subsection 5.2 (Multiple
Treated Units) because it encompasses the simpler framework of section 2.3 (Single Treated
Unit).

1. Estimate the test statistics θ1, θ2,...,θQ for all possible placebo treatment assignment q ∈
{1, ...,Q}, where θ1 = θobspld,f.

38 We stress that, in a panel data framework, the t-test is valid if the post-intervention period is long enough and if
there is no serial correlation.

39 For more information, see Rosenbaum [2002] and Cattaneo et al. [2016].
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2. Rename them as θ1∗ , θ2∗ ,...,θQ∗ such that θ1∗ > θ2∗ > ... > θQ∗ .

3. Define q ∈ Ω := {1∗, ...,Q∗} such that θq = θobspld,f. If there are more than one q′ ∈ Ω
that presents this property, take the largest one.

4. Define the probability of each placebo treatment assignment q′ ∈ Ω as

P (ω = q∗) =
exp (φυq∗)∑
q′∈Ω exp

(
φυq′

) , (29)

where ω is the random variable that denotes the placebo treatment assignment, φ ∈ R+

is the sensitivity parameter and υq′ ∈ {0, 1} for each q′ ∈ Ω. Note that, when φ =

0, all placebo treatment assignments present the same probability of being chosen, i.e.,
P (ω = q∗) = 1/Q for all q∗ ∈ Ω. Consequently, in subsection 5.2, we implicitly
assume that φ = 0. Moreover, the sensitivity parameter φ ∈ R+ presents a very intuitive
interpretation: a region q1 ∈ Ω with υq1 = 1 is Φ := exp (φ) times more likely to face
the intervention than a region q2 ∈ Ω with υq2 = 0.

5. Under assumption (29), the permutation test’s p-value, originally defined in (23), is now
given by

pθpld,f :=
∑
q∗∈Ω

1 [θq∗ > θq]
exp (φυq∗)∑
q′∈Ω exp

(
φυq′

) . (30)

6. If the sharp null hypothesis is rejected, we want to measure the robustness of this conclu-
sion to changes in the parameter φ ∈ R+. The worst case scenario40 is given by

{
υq∗ = 1 if q∗ 6 q
υq∗ = 0 if q∗ > q.

where q∗ ∈ Ω. Define φ ∈ R+ such that

pθpld,f :=
∑
q∗∈Ω

1 [θq∗ > θq]
exp (φυq∗)∑
q′∈Ω exp

(
φυq′

) = γ,

where γ is a pre-specified significance level. If φ ∈ R+ is close to zero, the permutation
test’s decision is not robust to small violations of the assumption φ = 0.

7. If the sharp null hypothesis is not rejected, we want to measure the robustness of this
conclusion to changes in the parameter φ ∈ R+. The best case scenario41 is given by

40 In this case, we pick values for υq′ in order to make as hard as possible the rejection of the sharp null hypothesis
given a value for φ ∈ R+,

41 In this case, we pick values for υq′ in order to make as easy as possible the rejection of the sharp null hypothesis
given a value for φ ∈ R+.
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{
υq∗ = 0 if q∗ 6 q
υq∗ = 1 if q∗ > q.

where q∗ ∈ Ω. Define φ ∈ R+ such that

pθpld,f :=
∑
q∗∈Ω

1 [θq∗ > θq]
exp (φυq∗)∑
q′∈Ω exp

(
φυq′

) = γ,

where γ is a pre-specified significance level. If φ ∈ R+ is close to zero, the permutation
test’s decision is not robust to small violations of the assumption φ = 0.

8. Regardless of the permutation test’s decision, we can always evaluate the impact of φ ∈
R+ in the p-value pθpld,f by plotting a graph with φ in the horizontal axis and pθpld,f in
the vertical axis. If pθpld,f changes too quickly when we change φ, the permutation test
is too sensitive to assumptions regarding the treatment assignment probabilities.

7 evaluating the statistical significance of the eco-
nomic impact of eta’s terrorism

In this section, we aim to illustrate that our inference procedure can cast new light on em-
pirical studies that use the Synthetic Control Method. Not only we can test more flexible null
hypotheses, but also we can summarize important information in a simple and effective graph.
In order to achieve this goal, we use economic data for Spanish provinces made available by
Abadie and Gardeazabal [2003]. When they estimated the economic impact of ETA’s terrorism
on the Basque Country’s economy, they did not discuss the statistical significance of their re-
sults in detail because the first inference procedure for the synthetic control method would only
be proposed by Abadie et al. [2010]. In order to fill this lacuna, we implement four empirical
exercises:

1. We evaluate the statistical significance of the economic impact of ETA’s terrorism and
whether this effect can be reasonably approximated by a quadratic function using the
RMSPE test statistic and the inference procedure described in section 2.3.

