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Abstract

There are many settings where researchers are interested in estimating average treatment effects
and are willing to rely on the unconfoundedness assumption, which requires that the treatment
assignment be as good as random conditional on pre-treatment variables. The unconfoundedness
assumption is often more plausible if a large number of pre-treatment variables are included in the
analysis, but this can worsen the performance of standard approaches to treatment effect estimation.
In this paper, we develop a method for de-biasing penalized regression adjustments to allow sparse
regression methods like the lasso to be used for

√
n-consistent inference of average treatment effects.

Our method works under substantially weaker assumptions than other methods considered in the
literature: Unlike high-dimensional doubly robust methods recently developed in econometrics, we
do not need to assume that the treatment propensities are estimable, and unlike existing de-biasing
techniques from the statistics literature, our method is not limited to considering sparse contrasts of
the parameter vector. Instead, in addition standard assumptions used to make lasso regression on the
outcome model consistent under 1-norm error, we only require overlap, i.e., that the propensity score
be uniformly bounded away from 0 and 1. Procedurally, our method combines balancing weights
with a regularized regression adjustment.

Keywords: Causal Inference, Potential Outcomes, Propensity Score, Sparse Estimation

1 Introduction

In many observational studies, researchers are interested in estimating average causal effects. A common
approach is to assume that, conditional on observed features of the units, assignment to the treatment is as
good as random, or unconfounded; see, e.g., Rosenbaum and Rubin (1983) and Imbens and Rubin (2015)
for general discussions. There is a large literature on adjusting for differences in observed features between
the treatment and control groups under unconfoundedness; some popular methods include regression,
matching, propensity score weighting and subclassification, as well as doubly-robust combinations thereof
(e.g., Abadie and Imbens, 2006; Heckman et al., 1998; Hirano et al., 2003; Robins and Rotnitzky, 1995;
Rosenbaum, 2002).

In practice, in order to make the assumption of unconfoundedness more plausible, researchers may
need to account for a substantial number of features or observed confounders. For example, in an obser-
vational study of the effect of flu vaccines on hospitalization, we may be concerned that only controlling
for differences in the age and sex distribution between controls and treated may not be sufficient to
eliminate biases. In contrast, controlling for detailed medical histories and personal characteristics may
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make unconfoundedness more plausible. But the formal asymptotic theory in the earlier literature only
considers the case where the sample size increases while the number of features remains fixed, and so
approximations based on those results may not yield valid inferences in settings where the number of
features is large, possibly even larger than the sample size.

There has been considerable recent interest in adapting methods from the earlier literature to high-
dimensional settings. Belloni et al. (2014, 2016) show that attempting to control for high-dimensional
confounders using a regularized regression adjustment obtained via, e.g., the lasso, can result in substan-
tial biases. The reason for this bias is that the lasso focuses solely on accurate prediction of outcomes,
at the expense of adjusting for covariates that affect treatment assignment, that is, covariates that enter
in the propensity score. Belloni et al. (2014) propose an augmented variable selection scheme to avoid
this effect, while Farrell (2015) and Chernozhukov et al. (2016) discuss how a doubly robust approach to
average treatment effect estimation in high dimensions can also be used to compensate for the bias of the
lasso. Despite the breadth of research on the topic, a common requirement of these methods is that they
all rely on consistent estimability of the propensity score, i.e., the conditional probability of receiving
treatment given the features. For example, several of the above methods assume that the propensity
scores can be consistently estimated using a sparse logistic model.

In this paper, we show that efficient inference of average treatment effects in high dimensions is
possible under substantially weaker assumptions. Rather than trying to estimate treatment propensities,
our approach seeks to directly de-bias penalized regression adjustments by optimizing bias bounds from
linear theory. Given this approach, we show that

√
n-consistent inference of average treatment effects is

possible even when the propensity score is not estimable. Instead, we only require overlap, i.e., that the
propensity score be uniformly bounded away from 0 and 1 for all values in the support of the pretreatment
variables. In particular, our results do not rely on a sparse propensity model—or even a well-specified
logistic propensity model.

Our approach builds on the classical literature on weighted estimation of treatment effects, going
back to the work of Rosenbaum and Rubin (1983) who showed that controlling for the propensity score is
sufficient to remove all biases associated with observed covariates. Recent studies have sought to extend
the applicability of this result by using machine learning techniques to estimate the propensity score,
in combination with conventional methods for estimating average treatment effects given the estimated
propensity score: McCaffrey et al. (2004) recommend estimating the propensity score using boosting and
then use inverse propensity weighting, while Westreich et al. (2010) consider support vector machines,
neural networks, and classification trees. In related approaches, Chan et al. (2015), Graham et al. (2012,
2016), Hainmueller (2012), Imai and Ratkovic (2014) and Zubizarreta (2015) propose weighting methods
where the weights are not equal to the inverse of the propensity score but are chosen explicitly to optimize
balance between the covariate distributions in the treatment and control groups. None of these methods,
however, achieve systematically good performance in high dimensions. The reason plain propensity-based
methods fall short in high dimensions is closely related to the reason why pure lasso regression adjustments
are not efficient: In high dimensions, it is not in general possible to exactly balance all the features, and
small imbalances can result in substantial biases in the presence of strong effects. Our proposal starts
from an attempt to remove these biases by first fitting a standalone pilot model to capture any strong
effects, and then applying weighting to the residuals.

Our goal is to tighten the connection between the estimation strategy and the objective of estimating
the average treatment effect. To do so, we study the following two-stage approximate residual balancing
algorithm. First, we fit a regularized linear model for the outcome given the features separately in the
two treatment groups. In the current paper we focus on the elastic net (Zou and Hastie, 2005) and the
lasso (Chen et al., 1998; Tibshirani, 1996) for this component, and present formal results for the latter.
In a second stage, we re-weight the first stage residuals using weights that approximately balance all the
features. Here we follow Zubizarreta (2015) in focusing on the implied balance and variance provided
by the weights, rather than the fit of the propensity score. Approximate balancing on all pretreatment
variables (rather than exact balance on a subset of features, as in a regularized regression, or weighting
using a regularized propensity model that may not be able to capture all relevant dimensions) allows us to
guarantee that the bias arising from a potential failure to adjust for a large number of weak confounders
can be bounded.
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In our simulations, we find that three features of the algorithm are important: (i) the direct covariance
adjustment based on the outcome data with regularization to deal with the large number of features,
(ii) the weighting using the relation between the treatment and the features, and (iii) the fact that the
weights are based on direct measures of imbalance rather than on estimates of the propensity score, again
with regularization to take account of the many features.

The finding that both weighting and regression adjustment are important is similar to conclusions
drawn from the earlier literature on doubly robust estimation in low dimensions (Robins and Rotnitzky,
1995; Robins et al., 1995), where combining both techniques was shown to weaken the assumptions
required to achieve consistent estimation of average treatment effects. In our setting, this pairing is not
just helpful in terms of robustness; it is in fact required for efficiency. Neither regression adjustments nor
approximately balanced weighting of the outcomes alone can achieve the optimal rate of convergence.
Meanwhile, the finding that weights designed to achieve balance perform better than weights based on the
propensity score is consistent with findings in Chan et al. (2015); Graham et al. (2012, 2016); Hainmueller
(2012), and Zubizarreta (2015). The current paper is the first to combine direct covariance adjustment
with such balancing weights in a high-dimensional setting where regularization is required.

Our paper is structured as follows. First, in Section 2, we motivate our two-stage procedure using a
simple bound for its estimation error. Then, in Section 3, we provide a formal analysis of our procedure
under high-dimensional asymptotics, and we identify conditions under which approximate residual bal-
ancing is asymptotically Gaussian and allows for practical inference about the average treatment effect
with dimension-free rates of convergence. Finally, in Section 5, we conduct a simulation experiment, and
find our method to perform well in a wide variety of settings relative to other proposals in the literature.

2 Estimating Average Treatment Effects in High Dimensions

2.1 Setting and Notation

Our goal is to estimate average treatment effects in the potential outcome framework, or Rubin Causal
Model (Rubin, 1974; Imbens and Rubin, 2015). For each unit in a large population there is pair of
(scalar) potential outcomes, (Yi(0), Yi(1)). Each unit is assigned to the treatment or not, with the
treatment indicator denoted by Wi ∈ {0, 1}. Each unit is also characterized by a vector of covariates or
features Xi ∈ Rp, with p potentially large, possibly larger than the sample size. For a random sample of
size n from this population, we observe the triple (Xi, Wi, Y

obs
i ) for i = 1, . . . , n, where

Y obs
i = Yi(Wi) =

{
Yi(1) if Wi = 0,

Yi(0) if Wi = 1,
(1)

is the realized outcome, equal to the potential outcome corresponding to the actual treatment received.
The total number of treated units is equal to nt and the number of control units equals nc. We frequently
use the short-hand Xc and Xt for the feature matrices corresponding only to control or treated units
respectively. We write the propensity score, i.e., the conditional probability of receiving the treatment
given features, as e(x) = P[Wi = 1|Xi = x] (Rosenbaum and Rubin, 1983).

We focus primarily on the conditional average treatment effect for the treated sample,

τ =
1

nt

∑
{i:Wi=1}

E
[
Yi(0)− Yi(1)

∣∣Xi

]
. (2)

We note that the average treatment effect for the controls can be handled similarly, and the overall
average effect is a weighted average of the two. Throughout the paper we assume unconfoundedness, i.e.,
that conditional on the pretreatment variables, treatment assignment is as good as random (Rosenbaum
and Rubin, 1983); we also assume a linear model for the potential outcomes in both groups.

Assumption 1 (Unconfoundedness).

Wi ⊥⊥ (Yi(0), Yi(1))
∣∣ Xi. (3)
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Assumption 2 (Linearity).

µc(x) = E
[
Yi(0)

∣∣X = x
]

= x · βc, µt(x) = E
[
Yi(1)

∣∣X = x
]

= x · βt, (4)

for w ∈ {0, 1} and x ∈ Rp.

In fact, we will only use the linear model for the control outcome because we focus on the average effect
for the treated units, but if we were interested in the overall average effect we would need linearity in both
groups. The linearity assumption is strong, but it may be plausible, especially if the researcher includes
transformations of the basic features in the design. Given this linearity, we can write the estimand as

τ = µt − µc, where µt = Xt · βt, µc = Xt · βc, and Xt =
1

nt

∑
{i:Wi=1}

Xi. (5)

Here, estimating the first term is easy: µ̂t = Y t =
∑
{i:Wi=1} Y

obs
i /nt is unbiased for µt, and in fact we

do not use linearity for the treated outcomes. In contrast, estimating µc is a major challenge, especially
in settings where p is large, and it is the main focus of the paper.

