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In over-the-counter (OTC) markets, transactions between dealers exhibit

a core-periphery network. Ten to thirty highly interconnected dealers ac-

count for a majority of both dealer-to-dealer and client-to-dealer transac-

tions. These dealers form the core, while hundreds of sparsely connected

dealers trade infrequently and form the periphery. This network structure is

not a one-time random event but is highly persistent over time. In particu-

lar, both the dealers’ relative importance in the network and who they trade

with are highly persistent.1 Li and Schürhoff (2014) (LS hereon) document

these patterns for the municipal bond market and Neklyudov, Hollifield, and

Spatt (2014) (NHS hereon) for the asset-backed securities market.2

These stylized facts challenge existing models. Recent papers rationalize

the core-periphery phenomenon with ex-ante dealer heterogeneity.3 Current

network models are one-time static models and hence cannot speak to the

observed network persistence. Search models—a prominent class of models

capturing OTC markets—imply that trading networks are random.

Thus, we still need to explain: How does dealer heterogeneity arise in

the first place? And why do core and peripheral dealers co-exist? Any con-

vincing explanation has to—at the same time—explain the observed network

persistence. How do core dealers maintain their size and market share and

persistently remain in the core?

We build a search-based model of network formation and show that dealer

heterogeneity and the core-periphery network arise from specialization. Some

dealers form the core because they specialize in investors who trade frequently

(e.g. index funds). Because they cater to customers who trade frequently,

core dealers receive a large volume of client orders. Their client orders, in

turn, support the large volume of interdealer trades they transact and hence

their centrality in the network. Conversely, the dealers that specialize in

buy-and-hold investors (e.g. pension funds) form the periphery. Thus, how

1LS document the persistence in two dimensions. First, the probability that a top-ten
central dealer remains a top-ten dealer month-to-month is 93%. The persistence is 97%
for peripheral dealers. Second, if two dealers trade one month, the probability that they
trade again the following month is 65%. In a random network, this probability is 1.4%.

2Other OTC markets exhibit similar networks. Afonso, Kovner, and Schoar (2013)
and Bech and Atalay (2010), for example, document a core-periphery structure in the
inter-bank lending market.

3In Atkeson, Eisfeldt, and Weill (2014), for example, the dealers with a larger num-
ber of traders form the core. In Zhong (2014) and Neklyudov (2012), the dealers with
exogenously larger inventory capacity and superior trading technology, respectively, form
the core. Hugonnier, Lester, and Weill (2014) and Chang and Zhang (2015) assume a
heterogeneity in agents’ preference for an asset. In the former, agents have idiosyncratic
realizations of asset valuations; in the latter, agents have both heterogeneous volatility and
idiosyncratic realizations. Recent network models fix agents’ network centrality (see, for
example, Gofman (2011), Kondor and Babus (2013), and Malamud and Rostek (2014)).
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clients form around dealers determines the shape of the interdealer network.

This insight is the main contribution of the paper.

We formalize this insight with a model that builds on Duffie, Garleanu,

and Pedersen (2005) and, in particular, on Vayanos and Wang (2007). We

add to their environment dealers and interdealer trades. Dealers are ex-ante

identical, but customers have heterogenous liquidity needs. Some customers

just buy and hold an asset; others buy knowing they will turn around and sell

quickly. Dealers intermediate directly between customers, but also connect

with other dealers to supplement their liquidity provision to customers. We

assume a fully connected dealer network, but network weights (in particular,

the transaction volumes between pairs of dealers) are endogenous.

In this environment, we show that both symmetric and asymmetric equi-

libria exist. The symmetric equilibrium features a circular network, where

dealers have identical network centrality. This shows that client heterogeneity

alone does not guarantee dealer heterogeneity. The asymmetric equilibrium,

on the other hand, features a core-periphery network due to specialization

and the heterogeneity that it creates.

In the asymmetric equilibrium, the endogenous dealer specialization works

as follows. Clients tradeoff a dealer’s ask-price versus its return service. Some

dealers charge a high ask-price but, in return, offer a better service if the client

has to return the bond: The dealer either buys back at a higher bid-price,

executes the order more quickly, or both. Others charge a cheaper ask-price

price but offer a worse return service. Buyers who expect to reverse their

position quickly care more about what happens to them as a seller. They, as

a result, choose the dealer based on its return service and are willing to pay

the higher ask-price. Buy-and-hold investors, less concerned with turning

into a seller later on, instead, choose the dealer offering the cheapest price.

Thus, investors with different liquidity needs endogenously sort across dif-

ferent dealers. The clientele difference across dealers, in turn, supports the

different prices and liquidity across dealers. It also generates, as previously

explained, the heterogeneity in the volume of client orders, the volume of

interdealer trades, and hence the network centrality across dealers.

Our second contribution lies in capturing the observed network persis-

tence. The observed persistence challenges two central assumptions of search

models. First, search models assume that agents’ private valuations of an

asset change randomly (as a way to generate trade in equilibrium). The as-

sumption implies that agents’ intermediation roles are random.4 Second, the

4That is, Goldman Sachs, a core dealer, can randomly become a mom-and-pop periph-
eral asset management firm one period and then randomly switch back to being Goldman
Sachs another period. In Hugonnier, Lester, and Weill (2014), for example, agents with
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standard models assume that agents trade through random search and match

and thus abstract from repeated trades between agents. We relax both of

these assumptions. We model clients and dealers separately and model valu-

ation changes occurring with clients. Dealers’ identities and their equilibrium

roles (e.g. whether they are a core or peripheral), as a result, remain stable

and hence the persistence in the intermediation roles. The stability of dealer

identities allows us to model explicit network links between dealers. Dealers,

as a result, trade with each other repeatedly and hence the persistence in the

interdealer trades.5

Additionally, we show that core and peripheral dealers play the following

roles. On the interdealer market, core dealers supply liquidity (by volume and

execution speed) to other dealers but charge wide bid-ask spreads. Peripheral

dealers consume that liquidity and pass it down to their clients (specifically,

the execution speed and wide bid-ask spreads). They rely more on the in-

terdealer market and on long intermediation chains for their liquidity service

to clients. Bonds, as a result, cycle through the economy starting with core

dealers’ clients, then the interdealer network, and eventually end with buy-

and-hold investors, who are concentrated with peripheral dealers. The cycle

repeats when a buy-and-hold investor experiences a liquidity shock and sells

the bond. The sell order, in turn, primarily gets absorbed via the interdealer

network by core dealers and their clients. Thus, core dealers serve as a central

conduit in transmitting assets through the economy from one end-customer

to another.

Finally, we highlight three additional results. First, we show that spe-

cialization and the resulting core-periphery network are socially desirable

and dominate a circular network. Second, interconnectedness among dealers

improves bond market liquidity: It increases the aggregate volume of trans-

actions, narrows bid-ask spreads, and speeds up transaction times. Greater

liquidity, in turn, alleviates misallocations and improves both the customer

welfare and dealer profits. Third, market fragmentation (captured by the

aggregate number of dealers) also increases the total welfare. Whether the

increase in the welfare accrues to clients or dealers, however, depends on their

relative bargaining powers.

We proceed as follows. Section 1 presents the model. In Section 2, we

derive the asymmetric specialization equilibrium and show that the dealer

an intermediate asset valuation resemble core dealers, while agents with extreme valua-
tions resemble peripheral dealers. As agents randomly switch between different valuations,
a dealer that is a core dealer one period may randomly become a peripheral dealer the
next period and vice versa. Similarly, in Shen, Wei, and Yan (2015), an agent randomly
switches between trading like a dealer versus like a client.

5Also, clients in our model choose dealers and trade repeatedly with their dealers.
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network has a core-periphery structure. Section 3 compares liquidity and

prices that core and peripheral dealers provide to customers and, on the

interdealer market, to other dealers. Section 4 derives additional results on

dealer interconnectedness, market fragmentation, and welfare. In Section 5,

we discuss our assumptions. Section 6 concludes.

Related Literature

We close the gap between the network and search literatures: We provide a

novel way to think about dealers and dealer networks in an environment with

search and matching frictions. We depart from Duffie, Garleanu, and Ped-

ersen (2005) (DGP) in an important way: From the perspective of clients,

dealers are segmented. In DGP, end-customers trade with one another di-

rectly through random search and match, but also frictionlessly with any

dealer. Thus, the implicit assumption in DGP is a zero cost of forming a

client-dealer relationship. In contrast, our model features dealer segmenta-

tion and thus implicitly assumes a fixed cost of forming a relationship with

a dealer. This simple tweak (dealer segmentation) allows us to model and

study (1) clients’ endogenous choice over dealers, (2) multiple dealers, (3)

the intermediation chain among dealers, and (4) dealer heterogeneity.6

Our paper relates to recent models with implications on trading networks

among agents. In Atkeson, Eisfeldt, and Weill (2014), for example, the dealer

banks with a larger number of traders and intermediate exposures to aggre-

gate risk resemble a core dealer. In Zhong (2014) and Neklyudov (2012), the

dealers with an exogenously larger inventory capacity and a superior trad-

ing technology, respectively, form the core. In Hugonnier, Lester, and Weill

(2014) and Shen, Wei, and Yan (2015), agents have idiosyncratic realizations

of private valuations for an asset, and those with intermediate valuations in-

termediate the most and resemble a core dealer. In Chang and Zhang (2015),

agents have both heterogeneous volatility and idiosyncratic realizations. In

contrast to these papers, in our model, the heterogeneity across dealers arises

endogenously.

In the network literature, a large strand studies networks in the interbank

lending market (see, for example, Farboodi (2014) and Wang (2014)). We

instead develop a model with a broader application to any OTC market.

The model, as a result, predicts transaction volumes, bid-ask spreads, and

liquidity provision. Other network models, such as Kondor and Babus (2013),

6For other search models applied to financial markets see, for example, Weill (2008),
Vayanos and Weill (2008), Lagos and Rocheteau (2009), Duffie, Malamud, and Manso
(2009), and Sambalaibat (2014).
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are based on asymmetric information. In contrast, we offer a search-based

network model. Yet another strand takes the network structure and hence

the heterogeneity in network centrality as given (see, for example, Gofman

(2011), Kondor and Babus (2013), and Malamud and Rostek (2014)). We

allow for endogenous network weights.7

In our model, some dealers in equilibrium intermediate more dealer-to-

dealer trades than other dealers. Bonds also travel through longer interme-

diation chains with peripheral dealers than with core dealers. Thus, our

paper relates to models of intermediation chains (e.g., Viswanathan and

Wang (2004), Glode and Opp (2014), Gofman (2011), Colliard and Demange

(2014), Hugonnier, Lester, and Weill (2014), and Shen, Wei, and Yan (2015)).

1 Model

Time is continuous and goes from zero to infinity. There is one asset—a bond

with supply S paying a coupon flow δ—and two sets of agents: customers

and three ex-ante identical dealers. Dealers are indexed by i ∈ N , where

N = {1, 2, 3} is the set of dealers.8 Everyone is risk neutral, infinitely lived,

and discounts the future at a constant rate r > 0.

Customers

Customers are the end-users of the bond. As in standard search models,

they have an idiosyncratic high or low valuation for the bond. High types

derive a flow utility δ from holding the bond, while low types derive δ −
x, where x > 0 represents a disutility of holding the bond. High types

thus in equilibrium want to own the bond; low types do not. Categorizing

agents by their valuation and asset holding, we label them according to their

equilibrium trading strategy: a buyer, owner, and seller.

Investors’ valuations, moreover, change randomly, thus generating a need

to rebalance their asset position and trade. In particular, high types expe-

rience a liquidity shock with intensity k and switch to a low type. The low

7The dealer network in our model is part exogenous and part endogenous. It is exoge-
nous in that we assume a fully connected dealer network and that dealers do not choose
who to link to. Thus, we implicitly assume a zero cost of forming a link. It is endogenous
in that, once linked, link strengths (that is, network weights) are endogenous. Farboodi
(2014) and Chang and Zhang (2015), for example, treat more formally the network for-
mation process.

8Results on endogenous dealer specialization, which we show in the next section, hold
for any number of dealers: N ≥ 2. We need, however, at least N ≥ 3 to derive the core-
periphery results because with just two dealers, the amount of interdealer trades (and
hence the network centrality) are necessarily the same across the two dealers.
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state is an absorping state (that is, they do not switch back to a high type).

Upon a liquidity shock, as a result, investors exit the economy, or if they own

bonds, they first sell and then exit. Replenishing the exiting investors, new

investors enter the economy as high type non-owners (that is, as buyers).

Investors, in addition, differ by their liquidity type, k: the rate with

which they experience the liquidity shock. The distribution over k is given

by the density function f̂(k) on support [k, k].9 A k-type investor expects to

hold the bond for a period of 1
k
; thus, different liquidity types have different

expected trading horizons. Those with a high switching rate (k) have a short

trading horizon ( 1
k
) and expect to have to sell quickly, while those with a

small k expect to hold the bond longer. We refer to the former as liquidity

investors and to the latter as buy-and-hold investors.

Investors can only buy and sell through one of the dealers. Upon entering

the economy, a k-type buyer chooses dealer i with probability νi(k) according

to

νi(k) =


1 V b

i (k) > max
j 6=i

V b
j (k)

[0, 1] if V b
i (k) = max

j 6=i
V b
j (k)

0 V b
i (k) < max

j 6=i
V b
j (k),

(1)

where V b
i (k) denotes the expected utility of a k-type buyer who is a customer

of dealer i, and
∑
i∈N

νi(k) = 1. Once an investor chooses a dealer, we assume

that, from then on, she can trade only through that dealer.

