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Abstract

Recent studies have shown that non-Poisson (“bursty”) behaviors in human inter-

actions can impede the diffusion of information or infectious diseases in social networks.

Those studies generally consider models in which nodes are independently active ac-

cording to the same random timing process, and vary that timing. In reality, people

differ widely in the patterns of their activity. In this paper, we develop a simple model

of diffusion on networks in which agents can differ in the autocorrelation of their ac-

tivity patterns. We show that bursty behavior does not always hurt the diffusion, and

depending on the features of the environment, having some (but not all) of the popu-

lation being bursty significantly helps diffusion. Moreover, we prove that in a variety

of settings maximizing diffusion requires heterogeneous activity patterns across agents

and does not involve any Poisson behavior.
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1 Introduction

Networks of interactions are the backbone of a range of diffusion processes from the adoption

of new technologies (e.g., Rogers (1995); Banerjee et al. (2013)) to the spread of ideas and

diseases (e.g., Pastor-Satorras and Vespignani (2000); Lopez-Pintado (2008)).1 Diffusion and

contagion processes are shaped not only by the structure of the links within a network, but

also by the time patterns at which links and nodes are active. The timing of interactions in

many networks are far from being time-independent. For example, the “burstiness” of the

timing of interactions has been documented in a multitude of diffusion processes, from email

and phone conversations to gene expressions (Johansen (2004); Wu et al. (2010); Barabasi

(2011); Pfitzner et al. (2013)).

In this paper we provide a theoretical analysis of how the timing of interactions affects a

diffusion process. We show that heterogeneity in activity patterns across agents actually in-

creases the expected reach of diffusion processes. Although previous studies have found that

the timing of interactions affects diffusion process, those analyses have generally considered

homogeneous populations and varied the whole population’s activity pattern.2 However, in

fact people differ widely in the timing of their active periods. Some people check email on

a very frequent and intermittent basis, while others have greater time between activity but

then spend a longer time active once they are. To date, nothing is known about how such

heterogeneity influences diffusion.

We examine how combinations of time patterns of interactions affect the extent of dif-

fusion. The model that we examine is a variation on the widely-studied SIR model Bailey

(1975).3 Some node of a network is the first infected with a disease or idea. The infection

then spreads at random through the network. Nodes are either infected or susceptible. They

begin as all being susceptible and become infected if they interact with a contagious neigh-

bor. Once infected, agents are contagious for T periods and then cease to be contagious.

Thus, diffusion spreads by having an infected and contagious node interacting with any of its

neighbors who are susceptible. What distinguishes our model is that the probability that a

node is active is not independent of time. On average, nodes are randomly active during any

given period with a probability λ > 0, but the probability is not independent of the history

of that node’s past behavior. Nodes’ active times follow a Markov chain: the probability

that a node is active in one period depends on whether it was active last period. In addition,

nodes can differ in their Markov processes. Some nodes are more likely to be active if they

1See Jackson and Yariv (2011) for a survey.
2See, for instance, Belykh et al. (2004); Vázquez et al. (2006); Vazquez et al. (2007); Iribarren and Moro

(2009); Pan and Saramäki (2011); Barabasi (2011); Karsai et al. (2011); Hoffmann et al. (2012); Scholtes
et al. (2014); Bick and Field (2015); Li et al. (2016). Also, see Holme and Saramäki (2012); Porter and
Gleeson (2014) for more references and recent findings in mathematics, biology, and physics literature.

3The SIR model has its roots in the Reed-Frost model. See Jackson (2008) for background.
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were active last period, while others are less likely to be active if they were active in the last

period. Thus, they can differ in their serial correlation patterns. We emphasize that we still

maintain that the timing of activity is independent across nodes and nodes must all have

the same average level of activity - so that every node is active a fraction of λ of all periods.

The key novelty in our model is allowing different nodes to have different time-dependencies

in their behaviors.

Our main results show that configurations of nodes that maximize the extent of diffusion

as well as the probability of an epidemic are those that have different Markov chains for dif-

ferent nodes. We prove that it is never maximizing to have all nodes follow the same Markov

chain: heterogeneity is necessary to maximize diffusion. We also fully characterize the max-

imizing structure of heterogeneity for simple networks such as chain and star networks, and

analyze some others by simulation. Moreover, we show that combining nodes with extreme

positive autocorrelation (“Sticky” nodes) with others who have extreme negative autocorre-

lation (“Reversing” nodes) is optimal in some simple networks. As a by-product, our results

also show which structures minimize diffusion (generally homogeneous “Sticky” nodes). De-

pending on the application, one may wish to maximize or minimize diffusion. Regardless

of what one wishes to do, understanding how heterogeneity matters is essential for shaping

policy.

Our simulations show that for some values of λ, heterogeneity can increase the likelihood

of observing an “epidemic” (extension of the diffusion over a large fraction of the population)

by an order of magnitude. This surprising effect is observed in cases where λ (and so

probability of an epidemic) is small, but those are relevant values of λ and epidemics tend

to be rare events.

To understand why heterogeneity increases diffusion, consider an agent who has recently

been infected (and was just active). To maximize the chance of diffusion, it is best if this

agent behaves in a positively correlated way, so that she is more likely to remain active during

the immediate periods after infection, while she is contagious. On the other hand, when an

agent is not yet infected, it is best to alternate states more frequently to enhance coordination

probabilities. Sticky agents are poor receivers but good senders, and reversing agents are

good receivers but poor senders. What we prove is that such dynamics make it optimal to

alternate the two types of agents. Mixing sticky and reversing agents maximizes the sending

advantage of the sticky agents and the receiving advantage of the reversing agents, without

much loss from the receiving disadvantage of the sticky agent facing a reversing sender.

As an analogy, imagine two people who are lost in a city with no way to communicate.