2.2 Baselines and Background

We begin by reviewing two classical approaches to estimating µc, and thus also τ , in the above linear
model. The first is a weighting-based approach, which seeks to re-weight the control sample to make it
look more like the treatment sample; the second is a regression-based approach, which seeks to adjust for
differences in features between treated and control units by fitting an accurate model to the outcomes.
Neither approach alone performs well in a high-dimensional setting with a generic propensity score.
However, in Section 2.3, we show that these two approaches can be fruitfully combined to obtain better
estimators for τ .

2.2.1 Weighted Estimation

A first approach is to re-weight the control dataset using weights γi to make the weighted covariate
distribution mimic the covariate distribution in the treatment population. Given the weights we estimate
µ̂c as

µ̂c =
∑

{i:Wi=0}

γi Y
obs
i . (6)

The standard way of selecting weights γi uses the propensity score:

γi =
e(Xi)

1− e(Xi)

/ ∑
{i:Wj=0}

e(Xj)

1− e(Xj)
. (7)

To implement these methods researchers typically substitute an estimate of the propensity score into the
expression for the weights (7). Such inverse-propensity weights with a flexibly estimated propensity score
have desirable asymptotic properties (Hirano et al., 2003) in settings where the asymptotics is based on
a fixed number of covariates.

The finite-sample performance of methods based on (7) can be poor, however, both in settings with
limited overlap in covariate distributions and in settings with many covariates. In the latter case recently
proposed methods include (regularized) logistic regression, boosting, support vector machines, neural
networks, and classification trees (McCaffrey et al., 2004; Westreich et al., 2010). But because estimating
the treatment effect then involves dividing by 1 − ê(Xi), small inaccuracies in ê(Xi) can have large
effects, especially when e(x) can be close to one; this problem is often quite severe in high dimensions. To
our knowledge, methods based on inverse propensity weighting are not known to have good asymptotic
properties in high-dimensional settings.

Recently, there have been proposals to select weights γi by focusing on balance directly, rather than
on fit of the propensity score (Deville and Särndal, 1992; Chan et al., 2015; Graham et al., 2012, 2016;
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Hainmueller, 2012; Hellerstein and Imbens, 1999; Imai and Ratkovic, 2014; Zhao, 2016; Zubizarreta,
2015). This is a subtle but important improvement. The motivation behind this approach is that, in
a linear model, the bias for estimators based on (6) depends solely on Xt −

∑
{i:Wi=0} γiXi. Therefore

getting the propensity model exactly right is less important than accurately matching the moments of
Xt.

In high dimensions, however, exact balancing weights do not in general exist. When p � nc, there
will in general be no weights γi for which Xt −

∑
{i:Wi=0} γiXi = 0, and even in settings where p < nc

but p is large such estimators would not have good properties. Zubizarreta (2015) extends the balancing
weights approach to allow for weights that achieve approximate balance instead of exact balance, and
considers the tradeoff between precision of the resulting estimators and the bias from lack of balance.
We find, however, that only achieving approximate balancing leads to estimators for τ that still have
substantial bias in many settings.

2.2.2 Regression Adjustments

A second approach is to compute an estimator β̂c for βc using the nc control observations, and then
estimate µc as µ̂c = Xt ·β̂c. In a low-dimensional regime with p� nc, the ordinary least squares estimator
for βc is a natural choice, and yields an accurate and unbiased estimate of µc. In high dimensions,
however, the problem is more delicate: accurate unbiased estimation of the regression adjustment is in
general impossible, and methods such as the lasso, ridge regression, or the elastic net may perform poorly
when plugged in for βc; in particular when Xt is far away from Xc, the average covariate values for the
controls.

As stressed by Belloni et al. (2014, 2016), the problem with plain lasso regression adjustments is that
features with a substantial difference in average values between the two treatment arms can generate large
biases even if the coefficients on these features in the outcome regression are small. Thus, a regularized
regression that has been tuned to optimize goodness of fit on the outcome model is not appropriate
whenever bias in the treatment effect estimate due to failing to control for potential confounders is of
concern. To address this problem, Belloni et al. (2014) propose running least squares regression on the
union of two sets of selected variables, one selected by a lasso regressing the outcome on the covariates,
and the other selected by a lasso logistic regression for the treatment assignment. We note that estimating
µc by a regression adjustment µ̂c = Xt · β̂c, with β̂c estimated by ordinary least squares on a selected
variables, is implicitly equivalent to running (6) with weights γ chosen to balance the selected features.
The Belloni et al. (2014) approach works well in settings where both the outcome regression and the
treatment regression are at least approximately sparse. However, when the propensity is not sparse, we
find that the performance of such double-selection methods is often poor.

2.3 Approximate Residual Balancing

Here we propose a new method combining weighting and regression adjustments to overcome the lim-
itations of each method. In the first step of our method, we use a regularized linear model, e.g., the
lasso or the elastic net, to obtain a first pilot estimate of the treatment effect. In the second step, we do
“approximate balancing” of the regression residuals to estimate treatment effects: that is, we weight the
residuals using weights that achieve approximate balance of the covariate distribution between treatment
and control groups. This step compensates for the potential bias of the pilot estimator that arises due to
confounders that may be weakly correlated with the outcome but are important due to their correlation
with the treatment assignment. We find that the regression adjustment is effective at capturing strong
effects; the weighting on the other hand is effective at capturing small effects. The combination leads to
an effective and simple-to-implement estimator for average treatment effects in a wide variety of settings
with many features.

We focus on a meta-algorithm that first computes an estimate β̂c of βc, using the full sample of control
units. This estimator may take a variety of forms, but typically it will involve some form of regularization
to deal with the number of features. Second we compute weights γi that balance the covariatees at least
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approximately, and apply these weights to the residuals (Cassel et al., 1976; Robins et al., 1994):

µ̂c = Xt · β̂c +
∑

{i:Wi=0}

γi

(
Y obs
i −Xi · β̂c

)
. (8)

In other words, we fit a model parametrized by βc to capture some of the strong signals, and then use
a non-parametric re-balancing of the control data on the features to extract left-over signal from the
residuals Y obs

i −Xi · β̂c. Ideally, we would hope for the first term to take care of any strong effects, while
the re-balancing of the residuals can efficiently take care of the small spread-out effects. Our theory and
experiments will verify that this is in fact the case.

A major advantage of the functional form in (8) is that it yields a simple and powerful theoretical
guarantee, as stated below. Recall that Xc is the feature matrix for the control units. Consider the
difference between µ̂c and µc for our proposed approach: µ̂c − µc = (Xt −X>c γ) · (β̂c − βc) + γ · ε, where
ε is the intrinsic noise εi = Yi(0) −Xi · βc. With only the regression adjustment and no weighting, the

difference would be µ̂c,reg−µc = (Xt−Xc) ·(β̂c−βc)+1 ·ε/nc, and with only the weighting the difference
would be µ̂c,weight−µc = (Xt−X>c γ) ·βc +γ ·ε. Without any adjustment, just using the average outcome
for the controls as an estimator for µc, the difference between the estimator for µc and its actual value
would be µ̂c,no−adj − µc = (Xt −Xc) · βc + 1 · ε/nc. The regression reduces the bias from (Xt −Xc) · βc
to (Xt − Xc) · (β̂c − βc), which will be substantial reduction if the estimation error (β̂c − βc) is small

relative to βc. The weighting further reduces this to (Xt−X>c γ) · (β̂c−βc), which may be helpful if there
is a substantial difference between Xt and Xc. This argument shows the complimentary nature of the
regression adjustment and the weighting.

The following result formalizes the notion that the combination of regression and weighting can
improve the properties of the estimators substantially. All proofs are given in the appendix.

Proposition 1. The estimator (8) satisfies |µ̂c − µc| ≤
∥∥Xt −X>c γ

∥∥
∞

∥∥∥β̂c − βc∥∥∥
1

+
∣∣∣∑{i:Wi=0} γi εi

∣∣∣.
This result decomposes the error of µ̂c into two parts. The first is the main term, depending on the

design Xc, and affected by the dimension of the covariates; the second term is a variance term that does
not depend on the dimension of the covariates. The upshot is that the main term, which encodes the
high-dimensional nature of the problem, involves a product of two factors that can both other be made
reasonably small; more specifically, we will focus on regimes where the first term scales as O(

√
log(p)/n),

while the second term scales as O(k
√

log(p)/n) where k is the sparsity of the outcome model. Thus, this
bound will often enable us us to control high-dimensional bias effects better than only weighting or only
estimation of βc.

In order to exploit Proposition 1, we need to make concrete choices for the weights γ and the parameter
estimates β̂c. We define approximately balancing weights as

γ = argminγ̃

{
(1− ζ) ‖γ̃‖22 + ζ

∥∥Xt −X>c γ̃
∥∥2
∞ subject to

∑
γ̃i = 1, γ̃i ≥ 0

}
, (9)

for some ζ ∈ (0, 1). These weights, which are closely related to a recent proposal by Zubizarreta (2015),
are designed to make both terms in the bound from Proposition 1 small. In contrast, the inverse propensity
score weights do not take the variance component into account at all. We refer to these weights as
approximately balancing since they seek to make the mean of the re-weighted control sample, namely
X>c γ, match the treated sample mean Xt as closely as possible. Below, we show that we can find a ζ that
achieves our objective of bounding both terms of the bound; in our simulations we use ζ = 1/2, which
balances the square of the bias term and the variance.

Meanwhile, for estimating β̂c there are a number of possibilities. One is to use the lasso (Chen et al.,
1998; Tibshirani, 1996) as there are several well-known results that let us control its 1-norm error (Hastie
et al., 2015). In our simulations we use the elastic net (Zou and Hastie, 2005) to estimate βc. Note that
we do not need to select a sparse model, we just need to regularize the estimator. Using a combination
of L1 and L2 regularization may therefore work well in practice. So, specifically, we calculate β̂c as

β̂c = arg min
βc

 ∑
{i:Wi=0}

(Y obs
i −X>i βc)2 + λ

(
(1− α) ‖βc‖22 + α ‖βc‖1

)
.

 . (10)
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Procedure 1. Approximately Residual Balancing with Elastic Net

The following algorithm estimates the average treatment effect on the treated by approximately
balanced residual weighting. Here, ζ ∈ (0, 1), α ∈ (0, 1) and λ > 0 are tuning parameters. This
procedure is implemented in our R package balanceHD; we default to ζ = 0.5 and α = 0.9, and select
λ by cross-validation using the lambda.1se rule from the glmnet package (Friedman et al., 2010).

