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Abstract

I develop a tractable dynamic model of the housing market where the prices are deter-
mined in auctions rather than by Nash bargaining as in the housing search model from the
literature. The model with auctions mimics the actual housing markets by generating fluc-
tuations between the booms and busts. During the boom multiple buyers compete for each
house, while in the bust buyers are choosing between several available houses. The model
produces highly volatile house prices, improving on the benchmark housing search model
and helping to solve the puzzle of excess volatility of house prices. This high volatility arises
in the auction model because of the competition between buyers with heterogenous values.
With heterogenous values, the method of choosing the buyer among all the interested buy-
ers becomes important for the quantitative properties of the model. In the benchmark
model with Nash bargaining, the buyer is chosen randomly among all interested buyers.
Then the average of buyers’ house values determines the house price. In the auction model
the buyer is chosen by the maximum bid among all interested buyers, so the highest value
determines the house prices. During the housing booms, the highest values increase more
than the average values, making the sales price more volatile. This high volatility is ef-
ficient, since the equilibrium in the model decentralizes the solution of the social planner
problem, constrained by the search frictions.
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1 Introduction

House prices fluctuate between booms and busts, and are volatile relative to fundamentals,
such as rents and income in the local housing market. The left panel in Figure 1 shows the
monthly house price growth in the Los Angeles Metropolitan Statistical Area from 1996 to 2016.
The right panel of the same Figure 1 shows a simulation of the house price growth from the
calibrated benchmark search model with Nash bargaining, currently employed in the literature.
The benchmark model produces less volatility of the house prices than observed in the data.

My hypothesis is that the housing search model cannot explain this volatility, because the
sales mechanism does not account for competition between buyers. Specifically, in the benchmark
housing search model the seller is bargaining one-to-one with randomly selected buyer to deter-
mine the house price. In reality, especially during booms, a seller is dealing with multiple buyers
and sells to the highest bidder. I show that the volatility of the house prices is quantitatively
higher if the model takes into account the competition between buyers.

The competition between buyers, often referred to as a bidding war, does happen in the
housing markets in the US and other countries. In the US the seller puts the house on the
market, and holds an open house, usually during the weekend. Then during the first weekdays
of the next week buyers submit their offers, and the seller usually sells to the highest bidder. For
example, the Boston Globe reviews the sale of the condo in Brookline, Massachusetts1, where
“three hundred people came through the open house, 25 made offers, and the bidding war lasted
eight rounds and four days”. So bidding wars actually occur in local housing markets.

Bidding wars are not only real phenomenon, they are also common, in particularly during the
housing booms. The New York Times writes on August, 13, 1997, “Bidding wars are no longer
uncommon, especially in affluent areas of northern New Jersey, Los Angeles, the San Francisco
Bay area and Boston.”2 On June 10, 2015, Trulia echoes “those bidding wars - oh, those bidding
wars... when inventory is low, those bidding wars can escalate into a kamikazelike battle with 17
other buyers...”3

Bidding wars are common, but how often do they happen quantitatively? Han and Strange
(2014) show that the frequency of bidding wars rose to 30% in some markets between 1995 and
2005. The bidding wars continued to be frequent, as can be seen from Figure 2. Figure 2 plots
the bidding wars index from the Redfin, a real estate brokerage firm in the US from 2009 to
2015. When a Redfin client places an offer on a house, Redfin records whether there was at least
one competing offer. The graph shows the percentage of offers that faced competition from other
buyers. On average half of the offers faced competition.

Hence, bidding wars are real, common and frequent. However, the literature has been focusing
on the Nash bargaining price determination mechanism, where a seller bargains one-to-one with
a randomly selected buyer. In practice, during the booms the buyers compete for the same house,
and house is sold to the buyer with the highest offer.

A natural way to model this sales mechanism is an auction model. When house prices are
determined in an auction instead of Nash bargaining, house prices fluctuate more in response

1https://www.bostonglobe.com/business/2015/03/30/forget-location-location-location-some-

realtors-have-new-mantra-bidding-war/3gI6wnpNnf82QMvpjN3UWJ/story.html.
2http://www.nytimes.com/1997/08/13/business/home-buyers-find-the-bidding-wars-are-

back.html?pagewanted=all
3http://www.trulia.com/blog/7-crazy-things-about-buying-in-a-sellers-market/
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Figure 1: The house price growth in the data and in a simulation of the benchmark housing
search model with Nash bargaining
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(a) Los Andgeles MSA data
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(b) Benchmark model

Notes: The monthly data on the house prices comes from Zillow. Zillow applies the Henderson Moving Average
filter and then STL filter to produce the seasonally adjusted series of the house price growth, see http://

www.zillow.com/research/zhvi-methodology-6032/.
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Figure 2: Percent of offers, facing competition

0.0%	  

10.0%	  

20.0%	  

30.0%	  

40.0%	  

50.0%	  

60.0%	  

70.0%	  

80.0%	  

2009	   2010	   2011	   2012	   2013	   2014	   2015	  

Source: Redfin, the real estate brokerage firm. Redfin is based in Seattle, services 3% of market, operates
in nineteen local housing markets in the US. The data is monthly, not seasonally adjusted, average over the
markets.

to the demand shocks generated by the influx of buyers. The influx of buyers provokes the
competition between buyers. The competition between buyers is important for the volatility of
the house prices because of the heterogeneity in the house values. With heterogenous values,
the method of choosing the buyer among all the interested buyers becomes important for the
quantitative properties of the model. In the benchmark model with Nash bargaining, the buyer is
chosen randomly among all interested buyers. Then the average house values of buyers determine
the house price. In the auction model the buyer is chosen by the maximum bid among all
interested buyers, so the highest value, or more specifically the second highest value, determines
the house prices. During housing booms, the highest values increase more than the average
values, making the sales price more volatile.

To demonstrate this, I build a dynamic search model of the local housing market with auc-
tions. Then I compare this model with the benchmark model with Nash bargaining. These
models differ only in way the prices are determined. I calibrate the models based on the data
from the Los Angeles Metropolitan Statistical area4, and show that the volatility in the auction
models is higher than in the Nash bargaining model, and is similar to the volatility, observed in
the data which is the main result of my paper. Then I solve the problem of the social planner
constrained by the search frictions, and show that the auction model with directed search decen-
tralizes the solution of the social planner. In this sense high volatility, produced by the auction
model with directed search, is efficient.

4The LA MSA is chosen as an example.

4



Literature review

The paper builds on the growing literature of housing search and matching5 which is summarized
in Han and Strange (2015). The model with the bargaining price determination mechanism in
the present study is closest to the models in Head, Lloyd-Ellis, and Sun (2014) and Dı́az and
Jerez (2013) who consider a random search and matching model of the housing market. This
paper constructs the auction search model of the housing market in addition to the bargaining
model to highlight the importance of the price determination mechanism for the joint dynamics
of house prices, sales and liquidity.

Han and Strange (2015) observe that the theoretical literature on real-estate auctions is
sparse. A closely related paper to mine is Albrecht, Gautier, and Vroman (2015), which builds a
static directed search model with an auction to study the role of the asking price in the housing
market. By constrast, my paper considers a dynamic random search model and abstracts from
the asking price as a signaling mechanism. The aim is to isolate the implications of the auction
price-finding process against the Nash bargain. The dynamic framework makes it possible to
take into account the option values of buying and selling the house later that propagate the
housing market shocks.

Genesove and Hansen (2014) compare the time-series properties of the housing auction prices
and the prices, determined in a private-treaty negotiation, in the two largest Australian cities to
argue that using the average auction prices can improve predictability of the average sale prices
overall. This paper complements Genesove and Hansen (2014) paper in assessing the differences
of predictions of auction and Nash bargaining prices, but it explicitly considers the option value
to buy and sell in the dynamic setting and incorporates search frictions to highlight importance
of the ratio of buyers to sellers in intermediating large movements in transaction prices.

Quan (2002) builds a model where the buyers and sellers choose between the markets with
the auction and bargaining price determination mechanisms. The model predicts 30 percent
higher prices in the auction as compared to the bargaining which is confirmed empirically based
on the MLS data from the Austin metropolitan area. The model in this paper abstracts from
the endogenous choice between two mechanism and focuses on the predictions of the auction and
Nash bargaining price determination mechanisms in the dynamic setting rather than static as
in Quan (2002). However, in the dynamic model in this paper, the house prices are higher in
the auction model as compared to the search model with one-to-one bargaining consistent with
Quan (2002).

In order to focus on the implications of the sales mechanism and make models tractable,
I abstract from some features of the housing market. First, I assume that once a homeowner
has moved into a house, she is never separated from the house. The possibility of resale and
turnover of housing stock is potentially an important channel that is discussed, for example, in
Anenberg and Bayer (2013), Head, Lloyd-Ellis, and Sun (2014), Piazzesi, Schneider, and Stroebel
(2014), Moen, Nenov, and Sniekers (2015). Second, the first part of this paper concentrates on
the random search models, where the price paid by a buyer in an auction is unknown prior to

5Wheaton (1990), Krainer (2001), Albrecht, Anderson, Smith, and Vroman (2007), Piazzesi and Schneider
(2009), Novy-Marx (2009), Caplin and Leahy (2011), Carrillo (2012), Genesove and Han (2012), Anenberg and
Bayer (2013), Burnside, Eichenbaum, and Rebelo (2013), Dı́az and Jerez (2013), Ngai and Tenreyro (2014),
Piazzesi, Schneider, and Stroebel (2014), Head, Lloyd-Ellis, and Sun (2014), Head, Lloyd-Ellis, and Stacey (2014),
Guren (2015), Guren and McQuade (2013), Ngai and Sheedy (2015), Moen, Nenov, and Sniekers (2015).
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participating in one, while the second part of this paper considers the directed search model,
where buyers direct their search based on the price, of the local housing market with an auction.
Directed search models are discussed in Carrillo (2012), Albrecht, Gautier, and Vroman (2015),
Head, Lloyd-Ellis, and Stacey (2014). Third, I do not model the mortgage market, which is exten-
sively studied in the housing literature, see, for example, Favilukis, Ludvigson, and Nieuwerburgh
(2015) and Landvoigt (2014). The interaction of the search frictions and credit constraints is
explored in Guren and McQuade (2013) and Hedlund (2015).

The rest of the paper is organized as follows. Section 2 introduces the framework of the
models and provides an example to highlight the differences of the benchmark model and the
model with auctions. Section 4.2 calibrated models to the data, and Section 4.3 discusses the
quantitative results. Section 5 solves the problem of the social planner constrained by the search
frictions, and shows the efficiency of the equilibrium in the auction model with directed search.
Section 6 concludes.

2 Models

In this section I describe the models of the local housing market that I am comparing. The
models have the same building blocks, except for the way the prices are determined.

2.1 Elements Common to Both Models

Time is discrete t ∈ {0, 1, ...}. There are infinitely-lived risk neutral agents, buyers and sellers,
who discount future at the common fixed discount factor β, and use rational perfect foresight
expectations. There are two goods in the economy, consumption, taken as numeraire, and hous-
ing; and two markets corresponding to these goods. The consumption is frictionless, while the
housing market has search frictions.