They understand that it would be best for them to find each other by trying to meet at

one of the major landmarks. To keep things simple, imagine that the city is New York and

they each expect that the logical meeting places are either the Empire State Building or the
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Statue of Liberty.4 If they both go to each of the landmarks, then there is a chance that they

will miscoordinate - going in the opposite order and thus missing each other5. If instead, one

of them just goes to one of the landmarks and stays there, while the other alternates and

goes to both, then they are sure to meet. Of course, they need to coordinate on who follows

which strategy - that is, who stays put and who searches. Nonetheless, the point is that

a population in which people have a diversity of interaction patterns can lead to superior

coordination probabilities. While this example is extreme, it illustrates how having the two

individuals use different actions can improve the probability that they interact. We show

that this intuition extends to the network setting.

Our results have broad implications, and to illustrate some of those we discuss an online

advertising setting in which users choose between different competing websites – news agen-

cies, for instance. If an advertiser must choose which website to buy ads on at various times,

with the goal of maximizing the probability of reaching a user, then our results suggest that

the advertiser should identify how users behave and then behave in the opposite way: If

users are Sticky (i.e. they visit a specific news website and stick to it), then the advertiser

should alternate between websites to reach the users. However, if users alternate between

websites, then the advertiser should stick to one website so as to minimize the probability

of miscoordination.

2 The Model

There are n ≥ 3 agents, with labels i ∈ N = {1, . . . , n} connected in a network represented

by a simple graph G = (N, g), where g ⊆ N2 and ij ∈ g if agent i and agent j are linked.

Time passes in discrete periods t ∈ {1, 2, . . .}. Agents are either active or inactive in a

given period. Activity is independent across agents. An agent is active with a probability

λ ∈ (0, 1) in any given period, on average. We assume the long-run average activity levels

are the same for all agents. By focusing on agents who are homogeneous in how often they

participate, we can focus on the effect of heterogeneities in the timing of participation on

diffusion.

In particular, an agent’s activity follows a Markov chain. If an agent i is active in period

t, then s/he is inactive in period t + 1 with probability pi, and active with probability

1− pi. Similarly, if an agent i is inactive in period t, then s/he is active in period t+ 1 with

probability qi, and inactive with probability 1− qi. This is pictured in Figure 1.

For any fixed λ, an agent is then completely characterized by pi, or equivalently by qi.

4See Schelling (1960) for a seminal discussion of such focal points as natural means of coordination.
5Miscoordination has been studied in other economic contexts; see, for instance, Chassang (2010).
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inactive active

qi

pi

1− pi1− qi

Figure 1: Activity Markov Chain of agents.

In particular, the following equality must hold:

λpi = (1− λ)qi,

which is just the usual balance equation of the Markov chain, given that λ is the steady-state

probability of activity. Some useful rewritings of the this equation are:

λ

1− λ
=
qi
pi
, λ =

1

1 + pi
qi

, qi = pi
λ

1− λ
.

So, our agents are completely described by pi, given any fixed λ.

2.1 Three Benchmark Types

There are three levels of autocorrelation that serve as benchmarks.

A Poisson agent is one who has pi = 1 − λ = 1 − qi. This is an agent who is active at

every period with probability λ; that is, her state is i.i.d. over time.

A Sticky agent is one who has pi and qi both ‘near’ 0. This is an agent whose state is

(almost) perfectly autocorrelated over time. In particular, let Sticky agents be those who

are either always on (with probability λ), or always off (with probability 1 − λ). So this is

the limit of a Markovian agent as min[pi, pi
λ

1−λ ]→ 0, but one that is degenerate.

A Reversing agent is one with the maximal possible p and q (maximal negative autocor-

relation): so p = 1 if λ ≤ 1/2 and p = (1− λ)/λ if λ ≥ 1/2. Similarly, q = 1 if λ ≥ 1/2 and

q = λ/(1− λ) if λ ≤ 1/2. Thus, the state of a reversing agent is as negatively serially corre-

lated as possible, switching back and forth between being active and inactive as frequently

as possible. In the case in which λ = 1/2, a Reversing agent simply reverses its state every

period.

We can think of Poisson, Sticky, and Reversing agents as the canonical cases: one with

no autocorrelation, one with maximal positive autocorrelation, and the other with maximal
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Figure 2: A Line Network with Five Nodes

negative autocorrelation. Of course, there are other levels of autocorrelation in an agent’s

state, and we admit arbitrary cases in our general analysis.

2.2 Diffusion

Some agent is initially infected. All other agents are initially susceptible. Once an agent

becomes infected, the agent stays infected forever after. An agent can transmit infection for

T periods after being infected. We say that such an agent is ‘contagious’ during those time

periods. In each period, an agent who is contagious transmits the infection to a neighbor if

and only if both he and his neighbor are active, and his neighbor is susceptible.

3 Line Networks and Canonical Agents

We begin our analysis by looking at networks that are ‘lines’ - a tree in which no agent has

degree more than two. Figure 2 is a line network with five nodes. These networks illustrate

the main ideas and intuitions and permit a complete characterization of the maximizing

configurations when we restrict our attention to the canonical agents.

We begin with an analysis of diffusion with only Poisson and Sticky agents - as these

are sufficient to provide the basic intuitions about how heterogeneity helps with improving

diffusion. After establishing results on optimal configurations with these types, we then add

in the Reversing agents, showing that optimal configurations mix the extreme agents: Sticky

and Reversing agents. Finally, we turn to an analysis with general agent types.

3.1 Poisson and Sticky Agents

Let PS denote the probability that a Poisson agent who is infected transmits to a sticky

neighbor who is susceptible within T periods; and similarly define SP , PP , SS. Similarly,

let PPP denote the probability that there is full transmission among three Poissons in a line

- where transmission must occur within a new T periods for each successive interaction. So,

once infected, a person can pass the disease or idea along to a neighbor for T periods from

the date of the current agent’s first infection. Likewise, we define PSP , and so forth.

When we consider the transmission in a line we presume that the initially infected agent

is a node at one end and that the agent is then randomly active with probability λ in the
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first period. If we instead assumed that the first agent begins by being active, then the first

agent should always be Sticky, and that would just push the whole problem back one agent.

In all of the analysis that follows, we presume that agents have the same overall proba-

bility of being active, but differ only in timing. Our interest is in seeing how the patterns

of timing matter, and holding constant the overall level of activity allows us to isolate how

patterns of autocorrelation matter.