1. Compute positive approximately balancing weights γ as

γ = argminγ̃

(1− ζ) ‖γ̃‖22 + ζ
∥∥Xt −X>c γ̃

∥∥2
∞ s.t.

∑
{i:Wi=0}

γ̃i = 1 and γ̃i ≥ 0

 . (11)

2. Fit βc in the linear model using an elastic net,

β̂c = argminβ

 ∑
{i:Wi=0}

(
Y obs
i −Xi · β

)2
+ λ

(
(1− α) ‖β‖22 + α ‖β‖1

) . (12)

3. Estimate the average treatment effect τ as

τ̂ = Y t −

Xt · β̂c +
∑

{i:Wi=0}

γi

(
Y obs
i −Xi · β̂c

) . (13)

For some of the theoretical analysis we focus on the lasso case with α = 1. Our complete algorithm is
described in Procedure 1.

One question is why the balancing weights perform better than the propensity score weights, a
finding that is also reported in Chan et al. (2015); Hainmueller (2012), and Zubizarreta (2015). To
gain intuition for this issue in a simple parametric context, suppose the propensity score has the fol-
lowing logistic form, e(x) = exp(x · θ)/(1 + exp(x · θ)). In that case the inverse propensity score
weights would be proportional to γi ∝ exp(x · θ). The efficient estimator for θ is the maximum like-

lihood estimator, θ̂ml = arg maxθ
∑n
i=1{WiXi · θ − ln(1 + exp(Xi · θ))}. An alternative, less effi-

cient, estimator for θ is the method of moments estimator θ̂mm that balances the covariates exactly:
Xt =

∑
{i:Wi=0}Xiexp(Xi · θ) /

∑
{j:Wj=0} exp(Xj · θ), with implied weights γi ∝ exp(Xi · θ̂mm). The

weights are very similar to those based on the estimated propensity score, with the only difference that
the parameter estimates θ̂ differ. The estimator θ̂mm leads to weights that achieve exact balance on the
covariates, in contrast to either the true value θ, or the maximum likelihood estimator θ̂ml. The point of
this discussion is that the goal of balancing (leading to θ̂mm) is different from the goal of estimating the

propensity score (for which θ̂ml is optimal) in the context of a linear outcome model.

2.4 Related Work

The idea of combining weighted and regression-based approaches to treatment effect estimation has a
long history in the causal inference literature. In a low-dimensional setting where both methods are
already consistent on their own, they can be combined to get “doubly robust” estimates of τ (Robins
and Rotnitzky, 1995; Robins et al., 1995). These methods, which first calculate the weights based on
propensity score estimates and then estimate βc by weighted least squares, are guaranteed to be consistent
if either the outcome model or the propensity model is well specified, although they do not always have
good properties when the estimated propensity score is close to zero or one (Hirano et al., 2003; Kang and
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Schafer, 2007). Belloni et al. (2016), Chernozhukov et al. (2016) and Farrell (2015) study the behavior
of doubly robust estimators in high dimensions, and establishes conditions under which they can reach
efficiency when both the propensity function and the outcome model are consistently estimable.

Intriguingly, in low dimensions, doubly robust methods are not necessary for achieving semipara-
metric efficiency; this rate can be achieved by either non-parametric inverse-propensity weighting or
non-parametric regression adjustments on their own (Chen et al., 2008; Hirano et al., 2003). At best,
the use of non-parametric doubly robust methods can only improve on the second-order properties of
the the average treatment effect estimate (Rothe and Firpo, 2013). Conversely, in high-dimensions, we
have found that both weighting and regression adjustments are required for

√
n-consistency; this finding

mirrors the results of Belloni et al. (2016), Farrell (2015), and Van der Laan and Rose (2011).
Our work differs from the “double machine learning” approach to treatment effect estimation studied

by Belloni et al. (2016), Chernozhukov et al. (2016) and Farrell (2015) in that these methods all require
the treatment propensities e(x) estimable at an n−1/4 rate; and then consider various methods that can
be used for estimation e(x), ranging from penalized regression (Farrell, 2015) to boosting (Chernozhukov
et al., 2016). Here, by specifying our weights γi directly using moment constraints, we are able to side-
step any estimability requirements on the propensities; and simply assuming overlap is sufficient. From a
mathematical perspective, our work is more closely related to recent advances in de-biased linear inference
(Cai and Guo, 2015; Javanmard and Montanari, 2014, 2015; Ning and Liu, 2014; Van de Geer et al., 2014;
Zhang and Zhang, 2014), as discussed further in Section 3.

Our approximately balancing weights (9) are inspired by the work of Chan et al. (2015); Graham
et al. (2012, 2016); Hainmueller (2012); Hirano et al. (2001); Imai and Ratkovic (2014), and Zubizarreta
(2015). Most closely related, Zubizarreta (2015) proposes estimating τ using the re-weighting formula
(6) with weights

γ = argminγ̃

{
‖γ̃‖22 subject to

∑
γ̃i = 1, γ̃i ≥ 0,

∥∥Xt −X>c γ̃
∥∥
∞ ≤ t

}
, (14)

where the tuning parameter is t; he calls these weights stable balancing weights. The main conceptual
difference between our setting and that of Zubizarreta (2015) is that he considers problem settings where
p < nc, and then considers t to be a practically small tuning parameter, e.g., t = 0.1σ or t = 0.001σ.
However, in high dimensions, the optimization problem (14) will not in general be feasible for small values
of t; and in fact the bias term

∥∥Xt −X>c γ
∥∥
∞ becomes the dominant source of error in estimating τ . We

call our our weights γ “approximately” balancing in order to remind the reader of this fact.
Similar estimators have been considered by Graham et al. (2012, 2016) and Hainmueller (2012) in

a setting where exact balancing is possible, with slightly different objection functions. For example,
Hainmueller (2012) uses −

∑
i ln(γi) instead of

∑
i γ

2
i , leading to

γ = argminγ̃

− ∑
{i:Wi=0}

log (γ̃i) subject to
∑

γ̃i = 1, γ̃i ≥ 0,
∥∥Xt −X>c γ̃

∥∥
∞ = 0

 . (15)

This estimator has attractive conceptual connections to logistic regression and maximum entropy estima-
tion. In particular, in a low dimensional setting where W |X admits a well-specified logistic model, the
results of Owen (2007) imply that the methods of Graham et al. (2012, 2016) and Hainmueller (2012) are
doubly robust; see also Newey and Smith (2004); Imbens et al. (1998), and Hirano et al. (2001). In terms
of our immediate concerns, however, the variance of τ̂ depends on γ through ‖γ‖22 and not −

∑
log (γi),

so our approximately balancing weights should be more efficient than those defined in (15).

3 Asymptotics of Approximate Residual Balancing

As we have already emphasized, approximate residual balancing is a method that enables us to do infer-
ence average treatment effects without needing to estimate treatment propensities as nuisance parameters.
The method compensates for the weaker available assumptions on the treatment propensity function by
relying more explicitly on linearity of the outcome function, as in Proposition 1.
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This trade-off is also mirrored in our theoretical development. Unlike Belloni et al. (2016), Cher-
nozhukov et al. (2016) or Farrell (2015) whose analysis builds on the semiparametric efficiency literature
for treatment effect estimation (Bickel et al., 1998; Hahn, 1998; Hirano et al., 2003; Robins and Rotnitzky,
1995; Robins et al., 1995), our theory falls more naturally under the purview of the recent literature on
inference in high-dimensional linear models (Cai and Guo, 2015; Javanmard and Montanari, 2014, 2015;
Ning and Liu, 2014; Van de Geer et al., 2014; Zhang and Zhang, 2014).

3.1 Approximate Residual Balancing as Debiased Linear Estimation

Our goal is to understand the asymptotics our estimates for µc = Xt · βc. In the interest of generality,
however, we begin by considering a broader problem. Given an arbitrary linear contrast θ = ξ · βc,
we define an “approximate residual balancing” estimator θ̂ for θ, and study conditions under which√
n(θ̂−θ) has a Gaussian limit under p� n asymptotics. This detour via linear theory will help highlight

the statistical phenomena that make approximate residual balancing work, and explain why—unlike the
methods of Belloni et al. (2016), Chernozhukov et al. (2016) or Farrell (2015)—our method does not
require n−1/4-rate estimability of the treatment propensity function e(x).

The problem of estimating linear contrasts ξ ·βc in high-dimensional regression problems has received
considerable attention recently, including notable contributions by Javanmard and Montanari (2014,
2015), Van de Geer et al. (2014), and Zhang and Zhang (2014). This line of work, however, exclusively
considers the setting where ξ is a sparse vector; in particular, these papers focus on the case where ξ is
the j-th basis vector ej , i.e., the target estimand is the j-th coordinate of βc. Furthermore, Cai and Guo
(2015) showed that

√
n-consistent inference about generic dense contrasts of βc is in general impossible.

In our setting, however, the contrast-defining vector Xt is random and thus generically dense; moreover,
we are interested in applications where mt = E[Xt] itself may also be dense. Thus, an alternative analysis
will be required.

Given these preliminaries, we study estimators for θ = ξ · βc obtained by simply replacing Xt with ξ
in our approximate residual balancing algorithm, or, in other words, by pretending that the treated class
is centered at ξ rather than Xt:

1

γ = argminγ̃

‖γ̃‖22 subject to
∥∥ξ −X>c γ̃

∥∥
∞ ≤ K

√
log(p)

nc
, max

i
|γ̃i| ≤ n−2/3c

 , (16)

θ̂ = ξ · β̂c +
∑

{i:Wi=0}

γi

(
Y obs
i −Xi · β̂c

)
, (17)

where β̂c is a properly tuned sparse linear estimator and K is a tuning parameter discussed below. In the
classical parameter estimation setting, i.e., with ξ = ej , the above procedure is algorithmically equivalent
to the one proposed by Javanmard and Montanari (2014, 2015); however, as discussed above, the focus
of our analysis is different from theirs. Javanmard and Montanari (2014, 2015) study the consistency of

the parameter estimator β̂c under more general conditions than us and, in particular, consider the use of
fixed designs; meanwhile, our main interest is with dense rather than sparse contrast vectors ξ.