2. We analyze the robustness of the permutation test’s decision regarding the significance of
the economic impact of ETA’s terrorism using the sensitivity analysis described in section
6.

3. We estimate the 88.9%-confidence set that contains all linear in time intervention effects
(with intercept equal to zero) whose associated sharp null hypotheses are not rejected by
our inference procedure (see equation (15)) when we use the RMSPE test statistic.
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4. We analyze the timing of the economic impact of ETA’s terrorism using the procedure
described in subsection 5.1.

The data set used by Abadie and Gardeazabal [2003] is available for download using the
software R. We observe, as our outcome variable, annual real GDP per-capita in thousands of
1986 USD from 1955 to 1997 and, as covariates, biannual sector shares as a percentage of total
production for agriculture, forestry and fishing, energy and water, industry, construction and
engineering, marketable services and nonmarketable services from 1961 to 1969; annual shares
of the working age population that was illiterate, that completed at most primary education
and that completed at least secondary education from 1964 to 1969; the population density in
1969; and annual gross total investment as a proportion of GDP from 1964 to 1969. All those
variables are observed at the province level and there are seventeen provinces, including the
Basque Country (J+ 1 = 17). For historical details and descriptive statistics about this data set,
see Abadie and Gardeazabal [2003] and Abadie et al. [2011].

ETA’s terrorism acts gained strength and relevance during the 70s. For this reason, our post
intervention period goes from 1970 to 1997 (T0 = 1969). In order to estimate the Synthetic
Control Unit, we plug, in equation (3), the averages of our covariates and the average of our
outcome variable from 1960 to 1969. Moreover, we use data from 1960 to 1969 in equation (4).

When we estimate the intervention effect for the Basque Country and the placebo effect for
all the other Spanish provinces, we find that the estimated intervention effect does not look
abnormally large when compared to the estimated placebo effects as subfigure 1a shows.

This intuitive perception is confirmed by our formal inference procedure (see subsection
2.3) when we use the RMSPE test statistic. More specifically, we have that pRMSPE = 0.41,
implying that we can not reject the null hypothesis of no effect whatsoever. When we conduct
the sensitivity analysis proposed in section 6, we can verify that this conclusion is very robust
to deviations of the assumption of equal probabilities of treatment for all Spanish provinces.
According to figure 2, we must impose a sensitivity parameter φ = 1.845 in order to reject the
null hypothesis of no effect whatsoever at the 10%-significance level, implying that the treatment
assignment probability of the region that is most likely to receive the treatment is more than six
times larger than the treatment assignment probability of the Basque Country.42 Moreover, we
note that the permutation test’s p-value decreases very slowly as a function of the sensitivity
parameter φ ∈ R+.

We also test whether the estimated intervention effect can be reasonably approximated by a
quadratic function. In order to do that, we fit a second order polynomial to the estimated inter-
vention effect by applying a ordinary least square estimator only in the post-intervention period.
Subfigure 1b shows this fitted quadratic function. Applying our formal inference procedure and
using the RMSPE test statistic, we do not reject the null hypothesis that the true intervention
effect follows this quadratic function because pRMSPEquadratic = 0.65.

42 In order to reject the null hypothesis of no whatsoever at the 5%-significance level or at the 1%-significance level,
we must impose φ = 2.585 or φ = 4.235, respectively.
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Figure 1: Estimated Effects using the Synthetic Control Method

(a) Intervention and Placebo Effects (b) Quadratic Intervention Effect Function

Note: While the gray lines show the estimated placebo effect for each Spanish province, the
black lines show the estimated impact of ETA’s terrorism on the Basque Country’s economy
and the dashed line shows the quadratic function that best approximates this effect.

Figure 2: Sensitivity Analysis

Note: The black line denotes the estimated p-value for each value of the sensitivity parameter
φ ∈ R+. The horizontal dotted lines denotes the usual p-values of .1, .05 and .01.

We also estimate a 88.9%-Confidence Set43 for a Linear in Time Intervention Effect whose
intercept is equal to zero following equation (15) and using the RMSPE test statistic. This
Confidence Set is represented in figure 3. This graph not only quickly shows that we can
not reject the null hypothesis of no effect whatsoever (because the confidence set contains the
linear function whose slope is equal to zero), but also shows that the economic impact of ETA’s
terrorism is not precisely estimated, precluding even conclusions about its true sign.44 Due to
its ability to summarize a large amount of information, our preferred confidence set (equation

43 Since we need at least 20 regions in order to estimate a 90%-Confidence Set, we use the possible confidence level
that it is closest to 90%. Intuitively, we only reject the null hypothesis that generates one of the two largest values
of the empirical distribution of the test statistic.

