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Abstract. I study repeated competition among oligopolists. The only novelty is
that firms may go bankrupt and permanently exit: the probability that a firm sur-
vives a price war depends on its financial strength, which varies stochastically over
time. Under some conditions including no entry, an anti-folk theorem holds: when
firms are patient, so that strength levels change relatively fast, every Nash equi-
librium involves an immediate price war that lasts until at most one firm remains.
Surprisingly, the possibility of entry may facilitate collusion, as may impatience.
The model can explain some observed patterns of collusion and predation.

1. Introduction

In this paper, I study dynamic competition among multiple firms. The model
differs from the usual repeated game setting only in that firms may go bankrupt and
irrevocably exit the market. In each period, each active firm has a state variable
corresponding to its financial strength. That state, which is publicly observed, moves
stochastically over time, with Markov transitions that depend on per-period profits.
A firm goes bankrupt with positive probability after a string of low profits. Thus, any
active firm can start a price war that ends only when it or all its rivals are driven into
bankruptcy. A firm in a strong financial position is more likely to survive a price war,
all else equal, than a weak firm. The main result (Theorem 1) establishes a condition
under which when firms are patient, then in any Nash equilibrium a price war begins
very quickly (before much discounted time has passed) and lasts until a single active
firm is left as a monopolist. That is, collusion is impossible for patient firms.
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To fix ideas, consider a market with symmetric Bertrand competition between two
firms. An active firm always has the option of starting a price war by setting a price
of zero until either it or its rival goes bankrupt. The firm can thus guarantee itself an
expected long-run payoff close to the monopoly payoff times the firm’s probability of
winning a price war. If a firm is stronger financially than its rival, then it has a better
than even chance of winning a price war. When the firms are very patient, then, in
equilibrium the stronger firm must get over half of the available profits. A firm with
an initial advantage, therefore, must immediately start a price war. Otherwise, the
stochastic movement of financial strength levels means that its rival will quickly gain
the advantage. At that point, the rival can ensure itself over half of the profit, and
the long-run share remaining for the first firm is less than its expected payoff would
have been from an immediate price war. The no-collusion result (Theorem 1) follows.

More generally, suppose that there are N firms competing, whether in Bertrand
fashion or otherwise. As patience increases, in equilibrium each firm gets an expected
payoff no less than the expected long-run payoff from starting a price war, equal to
the monopoly payoff πM times the firm’s probability of winning the price war. If firms
collude and no bankruptcies occur in equilibrium, then a firm can wait until it is in
a strong financial position relative to its rivals, start a price war when its winning
probability is high, and thereby get an expected payoff equal to that high probability
multiplied by πM . But if that expected payoff exceeds a 1/N share of collusive profits
(Condition NC in Section 3), then for each firm to get such an expected payoff is
infeasible, since the sum of payoffs would exceed the total collusive profits available.
Thus, bankruptcies must occur quickly, before the random process driving financial
state transitions gives every firm a turn being stronger than its rivals.

Intuitively, a firm initially in a strong position prefers starting a price war right
away to risking a deterioration in its position. To avert a price war, firms that are
initially weak would be willing to promise a strong rival a large share of future profits.
However, when those weak firms eventually become strong they are no longer willing
to make the promised transfers; they prefer to take their chances with a price war.
Since the strong firm can foresee that outcome, an initial price war cannot be averted.
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The prediction of fighting till bankruptcy is consistent with historical examples, as
detailed below. For fixed levels of patience, the model can also be used to explain
patterns of collusion in markets. Dividing market demand asymmetrically may make
collusion easier. The effect of cartel size on the ability to collude is nonmonotonic:
collusion between n firms may be sustainable when collusion between n− 1 or n+ 1
firms is not. Similarly, more patient firms may be more or less able to collude than
less patient firms – increasing patience has the usual repeated-game effect of making
a one-time gain less attractive, but it also reduces the weight placed on the temporary
losses during a price war relative to the potential long-run stream of monopoly profits
for the winner. Subgame perfect equilibria (SPEs) exist where firms collude when
they have equal financial strengths and fight only when one is stronger. A final,
counterintuitive result is that the possibility of entry (at a cost) facilitates collusion:
a potential entrant might risk a price war against a single firm, but the chances of
winning a price war against multiple firms are low enough to discourage entry.