We start our analysis in Section 3.2 by considering the estimation of θ = ξ · βc for potentially dense
contrast ξ, and find conditions under which

√
n-consistent inference is possible provided that ξ>Σ−1c ξ =

O(1), where Σc is the covariance of Xc. We note that, whenever Σc has latent correlation structure, it
is possible to have ξ>Σ−1c ξ = O(1) even when ξ is dense and ‖ξ‖2 � 1. To our knowledge, this is the
first sparsity-adaptive inference result about dense contrasts of βc. Interestingly, the original debiased

1The optimization program (16) differs slightly from Procedure 1. We have written the problem in constraint form
rather than in Lagrange form, and also added a requirement that |γi| ≤ n

−2/3
c . The motivation for the first change is

that, although there is a one-to-one mapping between γ-solutions obtained in Lagrange versus constraint forms, the former
problem is easier to tune in practice while the latter allows for a more transparent theoretical discussion. Meanwhile, the
new condition |γi| ≤ n

−2/3
c appears to hold in practice even if we do not explicitly enforce it; and a further analysis may

find that this condition is redundant. We will revisit the constraints that
∑
γi = 1 and γi ≥ 0 from Procedure 1 in the

following section.
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lasso estimates β̂
(debiased)
c cannot be used for efficient inference about θ, and θ̂ = ξ · β̂(debiased)

c would be
a potentially inconsistent point estimate for θ. Rather, as our analysis makes clear, we must specify the
contrast ξ we are interested when choosing how to debias the lasso.

Given this general result, we then move to our main goal, i.e., the estimation of µc = Xt ·βc. The key

difficulty is that, due to randomness in Xt, the quantity X
>
t Σ−1c Xt will in general be much larger than

1. We propose two possible analyses: First, in Section 3.3, we extend our linear theory analysis, while
Section 3.4 develops a simpler asymptotic theory that obtains slightly looser performance guarantees in
exchange for making substantially weaker assumptions on the data-generating mechanism. Finally, in
Section 3.5, we discuss practical, heteroskedasticity-robust inference. Through our analysis, we assume
that β̂c is obtained via the lasso; however, we could just as well consider, e.g., the square-root lasso
(Belloni et al., 2011) or sorted L1-penalized regression (Su and Candes, 2016).

3.2 Debiasing Dense Contrasts

As we begin our analysis of θ̂ defined in (17), it is first important to note that the optimization program
(16) is not always feasible. For example suppose that p = 2nc, that Xc = (Inc×nc Inc×nc), and that
ξ consists of n times “1” followed by n times “−1”; then

∥∥ξ −X>c γ
∥∥
∞ ≥ 1 for any γ ∈ Rnc , and the

approximation error does not improve as nc and p both get large. Thus, our first task is to identify a
class of problems for which the problem (16) has a solution with high probability. The following lemma
establishes such a result for random designs, in the case of vectors ξ for which ξ>Σ−1c ξ is bounded; here
Σc = Var

[
Xi

∣∣Wi = 0
]

denotes the population variance of control features. We also rely on the following
regularity condition, which will be needed for an application of the Hanson-Wright concentration bound
for quadratic forms following Rudelson and Vershynin (2013).

Assumption 3 (Transformed Independence Design). Suppose that we have a sequence of random design
problems with2 Xc = QΣ

1
2
c , where E [Qij ] = 0, Var [Qij ] = 1, for all indices i and j, and the individual

entries Qij are all independent. Moreover suppose that the Q-matrix is sub-Gaussian for some ς > 0,
E [exp [t (Qij − E [Qij ])]] ≤ exp

[
ς2t2/2

]
for any t > 0, and that (Σc)jj ≤ S for all j = 1, ..., p.

Lemma 2. Suppose that we have a sequence of problems for which Assumption 3 holds and, moreover,
ξ>Σ−1c ξ ≤ V for some constant V > 0. Then, there is a universal constant C > 0 such that, setting
K = Cς2

√
V S, the optimization problem (16) is feasible with probability tending to 1; and, in particular,

the constraints are satisfied by

γ∗i =
1

nc
ξ>Σ−1c Xi. (18)

The above lemma is the key to our analysis of approximate residual balancing. Because, with high
probability, the weights γ∗ from (18) provide one feasible solution to the constraint in (16); we conclude
that, again with high probability, the actual weights we use for approximate residual balancing must
satisfy ‖γ‖22 ≤ ‖γ∗‖

2
2 ≈ n−1c ξ>Σ−1c ξ. In order to turn this insight into a formal result, we need assumptions

on both the sparsity of the signal and the covariance matrix Σc.

Assumption 4 (Sparsity). We have a sequence of problems indexed by n, p, and k such that the
parameter vector βc is k-sparse, i.e., ‖βc‖0 ≤ k, and that k log(p)/

√
n→ 0.3

The above sparsity requirement is quite strong. However, many analyses that seek to establish asymp-
totic normality in high dimensions rely on such an assumption. For example, Javanmard and Montanari
(2014), Van de Geer et al. (2014), and Zhang and Zhang (2014) all make this assumption when seeking
to provide confidence intervals for individual components of βc; Belloni et al. (2014) use a similar as-
sumption where they allow for additional non-zero components, but they assume that beyond the largest

2In order to simplify our exposition, this assumption implicitly rules out the use of an intercept. Our analysis would go
through verbatim, however, if we added an intercept X1 = 1 to the design.

3In recent literature, there has been some interest in methods that require only require approximate, rather than exact,
k-sparsity. We emphasize that our results also hold with approximate rather than exact sparsity, as we only use our sparsity
assumption to get bounds on ‖β̂c − βc‖1 that can be used in conjunction with Proposition 1. For simplicity of exposition,
however, we restrict our present discussion to the case of exact sparsity.
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k components with k satisfying the same sparsity condition, the remaining non-zero elements of βc are
sufficiently small that they can be ignored, in what they refer to as approximate sparsity. Furthermore,
Cai and Guo (2015) show that efficient inference about the entries of βc is in general impossible unless
k �

√
n / log(p), or the sparsity level k is known a-priori.4

Next, our analysis builds on well-known bounds on the estimation error of the lasso (Bickel et al.,
2009; Candès and Tao, 2007; Meinshausen and Yu, 2009); and, following Bickel et al. (2009), these results
usually require that Xc satisfy a form of the restricted eigenvalue condition (e.g., Belloni et al., 2014;
Meinshausen and Yu, 2009; Negahban et al., 2012). Below, we make a restricted eigenvalue assumption on
Σ

1/2
c ; then, we will use results from Rudelson and Zhou (2013) to verify that this also implies a restricted

eigenvalue condition on Xc.

Assumption 5 (Well-Conditioned Covariance). Given the sparsity level k specified above, the covariance

matrix Σ
1/2
c of the control features satisfies the {k, 2ω, 10}-restricted eigenvalue defined as follows, for

some ω > 0. For 1 ≤ k ≤ p and L ≥ 1, define the set Ck(L) as

Ck(L) =

β ∈ Rp : ‖β‖1 ≤ L
k∑
j=1

∣∣βij ∣∣ for some 1 ≤ i1 < ... < ij ≤ p

 . (19)

Then, Σ
1/2
c satisfies the {k, ω, L}-restricted eigenvalue condition if β>Σcβ ≥ ω ‖β‖22 for all β ∈ Ck(L).

Theorem 3. Under the conditions of Lemma 2 hold, suppose that the control outcomes Yi(0) are drawn
from a sparse, linear model as in Assumptions 1, 2, 3 and 4, that Σ

1/2
c satisfies the restricted eigenvalue

property (Assumption 5), and that we have a minimum estimand size5 ‖ξ‖∞ ≥ κ > 0. Suppose, moreover,
that we have homoskedastic noise: Var[εi(0)

∣∣Xi] = σ2 for all i = 1, ..., n, and also that the response noise
εi(0) := Yi(0)− E[Yi(0)

∣∣Xi] is uniformly sub-Gaussian with parameter υ2S > 0. Finally, suppose that
we estimate θ̂ using (17), with the optimization parameter K selected as in Lemma 2 and the lasso penalty

parameter set to λn = 5ς2υ
√

log (p) /nc. Then, θ̂ is asymptotically Gaussian,(
θ̂ − θ

) /
‖γ‖2 ⇒ N

(
0, σ2

)
, nc ‖γ‖22

/
ξ>Σ−1c ξ ≤ 1 + op(1). (20)

The statement of Theorem 3 suggests an intriguing connection between our debiased estimator (17),
and the ordinary least-squares (OLS) estimator. Under classical large-sample asymptotics with n � p,

it is well known that the OLS estimator, θ̂(OLS) = ξ>(X>c Xc)
−1X>c Y , satisfies

√
nc

(
θ̂(OLS) − θ

) /√
ξ>Σ−1c ξ ⇒ N

(
0, σ2

)
, and

√
nc

θ̂(OLS) − θ − ∑
{i:Wi=0}

γ∗i εi(0)

→p 0, (21)

where γ∗i is as defined in (18). By comparing this characterization to our result in Theorem 3, it becomes

apparent that our debiased estimator θ̂ has been able to recover the large-sample qualitative behavior of
θ̂(OLS), despite being in a high-dimensional p� n regime.

The connection between debiasing and OLS ought not appear too surprising. After all, under classical
assumptions, θ̂(OLS) is known to be the minimum variance unbiased linear estimator for θ; while the
weights γ in (16) were explicitly chosen to minimize the variance of θ̂ subject to the estimator being
nearly unbiased. Developing a deeper understanding of the connection between debiased prediction and
OLS would be of considerable interest.

4We are only aware of two exceptions to this assumption. In recent work, Javanmard and Montanari (2015), show that
inference of βc is possible even when k � n / log(p) in a setting where X is a random Gaussian matrix with either a known
or extremely sparse population precision matrix; meanwhile, Wager et al. (2016) show that lasso regression adjustments
allow for efficient average treatment effect estimation in randomized trials even when k � n / log(p). The point in common
between both results is that they let us weaken the sparsity requirements at the expense of considerably strengthening our
knowledge of the X-distribution.

5The minimum estimand size assumption is needed to rule out pathological superefficient behavior. As a concrete
example, suppose that Xi ∼ N (0, Ip×p), and that ξj = 1/

√
p for j = 1, ..., p with p � nc. Then, with high probability,

the optimization problem (16) will yield γ = 0. This leaves us with a simple lasso estimator θ̂ = ξ · β̂c whose risk scales
as E[(θ̂ − θ)2] = O(k2 log(p)/(pnc))� 1/nc. The problem with this superefficient estimator is that it is not necessarily
asymptotically Gaussian.
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3.3 Application to Treatment Effect Estimation

The previous section developed a fairly general theory of debiased estimation of contrasts of the form ξ ·βc
for sparse βc, under the assumption that ξ>Σ−1c ξ remains bounded. Unfortunately, however, this result
does not directly apply to our main problem of interest, namely estimating µc = Xt · βc; the problem is

that, in general, X
>
t Σ−1Xt is on the order of p/n due to the randomness in Xt, thus directly violating our

main assumption. In this section, we show how to get around this problem under the weaker assumption
that m>t Σ−1c mt is bounded, where ; i.e., we show that the stochasticity Xt does not invalidate our result.