Proposition 1 Consider 3 agents in a line, with all agents being independently active with

probability λ ∈ (0, 1) in steady state, and who once infected can transmit for some positive

integer number of periods T . The configuration of Poisson and Sticky agents that maximizes

both the expected number of infections and the probability that all agents become infected is

uniquely:

• PSP if λ < λ∗, and

• PPP if λ > λ∗,

where λ∗ is the unique solution in (0, 1) to:6

λ =

[
1− (1− λ2)T

1− (1− λ)T

]2
. (1)

if we are maximizing the probability of total infection, and

λ =

[
1− (1− λ2)T

] [
2− (1− λ2)T

]
[1− (1− λ)T ] [2− (1− λ)T ]

. (2)

if we are maximizing the expected number of infected nodes. The interior solution of (2) is

smaller than that of (1).

The proof of this proposition, as well as the proof for all other propositions and theorems

are in the appendix.

To understand the trade-offs that drive heterogeneity note that once an agent is infected,

it is best to have that agent be Sticky because a recently infected Sticky agent remains active

while she is contagious. However, when an agent is not yet infected, it is best to alternate

states randomly, to enhance coordination probabilities. Sticky agents are poor receivers but

good senders, and Poisson agents are good receivers but poor senders. Such dynamics make

it optimal to connect a Sticky sender and a Poisson receiver. Moreover, the probabilities of

6For any T , there is a unique fixed solution to (1) and (2) in (0, 1), as we show in the proof. 1 and 0
are also solutions, but uninteresting ones, as then agents are either always or never active, in which case the
time series of their activity is irrelevant.
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transmission have synergies - matching Sticky senders with Poisson receivers increases overall

probability more than the subsequent loss due to then having to subsequently alternate a

Poisson sender with a Sticky receiver. Under a wide range of activity levels, the advantages

of having heterogeneity outweigh the losses from having the receiver be Sticky.

In Section 1 we discussed that many recent studies concluded that bursty behavior slows

down the diffusion (see, for instance, Vázquez et al. (2006)). We emphasize that our results

do not contradict those findings. In our setting, SSS is dominated by PPP , so when agents

are homogeneous, bursty behavior can hurt diffusion. What we show, however, is that when

agents activity patterns can be heterogeneous, then bursty behavior can indeed improve

diffusion.

We now show that this intuition extends to longer lines.

Proposition 2 Consider an odd number of agents in a line, with all agents being indepen-

dently active with probability λ ∈ (0, 1) in steady state, and who once infected can transmit

for some positive integer number of periods T . Start with one end node being infected and

let λ∗ ∈ (0, 1) solve (1) and λ∗∗ solve λ =
[
1− (1− λ)T

]2
.7 Then 0 < λ∗∗ < λ∗ < 1 and the

configuration that maximizes the probability of overall infection is:

• PSSSS . . . SP if λ < λ∗∗,

• PSPSP . . . SP if λ∗∗ < λ < λ∗, 8and

• PPPPP . . . PP if λ > λ∗,

As we saw in Proposition 1, there are similar results for the case of maximizing the

expected extent of the diffusion. The cutoff expressions become more complex with longer

lines, and so in Proposition 2 we simply provide the analysis for the probability of overall

infection. We can still see the gain from heterogeneity in the following simulation.

To see the extent of the gain from alternation, consider the following results from simula-

tions. We compare the infections in a line of five nodes in which all of the nodes are Poisson

to one in which they alternate Poisson and Sticky. One of the nodes is picked at random to

be infected and we set T = 2. We show the comparisons for a full range of λ. For each of 50

values of λ we run 40000 iterations of drawing a random network and running an infection.

The reported values for each λ value are the average over the 40000 iterations.

We see in Figure 3 that the gains from alternating Sticky with Poisson compared to

having just Poisson can be very large, more than four hundred percent, while the reverse

advantage that comes in at high levels of λ is relatively negligible.

7Again, there are three solutions to this equation, with 0 and 1 being solutions, and the one of interest
being the interior solution.

8Note that the first two collapse when the chain is of length 3 and then simplifies to Proposition 1.
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(a) (b)

Figure 3: The ratio of the infection probabilities under alternating Poisson and Sticky nodes
over that for all Poisson Nodes, on chains of five nodes with one randomly infected: (a) ratio
of probability of getting at least half of nodes infected, and (b) Ratio of probability of getting
all nodes infected.

Figure 4: A Star Network with Five Leaves

Maximizing the probability of a full infection tilts the balance more towards Sticky nodes

at key junctures or “hubs”. To expand on this point, we study the diffusion process on a

“star” network. A star network has a central node and n leaves connected to the center. For

example, in Figure 4 we see a star network with five leaves.

Proposition 3 Consider agents in a star network with n leaves, with all agents being in-

dependently active with probability λ ∈ (0, 1) in steady state, and who once infected can

transmit for T = 2 periods. Start with some random leaf being infected. Then, for any λ,

there exists some N such that if n ≥ N , then the configuration that maximizes the probability

of a full contagion is to have an S node in the center and P nodes on the leaves.

The intuition behind Proposition 3 is as follows. If the central agent were to be Poisson,

then there is a high probability that some of the leaf agents will miscoordinate with the
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central agent. In contrast, by having a Sticky central agent, even though that agent may fail

to be active, if the central agent is active then that makes coordination with all of the leaf

agents much easier than if the central agent were Poisson, and that advantage as a sender

increases as n increases. For some values of λ the result also extends to maximizing the

expected number of infections.

Proposition 2 shows that for λ > λ∗, the configuration that maximizes the expected

number of infected nodes does not include S agents. In contrast, Proposition 3 claims that

including Sticky behavior is always optimal for agents at key junctures. Note that “hubs”

appear in various kinds of networks, from human brain [Bullmore and Sporns (2009); van den

Heuvel and Sporns (2013)] to social networks [Kempe et al. (2003)] to computer networks

[Cohen et al. (2003)], and this proposition suggests that in designing the activity patterns

of such nodes with high degrees, autocorrelated behavior can be optimal.