Figure 1 summarizes the life-cycle of investors. An investor enters the

economy as a high type non-owner (i.e. as buyers), picks, say, dealer i, and

becomes a buyer-client of that dealer. Upon buying the bond, she becomes

an owner-client of the dealer. As an owner, she holds the bond until she

experiences a liquidity shock and becomes a seller. Upon selling the bond,

the investor exits the economy.

9The flow of new-entrants with liquidity types in [k, k+dk] is f̂(k)dk. We assume f̂(k)
is a continuous strictly positive function.
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Figure 1: Clients of Dealer i: Buyers, Owners, and Sellers
The figure illustrates in dashed (black) lines clients’ life-cycle from a buyer, to an owner,
to a seller. Upon a liquidity shock, an investor’s bond valuation changes from δ to δ − x,
where x is a disutility of holding the bond.

valuation δ buyers µbi

liquidity
shock, κ
& exits

k-buyer born

picks a dealer, e.g. i

owners µoi

valuation δ − x sellers µsi

sells & exits

liquidity
shock, κ

We denote by µsi , µ
b
i , and µoi the total measure of sellers, buyers, and

owners of dealer i, where

µbi ≡
∫ k

k

µ̂bi(k)dk (2)

µoi ≡
∫ k

k

µ̂oi (k)dk. (3)

The functions µ̂bi(k) and µ̂oi (k) are such that µ̂bi(k)dk and µ̂oi (k)dk are the

measures of buyers and owners with switching rates k in [k, k + dk].

Dealers and Intermediations

Dealers intermediate bonds for customers. They do so in two ways. First, a

dealer pairs up buyers and sellers within its own client base according to

MD
i ≡ λdµ

s
iµ

b
i , (4)

where λd is an exogenous matching efficiency of a dealer.10 Adopting the

notation from LS and NHS, MD
i is the volume of CDC (Client-Dealer-Client)

intermediation chains, where the first C is the end-seller client, and the last

10A general functional form for the matching functions would be M(µb, µs) =
λ (µb)

αb (µs)
αs . Thus, we implicitly assume: αs = αb = 1. Although constant returns

to scale is standard in search models applied to labor markets, in the context of OTC
financial markets, the standard assumption is increasing returns to scale. Weill (2008)
shows that comparative statics from a model with increasing returns to scale fit better the
stylized facts regarding, for example, liquidity and asset supply.
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C is the end-buyer client. We assume dealers do not hold inventory: They

buy from one client and instantly sell to another.

Second, a dealer intermediates for its clients by connecting with other

dealers. We denote the set of dealer connections of dealer i with Ni and

assume that each dealer is connected to every other dealer: Ni = {j ∈ N :

j 6= i} for all i. We define dealers i and j as connected if they share their

clients with each other. In particular, using i’s sellers and j’s buyers, dealers

i and j together produce λddµ
s
iµ

b
j matches (i.e. CDDC chains), where i is

the first D in the chain, and λdd is a joint matching efficiency of the two

dealers.11 Analogously, using j’s sellers and i’s buyers, they produce λddµ
s
jµ

b
i

CDDC chains, where i is now the second D in the chain. Summing across

all dealers j that dealer i is connected to, the total volume of CDDC chains

that dealer i intermediates is:

MDD
i ≡ λddµ

s
i

( ∑
j∈Ni

µbj

)
CDDC

+ λdd

( ∑
j∈Ni

µsj

)
µbi

CDDC

. (5)

Comparing (5) with (4), if, for example, λdd > λd, two-dealer intermediation

chains are more efficient than one-dealer chains. Figure 2 illustrates the

environment.

In our environment, the source of inefficiency is that—due to matching

frictions—investors with a low valuation for a bond (i.e. sellers) are stuck

holding the bond despite the availability of willing buyers. Specifically, after

receiving orders, dealers take time in producing matches and thereby create

wait times for clients eventhough clients can instantly contact and submit an

order with a dealer. Thus, trading frictions manifest as waiting periods after a

client submits an order with a dealer. In a frictionless environment (λd →∞,

λdd →∞), a customer would sell instantly, via their dealer, to another end-

customer with a higher valuation (i.e. a buyer). Our specification is realistic.

In practice, customers (as well as dealers themselves) can easily call up and

put an order with a dealer, but immediate transactions are not guaranteed.

11CDDC means Client-Dealer-Dealer-Client chain, where the ordering captures the di-
rection of the bond flow. The first C is the end-seller client, and the last C is the end-buyer
client. The first D is the dealer buying from the end-seller and selling to the second dealer,
and the second D is the dealer buying from the first D and selling to the end-buyer client.
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Figure 2: Clients, Dealers, and Interdealer Trades
The figure illustrates the model environment. Dashed (black) lines represent clients’ life-
cycle between different client types (buyer, owner, and seller). Solid (blue) lines represent
bond transaction flows. The sizes of circles represent the sizes of client measures.
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Market Clearing

The supply of bonds circulating among customers of dealer i—denoted by

si and endogenously determined—equals the measure of customers who cur-

rently hold the bond: ∫ k

k

µ̂oi (k)dk + µsi = si. (6)

For market clearing, the number of bonds circulating across all dealers’ clients

has to equal the aggregate supply of the bond, S:∑
i∈N

si = S. (7)

Interdealer Trades

We ensure that, in the steady state, a dealer is not growing or shrinking:

λddµ
s
i

(∑
j∈Ni

µbj

)
= λdd

(∑
j∈Ni

µsj

)
µbi . (8)
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The left- and right-hand sides are the total volume of bonds dealer i sells

and buys on the interdealer market, respectively. Equating the two ensures

that the dealer is neither a net buyer or a seller on the interdealer market.

Client Masses and Transitions

Customer masses have to be constant in the steady state. In particular,

the flow of investors switching to a particular type has to equal the flow of

investors switching out of that type. The mass of k-type buyers, as a result,

is determined by

f̂(k)νi(k)dk

inflow

= kµ̂bi(k)dk + (
∑
j∈N

λijµ
s
j)µ̂

b
i(k)dk

outflow

, (9)

where λij = λdd if i 6= j; otherwise, λij = λd. The left-hand side is the flow

of type k ∈ [k, k + dk] investors who become a buyer of dealer i. On the

right-hand side, the first term is the flow of k-type buyers who experience a

liquidity shock and exit the economy. The second term is the flow of buyers

who get matched; in particular, buyers find a bond through their dealer with

intensity
∑
j∈N

λijµ
s
j . Appendix A analogously characterizes the owner and

seller masses.

Prices

Prices arise from a sharing rule and are illustrated in Figure 3. Denoting by

V s
i , V b

i (k), and V o
i (k) the expected utility of a seller-, buyer-, and owner-client

of dealer i, the reservation values of a buyer and a seller are V o
i (k) − V b

i (k)

and V s
i , respectively. The total gains from trade is the difference between

the buyer and seller’s reservation values.

Prices are such that the end-seller of dealer i and the end-buyer of dealer

j each capture zij fraction of the total gains from trade, where zij = zdd
if i 6= j (i.e. 2-dealer chain); otherwise, zij = zd. We interpret zij as

customers’ bargaining power. Dealers split equally the remaining 1 − 2zij
fraction. Prices, as a result, are a weighted average of buyer and sellers’

reservation values. A seller-client of dealer i sells to his dealer at the bid

price p̂bidi,j (k) given in (A.34), who turns around and sells to dealer j at the

interdealer price P̂i,j(k) in (A.35). Dealer j, in turn, sells to its buyer-client

at the ask price p̂aski,j (k) in (A.36). Prices are, thus, specific to the dealers

and the end-customers involved in a chain.

When choosing dealers, however, a k-type buyer considers prices across all

10



possible end-sellers that he could be matched with and, as a result, considers

the expected ask-price of a dealer, paski (k). Similarly, a seller client consid-

ers the average bid-price across possible end-buyers she could be matched

with, pbidi . Appendix A characterizes these expected prices and the expected

bid-ask spread φi(k) customers face from their dealers. Equations (16)-(17)

characterize the probability of getting matched with a buyer, mb
i , and a seller,

ms
i , respectively.

Figure 3: Transaction Prices
The total gains from trade is the difference between the end-buyer and end-seller’s reser-
vation values. Prices, characterized in (A.34)-(A.36), are such that the two end-customers
each capture zij fraction of the total surplus; dealers split equally the remaining 1− 2zij
fraction. The number of dealers involved in a chain is n.

V si
end-seller’s

reservation value

p̂bidi,j (k) P̂i,j(k) p̂aski,j (k) V oj (k)− V bj (k)
end-buyer’s

reservation value

zij
1−2zij
n

1−2zij
n zij

Value Functions

Clients’ value functions solve their optimization problem. Consider, for ex-

ample, a k-type buyer who is a customer of dealer i. In a small time interval

[t+ dt], a buyer could (a) receive a liquidity shock and exit the economy

before he could purchase the bond (with probability kdt and get utility 0),

(b) buy a bond (with probability
∑
j∈N

λijµ
s
jdt and get V o

i (k)− p̂askj,i (k)), or (c)

remain a buyer:

V b
i (k) = (1− rdt)

(
kdt0 +

∑
j∈N

λijµ
s
jdt(V

o
i (k)− p̂askj,i (k))+

+[1− kdt−
∑
j∈N

λijµ
s
jdt]V

b
i (k)

)
.

(10)

Appendix A analogously derives the value functions of owner and seller types.

Our analysis focuses on the steady state equilibrium:

Definition. A steady state equilibrium is expected utilities
{
V o
i (k), V b

i (k), V s
i

}
i∈N ,

population measures
{
µ̂oi (k), µ̂bi(k), µsi

}
i∈N , the distribution of bonds across

dealers {si}i∈N , prices
{
p̂bidi,j (k), p̂aski,j (k), P̂i,j(k)

}
i,j∈N

, and entry decisions

{νi(k)}i∈N such that
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1. Value functions solve investors’ optimization problems (A.31)–(A.33).

2. Population measures and the distribution of bonds across dealers solve

inflow-outflow equations (9), (A.30), market clearing conditions (6)–(7),

and interdealer transactions equations (8).

3. Prices arise from bargaining (A.34)–(A.36).

4. Entry decisions solve (1) and
∑
i∈N

νi(k) = 1.

2 Main Results

Symmetric Equilibrium

The following proposition shows that a continuum of symmetric equilibria

exists. We define an equilibrium as symmetric if dealers have an identical

measure of buyers and sellers (even if the composition differs). A trivial

example is when buyers choose all three dealers with the same probability:

νi(k) = 1
3 for all k. That is, dealers—instead of specializing—serve the entire

spectrum of customers from buy-and-hold to liquidity investors. Importantly,

in the symmetric equilibria, dealers have identical network centrality. This

shows that, first, we do not have any baked-in dealer heterogeneity. Second,

client heterogeneity alone does not guarantee dealer heterogeneity.

Proposition 1 (Symmetric Equilibrium). A continuum of symmetric equi-

libria exists, where dealers have identical client masses: µs1 = µs2 = µs3.

Asymmetric Specialization Equilibrium

We focus on the asymmetric equilibrium of Proposition 2. Without loss of

generality, we label the dealer that endogenously attracts the clients with

the slowest, intermediate, and greatest liquidity needs as dealer 1, 2, and 3,

respectively.12 Figure 4 illustrates the result.

Assumption 1. Suppose

λddzdd > λdzd. (11)

Lemma 1. Suppose k∗ is such that V̂ b
i (k∗) = V̂ b

j (k∗). Then, V̂ b
i (k) − V̂ b

j (k)

is the same sign as (k − k∗) (λddzdd − λdzd)
(
µsi − µsj

)
.

Lemma 1 shows that if µsi − µsj > 0, buyers with k > k∗ prefer dealer i

over dealer j. That is, relatively liquidity investors prefer the dealer with a

larger seller client mass.

12Other asymmetric equilibria have identical properties, but with dealer indices reversed.
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Proposition 2 (Asymmetric Specialization Equilibrium). An asymmetric

equilibrium exists characterized by cutoffs {k∗1, k∗2}, where k < k∗1 < k∗2 < k,

buyers with k < k∗1 choose dealer 1, buyers with k ∈ [k∗1, k
∗
2] choose dealer

2, and buyers with k > k∗2 choose dealer 3. Buyers at the cutoff k = k∗1
are indifferent between dealers 1 and 2: V b

1 (k∗1) = V b
2 (k∗1), and buyers at the

cutoff k = k∗2 are indifferent between dealers 2 and 3: V b
2 (k∗2) = V b

3 (k∗2).13

Figure 4: Endogenous Cutoffs {k∗1, k∗2} and Specialization in Customers

k
¯

k∗1 k∗2 k̄

clients
of dealer 1

clients
of dealer 2

clients
of dealer 3

buy & hold investors liquidity investors

To explain how clients sort across dealers, we first characterize properties

of the asymmetric equilibrium.

Proposition 3 (Properties of the Specialization Equilibrium). Suppose deal-

ers i and j specialize in liquidity and buy-and-hold investors, respectively:

i > j. Dealer i has a larger mass of buyers and sellers: µbi > µbj and µsi > µsj
but fewer owners and bonds in circulation: µoi < µoj and si < sj. Dealer i

demands a higher expected ask-price: paski (k) > paskj (k) for all k ∈ [k, k]. For

the higher ask-price it charges, dealer i, in turn, offers a better return service:

V s
i > V s

j (by either buying back at a higher bid-price on average: pbidi > pbidj ,

executing sell orders more quickly mb
i > mb

j, or both).