44 Note that, if our estimated confidence set intersected only a small part of the positive quadrant, we could argue that
the analyzed intervention effect is likely to be negative.



evaluating the statistical significance of the economic impact of eta’s terrorism 29

(15)) is useful to the empirical researcher even being only a subset of the general confidence set
(equation (11)).

Figure 3: 88.9%-Confidence Set for Linear in Time Intervention Effects

Note: The black line shows the estimated impact of ETA’s terrorism on the Basque Country’s
economy while the gray area shows the 88.9%-Confidence Set for Linear in Time Intervention
Effects (with intercept equal to zero) that were constructed using the RMSPE test statistic.

Differently from what we do in the last paragraphs, we can treat each year as a different
outcome variable and apply the inference procedure described in subsection 5.1. This interpre-
tation allow us to analyze the timing of the economic impact of ETA’s terrorism, which may be
significant for some time periods even though we have not reject the null hypothesis of no effect
whatsoever when we pooled together all the years using the RMSPE test statistic. We use the
squared value of the estimated intervention effect for each year of the post-intervention period
as a test statistic. Using the notation of subsection 5.1, we have that

θobsfm
= θm(e1, τ, Ym, X, fm) = (α̂1,m)

2 ,

wherem ∈ {1970, ..., 1997} is a year of the post-intervention period.
Applying the procedure described in subsection 5.1, we find p-values between 0.42 and 0.88

for all years. Clearly, we can not reject the null hypothesis that ETA’s terrorism has no economic
impact whatsoever.

As a consequence of all our empirical exercises, we conclude that terrorists acts in the Basque
Country had no statistically significant economic consequence even though the point estimate
found by Abadie and Gardeazabal [2003] suggests a strong negative effect. We stress that
we analyzed only the impact on GDP per-capita, ignoring possible other macroeconomic and
microeconomic costs and, most importantly, social and human costs incurred by the Basque
people.
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8 conclusion

In this article, we contribute to the theoretical literature about the Synthetic Control Method.
First, we clearly state the assumptions that guarantee the validity of the inference procedure
proposed by Abadie et al. [2010] and Abadie et al. [2015] and vastly used in the empirical
literature. As our main contribution, we, then, generalize this inference procedure to test any
kind of sharp null hypothesis, allowing us to propose a new way to estimate confidence sets
for the Synthetic Control Estimator by inverting a test statistic. Basically, our confidence sets
contain any function of time — particularly, the constant and linear ones — whose associated
sharp null hypothesis is not rejected by the mentioned inference procedure. To the best of our
knowledge, that is the first way to estimate confidence sets for the Synthetic Control Estimator
in a context with only aggregate level data whose cross-section dimension may be larger than
its time dimension. We also extend our framework to the cases when there are more than
one observed outcome variable or more than one treated unit. Furthermore, we make some
brief comments about applying our generalized inference procedure when heteroskedasticity
is a concern. When this issue is present, the empirical researcher should use a test statistic
that is robust to this problem, such as the t-test statistic or the RMSPE. Finally, we propose a
sensitivity analysis to evaluate the robustness of the permutation test’s decision to changes in
the assumption that all possible treatment assignments probabilities are equal.

Moreover, since our inference procedure assumes that the probability of each region being
chosen to face the intervention is known, we propose a sensitivity analysis to check the robust-
ness of the permutation test’s decision to changes in this assumption. In particular, the basic
form of our inference procedure implicitly assumes that all treatment assignment probabilities
are equal. In order to verify the robustness of our permutation test’s decision to this specific
assumption, we propose, based on the work of Rosenbaum [2002] and Cattaneo et al. [2016], a
parametric form to the treatment assignment probabilities that allow the researcher to compute
p-values for different assumptions regarding the treatment assignment probabilities.

The possibility to test any sharp null hypothesis is important to predict the future behavior of
the intervention effect, to compare the costs and the benefits of a policy and to test theories that
predict some specific kind of intervention effect. Constructing confidence sets is useful to sum-
marize a large amount of information in a single graph, illustrating the statistical significance of
the intervention effect and the precision of a point-estimate. Moreover, simultaneous hypothesis
testing can be used to analyze the timing of an intervention effect. Consequently, those tools
not only allows the empirical researcher to be more flexible about his or her null hypothesis, but
also help him or her to convey a message in a more effective way.