The following result also immediately implies a central limit theorem for τ̂ = Y t− µ̂c where Y t is the
average of the treated outcomes, since Y t is uncorrelated with µ̂c conditionally on Xt.

Corollary 4. Under the conditions of Theorem 3, suppose that we want to estimate µc = Xt · βc
by replacing ξ with Xt in (17), and let mt = E

[
X
∣∣W = 1

]
. Suppose, moreover, that we replace all

the assumptions made about ξ in Theorem 3 with the following assumptions: throughout our sequence
of problems, the vector mt satisfies mtΣ

−1
c mt ≤ V and ‖mt‖∞ ≥ κ. Suppose, finally, that (Xi −

mt)j
∣∣Wi = 1 is sub-Gaussian with parameter ν2 > 0, and that the overall odds of receiving treatment

P [W = 1] /P [W = 0] tend to a limit ρ bounded away from 0 and infinity. Then, setting the tuning
parameter in (16) as K = Cς2

√
V S + ν

√
2.1 ρ, we get

(µ̂c − µc)
/
‖γ‖2 ⇒ N

(
0, σ2

)
, nc ‖γ‖22

/
m>t Σ−1c mt ≤ 1 + op(1). (22)

The asymptotic variance bound m>t Σ−1c mt is exactly the Mahalanobis distance between the mean
treated and control subjects with respect to the covariance of the control sample. Thus, our result shows
that we can achieve asymptotic inference about τ with a 1/

√
n rate of convergence, irrespective of the

dimension of the features, subject only to a requirement on the Mahalanobis distance between the treated
and control classes, and effectively the same sparsity assumptions on the Y -model as used by the rest
of the high-dimensional inference literature, including Belloni et al. (2014, 2016), Chernozhukov et al.
(2016) and Farrell (2015). However, unlike this literature, we make no assumptions on the propensity
model beyond overlap, and do not require it to be estimated consistently. In other words, by relying
more heavily on linearity of the outcome function, we can considerably relax the assumptions required
to get

√
n-consistent treatment effect estimation.

3.4 A Direct Analysis with Overlap

Our discussion so far, leading up to Corollary 4, gives a characterization of when and why we should
expect approximate residual balancing to work. However, from a practical perspective, the assumptions
used in our derivation were somewhat stronger than ones we may feel comfortable making in applications;
the transformed independence design assumption being perhaps the most problematic one.

In this section, we propose an alternative analysis of approximate residual balancing that sheds many
of the more delicate assumptions made above, and replaces them with overlap. Informally, overlap requires
that each unit have a positive probability of receiving each of the treatment and control conditions, and
thus that the treatment and control populations cannot be too dissimilar. Without overlap, estimation of
average treatment effects relies fundamentally on extrapolation beyond the support of the features, and
thus makes estimation inherently sensitive to functional form assumptions; and, for this reason, overlap
has become a common assumption in the literature on causal inference from observational studies (Crump
et al., 2009; Imbens and Rubin, 2015). For estimation of the average effect for the treated we in fact only
need the propensity score to be bounded from above by 1 − η, but for estimation of the overall average
effect we would require both the lower and upper bound on the propensity score.

Assumption 6 (Overlap). There is a constant 0 < η such that η ≤ e(x) ≤ 1− η for all x ∈ Rp.

Given these assumptions, we can replace all the assumptions made previously about X with the fol-
lowing technical conditions. Note that the requirements below are essentially necessary for our argument
to make sense: In order for the lasso regression adjustment to be useful, we need Xc to satisfy a re-
stricted eigenvalue condition with high probability; and for the ∞-norm of the between class distances
to concentrate, we need the features Xij to have rapidly decaying tails.
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Assumption 7 (Design). Our design X satisfies the following two conditions. First, the design is sub-
Gaussian, i.e., there is a constant ν > 0 such that the distribution of Xj conditional on W = w is
sub-Gaussian with parameter ν2 after re-centering. Second, we assume that Xc satisfies the {k, ω, 4}-
restricted eigenvalue condition as defined in Assumption 5, with probability tending to 1.

Given these conditions, we study the following estimator of µ̂c = Xt · βc:

γ = argminγ̃

‖γ̃‖22 :
∥∥Xt −X>c γ̃

∥∥
∞ ≤ K

√
log(p)

nc
,

∑
{i:Wi=0}

γ̃i = 1, 0 ≤ γ̃i ≤ n−2/3c

 , (23)

µ̂c = Xt · β̂c +
∑

{i:Wi=0}

γi

(
Y obs
i −Xi · β̂c

)
. (24)

Note that, here, we have re-incorporated the positivity and sum constraints on γ. The positivity constraint
stops us from interpolating outside of the support of the data, and appears to improve robustness to model
misspecification. Meanwhile, the requirement that

∑
{i:Wi=0} γi = 1 is a practical trick that is comparable

to not penalizing the intercept term in a penalized regression.
Following Lemma 2, our analysis again proceeds by guessing a feasible solution to (23), and then

using it to bound the variance of our estimator. Here, however, we using inverse-propensity weights as
our guess: γ∗i ∝ e(Xi)/(1−e(Xi)). Our proof hinges on showing that the actual weights we get from (23)
are at least as good as these inverse-propensity weights, and thus our method will be at most as variable
as one that used true inverse-propensity residual weighting.

Theorem 5. Suppose that we have n independent and identically distributed training examples satisfying
Assumptions 1, 2, 4, 6, 7, and that the treatment odds P [W = 1] /P [W = 0] converge to ρ with 0 <
ρ < ∞. Suppose, moreover, that we have homoskedastic noise: Var[εi(w)

∣∣Xi] = σ2 for all i = 1, ..., n,
and also that the response noise εi(w) := Yi(w)− E[Yi(w)

∣∣Xi] is uniformly sub-Gaussian with parameter
υ2 > 0. Finally, suppose that we use (24) with K = ν

√
2.1(ρ+ (η−1 − 1)2 for estimation, with the lasso

penalty parameter set to λn = 5νυ
√

log (p) /nc instead of selecting λn by cross-validation. Then,

µ̂c − µc

‖γ‖2
⇒ N

(
0, σ2

)
and

τ̂ − τ√
n−1t + ‖γ‖22

⇒ N
(
0, σ2

)
, (25)

where τ is the expected treatment effect on the treated (2). Moreover,

lim sup
n→∞

nc ‖γ‖22 ≤ ρ−2 E

[(
e (Xi)

1− e (Xi)

)2
∣∣∣∣∣Wi = 0

]
. (26)

The rate over convergence guaranteed by (26) is the same as what we would get if we actually knew
the true propensities and could use them for weighting (Hahn, 1998). Here, we achieve this rate although
we have no guarantees that the true propensities e(Xi) are consistently estimable. Finally, we note that,
when the assumptions to Corollary 4 hold, the bound (22) is stronger than (26); however, there exist
designs where the bounds match.

3.5 Inference under Heteroskedasticity

The previous section established that, in the homoskedastic setting, approximate residual balancing has
a Gaussian limit distribution. This result naturally suggests that our method should also allow for
asymptotic inference about τ . Here, we verify that this is in fact the case; and, moreover, we show that
our proposed confidence intervals are heteroskedaticity robust.

Corollary 6. Under the conditions of Theorems 3 or 5, suppose instead that we have heteroskedastic
noise υ2min ≤ Var

[
εi(Wi)

∣∣Xi, Wi

]
≤ υ2 for all i = 1, ..., n. Then, the following holds:

(µ̂c − µc)
/√

V̂c ⇒ N (0, 1) , V̂c =
∑

{i:Wi=0}

γ2i

(
Yi −Xi · β̂c

)2
. (27)
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Figure 1: Finite sample coverage of the average treatment effect on the treated for different estimators,
aggregated over 2,000 replications. The target coverage rate, 0.95, is denoted with a dotted line.

In order to provide inference about τ , we also need error bounds for µ̂t. Under sparsity assumptions
comparable to those made for βc in Theorem 5, we can verify that

(µ̂t − µt)
/√

V̂t ⇒ (0, 1) , V̂t =
1

n2t

∑
{i:Wi=1}

(
Yi −Xiβ̂t

)2
, (28)

where β̂t is obtained using the lasso with λn = 5νυ
√

log (p) /nc. Moreover, µ̂c and µ̂t are independent
conditionally on X and W , thus implying that (τ̂ − τ) / (V̂c + V̂t)

1/2 ⇒ N (0, 1). This last expression is
what we use for building confidence intervals for τ .

4 Application: The Efficacy of Welfare-to-Work Programs

Starting in 1986, California implemented the Greater Avenues to Independence (GAIN) program, with
an aim to reduce dependence on welfare and promote work among disadvantaged households. The GAIN
program provided its participats with a mix of educational resources such as English as a second language
courses and vocational training, and job search assistance. This program is described in detail by Hotz
et al. (2006). In order to evaluate the effect of GAIN, the Manpower Development Research Corporation
conducted a randomized study between 1988 and 1993, where a random subset of GAIN registrants were
eligible to receive GAIN benefits immediately, whereas others were embargoed from the program until
1993 (after which point they were allowed to participate in the program). All experimental subjects were
followed for a 3-year post-randomization period.

The randomization for the GAIN evaluation was conducted separately by county; following Hotz et al.
(2006), we consider data from Alameda, Los Angeles, Riverside and San Diego counties. As discussed
in detail in Hotz et al. (2006), the experimental conditions differed noticeably across counties, both in
terms of the fraction of registrants eligible for GAIN, i.e., the treatment propensity, and in terms of the
subjects participating in the experiment. For example, the GAIN programs in Riverside and San Diego
counties sought to register all welfare cases in GAIN, while the programs in Alameda and Los Angeles
counties focused on long-term welfare recipients.

The fact that the randomization of the GAIN evaluation was done at the county level rather than
at the state level presents us with a natural opportunity to test our method, as follows. We seek to
estimate the average treatment effect of GAIN on the treated; however, we hide the county information
from our procedure, and instead try to compensate for sampling bias by controlling for a large amount of
covariates. We used spline expansions of age and prior income, indicators for race, family status, etc., for
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a total of p = 93 covariates. Meanwhile, we can check our performance against a gold standard estimate
of the average treatment effect that is stratified by county and thus guaranteed to be unbiased.6

We compare the behavior of different methods for estimating the average treatment effect on the
treated using randomly drawn subsamples of the original data (the full dataset has n = 19, 170). In addi-
tion to approximate residual balancing, we only consider baselines with formal inferential guarantees in
high dimensions, namely double selection (Belloni et al., 2014), and inverse-propensity residual weighting
(Belloni et al., 2016; Farrell, 2015). In addition, we also show the behavior of an “oracle” procedure
that gets to observe the hidden county information and then simply estimates treatment effects for each
county separately, and the “naive” difference-in-means estimator that ignores the features X. In very
small samples, the oracle procedure was not always well defined because some samples may result in
counties where either everyone or no one is treated.