By going through the search process a buyer can purchase one house that provides a flow of
housing services x forever6. When the buyer searches for a house, she7 visits the house and finds
out the value of flow services x. A visit includes both viewing photos and information online as
well as visiting a property. The value of flow services x ≥ 0 is distributed independently over
buyers and time8 with the cumulative density function F (.), probability distribution function
f(x) > 0 with weakly increasing hazard rate f(x)/(1− F (x))9. Buyers rent at exogenous rental
rate w until they buy and move in a house. The service flow from the rental housing is normalized
to zero.

Both buyers and sellers decide whether to participate in the housing market. If they do,
they have to pay fixed search cost, respectively, cB and cS per period10. This allows buyers and
sellers to time their participation in the market. The new sellers enter endogenously, and have
increasing marginal costs of entry. The supply is assumed to be endogenous, because it has been

6In the model there is no resale of house, and I impose the transversality conditions to eliminate bubbles.
7The buyers are referred to as “she”, and sellers as “he” throughout the text.
8The case of affiliated values, potentially very important for owner-occupied housing, can be considered in

future research after the basic model with independent values has been analyzed.
9Increasing hazard rate is sufficient for existence of solution to the seller’s problem.

10In the calibration the buyers search cost is zero. In the model it is nonzero for generality.
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shown to be an important determinant of volatility of house prices, see Glaeser, Gyourko, and
Saiz (2008), Saiz (2010). Following Glaeser, Gyourko, and Saiz (2008), the marginal costs of
supplying ht homes are assumed to be linear and increasing MC(ht) = ch + ψht, where ch, ψ
are parameters. The new buyers enter the market at the exogenous rate d, for example, due
to job relocation. The housing demand changes faster than the supply, so the driving force of
fluctuations in the model are the demand shocks due to this exogenous influx of buyers.

Figure 3 shows how the models work in period t. Each period starts with B̄t buyers and S̄t
sellers. They decide whether to actively search in the local housing market. If they decide to
actively search, they pay search costs to participate, and become active buyers and sellers. The
number of active buyer and active sellers is Bt and St, respectively. Active buyers and sellers
search for each other in a local housing market, randomly meet, and determine the house price.
The price determination mechanism is the only building block where the two models are different.
I describe the search frictions and price setting in the auction models and Nash bargaining model
shortly, in Section 2.2.

Figure 3: The models in period t
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The search frictions and price determination influence the house prices11 and sales qt = πtSt
12

through the probability of sale πt. The transacted buyers and sellers leave the market, and new
buyers and sellers arrive. The number of new buyers is dt and new sellers is ht. I assume that
the influx of buyers dt is governed by AR(1) process.

The transition of the state of the economy from period t to t+1 is summarized by three state
variables: the number of buyers B̄t, sellers S̄t and influx of buyers dt. The dynamics of the state
St = (B̄t, S̄t, dt) is

B̄t+1 = B̄t + dt − qt = B̄t + dt − πtSt, (1)

S̄t+1 = S̄t + ht − qt = S̄t + ht − πtSt, (2)

dt = ρdt−1 + (1− ρ)d0 + εt, (3)

where d0 is the unconditional mean and ρ is the persistence parameters of the process for the
influx of buyers dt with shocks εt ∼ iidN(0, σ2). In equation (1) the total number of buyers B̄t

increases by the influx of buyers dt and decreases by the outflow, equal to the number of sales
qt. Similarly, equation (2) shows the dynamics of sellers, where the number of sellers increases
through endogenous entry ht of sellers and decreases by the number of sold homes qt. In this
system, the search frictions and price determination process affect the dynamics of buyers and
sellers through the probability of sale πt and sales qt.

2.2 Search Frictions and Price Determination

In this section I discuss the microstructure of the local housing market, in particular, search
frictions and price determination mechanism. In the benchmark housing search model the search
is random, where each active buyer visits one randomly chosen active seller per period13. Then
the number of active buyers that visit each individual active seller is distributed with Poisson
distribution14 with the mean that is equal to the ratio of active buyers to active sellers, θt = Bt/St.

11The house prices pt denotes the cross-section of transactions in period t
12The quantity sold qt is the product of the number of active sellers and the probability of sale, i.e. qt = πtSt,

by the law of large numbers
13The assumption about ability to visit one seller is not restrictive for the per period payoffs, since those are

similar to the case when buyers are allowed to visit multiple sellers as in Albrecht, Gautier, and Vroman (2015).
The question, model and results, however, differ from Albrecht, Gautier, and Vroman (2015), see Section 1.

14The Poisson approximation can be motivated in two ways. First, if each active buyer is picking a seller at
random, then the number of buyers that visit a particular seller is distributed binomially. When the number of
sellers goes to infinity S → ∞, holding the ratio of number of active number to sellers θ = B/S constant, by
the Poisson limit theorem the distribution of active buyers that visit a particular seller is Poisson with the mean
equal to the ratio of active buyers to active sellers.

For the second motivation assume that homes are equally spaced across a given area of a local housing market.
Suppose that buyers search randomly, so as to be located across the area according to the uniformly-intensity
spatial Poisson distribution. Each buyer visits the home nearest to his or her location. Then in the limit, as
the number of active buyers and sellers goes to infinity, the total number of buyers visiting each home would
be approximately distributed by Poisson, iid across homes, with a mean equal to the market-wide ratio θ of the
number of buyers per number of active sellers. See, for example, Badderley, Barany, Schneider, and Weil (2007).
I thank Darrell Duffie for pointing this out.
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This ratio is called tightness, with the interpretation that the tightness is high, the housing market
is in boom, because there are many buyers per seller, and vice versa for the cold market.

In the benchmark housing search model, after the buyers arrive, the seller picks one buyer
at random out of all buyers who visited him. The value x of the buyer becomes common
knowledge, and then the price splits the joint surplus from the trade according to fixed weights
equal to bargaining powers of the seller, α ∈ [0, 1], and the buyer, 1− α.

In one of the two auction models that I am proposing, the search is random, similarly to
the benchmark search model. However, after buyers have visited a seller, runs an ascending bid
auction with the reservation price among all buyers who visited him. Seller does not know the
home values of buyers, and chooses and commits to the reservation price before the auction. The
auction starts at this price, and the price increases until only one buyer is left. The buyer pays
the price at which the auction stopped, which is the maximum of the second highest bid and
reservation price.

In the second auction model the search is directed. In the directed search model with auctions
the seller posts the reservation price p̄t that starts the ascending auction. Active buyers observe
the posted reservation prices and decide which seller to visit. The model is a directed search
model because all buyers observe all posted prices and direct their search to the sellers who post
attractive reservation price with little competition from other buyers.

To summarize, the auction and Nash bargaining models differ in terms of the informational
structure, the rule for selecting the winning buyer and the division of the surplus for buyer and
seller. The next section provides an example to illustrate these differences.

Example

The model is dynamic, and both buyers and sellers can time their participation in the housing
market which is summarized by their value functions. The value functions of buyer and seller
in period t are V B

t and V S
t , respectively. These value functions are endogenously determined in

the model. However, I take the value functions of the buyer V B
t+1 and seller V S

t+1 exogenously in
an example to illustrate the differences between the Nash bargaining model with random search,
auction model with random search and auction model with directed search. The value functions
are endogenized in the next sections.
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Figure 4: The auction and Nash bargaining price determination examples
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Note: All dollar values are in thousand dollars, see text.

Figure 4 shows the example of how prices are determined using the Nash bargaining model
in Panel 4b and the auction models in Panel 4a. In this example an active seller, who has paid
search costs, meets a random number of active buyers. This seller is lucky, and he is visited by
three active buyers. All buyers and seller have an option to postpone the transaction till the next
period. The seller can sell tomorrow, and he values this option at V S

t+1 = $60, 000. Similarly,
buyers can wait till tomorrow which allows them to buy a house tomorrow but requires them
to pay rent today, both of those are summarized in the buyer’s value function V B

t+1 which is
equal to $120,000 in this example. When the buyers visit the house, they observe the benefits
from living in this house x per period with the present value PVx = x/(1 − β). To simplify
calculations, assume the exponential distribution for x. The exponential distribution simplifies
the expressions allowing to use the present value of housing services for the bidding and pricing.
In this example, the present value of housing services are PV 1

x = $350, 000 for the first buyer,
PV 2

x = $120, 000 for the second buyer, and PV 3
x = 400, 000 for the third buyer.

First, consider the auction price determination with the random search in Figure 4a. The
house values in the auction models are private valuations of buyers. Before the auction the seller
does not observe the realization of x, but he knows the distribution of x and can compute the
expected present value of housing services, which is assumed to be EPVx = $130, 000. The seller
decides on the optimal reservation price before the auction starts and commits to this price.
Then it follows from Proposition 2 that the optimal reservation is p̄t = V S

t+1 +EPVx = $60, 000+
$130, 000 = $190, 000. All sellers are homogenous, so all sellers post the same reservation price.
The buyers formally do not observe the reservation price, but they can compute the optimal
reservation price by solving the seller’s problem. Once the buyers observed their values, the
auction starts from the reservation price, and price increases until only one buyer is left standing.

What is the auction price here? To answer this question, I need to know the optimal drop-out
prices of buyers. This is a standard ascending bid auction with the dominant strategy to bid the
value of the object. The value of the house is PVx − V B

t+1, because if a buyer buys a house, he

10



gets the present value of housing services, but loses the value function representing the value of
waiting and buying a house later. Hence, the dominant strategy is drop-out of the auction when
the price exceeds b∗t (x) = PVx − V B

t+1.
The value function of buyer appears in the bid because the buyer takes into account the

option value to search in the next period, which shades the bid by their value function. This
makes the bid endogenously rise during the booms. Since if market is currently in the boom, the
next period it will be in the boom with high probability because of the search frictions. Hence,
given the same realization of the present value of housing services PVx, the bids will be higher
during the boom because of the low option value to buy in the next period15.

The optimal drop-out prices, or in other words, maximum bids, b∗t (x) for the three buyers are
$230,000, $0, $280,000, respectively. The third buyer wins the auction, and she pays the price at
which the auction stopped. Here, the drop-out price of the first buyer b1

t (x) = $230, 00 is higher
than the reservation price p̄∗t = $190, 000, so the house is sold at $230,000.

Now consider the auction price determination with the directed search, also depicted in Figure
4a. The process differs from the random search, described in the previous paragraphs, by the
way that the seller determines the reservation price and how buyers arrive to the seller. The
seller starts by posting the reservation price in the ascending bid auction. The buyers then
observe all the reservation prices, and decide which seller to visit. Hence, if the seller hikes up
the reservation price as compared to other sellers, he loses buyers. This drives the reservation
price down the competitive level, i.e. p̄t = V S

t+1, eliminating the monopoly distortion in the
auction model with random search, see discussion of the constrained social optimum allocation
in Section 5. In this example, this change in the reservation price does not affect the outcome.
The third buyer still wins the auction and pays b1

t (x) = $230, 000. However, there are cases when
lowering the reservation price results in the sale in the directed search model as opposed to no
sale in the random search model with auctions, see Section 5.