Since our inference procedure works for any test statistic, we analyze, using a Monte Carlo
experiment, the size and power of five different test statistics that are applied to hypothesis
testing in the empirical literature about the Synthetic Control Method. In this simulation, we
compare test statistics that use the Synthetic Control Method to simpler test statistics that are
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commonly used in the evaluation literature (e.g.: difference in means and the coefficient as-
sociated with the interaction term in a differences-in-differences model) and to an asymptotic
inference procedure proposed by Conley and Taber [2011]. We find that test statistics that use
the Synthetic Control Method perform much better than its competitors when there is only one
region that faces the intervention.

As an application of our generalized inference procedure, its associated new confidence sets,
its extension to the case of simultaneous hypothesis testing and its associated sensitivity analy-
sis, we evaluate the statistical significance of the economic impact of ETA’s terrorism estimated
by Abadie and Gardeazabal [2003]. This application clearly demonstrates the amount of in-
formation summarized by our proposed confidence sets, whose graphs quickly show not only
the significance of the estimated intervention effect, but also the precision of this estimate. We
stress that knowing the precision of a point-estimate is an important measure of the strength of
qualitative conclusions. Finally, our empirical exercises clearly do not reject the null hypothesis
of no effect whatsoever, a conclusion that is very robust according to our sensitivity analysis.
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a computing the observed test statistic and its em-
pirical distribution

In this appendix, we didactically explain how to compute the observed test statistic θobsf :=

θ(e1, τ, Y, X, f) and the empirical distribution of the test statistic.
First of all, we compute the observed test statistic θobsf :

1. Simply solve the nested minimization problem given by equations (3) and (4) using the
observed matrices Y1, Y0, X1 and X0.

2. Save the estimated intervention effect vector α̂1 :=
[
α̂1,1, ..., α̂1,T0+1, ..., α̂1,T

] ′.
3. Save a vector containing the differences between the estimated intervention effect and the

hypothesized intervention effect function given by the sharp null hypothesis, i.e., α̃1 :=[
α̂1,1 − f(1), ..., α̂1,T0+1 − f(T0 + 1), ..., α̂1,T − f(T)

] ′.
4. Aggregate the information contained in vector α̃1 using some positive function. This

function is your test statistic. For example, if we chose the test statistic RMSPE, we
compute

θobsf = RMSPE1f =

∑T
t=T0+1

(α̂1,t− f(t))
2/(T − T0)∑T0

t=1 (α̂1,t− f(t))
2/T0

or, if you choose the first test statistic of our Monte Carlo Experiment (see section 4), we
compute

θobsf =

∑T
t=T0+1

|α̂1,t − f(t)|

T − T0
.

Now, we start our permutation test by assuming that region j̃, where j̃ ∈ {2, ..., J+ 1} is treated
and estimate θ̃jf := θ(ẽj, τ, Y, X, f):

1. Compute the counterfactual outcomes for regions 1 and j̃ using the sharp null hypothesis

(9).

2. Substitute those hypothesized counterfactual outcomes for the realized outcomes in ma-
trices Y1 and Y0, saving the new matrices Ỹ1 and Ỹ0.

3. Change matrices X1 and X0 accordingly and save them as X̃1 and X̃0.

4. Solve the nested minimization problem given by equations (3) and (4) using the hypothe-
sized matrices Ỹ1, Ỹ0, X̃1 and X̃0.

5. Save the estimated intervention effect vector α̂
j̃
:=
[
α̂
j̃,1, ..., α̂

j̃,T0+1
, ..., α̂

j̃,T

] ′
.
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6. Save a vector containing the differences between the estimated intervention effect and the
hypothesized intervention effect function given by the sharp null hypothesis, i.e., α̃

j̃
:=[

α̂
j̃,1 − f(1), ..., α̂

j̃,T0+1
− f(T0 + 1), ..., α̂

j̃,T − f(T)
] ′

.

7. Aggregate the information contained in vector α̃
j̃

using some positive function. This
function is your test statistic. For example, if we chose the test statistic RMSPE, we
compute

θ̃
j
f = RMSPE

j̃
f =

∑T
t=T0+1

(
α̂
j̃,t− f(t)

)2/(T − T0)

∑T0
t=1

(
α̂
j̃,t− f(t)

)2/T0
or, if you choose the first test statistic of our Monte Carlo Experiment (see section 4), we
compute

θ̃
j
f =

∑T
t=T0+1

∣∣∣α̂j̃,t − f(t)∣∣∣
T − T0

.

Repeating this process for each j̃ ∈ {2, ..., J+ 1}, we compute the entire empirical distribution
of the test statistic θf, given by

(
θobsf , θ2f , ..., θJ+1f

)
, and can estimate Fisher’s Exact p-Value as

in equation (10).

b monte carlo experiment’s complete set of results

b.1 More Test Statistics

In this subsection, we report our Monte Carlo Experiment’s rejection rates for thirteen test
statistics in addition to the ones shown in section 4. The new test statistics are:

• θ6 :=
∣∣∣mean(α̂j̃,t|t > T0 + 1)∣∣∣ is suggested by Mideksa [2013] and used by Ando

[2015].