The assumption that firms may be forced to exit after strings of low profits is
based on models of capital market imperfections driven by moral hazard, such as
Holmstrom and Tirole (1997). Tirole’s (2006) Chapter 3 summarizes those models
and their predictions that firms with low net worth may face credit rationing. His
Chapter 2 describes some stylized facts about corporate finance, in particular the
finding that “firms with more cash on hand and less debt invest more, controlling for
investment opportunities.” Many papers in the literature on the “deep pockets” or
“long purse” model of predatory pricing make similar assumptions about financially
weak firms facing exit as a result of borrowing constraints. See, for example, Benoit
(1984), Fudenberg and Tirole (1985, 1986), Poitevin (1989), Bolton and Scharfstein
(1990), Kawakami (2010) and Motta’s (2004, Chapter 7) summary.

Historical experience. There are many historical instances of oligopolistic firms
competing to drive each other out of the market instead of colluding. At one point
during the 1824-1826 price war for New Jersey-Manhattan steamboat passenger traf-
fic, for example, the Union Line, run by Cornelius Vanderbilt, offered a fare of zero,
and in addition would provide passengers with a free dinner (Lane, 1942, p.47). In the
end, the competing Exchange Line, “whose resources were small compared to those
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of” the Union Line, collapsed (Lane, 1942, p.47). During the price war, “the well-
financed Union Line simply took some planned temporary losses, marking them down
for what they were: an investment in future prices” (Renehan, 2007, p. 108). There
were similar episodes throughout Vanderbilt’s career. Weiman and Levin (1994) de-
scribe Southern Bell Telephone’s aggressive pricing policy toward competitors around
1900: SBT endured persistent “operating losses with no tendency toward accommo-
dation” and “rejected the offer of a competitor in Lynchburg, Virginia, to ‘raise rates
... , each company agreeing not to take the subscribers of the other’ ” (p.114). Lam-
oreaux (1985) describes repeated failures to collude on high prices in the steel wire
nail industry (pp.62-76) and the newsprint industry (pp.42-45).

Exit need not occur through bankruptcy. A failing firm might sell out to a rival
at a low price. If there is some friction preventing mergers between financially strong
firms, that interpretation of “forced exit” is also consistent with the model here.
Genesove and Mullin (2006) argue that predatory pricing by the American Sugar
Refining Company around 1900 allowed it to buy out competitors at prices that
were “simply too low to be consistent with competitive conditions” (p.62). Similarly,
Burns (1986) finds that the American Tobacco Company significantly reduced buyout
costs through predatory pricing. SBT sometimes pursued this strategy as well: “In
1903, SBT purchased the independent [competitor] in Richmond, Virginia, for only
one-third of the original asking price ... but only after five years of heavy losses”
(Weiman and Levin, 1994, pp.119-120). More recently, a sequence of bankruptcies
and mergers has reduced the number of major airlines in the United States from ten
in 2000 to just four. Overall, Borenstein (2011) estimates that the industry lost $59
billion (in 2009 dollars) in the thirty years after deregulation in 1978.

There also are examples where small groups of incumbent firms coordinate price
cuts to drive out entrants. Scott Morton (1997) describes how British shipping cartels
around 1900 jointly lowered prices in response to entry, especially entry by firms with
fewer financial resources. She argues that if the entrant was in a weak financial
position, then the cartel “was more likely to think it could drive the entrant into
bankruptcy or exit” (p.700). Lamoreaux (1985 pp.80-82) documents how the Rail
Association, a cartel of steel rail producers, facing multiple new entrants, cut prices
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in 1897 with the result that “firms that had entered the industry under the pool’s
pricing umbrella quickly retreated.” Lerner (1995) examines the disk drive industry
from 1980-1988. He finds that in the second half of that period, when financing
was difficult to obtain, “drives located adjacent to those sold by thinly capitalized
undiversified rivals were priced lower than other drives” (p.585). The analysis of
collusive action to deter entry, or “parallel exclusion,” in Section 4.2.1 argues for an
increased focus on such behavior in antitrust enforcement.

In contrast, there are of course many more industries characterized by a stable
market structure with multiple firms. The model here can explain that outcome
either through some impatience on the part of the firms or through the possibility
of entry, as discussed above. More broadly, the no-collusion result here applies when
the prospect of forced exit in the relatively near future is relevant, as might be the
case in a new industry where entry requires financing a large capital investment (as
in many of the examples above) or in an industry facing declining demand.