Finally, consider the benchmark housing search model with Nash bargaining shown in Fig-
ure 4b. In the Nash bargaining the seller selects one buyer at random to negotiate with. In
our example, the seller can potentially choose any of the three buyers, but, to facilitate the
comparison, let the seller pick the same buyer, who has won in the auction models. Once
the seller pick the buyer, the realization of the present value of housing services PVx be-
come common knowledge, and they compute the joint surplus from the trade to determine
the sales price. The joint surplus from the trade is the differences of what they gain from
the deal, which is the present value of housing services PVx, and what they will lose from
the deal, which is the buyer’s and seller’s continuation values, V B

t+1 and V S
t+1. The joint sur-

plus in our example is then PV 3
x − V B

t+1 − V S
t+1 = 400, 000 − 60, 000 − 120, 000 = 220, 000.

This joint surplus is then split according the the bargaining weights of the seller, α, and the
buyer, (1 − α). In this example I will use α = 0.5, but in the calibration the bargaining
power of the seller in the Nash bargaining model is calibrated to the ex-ante expected share
of surplus of the seller in the auction model. With α = 0.5, the Nash bargaining price is
p̂t = V S

t+1 + α(PV 3
x − V B

t+1 − V S
t+1) = 60, 000 + 0.5 + 220, 000 = 170, 000, so the seller is compen-

sated for his option value to sell and gets half of the joint surplus from the deal.

15The shading of the bids due to the option value of participating in the future auctions has been recently
discussed in the context of the online auctions, see Zeithammer (2006), Ingster (2009), Said (2011), Said (2012),
Backus and Lewis (2012), Hendricks, Onur, and Wiseman (2012), Hopenhyan and Saeedi (2015), Coey, Larsen,
and Platt (2016)

11



2.3 Price determination by Nash bargaining

In this section I close the Nash bargaining model by writing down explicitly the pricing mechanism
and dynamics of the value functions of the buyer and the seller.

In the beginning of period t the problem of each buyer and seller is to decide whether to
participate in the local housing market, and if they do, they have to pay search costs. Denote
aBt and aSt the dummies for the buyer’s and seller’s participation so that ait equals one if agent i
participates in the local housing market in period t, and zero otherwise. After the participation
decisions has been made, the Nash bargaining model prescribes how the active buyers and sellers
meet and how the price is determined.

The first component of the Nash bargaining model is the meeting technology. In the models I
assume that the number of active buyers that visit the seller is distributed by Poisson distribution
with the mean, equal to the ratio of buyers to sellers θt = Bt/St. In the Nash bargaining model
the seller picks one buyer out of all who visited him at random, hence the probability of a
meeting is 1−exp(−θt). To produce this meeting technology, I use the urn-ball meeting function
M(Bt, St) = St(1 − (1 − Bt/St)

Bt), which gives the number of meetings M from the number of
active buyers Bt and sellers St. This number of meetings occurs if buyers reach out to sellers
and, if the seller gets more than one buyer, he selects the buyer at random. If the number of
buyers and sellers is large, the meeting function can be well approximated by

M(Bt, St) = St(1− exp(−Bt/St)) = St(1− exp(−Bt/St))

The probability of meeting a buyer to a seller is qs(θt) = 1 − exp(−θt), which is the
same as the probability of a seller meeting at least one buyer in the auction model, which is
P (seller meets exactly one buyer) = 1 − exp(−θt). For the buyer, the probability of of meeting
a seller in the Nash bargaining model is then qb(θt) = qs(θt)/θt = (1− exp(−θt))/θt.

In the Nash bargaining model, the price is determined using the Nash bargaining solution
where the seller and buyer meet and bargain over the price. Following the standard search model
Genesove and Han (2012), the transaction only occurs if the joint surplus PVx − V B

t+1 − V S
t+1

from the sale is positive. In the models I assume that the buyer and seller sign an agreement
in period t, but the settlement, transfer of the house and payment occur in period t + 1 to
simplify notation. Because of this timing assumption, the present value of housing services and
the value functions of buyer and seller tomorrow are of the same time period, t + 1, in the
expression for the joint surplus. The sale will occur only if the joint surplus is positive, that is
if the realized value of the housing services x is higher than the threshold value, denoted x̄, i.e.
x ≥ x̄t = max{(1−β)(V S

t+1 +V B
t+1), 0}. The threshold value x̄ is the value of the housing services

for the marginal buyer. The marginal buyer is a buyer who is just indifferent between buying or
not buying this house, and this buyer prices the house.

Similarly, the probability of buying for the buyer is π(x̄t, θt)/θt, where π(x̄t, θt) = (1 −
exp(−θt))(1 − F (x̄t)) is the overall probability of sale. If the sale occurs, the transaction house
price is then16 p̂t = V S

t+1 + α( x
1−β − V

B
t+1 − V S

t+1). If I take the expectation of the house prices p̂t
over all cross-section of transactions in a period, expected price can be computed as

16 The buyer’s surplus is BSt = β( x
1−β − V

B
t+1 − p̂t), the seller’s surplus is SSt = β(p̂t − V St+1), and the price

maximizes the weighted product of the surpluses SSαt BS
1−α
t , the first order condition is SSt = α(BSt + SSt) or

p̂t − V St+1 = α( x
1−β − V

B
t+1 − p̂t + p̂t − V St+1)
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pt = E[p̂t|Sale] = E[p̂t|x ≥ x̄t] = V S
t+1 + α(

E[x|x ≥ x̄t]

1− β
− V B

t+1 − V S
t+1), (4)

Given the search and price-setting process, I endogenize the value functions of buyer and
sellers. Let V B

t be the value function of the buyer in the beginning of the period before the
decision of searching or not searching is made. The value function of the buyer is the option
value to buy minus the expected present value of rent. In the equilibrium the value function
of the buyer today V B

t is the sum of the discounted value tomorrow βV B
t+1 and the value of

participating in the local housing market today minus the rent w. The value of participating in
the market is zero if the buyer sits out of the market, and is the expected surplus from buying a
house net of search costs cB, when the buyer participates. The ex-ante expected surplus in turn
is E[x|x≥x̄t]

1−β − pt − V B
t+1. The buyer gets this surplus with probability πt/θt. A similar reasoning

applies to the seller. The value function of the seller is just the option value to sell. The value
function of the buyer is the option value to buy net of the present value of rent. Proposition
1 summarizes the dynamics of the buyer’s and seller’s value functions and the expected house
price.

Proposition 1. In the equilibrium of the Nash bargaining model with random search the value
function of the buyer V B

t and seller V S
t , the threshold match quality x̄t and expected cross-section

prices pt satisfy

V B
t = βV B

t+1 − w + max
aBt ∈{0,1}

(β(1− α)
πt
θt

(
E(x|x ≥ x̄t)

1− β
− V B

t+1 − V S
t+1)− cB)aBt , (5)

V S
t = βV S

t+1 + max
aSt ∈{0,1}

(βαπt(
E(x|x ≥ x̄t)

1− β
− V B

t+1 − V S
t+1)− cS)aSt , (6)

x̄t = max{(1− β)(V B
t+1 + V S

t+1), 0}, (7)

pt = V S
t+1 + α(

E(x|x ≥ x̄t)

1− β
− V B

t+1 − V S
t+1), (8)

where πt = (1− exp(−θt))(1− F (x̄t)) is the probability of sale.

Proof. See Appendix A.

2.4 Price determination by auctions with random search

This section explains how the price is determined in the auction model with random search and
closes the model by endogenizing the value functions of the buyer and seller. The search process
starts in the same way as in the Nash bargaining model, that is each buyer and seller decide
whether to incur search costs and participate in the local housing market. If they do, they
become active buyers and sellers. Then each active buyer visits one active seller. When a buyer
visits a seller, she draws a match-specific value of housing services x. From this point on, the
auction process differs from the Nash bargaining process. The value of the house for buyer is
private information that is unobservable for the seller. Let N be a random variable representing
the number of active buyers that have visited the seller. As mentioned earlier, N ∼ Poisson(θ).
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If the seller has no visiting buyers, then N = 0, the seller keeps the house with an option to sell
it the next period. If there is at least one buyer, N ≥ 1, the seller runs the ascending bid auction
with the reservation price p̄. The seller chooses the reservation price before observing how many
buyers will visit and commits to the chosen price17 The buyer does not observe the reservation
price before the auction. During the auction if all buyers dropped out at the reservation price,
the seller keeps the house. Otherwise, the price increases until only one buyer is left. This buyer
gets the house and pays the price at which the auction stopped.

In the auction model the problem of the buyer and seller is to decide whether to be active
or not, similarly to the Nash bargaining model. However, in addition to this decision each buyer
decides on the optimal drop-out price bt(x), and seller decides on the optimal reservation price
p̄t. As it has been discussed in Section 2.2, the optimal drop-out price of the buyer with value x
is bt(x) = x

1−β − V
B
t+1.

The optimal reservation price p̄t can be derived using the parallel between the seller’s problem
in the auction and the monopolist problem, as in Bulow and Roberts (1989). The optimal
reservation price equalizes the marginal revenue from a buyer and the marginal costs of serving
this buyer. The marginal costs of serving the buyer is foregoing the option value to sell tomorrow
V S
t+1. The marginal revenue from a buyer is the virtual value v(b) = b − 1−G(b)

g(b)
, where b is the

value of the object and G(.) and g(.) are the cdf and pdf of b, correspondingly. In this model

the marginal revenue is vt(x) = x
1−β − V

B
t+1 −

1−F (x)
(1−β)f(x)

. The threshold value of housing services

x̄t that makes the buyer’s drop-out price solves vt(x̄t) = x̄t
1−β − V

B
t+1 −

1−F (x̄t)
(1−β)f(x̄t)

= V S
t+1. If the

threshold value x̄t that solved this equation is negative, it means that for any value x ≥ 0 the
seller should sell the house at the reservation price bt(0) = −V B even if only one buyer with

zero value shows up, hence x̄t = max{1−F (x̄t)
f(x̄t)

+ (1 − β)(V B
t+1 + V S

t+1), 0}. For the exponential

distribution of x from Section 2.2, the threshold value x̄t = max{Ex + (1 − β)(V B
t+1 + V S

t+1).0}.
The corresponding optimal reservation price is p̄t = bt(x̄t) = x̄t

1−β − V
B
t+1.

The marginal buyer in the auction model with random search has the value of housing services
x̄t = max{(1 − β)(V B

t+1 + V S
t+1) + 1−F (x̄t)

f(x̄t)
, 0}, which differs from the threshold value of housing

services in the Nash bargaining model x̄t = max{(1− β)(V B
t+1 + V S

t+1), 0}. Given the same value
functions of the buyer and seller, the marginal buyer values the house more in the auction model,
which will be reflected in higher house prices. Another way to look at this difference is to compare
the reservation prices of the seller in the auction and Nash bargaining models. In the auction
model the reservation price is p̄t = V S

t+1 + 1−F (x̄t)
(1−β)f(x̄t)

, while in the Nash bargaining model it is V S
t+1,

since the seller is forced to sell the house as long as the surplus from the trade is positive even if
it is optimal to wait. Higher reservation price in the auction model with random search reflects
the monopoly behavior of the seller as well as the ability to commit to the reservation price. In
a random search model, once a buyer has paid search and has visited a seller, the seller becomes
a local monopolist. If the seller is forced to compete with other sellers by allowing buyers to
direct their search to seller with certain reservation price, then the optimal reservation price will
be V S

t+1, see Section 3 for the auction model with directed search. If the seller could not commit
to the reservation price, he has an incentive to sell as long as a buyer offers anything higher than
his continuation value V S

t+1.