• θ7 := mean
(
α̂2
j̃,t
|t > T0 + 1

)
.

• θ8 :=
∣∣∣median(α̂j̃,t|t > T0 + 1)∣∣∣ is suggested by Sanso-Navarro [2011].

• θ9 := median
(∣∣∣α̂j̃,t∣∣∣ |t > T0 + 1).

• θ10 := median
(
α̂2
j̃,t
|t > T0 + 1

)
.

• θ11 := min
(∣∣∣α̂j̃,t∣∣∣ |t > T0 + 1).
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• θ12 is the absolute value of the first (AS 1) test statistic proposed by Ando and Sävje
[2013]. Intuitively, it is a rescaled post-intervention time average of the estimated inter-
vention effects.45

• θ13 is the statistic of the Kolmogorov-Smirnov Test that compares the vector of estimated
post-intervention effects against a vector of zeros. This test statistic is suggested by Im-
bens and Rubin [2015].

• θ14 is the Rank statistic for region j̃ using the post-intervention time average of the ob-
served outcome. This test statistic is suggested by Imbens and Rubin [2015].

• θ15 is the Rank statistic for region j̃ using the post-intervention time median of the ob-
served outcome.

• θ16 is the Rank statistic for region j̃ using the post-intervention time minimum of the
observed outcome.

• θ17 is the Rank statistic for region j̃ using the post-intervention time maximum of the
observed outcome.

where j̃ is the region that is assumed to face the intervention in each permutation, mean(♣|�)
and median(♣|�) are, respectively, the mean and the median of variable ♣ conditional on
event �.

Note that test statistics θ14, θ15, θ16 and θ17 do not use the synthetic control method and are
commonly used in the literature about permutation tests. We also report rejection rates for the
differences-in-differences estimator (DID)46.

Table 2 shows the results of our Monte Carlo Experiment for all our analyzed tests. Each
cell presents the rejection rate of the permutation test described in subsection 2.3 that uses
the test statistic in each row, or the rejection rates of the tests recommend by Bertrand et al.
[2004] or proposed by Conley and Taber [2011] when the true intervention effect is given by
the value mentioned in the column’s heading. Consequently, while column (1) presents tests’
sizes, columns (2)-(7) present their power.

Looking at the size of the tests associated with the new test statistics, there are only two in-
teresting findings that, although not surprising according to the previous literature, are worth
noting. On one hand, the Kolmogorov-Smirnov Test Statistic

(
θ13
)

is associated with a conser-
vative test due to ties in its empirical distribution. On the other hand, the rejection rate associated
to a differences-in-differences model that uses standard errors clusterized at the region level is

45 For details on how to calculate θ12, we recommend reading Ando and Sävje [2013]. These authors also propose a
second test statistic (AS 2). Since it is very computationally demanding and presents similar size and power to AS
1 in Ando and Sävje [2013]’s Monte Carlo Experiment, we decided to test only AS 1 in our simulation.

46 We estimate the model Yj,t = η1×1
[
j = j̃

]
+η2×1

[
j = j̃

]
×1 [t > T0 + 1]+Zj,t×ζ+ξj+µt+ εj,t, where

ξj and µt are, respectively, region and time fixed effects, and test the null hypothesis H0 : η2 = 0 using standard
errors clusterized at the region level as recommend by Bertrand et al. [2004].
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Table 2: Monte Carlo Experiment’s Rejection Rates

Intervention Effect

(1) (2) (3) (4) (5) (6) (7)
Test Statistic λ= .0 λ= .05 λ= .1 λ= .25 λ= .5 λ= 1.0 λ= 2.0

Test Statistics in the Main Text
θ̂1 0.10 0.19 0.23 0.35 0.45 0.59 0.69
θ̂2 0.10 0.30 0.37 0.48 0.56 0.70 0.77
θ̂3 0.10 0.62 0.71 0.79 0.88 0.93 0.95
θ̂4 0.10 0.20 0.27 0.37 0.46 0.57 0.65
θ̂5 0.10 0.19 0.23 0.37 0.45 0.60 0.70
CT 0.06 0.15 0.24 0.36 0.38 0.60 0.64