Here is how customers with different liquidity needs endogenously sort

across different dealers. Buyers tradeoff a dealer’s ask-price, paski (k), versus

its return service, V s
i .14 Some dealers charge a high ask-price but, in return,

offer a better service if the client has to return the bond: Depending on the

parameter values, the dealer either buys back at a higher bid-price, executes

the order more quickly, or both. Others charge a cheaper ask-price but offer

a worse return service. Buyers who expect to reverse their position quickly

(i.e., high k buyers) care more about what happens to them as a seller. They,

as a result, choose the dealer based on its return service and are willing to

13Showing that the equilibrium is unique is tedius. We thus omit the uniqueness proof
for now.

14The value function of dealer i’s seller client, V si , summarizes the dealer’s return service.

In the Appendix, we show that V si = r
(r+mb

i )

(
δ−x
r

)
+

mb
i

(r+mb
i )

(
pbidi

)
. Thus, the expected

utility of a seller, who is a client of dealer i, increases in both the probability of getting
matched with a buyer and the expected bid-price.
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pay the higher ask-price. Buy-and-hold investors, less concerned with turning

into a seller later on, instead, choose the dealer offering the cheapest price.

Figure 7 illustrates the tradeoff. Appendix B explains the tradeoff in detail.

The ask-prices dealers charge, as a result, serve as a sorting device. Deal-

ers quoting a higher ask-price specialize in buyers who turn around and sell

quickly; dealers quoting a cheaper price specialize in buy-and-hold investors.

The difference in clientele, in turn, supports the heterogeneity in the value

function of sellers, prices, and client masses across dealers.

The intuition for why a dealer specializing in liquidity investors offers a

better value to its sellers is as follows. Substituting in the bid-prices, the

value function of a seller is a weighted sum of the expected trading surpluses

from “in-house” and “inter-house” matches:

rV s
i = δ − x+ (λDzD) µbiE

b
i [ωii(k)]

gains from
in-house matches

+ (λDDzDD)
∑
j∈Ni

µbjE
b
j [ωji(k)]

gains from inter-
house matches

.

Due to assumption (11), the weight on the gains from inter-house matches

is larger than the weight on the gains from in-house matches. The expected

utility of a seller, as a result, depends more on the inter-house matches. For

clients of a dealer specializing in liquidity investors, the inter-house matches

are with buy-and-hold buyers. A match with a buy-and-hold investor, in

turn, yields a larger trading surplus than a match with a liquidity investor

because buy-and-hold investors are the natural investors in the bond.15 Put

together, a dealer specializing in liquidity investors offers a better value to

its sellers. The better value manifests as either a higher bid-price, faster

execution speed, or both. The mechanism reverses for dealers specializing in

buy-and-hold investors.

An Endogenous Core-Periphery Network

We measure a dealer’s network centrality by its volume of interdealer trades,

MDD
i , given in (5). Since, the number of links is identical across dealers, our

measure is equivalent to: the number of links weighted by the strength of the

link (that is, by the volume of trade between dealers). We thus define dealer

i as more central (i.e., core) than dealer j if dealer i intermediates a larger

volume of interdealer trades (MDD
i ) than dealer j.

Definition 1. Dealers i and j are defined as relatively core versus peripheral

15That is, buy-and-hold investors have a higher reservation value for the bond than
liquidity investors: V o(k)− V b(k) is decreasing in k.

14



if MDD
i > MDD

j .

Proposition 4 gives the main insight of our paper: The heterogeneity

in client masses across dealers translates to a heterogeneity in the network

centrality across dealers. Dealers of liquidity investors—supported by their

large client mass—intermediate larger volumes of interdealer trades and, con-

sequently, form the core. The large client base of core dealers itself en-

dogenously arises from the characteristics of clients that self-select with core

dealers (namely, liquidity investors). The mechanism reverses for peripheral

dealers. Figure 5 illustrates the result.

Proposition 4 (An Endogenous Core-Periphery Network). The dealers that

attract more liquidity investors intermediate more CDC chains, MD
i > MD

j .

They also intermediate more interdealer (i.e. CDDC) trades, MDD
i > MDD

j ,

and thus form the core.

Figure 5: An Endogenous Core-Periphery Structure
The figure illustrates the equilibrium network structure in the asymmetric equilibrium.
The equilibrium exhibits a core-periphery network. Dashed (black) lines represent clients’
life-cycle between different types (buyer, owner, and seller). Solid (blue) lines represent
bond transaction flows. The sizes of circles represent the sizes of client measures.
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Key Ingredients

The endogenous dealer heterogeneity relies on three ingredients. The first

ingredient is matching frictions (λ < ∞) together with an imperfectly com-

petitive dealer market. Absent trading frictions (λ→∞), the dealer hetero-

geneity and, hence, the core-periphery structure do not arise.
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The second ingredient is the parameter condition in (11): λddzdd > λdzd.

It says that, for a dealer heterogeneity to emerge, clients have to somehow

benefit from interdealer intermediation chains and, consequently, prefer a

dealer who relies relatively more on intermediation chains. Otherwise, they

would either all pool with one dealer (consequently, only a monopoly dealer

exists) or choose all dealers with the same probability (that is, only the

symmetric equilibrium exists). The two ways to satisfy the condition are

λdd > λd and zdd > zd. The first says that two dealers are collectively

more efficient in producing matches than if each worked on their own. The

second says that clients extract a larger fraction of the trading surplus in

two-dealer chains than in one-dealer chains. We abstract from potential

microfoundations for why intermediation chains are beneficial. We, instead,

capture them in a reduced form through (11). Glode and Opp (2014), for

example, show that, in a model with adverse selection, when multiple dealers

are involved in a chain, more trades take place than without intermediation

chains. Their model, as a result, implies: λdd > λd. The main insight

of our paper—that heterogenous clients endogenously sort across different

dealers, and that specialization, in turn, supports dealer heterogeneity—does

not depend on the underlying microfoundations that generate the parameter

conditions.16

The third ingredient is dealer segmentation: a client can only sell through

the dealer she initially chooses. If clients can later sell through any dealer,

specialization would not arise. The dealer segmentation captures a fixed cost

of building a client-dealer relationship that the client, then, needs to recoup

over multiple subsequent trades. Presumably, such costs exist due to agency

and contractual frictions, in the absence of which, clients would freely choose

new dealers. Thus, our results suggest that the core-periphery phenomenon

inherently arises from contractual frictions between OTC counterparties.17

The extent of all three ingredients increases the extent of dealer hetero-

geneity and, hence, the core-periphery structure. For example, as matching

frictions increase, the extent of dealer heterogeneity and the core-periphery

structure also increases.

3 Empirical Predictions

We now tie the network centrality results with the previous results on special-

ization. We highlight testable predictions of our model and, where available,

16Other model implications, however, depend on whether λdd > λd or zdd > zd.
17The fact that the client segmentation is asymmetric—a buyer can choose over dealers,

but a seller cannot—is immaterial.
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compare them with the empirical evidence.

3.1 Client Trades

A broader interpretation of our model is: Core and peripheral dealers spe-

cialize in investment positions with short and long holding periods, respec-

tively. For this interpretation, it does not matter if orders come from different

clients or if the same client sends orders she expects to reverse quickly to a

core dealer and her buy-and-hold positions to a peripheral dealer.

If we assume each order is tied to a different client, a narrower interpre-

tation emerges: Peripheral and core dealers specialize in buy-and-hold and

liquidity investors, respectively. In the paper, we focus on this interpreta-

tion. Liquidity investors could be, for example, investment funds that track

indices and, hence, trade frequently, while buy-and-hold investors could be

pension funds. A direct evidence for this prediction so far does not exist

because in a typical dataset (such as that of LS and NHS) client identities

are anonymous.18

CDC and CDDC chains A core dealer intermediates more CDC chains

than a peripheral dealer:

MD
c > MD

p (12)

Thus, core dealers account for a larger fraction of not only interdealer trades

(hence their labels) but also client trades.19 This result is not trivial. The

core-periphery phenomenon is a statement about how dealers trade amongst

each other, not how much they trade with clients. The phenomenon by itself,

as a result, does not preclude other theories predicting that, for example, core

dealers trade mainly with other dealers, and that peripheral dealers account

for most of the client trades. Such theories would still be able to argue

that they explain the core-periphery phenomenon. LS and NHS, however,

document that core dealers also account for a larger fraction of client trades.20

Thus, a convincing theory has to explain why core dealers account for a

larger fraction of both interdealer and client trades. We not only reconcile

the two facts but also show that core dealers’ large volumes of client trades

18LS find that core dealers specialize in medium-size trades. The medium size trades, in
turn, tend to flow from municipal mutual fund clients, who trade frequently. This finding
is consistent with our mechanism.

19The total client trades of a dealer are 2MD
i +MDD

i (2 in front of MD
i captures the fact

that a CDC chain involves two client trades: the CD leg and DC leg). Thus, MD
c > MD

p

and MDD
c > MDD

p imply that the total volume of client trades are larger for a core dealer.
20LS document that the top 5.4% dealers (by centrality) account for 75% of all client

transactions.
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are precisely why they form the core.

A core dealer intermediates more CDC chains both in levels as in (12)

and as a fraction of all chains it intermediates:

MD
c

MD
c +MDD

c

>
MD

p

MD
p +MDD

p

(13)

Thus, a core dealer intermediates client trades more on its own than by

relying on the interdealer market. A peripheral dealer, in contrast, relies

more on other dealers and hence on long intermediation chains for its liquidity

service to clients.21 For a peripheral dealer, CDDC chains comprise a larger

fraction of all its intermediations than for a core dealer:

MDD
p

MD
p +MDD

p

>
MDD
c

MD
c +MDD

c

. (14)

Eq. (13) also implies that the average chain length is longer for a peripheral

dealer:

MD
p

MD
p +MDD

p

(1)+
MDD

p

MD
p +MDD

p

(2) >
MD

c

MD
c +MDD

c

(1)+
MDD

c

MD
c +MDD

c

(2), (15)

where inside the brackets are the chain lengths. LS and NHS document the

same patterns as (12)-(15).

Execution speed The rate at which dealer i fills clients’ buy orders is:

ms
i ≡

MD
i + 0.5MDD

i

µbi
=
∑
j∈N

λijµ
s
j . (16)

The denominator is the total buy orders the dealer receives; the numerator is,

out of the total, how many it executes. The ratio captures the fraction of all

buy orders the dealer executes.22 The rate of filling sell orders is analogously

defined as:

mb
i ≡

MD
i + 0.5MDD

i

µsi
=
∑
j∈N

λijµ
b
j (17)

Consider the difference between execution speeds of any two dealers i and

21To see this, multiply (12) by negative 1 and add 1 to both sides.
22I refer to the ratio as the probability of trade although they are intensities, not prob-

abilities. More precisely, in a small time interval [t, t + dt], the order is executed with
probability ms

idt.
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j:

mτ
i −mτ

j =

=

λDµτi + λDDµ
τ
j + λDD

∑
j∈N/{i,j}

µτj

−
λDµτj + λDDµ

τ
i + λDD

∑
j∈N/{i,j}

µτj


= −(λDD − λD)

(
µτi − µτj

)
for τ = {s, b}. Thus, if λDD < λD, a core dealer executes at a faster rate:

mτ
c > mτ

p for τ = {s, b}. If λDD = λD, a core dealer offers the same execution

speed as a peripheral dealer: mτ
i = mτ

j . If λDD > λD, a core dealer executes

at a slower rate: mτ
c < mτ

p. The intuition for the latter is: A core dealer

fills large volumes of client orders (the numerator in (16) and (17)), but the

volume of orders submitted to the dealer is even greater (the denominator).

Peripheral dealers, in contrast, transact fewer client volumes, but the amount

of orders they receive is even fewer.23

Transacted and quoted ask-price A core dealer transacts, on average,

at a lower ask-price than a peripheral dealer:

Eb
c

[
paskc (k)

]
< Eb

p

[
paskp (k)

]
(18)

Eq. (18) compares prices across dealers averaged in two dimensions. The

first dimension, as discussed earlier, is across possible end-sellers a k-type

buyer could be matched with: paski (k). The empirical counterpart to paski (k)

would be dealers’ effective quoted prices. Recall that, for a given k-buyer, a

core dealer quotes a higher expected ask-price:

paskc (k) > paskp (k) (19)

Eq. (19) is the counterfactual we observe in the model. The second dimen-

sion, captured by Eb
i [], is across dealer i’s equilibrium buyer mass. Because

ask-prices, paski (k), decrease with the buyer type k, and a core dealer’s clients

are in equilibrium high k buyers, in a transaction price data, we would observe

(18), not (19). Thus, (18) is the testable prediction relevant to transaction

price data, not (19).24

23In the data (e.g. in LS and NHS), a dealer’s execution speed is unobservable be-
cause—although its transaction volume (the numerator) is observable—the volume of or-
ders it receives (the denominator) is not. Thus, a direct empirical evidence on dealers’
execution speed is unavailable.

24In a data with both quoted and transaction prices, it is possible to check (19) also.
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Transacted and quoted bid-price Whether a core dealer buys back at

a higher bid-price depends on λD vs λDD. If λDD is sufficiently low, a core

dealer buys back at a lower return (i.e. bid-) price than a peripheral dealer.