In the next section, we show how “extreme heterogeneity” (i.e., mixing Sticky agents

with Reversing agents, as opposed to mixing Sticky and Poisson agents) further improves

diffusion.

3.2 Reversing Agents

Continuing our comparisons, we now consider what happens when we also consider Reversing

nodes.

Reversing nodes do not do so well when matched with each other, as they only happen

to coordinate if they are in similar states in the first period (either active or inactive), but

they can badly miscoordinate if they are in different starting states when λ is low. Reversing

nodes, however, work very well when matched with Sticky nodes.

Proposition 4 Consider agents in line and begin with one end node infected, but then ran-

domly active in the first period of its transmission. Suppose that all agents are independently

active with probability λ ∈ (0, 1) in steady state, and once infected can transmit for some

positive integer number of periods T . If λ < λ∗, then any configuration that maximizes the

expected number of infected nodes or the probability of overall infection involves R nodes.

Moreover, in the case of T = 2, then the optimal configurations involve only R and S

nodes (Poisson nodes are not used in the optimal configurations). Those optimal config-

urations are either to have full alternation of the form RSRSR...SR for low values of λ,

all Reversing nodes RRRRR...RR for high levels of λ, and some combinations of string of

RRR’s and alternating SRSR...SR for middle values of λ.

Having a Reversing node following a Sticky node maximizes the probability of transmis-

sion. For example, if λ > 1/2 then the probability of transmission from an infected Sticky
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to a Reversing node is one. Thus, the only loss in having alternaging Sticky and Reversing

nodes is from having Sticky nodes as receivers which is biggest for large values of λ, at which

point it is bettr go entirely to Reversing nodes.

3.3 Illustrations

Before moving to networks with cycles, we further illustrate our results on a line of five

nodes. This shows the differences between various combinations of node types and shows

how much improvement comes from including extreme node types and from heterogeneity.

We compare the infections in a line of five nodes for the following cases: all nodes are

Poisson, nodes alternate Poisson and Sticky, all nodes are Reversing, and nodes alternate

Reversing and Sticky . One of the nodes is picked at random to be infected and T = 2. We

show the comparisons for a full range of λ. For each of 50 values of λ we run 40000 iterations

of drawing a random network and running an infection. The reported values for each λ value

are the average over the 40000 iterations.

Figure 5 (see also Figures 8 and 7 in the appendix) shows that the best system is always

either alternating Reversing and Sticky or else all Reversing - and not to involve Poisson

nodes. Again, the gains can be large in magnitude - especially for low to middle ranges of λ,

in which all Poisson has a probability of about .3 of reaching half infection while alternating

Reversing and Stick nodes has a probability of more than .6.

(a) (b)

Figure 5: Comparisons of infection probabilities under various configurations of nodes on
lines of five nodes with one randomly infected: (a) probability of getting 1/4 nodes infected,
and (b) probability of getting 1/2 nodes infected.
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4 General Networks

We now move on to more general networks. Although characterizations are precluded given

the complexity, we can still show that heterogeneity among agents is part of any optimal

configuration in a wide class of networks.

4.1 General Agents and Expected Infection Levels

We now allow agents to have any pi’s, but still where all agents have the same long-run

probability λ of being active in order to focus on the timing patterns rather than overall

levels of activity.

The following result shows that in any network that has some agents who are not in cycles

the optimal configuration of agents must involve some sort of alternation/heterogeneity. In

order to make the point that heterogeneity is always optimal, it is sufficient to consider

T = 2, as the calculations are tractable for that case.

Theorem 1 Consider any path-connected network for which there is at least one node that

has degree one (a ‘leaf ’). Suppose that each agent must be active λ of the time, independently

across agents, and consider T = 2. Start with some non-leaf node being infected. Any

configuration of pi’s that maximizes either the expected number of infected nodes or the

overall probability of full contagion involves pi 6= pj for some i and j.

The proof takes advantage of some node that has degree one and its neighbor, which

allows us to obtain closed form expressions for their contagion, fixing the rest of the network.

Once nodes enter into cycles, it becomes intractable to calculate the optimal configurations

in closed form. Nonetheless, the basic intuition that heterogeneity in types leads to higher

rates of contagion extends to the network in general - not just occasional leaf nodes - as we

verify in some simulated networks.

4.2 Random Networks

We now examine Erdos-Renyi networks on 20 nodes with a probability of 1/4 per link. So,

the expected degree is roughly 5 and the network is usually connected and has many cycles.

Again, we compare what happens with all Poisson nodes to what happens with half Poisson

and half Sticky nodes (ten of each type), as well as having all Reversing nodes, and having

half Reversing and half Sticky. Given that the network is random, the various nodes end up

randomly located in the network. Again, for each of 50 values of λ we run 40000 iterations

of drawing a random network and running an infection. The reported values for each λ value

are the average over the 40000 iterations.
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Figure 6 (see also Figure 9 in the appendix) shows that a mixture of Reversing nodes with

Sticky nodes does as well as either of the other configurations or substantially better for a

wide range of λ – even for Erdos-Renyi random networks, not just lines. Moreover, here the

nodes are not explicitly placed in some alternating fashion, but just randomly mixed in the

population and still having Sticky mixed with Reversing nodes does better for a substantial

range of parameters. Having all Poisson is never optimal.9

(a) (b)

Figure 6: Comparing all Poisson to an alternation of Poisson with Sticky to an alternation
of Reversing nodes with Sticky nodes for Erdos-Renyi Random networks on 20 nodes: (a)
probability of getting 1/4 nodes infected, and (b) probability of getting 1/2 nodes infected

5 Application: Online Advertising

We point out that our results on the necessity of heterogeneity provide a broad insight and,

for instance, can help illuminate the design of optimal advertising strategies.

Consider a news consumer that an advertiser wants to reach, and two news websites,

say BBC and CNN, that the consumer may frequent. Suppose the user is either a Sticky

user, who always goes to the same news website, or a Poisson or Reversing user, who either

randomly or regularly switches between the two news website.