Additional Test Statistics
θ̂6 0.10 0.31 0.40 0.52 0.63 0.75 0.80
θ̂7 0.10 0.17 0.21 0.32 0.41 0.55 0.64
θ̂8 0.10 0.24 0.30 0.45 0.55 0.68 0.80
θ̂9 0.10 0.24 0.30 0.45 0.55 0.68 0.80
θ̂10 0.10 0.24 0.29 0.45 0.55 0.68 0.79
θ̂11 0.10 0.29 0.36 0.50 0.62 0.75 0.86
θ̂12 0.10 0.32 0.39 0.46 0.51 0.59 0.61
θ̂13 0.05 0.51 0.61 0.75 0.85 0.91 0.95
θ̂14 0.10 0.20 0.27 0.37 0.46 0.57 0.65
θ̂15 0.10 0.26 0.31 0.48 0.53 0.66 0.77
θ̂16 0.10 0.14 0.15 0.23 0.31 0.40 0.54
θ̂17 0.10 0.13 0.13 0.19 0.25 0.33 0.44
DID 0.61 0.65 0.67 0.73 0.77 0.82 0.86

Source: Authors’ own elaboration. Notes: Each cell presents the rejection rate of the test as-
sociated to each row when the true intervention effect is given by the value λ in the columns’
headings. Consequently, while column (1) presents tests’ sizes, the columns (2)-(7) present their
power. θ̂1-θ̂3 and θ̂6-θ̂13 are associated to permutation tests that uses the Synthetic Control
Estimator. θ̂4-θ̂5 and θ̂14-θ̂17 are associated to permutation tests that are frequently used in
the evaluation literature. CT is associated with the asymptotic inference procedure proposed by
Conley and Taber [2011]. DID is associated with the differences-in-differences model that uses
standard errors clusterized at the region level.

much higher than the nominal size of 10%. This last result is explained by the small number
of cluster (J+ 1 = 20), as already pointed out by Bertrand et al. [2004], Cameron et al. [2008]
and Conley and Taber [2011].

Analyzing the power of the tests associated with the new test statistics, we observe that all
the test statistics that are frequently used in the evaluation literature

(
θ4-θ5 and θ14-θ17

)
are

dominated by the test statistics in the main text that uses the synthetic control method
(
θ2-θ3

)
.

We also stress that the permuted t-test that uses the synthetic control method and the numerator
of the t-test

(
θ3 and θ6, respectively

)
are the most powerful tests. Those results suggests, again,

that, in a context where we observe only one treated unit, we should use the synthetic control
estimator even if the treatment were randomly assigned.
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Comparing the test statistics AS 1 proposed by Ando and Sävje [2013]
(
θ12
)

with the RMSPE

recommended by Abadie et al. [2015], we find ambiguous results. While AS 1 is more powerful
to detect small intervention effects (λ ∈ {0.05, 0.1}), RMSPE is more powerful to detect interme-
diate and large intervention effects (λ ∈ {0.25, 0.5, 1.0, 2.0}). Consequently, choosing between
the two test statistics may be influenced by the magnitude of the expected intervention effect,
providing another example of the importance of a careful choice of test statistic as pointed out
by Eudey et al. [2010].

Finally, we note that the simple average of the squared post-intervention treatment effect
(
θ7
)
,

despite using the synthetic control method, is as powerful as the simple test statistics that are
commonly used in the evaluation literature

(
θ4, θ5

)
. We also observe that test statistics θ8-θ11,

that uses the synthetic control method, are as powerful as
(
θ15
)
, the most powerful test statistic

that does not use the synthetic control estimator. Consequently, we do not recommend to use
them θ7-θ11 to conduct inference.

b.2 Synthetic Control Method with Bad Controls

In the Monte Carlo Experiment presented in section 4 and subsection B.1, all observed re-
gions follow the same data-generating process, implying that assumption 2 is valid. Since this
assumption is non-testable, the applied researcher will never be sure about its validity. For this
reason, it is important to analyze the behavior of our generalized inference procedure when
there are bad controls in the donor pool, invalidating assumption 2.

In our Monte Carlo Experiment, a bad control region j′ ∈ {2, ..., J+ 1} presents the following
data generating process:

ỸNj′,t+1 = δtỸ
N
j′,t +βt+1Zj′,t+1 + uj′,t+1

Zj′,t+1 = κtỸNj′,t +πtZj′,t + vj′,t+1
YNj′,t+1 = Ỹ

N
j′,t+1 + 0.25× sd(Ỹ

N
j′,t)× t

(31)

for each t ∈ {0, ..., T − 1}. Note that regions that follows the data generating process given
by (31) differ from regions that follows the data generating process given by (16) because the
former regions present a increasing time trend.

We also vary the number of bad control regions (nbc), analyzing the size and power (λ ∈ {0, 0.05, 0.5})
of the tests discussed in table 2 when there are one bad control region (5% of the total sample) or
five bad control regions (25% of the total sample) in the donor pool. Since bad control regions
are never treated in our Monte Carlo Experiment, assumption (2) does not hold. In all the other
aspects, the Monte Carlo of this subsection is identical to the one described in subsection B.1.