The intuition is as follows. For a sufficiently low λDD, a core dealer is so fast

that even if it buys back at a lower price, it still offers a greater overall value

to its sellers than a peripheral dealer. Conversely, for a high value of λDD, a

core dealer is slower. To compensate for its inferior speed, it has to offer a

narrower bid-ask spread. It does so by buying back at a higher price than a

peripheral dealer.

A dealer’s quoted and transacted bid-prices coincide because sellers do

not differ by their liquidity type and, hence, face the same bid-price.

Transacted bid-ask spread A core dealer charges, on average, a narrower

bid-ask spread than a peripheral dealer:

Eb
c

[
φc(k)

]
< Eb

p

[
φp(k)

]
, (20)

where, similar to the discussion of average ask-prices, Eb
i

[
φi(k)

]
is an average

across two dimensions. Eq. (20) can be seen in Figure 8. The trading surplus

(for the entire intermediation chain) decreases with the end-buyer’s liquidity

type k. Bid-ask spreads, as a result, also decrease with k because bid-ask

spreads are proportional to the total gains from trade. This together with

the fact a core dealer’s buyers are high k buyers imply (20).

NHS document the same for the asset-backed securities market, but LS

find the opposite with the municipal bond market data. Both studies also

document that longer intermediation chains have wider bid-ask spreads. Con-

sistent with this finding, our model predicts that the average chain involving

a peripheral dealer is longer and that peripheral dealers charge clients wide

spreads.

Quoted bid-ask spread Whether a core dealer also quotes a narrower

bid-ask spread depends on if the core dealer executes orders at a faster rate

and by how much faster. The latter, in turn, depends on λDD. Figure 8 shows

how dealers’ bid-ask spreads differ. For a high value of λDD, a core dealer

is slower. To compensate for its inferior execution speed and to preserve

V s
c > V s

p , a core dealer has to offer to buy back a higher bid-price than a

peripheral dealer. For a sufficienty high λDD, the bid-price is so high that the

core dealer offers a narrower bid-ask spread for all k.25 On the other extreme,

25That is, the value of being a client of a core dealer comes from a narrower bid-ask
spread, not execution speed.
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for a relatively low λDD, a core dealer is faster. As a result, the core dealer’s

bid-price can be lower, and hence its quoted bid-ask spread wider for all k.

For an intermediate values of λDD, at some k̃ ∈ [k, k], the two bid-ask spread

curves cross so that φc(k) > φp(k) for k ∈ [k, k̃), and φc(k) < φp(k) for

k ∈ (k̃, k].26

3.2 Interdealer Trades

We now discuss the roles that core and peripheral dealers play on the in-

terdealer market. Below results are novel testable predictions. Appendix

A characterizes prices {P bid, P ask}, bid-ask spreads Φ, and execution speed

dealers’ face from each other.

Proposition 5 (Prices and Liquidity Provision on the Interdealer Market).

Suppose dealers indexed c and p are relatively core and peripheral dealers,

respectively. A core dealer charges other dealers a higher ask-price, P ask
c >

P ask
p , buys back at a lower bid-price, P bid

c < P bid
p , and hence charges other

dealers a wider bid-ask spread, Φc > Φp, than a peripheral dealer. A core

dealer buys and sells more than a peripheral dealer: λddµ
s
dµ

b
c > λddµ

s
dµ

b
p

and λddµ
b
dµ

s
c > λddµ

b
dµ

s
p. A core dealer provides a faster execution speed:

λddµ
τ
c > λddµ

τ
p for τ = {s, b}.

Core dealers—supported by the large volumes of clients’ orders—supply

liquidity to other dealers. They do so in two ways. First, they transact

greater volumes.27 The number of bonds an arbitrary dealer d sells to another

dealer i is λddµ
s
dµ

b
i , and the number of bonds it buys from dealer i is λddµ

s
iµ

b
d.

Since a core dealer has a larger client mass, dealer d trades proportionally

more with a core dealer on both sides of the trade. Second, a core dealer

offers a faster execution speed to other dealers. The rate at which dealer i

fills dealer d’s sell orders is

λddµ
s
dµ

b
i

µsd
= λddµ

b
i .

Thus, the execution speed of dealer i is proportional to its client size. Since

a core dealer has a larger buyer mass, it executes dealer d’s orders more

quickly:

λddµ
b
c > λddµ

b
p.

26In other words, as λDD decreases, the cutoff at which the two bid-ask spreads cross
increases.

27This holds by construction because we define a dealer’s network centrality by its total
interdealer volume.
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It is analogous for dealer d’s buy-side trades.28

For the liquidity they provide, core dealers charge other dealers wide bid-

ask spreads, Φc > Φp, due to two effects. First, when a dealer buys from

a core dealer, the dealer ultimately buys from an end-seller who has a high

reservation value.29 The end-seller’s high reservation value, in turn, manifests

as a high interdealer ask-price.30 Thus, from the perspective of a dealer, it

is more expensive to buy from a core dealer than from a peripheral dealer:

P ask
c > P ask

p . Second, on the reverse trip, when a dealer sells back to a

core dealer, the dealer ultimately sells to liquidity investors (high k buyers),

who have low reservation values. A dealer, as a result, sells back at a lower

(bid-) price to a core dealer, P bid
c < P bid

p . Put together, a dealer faces a

wider bid-ask spread from a core dealer. Recall that the opposite holds for

client transactions: Core dealers charge clients narrower bid-ask spreads (on

average, across its buyers).31

Bonds, as a result, cycle through the economy starting with, say, a core

dealer’s client, then the interdealer network, and eventually end with buy-

and-hold investors who are concentrated with peripheral dealers. The cycle

repeats when a buy-and-hold investor gets a liquidity shock and sells the

bond. The sell order primarily gets absorbed, via the interdealer network,

first by core dealers and their clients. Thus, core dealers serve as a central

conduit in transmitting assets through the economy from one end-customer

to another. Peripheral dealers consume the liquidity core dealers supply and

pass it down to their clients.

28As in the earlier discussion of liquidity immediacy from clients’ perspective, because
the amount of orders dealers receive is unobservable (whether from clients or other dealers),
we lack a direct empirical evidence on liquidity immediacy.

29Recall that sellers of a core dealer have a higher value function V sc > V sp and, hence,
a higher reservation value for the bond.

30The interdealer price between any two dealers is the average between the end-buyer
and end-seller reservation values.

31LS consider how dealers split the total round-trip spread between prices at the CD
to DC legs and find that dealers closer to the end-buyer extract a bigger fraction of the
total spread. They, however, do not focus on how core vs. peripheral dealers split the
intermediation surplus. NHS consider similar splits and conclude that core dealers take
a narrower chunk of the total spread. In contrast, we characterize bid-ask spreads from
dealers’ perspective to understand the liquidity service core vs. peripheral dealers provide
other dealers.
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4 Additional Results

4.1 Dealer Interconnectedness

In this section, we contrast environments with and without the interdealer

market and show that dealer interconnectedness increases customers’ wel-

fare, dealer profits, bond liquidity, and bond prices. Without the interdealer

market, dealers intermediate between only their own customers. We assume

the supply of bonds circulating among customers of each dealer is identical

at si = S/3. The environment without the interdealer market is similar to

Vayanos and Wang (2007).32 Markets in their setting are the counterparts

to dealers in our setting.

How clients sort in the absence of interdealer trades is identical to the

environment with interdealer trades. Buyers tradeoff a dealer’s ask price

versus its return service. Buy-and-hold investors choose the dealer offering

a cheaper price, while liquidity investors choose the dealer offering a better

return service. The dealer specializing in liquidity investors has a larger buyer

and seller client mass.

Interconnectedness has two effects. First, the sorting mechanism is more

general. Without interdealer trades, the larger dealer offers a faster execution

speed and buys back at a higher bid-price. With interdealer trades, in con-

trast, whether the larger (core) dealer is faster and, consequently, whether

its return price is higher depends on parameter values. Second, intercon-

nectedness decreases the dispersion in prices and reservation values across

dealers. With or without interdealer trades: pask2 (k) > pask1 (k), where i = 2

is the larger dealer. Without interdealer trades, the difference, however, is

large enough that the average price across buyers is higher—Eb
2

[
pask2 (k)

]
>

Eb
1

[
pask1 (k)

]
—eventhough the larger dealer specializes in high k-buyers and

prices decrease with k. With interdealer trades, the difference in prices across

dealers (that is, for the same buyer) decreases and, as a result, Eb
2

[
pask2 (k)

]
<

Eb
1

[
pask1 (k)

]
.33

We define customers’ welfare as

WC ≡
∑
i∈N

[

∫ k

k

µ̂bi(k)V b
i (k)dk +

∫ k

k

µ̂oi (k)V o
i (k)dk + µsiV

s
i . (21)

+
1

r

∫ k

k

V b
i (k)f̂(k)νi(k)dk]

32Note that Vayanos and Wang (2007) is a special case with zij = 1 and Ni = {∅} for
all i.

33Interconnectedness has a similar effect on buyer’s reservation values.
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For dealer i, the present value of the stream of flow profits is

WD
i ≡

1

r

∫ k

k

λdµ̂
b
i(k)µsi (1− 2zd)

(
V o
i (k)− V b

i (k)− V s
i

)
dk (22)

+
1

r

∑
j∈Ni

(∫ k

k

λddµ̂
b
i(k)µsj

(
1− 2zdd

2

)(
V o
i (k)− V b

i (k)− V s
j

)
dk

)

+
1

r

∑
j∈Ni

(∫ k

k

λddµ̂
b
j(k)µsi

(
1− 2zdd

2

)(
V o
j (k)− V b

j (k)− V s
i

)
dk

)
.

The first term captures profits from intermediations directly between its cus-

tomers (that is, CDC chains). The second and third terms are profits from

buy and sell interdealer transactions, respectively (that is, CDDC chains).

The total profit across dealers is

WD ≡
∑
i∈N

WD
i . (23)

The total welfare of all agents in the economy is then

Wall ≡ WC +WD. (24)

As Proposition 6 shows, the total welfare depends only on the aggregate mass

of sellers:

µτN ≡
∑
i∈N

µτi for τ = {s, b}.

Proposition 6. The total welfare is given by

Wall =
δ

r
S − x

r
µsN . (25)

The first term is the present value of the stream of bond coupon flows. The

welfare in a frictionless environment corresponds to this term because only

investors that enjoy the full value of the coupon flow own the bond. Matching

frictions, however, create misallocations: investors (with total mass µsN) who

dislike holding the bond (recall the disutility, x) own the bond also. Thus,

the second term represents the welfare loss from matching frictions.

Proposition 7 (The Effect of Interconnectedness). Customers’ welfare (WC)

and the total welfare (Wall) increase with dealer interconnectedness.

The presence of the interdealer market improves bond liquidity: it in-

creases the aggregate volume of transactions, narrows bid-ask spreads, and
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speeds up transaction times. Greater liquidity, in turn, alleviates misalloca-

tions: a larger number of investors who enjoy the full value of the coupon

flow (hence, fewer sellers) own the bond. The more efficient asset allocation

increases both the customer and total welfare.34

Second, since bonds are held proportionately more by investors with the

greatest utility for them, bond prices increase and, in particular, approach

the frictionless price. For the parameter values in Table 1, the measure of

buyers is greater than the total bond supply; consequently, buyers are the

marginal investors in the bond. In a frictionless environment (λ → ∞),

the bond price is the present value of buyers’ valuation of the bond, p =
δ
r
. With frictions, low-valuation investors also hold the bond, leading to

discounted bond prices relative to the frictionless price. Thus, the more

efficient allocation of bonds and the increase in bond prices imply that bond

prices approach the frictionless price.

Fourth, if we proxy a dealer’s inventory balance with its seller-to-buyer

ratio, dealers achieve what looks like a full inventory risk-sharing. Without

the interdealer market, the seller-to-buyer ratio differs across dealers and

is higher for dealers that cater to buy-and-hold investors. With the inter-

dealer market, as Proposition 8 shows, the ratio is identical across dealers.

Lastly, interconnectedness decreases the dispersion of prices and liquidity

across dealers.

Proposition 8. In the presence of the interdealer market, the inventory

balance is identical across dealers: for all i ∈ N ,

µsi
µbi

=
µsN
µbN

. (26)

4.2 Market Fragmentation

In this section, we analyze how interdealer market fragmentation affects cus-

tomer welfare, dealer profits, and bond liquidity.35 Keeping the level of in-

terconnectedness fixed, we capture market fragmentation with the aggregate

number of dealers in the economy, denoted by nN . In particular, we compare

three environments with an increasing aggregate number of dealers: (1) one

dealer (that is, dealers are merged into one), (2) two dealers (dealers are

merged into two), and (3) the benchmark environment with all three dealers.

In the latter two cases, since multiple equilibria exist, we compare across only

the asymmetric equilibrium of each environment. In the environment with

34Whether dealer profits increase depends on how the parameter condition (11) is sat-
isfied.

35In this section, we assume that condition (11) is satisfied via λdd > λd.
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just one dealer, the supply of bonds circulating among the dealer’s clients is

simply the aggregate supply of bonds, S.

Proposition 9. Increasing the aggregate number of dealers decreases the ag-

gregate mass of sellers, µsN , increases the aggregate volume of trade,
∑
i∈N

(
MD

i +MDD
i

)
,

and increases the total welfare in the economy, Wall.

Thus, market fragmentation alleviates misallocations in the economy. In-

creasing the aggregate number of dealers increases the length of an average

intermediation chain in the economy. Since, by assumption, multiple deal-

ers are more efficient in producing matches, aggregate transaction volumes

increase. In turn, the efficiency of asset allocation and the total welfare

increase.