17If the seller cannot commit to the reservation price, then he has incentives to revise the price after the buyers
have visited him, driving the price down to the competitive level as in the auction model with directed search,
see Section 3.
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Due to the dynamic nature of the model, the bids and reservation prices depend on the value
functions of buyers and sellers, and are all jointly determined in the equilibrium. The value
function of buyer today V B

t must be equal to the discounted value function tomorrow βV B
t+1 net

of rent w plus the maximum of her expected payoff from participating in the market and zero
payoff from staying off the market. If the buyer with value of housing services x participates,
the probability that she has the highest value is18 exp(−θt(1−F (x))). The surplus from buying
a house is the difference between the value of the object bt(x) and the marginal revenue vt(x),
see Bulow and Roberts (1989). Hence, the ex-ante expected surplus of the buyer is∫ ∞

x̄t

(bt(x)− vt(x))e−θt(1−F (x)))f(x)dx =
1

1− β

∫ ∞
x̄t

(1− F (x))e−θ(1−F (x))dx

For the exponential distribution, it simplifies to πt
θt
EPVx, where πt/θt = (1− e−θt(1−F (x̄t)))/θt.

The option value of the seller is determined similarly. The ex-ante expected surplus of the
seller is the difference of the marginal revenue vt(x) and the marginal costs V S

t+1 for all the cases
when the transaction happens x ≥ x̄t for each buyer, multiplied by the expected number of
buyers:

θt

∫ ∞
x̄t

(vt(x)− V S
t+1)e−θt(1−F (x))f(x)dx

The sales price in the auction19 is either the reservation price p̄t or the drop-out price, which
is the second-highest bid b(2)t,

pt =
EN [p̄tP (Sale at p̄t) + Eb(2)tP (Sale at b(2)t)]

P (Sale)
=

= p̄t +
1

1− β

∫∞
x̄t

(1− e−θt(1−F (x)) − θt(1− F (x))e−θt(1−F (x)))dx

πt

where πt = 1− e−θ(1−F (x̄t)) is the probability of sale.
If the distribution of x is exponential, then the expected revenue of the seller is ϕ(θt(1 −

F (x̄t))EPVx, where ϕ(θt(1 − F (x̄t)) =
∫∞
x̄t
π(x, θt)dx/Ex. The function ϕ(z) is increasing and

concave in the adjusted tightness20 z. The expected revenue of the seller depends on the adjusted
tightness zt = θt(1 − F (x̄t)) which is the ratio of “serious” buyers out of all active buyers per
seller. These buyers are “serious” in the sense that they are willing to pay higher than the
reservation price p̄t, because their value x is higher than the threshold value x̄t of the marginal
buyer. The adjusted tightness zt, as compared to the tightness θt, takes into account that the
house values are heterogenous and not each buyer-seller pair is a good match. Similarly, the
expression e−θ(1−F (x̄t)) is the probability that there are zero serious buyers who showed up at the

18The probability that the buyer has the highest valuation is the expectation over the number of buyers who
visited this seller N of the probability to be the highest bidder, ENF

N−1(x) = exp(−θt(1 − F (x))), where
N ∼ Poisson(θt) is the number of active buyers per active seller.

19The proof for the price equation is proved in Appendix A.
20See Figure 9a in Appendix B.

15



open house, and hence πt = 1− e−θ(1−F (x̄t)) is the probability of sale. Given the revenue function
ϕ(.), the expected price for the exponential distribution simplifies to

pt = V S
t+1 +

ϕ(θt(1− F (x̄t)))

πt
EPVx (9)

where the ratio ϕ(zt)/π(zt) is increasing in the adjusted tightness zt, see Figure 9b in Appendix
B.

Proposition 2 summarizes the dynamics of the value functions of buyers and sellers and the
price-setting equation and the threshold value x̄t for the auction model with random search.

Proposition 2. In the equilibrium of the auction model with random search the value function
of the buyer V B

t and seller V S
t , the threshold match quality x̄t and expected cross-section prices

pt satisfy

V B
t = βV B

t+1 − w + max
aBt ∈{0,1}

(
β

1− β

∫ ∞
x̄t

(1− F (x))e−θt(1−F (x))dx− cB)aBt

V S
t = βV S

t+1 + max
aSt ∈{0,1}

(
βθt

1− β

∫ ∞
x̄t

(x− 1− F (x)

f(x)
− (1− β)(V B

t+1 + V S
t+1))e−θt(1−F (x))f(x)dx− cS)aSt

x̄t = max{ 1

λ(x̄t)
+ (1− β)(V B

t+1 + V S
t+1), 0}

pt =
x̄t

1− β
− V B

t+1 +
1

1− β

∫∞
x̄t

(1− e−θt(1−F (x)) − θt(1− F (x))e−θt(1−F (x)))dx

πt
=

= V S
t+1 +

θt
(1− β)πt

∫ ∞
x̄t

(x− 1− F (x)

f(x)
− (1− β)(V B

t+1 + V S
t+1))e−θt(1−F (x))f(x)dx

where θt = Bt/St - tightness, λ(x̄t) = f(x)
1−F (x)

is the hazard rate of distribution of values F (x) and

πt = 1− e−θt(1−F (x̄t)) is the probability of selling a house.

Before I define a symmetric dominant strategy perfect foresight equilibrium in the auction
model with random search, to close the model the influx of sellers continues until the marginal
costs of supplying homes equalizes with the marginal benefit of supplying homes, V S

t+1. The same
is done for the other two models.

Definition 1. For given values of the initial state21, S0 = (B̄0, S̄0, d0), a discrete-time perfect
foresight stationary equilibrium is a set of time-invariant value functions V B

t = V B(St) for a
buyer and V S

t = V S(St) for a seller, and a set of policy functions bt(x) = b(x,St) for a buyer and
p̄t = p̄(St) for a seller, an influx of sellers h(St) with the linear increasing marginal costs MC(ht)
and a law of motion St+1 = Γ(St) such that

1. The value functions V B
t , V S

t satisfy the Bellman equations

2. Buyers follow the weakly dominant strategy bt(x)

3. Sellers choose the optimal reservation price p̄t

21See the end of Section 2.1 for the description of the state of the economy.
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4. Free entry for sellers MC(ht) = βV S
t+1

5. The law of motion for the state is consistent with the individual behavior:

B̄t+1 = B̄t + dt − πtSt
S̄t+1 = S̄t + ht − πtSt
dt = ρdt−1 + (1− ρ)d0 + εt

6. Transversality condition holds, limt→∞β
tV B
t and limt→∞β

tV S
t are finite

The definition of an equilibrium in the Nash bargaining model is similar, but drops the re-
quirement on the buyers choosing the optimal bidding strategy and sellers setting the optimal
reservation price. The definition of an equilibrium the auction model with directed search requires
the buyers to optimally select the seller to visit.

3 Price determination by auction with directed search

In this section I consider the model in which the home sales prices are set in the process of
directed search with auction. In the auction model with directed search each active seller posts
a reservation price p̄t that starts the ascending bid auction. Active buyers observe the posted
reservation prices of all sellers and decide which seller to visit.

Buyer’s problem

Consider a buyer, who has an opportunity to search tomorrow which gives him expected utility
V B
t+1. She decides whether to be active or not in the beginning of period t. If the buyer decides

to be active by paying search costs, she can visit one submarket with the reservation price p̄(x̄t).
In each submarket with the reservation price p̄t = p̄(x̄t), or equivalently with the threshold value
x̄t, the ratio of active buyers per active sellers is θ(x̄t). Then the surplus of the buyer in a
submarket x̄t is β

1−β

∫∞
x̄t

(1 − F (x))e−θt(1−F (x))dx, see Section 2.4. Once a buyer visits the seller,
she gets a realization of the value of housing services x, and participates in the auction. When
a buyer searches for a seller, in equilibrium she is indifferent between a submarket x̄1 and x̄2 if
the expected surplus from buying a house is the same in these two submarkets, i.e.∫ ∞

x̄1t

(1− F (x))e−θt(1−F (x))dx =

∫ ∞
x̄2t

(1− F (x))e−θt(1−F (x))dx (10)∫ ∞
x̄2t

(1− F (x))e−θt(1−F (x))dx = ζ (11)

where equation (11) implicitly defines the equilibrium tightness θ(x̄t) with the slope

θ′(x̄t) = − (1− Ft)(1− πt)∫∞
x̄t

(1− F (x))2e−θt(1−F (x))dx
(12)

where the probability of sale is πt = π(x̄t, θ(x̄t)), Ft = F (x̄t). The interaction of the buyer and
the seller after the meeting occurred is the same as in the random search model of Section 2.4.
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Seller’s problem

An active seller has an option value to sell tomorrow V S
t+1, and he is deciding on the optimal

reservation price p̄t to post. Each reservation price p̄t = p̄(x̄t) = b∗(x̄t) = x̄t
1−β − V

B
t+1 corresponds

to the threshold value of housing services x̄t, so we can think of the seller choosing the threshold
x̄t directly. For each x̄t, the number of active buyers that he can expect to visit is distributed by
Poisson with expectation θ(x̄t). It can be shown that the expected payoff of the seller from the
auction is

e−θ(x̄t)(1−F (x̄t))V S
t+1 + (1− e−θ(x̄t)(1−F (x̄t)))(

x̄

1− β
− V B

t+1)+

+
1

1− β

∫ ∞
x̄t

(1− e−θ(x̄t)(1−F (x)) − (1− F (x))θ(x̄t)e
−θ(x̄t)(1−F (x))dx

and maximizing this with respect to x̄t ≥ 0 and rearranging gives the first-order condition

−dπt
dx̄t

V S
t+1 +

dπt
dx̄t

p̄t +
1

1− β
πt +

1

1− β

∫ ∞
x̄t

(1− F (x))2(1− π(x, θ(x̄t)))θ(x̄t)θ
′(x̄t)dx = 0

Using the slope of the tightness θ′(x̄t) from the buyer’s indifference condition (12), gives

− dπt
dx̄t

V S
t+1 +

dπt
dx̄t

p̄t +
1

1− β
πt+

1

1− β

∫ ∞
x̄t

(1− F (x))2(1− π(x, θ(x̄t))θ(x̄t)
(1− F (x̄t))(1− π(x̄t, θ(x̄t))))∫∞

x̄t
(1− F (x))2(1− π(x, θ(x̄t)))dx

dx = 0

which simplifies to p̄t = V S
t+1 or x̄t = max{(1− β)(V S

t+1 + V B
t+1), 0}. The seller is forces to set the

reservation price at the competitive level due to the endogenous search of buyers. Otherwise, the
Bellman equations for the value functions of buyers and sellers as well as the expected house price
are the same to the auction model in the random search, and are summarized in Proposition 3.