Relation to literature. Theorem 1 is in contrast with folk theorems for repeated
games such as Fudenberg and Maskin (1986). Here, a firm cannot be rewarded or
punished in the future by a rival firm that is about to exit, and so the logic of the folk
theorem does not apply. Folk theorems for stochastic games (Dutta, 1995, Fudenberg
and Yamamoto 2011, Hörner et al. 2011) require that the set of equilibrium payoffs
be independent of the initial state in the limit as players become patient. That
assumption fails here because bankruptcy is an absorbing state for each firm. More
precisely, when Condition NC holds, the intersection of the feasible and individually
rational payoff sets across all different combinations of strength levels for active firms
is empty. Similarly, the results of Green and Porter (1984) and Rotemberg and
Saloner (1986) on collusion when prices are imperfectly observed and when demand
fluctuates, respectively, do not hold in the model of this paper.

Besides the literature on deep-pockets predation, three other papers are closely
related. Kawakami and Yoshida (1997) study repeated duopoly with exit. In their
model, whichever firm deviates first from collusion by undercutting its rival is guar-
anteed to win the resulting price war. As a consequence, if firms are patient relative
to the deterministic length of a price war, then the temptation to preempt makes
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collusion impossible. Fershtman and Pakes (2000) numerically analyze outcomes in a
model where entry and exit are voluntary and firms’ quality levels change stochasti-
cally as a function of investment. Powell (2004) examines a bargaining model of war.
In each period countries can either divide surplus peacefully or go to war, after which
the winner gets all future surpluses. Extending the work in Powell (1999) and Fearon
(2004), Powell (2004) focuses on understanding when war will occur.

Finally, there is also a small literature (including Milnor and Shapley, 1957, Rosen-
thal and Rubinstein, 1984, and Maitra and Sudderth, 1996, Section 7.16) on “games
of survival,” where players, who have an initial stock of capital, repeat a stage game,
and the resulting positive or negative payoffs are added to their stocks. A player
whose stock becomes negative is “ruined” and exits the game. The goal is to force
opponents into ruin. Shubik and Thompson (1959) and Shubik (1959, Chapters 10
and 11) generalize such games to allow players either to consume their stage-game
payoffs or to add them to their capital stock.

The structure of the paper is as follows: Sections 2 and 3 present the model and
the no-collusion result. Section 4 illustrates the result for the cases of Cournot and
Bertrand competition. Section 5 describes behavior for fixed levels of patience. Sec-
tion 6 examines the robustness of Theorem 1, and Section 7 describes how the theorem
can be extended to other dynamic games. Section 8 concludes.

2. Model

There are N > 1 expected-profit maximizing firms interacting in an infinite-horizon
stochastic game. There is a bounded set Ŝ = S ∪ {0} of states of the world for each
firm, where an element s of S ⊆ (0, K], K > 0, represents the strength of the firm’s
financial position, and a firm in state 0 is bankrupt. States in S are referred to as
active states. Let s ∈ ŜN denote a vector of states for all firms, let I(s) ≡ {i : si 6= 0}
denote the set of active (that is, not bankrupt) firms at state vector s, and let S(n)
denote the set of state vectors where n firms are active. In each period, all active
firms compete in the following symmetric stage game: each firm i chooses an action
from a compact set A. Each bankrupt firm does not participate and must play the
“inactive action” aØ ∈ A, which yields zero profit. Given an action ai ∈ A for firm
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i and a vector of actions a−i ∈ AN−1 for the rival firms, firm i’s profit in a period is
given by the measurable function π(ai, a−i). Payoffs to mixed actions are defined in
the usual way.1

Let πM denote monopoly profit. That is,

πM ≡ sup
ai∈A

π(ai, aØ, . . . , aØ).

More generally, for each number of active firms n ∈ {2, . . . , N}, let πC(n) denote the
maximum total profits that the firms could earn by cooperating:

πC(n) ≡ sup
(a1,...,an)∈An

n∑
i=1

π(ai, a−i, aØ, . . . , aØ).