Proposition 10 (The Effect of Market Fragmentation on the Welfare Split).

Fixing clients’ bargaining power in one-dealer intermediation chains, zd, con-

sider four regions of zdd (clients’ bargaining power in two-dealer chains):

0 < z1 < z2 < z3 < 1
2
. Customers’ welfare decreases with market frag-

mentation (i.e. WC(nN + 1) < WC(nN)) in zdd ∈ (0, z1] and increases

in zdd ∈ (z1,
1
2
]. Dealers’ profits increase with market fragmentation (i.e.

WD(nN + 1) > WD(nN)) in zdd ∈ (0, z2], non-monotone and concave in

zdd ∈ (z2, z3], and decreases in zdd ∈ (z3,
1
2
].

How clients and dealers split the total welfare depends on whether clients’

bargaining power increases or decreases with the chain length. Fixing the

clients’ bargaining power in one-dealer intermediation chains, zd, consider

four regions of zdd (the clients’ bargaining power in two-dealer chains), shown

in Figure 6. Suppose, for example, zdd ≥ zd so that clients’ bargaining power

increases with the chain length. Then, Proposition 10 shows that, by length-

ening the intermediation chain, clients collectively tilt the gains from trade

in their favor at the expense of dealers. And the most fragmented interdealer

market yields the largest customer welfare. Dealers instead prefer for other

dealers to exit so that the interdealer market is as concentrated as possible.

Conversely, if zdd < z1 < zd so that clients’ bargaining power decreases with

the chain length, dealer profits increase with market fragmentation but at

the expense of customer welfare.

Figure 6: Regions of Clients’ Bargaining Power in 2-dealer Chains, zdd

0 z1 z2 z3 zD 1
2

zDD

Wc(nN ) ↓
Π(nN ) ↑

Wc(nN ) ↑
Π(nN ) ↑

Wc(nN ) ↑
Π(nN )∩

Wc(nN ) ↑
Π(nN ) ↓
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Consider now the effect of fragmentation on bond prices and the bid-ask

spreads that clients face. To compare prices across different environments

with different network structures, we take the weighted average across deal-

ers:

p̄ask ≡
1∑

i∈N

(
1
2
MDD

i +MD
i

)∑
i∈N

[(
1

2
MDD

i +MD
i

)
paski

]
(27)

p̄bid ≡
1∑

i∈N

(
1
2
MDD

i +MD
i

)∑
i∈N

[(
1

2
MDD

i +MD
i

)
pbidi

]
(28)

φ̄ ≡ 1∑
i∈N

(
1
2
MDD

i +MD
i

)∑
i∈N

[(
1

2
MDD

i +MD
i

)
φi

]
. (29)

Bond prices increase with market fragmentation, reflecting the fact that

bonds are allocated more efficiently and held by investors with the great-

est utility for them. The effect on bid-ask spreads, however, similar to the

effect on dealer profits and customer welfare, depends on whether clients’

bargaining power increases or decreases with the chain length. In particular,

the direction of the effect is the same as for dealer profits. For example, in the

regions of zdd where dealers profits decrease, the bid-ask spreads clients face

decrease with market fragmentation (consequently, with the average chain

length) and reaches the minimum in the environment with three dealers.

4.3 Welfare Analysis

In this section, we analyze the social welfare in the asymmetric and symmet-

ric equilibria and contrast them with the socially optimal amount of dealer

specialization.36 For exposition, we do so for a two-dealer environment. We

start by denoting the cutoff k∗sym such that the two dealers are identical:

µs1 = µs2. Decreasing the cutoff below k∗sym increases dealer heterogeneity: It

increases the measure of buyers choosing dealer 2 and, consequently, dealer

2’s masses of buyers and sellers. We denote the cutoff that maximizes the

total welfare Wall by k∗wel and the actual equilibrium cutoff by k∗asym. The

following results are illustrated in Figure 9.

Proposition 11. Dealer specialization is socially optimal: k∗wel < k∗sym.

Proposition 11 implies that a core-periphery network is socially desirable.

Specifically, the socially optimal cutoff prescribes dealer heterogeneity. The

intuition is as follows. Buy-and-hold investors are the most natural owners

of the bond. The quicker they can buy a bond and turn into an owner,

36In this section, we assume that condition 11 is satisfied via λdd > λd.
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the more efficient is the asset allocation in the economy. In the symmetric

equilibrium, every buyer faces the same probability of buying, irrespective

of her liquidity type k or her dealer choice (i.e. the probability of finding a

seller is a flat function of k). A social planner can pareto improve on this

by tilting the probability of finding a seller so that the buy-hold investors

buy more quickly. Dealer specialization achieves precisely that. A dealer

specializing in buy-and-hold investors provides a faster liquidity immediacy

than a dealer specializing in liquidity investors.

Proposition 12. Relative to the social optimum, the equilibrium dealer het-

erogeneity and specialization are excessive: k∗asym < k∗wel.

Proposition 12 implies that, although a core-periphery structure is so-

cially desirable, the extent of the equilibrium core-periphery structure is ex-

cessive. Specifically, in the asymmetric equilibrium, buyers concentrate too

much with the core dealer. The intuition is as follows. Sellers’ incentives

are aligned with that of the social planner: they prefer the seller-to-buyer

ratio in the economy to be as small as possible.37 Buyers, however, prefer

more sellers in the economy because a greater number of potential counter-

parties translates to a greater bargaining power. And it is buyers who choose

over dealers. In particular, buyers do not fully internalize the effect of their

dealer choice on sellers because they receive only a fraction of the total gains

from trade. If buyers were to extract a larger fraction of the intermediation

surplus, their incentives align more closely with that of the social planner.

Thus, both the asymmetric and the symmetric equilibria are inferior to the

first best allocation: in the asymmetric equilibrium, buyers concentrate too

much with one dealer (dealer heterogeneity is excessive), while, in the sym-

metric equilibrium, buyers concentrate too little (dealer heterogeneity is too

little).

The natural next step is comparing the welfare of the asymmetric and

symmetric equilibria. The next proposition shows that if buyers extract a

sufficiently large fraction of the total gains from trade, then the welfare in the

asymmetric equilibrium is higher than in the symmetric equilibrium.38 This

is because if they extract a larger fraction, they collect a larger fraction of any

increase in the total welfare. Their incentives on dealer choice, as a result,

align more closely with the social planner’s. Thus, for a sufficiently large

buyer bargaining power, the equilibrium featuring a core-periphery network

dominates the equilibrium exhibiting a circular network.

37Recall that maximizing the social welfare is equivalent to minimizing the aggregate
measure of sellers, which captures misallocations in the economy.

38The threshold z̄ is such that Wall(k
∗
asym) = Wall(k

∗
sym).
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Proposition 13. The asymmetric equilibrium pareto dominates the symmet-

ric equilibrium if buyers have a sufficiently large bargaining power: Wall(k
∗
asym) >

Wall(k
∗
sym) if zij > z̄.

5 Assumptions

In this section, we discuss our assumptions and how relaxing them would

affect our results. In Section 2, we discussed the key assumptions that our

main results rely on. Relaxing below assumptions would make the environ-

ment more realistic but would not affect our main insights.

We assume a fully connected dealer network and that dealers do not

choose who to connect to. Implicitly, we assume a zero cost of both initially

connecting and maintaining the connection. We could relax this by assuming

that dealers pay for an access to other dealers’ clients. If dealers charge a

cost per client, then we expect our results to remain the same. But if dealers

charge a fixed amount regardless of the client size, dealers would pay only for

an access to core dealers’ clients. Our basic mechanism would go through,

and the core-periphery structure would be even more pronounced. Although

important, we leave for future work showing pairwise and group stability

properties of the dealer networks in our model.

We take the aggregate number of dealers as fixed and do not model dealer

entry and exit. We could model dealer entry as follows. Dealers have an

outside opportunity. Dealers enter until the marginal dealer is indifferent

between its outside opportunity and the profit it expects to make as one of

the dealers in the economy. Nevertheless, endogenizing dealer entry would

not change our main insight on dealer specialization.

We assume that dealers do not hold an inventory and that bonds sit on

the balance sheet of client-sellers. We can recast the model so that, instead

of clients holding the bonds on their balance sheet, dealers hold the bonds in

their inventory. When a bond owner gets a liquidity shock and wants to sell

her bond, she sells immediately to her dealer. The dealer, in turn, holds the

bond in its inventory until it can match the bond with a buyer. With this

interpretation, a dealer’s inventory size would be proportional to its seller

client size, and a core dealer, as a result, would have a larger inventory.

In our model, intermediation chains involve at most two dealers. Al-

though we observe longer chains in the data, LS document that CDC and

CDDC chains together comprise 90% of all intermediation chains and that

the average intermediation chain involves just one dealer. Thus, our envi-

ronment captures a majority of transactions. Nevertheless, we mention two
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ways to allow for longer intermediations. First, in our matching function

specification, for a dealer to be involved in a chain, one of the end-customers

has to be the dealer’s own client. If, instead, a dealer can produce matches

among clients of other dealers, intermediation chains can be longer than just

two dealers. The second way is to allow dealers to hold inventory. In both

ways, the longest chain in the model can be as long as the aggregate number

of dealers in the model.

We assume a full information structure. In particular, dealers know

client types, and clients know both their own and other dealers’ client struc-

ture. The latter is reasonable since clients can figure out whether a dealer-

brokerage firm is a large or small market player and, hence, a relatively core

versus peripheral dealer. Regarding dealers’ information on client types,

Vayanos and Wang (2007) show that a clientele effect still emerges in the

presence of asymmetric information about buyers’ type. Thus, we predict

that our main insight on dealer specialization would hold in the presence of

asymmetric information.

We abstract from adverse selection problems. We observe the core-

periphery structure and intermediation chains in markets where adverse se-

lection problems are small. Currency and municipal bonds markets are an

example. Thus, adverse selection problems cannot be a first order in explain-

ing the core-periphery structure.

6 Conclusion

The network structure of over-the-counter markets exhibits a core-periphery

structure: few dealers are highly interconnected with a large number of deal-

ers, while a large of number of small dealers are sparsely connected. We

build a search-based model of dealer network formation and show that the

core-periphery structure emerges from dealer specialization. The dealers that

attract a clientele of liquidity investors have a larger customer base, support

a greater fraction of interdealer transactions, and, thus, form the core. The

dealers that instead cater to buy-and-hold investors form the periphery.
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A Client Masses, Value Functions, Prices

Client Masses The mass of k-type owners is given by(∑
j∈N

λijµ
s
j

)
µ̂bi(k) = kµ̂oi (k). (A.30)

The left-hand side is the flow of buyers that turn into a k-type owner of dealer

i; the right-hand side reflects the flow of owners that experience a liquidity

shock and switch to a seller.

Value Functions After simplifying and taking the continuous time limit

of (10), we get

rV b
i (k) = k

(
0− V b

i (k)
)

+
∑
j∈N

λijµ
s
j

(
V o
i (k)− V b

i (k)− p̂askj,i (k)
)
. (A.31)

Inside the summation, if j = i, the transaction is with another customer of

the same dealer. If j 6= i, the transaction instead involves an interdealer

intermediation chain, and the end-seller is a customer of another dealer j.

Analogously, the expected utility of a k-type bond owner who is a customer

of dealer i is given by

rV o
i (k) = δ + k (V s

i − V o
i (k)) . (A.32)

The expected utility of a seller who is a customer of dealer i is given by

rV s
i = δ − x+

∑
j∈N

(∫ k

k

λijµ̂
b
j(k)(p̂bidi,j (k)− V s

i )dk

)
. (A.33)

Characterization of Prices Specific to an Intermediation Chain

We first characterize prices specific to an intermediation chain (that is, spe-

cific to dealers and customers involved in a chain). We denote interdealer

prices with capital letters (P ) and client-to-dealer prices with small letters

(p). A seller-client of dealer i sells to his dealer at the bid-price

p̂bidi,j (k) = (1− zij)V s
i + zij(V

o
j (k)− V b

j (k)) (A.34)
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when the end-buyer is a k-type buyer of dealer j. Dealer i turns around and

sells to dealer j at the interdealer price:

P̂i,j(k) =
1

2
V s
i +

1

2
(V o

j (k)− V b
j (k)). (A.35)

Dealer j, in turn, sells to its buyer-client at the ask price:

p̂aski,j (k) = zijV
s
i + (1− zij) (V o

j (k)− V b
j (k)). (A.36)

If j = i, the end-buyer and seller are clients of the same dealer i, and the

interdealer price P̂i,j(k) is irrelevant. If j 6= i, the bond transaction instead

involves an interdealer trade, and the end-buyer and seller are customers of

different dealers.

Expected Prices and Liquidity, Clients’ Perspective We now charac-

terize the expected prices, expected bid-ask spreads, and probability of trade

that clients face from their dealers. Averaging across all possible end-sellers

that a buyer could be matched with, a k-type buyer-client of dealer i expects

to buy at:

paski (k) ≡ 1

ms
i

∑
j∈N

λijµ
s
j p̂
ask
j,i (k) (A.37)

We define the liquidity immediacy buyers of dealer i face as:

ms
i ≡

∑
j∈N

λijµ
s
j .