Proposition 3. In the equilibrium of the auction model with directed search the value function
of the buyer V B

t and seller V S
t , the threshold match quality x̄t and expected cross-section prices

pt satisfy

V B
t = βV B

t+1 − w + max
aBt ∈{0,1}

(
β

1− β

∫ ∞
x̄t

(1− F (x))e−θt(1−F (x))dx− cB)aBt

V S
t = βV S

t+1 + max
aSt ∈{0,1}

(
βθt

1− β

∫ ∞
x̄t

(x− 1− F (x)

f(x)
− (1− β)(V B

t+1 + V S
t+1))e−θt(1−F (x))f(x)dx− cS)aSt

x̄t = max{(1− β)(V B
t+1 + V S

t+1), 0}

pt =
x̄t

1− β
− V B

t+1 +
1

1− β

∫∞
x̄t

(1− e−θt(1−F (x)) − θt(1− F (x))e−θt(1−F (x)))dx

πt
=

= V S
t+1 +

θt
(1− β)πt

∫ ∞
x̄t

(x− 1− F (x)

f(x)
− (1− β)(V B

t+1 + V S
t+1))e−θt(1−F (x))f(x)dx

where θt = Bt/St - tightness, λ(x̄t) = f(x)
1−F (x)

is the hazard rate of distribution of values F (x) and

πt = 1− e−θt(1−F (x̄t)) is the probability of selling a house.
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The properties of the equilibrium of the auction models with random and directed search,
however, are difference due to the nature of search. One important distinction is that the
equilibrium allocation of the auction model with the directed search solves the problem of the
social planner constrained by the search frictions, see Section 5.

In the next section I provide the intuition on why the auction models produce higher volatility
than the Nash bargaining model.

4 Comparison of the Nash bargaining and auction models

4.1 Amplification of shocks in the auction models

The intuition of the amplification of shocks in the auction models as compared to the Nash
bargaining models can be gained from solving the arbitrage equations for the price forward for
each model taking the expected path of the probability of sale {πt}∞t=0. Assume that the value
of housing services is distributed exponentially, x ∼ Exp, and that the seller actively searches in
the market and has positive probability of sale and positive expected surplus from being active.
Then the price in the Nash bargaining is given by

pt = V S
t+1 + αEPVx, (13)

where the option value to sell V S
t+1 evolves according to

V S
t+1 = βV S

t+2 + αβπt+1EPVx − cS. (14)

Solving equation (14) forward gives the solution for the price in the Nash bargaining

pt = αEPVx

∞∑
i=1

βiπt+i −
cS

1− β
+ αEPVx. (NB)

In the auction model with random search the price setting and the dynamics of the option
value to sell are

pt = V S
t+1 +

ϕt
πt
EPVx,

V S
t+1 = βV S

t+2 + βϕt+1EPVx − cS,

where

ϕt =

∫ − log(1−πt)

0

1− e−t

t
dt

ϕt(− log(1− πt)) =

∫ − log(1−πt)

0

1− e−t

t
dt

is an increasing convex function in πt
22.

22See Lemma 2 in Appendix A.
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The forward solution for the prices is

pt =
∞∑
i=1

βiϕt+iEPVx −
cS

1− β
+
ϕt
πt
EPVx. (RA)

Similarly, for the auction model with directed search

pt = V S
t+1 +

ϕt − πt
πt

EPVx, (15)

V S
t+1 = βV S

t+2 + β(ϕt+1 − πt+1)EPVx, (16)

and the forward solution for the prices is

pt =
∞∑
i=1

βi(ϕt+i − πt+i)EPVx −
cS

1− β
+
ϕt − πt
πt

EPVx, (DA)

The dependence of the house prices on the expected probability of sale is similar to the
dependence of the stock prices on the expected dividends. The change in the expected probability
of sale induces change in the house prices. The magnitude of this influence is determined by the
slope ∂pt/∂πt+i from the price setting mechanisms in (NB), (RA), (DA). Figure 5 shows one
representative term from (NB), (RA), (DA) using the parameters from the calibration in Section
4.2 for all parameters, except the bargaining power of the seller α. The bargaining power of
the seller in the Nash bargaining model is set to one, α = 1, to show the highest possible slope
for that model. Specifically, the plot shows αEPVxβπt+1 with α = 1 for the Nash bargaining,
βEPVxϕ(− log(1−πt+1)) for the auctions with random search and βEPVx(ϕ(− log(1−πt+1))−
πt+1). These terms represent the influence of πt+i on pt for i ≥ 1 (case i = 0 is considered in a
paragraph). The calibration fits the time on the market 1/π for the seller to 2.5 month, making
the probability of sale π = 1/2.5 = 0.4 in the steady state for all models, so that all the graphs
intersect in the steady state.
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Figure 5: Dependance of the prices on the probabilities of sale for the Nash bargaining model
with random search from equation (NB), auction model with random search from (RA) and
auction model with directed search from (DA)
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The prices increase linearly with the probability of sale for the Nash bargaining model and
exponentially in the auction model. Because buyers can get the extreme realizations of the house
values, and the prices reflect these extreme values in the sales prices, the house prices can shoot
up significantly in the auction models as opposed to the Nash bargaining. In the Nash bargaining
the increase of prices is limited even during the housing booms when the houses sell. Hence,
based on this graph, given the volatility of the probability of sale, the volatility of the prices is
expected to be the highest in the auction model with directed search, and higher in the auction
model with random search than in the Nash bargaining model, which is shown in the Section 4.3
based on the numerical simulations.

The comparison for i = 0 is similar, since the Nash bargaining prices are flat with respect
to πt. The slope of the prices with respect to the probability of sale in the auction model with
random search and directed search depends on the slopes ϕ(− log(1− πt))/πt and (ϕ(− log(1−
πt))− πt)/πt. Both of these functions are increasing and convex in π, see lemma 3 in Appendix
A, and graphically look similar to the ϕ(− log(1 − πt)) and ϕ(− log(1 − πt)) − πt, depicted in
Figure 5. So the comparison of the models is the same for i = 0 as for i ≥ 1, i.e. the auction
model with directed search is the most sensitive to the changes in the probability of sale and the
Nash bargaining model is the least sensitive.

4.2 Calibration

In this section I calibrate the three models from Section 2 by matching the moments from the
model and the data, and solve these models to study the fluctuations of house prices over time.

The strategy of the moments matching calibration is to set the basic parameters, i.e. the
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discount factor β, the influx of buyers d and the rent w, the search costs cB, cS to be equal to
basic values for all models and choose the remaining parameters, i.e. parameters of the marginal
costs of entry of sellers ch, ψ, the parameterization of the distribution for the steady state of
each the models separately to fit the housing market statistics. The Nash bargaining model has
one additional parameter, which is the bargaining power of a seller α. It is set to the expected
share of surplus of seller in the auction models. The data moments are computed from the house
prices in the Los Angeles MSA. The level of analysis is set to the MSA level, since the MSA is
a natural housing market because residents commute inside MSA. Moreover, the house prices
swing between booms and busts and are volatile in the Los Angeles MSA is used as an example
to calibrate the values of rents, prices, sales and time on the market for buyers and sellers.

The values for calibrated parameters are shown in Table 1. The period in the model is taken
to be a month. The discount factor β is set to produce the discount rate of 6% annually. The
calibrated rent w and influx of buyers d equals the mean of monthly seasonally adjusted real
rent and sales for 2010:M2-2015:M523, correspondingly, from Zillow.com in Los Angeles MSA. In
the steady state the influx of buyers d has to be equal to the sales to keep the number of buyers
constant, so the average sales are used to calibrate the influx of buyers. The buyer’s search costs
cB are calibrated to zero, since the buyer’s search costs are negligible as compared to the sellers
costs of marketing and putting the house on sale. The seller’s search costs cS are calibrated to
6% of the sales price which represent the typical commission and closing costs.

To parametrize the distribution, I consider the exponential cdf F (x) = 1 − e−µx as the
leading example, where µ is the inverse of the expectation of x. The exponential distribution
has constant hazard rate. Since the distribution has to have weakly increasing hazard rate and
positive support x ≥ 0, some other standard distributions, for example, Pareto, normal, uniform24

cannot be used for the robustness check. I use a slightly modified cdf F (x) = (1 − e−µx)2 that
satisfies the increasing hazard rate condition as the robustness exercise. The parameter µ is
calibrated together with other parameters to match the data moments.

The parameter of distribution µ, the parameters of the marginal costs of entry of sellers ch, ψ
are jointly calibrated to match mean prices the p = $453, 580, the time on the market for sellers
T S = 2.5, the elasticity of housing supply εH

S

p = 0.63 (Saiz (2010)). The time on the market
for seller moment is based on the median time on the market from the National Association
of Realtors. The autocorrelation and standard deviation of the influx of buyers d are set to
reproduce the volatility of the house sales in the data.

23The longest available series for sales. Longer series are available for the rent and price, but the series are
picked to represent the same period.

24The Pareto distribution has decreasing hazard rate. Positive support is used in proofs where Fubini theorem
is used, and the normal and uniform distributions do not have positive support.
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Table 1: Moments-matching calibration

Parameter Symbol RA DA NB Moment
discount factor, per annum β 0.94 0.94 0.94 6% return
rent w 2076 2076 2076 mean real rent
inflow of buyers d 8022 8022 8022 sales

bargaining power of seller α - - 0.8
≈ share of surplus
in auction model

seller’s search costs $ cs 9072 9072 9072 6% of sale price

mean housing services $ Ex 160 1382 259
calibrated
jointly to match

level of MC $ ch -292135 -292135 -296380
p = $450K,
T S = 2.5,

angle of MC $ ψ 89.29 89.29 89.29
εH

S

p = 0.63 in
LA MSA, Zillow

marginal prod cost $ MC 424131 424131 419886
standard deviation of dt σd - - - fit σ̂Data

dlogSales

Notes: This table shows the calibrated parameters for the auction model with random/directed search in columns
“RA/DA” and Nash bargaining model in column “NB”. Each model is individually calibrated to match the same
moments, observed in the data. MC stands for the marginal costs. The standard deviation σd of the influx of
buyers dt fits the volatility of sales in each of the models.

4.3 Quantitative results

In this section I compare the volatilities, generated by the Nash bargaining model and the
auction models, in response to the shocks of the influx of buyers dt, with the moments in the
data. The data comes from monthly Zillow house price index for Los Angeles MSA from 1996:M4
to 2015:M6. To compare the moments from the data and models, each model is simulated 100
times to produce a time-series of T = 231 months (to match the length of data), and the
average moments from these experiments are reported in Tables 2 and 3 for the exponential
and non-exponential distributions, respectively. All simulations start from the steady-state of
the corresponding model. Zillow applies the Henderson filter to the raw data and then uses a
seasonal-trend decomposition (STL) procedure to remove seasonality25, I apply the same filter
to the simulated data.

Figures 6 and 7 illustrate simulations of the house price growth for each other model in
response to the same series of shocks. Visually the volatility of the home prices in the auction
models is higher than in the Nash bargaining models, and the auction model with directed search
produces the highest volatility. It is confirmed by the average moments from the experiments in
Tables 2 and 3. This is the main quantitative result of the paper.

To gauge how the volatility in the model compares with the volatility in the data, I plot both
the graph of the house price growth in the LA MSA from Section 1 and the simulations of the
models with non-exponential distribution in the same figure, see Figure 8. The auction model

25Zillow ZHVI methodology: http://www.zillow.com/research/zhvi-methodology-6032/
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with directed search produces the volatility quantitatively similar to the volatility in the data.