Consider an advertiser with a fixed budget, enough for N display ads. Suppose the

advertiser can only put an ad on one of the two news agencies in any given day. The goal of

the advertiser is to maximize the probability of reaching the consumer. Should the advertiser

9In the appendix, we see that all Poisson can be optimal in getting full infection for a middle range of λ
(near .4 to .5 in Figure 9). This may be partly due to the random placement of Reversing and Sticky nodes,
which can mean that some nodes end up not having a different-type node as a neighbor, and so full infection
is precluded, in which case replacing them by Poisson would be an improvement.
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alternate between BBC and CNN on different days, or she should pick one of the two and

spend all of the budget at that one, or follow some other strategy?

Our results tell us that the optimal decision for the advertiser is to follow a complemen-

tary strategy to the consumer: If the consumer is Sticky, the optimal decision is alternate

(‘Reverse’) between BBC and CNN so as to make sure that the consumer no matter which

news agency she regularly visits. If the user alternates in some manner - being Poisson or

Reversing, then the optimal decision of the advertiser is to pick just one of the news outlets,

BBC or CNN, and spend all of the budget there (so the advertiser behaves as a ‘Sticky’

agent) which minimizes miscoordination chances.

6 Concluding Remarks

We have shown that heterogeneity in activity patterns in a population enhances diffusion,

and that matching extreme types of agents next to each other can increase the likelihood

of “epidemics” by an order of magnitude. We have abstracted from heterogeneity in overall

activity levels and correlation across agents, which would be interesting extensions to the

analysis.
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J. Saramäki (2011): “Small but slow world: How network topology and burstiness slow

down spreading,” Physical Review E, 83, 025102.
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Appendix

Proof of Proposition 1: First, we show that it is never optimal to have the first agent

be Sticky, either in terms of the expected number of infected agents or the probability of

total infection. This is clear in the case in which the second agent is Sticky, since then

the probability that the second agent becomes infected is λ2 if the first agent is Sticky and

is λ(1 − (1 − λ)T ) > λ2 if the first agent is Poisson. Note that this implies that both the

expected number of infected agents and the probability of total infection are higher by having

the first agent be Poisson when the second agent is Sticky, since this is independent of what

happens past the second agent conditional upon that agent being Sticky in both cases. Next,

consider the case in which the second agent is Poisson (and again, this applies for both both

the expected number of infected agents and the probability of total infection). Consider the

T periods in which the first agent might infect the second agent. Let X be the number of

periods that the second agent is active out of those T . If X is 0 or 1, then having the first

agent be Sticky or Poisson is equivalent. However, if X > 1, then the chance that the first
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agent is active in at least one of those X periods is λ for the Sticky agent and 1−(1−λ)X > λ

for the Poisson agent. Thus, it is better to have the first agent be Poisson.

The following straightforward calculations are useful in what follows. The probability of

a second node adjacent to a first one getting infected, conditional upon the first one being

infected, as a function of the configuration is:

PS = λ(1− (1− λ)T )

SP = 1− (1− λ)T

PP = 1− (2λ(1− λ) + (1− λ)2)T = 1− (1− λ2)T

SS = λ.

To prove Proposition 1, first note that given the above expressions, SP > PP > PS and

SP > SS > PS.

Let us next consider the configuration of three agents (with the first one randomly in-

fected), and presume that the first agent is Poisson since we have already showed that to

be optimal. Note that PP > PS implies that PPP > PPS, and SP > SS implies that

PSP > PSS, and moreover these comparisons hold both in terms of the last person being

infected and the overall expected number of infections.10 Thus, the maximal string in terms

of overall infection or expected number of infections is either PPP or PSP, as PSS and PPS

are dominated (as is SSS by similar reasoning) - Let us compare those two.

First, let us do the comparison in terms of the probability of total infection. For that

PPP =
[
1− (1− λ2)T

]2
and PSP = λ

[
1− (1− λ)T

]2
.

So, PSP > PPP if and only if

λ > f(λ) =

[
1− (1− λ2)T

1− (1− λ)T

]2
. (3)

Next, we show that λ =
[
1−(1−λ2)T
1−(1−λ)T

]2
has a unique solution in (0, 1). Consider the function

g(λ) = (1 − (1 − λ)T )2. It is easy to check that g′(0) = g′(1) = 0, g is increasing in

between, and g′′(0) > 0 and g′′(1) = 0 and that g′′′ is negative. Therefore, g(λ) is strictly

convex at the beginning, and then becomes strictly concave, with a unique inflection point.

Thus, h(λ) = g(λ)/λ is monotonically increasing for λ’s below the inflection point and then

monotonically decreasing after that. Also, h(1) = 0 and limλ→0 h(λ) = 0.

Next note that solving for the fix point of f(λ) is equivalent to solving for h(λ) = h(λ2).

10Note that PPP and PPS lead to the same chances of the second member being infected and PPP has
a conditional and unconditional higher expectation of the third member being infected, and so leads to a
higher expectation. The same is true of a comparison between PSP and PSS.
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Since h(λ) is monotonically increasing for λ’s below the interior inflection point and then

monotonically decreasing after that,with h(1) = 0 and limλ→0 h(λ) = 0, it follows that this

equation has a unique solution in (0, 1), denoted λ∗.

For small λ, f(λ) is approximately
[
Tλ2

Tλ

]2
= λ2, and so the (3) holds for small lambda,

and so the condition holds for λ < λ∗ .

Next, to do the comparison in terms of infected agents, consider the expected number of

infected agents beyond the first Poisson agent. For that the expectations are:

PPP = 2
[
1− (1− λ2)T

]2
+
[
1− (1− λ2)T

]
(1− λ2)T =

[
1− (1− λ2)T

] [
2− (1− λ2)T

]
and

PSP = 2λ
[
1− (1− λ)T

]2
+ λ

[
1− (1− λ)T

]
(1− λ)T = λ

[
1− (1− λ)T

] [
2− (1− λ)T

]
.

So, PSP > PPP in terms of the expected number of infections if and only if

λ >

[
1− (1− λ2)T

] [
2− (1− λ2)T

]
[1− (1− λ)T ] [2− (1− λ)T ]

.