Figure 1 compares the coverage of the different methods. Here, we see that approximate residual
balancing achieves excellent performance in moderately large samples, and effectively gets nominal cover-
age. Double selection get reasonable coverage and improves with n; whereas inverse-propensity residual
weighting barely improves over the naive difference-in-means estimator for the sample sizes under con-
sideration. Meanwhile, in terms of MSE, double selection and approximate residual balancing both also
perform well: approximate residual balancing has a comparable MSE to the oracle adjustment, while
double selection can do 5-10% better in moderately large samples. It appears that double selection is
effectively shrinking its predictions in a way that hurts coverage but improves MSE.

5 Simulation Experiments

In order to evaluate the finite-sample performance of our method, we first compare its performance in
estimating τ to several other proposals available in the literature. After that, we consider the coverage
of our confidence intervals as proposed in Section 3.5. All numbers reported in Tables 1–5 are averaged
over 1000 simulation replications.

5.1 Methods under Comparison

In addition to approximate residual balancing as described in Procedure 1, the methods we use as
baselines are as follows: naive, or difference-in-means estimation τ̂ = Y t − Y c, which simply ignores the
covariate information X; elastic net estimation (Zou and Hastie, 2005), or equivalently, Procedure 1
with trivial weights γi = 1/nc; approximately balanced estimation (Zubizarreta, 2015), or equivalently,
Procedure 1 with trivial parameter estimates β̂c = 0; inverse-propensity weighting, which uses (6)
and (7), together with propensity estimates ê(Xi) obtained by elastic net logistic regression, with the
propensity scores trimmed at 0.05 and 0.95; inverse-propensity residual weighting, which pairs
elastic net regression adjustments with the above inverse-propensity weights by plugging both into (8)
(Belloni et al., 2016; Farrell, 2015); and ordinary least squares after model selection where, in the
spirit of Belloni et al. (2014), we run lasso linear regression for Y

∣∣X, W = 0 and lasso logistic regression

for W
∣∣X, and then compute the ordinary least squares estimate for τ on the union of the support of the

three lasso problems.
Whenever there is a “λ” regularization parameter to be selected, we use cross validation with the

lambda.1se rule from the glmnet package (Friedman et al., 2010). In Belloni et al. (2014), the authors
recommend selecting λ using more sophisticated methods, such as the square-root lasso (Belloni et al.,
2011). However, in our simulations, our implementation of Belloni et al. (2014) still attains excellent
performance in the regimes the method is designed to work in. Similarly, our confidence intervals for
τ are built using a cross-validated choice of λ instead of the fixed choice assumed by Corollary 6. Our

6More formally, in our experiments, we set the gold standard using the county-stratified oracle estimator on bootstrap
samples of the full n = 19, 170 sample. We use bootstrap samples to correct for the correlation of estimators τ̂ obtained
using the full dataset and subsamples of it. We also note that, given this setup, the quantity we are using as our goal
standard is not and estimate of τ , i.e., the conditional average treatment effect on the treated sample, and should rather
be thought of as an estimate of E [τ ], i.e., the average treatment effect on the treated population. Since we are in a setting
with a fairly weak signal, this should not make a noticeable difference in practice.
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(a) Low-dimensional version of the many clus-
ters simulation setting. The blue and red dots
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Figure 2: Illustrating simulation designs.

implementation of approximate residual balancing, as well as all the discussed baselines, is available in
the R-package balanceHD.

5.2 Simulation Designs

We consider four different simulation settings. Our first setting is a two-cluster layout, where half
the data is drawn as Xi ∼ N (Ci, Ip×p), while Ci ∈ {0, δ} such that P

[
Ci = 0

∣∣Wi = 0
]

= 0.8 and

P
[
C1 = 0

∣∣Wi = 1
]

= 0.2. We consider two settings for the between-cluster vector δ: a “dense” setting
where δ = 4/

√
n 1, and a “sparse” setting where δj = 40/

√
n 1 ({j = 1 modulo 10}). We generated our

data as Yi = Xi · β + 10Wi + εi with Wi = Bernoulli(0.5) and εi ∼ N (0, 1), where β is one of:

dense : β ∝ (1, 1/
√

2, ..., 1/
√
p), harmonic : β ∝ (1/10, 1/11, ..., 1/ (p+ 9)) ,

moderately sparse : β ∝ (10, ..., 10︸ ︷︷ ︸
10

, 1, ..., 1︸ ︷︷ ︸
90

, 0, ..., 0︸ ︷︷ ︸
p−100

), and very sparse : β ∝ (1, ..., 1︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
p−10

).

In each case we scaled β such that ‖β‖2 = 10. Finally, we set n = 300 and p = 800.
Our second many-cluster layout is closely related to the first, except now we have 20 cluster centers

Ci ∈ {c1, ..., c20}, where all the cluster centers are independently generated as ck ∼ N (0, Ip×p). To
generate the data, we first draw Ci uniformly at random from one of the 20 cluster centers and then set
Wi = 1 with probability η for the first 10 clusters and Wi = 1 with probability 1−η for the last 10 clusters;
we tried both η = 0.1 and η = 0.25. We used the same choices of β as above, except now we normalized
them to ‖β‖2 = 18. We again used n = 300 and p = 800. We illustrate this simulation concept in Figure
2a; we purposefully chose a treatment assignment mechanism where log-linear propensity estimators may
not perform well to highlight the fact our method only relies on overlap.

To test the robustness of all considered methods, we also ran a misspecified simulation. Here, we
first drew Xi ∼ N (0, Ip×p), and defined latent parameters θi = log(1 + exp(−2 − 2 ∗ (Xi)1))/0.915.
We then drew Wi ∼ Bernoulli(1 − e−θi), and finally Yi = (Xi)1 + · · · + (Xi)10 + θi(2Wi − 1)/2 + εi
with εi ∼ N (0, 1). We varied n and p. This simulation setting, loosely inspired by the classic program
evaluation dataset of LaLonde (1986), is illustrated in Figure 2b; note that the average treatment effect
on the treated is much greater than the overall average treatment effect here.
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Finally, we considered a two-stage setting closely inspired by an experiment of Belloni et al. (2014).
Here Xi ∼ N (0, Σ) with Σij = 0.5|i−j|, and θi = Xi · β1 + εi1. Then, Wi ∼ Bernoulli(1/(1 + eθi)), and
finally Yi = Xi ·β2 +0.5Wi+εi2 where εi1 and εi2 are independent standard Gaussian. Following Belloni
et al. (2014), we set the structure model as (β)j ∝ 1/j2 for j = 1, ..., p. However, for the propensity
model, we once follow their paper and use a “sparse” propensity model (βP )j ∝ 1/j2, but also try a
“dense” propensity model (βP )j ∝ 1. We set n = 100 and p = 200. Note that this sparse setting is in
fact very sparse; adjusting for differences in the two most important covariates removses 95% of the bias
associated with all the covariates. In contrast, for example, in the first and fifth columns in Table 1 it
would require adjusting for differences in the 700 or 90 most important covariates to remove 95% of the
bias associated with all the covariates.

5.3 Results

In the first two experiments, for which we report results in Tables 1 and 2, the outcome model Y |X is
reasonably sparse, while the propensity model has overlap but is not in general sparse. In fact, for Table
2, the propensity model does not even have a linear log odds ratio. Here approximate residual balancing
does well, while none of the other methods can successfully fit large effects while mitigating bias due to
small effects. When β is very sparse, methods that only seek to fit β—namely the elastic net and least
squares with model selection—do quite well. We find that in general the balancing performs substantially
better than propensity score weighting, with or without direct covariate adjustment. We also find that
combining direct covariate adjustment with weighting does better than weighting on its own, irrespective
of whether the weighting is based on balance or on the propensity score.

Encouragingly, approximate residual balancing also does a good job in the misspecified setting from
Table 3. It appears that our stipulation that the approximately balancing weights (9) must be non-
negative (i.e., γi ≥ 0) helps prevent our method from interpolating too aggressively. Conversely, least
squares with model selection does not perform well despite both the outcome and propensity models
being sparse; apparently, it is more sensitive to the misspecification here.

Meanwhile, in Table 4, we find that the method of Belloni et al. (2014) has excellent performance—as
expected—when both the propensity and outcome models are sparse. However, if we make the propensity
model dense, its performance decays substantially, and both approximate residual balancing and the
elastic net do better.

We evaluate coverage of confidence intervals in the “many-cluster” setting for different choices of β, n,
and p; results are given in Table 5. Coverage is generally better with more overlap (η = 0.25) rather than
less (η = 0.1), and with sparser choices of β. Moreover, coverage rates appear to improve as n increases,
suggesting that we are in a regime where the asymptotics from Corollary 6 are beginning to apply.
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Beta Model dense harmonic moderately sparse very sparse
Propensity Model dense sparse dense sparse dense sparse dense sparse

Naive 2.847 3.158 1.920 2.136 0.817 0.812 0.453 0.456
Elastic Net 1.822 0.445 1.127 0.304 0.296 0.113 0.034 0.029

Approximate Balance 1.670 0.621 1.133 0.442 0.499 0.224 0.289 0.182
Approx. Resid. Balance 1.576 0.207 0.973 0.183 0.243 0.080 0.027 0.024

Inverse Prop. Weight 2.368 1.511 1.594 1.029 0.686 0.415 0.384 0.251
Inv. Prop. Resid. Weight 2.234 1.610 1.458 1.107 0.534 0.426 0.239 0.231

Double-Select + OLS 1.814 0.228 1.126 0.209 0.290 0.096 0.034 0.024

Table 1: Root-mean-squared error
√

E [(τ̂ − τ)2]/τ in the two-cluster setting.