Figure 6: The volatility of the simulated prices in the auction models is higher than in the Nash
bargaining model, example of exponential distribution
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Notes: This graph shows an example of simulated monthly series of the house price growth in percent
from the auction model with random search in dashed red line, from the auction model with directed
search in dashed dotted black line, from the Nash bargaining with random search in the solid blue line.
In each model the housing market is subject to the same series of shocks, fixed with the seed, and the
same exponential distribution of the values, x ∼ F (x) = (1− e−µx), where µ is calibrated to fit the data
moments, see text.
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Table 2: The auction house prices are more volatile in the auction models as compared to the
benchmark Nash bargaining model, example of exponential distribution

Data RA DA/SP NB
σ∆logp monthly 0.0160 0.0133 0.0241 0.0101
ρ∆logp monthly 0.5814 0.5714 0.5773 0.5652
σ∆logp quarterly, last 0.0388 0.0306 0.0558 0.0233
ρ∆logp quarterly, last 0.3830 0.0901 0.1125 0.0667
σ∆logp quarterly, average 0.0370 0.0269 0.0493 0.0204
ρ∆logp quarterly, average 0.4221 0.2589 0.2864 0.2315
σ∆logp annual, last 0.1026 0.0674 0.1275 0.0503
ρ∆logp annual, last 0.6662 0.0182 0.1505 -0.0603
σ∆logp annual, average 0.1016 0.0546 0.1080 0.0401
ρ∆logp, annual, average 0.7225 0.1769 0.3277 0.0845

Notes: This table shows the moments based on Zillow house price growth data in column “Data”, average
moments from 100 simulations of the auction model with random and directed search in column “RA”
and “DA/SP”, correspondingly, and random Nash bargaining model in column “NB”. The “SP” name
of the column refers to the social planner solution that can be decentralized by the auction model with
directed search. σ∆logp and ρ∆logp stand for standard deviation and autocorrelation of the change in
log prices. The distribution of values x is exponential F (x) = (1 − exp(−µx)). I have applied the
Henderson filter and STL filter for seasonal adjustment to the simulated series from the models to
make them comparable to the data series from Zillow, see http://www.zillow.com/research/zhvi-

methodology-6032/. The labels “average” and “last” refer to the method of computing the quarterly
and annual series from the monthly data. The quarterly series are computed as the prices at the last
month in the quarter, or the average monthly prices.
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Figure 7: The volatility of the simulated prices in the auction models is higher than in the Nash
bargaining model, example of non-exponential distribution
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Notes: This graph shows an example of simulated monthly series of the house price growth in percent
from the auction model with random search in dashed red line, from the auction model with directed
search in dashed dotted black line, from the Nash bargaining with random search in the solid blue line.
In each model the housing market is subject to the same series of shocks, fixed with the seed, and the
same distribution of the values, x ∼ F (x) = (1− e−µx)2, where µ is calibrated to fit the data moments,
see text.
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Table 3: The auction house prices are more volatile in the auction models as compared to the
benchmark Nash bargaining model, example of non-exponential distribution

Data RA DA/SP NB
σ∆logp monthly 0.0160 0.0147 0.0253 0.0126
ρ∆logp monthly 0.5814 0.5723 0.5776 0.5707
σ∆logp quarterly, last 0.0388 0.0340 0.0588 0.0291
ρ∆logp quarterly, last 0.3830 0.0921 0.1130 0.0782
σ∆logp quarterly, average 0.0370 0.0299 0.0519 0.0256
ρ∆logp quarterly, average 0.4221 0.2608 0.2870 0.2434
σ∆logp annual, last 0.1026 0.0751 0.1342 0.0630
ρ∆logp annual, last 0.6662 0.0168 0.1501 -0.0322
σ∆logp annual, average 0.1016 0.0609 0.1140 0.0512
ρ∆logp, annual, average 0.7225 0.1806 0.3254 0.1131

Notes: This table shows the moments based on Zillow house price growth data in column “Data”, average
moments from 100 simulations of the auction model with random and directed search in column “RA”
and “DA/SP”, correspondingly, and random Nash bargaining model in column “NB”. The “SP” name
of the column refers to the social planner solution that can be decentralized by the auction model with
directed search. σ∆logp and ρ∆logp stand for standard deviation and autocorrelation of the change in log
prices. The distribution of values x is F (x) = (1− exp(−µx))2. I have applied the Henderson filter and
STL filter for seasonal adjustment to the simulated series from the models to make them comparable to
the data series from Zillow, see http://www.zillow.com/research/zhvi-methodology-6032/. The
labels “average” and “last” refer to the method of computing the quarterly and annual series from the
monthly data. The quarterly series are computed as the prices at the last month in the quarter, or the
average monthly prices.
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Figure 8: The house price growth from the data and from the simulation in the models
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(a) Los Andgeles MSA data
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(b) Models

Notes: This figure shows the house price growth in panel (a) and the simulation of the models, where “random
auction” is the auction model with random search, “directed search” is the auction model with directed search,
“random Nash bargaining” is the Nash bargaining with random search” in panel (b). In each model the distri-
bution of house values x ∼ Exp, and each model is hit by the same series of shocks. The line “data” shows the
house price growth from Zillow Los Angeles MSA.

5 Constrained Socially Optimal Allocation

The literature26 on competing mechanisms established that if the seller meets several buyers at
a time, the weakly preferred mechanism for the seller is the second-price auction. Section 1
argues that in housing markets the seller is frequently visited by several buyers and the seller is
using the sales mechanism that is essentially the second price auction with the reservation price.
Section 4.3 shows that if this sales mechanism is built into the search and matching model, the
quantitative predictions of the model differ substantially from the frequently employed Nash
bargaining model.

What is the socially efficient level of house price volatility? This section tackles this questions
through the lens of the search theory. The standard random search models usually are not
constrained efficient, except for the knife-edge case in which the Hosios (1990) condition holds.
In the random search model with auctions from the first part of the paper the seller runs an
optimal auction that may not be socially efficient in the presence of the search frictions. In
contrast, a well-known result from the literature on the directed search in the labor market
(Moen (1997), Shimer (1996)) is that allowing the sellers to compete for buyers, – by posting the
trading mechanism – eliminates the inefficiencies that are present in the random search models.

However, these results may fail to extend if a more general setting is considered. For example,
Guerrieri (2008) shows that the equilibrium in the dynamic directed search model of the labor
market is not efficient once the workers have private information, unless the economy starts from
the steady-state27. However, the private information coupled with the free entry of the sellers

26McAfee (1993), Peters (1997)
27Geromichalos (2012) shows that when the seller has several goods to sell and capacity constrains the efficiency
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leaves the efficiency results intact in the static model of the housing search with auctions, as
demonstrated by Albrecht, Gautier, and Vroman (2014). In this section I extend this result to a
dynamic setting by building a dynamic equilibrium model of directed search with auctions and
shows that it delivers the socially efficient allocation, constrained by search frictions.

This result is shown in several steps. I start with the framework of Section 2 to find the
socially efficient allocation, constrained by the search frictions with many-to-one matches, and
show that the equilibrium allocation in the random search auction model from Section 2.4 is
not constrained efficient. The reason for the failure of efficiency is a monopoly behavior of seller
in the optimal auction. The monopoly arises when the buyer randomly visits a seller without
knowing the expected terms of the trade. The seller then becomes a monopolist, because if the
buyer fails to transact with the current seller, the buyer has to wait till the next period and go
through the search frictions, which is costly. If the sellers are allowed to advertise and commit to
the terms of the trade beforehand and the buyers to direct their search to sellers after observing
the promised trading mechanism as in the auction model with directed search, I demonstrate
that the equilibrium model of directed search decentralizes the constrained efficient allocation.

The constrained social optimum allocation is a solution of a social planner problem, con-
strained by the search frictions. In particular, given the current state of the economy St =
(B̄t, S̄t, dt), the social planner decides how many new sellers ht enter the market, how many
buyers Bt and sellers St are active out of the pool of all buyers B̄t and sellers S̄t. Then, due to
the search frictions, each active buyer is sent to an active seller according to the same Poisson
process as in the decentralized auction and Nash bargaining models. Upon meeting a seller, a
buyer draws a realization of the match-specific value of housing services x. After observing these
realizations, the social planner must decide whether to distribute a house from the active seller
today or wait till tomorrow, and, if the house is distributed, which buyer gets the house.

The efficient distribution of the house prescribes the house to be awarded to the highest
value buyer. Given that, the question is whether to distribute the house to the highest value
buyer this period or keep the house and potentially distribute it the next period. Since the
values for a house are independently and identically distributed over time and over buyers, the
solution is be characterized by the threshold value of housing services x̄t, such that if the highest
draw x of housing services exceeds x̄t, the house is distributed. The threshold x̄t is determined
endogenously and can vary over time.

Hence, the social planner chooses a sequence of influx of seller, number of active sellers and
active buyers, the threshold value for distributing a house {ht, St, Bt, x̄t}∞t=0, given the initial total
number of buyers, total number of sellers and influx of buyers S0 = (B̄0, S̄0, d0), to maximize the

of the directed search can also break down.
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present discounted flow of housing services from distributed house.

max
{Ht,St,Bt,x̄t}∞t=0

∞∑
t=0

βt[Stπ(x̄t, θt)
βE[x(1)t|x(1)t ≥ x̄t]

1− β
− wBt − csSt − cbBt − TC(ht)] (17)

B̄t+1 = B̄t + dt − π(x̄t, θt)St

S̄t+1 = S̄t + ht − π(x̄t, θt)St

dt+1 = ρdt + (1− ρ)d0 + εt+1

0 ≤ St ≤ S̄t, 0 ≤ Bt ≤ B̄t, x̄t ≥ 0

B̄0 > 0, S̄0 ≥ 0, d0 given

where Stπ(x̄t, θt) is the number of distributed homes. The total costs of supplying new homes are
quadratic TC(ht) = chht + ψ

2
h2
t , as before, π(x̄t, θt) is the probability of distributing the house

and E[x(1)t|x(1)t ≥ x̄t] is the expectation of the highest value of housing services, conditional on
value exceeding the threshold x̄t. The expectation in E[x(1)t|x(1)t ≥ x̄t] is taken both over the
number visitors N of the house and over the realized values x of those visitors.

Denote the value function of the social planner in the beginning of period t by Ωt. Let
V S
t = ∂Ωt

∂S̄t
be the increase in the social welfare function Ωt, produced by adding one more seller

S̄t, the option of adding a seller. Similarly, let V B
t = ∂Ωt

∂B̄t
be the value of adding a buyer. Then

the proposition 4 summarizes the optimality conditions for the social planner.

Proposition 4. The option value to add a seller V S
t = ∂Ωt

∂S̄t
, the option value to add a buyer

V B
t = ∂Ωt

∂B̄t
, the threshold value of housing services to distribute the house x̄t, that solve the social

planner problem, satisfy

V B
t = βV B

t+1 − w + max
aBt ∈{0,1}

(
β

1− β

∫ ∞
x̄t

(1− F (x))e−θt(1−F (x))dx− cB)aBt

V S
t = βV S

t+1 + max
aSt ∈{0,1}

(
βθt

1− β

∫ ∞
x̄t

(x− 1− F (x)

f(x)
− (1− β)(V B

t+1 + V S
t+1))e−θt(1−F (x))f(x)dx− cS)aSt

x̄t = max{(1− β)(V B
t+1 + V S

t+1), 0}

where θt = Bt/St - tightness, λ(x̄t) = f(x)
1−F (x)

is the hazard rate of distribution of values F (x) and

πt = 1− e−θt(1−F (x̄t)) is the probability of selling a house.