Analogously, the liquidity immediacy sellers of dealer i face is

mb
i ≡

∑
j∈{i,Ni}

(∫ k

k

λijµ̂
b
j(k)

)

Averaging across buyers of dealer i, an average buyer of dealer i expects

to buy at:

paski ≡ Eb
i

[
p̂aski (k)

]
, (A.38)

where the expectation is over the buyer population measure.39

The price a seller of dealer i expects to sell at is the weighted average

price across all buyers that she could be matched with (that is, buyers of

39In particular, for some function f(k), Ebi [f(k)] ≡
∫ k
k
µ̂b
i (k)

µb
i

f(k)dk.
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both dealer i and dealer i’s connections):

pbidi ≡
1

mb
i

∑
j∈N

λijµ
b
jE

b
j [p̂

bid
i,j (k)], (A.39)

where Eb
j [p̂

bid
i,j (k)] is the weighted average price across buyers of dealer j.

We define the expected round-trip transaction cost from the perspective

of a k-type buyer of dealer i as the expected ask price minus the expected

bid price normalized by the mid-point:

φi(k) ≡ paski (k)− pbidi
0.5(paski (k) + pbidi )

. (A.40)

Similarly, the round-trip transaction cost that an average buyer of dealer i

expects is:

φi ≡
paski − pbidi

0.5(paski + pbidi )
. (A.41)

LS and NHS compute bid-ask spreads as follows. For a CDDC chain,

for example, the bid-ask spreads clients face is the transaction price at the

DC leg of the chain (i.e. the price a client buys at) minus the price at the

CD leg (i.e. the price a client sells at) normalized by the mid-point in NHS

and by the price at the CD leg in LS. LS regress this bid-ask spreads on the

centrality of the first dealer.

Motivated by how clients in our model choose dealers, we instead take

the perspective of a client of a particular dealer. We first take all chains j

such that {j : CDjDiC}, i.e. chains where the buyer is a client of a dealer i,

regardless of where dealer i finds the bond (other dealers, core vs peripheral,

or its own clients). Averaging the price at the DiC leg—across the chains

in this set—gives the expected price a buyer of dealer i expects to buy at,

again regardless of where the bond comes from. Second, we do the same

on the CD leg: average the price at the CDi leg across chains j such that

{j : CDiDjC}. The average gives the expected selling price for a seller-client

of dealer i. The bid-ask spread is the difference normalized by the midpoint.

The difference in the computations matters only for chains longer than CDC

and any averages computed using both short and long chains. Since CDC

chains comprise a majority of all chains, our results are comparable to the

results of LS and NHS.

Expected Prices and Liquidity, Dealers’ Perspective We character-

ize now expected prices and bid-ask spreads that an arbitrary dealer, indexed

d, faces from another dealer i. We denote prices and bid-ask spreads from
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interdealer transactions with capital letters, P and Φ, to contrast them from

client-to-dealer transactions, p and φ.

Dealer d buys from dealer i ∈ Nd at price P̂i,d(k), defined in (A.35), if

dealer d’s client is a k-type buyer. The weighted average price across all

buyers of dealer d is

P ask
i = Eb

d[P̂i,d(k)]. (A.42)

Conversely, dealer d sells to dealer i at price P̂d,i(k) if dealer i’s client is

a k-type buyer. The weighted average price across buyers of dealer i is

P bid
i = Eb

i [P̂d,i(k)]. (A.43)

We define the bid-ask spread as the expected purchase price minus the

expected selling price normalized by the midpoint:

Φi =
P ask
i − P bid

i

0.5P ask
i + 0.5P bid

i

. (A.44)

Although P ask
i , P bid

i , and Φi are specific to dealer d, for exposition, we sup-

press their dependence on d.

B Choosing Over Dealers, in Detail

We now explain in detail how investors sort across dealers for general λdd and

λd without assuming their relative magnitudes. We first derive the expected

utility of a buyer, owner, and seller client.

Consider the buyer’s value function:

rV b
i (k) = k

(
0− V b

i (k)
)

+
∑

j∈{i,Ni}

λjiµ
s
j

(
V o
i (k)− V b

i (k)− p̂askj,i (k)
)
.

= k
(
0− V b

i (k)
)

+
∑

j∈{i,Ni}

λjiµ
s
j [V

o
i (k)− V b

i (k)]−
∑

j∈{i,Ni}

λjiµ
s
j p̂
ask
j,i (k)

= k
(
0− V b

i (k)
)

+ [V o
i (k)− V b

i (k)]

 ∑
j∈{i,Ni}

λjiµ
s
j

−ms
i

1

ms
i

∑
j∈{i,Ni}

λjiµ
s
j p̂
ask
j,i (k)

= k
(
0− V b

i (k)
)

+ [V o
i (k)− V b

i (k)]ms
i −ms

ip
ask
i (k)
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Then,

V b
i (k) =

V o
i (k)ms

i −ms
ip
ask
i (k)

r + k + µsi

=
r + k

r + k +ms
i

(0) +
ms
i

r + k +ms
i

(
V o
i (k)− paski (k)

)
Thus, the buyer’s value function is a weighted average between the utility

of exiting upon a valuation shock, 0, and the net benefit of owning a bond,

V o
i (k) − paski (k). The latter is the expected utility as a bond owner minus

the cost of becoming an owner in the first place. The relative probabilities of

these outcomes determine the relative weights. If the probability of switching

and exiting is high, the buyer puts more weight on the value of that outcome.

If, instead, the probability of purchasing the bond (i.e. liquidity immediacy)

is high, the buyer puts more weight on the net value of owning the bond.

Consider the owner’s expected utility:

rV o
i (k) = δ + k (V s

i − V o
i (k)) .

From here

V o
i (k) =

δ + kV s
i

r + k
.

=
r

r + k

(
δ

r

)
+

k

r + k
(V s

i ) (B.45)

Thus, the owner’s expected utility is the weighted average between δ
r

(the

present value of the bond coupon flow if one were to hold the bond forever)

and V s
i (the expected utility of a seller). If the probability of getting a

valuation shock and, consequently, turning into a seller is high (i.e. k is

high), a bond owner puts more weight on what happens to her as a seller,

and less on the coupon flow she receives in the meantime.

Finally, consider the seller’s expected utility:

rV s
i = δ − x+

∑
j∈{i,Ni}

[∫ k

k

λijµ̂
b
j(k)

(
p̂bidi,j (k)− V s

i

)]

= δ − x+mb
i

1

mb
i

∑
j∈{i,Ni}

[∫ k

k

λijµ̂
b
j(k)p̂bidi,j (k)

]
− V s

i

∑
j∈{i,Ni}

[∫ k

k

λijµ̂
b
j(k)

]
= δ − x+mb

ip
bid
i − V s

i m
b
i
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From here,

V s
i =

δ − x+mb
ip
bid
i

(r +mb
i)

=
r

(r +mb
i)

(
δ − x
r

)
+

mb
i

(r +mb
i)

(
pbidi
)
. (B.46)

Thus, the seller’s value function is the weighted average between the value

of holding the bond forever, δ−x
r

, and the expected revenue from selling it,

pbidi .40 If the probability of selling, mb
i , is high, the seller puts more weight

on the expected revenue from selling, and less on δ−x
r

. The expected utility

of the seller, thus, increases with both the price she can sell at, pbidi , and the

probability of selling it, mb
i .

41

Thus, from (B.45), a liquidity investor (i.e. a high k investor) worries more

about what happens to her if she is forced to sell later. In particular, from

(B.46), she worries about the price at which the dealer buys back the bond

from its clients, pbidi . Conversely, a buy-and-hold investor cares relatively less

about the dealer’s bid-price. This is how liquidity investors care more about

round trip transaction costs.

To see the benefit of choosing a core dealer specifically, substitute the

owner and seller’s value functions into the buyer’s:

V b
i (k) =

=
ms
i

r + k +ms
i

(
V o
i (k)− paski (k)

)
=

ms
i

r + k +ms
i

[
r

r + k

δ

r
+

k

r + k
V s
i − paski (k)

]
=

ms
i

r + k +ms
i

(
r

r + k

δ

r
+

k

r + k

[
r

(r +mb
i)

δ − x
r

+
mb
i

(r +mb
i)
pbidi

]
− paski (k)

)
=

ms
i

r + k +ms
i

(
r

r + k

δ

r
+

k

(r + k)

r

(r +mb
i)

δ − x
r
−
[
paski (k)− k

(r + k)

mb
i

(r +mb
i)
pbidi

])
=

ms
i

r + k +ms
i

(
r

r + k

δ

r
+

k

(r + k)

r

(r +mb
i)

δ − x
r
− φeff (k)

)
,

where

φeffi ≡ paski (k)−
[

k

(r + k)

mb
i

(r +mb
i)

] (
pbidi
)

40The value of holding the bond forever is simply the present value of the seller’s valu-
ation of the bond coupon flow.

41Whether V si is increasing in mb
i , depends on the sign of: pbidi − δ−x

r . If pbidi − δ−x
r

is positive, then V si is increasing in mb
i also. It must be positive because, intuitively, the

seller must be willing to sell only because the expected bid-price is higher than holding
the bond forever.
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is the effective round trip transaction cost: the expected bid-ask spread scaled

by the liquidity immediacy, mb
i , of the dealer. The effective round trip trans-

action cost declines (with k) at a faster rate for the clients of a core dealer.42

Thus, the benefit of choosing a core dealer is that, in relative terms (not nec-

essarily in absolute levels), a core dealer offers a narrower transaction cost.

And, as above, prices serve as a sorting device.

Whether the core dealer offers a narrower transaction cost also in absolute

levels depends on the liquidity immediacy it offers compared to that of a

peripheral dealer. The latter, in turn, depends on λDD vs λD. If λDD > λD, a

core dealer offers inferior liquidity immediacy: mτ
i < mτ

j , and, compensating

for its inferior liquidity, a core dealer offers a narrower bid-ask spread (φi(k) <

φj(k) for all k). If λDD = λD, core and peripheral dealers offer the same

liquidity immediacy, and the point at which a core dealer’s bid-ask spread

becomes narrower coincides with the endogenous cutoff, k∗. If λDD < λD, a

core dealer offers better liquidity immediacy: mτ
i > mτ

j , and a core dealer’s

bid-ask spread becomes narrower at a point further to right of k∗. In all

cases, recall that the core dealer’s transaction cost is declining at a faster

rate. The intuition is as follows. Given the faster decline of the core dealer’s

transaction cost, at some k in [k, k], the two transaction costs cross, and the

core dealer’s cost becomes lower. The worse the liquidity immediacy of the

core dealer, the core dealer’s transaction cost has to decline at an even higher

rate to compensate for its inferior liquidity immediacy. That is, the benefit

of choosing a core dealer has to kick-in sooner (i.e. the point at which they

cross shifts to the left). In some cases (as in λDD > λD ), it already starts

off narrower in absolute levels.

C Proofs

Lemma 2. For a given cutoff {νi(k)}i, the equations characterizing client

masses has a unique solution.

Proof. From buyers’ inflow-outflow equation (9),

µ̂bi(k) =
f̂(k)νi(k)

k +
∑
j∈N

λijµsj
(C.47)

42Similar results hold if we define the effective transaction cost as φeffi =(
k

(r+k)
r

(r+µb
i )

) (
x
r

)
+ paski (k)−

(
k

(r+k)
µb
i

(r+µb
i )

)
pbidi .
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From owners’ inflow-outflow equation (A.30) and (C.47),

µ̂oi (k) =

µ̂bi(k)
∑
j∈N

λijµ
s
j

k

=

f̂(k)νi(k)
∑
j∈N

λijµ
s
j

k

(
k +

∑
j∈N

λijµsj

) (C.48)

Using the market clearing condition (6) and (C.48), the measure of sellers of

dealer i, µsi , is determined by:

∫ k̄

k

f̂(k)νi(k)
∑
j∈N

λijµ
s
j

k

(
k +

∑
j∈N

λijµsj

)dk + µsi = si (C.49)

Using
∑
j∈Ni

µsj = µsN−µsi and
∑
j∈N

λijµ
s
j = λDDµ

s
N−µsi (λDD−λD), re-express

(C.49) as∫ k̄

k

f̂(k)νi(k) (λDDµ
s
N − µsi (λDD − λD))

k (k + λDDµsN − µsi (λDD − λD))
dk + µsi = si (C.50)

Summing (C.50) across dealers, we get

∑
i∈N

(∫ k̄

k

f̂(k)νi(k) (λDDµ
s
N − (λDD − λD)µsi )

k (k + λDDµsN − (λDD − λD)µsi )
dk

)
+ µsN = S. (C.51)

Plugging (C.47) into the interdealer constraint, µsiµ
b
N = µbiµ

s
N , the constraint

for each i becomes:

µsi
∑
i∈N

(∫ k̄

k

f̂(k)νi(k)

k + λDDµsN − (λDD − λD)µsi
dk

)
(C.52)

= µsN

∫ k̄

k

f̂(k)νi(k)

k + λDDµsN − (λDD − λD)µsi
dk

Thus, {µs1, µs2, ...µsn} and µsN is a solution to a system of n + 1 equations

(C.51) and (C.52) for each i. It remains to show that, given a cutoff {νi(k)}i,
a unique solution exists to (C.51) and (C.52) for each i.