Beta Model dense harmonic moderately sparse very sparse
Overlap (η) 0.1 0.25 0.1 0.25 0.1 0.25 0.1 0.25

Naive 0.672 0.498 0.688 0.484 0.686 0.484 0.714 0.485
Elastic Net 0.451 0.302 0.423 0.260 0.181 0.114 0.031 0.021

Approximate Balance 0.470 0.317 0.498 0.292 0.489 0.302 0.500 0.302
Approx. Resid. Balance 0.412 0.273 0.399 0.243 0.172 0.111 0.030 0.021

Inverse Prop. Weight 0.491 0.396 0.513 0.376 0.513 0.388 0.533 0.380
Inv. Prop. Resid. Weight 0.463 0.352 0.479 0.326 0.389 0.273 0.363 0.248

Double-Select + OLS 0.679 0.368 0.595 0.329 0.239 0.145 0.047 0.023

Table 2: Root-mean-squared error
√

E [(τ̂ − τ)2]/τ in the many-cluster setting.

n 400 1000
p 100 200 400 800 1600 100 200 400 800 1600

Naive 1.72 1.73 1.73 1.72 1.74 1.71 1.70 1.72 1.70 1.72
Elastic Net 0.44 0.46 0.50 0.51 0.54 0.37 0.39 0.39 0.40 0.42

Approximate Balance 0.48 0.55 0.61 0.63 0.70 0.24 0.30 0.38 0.40 0.45
Approx. Resid. Balance 0.24 0.26 0.28 0.29 0.32 0.16 0.17 0.18 0.19 0.20

Inverse Prop. Weight 1.04 1.07 1.11 1.13 1.18 0.82 0.84 0.88 0.89 0.94
Inv. Prop. Resid. Weight 1.29 1.30 1.31 1.31 1.33 1.25 1.25 1.26 1.25 1.28

Double-Select + OLS 0.28 0.29 0.31 0.31 0.34 0.24 0.25 0.25 0.25 0.26

Table 3: Root-mean-squared error
√
E [(τ̂ − τ)2]/τ in the misspecified setting.

Propensity Model sparse dense
First Stage Sig. Strength ‖βP ‖2 = 1 ‖βP ‖2 = 4 ‖βP ‖2 = 1 ‖βP ‖2 = 4

Structure Sig. Strength (‖β‖2) 1 4 1 4 1 4 1 4
Naive 1.998 7.761 3.466 13.605 0.692 2.264 0.782 2.577

Elastic Net 1.272 1.376 2.755 3.165 0.529 0.645 0.590 0.774
Approximate Balance 1.017 3.570 1.785 6.552 0.705 2.063 0.811 2.505

Approx. Resid. Balance 0.775 0.874 1.550 1.959 0.563 0.637 0.634 0.765
Inverse Prop. Weight 1.692 6.454 2.591 10.080 0.690 2.217 0.774 2.495

Inv. Prop. Resid. Weight 1.449 4.325 2.434 7.666 0.601 1.381 0.670 1.591
Double-Select + OLS 0.608 0.703 0.985 1.223 0.634 0.695 1.366 1.323

Table 4: Root-mean-squared error
√
E [(τ̂ − τ)2]/τ in the two-stage setting of Belloni et al. (2014).
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βj ∝ 1 ({j ≤ 10}) βj ∝ 1/j2 βj ∝ 1/j
n p η = 0.25 η = 0.1 η = 0.25 η = 0.1 η = 0.25 η = 0.1

200 400 0.90 0.84 0.94 0.88 0.84 0.71
200 800 0.86 0.76 0.92 0.85 0.82 0.71
200 1600 0.84 0.74 0.93 0.85 0.85 0.73
400 400 0.94 0.90 0.97 0.93 0.90 0.78
400 800 0.93 0.91 0.95 0.90 0.88 0.76
400 1600 0.93 0.88 0.94 0.90 0.86 0.76
800 400 0.96 0.95 0.98 0.96 0.96 0.90
800 800 0.96 0.94 0.97 0.96 0.94 0.90
800 1600 0.95 0.92 0.97 0.95 0.93 0.86

Table 5: Coverage for approximate residual balancing confidence intervals as constructed in Section 3.5,
with data generated as in the many cluster setting. The target coverage is 0.95.
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A Proofs

Proof of Proposition 1

First, we can write

µ̂c = X
>
t β̂ + γ>

(
Yc −Xcβ̂

)
= X

>
t β̂ + γ>Xc

(
β − β̂

)
+ γ>εc.

Thus,

µ̂c − µc = X
>
t

(
β̂ − β

)
+ γ>Xc

(
β − β̂

)
+ γ>εc

=
(
Xt −X>c γ

)> (
β̂ − β

)
+ γ>εc,

and so the desired conclusion follows by Hölder’s inequality.

Proof of Lemma 2

For any j = 1, ..., p, write (
X>c γ

∗)
j

=
1

nc
e>j X>c XcΣ

−1
c ξ

=
1

nc

∑
i

Q>i AjQi, Aj := Σ
− 1

2
c ξe>j Σ

1
2
c ,

where ej is the j-th basis vector, and Qi denotes the i-th row of the Q matrix as a column vector. Here,
Aj is a rank-1 matrix, with Frobenius norm

‖Aj‖2F = tr
(

Σ
1
2
c ejξ

>Σ−1c ξe>j Σ
1
2
c

)
= (Σc)jj ξ

>Σ−1c ξ ≤ V S.

We can now apply the Hanson-Wright inequality, as presented in Theorem 1.1 of Rudelson and Vershynin
(2013). Given our assumptions on Qi—namely that it have independent, standardized, and sub-Gaussian
entries—the Hanson-Wright inequality implies that Q>i AjQi is sub-Exponential; more specifically, there
exist universal constants C1 and C2 such that

E
[
et(Q

>
i AjQi−E[Q>

i AjQi])
]
≤ exp

[
C1t

2ς4V S
]

for all t ≤ C2

ς2
√
V S

.

Thus, noting that E
[
X>c γ

∗] = ξ, we find that for any sequence tn > 0 with t2n/n → 0, the following
relation holds for large enough n:

E
[
exp

[√
n tn

(
X>c γ

∗ − ξ
)
j

]]
≤ exp

[
C1t

2
n ς

4 V S
]
.

We can turn the above moment bound into a tail bound by applying Markov’s inequality. Plugging in
t :=

√
log(p/2δ) / (ς2

√
C1V S) and also applying a symmetric argument to (−X>c γ

∗ + ξ)j , we find that
for large enough n and any δ > 0,

P
[∣∣∣√n (X>γ∗ − ξ)

j

∣∣∣ > 2ς2
√
C1V S log

( p
2δ

)]
≤ δ

p
.

The desired result then follows by applying a union bound, and noting that ‖γ∗‖∞ ≤ n−2/3 with proba-
bility tending to 1 by sub-Gaussianity of Qij .
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Proof of Theorem 3

We start by mimicking Proposition 1, and write

θ̂ − θ = ξ ·
(
β̂c − βc

)
+

∑
{i:Wi=0}

γi

(
Yi −Xi · β̂c

)
=

∑
{i:Wi=0}

γiεi(0) +
(
ξ −X>c γ

)
·
(
β̂c − βc

)
=

∑
{i:Wi=0}

γiεi(0) +O
(∥∥ξ −X>c γ

∥∥
∞

∥∥∥β̂c − βc∥∥∥
1

) (29)

The proof of our main result now follows by analyzing the above bound using Lemma 2 from the main
text, as well as technical results proved below in Lemmas 7 and 8.

We first consider the error term. On the event that (16) is feasible—which, by Lemma 2 will occur
with probability tending to 1—we know that

∥∥ξ −X>c γ
∥∥
∞ = O(

√
log(p)/nc). Meanwhile, given our

assumptions, we can obtain an L1-risk bound for the lasso that scales as O(k
√

log(p)/nc); see Lemma 7.
Taken together, these results imply that

∥∥ξ −X>c γ
∥∥
∞

∥∥∥β̂c − βc∥∥∥
1

= O
(
k log (p)

nc

)
, (30)

which, by Assumption 4, decays faster than 1/
√
nc.

Next, to rule out superefficiency, we need a lower bound on ‖γ‖22. By our minimum estimand size
assumption we know that there exists an index j ∈ {1, ..., p} with |ξj | ≥ κ; and thus, any feasible solution
to (16) must eventually satisfy (X>c γ)2j ≥ κ2/2. By Cauchy-Schwarz, this implies

‖γ‖22 ≥ κ
2
/ 2

∑
{i:Wi=0}

X2
ij

 = ΘP

(
1

nc

)
,

as desired. Given this result, a standard application of Lyapunov’s central limit theorem (Lemma 8)
paired with the bound (30) implies that, by Slutsky’s theorem,(

θ̂ − θ
)
/ ‖γ‖22 ⇒ N

(
0, σ2

)
,

which was the first part of our desired conclusion.
Finally, we need to characterize the scale of the main term. To do so, consider the weights γ∗ defined

in (18). The concentration bound from Theorem 2.1 in Rudelson and Vershynin (2013) implies that
nc ‖γ‖2 /(ξ>Σ−1c ξ) →p 1; thus, Lemma 2 implies that, with probability tending to 1, the optimization
program for γ is feasible and

nc ‖γ‖22
/ (

ξ>Σ−1c ξ
)
≤ 1 + op(1),

thus concluding the proof.

Lemma 7. Under the conditions of Theorem 3, the lasso satisfies∥∥∥β̂c − βc∥∥∥
1
≤ 5ς2

4

24 υ

ω
k

√
log p

nc
. (31)

Proof. Given our well-conditioning assumptions on the covariance Σc, Theorem 6 of Rudelson and Zhou
(2013) implies that the matrix Xc will also satisfy the a weaker restricted eigenvalue property with high
probability. Specifically, in our setting Assumption 4 implies that log(p) � √nc, and so we can use the
work of Rudelson and Zhou (2013) to conclude that n

−1/2
c Xc satisfies the {k, ω, 4}-restricted eigenvalue

condition with high probability.

22



Next, given Assumption 3, we can use Theorem 2.1 of Rudelson and Vershynin (2013) to verify that
the design matrix is Xc column standardized with high probability in the sense that, with probability
tending to 1,

n−1c

∑
{i:Wi=0}

(Xc)
2
ij ≤ (5/4)2ς4S for all j = 1, ..., p.

Thus, pairing these two fact about Xc with sparsity as in Assumption 4 and the sub-Gaussianity of the
noise smashεi(w), we can use the results of Negahban et al. (2012) to bound the L1-risk of the lasso. Specif-
ically, their Corollary 2 implies that, if we obtain β̂c by running the lasso with λ = 5 ς2 υ S

√
log(p)/nc,

then, with probability tending to 1, (31) holds. Formally, to get this result, we first scale down the
design by a factor 5ς2/4, and then apply the cited result verbatim; note that we also need to re-scale the
restricted eigenvalue parameter ω.