The comparison of the dynamics of the buyer’s and seller’s value functions from Proposition
1, 2 and 4 suggests that generally the Nash bargaining with random search and auction models
with random search are not socially efficient. The Nash bargaining model with random search
is not constrained efficient because the search frictions in the social planner problem allow for
many-to-one matches while the search frictions in the standard Nash bargaining model do not.
To gain intuition on why the auction model is not socially efficient, compare the steady-states of
the auction model and social planner solution for the exponential distribution.

The models disagree on how the tightness θ and the threshold value for the housing services
x̄ are determined. Specifically, in the auction model tightness and the threshold value of housing
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services are found as the solution of a pair of equations

ϕ(θ(1− F (x̄))) =
(1− β)MC(d)/β + cs

βEPVx
(18)

x̄ = Ex+
βπ(x̄, θ)

θ
EPVx +

1− β
β

MC(d)− cb − w (19)

while the social planner would solve

ϕ(θ(1− F (x̄)))− π(x̄, θ) =
(1− β)MC(d)/β + cs

βEPVx
(20)

x̄ =
βπ(x̄, θ)

θ
EPVx +

1− β
β

MC(d)− cb − w (21)

to determine θ and x̄. In the social planner equation for the tightness has an extra −π(x̄, θ)
term. This term represents the monopoly distortion. The social planner chooses higher adjusted
tightness z = θ(1 − F (x̄)) than the adjusted tightness that emerges in the equilibrium of the
auction model, which follows from equations (18) and (20). Because the adjusted tightness is
lower in the auction model, the probability of sale π(x̄, θ) = 1− exp(−z) is also lower.

The expression for the threshold value in the auction model has additional Ex term, making
the threshold value in the auction model higher as compared to the socially efficient allocation.
This comparison is not immediate, because the equations include other endogenously determined
variables, but can be proved. Higher threshold value x̄ in the auction model is a consequence
of the static inefficiency of the optimal auction. The seller in the auction model behaves as a
monopolist, which leads to higher prices, and hence higher threshold value x̄ for distributing
the house. This static inefficiency in the auction model has dynamic consequences. Because the
seller has higher threshold value x̄, he keeps the house on the market longer as compared to
what the social planner would choose. In other words, the seller suboptimally chooses to exercise
this option value to sell too late. Board (2007) finds a similar prediction, although in a different
setup.

6 Conclusion

Auctions are widely employed in housing markets. In hot markets sellers are confronted with
multiple interested buyers and run informal auctions, inviting bids and rebids until a single
buyer remains. In some cases, notably in Australia, UK, New Zealand28 and in US for foreclosed
properties, the auctions take standardized forms. This paper studies the role of auctions in
housing markets, comparing a model with auctions to the standard model, where only one-on-
one bargaining determines prices.

During the booms each seller attracts multiple buyers, an auction is highly effective at se-
lecting the buyer with the highest valuation. Optimal selection results in higher prices for the
seller in the auction model. In contract, in the Nash bargaining model a seller picks one of many
interested buyers at random and negotiate only with that buyer. This price-finding process is

28see Lusht (1996) for Australia, Dotzour, Moorhead, and Winkler (1998) for New Zealand, Merlo and Ortalo-
Magné (2004) for UK
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not optimal for the seller, because the randomly selected buyer is probably not the buyer who
places the highest value on the house, so prices are lower. During the busts it is common for only
a single buyer to be interested in a house, so the seller picks a reservation price and the buyer
decides whether to buy at that price or not.

There are alternative price-finding processes that arise in the housing market that are be-
yond the scope of this paper, but deserve further attention from researchers. First, other auction
formats may be used to sell houses. If the buyers are risk neutral and their values are indepen-
dently and identically distributed over time and over bidder, then, by the revenue equivalence,
the expected revenue for the seller is the same. But studying housing auctions with affiliated
and correlated over time housing valuations and risk-averse buyers could impact the implica-
tions of the search model. Second, in cold markets, where many houses are available to a buyer
without competition from other buyers, the buyer effectively runs an auction by considering
the prices of the suitable houses that are currently on the market and picking the lowest one.
Third, another alternative-price finding process is alternating-offer bargaining. In setting where
one-on-one bargaining occurs, it takes the alternating-offer form. Not only this process is seen
in the real world, its game-theoretic foundations are stronger than the Nash bargain and proved
to change the implications of the job search model (Hall and Milgrom (2008)). Finally, auctions
and bargaining can be combined. In the housing market, the seller first picks the buyer with the
highest valuation and bargains with this buyer one-on-one. In used-car auctions, it is common
for the winning bid to fall short of the seller’s hidden reserve price. In that case, the winning
bidder and the seller engage in bargaining to see if the seller will agree to a price below the earlier
reserve or the buyer will agree to a price above his winning bid (Larsen (2015)).

This paper focuses on the price-finding and is stripped down in other respects. It makes no
claim to do justice to all the complexities of the housing market. Rather, it points out that the
model used for price-finding has important consequences for the volatility and responsiveness
of the house prices to exogenous shocks. The amplification of the housing market shocks in
the auction model as compared to the Nash bargain model comes from the heterogeneity in the
house values and rule for selecting the winning buyer. In the Nash bargaining, the buyer is chosen
randomly so the sales price is determined by the average house values. In the auction models
the buyer is chosen as the highest bidder so the sales price is determined by the second highest
value. During the booms, when there are many buyers, the highest values increase significantly
as compared to the average values which contributes to the higher volatility of the house prices,
helping to resolve the puzzle of the excess volatility of the prices in the housing markets.
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A Proofs

Proof of Proposition 1. See the proof of the price equation in footnote 16.
The seller’s payoff today is

(πtβpt + (1− πt)βV S
t+1 − cS)aSt + βV S

t+1(1− aSt )

where the first two terms show the payoff of the seller if he participated in the local housing
market in period t, i.e. aSt = 1, where πt = (1 − exp(−θt))(1 − F (x̄t)) is the probability of
sale. With probability πt, the seller sells the house and tomorrow gets payment pt, and, with
probability (1 − πt), he does not sell the house and gets the option value to sell tomorrow
Vt+1. The search costs cS are deducted from his payoff. If the seller does not participate in the
local housing market, i.e. aSt = 0, then he enjoys the option value to sell tomorrow, i.e. V S

t+1.
Rearranging and maximizing over the participation decision aSt gives the Bellman equation

V S
t = βV S

t+1 + (βπt(pt − V S
t+1)− cS)aSt

Using the Nash bargaining price equation delivers the Bellman equation in the text:

V S
t = βV S

t+1 + max
aSt ∈{0,1}

(βπt(V
S
t+1 + α(

E[x|x ≥ x̄t]

1− β
− V S

t+1 − V B
t+1)− V S

t+1)− cS)aSt =

= βV S
t+1 + max

aSt ∈{0,1}
(πtαβ(

E[x|x ≥ x̄t]

1− β
− V S

t+1 − V B
t+1)− cS)aSt

The Bellman equation for buyers is proved similarly, using the probability of buying a house,
equal to the probability of meeting a seller (1− exp(−θt))/θt times the probability of matching
given the meeting (1− F (x̄t)), altogether (1− exp(−θt))/θt × (1− F (x̄t)) = πt/θt.

The threshold house quality x̄t is such that the joint surplus from the trade, i.e. x/(1 −
β)− V B

t+1 − V S
t+1 is zero, or in other words x̄t = max{(1− β)(V B

t+1 + V S
t+1), 0}. The no-negativity

restriction comes from non-negative values x ≥ 0.

Proof of Proposition 2. The expected price is

EN [p̄tP (Sale at p̄t) + Eb(2)tP (Sale at b(2)t)]

P (Sale)
=
EN [p̄tNG(p̄t)

N(1−G(p̄t)) + Eb(2)tP (Sale at b(2)t)]

πt

Let M(y,N) = 1−G(y)N −NGN−1(y)(1−G(y)), then the cdf of the second order statistic

conditional on selling higher than the reservation price is M(p̄t,N)−M(y,N)
M(p̄t,N)

1{y≥p̄}, hence the con-

ditional pdf is −∂M(y,N)
∂y

/M(p̄, N). Now the last term from the numerator of the price equation
becomes

M(p̄t, N)

∫ ∞
p̄t

y(−∂M(y,N)

∂y
/M(p̄, N))dy =

∫ ∞
p̄t

yd(−M(y,N))

36



The numerator of the expected price is then

EN [p̄tNG(p̄t)
N(1−G(p̄t))−

∫ ∞
p̄t

ydM(y,N)] =

= EN [p̄tNG(p̄t)
N(1−G(p̄t))− yM(y,N)|∞p̄t +

∫ ∞
p̄t

M(y,N)dy] =

= EN [p̄tNG(p̄t)
N(1−G(p̄t)) + p̄tM(p̄t, N) +

∫ ∞
p̄t

M(y,N)dy]

where the last equality uses that limy→∞(y(1−NG(y)N−1(1−G(y))−G(y)N) = 0, which holds
for the distributions used in the text.

Rearranging, using EN(1−G(p̄t)
N) = P (Sale) = πt and the Fubini’s theorem for exchanging

the integral and expectation, the last expression simplifies to

p̄tπt +

∫ ∞
p̄t

ENM(y,N)dy

where ENM(y,N) = 1−e−θt(1−G(y))−(1−G(y))θe−θt(1−G(y)) by applying the Poisson pdf formula.
Then the expected price is

pt =
p̄tπt +

∫∞
p̄t

(1− e−θt(1−G(y)) − (1−G(y))θte
−θt(1−G(y)))dy

πt

where G(y) = F ((1− β)(y + V B
t+1)), hence,

pt = p̄t +
1

1− β

∫∞
x̄t

(1− e−θt(1−F (x)) − (1− F (x))θte
−θt(1−F (x)))dx

πt

Lemma 1. Assume the hazard rate λ(x) = f(x)/(1 − F (x)) is weakly increasing, then the
expectation of the maximum value of the housing services, conditional on this value exceeding

the threshold x̄t, is E[x(1)|x(1) ≥ x̄t] = x̄t +
∫∞
x̄t
π(x,θt)dx

π(x̄t,θt)

Proof. The expectation and integral in the conditional expectation are interchanged by the Fu-
bini’s theorem. The expectation inside the integral is

E[x(1)t|x(1)t ≥ x̄t] =
EN
∫∞
x̄
xdFN(x)

EN(1− F (x̄)N)
=

∫∞
x̄t
xENNF (x)N−1f(x)dx

π(x̄t, θ)

ENNF (x)N−1 = e−θ
∞∑
n=0

n
θnF (x)n−1

n!
= θe−θ

∞∑
n=1

(θF (x))n−1

(n− 1)!
= θe−θeθF (x) = θe−θ(1−F (x))
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E[x(1)t|x(1)t ≥ x̄t] =

∫∞
x̄t
xθe−θ(1−F (x))dF (x)

π(x̄t, θ)

The integral in the numerator is∫
xθe−θ(1−F (x))dF (x) =

∫
xe−θ(1−F (x))d(−θ + θF (x)) =

=

∫
xde−θ(1−F (x)) = −

∫
xd(1− e−θ(1−F (x))) = −x(1− e−θ(1−F (x))) +

∫
(1− e−θ(1−F (x)))dx

Hence, ∫ ∞
x̄t

xθe−θ(1−F (x))dF (x) = −x(1− e−θ(1−F (x)))|∞x̄t +

∫ ∞
x̄t

(1− e−θ(1−F (x)))dx

where by L’Hopital’s rule

lim
x→∞

x(1− e−θ(1−F (x))) = lim
x→∞

x
1

(1−e−θ(1−F (x)))

= lim
x→∞

1

− θf(x)

(1−e−θ(1−F (x)))2

= lim
x→∞

(1− e−θ(1−F (x)))2

θf(x)
,

the last one can be rewritten using the hazard rate λ(x) = f(x)/(1−F (x)) and Taylor expansion
for the exponent

lim
x→∞

(1− e−θ(1−F (x)))2

θλ(x)(1− F (x))
= lim

x→∞

(θ(1− F (x)))2

λ(x)θ(1− F (x))
= lim

x→∞

θ(1− F (x))

λ(x)
= 0,

where the last equality is due to the property of the cdf limx→∞ F (x) = 1 and weakly increasing
hazard rate λ(x).