Table 3 shows the results of our Monte Carlo Experiment with 3,000 repetitions for all our
analyzed tests when there are bad control regions. Each cell presents the rejection rate of the test
associated to each row when the true intervention effect is given by the value λ in the columns’
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headings and there are nbc bad control regions in the donor pool. Consequently, while columns
(1) and (2) presents tests’ sizes, the columns (3)-(6) present their power.

Table 3: Monte Carlo Experiment’s Rejection Rates

Intervention Effect

λ= .0 λ= .05 λ= .5

(1) (2) (3) (4) (5) (6)
Test Statistic nbc = 1 nbc = 5 nbc = 1 nbc = 5 nbc = 1 nbc = 5

Test Statistics in the Main Text
θ̂1 0.06 0.04 0.10 0.06 0.29 0.28
θ̂2 0.10 0.09 0.26 0.22 0.55 0.50
θ̂3 0.06 0.07 0.26 0.11 0.67 0.48
θ̂4 0.06 0.00 0.16 0.00 0.38 0.05
θ̂5 0.06 0.00 0.14 0.00 0.41 0.10
CT 0.05 0.08 0.07 0.08 0.15 0.05

Additional Test Statistics
θ̂6 0.06 0.04 0.17 0.08 0.47 0.44
θ̂7 0.06 0.04 0.09 0.06 0.26 0.26
θ̂8 0.06 0.04 0.13 0.06 0.36 0.34
θ̂9 0.06 0.04 0.13 0.06 0.36 0.34
θ̂10 0.06 0.04 0.13 0.06 0.36 0.33
θ̂11 0.05 0.04 0.13 0.06 0.43 0.34
θ̂12 0.10 0.11 0.32 0.29 0.50 0.46
θ̂13 0.04 0.03 0.21 0.09 0.60 0.45
θ̂14 0.06 0.00 0.16 0.00 0.38 0.05
θ̂15 0.06 0.00 0.21 0.00 0.47 0.04
θ̂16 0.05 0.00 0.09 0.00 0.21 0.00
θ̂17 0.08 0.02 0.10 0.02 0.20 0.10
DID 0.48 0.72 0.44 0.66 0.61 0.57

Source: Authors’ own elaboration. Notes: Each cell presents the rejection rate of the test as-
sociated to each row when the true intervention effect is given by the value λ in the columns’
headings and there are nbc bad control regions in the donor pool. Consequently, while
columns (1) and (2) presents tests’ sizes, the columns (3)-(6) present their power. θ̂1-θ̂3

and θ̂6-θ̂13 are associated to permutation tests that uses the Synthetic Control Estimator. θ̂4-
θ̂5 and θ̂14-θ̂17 are associated to permutation tests that are frequently used in the evaluation
literature. CT is associated with the asymptotic inference procedure proposed by Conley and
Taber [2011]. DID is associated with the differences-in-differences model that uses standard
errors clusterized at the region level.

Analyzing columns (1)-(2), we note that all tests, with the exception of the one that uses
the RMSPE as a test statistic (θ̂2) and the one proposed by Ando and Sävje [2013] (θ̂12), are
conservative, presenting a true size that is lower than the nominal size.47 In particular, the tests
associated to statistics that are commonly used in the evaluation literature (θ̂4-θ̂5 and θ̂14-θ̂17)

47 Another exception is the behavior of the DID model with standard errors clusterized at the region level. This test,
as in subsection B.1, over-rejects the null hypothesis.
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are severely under-powered whennbc = 5. In this sense, although still under-powered, the tests
that are based in statistics that use the Synthetic Control Method (θ̂1-θ̂3 and θ̂6-θ̂13) present a
better behavior than its most common competitors. However, the inference procedure proposed
by Conley and Taber [2011] (CT) presents a similar or better behavior than most of tests that
uses the Synthetic Control Estimator with the exception of the one that uses the RMSPE as a
test statistic (θ̂2) and the one proposed by Ando and Sävje [2013] (θ̂12). These two tests, by
scaling the test statistics using the estimated pre-intervention gaps, effectively corrects for the
large post-interventions gaps found for the bad control regions.

Another advantage of the test that uses the RMSPE as a test statistic (θ̂2) and the one proposed
by Ando and Sävje [2013] (θ̂12) is that they are the most powerful options. (See columns (3)-
(6)). In this sense, those two tests clearly outperforms their main competitor, the inference
procedure proposed by Conley and Taber [2011]. Consequently, we find, as in subsection B.1,
that test statistics θ̂2 and θ̂12 are equally good options.

c synthetic control method: a walkthrough

In our review of the empirical literature that applied the Synthetic Control Method, we have
found, on one hand, some innovative articles that proposed new, intuitive and relevant robust-
ness checks and, on the other hand, confusing articles that were impossible to replicate due to
missing information about their data. In this short walkthrough guide, we aim to not only sum-
marize the best practices found in the literature about the Synthetic Control Method, but also
point out all the information that an author must provide in order to make his or her research
replicable48.