The rest of the proof is similar to the previous analysis of the fixed point of an analogous

function.

Proof of Proposition 2:

First, the argument that the first agent should be Poisson is as in the previous proposition.

Similarly, the last agent being Poisson follows from the PP > PS and SP > SS from the

previous proposition.

Next, note that a comparison of the probability of total infection between PSPSP . . . SP

or PSSSS . . . SP boils down to a comparison of the probability of both PS becoming infected

vs SS, both following an infected S. Those two calculations are

PS : λ
[
1− (1− λ)T

]2
,

and

SS : λ2.

So, alternating is better if and only if[
1− (1− λ)T

]2
> λ.

Note that this is equivalent to g(λ) > λ, where g(λ) was defined in the previous proof and is
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initially convex and eventually concave and having a unique fixed point in (0, 1). Note also

that g′(0) = g′(1) = 0 and g(0) = 0 and g(1) = 1. It follows that g(λ) < λ for λ < λ∗∗ and

then this reverses for λ > λ∗∗. Thus, g(λ) > λ if and only if λ > λ∗∗, which establishes the

comparison between PSPSP . . . SP or PSSSS . . . SP appearing in the proposition.

Next, note that when g(λ) = λ, then g(λ2) < λ2, since g(λ) < λ below λ∗∗. This implies

that λ >
[
1−(1−λ2)T
1−(1−λ)T

]2
from our proof of Proposition 1, which implies that λ < λ∗, and so

λ∗∗ < λ∗.

Next, note that a comparison between PSPSP . . . SP or PPPPP . . . PP boils down

to a comparison between SP and PP following an infected P . This is equivalent to the

calculation of PSP versus PPP from Proposition 1.

Let us then consider other possible sequences that involve beginning and ending P ’s.

First, let us argue that it is not possible to have any instances of both SS and PP in the

same sequence. Consider a sequence that contains SS. Since the sequence begins and ends

with P ’s, there must exist both PSS and SSP somewhere in the sequence. This (generically)

implies that PSS > PPS and SSP > SPP . This means that there cannot exist a PP in

the sequence. (If there were a PP , then since the sequence also has Ss, somewhere there is

at least one of PPS or SPP .)

Next, let us argue that it is not possible to have P in the interior of the sequence if there

is some instance of SS. First, given the odd number of interior nodes and the fact there

there is no repetition of P ’s in the sequence, if there is one instance of SS, there must be at

least two such instances. If there is a sequence of SSS, then it must (generically) dominate

SPS, which contradicts the presence of an interior P . If instead these two instances of SS

have a P somewhere between them (possibly several, alternating with Ss), then there would

be a sequence of the form SSPSS or SSPSPSS, etc., somewhere. Let us consider the first

case, as the others are easy extensions. The presence of SSPSS means that SPS dominates

SSS, and so the value of SP times PS is larger than the value of SS squared. The value of

SSPSS is the values of SS2 times SP times PS. Instead the value of SPSPS is the values

of SP 2 times PS2, which is larger since the values of SP times PS is larger than the value

of SS squared. Thus, we reach a contradiction.

A parallel argument implies that it is not possible to have any (interior) Ss if there is

some instance of PP .

Given the above arguments, the only remaining sequences have either all Ss interior, all

P ’s interior, or fully alternate S and P , which are the sequences we have already compared.

This completes the proof.

Proof of Proposition 3:

The optimality of having Poisson nodes as an end node has already been established in

Proposition 1. The probability of full contagion is the probability of the central node getting
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infected times the probability of the central node infects all other nodes. So the probability

of full contagion when the central node is P is:

Pp =
(

1− (1− λ2)2)
)(

2λ(1− λ)λn−1 + λ2(1− (1− λ)2)n−1
)

And the probability of full contagion when the central node is S is:

Ps =
(
λ(1− (1− λ)2)

)(
1− (1− λ)2

)n−1
= λ

(
1− (1− λ)2

)n
Now we show that limn→∞(Pp/Ps) < 1, which then proves the proposition. Note that

(1− (1− λ)2) = λ(2− λ). Thus,

limn→∞(Pp/Ps) = limn→∞

(
1− (1− λ2)2

)(
2λn(1− λ) + λn+1(2− λ)n−1

)
λn+1(2− λ)n

This can be simplified to:

limn→∞(Pp/Ps) = limn→∞

(
1− (1− λ2)2

)( 2(1− λ)

λ(2− λ)n
+ 1/(2− λ)

)
=

(1− (1− λ2)2)
2− λ

,

which is less than 1 for any 0 < λ < 1.

Proof of Theorem 1: Let p∗ = 1− λ denote the Poisson p associated with λ.

We provide the same proof for the expected number of infected nodes or the overall

probability of full contagion. The proof is as follows. Suppose, to the contrary, that the

maximizer (either of the expected number of infections or the probability of overall infection)

involves all nodes having the same p. We show that changing the p for a leaf node will strictly

increase the probability that the leaf node becomes infected (conditional on its neighbor being

infected, as well as unconditionally). Since changing the p for a leaf node does not change

the infection probability for any other node, this increases both the expected number of

infections and the probability of overall infection.

We offer the proof for T = 2, and examine the probability of a leaf node becoming

infected conditional upon its predecessor being infected.

First, consider the extreme (Sticky) case of p = 0. Note that SP dominates SS from our

earlier analysis, and so in that case it is direct that the leaf node should differ.

Next, consider a case in which p 6= 0.

First, note that pp (recalling that T = 2) is equal to

(1− p)λ+ pqλ+ (1− p)2(1− λ)q,
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and noting that q = pλ
1−λ , pp can be written as

λ

[
(1− p) + p2

λ

1− λ
+ (1− p)2p

]
. (4)

Thus, an optimal p must maximize (4), and from the first order conditions must satisfy

0 = −1 + 2p
λ

1− λ
+ 1− 4p+ 3p2 ⇒ 3

2
p2 = p

(
2− λ

1− λ

)
,

which has two solutions: p = 0 and

p =
2

3

(
2− λ

1− λ

)
. (5)

Taking the second derivative of (4), we find

2
λ

1− λ
− 4 + 6p,

which is only nonpositive if

p ≤ 1

3

(
2− λ

1− λ

)
(6)

and so the second solution from (5) cannot be a maximizer.