Lemma 8. Under the setting of Theorem 3, suppose that maxi |γi| ≤ n−2/3c and ‖γ‖22 = Ωp(1/nc). Then,
we obtain a central limit theorem

1

‖γ‖2

∑
{i:Wi=0}

γiεi(0)⇒ N
(
0, σ2

)
. (32)

Proof. The proof follows Lyapunov’s method. Since the optimization program for γ did not consider the
outcomes Yi, unconfoundedness (Assumption 1) implies that εi(0) is independent of γi conditionally on
Xi, and so

E

 ∑
{i:Wi=0}

γi εi(0)
∣∣ γ
 = 0 and Var

 ∑
{i:Wi=0}

γi εi(0)
∣∣ γ
 = σ2 ‖γ‖22 .

Next, we can again use unconfoundedness to verify that

E

 ∑
{i:Wi=0}

(γi εi(0))
3 ∣∣ γ

 =
∑

{i:Wi=0}

γ3i E
[
(εi(0))

3 ∣∣Xi

]
≤ C3 υ

3
∑

{i:Wi=0}

γ3i ≤ C3 υ
3 n−2/3c ‖γ‖22

for some universal constant C3, where the last inequality follows by sub-Gaussianity of ε and by noting
the upper bound on γi in (16). Thus,

E

 ∑
{i:Wi=0}

(γi εi(0))
3 ∣∣ γ

 / Var

 ∑
{i:Wi=0}

γi εi(0)
∣∣ γ
3/2

= O
(
n−2/3c ‖γ‖−12

)
= oP (1),

because, by assumption, ‖γ‖−12 = OP
(√
nc
)
. Thus Lyapunov’s theorem implies that the central limit

theorem (32).

Proof of Corollary 4

The key idea in establishing this result is that we need to replace the “oracle” weights defined in (18)
with

γ∗∗i =
1

nc
mtΣ

−1
c Xi. (33)

Once we have verified that, with high probability, these candidate weights γ∗∗ satisfy the constraint from
(16), i.e.,

∥∥Xt −X>c γ
∗∗
∥∥
∞ ≤ K

√
log(p)/nc, we can establish the result (22) by replicating the proof of

Theorem 3 verbatim. Now, by Lemma 2, we know that with probability tending to 1,∥∥mt −X>c γ
∗∗∥∥
∞ ≤ Cς

2
√
V S log(p)

/
nc.

Meanwhile, a standard Hoeffding bound together with the fact that nt/nc →p ρ establishes that, with
probability tending to 1, ∥∥Xt −mt

∥∥
∞ ≤ ν

√
2.1ρ

√
log(p)

/
nc.

Combining these two bounds yields the desired result.
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Proof of Theorem 5

Our proof mirrors the one used for Theorem 3. We again start by proposing a class of candidate weights
γ∗ that satisfy the constraints (23); except, this time, we motivate our candidate weights using the overlap
assumption:

γ∗i =
e (Xi)

1− e (Xi)

/ ∑
{i:Wi=0}

e (Xi)

1− e (Xi)
. (34)

We start by characterizing the behavior of these weights below; we return to verify these bounds at the
end of the proof. We also note that these weights also trivially satisfy γ∗i ≤ n

−2/3
c once nc is large enough.

Lemma 9. Under the conditions of Theorem 5, the weights γ∗ defined in (34) satisfy the the following
bounds with probability at least 1− δ, for any δ > 0:

∥∥Xt −X>c γ
∗∥∥
∞ ≤ ν

√√√√2 log

(
10 p

δ

)(
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nt
+
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)
, and (35)
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ρ2n
E
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(36)
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2
(2− 2η + ρnη)

ρ3n η
3
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2nc
log
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)
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(
1

nc

)
,

where ρn = P [Wi = 1] /P [Wi = 0] is the odds ratio for the n-th problem.

Given these preliminaries, we can follow the proof of Theorem 3 closely. First, by the same argument as
used to prove Lemma 7, we can verify that if we obtain β̂c by running the lasso with λ = 5 ν υ

√
log(p)/nc,

then, with probability tending to 1, ∥∥∥β̂c − βc∥∥∥
1
≤ 5ν

4

24 υ

ω
k

√
log p

nc
. (37)

Thus, we again find that

√
n
∥∥Xt −X>c γ

∥∥
∞

∥∥∥β̂c − βc∥∥∥
1

= OP
(
k log(p)√

n

)
, (38)

and so, thanks to our sparsity assumption, we can us Proposition 1 to show that the error in β̂c does not
affect the asymptotic distribution of our estimator at the

√
n-scale; provided the problem (23) is feasible.

Next, thanks to Lemma 9, we know that the problem (23) is feasible with high probability. Moreover,

because the weights γ obtained via (23) satisfy
∑
γ = 1, we trivially find that ‖γ‖22 ≥ 1/nc and can apply

Lemma 8 to get a central limit result for µ̂c − µ̂c. Finally, invoking (36) and the fact that ‖γ‖2 ≤ ‖γ∗‖2
with probability tending to 1, we obtain the desired rate bound (26).

Proof of Lemma 9

To verify our desired result, first note that because
∑
γ∗i = 1, our main quantity of interest Xt−Xcγ

∗ is
translation invariant (i.e., we can map Xi → Xi + c for any c ∈ Rp without altering the quantity). Thus,
we can without loss of generality re-center our problem such that E

[
Xi

∣∣Wi = 1
]

= 0. Given this re-
centering, we use standard manipulations of sub-Gaussian random variables to check that, conditionally
on nc and nt and for every j = 1, ..., p:

• Xt,j = n−1t

∑
{i:Wi=1}Xij is sub-Gaussian with parameter ν2/nt by sub-Gaussianity of Xij as in

Assumption 7.
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• Aj := n−1c

∑
{i:Wi=0}Xij e(Xi)/(1 − e(Xi)) is sub-Gaussian with parameter ν2(1 − η)2/(nc η

2)

by sub-Gaussianity of Xij and because e(Xi) ≤ 1 − η. Note that, by construction E [Aj ] =
E
[
Xj

∣∣W = 1
]
, and so given our re-centering E [Aj ] = 0.

• D := n−1c

∑
{i:Wi=0} e(Xi)/(1−e(Xi))−ρn is sub-Gaussian with parameter (1−η)2/(4nc η

2), where

ρn = P [W = 1] /P [W = 0] denotes the odds ratio.

• V := n−1c

∑
{i:Wi=0}(e(Xi)/(1 − e(Xi))

2 is sub-Gaussian with parameter (1 − η)4/(4nc η
4) after

re-centering.

Next, we apply a union bound, by which, for any δ > 0, the following event Eδ occurs with probability
at least 1− δ:

‖A‖∞ ≤ ν (1− η) /(η
√
nc)
√

2 log(10 p δ−1),∥∥Xt −A
∥∥
∞ ≤ ν

√
1/nt + (1− η)

2
/ (nc η2)

√
2 log(10 p δ−1),

|D| ≤ (1− η) /(2η
√
nc)
√

2 log(10 δ−1), and

V ≤ E [V ] + (1− η)
2
/(2η2

√
nc)
√

2 log(10 δ−1).

We then see that on the event Eδ,∥∥Xt −X>c γ
∗∥∥
∞ =

∥∥∥Xt − (ρn +D)
−1
A
∥∥∥
∞
≤
∥∥Xt −A

∥∥
∞ +

∣∣∣∣ D

ρn +D

∣∣∣∣ ‖A‖∞
≤ ν

√
1

nt
+

(1− η)
2

nc η2

√
2 log

(
10 p

δ

)
+O

(
1

nc

)
.

Moreover, noting that

E [V ] = E

[
e(Xi)

2

(1− e(Xi))
2

∣∣Wi = 0

]
≤ (1− η)2

η2
,

we see that on εδ,

nc ‖γ∗‖22 =
V

(ρn +D)
2 ≤

E [V ]

ρ2n
+

(
1

2
+

1− η
ρn η

)
(1− η)

2

ρ2nη
2

√
2

nc
log

(
10

δ

)
+O

(
1

nc

)
.

Thus, there exists a γ satisfying all desired constraints; thus, there must also be some ζ ∈ (0, 1) for which
(16) yields such a solution.

Proof of Corollary 6

We prove the result in the setting of Theorem 5. First of all, we can use the argument of Theorem 5
verbatim to show that

(µ̂c − µc)
/√

Vc ⇒ N (0, 1) , Vc =
∑

{i:Wi=0}

γ2i Var
[
εi(0)

∣∣Xi

]
.

To establish this claim, note that our bias bound (38) did not rely on homskedasticity, and the Lyapunov
central limit theorem remains valid as long as the conditional variance of εi(0) remains bounded from
below. Thus, in order to derive the pivot (27), we only need to show that V̂c/Vc →p 1; the desired
conclusion then follows from Slutsky’s theorem. Now, to verify this latter result, it suffices to check that

1

Vc

∑
{i:Wi=0}

γ2i (Yi −Xi · βc)2 →p 1, and (39)

1

Vc

∑
{i:Wi=0}

γ2i

(
Xi ·

(
βc − β̂c

))2
→p 0. (40)
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To show the first convergence result, we can proceed as in the proof of Lemma 8 to verify that there is a
universal constant C4 for which

Var

 ∑
{i:Wi=0}

γ2i (Yi −Xi · βc)2
∣∣ γ
 ≤ C4 υ

4 ‖γ‖44 ≤ C4 υ
4 n−4/3c ‖γ‖22 ,

and so (39) holds by Markov’s inequality. Meanwhile, to establish (40), we focus on the case
lim inf log(p)/ log(n) > 0. We omit the argument in the ultra-low dimensional case since, when p� n0.01,
there is no strong reason to run our method instead of classical methods based on ordinary least squares.
Now, we first note the upper bound∑

{i:Wi=0}

γ2i

(
Xi ·

(
βc − β̂c

))2
≤ ‖γ‖22

∥∥∥Xc

(
βc − β̂c

)∥∥∥2
∞
≤ ‖γ‖22 ‖Xc‖2∞

∥∥∥βc − β̂c∥∥∥2
1
,

where the second step uses Hölder’s inequality as in the proof of Proposition 1. Then, thanks to the
assumed upper and lower bounds on the conditional variance of εi(Wi) given Xi and Wi, we only need
to check that

‖Xc‖2∞
∥∥∥βc − β̂c∥∥∥2

1
→p 0.

We can use sub-Gaussianity of Xi (Assumption 7) and the bound (37) on the L1-error of β̂c to find a
constant C(ν, ω, υ) for which

‖Xc‖2∞
∥∥∥βc − β̂c∥∥∥2

1
≤ C(ν, ω, υ) log (p nc) k2

log (p)

nc

with probability tending to 1. Then, noting our sparsity condition on k (Assumption 4), we find that

log (p nc) k2
log (p)

nc
� log (p nc)

log(p)
,

which is bounded from above whenever lim inf log(p)/ log(n) > 0.
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