Lemma 3. The seller value functions V s
i and V s

j for any two dealers i and

j in N are given by the solution to (C.58) and (C.59).
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Proof. Combining the buyer’s and owner’s value functions and substituting

in prices, we get

V ob
i (k) =

δ + kV s
i +

∑
j∈N

ujiµ
s
jV

s
j

r + k +
∑
j∈N

ujiµsj
.

where

V ob
i (k) ≡ V o

i (k)− V b
i (k)

and

uji ≡ λjizji

Define ẼV ob
i (k) ≡

∫ k
k
µ̂b(k)V ob

i (k), then

ẼV ob
i (k) (C.53)

=

(
δ +

∑
j∈N

ujiµ
s
jV

s
j

)∫ k

k

1

r + k +
∑
j∈N

ujiµsj
µ̂i
b(k)dk

+ V s
i

∫ k

k

k

r + k +
∑
j∈N

ujiµsj
µ̂i
b(k)dk

Defining

gi =

∫ k

k

1

r + k +
∑
j∈N

ujiµsj
µ̂i
b(k)dk (C.54)

gki =

∫ k

k

k

r + k +
∑
j∈N

ujiµsj
µ̂i
b(k)dk (C.55)

Eq.(C.53) becomes

ẼV ob
i (k) =

(
δ +

∑
j∈N

ujiµ
s
jV

s
j

)
gi + V s

i g
k
i

=
(
uµsigi + gki

)
V s
i + uIµ

s
jgiV

s
j + Aijgi

where

Nij ≡ N/{i, j},

Aij ≡ δ + uI
∑
j∈Nij

µsjV
s
j ,

uI ≡ λDDzDD,
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and

u ≡ λDzD.

Note that Aij = Aji.

uẼV ob
i (k) + uIẼV

ob
j (k) =

[
µsi
(
u2gi + u2

Igj
)

+ ugki
]
V s
i (C.56)

+
[
µsjuuIgij + uIg

k
j

]
V s
j + A (ugi + uIgj) .

where gij ≡ gi + gj.

Consider the seller’s value function:

rV s
i = δ − x+

∑
j∈N

(∫ k

k

uijµ̂
b
j(k)

(
V ob
j (k)− V s

i

))
. (C.57)

Defining µbNij
=

∑
j∈Nij

µbj and Cij = Cji = δ − x + uI
∑
j∈Nij

EV ob
j (k), rewrite

(C.57) as(
r + uµbi + uIµ

b
j + uIµ

b
Nij

)
V s
i = uẼV ob

i (k) + uIẼV
ob
j (k) + Cij.

Substituting in (C.56), we get(
r + uµbi + uIµ

b
j + uIµ

b
Nij − µsi

(
u2gi + u2

Igj
)
− ugki

)
V s
i (C.58)

=
(
µsjuuI (gg) + uIg

k
j

)
V s
j + Aij (ugi + uIgj) + Cij.

The analogous equation characterizing V s
j is(

r + uµbj + uIµ
b
i + uIµ

b
Nij − µsj

(
u2gj + u2

Igi
)

+ ugkj
)
V s
j (C.59)

=
(
µsiuuI (gg) + uIg

k
i

)
V s
i + Aij (ugj + uIgi) + Cij.

Eq.(C.58) and (C.59) characterize V s
i and V s

j for any two dealers i and j,

irrespective of the aggregate number of dealers.

Proof of Proposition 1. In a symmetric equilibrium, µsi =
µsN
n

for all i.

Using
∑
νi(k) = 1,(C.51) becomes

∫ k̄

k

f̂(k)
(
λDDµ

s
N − (λDD − λD)

µsN
n

)
k
(
k + λDDµsN − (λDD − λD)

µsN
n

)dk + µsN − S = 0. (C.60)

The left-hand-side is negative at µsN = 0, strictly increasing in µsN , and is

equal to ∞ for µsN =∞. Hence, it has a unique solution. Given the solution
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for µsN , the other client masses are uniquely determined. Importantly, the

solution does not depend on the dealer choice decisions, {νi(k)}i. A contin-

uum of dealer choice decisions, as a result, satisfy (C.60) and all of them

yield the same solution for client masses.

Consider now the value functions. If µsi = µsj , the coefficients in front of

V s
i and V s

j are symmetric across the two equations characterizing V s
i and V s

j .

As a result, V s
i = V s

j . Moreover, V ob
i (k) = V ob

j (k). Now consider the buyer’s

value function:

(r + k)V b
i (k) =

∑
j∈N

ujiµ
s
j

(
V ob
i (k)− V s

j

)
.

Since V s
1 = V s

2 , V ob
i (k) = V ob

j (k), and µsi = µsj , we get that

V b
i (k) = V b

j (k). (C.61)

for all k for any i and j. Thus, the indifference condition is automatically

satisfied and does not put an additional constraint on the dealer choice deci-

sions. Moreover, a continuum of dealer choice decisions satisfy (C.61), and,

hence, a continuum of symmetric equilibria exist.

Proof of Lemma 1. Taking the difference between V̂ b
2 (k) and V̂ b

1 (k) char-

acterized by (C.67), using (C.72), and simplifying, we get

V̂ b
2 (k)− V̂ b

1 (k) = (k − k∗) (uI − u) (µs2 − µs1) (δ − rV s
1 )

1

p̂2p̂1C0

·

· [k (k∗ + r)uIµ
s
N + r (k∗uIµ

s
N + ruIµ

s
N + (uIµ

s
1 + uµs2) (uµs1 + uIµ

s
2))]

where

C0 ≡ k∗uIµ
s
1 (k∗ + r + uµs1) + +k∗uuI (µs2) 2,

+
(
(k∗ + r) (r (uI − u) + k∗uI) +

(
r
(
u2
I − u2

)
+ 2k∗u2

I

)
µs1
)
µs2,

and

p̂i ≡ k + r + uµsi + uIµ
s
j .

The entire term multiplying (k − k∗) (uI − u) (µs2 − µs1) is positive. Thus,

if µs2 − µs1 > 0, V̂ b
2 (k) − V̂ b

1 (k) > 0 for buyers with k > k∗; otherwise,

V̂ b
2 (k) − V̂ b

1 (k) < 0. That is, it is optimal for buyers with k > k∗ to select

the dealer with the larger seller client mass, and vice versa for buyers with

k < k∗.

Proof of Proposition 2. To simplify notation, we express zd as z and λd

41



as λ. We prove existence for the case of two dealers, indexed 1 and 2. In

particular, we show that V b
2 (k∗)−V b

1 (k∗) < 0 at k∗ = k and V b
2 (k∗)−V b

1 (k∗) >

0 at k∗ = k̄, which by continuity implies that a cutoff k∗ ∈ (k, k̄) exists such

that V b
2 (k∗)− V b

1 (k∗) = 0.

Solving (A.32) for V o
i (k), we get

V o
i (k) =

δ + kV s
i

k + r
. (C.62)

If we set k∗ = k̄, then µs2 = 0 and µb2 = 0. Using (C.62) and (A.31), and

solving for V b
1 (k) and V b

2 (k), we get:

V b
1 (k) =

µs1u(δ − rV s
1 )

(k + r)(k + r + uµs1)
,

V b
2 (k) =

µs1uI(
δ+kV s

2

k+r
− V s

1 )

(k + r)(k + r + uµs1)
.

Taking the difference V b
2 (k) − V b

1 (k) and multiplying by k+r
λµs1

, the sign of

V b
2 (k)− V b

1 (k) depends on

− u(δ − rV s
1 )

k + r + zλµs1
+
uI(δ − (k + r)V s

1 + kV s
2 )

k + r + uIµs1
(C.63)

= − u(δ − rV s
1 )

k + r + zλµs1
+
uI(δ − rV s

1 )

k + r + uIµs1
+
uIk(V s

2 − V s
1 )

k + r + uIµs1
. (C.64)

To determine the sign of (C.63), we first show that δ−rV s
1 > 0 and δ−rV s

2 >

0. Using (A.33), and solving for V s
1 and V s

2 , we get:

rV s
1 = δ − x+ x

uµb1
k + r + u(µb1 + µs1)

. (C.65)

rV s
2 = δ − x+ x

uIλµ
b
1(r + uµb1)(

r + uIµb1
) (
k + r + u(µb1 + µs1)

) . (C.66)

Thus, rV s
1 = δ − x(1− uµb1

k+r+u(µb1+µs1)
), and, hence, δ − rV s

1 > 0. Analogously,

δ − rV s
2 > 0.

The term
u(δ−rV s

1 )

k+r+uµs1
is then an increasing function of the term u; thus,

uI(δ−rV s
1 )

k+r+uIµ
s
1
>

u(δ−rV s
1 )

k+r+uµs1
, and the first two terms (C.63) together are positive. It

remains to show that V s
2 − V s

1 > 0. The sign of V s
2 − V s

1 depends on the

difference of the last terms in (C.65) and (C.66):
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uIµ
b
1(r + uµb1)(

r + uIµb1
) (
k + r + u(µb1 + µs1)

) − uµb1
k + r + u(µb1 + µs1)

=
µb1

k + r + u(µb1 + µs1)

uI − u(
r + uIµb1

) .
Since uI−u > 0, we have V s

2 −V s
1 > 0, and consequently V b

2 (k)−V b
1 (k) >

0. Thus, as we expand the client base of dealer 1 (hence, shrink the client

base of dealer 2) by k∗ → k̄, buyers strictly prefer to change their dealer from

dealer 1 to dealer 2.

By an analogous argument, if we set k∗ → k and expand the client base

of dealer 2, while shrinking the client base of dealer 1 to zero, every buyer

wants to switch out of dealer 2 and go with dealer 1: V b
2 (k)− V b

1 (k) < 0.

Thus, the function V b
2 (k∗) − V b

1 (k∗) is negative at k∗ = k and positive

at k∗ = k̄. Since it is a continuous function of k∗, there exists k∗ such that

V b
2 (k∗) = V b

1 (k∗). For any given cutoff, the system of equations has a unique

solution.

Proof of Proposition 3. Suppose i > j (meaning buyers with k > k∗ are

clients of dealer i). Then, Lemma 4 shows that µsi > µsj and µbi > µbj, Lemma

5 shows that V s
i > V s

j , and Lemma 6 shows that paski (k) > paskj (k).

Lemma 4. If i > j, then µsi > µsj and µbi > µbj.

Proof. The interdealer constraints are

µsiµ
b
Ni

= µsNi
µbi .

Substituting in µbNi
= µbN − µbi and µsNi

= µsN − µsi , we get

µsi
(
µbN − µbi

)
= (µsN − µsi )µbi .

As a result,

µbi = µsi
µbN
µsN

.

Combining the buyers and owners’ value functions, a buyer’s value func-

tion can be expressed in terms of V s’s:

V̂ b
i (k) =

1

k + r

u (δ − rV s
i )µsi + uI

(
δ − (k + r)V s

j + kV s
i

)
µsj

k + r + uµsi + uIµsj
. (C.67)
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Then, the cutoff k∗ where V̂ b
2 (k∗)− V̂ b

1 (k∗) = 0 is given by:

u (δ − rV s
2 )µs2 + uI (δ − (k∗ + r)V s

1 + k∗V s
2 )µs1

k∗ + r + uµs2 + uIµs1
(C.68)

− u (δ − rV s
1 )µs1 + uI (δ − (k∗ + r)V s

2 + k∗V s
1 )µs2

k∗ + r + uµs1 + uIµs2
= 0.

Solving for V s
1 and V s

2 from the linear system given by (C.58)-(C.59), substi-

tuting the solution into (C.68), and simplifying, (C.68) becomes

(k∗ + r)
(
1 + uI

(
gk1 + gk2

))
(µs1 − µs2)

+

[
(k∗)2uI (µs1 + µs2) + r (r + uµs1 + uIµ

s
2) (−uµs2 + uIµ

s
1)

+ 2k∗uIµ
s
1 (r + uµs1) + k∗

(
r (uI − u) + 2u2

Iµ
s
1

)
µs2

]
g1

−
[
(k∗)2uI (µs1 + µs2) + r (r + uµs2 + uIµ

s
1) (−uµs1 + uIµ

s
2) (C.69)

+ k∗
(
r (uI − u)µs1 + 2uI (r + uIµ

s
1)µs2 + 2uuI (µs2) 2

) ]
g2

= 0.

To simplify this further, consider µbi versus gki .

1

r

∫ k∗

k

µ̂b1 dk =
1

r

∫ k∗

k

k + r + uµs1 + uIµ
s
2

k + r + uµs1 + uIµs2
µ̂b1dk

=
1

r

∫ k∗

k

(
k

k + r + uµs1 + uIµs2
+

r + uµs1 + uIµ
s
2

k + r + uµs1 + uIµs2

)
µ̂b1dk

= gk1 + (r + uµs1 + uIµ
s
2) g1.

Thus,

gki =
1

r
µbi −

(
r + uµsi + uIµ

s
j

)
gi. (C.70)

Substituting (C.70) back into (C.69), grouping the terms multiplying g1 and

g2, and simplifying, we get

(µs2 − µs1)

(
1 +

1

r
uIµ

b
N

)
+ [r (uI − u)µs1 + k∗uIµ

s
N ]

1

r + k∗
p2g2 (C.71)

− [r (uI − u)µs2 + k∗uIµ
s
N ]

1

r + k∗
p1g1 = 0.

where

pi ≡ k∗ + r + uµsi + uIµ
s
j .
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Now consider pigi versus µbi :

1

r

∫ k∗

k

k∗ + r + uµs1 + uIµ
s
2

k + r + uµs1 + uIµs2
µ̂b1dk −

1

r

∫ k∗

k

µ̂b1dk

=
1

r

∫ k∗

k

k∗ + r + uµs1 + uIµ
s
2

k + r + uµs1 + uIµs2
µ̂b1dk −

1

r

∫ k∗

k

k + r + uµs1 + uIµ
s
2

k + r + uµs1 + uIµs2
µ̂b1dk

=
1

r

∫ k∗

k

k∗ − k
k + r + uµs1 + uIµs2

µ̂b1dk > 0.