Also, note that the other corner of p = 1 cannot be a solution. This follows directly since

then (4) is equal to λ2/(1− λ) < λ (since λ < 1/2), while (4) becomes λ when p = 0.

Thus, a solution of all the same p’s must have p = 0, which we have already shown not

to be possible.
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Online Appendix

Proof of Proposition 4:

The probability that a P is never active is (1− λ)T . The probability that an R is never

active is (1 − λ)(1 − q)T−1 where 1 − q < 1 − λ, since a reversing node has a probability

of staying in the inactive state that is lower than the overall probability of being in that

state. In particular, q = min{1, λ/(1 − λ)}, and so 1 − q = max{0, (1 − 2λ)/(1 − λ)}, and

(1− 2λ)/(1− λ) < 1− λ since 1− 2λ < 1− 2λ+ λ2 given that λ > 0.

This implies that RS... always beats PS...., and similarly that ....SR beats ....SP .

These facts imply that RSPS...PSR and RSSS...SSR dominate PSPS...PSP and

PSSS...SSP , respectively, and so this, together with Proposition 2, implies that whenever

λ < λ∗, the optimal configuration involves R.

Next, we focus on the case of T = 2. When λ ≤ 1/2, an R node has p = 1 and

q = λ/(1− λ).

Let us first calculate the chance of the second node getting infected under various sce-

narios for the first two nodes (presuming that the first starts randomly):

RR . . .: λ2 + 2λ(1− λ)(1− p)q + (1− λ)2q2 = 2λ2

RS . . .: λ2 + λ(1− λ)q = 2λ2

SR . . .: λ2 + λ(1− λ)q = 2λ2

RP . . .: λ2 + λ(1− λ)(1− p)λ+ λ(1− λ)qλ+ (1− λ)2qλ = 2λ2

PR . . .: λ2 + λ(1− λ)(1− p)λ+ λ(1− λ)qλ+ (1− λ)2qλ = 2λ2

PS . . .: λ(λ+ λ(1− λ)) = (2− λ)λ2

SP . . .: λ(λ+ λ(1− λ)) = (2− λ)λ2

SS . . .: λ2

PP . . .: λ2 + λ2(1− λ2)) = (2− λ2)λ2

From these calculations, and noting that it is strictly best to have the second node be S

(since then it is active for sure), the unique optimal starting configuration is RS . . ..

Note now, that this implies that the second node is active conditional on having been

infected since it is S.

Next, let us consider nodes beyond the first two.

We analyze the probability that a subsequent node gets infected conditional upon a

previous one being infected (once we are past the initial node). Here the calculations lead

to:

. . . PR . . .: λ2 + λ(1− λ)(1− p)λ+ λ(1− λ)qλ+ (1− λ)2qλ = λ3 + (2− λ)λ2 = 2λ2

. . . PP . . .: λ2 + λ2(1− λ2) = (2− λ2)λ2

. . . PS . . .: λ(λ+ λ(1− λ)) = (2− λ)λ2

. . . SR . . .: (1− p) + pq = λ+ (1− λ)q = 2λ

. . . SP . . .: λ+ λ(1− λ) = (2− λ)λ
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. . . SS . . .: λ

. . . RR . . .: (1− p)[λ+ (1− p)(1− λ)q] + pqλ = λ2/(1− λ)

. . . RS . . .: (1− p)λ+ pqλ = λ2/(1− λ)

. . . RP . . .: (1− p)λ[1 + (1− p)(1− λ)] + pqλ = λ2/(1− λ)

Note that these imply that the best last node is R (with a note that if the second to last

node is also R, then we are indifferent as to the last node). For the arguments below, we

thus take the last node to be R - and show the unique optimal configuration given that, and

then we can vary the last node if the second to last node happens to be R, which it never

does.

Using the above calculations, let us next show that it is never optimal to have an interior

P .

First, from the above calculations and λ < 1/2, it is easy to check that conditional on the

first node being infected ..PSS > ..PPS, ..PSR > ..PPR, and ..PSP > ..PPP . (To see

the last one, note that (2−λ)2λ3 > (2−λ2)2λ4, since it is equivalent to (2−λ)2 > (2−λ2)2λ,

and noting that the right hand side is smaller than 2− λ2, which is less than the left hand

side which is 4− 4λ+ λ2.) These imply that there will never be two P ’s in a row. The only

other ways in which P could enter in the interior (without having two P ’s in a row) is either

as ..SPS, ..SPR, ..RPS, and ..RPR. Note that these are less than ..SRS, ..SSR, ..RSS,

and ..RSR, respectively.

Thus, the optimal configuration involves only R and S (except if the second to last node

is R in an optimal configuration, in which case any last node is optimal, but that case will

not arise).

Before examining the optimal intermediate patterns, let us consider the case in which

λ > 1/2.

Next, we focus on the case of T = 2 and λ > 1/2, so that for the R nodes: p = (1−λ)/λ

and q = 1 and 1− p = (2λ− 1)/λ.

Let us first calculation what the chance of the second node getting infected under various

scenarios for the first two nodes (presuming that the first starts randomly):

RR . . .: λ2 + 2λ(1− λ)(1− p)q + (1− λ)2q2 = λ+ (1− λ)(2λ− 1)

RS . . .: λ2 + λ(1− λ)q = λ

SR . . .: λ2 + λ(1− λ)q = λ

RP . . .: λ2 + λ(1− λ)(1− p)λ+ λ(1− λ)qλ+ (1− λ)2qλ = λ2(3− 2λ)

PR . . .: λ2 + λ(1− λ)(1− p)λ+ λ(1− λ)qλ+ (1− λ)2qλ = λ2(3− 2λ)

PS . . .: λ(λ+ λ(1− λ)) = (2− λ)λ2

SP . . .: λ(λ+ λ(1− λ)) = (2− λ)λ2

SS . . .: λ2

PP . . .: λ2 + λ2(1− λ2)) = (2− λ2)λ2
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From these calculations, we can conclude that PS . . ., SP . . ., SS . . ., and SR . . ., are all

dominated by RS . . . (noting that it is always best to have a second node be S conditional

upon it being infected since it will then stay active).