The first thing that must be extremely clear in a article that applies the Synthetic Control
Method is the choice of the donor pool. The author must state not only how many units are in
the donor pool (J+ 1), but how they have been chosen. In view of assumption 2, understanding
the method of choice behind the donor pool is fundamental in order to evaluate whether the
treatment assignment is indeed random conditional on the choice of the donor pool, the observ-
able variables included as predictors and the unobservable variables captured by the path of
the outcome variable during the pre-intervention period. This recommendation is particularly
important for articles that analyze more than one intervention with different donor pools since
this information must be available for all the analyzed cases.

Related to the choice of the donor pool, Abadie et al. [2015] propose two robustness checks.
The first one, the leave-one-out test, consists in dropping, from the donor pool, one of the
comparison regions that received a positive weight in the synthetic control unit and reestimating
the treatment effect. It aims to verify the influence of a particular unit in the estimated result.

48 Chang and Li [2015] offers a deeper discuss about replicability in Economics.
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The second robustness check consists in trying different donor pool sizes in order to verify the
sensibility of the estimated results to the choice of the donor pool. This last test is also applied
by other authors, e.g.: Ando [2015], Barone and Mocetti [2014], Kreif et al. [2015] and Mideksa
[2013].

The size and duration of the pre-intervention period (T0) and of the entire studied period (T)

must also be clearly stated. Since the main identification result about the Synthetic Control
Method [Abadie et al., 2010] relies on the pre-intervention period going to infinity (T0 →∞),
the value of T0 is important to know in order to evaluate whether the Synthetic Control Estimates
are close to the true counterfactual. Moreover, the author must inform the real date associated
with T0 and T in order to access causality. In a similar way to the differences-in-differences
estimator, the Synthetic Control Method relies on a time difference in order to identify the inter-
vention effect. If there are unobservable variables that affect the outcome of interest and change
at T0, it is impossible to know whether the estimated effect is due to the analyzed treatment
or due to those unobservable variables. An example will clarify this problem. Imagine that
a researcher wants to investigate the effect of winning FIFA World Cup on a country’s GDP.
Brazil won the FIFA World Cup in 1994 and went through a fast and effective stabilization plan
(Plano Real). If we apply the synthetic control method using other Latin American Countries
as comparison units, GDP per capita as the outcome of interest and 1994 as the beginning of the
treatment period (T0 + 1 = 1994), we have no way to disentangle which part of the estimated
effect is due to the World Cup or to the stabilization plan.

One indirect way to test for the presence of unobservable variables that harm the interpreta-
tion of the estimated effect is to run the in-time placebo test recommend by Abadie et al. [2015].
This procedure consists in assigning the beginning of the post-treatment period to a earlier pe-
riod t∗ < T0 and look for a treatment effect before T0. If there is one, there is evidence that the
estimated effect is not caused by the investigated treatment.

The components of matrix X must also be very clear. Not only the author must state which
variables are included in this matrix (e.g.: investment rate, population size, pre-intervention out-
come values), but also which time periods or linear combinations of time periods are included
if the predictor variables are observed in more than one time period (e.g.: investment in T0,
T0 − 1, T0 − 2, T0 − 3 and T0 − 4; population size only in the last census before T0 and the
pre-intervention time average of the outcome variable). In particular, the choice of which linear
combinations of pre-intervention outcome values to include in matrix X is important because it
may affect the significance of the estimated intervention effect as pointed out by Ferman et al.
[2016]. Consequently, an author must report results for different specifications of matrix X in
order to address the robustness of his or her estimates.

The researcher must also be precise about which procedure he or she have used to estimate
matrix V̂. Since there are four different procedures (ad-hoc choice, nested minimization, cross-
validated nested minimization, regression based method), the author could report results for
some of them in order to access the robustness of his or her estimates. Since the cross-validated
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nested minimization requires a larger pre-intervention period, it may not be reasonable to report
results for all the four methods. However, it is always possible to report results for the nested
minimization, the regression based method and for the ad-hoc choice that imposes V̂ = I.

Finally, Abadie et al. [2015] proposes one last robustness check: the restricted synthetic
control unit. In order to avoid over-fitting, this test force the synthetic control method to allocate
positive weights only to a fixed number of control units, mimicking the n nearest neighbors
matching estimator.
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