Thus, p1g1 >
1
r
µb1 or −p1g1 < −1

r
µb1 . Analogously, p2g2 <

1
r
µb2.

The inequalities, −p1g1 < −1
r
µb1 and p2g2 < 1

r
µb2, and (C.71) together

imply

(µs2 − µs1)

(
1 +

1

r
uIµ

b
N

)
+ (r (uI − u)µs1 + k∗uIµ

s
N)

1

r + k∗
1

r
µb2

− (r (uI − u)µs2 + k∗uIµ
s
N)

1

r + k∗
1

r
µb1 > 0.

Using the fact that µb1µ
s
2 = µs1µ

b
2 from the interdealer constraint, this becomes

(µs2 − µs1)

(
1 +

1

r
uIµ

b
N

)
+ (k∗uIµ

s
N)

1

r + k∗
1

r
µb2 − (k∗uIµ

s
N)

1

r + k∗
1

r
µb1 > 0,

or

(µs2 − µs1)

(
1 +

1

r
uIµ

b
N

)
+

1

r + k∗
1

r
(k∗uIµ

s
N)
(
µb2 − µb1

)
> 0.

Using the interdealer constraint, µbi = µsi
µbN
µsN

, one more time, we get

(µs2 − µs1)

(
1 +

1

r
uIµ

b
N

)
+

1

r + k∗
1

r
k∗uI (µs2 − µs1)µbN > 0.

The terms multiplying µs2 − µs1 are positive. Thus, it has to be that

µs2 − µs1 > 0.

In turn, since from the interdealer constraint µbi = µsi
µbN
µsN
, we have:µb2 − µb1 >

0.

Lemma 5. If i > j, then V s
i > V s

j .
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Proof. Solving for V s
2 from (C.68), we get

V s
2 =

1

c
(k∗ + r) (uI − u) δ (µs2 − µs1) (C.72)

+
1

c
V s

1

[
(k∗)2uI (µs1 + µs2) + r(uI − u)µs1 (r + (u+ uI)µ

s
2)

+ k∗
(
r ((uI − u)µs1 + uI (µs1 + µs2)) + uI

(
2uIµ

s
1µ

s
2 + u

(
(µs1) 2 + (µs2) 2

))) ]
.

where

c ≡ k∗uIµ
s
1 (k∗ + r + uµs1) + k∗uuI (µs2) 2

+
[
(k∗ + r) (r(uI − u) + k∗uI) +

(
r(u2

I − u2) + 2k∗u2
I

)
µs1
]
µs2.

Note that c > 0. Subtracting V s
1 from (C.72) and simplying, we get:

V s
2 − V s

1 =
(k∗ + r) (uI − u) (δ − rV s

1 ) (µs2 − µs1)

c
.

By assumption, uI−u > 0, and, as the previous lemma showed, µs2−µs1 > 0.

Thus, V s
2 − V s

1 > 0.

Lemma 6. If i > j, then paski (k) > paskj (k).

Proof. To be completed.

Proof of Proposition 4. Given that dealer i has a larger buyer and seller

client mass, it is straightforward to see that MD
i > MD

j .

Now consider the interdealer volume, MDD
i . Due to the interdealer con-

straints, the first and the second terms in (5) are equal. Hence, MDD
i is the

twice the first term:

MDD
i = 2λddµ

s
i

(∑
j∈Ni

µbj

)
.

Using the fact that µbi = µsi
µbN
µsN

,

MDD
i = 2λddµ

s
i

(∑
j∈Ni

µsj

)
µbN
µsN

. (C.73)
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Thus, the sign of MDD
i −MDD

j depends on the sign of:

µsiµ
s
Ni
− µsjµsNj

= µsi
(
µsj + µsN/{i,j}

)
− µsj

(
µsi + µsN/{i,j}

)
=
(
µsi − µsj

)
µsN/{i,j}.

As a result, MDD
i −MDD

j > 0 because µsi − µsj > 0.

Proof of Proposition 5. Using (A.35)

P ask
i,d ≡ Eb

d

[
P̂i,d(k)

]
=

1

2
V s
i

∫ k

k

µ̂bj(k)

µbj
+

1

2

∫ k

k

µ̂bd(k)

µbd
(V o

d (k)− V b
d (k)).

=
1

2
V s
i +

1

2
Eb
d

[
V ob
d (k)

]
. (C.74)

Since V s
c > V s

p ,

P ask
c,d > P ask

p,d .

Thus, a dealer buys an asset at a higher ask-price from a core dealer than

from a peripheral dealer.

Now consider the price an abritrary dealer d sells back to dealer i

P bid
d,i =

1

2
V s
d +

1

2

∫ k

k

µ̂bi(k)

µbb
V ob
i (k). (C.75)

=
1

2
V s
d +

1

2
Eb
iV

ob
i . (C.76)

Since core dealer’s clients are high k-buyers, and high k-buyers have low

reservation values, Eb
c

[
V o
c (k)− V b

c (k)
]
< Eb

p

[
V o
p (k)− V b

p (k)
]
. Thus,

P bid
d,c < P bid

d,p

Combining the two, the core dealer charges a wider bid-ask spread:

P ask
c − P bid

c

0.5P ask
c + 0.5P bid

c

>
P ask
p − P bid

p

0.5P ask
p + 0.5P bid

p

.

The results on execution speed and volume are straightforward implications

from the difference in client sizes across dealers.

Proof of Proposition 6. Integrating the value functions over the respec-
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tive client masses yields:

r

∫ k

k

V o
i (k)µ̂oi (k)dk = δ

∫ k

k

µ̂oi (k)dk + k

∫ k

k

(V s
i − V o

i (k)) µ̂oi (k)dk.

r

∫ k

k

V b
i (k)µ̂bi(k) =

∫ k

k

k
(
0− V b

i (k)
)
µ̂bi(k)dk

+

∫ k

k

∑
j∈N

λijµ
s
jzij

(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk.

rV s
i µ

s
i = (δ − x)µsi +

∑
j∈N

(∫ k

k

λijµ
s
i µ̂

b
j(k)zij

(
V o
j (k)− V b

j (k)− V s
i

))
.

Adding these up, plus the new entrants expected utility
∫ k
k
V b
i (k)f̂(k)νi(k)dk

and dealer profits rWD
i , we get

r(WC
i +WD

i ) =δ

∫ k

k

µ̂oi (k)dk +

∫ k

k

k (V s
i − V o

i (k)) µ̂oi (k)dk

+

∫ k

k

k
(
0− V b

i (k)
)
µ̂bi(k)dk

+

∫ k

k

∑
j∈N

λijµ
s
jzij

(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk

+ (δ − x)µsi +
∑
j∈N

(∫ k

k

λijµ
s
i µ̂

b
j(k)zij

(
V o
j (k)− V b

j (k)− V s
i

))

+

∫ k

k

V b
i (k)f̂(k)νi(k)dk

+

∫ k

k

λijµ̂
b
i(k)µsi (1− 2z)

(
V o
i (k)− V b

i (k)− V s
i

)
dk

+
∑
j∈Ni

(∫ k

k

λijµ̂
b
i(k)µsj

(
1− 2zdd

2

)(
V o
i (k)− V b

i (k)− V s
j

)
dk

)

+
∑
j∈Ni

(∫ k

k

λijµ̂
b
j(k)µsi

(
1− 2zdd

2

)(
V o
j (k)− V b

j (k)− V s
i

)
dk

)
.

Simplifying it and replacing µ̂bi(k) and µ̂oi (k) with µ̂bi(k) = f̂(k)νi(k)
k+λµsiN

and
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µ̂oi (k) =
f̂(k)νi(k)λµsiN
k(k+λµsiN)

, we get

r(WC
i +WD

i ) =δ

∫ k

k

f̂(k)νi(k)λµsiN
k (k + λµsiN)

dk +

∫ k

k

(V s
i − V o

i (k))
f̂(k)νi(k)λµsiN

(k + λµsiN)
dk.

+

∫ k

k

k
(
0− V b

i (k)
) f̂(k)νi(k)

k + λµsiN
dk

+

∫ k

k

λµsi
(
V o
i (k)− V b

i (k)− V s
i

)
µ̂bi(k)dk

+

∫ k

k

∑
j∈Ni

λijµ
s
j(

1

2
)
(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk

+ (δ − x)µsi +
∑
j∈Ni

(∫ k

k

λijµ
s
i µ̂

b
j(k)(

1

2
)
(
V o
j (k)− V b

j (k)− V s
i

))

+

∫ k

k

V b
i (k)f̂(k)νi(k)dk.

Adding the second term in the first row, the first term in the second row and

the very last term, we get

r(WC
i +WD

i ) =δ

∫ k

k

f̂(k)νi(k)λµsiN
k (k + λµsiN)

dk − λµsiN
∫ k

k

(
V o
i (k)− V b

i (k)− V s
i

)
µ̂bi(k)dk.

+ λµsi

∫ k

k

(
V o
i (k)− V b

i (k)− V s
i

) f̂(k)νi(k)

k + λµsiN
dk

+

∫ k

k

∑
j∈Ni

λijµ
s
j(

1

2
)
(
V o
i (k)− V b

i (k)− V s
j

)
µ̂bi(k)dk

+ (δ − x)µsi +
∑
j∈Ni

(∫ k

k

λijµ
s
i µ̂

b
j(k)(

1

2
)
(
V o
j (k)− V b

j (k)− V s
i

))
.

Summing across all dealers i ∈ N and using the fact µbi = µsi
µbN
µsN

, all the

expressions involving V ’s cancel. We are left with:

∑
i∈N

(
δ

∫ k

k

f̂(k)νi(k)λµsi,Ni

k
(
k + λµsi,Ni

) dk + (δ − x)µsi

)
=
∑
i∈N

(δ(si − µsi ) + (δ − x)µsi )

= δS − xµsN ,

where the second equality comes from the market clearing condition.
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Proof of Proposition 7. To be completed.

Proof of Proposition 8. The result is shown in Lemma 4.

Proof of Proposition 9. Consider an environment with two dealers i and

j. Writing µsj = µsN − µsi , (C.51) and (C.52) boil down to two equations

and two unknowns, µsi and µsN . Using the Implicit Function Theorem,
∂µsN
∂k∗

evaluated at k∗ = k (that is, µsi = 0) is

∂µsN(k∗)

∂k∗
=

fλµsN(2(k̄ − k)λµsN + k(S − µsN)(k̄ + λµsN))

k(k + λddµsN)
[
λ+ (k + λµsN)(k̄ + λµsN)

]
[−(S − µsN)]

.

The numerator is positive, while the denominator is negative; hence,
∂µsN (k∗)

∂k∗
<

0. This implies that as we go from an environment with just one dealer

(k∗ = k) to an environment with two dealers (k < k∗ < k̄) (that is, as k∗

increases), the misallocation—captured by µsN —decreases. The social wel-

fare, as a result, increases. Thus, increasing the aggregate number of dealers

increases the social welfare.

Proofs of Propositions 10-13. To be completed.
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D Tables

Table 1: Parameter Values
This table gives the parameter values chosen for the numerical analysis. We assume a

uniform distribution for f(k).

Variable Notation Value

Bond coupon blow δ 1
Disutility of holding the bond x 0.5
Support of customer distribution [k, k̄] [1,5]
Dealers’ matching efficiency, CDC λd 100
Dealers’ matching efficiency, CDDC λdd 200
Supply of bonds S 0.3
Risk-free rate r 0.04
Customer bargaining power, n=1 zd

1
4

Customer bargaining power, n=2 zdd
1
4

E Model Figures

Figure 7: The Average Ask-Price vs. the Sellers’ Expected Utility
The figures illustrate the tradeoff that buyers face when choosing dealers, for exposition,
in a two-dealer environment. They plot the the average ask-price and the expected utility
of a seller-client that dealers offer to clients as functions of clients’ liquidity type k (in x-
axis). The cutoff k∗ is the equilibrium cutoff: Buyers with k < k∗ choose the “peripheral”
dealer, while buyers with k ≥ k∗ choose the “core” dealer. See Section 2 for more detail.

k*k k
k

Ave Ask-Price, pi
ask

peripheral
core

k*k k
k

Exp. Utility of Seller, Vi
s

peripheral

core
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Figure 8: The Quoted Average Bid-Ask Spread
The figures illustrate the expected bid-ask spread, φi(k), as functions of buyers’ liquidity
type k (in x-axis) for three different parameter regions: λDD < λD, λDD = λD, λDD > λD.
The cutoff k∗ is the equilibrium cutoff: Buyers with k < k∗ choose the “peripheral” dealer,
while buyers with k ≥ k∗ choose the “core” dealer. See Section 3 for more detail.

k* k
k

λDD<λD

peripheral
core

k* k
k

λDD=λD

peripheral

core

k*k k
k

λDD>λD

peripheral

core

Figure 9: Welfare Analysis
The figures plot, for a two-dealer environment, the total welfare as a function of the cutoff
k∗. The cutoff k∗asym is the actual (asymmetric) equilibrium cutoff, k∗sym is a hypothetical
cutoff such that µs1 = µs2, and k∗wel is a cutoff that maximizes the total welfare. we assume
that condition 11 is satisfied via λdd > λd. See Section 4 for more detail.

k
asym

*
k

wel

*
k

sym

*
k

*

Total Welfare, z<z

k
asym

*
k

wel

*
k

sym

*
k

*

Total Welfare, z>z
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