So the possible starting cases are RR . . ., RS . . ., PR . . ., PP . . ., and RP . . .. Next, note

that from the expressions above RR . . . dominates PR . . . 11 and RP . . . dominates PP . . .,

and so we are down to RR . . ., RS . . ., and RP . . . as starting.12

We can then analyze the probability that a subsequent node gets infected conditional

upon a previous one being infected (once we are past the initial node). Here the calculations

lead to:

. . . PR . . .: λ2 + λ(1− λ)(1− p)λ+ λ(1− λ)qλ+ (1− λ)2qλ = (3− 2λ)λ2

. . . PP . . .: λ2 + λ2(1− λ2) = (2− λ2)λ2

. . . PS . . .: λ(λ+ λ(1− λ)) = (2− λ)λ2

. . . SR . . .: (1− p) + pq = 1

. . . SP . . .: λ+ λ(1− λ) = (2− λ)λ

. . . SS . . .: λ

. . . RR . . .: (1− p)[λ+ (1− p)(1− λ)q] + pqλ = λ+ (1− λ)(2λ− 1)2/λ2

. . . RS . . .: (1− p)λ+ pqλ = λ

. . . RP . . .: (1− p)λ[1 + (1− p)(1− λ)] + pqλ = λ+ (1− λ)(2λ− 1)2/λ

These all make it clear that the last node should be an R as well. So, we only need to

investigate the intermediate patterns.

We first argue that in any entry (except possibly the last entry), regardless of what comes

before or after, it is better to have R or S compared to P .

First, we show that R is always a better receiver than P .

First, note that in terms of being the second node (noting that R is always the starting

node), RR . . . has a higher probability that RP . . .. To see this, note that the difference in

probabilities can be written as 2λ3 + 4λ− 5λ2 − 1 = (2λ− 1)(1− λ)2 > 0.

Similar sorts of comparisons show that . . . SR . . . has a higher probability than . . . SP . . .,

. . . RR . . . has a higher probability than . . . RP . . ., and . . . PR . . . has a higher probability

than . . . PP . . ..

Next, note that S is always a better sender node: . . . SS . . . has a higher probability than

. . . PS . . ., . . . SR . . . has a higher probability than . . . PR . . ., and . . . SP . . . has a higher

probability than . . . PP . . ..

. . . RS . . . has a higher probability than . . . PS . . .

So since R is a better receiver, there is no configuration with a PS in it.

11Here note that the difference is 2λ3 − 5λ2 + 4λ− 1 = (2λ− 1)(1− λ)2 > 0.
12Although these may also be ordered, how the second node interacts with subsequent nodes differs across

these three starting configurations. So, we cannot rule any of them out until we do further calculations
about the interaction with subsequent nodes.
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We are left with configurations of the form PP or PR appearing somewhere.

PR could potentially come in 3 forms (given that we have to consider the P as sand-

wiched): . . . SPR . . ., . . . PPR . . ., . . . RPR . . ..

It follows from our calculations that . . . SPR . . . and . . . PPR . . . are dominated by

. . . SRR . . . and . . . PRR . . ., respectively. Also . . . RPR . . . is dominated by . . . RSR . . .

for λ ≤ λ′′′ and by . . . RRR . . . for λ ≥ λ′′′, where λ′′′ ∈ (1/2, 1) solves . . . RSR . . . =

. . . RRR . . ..13

PP could conceivably come embedded in 3 triples (noting that we already ruled out other

combinations, for instance we showed there is no trailing S and . . . PPR . . . is has also been

handled above): . . . SPP . . ., . . . RPP . . ., . . . PPP . . ..

It then follows from comparing the expressions that . . . SPP . . ., . . . RPP . . . and . . . PPP . . .

are dominated by . . . SRP . . ., . . . RRP . . . and . . . PRP . . ., respectively.

This implies that the only entries in an optimal configuration (either in terms of max-

imizing the expected number of infections or the probability of total diffusion) are S and

R.

Given that we only need to consider S and R entries, the remainder of the proof par-

allels that of the proof of Proposition 2, showing that we end up with either RSSS...R or

RSRS...R. Note that the second to last node is always an S, and so the unique last node is

R.

There is one small change from that proof. The starting node is presumed to be inde-

pendently active in the first period, while an interior R node once it is infected in one period

is likely to be inactive. That means that the calculations differ between a first node and

an interior node when they are R nodes. The parallel to the proof of Proposition 2 can be

used to show that past the third node it is best to have either SSSS...R or RSRS...R. The

configuration for the first three nodes may be all R’s.

13The calculations to verify some of these various expressions are quite involved, but can be accomplished
in some cases by comparing the expressions at various extreme values of λ and then checking that the
functions stay ordered by checking that intersections occur outside of the relevant interval of λs, or that the
derivative of the difference does not change signs. It easiest to simply graph the functions in a program and
check that they are properly ordered.
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(a) (b)

Figure 7: Comparisons of infection probabilities and the average fraction infected under
various configurations of nodes on lines of five nodes with one randomly infected: (a) the
probability of Getting All Nodes Infected, (b) the average Fraction of Nodes Infected.

(a) (b)

Figure 8: The ratio of expected infected proportions under various configurations of nodes
on lines of five nodes with one randomly infected: (a) alternating Reversing and Sticky
compared to (over) alternating Poisson and Sticky, (b) alternating Reversing and Sticky
compared to (over) all Poisson.
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(a) (b)

Figure 9: Comparing all Poisson to an alternation of Poisson with Sticky to an alternation
of Reversing nodes with Sticky nodes. Erdos Renyi Random networks on 20 nodes: (a) the
probability of Getting All Nodes Infected, (b) the average Fraction of Nodes Infected.
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