Thus, ∫ ∞
x̄t

xθe−θ(1−F (x))dF (x) = x̄(1− e−θ(1−F (x̄))) +

∫ ∞
x̄t

(1− e−θ(1−F (x)))dx.

Then the original expectation of the first order statistics given that it is higher than the
threshold value is

E[x(1)t|x(1)t ≥ x̄t] = x̄t +

∫∞
x̄t
π(x, θt)dx

π(x̄t, θt)
.

Proof of Proposition 4. The recursive formulation of the social planner problem constrained by
the search frictions is

Ωt(B̄t, S̄t) = max
ht,x̄t,St∈[0,S̄t],Bt∈[0.B̄t]

[
β

1− β
Stπ(x̄t, θt)E[x(1)|x(1) ≥ x̄t]− wB̄t − cSSt − cBBt+ (22)

µSt (S̄t − St) + µBt (B̄t −Bt) + γSt St + γBt Bt + βΩt+1(B̄t + d− π(x̄t, θt)St, S̄t + ht − π(x̄t, θt)St)],
(23)
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where γBt , µ
B
t , γ

S
t , µ

S
t ≥ 0 are the Lagrange multipliers for the restrictions 0 ≤ Bt ≤ B̄t and

0 ≤ St ≤ S̄t, correspondingly.
The first order condition with respect to ht is βV S

t+1 = MC(ht).

Case 1. At least one buyer and seller are active, Bt > 0 and St > 0.
Using lemma 1, the problem is

Ωt(B̄t, S̄t) = max
ht,x̄t≥0,St∈[0,S̄t],Bt∈[0.B̄t]

[
β

1− β
Stπ(x̄t, θt)x̄t +

β

1− β
St

∫ ∞
x̄t

π(x, θt)dx− wB̄t − cSSt − cBBt+

(24)

µSt (S̄t − St) + µBt (B̄t −Bt) + γSt St + γBt Bt + βΩt+1(B̄t + d− π(x̄t, θt)St, S̄t + ht − π(x̄t, θt)St)].

Let V S
t ≡ ∂Ωt

∂S̄t
be the value of adding a seller and V B

t ≡ ∂Ωt
∂B̄t

be the value of adding a buyer, then
the envelope conditions are

V B
t = βV B

t+1 − w + µBt ,

V S
t = βV S

t+1 + µSt ,

The first order condition with respect to x̄t ≥ 0 is

β

(1− β)
St
∂π(x̄t, θt)

∂x̄t

(
x̄t − (1− β)(V B

t+1 + V S
t+1)
)

= 0,

with complementary slackness and ∂π(x̄t, θt)/∂x̄t = −θtf(x̄t)(1− π(x̄t, θt)) so that

β

(1− β)
Bt(1− π(x̄t, θt))f(x̄t)

(
x̄t − (1− β)(V B

t+1 + V S
t+1)
)

= 0. (25)

First, consider buyers. The derivative of the right-hand size of (24) with respect to Bt is

β

1− β
(x̄t(1− F (x̄t))(1− π(x̄t, θt)) +

∫ ∞
x̄t

(1− F (x))(1− π(x, θt))dx) (26)

−β(V B
t+1 + V S

t+1)(1− F (x̄t))(1− π(x̄t, θt))− cB − µBt + γBt ,

which uses ∂π(x, θt)/∂θt = (1− F (x))(1− π(x, θt)).
Since Bt > 0, γBt = 0. The threshold value x̄t is determined from equation (25) as x̄t =

(1− β)(V B
t+1 + V S

t+1), and the first-order condition is

β

1− β

∫ ∞
x̄t

(1− F (x))(1− π(x, θt))dx− cB = µBt ≥ 0,

which means that there is a non-negative surplus represented by the expression on the left-hand
side to share. Then the value of the buyer then follows V B

t = βV B
t+1 − w + µBt . Plugging the

expression from the previous equation gives

V B
t = βV B

t+1 − w +
β

1− β

∫ ∞
x̄t

(1− F (x))(1− π(x, θt))dx− cB.
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Now consider sellers. The derivative of the right-hand size of (24) with respect to St is

β

1− β
(x̄t − (1− β)(V B

t+1 + V S
t+1))π(x̄t, θt) +

β

1− β

∫ ∞
x̄t

π(x, θt)dx (27)

− θt
β

1− β

∫ ∞
x̄t

(1− F (x))(1− π(x, θt))dx−
β

1− β
(x̄t − (1− β)(V B

t+1 + V S
t+1))θt(1− F (x̄t))(1− π(x̄t, θt)))

− cS − µSt + γSt .

To compare with the equilibrium allocation of the auction model with directed search the first
three terms can be rearranged using x̄tπt/θt +

∫∞
x̄t
π(x, θt)dx/θt =

∫∞
x̄t
x(1− π(x, θt))f(x)dx and

(V B
t+1 + V S

t+1)πt/θt =
∫∞
x̄t

(V S
t+1 + V B

t+1)e−θt(1−F (x))f(x)dx so that

β

1− β
θt

∫ ∞
x̄t

(x− (1− F (x))

f(x)
− (1− β)(V S

t+1 + V B
t+1))e−θt(1−F (x))f(x)dx− (28)

− β

1− β
(x̄t − (1− β)(V B

t+1 + V S
t+1))θt(1− F (x̄t))(1− π(x̄t, θt)))− cS − µSt + γSt ,

The second term in equation (28) is zero from the optimality of the threshold value x̄t = (1 −
β)(V S

t+1 + V B
t+1) for Bt > 0. The Lagrange multiplier γSt = 0, because St > 0, hence

β

1− β
θt

∫ ∞
x̄t

(x− (1− F (x)

f(x)
− (1− β)(V S

t+1 + V B
t+1))e−θt(1−F (x))f(x)dx− cS − µSt = 0. (29)

If µSt = 0, then the surplus from transfer is zero and V S
t = βV S

t+1. If µSt > 0, then the surplus
from transfer is zero and

V S
t = βV S

t+1 +
β

1− β
θt

∫ ∞
x̄t

(x− (1− F (x)

f(x)
− (1− β)(V S

t+1 + V B
t+1))e−θt(1−F (x))f(x)dx− cS.

Case 2. Either all buyers or all sellers are not active, i.e. Bt = 0 or St = 0.
The first term in (22), representing the surplus from the transfer of the house from seller to

buyer, is zero, and, using the envelope condition, the dynamics of the value of adding a seller
V S
t ≡ ∂Ωt

∂S̄t
and the value of adding a buyer V B

t ≡ ∂Ωt
∂B̄t

is

V B
t = βV B

t+1 − w,
V S
t = βV S

t+1.

The tightness θt and the threshold value of housing services x̄t are not defined.

Summarizing both cases, the conditions for the social optimum are

V B
t = βV B

t+1 − w + max{ β

1− β

∫ ∞
x̄t

(1− F (x))(1− π(x, θt))dx− cB, 0},

V S
t = βV S

t+1 + max{ β

1− β
θt

∫ ∞
x̄t

(x− (1− F (x))

f(x)
− (1− β)(V S

t+1 + V B
t+1))e−θt(1−F (x))f(x)dx− cS, 0},

x̄t = max{(1− β)(V B
t+1 + V S

t+1), 0} when Bt, St > 0,

MC(ht) = βV S
t+1,

in addition to the equations for the dynamics of the state, and resource constraints.
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Lemma 2. ϕ(− log(1− π)) is an increasing convex function of π

Proof.

∂ϕ(− log(1− π))

∂π
= ϕ′ × ∂ − log(1− π)

∂π
= −ϕ′ 1

1− π
(−1) = ϕ′/(1− π)

where

ϕ′ =
1− e−(− log(1−π))

− log(1− π)
=

1− exp(log(1− π))

− log(1− π)
= − π

log(1− π)
> 0

∂ϕ(− log(1− π))

∂π
= ϕ′/(1− π) = − π

(log(1− π))(1− π)

so that

(
∂ϕ(− log(1− π))

∂π
)′π = −[

[ π
1−π ]′ log(1− π)− π

1−π
−1

1−π

(log(1− π))2
]

where the numerator is

(1− π)− (−1)π

(1− π)2
log(1− π) +

π

(1− π)2
=
π + log(1− π)

(1− π)2

where log(1− π) < −π so that the

∂ϕ(− log(1− π))

∂π
= ϕ′/(1− π) = − π

(log(1− π))(1− π)
= − log(1− π) + π

(1− π)2(log(1− π))2
> 0

and the curve is convex in π.

Lemma 3. ϕ(− log(1− π))/π is an increasing convex function of π.

Proof.

∂ϕ(− log(1− π))/π

∂π
=

∂ϕ
∂π
π − ϕ
π2

Since ϕ(− log(1−π)) ≡ ϕ(π) is convex function in π, it is true that ϕ(0) ≥ ϕ(π)+ϕ′(π)(0−π).
Hence, ϕ(π) ≤ ϕ′(π)π, so

∂ϕ(− log(1− π))/π

∂π
=

∂ϕ
∂π
π − ϕ
π2

≥ 0,

which means that the function ϕ(π)/π is increasing.
The function is also convex in π, because

∂2ϕ(− log(1− π))/π

∂π2
=

∂
∂π

(∂ϕ
∂π
π − ϕ)− 2π(∂ϕ

∂π
π − ϕ)

π4
.
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The numerator can be further simplified as

∂2ϕ

∂π2
π +

∂ϕ

∂π
− ∂ϕ

∂π
− 2π2∂ϕ

∂π
+ 2πϕ = π(

∂2ϕ

∂π2
− 2π(

∂ϕ

∂π
π − ϕ))

Since ϕ is convex, ∂2ϕ
∂π2 ≤ 0 and ∂ϕ

∂π
π − ϕ ≥ 0. Thus, ∂2ϕ(− log(1−π))/π

∂π2 < 0 and ϕ/π is convex in
π.

B Figures

Figure 9: The functions ϕ(z) and ϕ(z)
π(z)

as functions of adjusted tightness z = θ(1− F (x̄))
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(b) ϕ(z)
π(z)
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The parameters for the distribution function F (.) are taken from the calibration of Section 4.2.
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