Firms discount future payoffs at the rate δ < 1 per period; the total payoff to a
firm that earns stream of profits {πt}t≥1 is (1− δ)∑∞t=1 δ

t−1πt. Outcomes of previous
periods are publicly observed, as is the realized state.

Here are a few examples of the stage game to illustrate the definitions above:

Example 1. Bertrand competition. Each firm i chooses a price pi ∈ [0, p̄]. Firm i’s
quantity demanded is given by the following function:

xi(pi, p, n∗) =


Q(pi) if pi < p
Q(pi)
n∗+1 if pi = p

0 if pi > p,

where p is the minimum price set by firm i’s rivals, n∗ is the number of rival firms that
set that price, and the function Q(·) is market demand. Each firm then produces, at
a constant marginal cost normalized to zero, to meet its quantity demanded. Market
demandQ(·) is differentiable and strictly decreasing below some strictly positive choke
price p̂ < p̄ such that Q(p) = 0 for all p ≥ p̂. A bankrupt firm must set price p̄. Firm
i’s profit, then, is given by π(pi, p, n∗) ≡ pixi(pi, p, n∗). The monopoly profit equals
the maximum collusive profit and is given by

πM = πC(n) = max
p≥0

pQ(p),

with the associated monopoly price pM , which is assumed to be unique.
1Profits are deterministic given actions. All results generalize if random noise is added to payoffs,

given appropriate adjustments of the assumptions on transitions in Section 2.1.
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Example 2. Linear Cournot competition. Each firm i chooses a quantity qi ∈ [0, q̄]
at cost cqi, where c > 0. A bankrupt firm must set quantity 0. When the total
market quantity is Q, the market price is given by max {a− bQ, 0}, where a > c,
b > 0, and q̄ ≥ a/b. Firm i’s profit is then (a− bQ− c)qi . The monopoly profit and
the maximum collusive profit coincide and are given by πM = πC(n) = (a − c)2/4b,
achieved by a total quantity of (a− c)/2b.

Example 3. Cournot competition with quadratic costs. The environment is the same
as in Example 2, except that now the cost to a firm of producing quantity q is cq2.
The monopoly profit is πM = a2/4(b + c), achieved by quantity a/2(b + c). The
maximum collusive profit is

πC(n) = n
a2

4(nb+ c) ,

achieved when each firm produces quantity a/ [2(nb+ c)].

In Example 3, for any number of firms n > 1 the maximum collusive profit πC(n)
exceeds monopoly profit πM because of the diseconomies of scale: multiple firms can
produce more cheaply than a single firm.

Example 4. Hotelling competition. The number of firms is N = 2, and each firm i

chooses a price pi ∈ [0, 1]. A bankrupt firm must set price 1. Firm 1 is located at
x = 0 and firm 2 is located at x = 1. There is a unit mass of consumers distributed
uniformly along the interval [0, 1]. Each consumer has unit demand, and a consumer
of type x has value v1(x) = 1−x for firm 1’s product and value v2(x) = 1−(1−x) = x

for firm 2’s product. A consumer of type x will purchase from firm i if vi(x) − pi >
max{0, vj(x)− pj}. Thus, the quantity demanded for firm i is

q(pi, pj) = min
{

1− pi,
1− (pi − pj)

2

}
.

The cost of production is 0, so firm i’s profit is piq(pi, pj). The monopoly profit is
πM = 1

4 , achieved when the firm sets price 1
2 and sells to the half of the market closest

to its own position. The maximum collusive profit is πC(2) = 1
2 , achieved when each

firm sets price 1
2 and sells to the closer half of the market.
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In Example 4, product differentiation means that the two firms jointly can make
more profit than either on its own. In fact, the maximum collusive profit is twice the
monopoly profit: each firm acts as a monopolist in its half of the market.

2.1. States and state transitions. Bankruptcy is an absorbing state. Recall that a
bankrupt firm earns a continuation payoff of 0: π(aØ, a−i) = 0 for any a−i. If and when
every firm but at most one becomes bankrupt, the surviving firm, if any, becomes a
monopolist and earns the corresponding flow of profits (1− δ)∑∞t=1 δ

t−1πM = πM .
Otherwise, states do not affect payoffs directly. Instead, a firm in a weaker financial

position is closer to bankruptcy. In particular, after each period an active firm’s state
for the next period is determined stochastically according to a transition rule Γ that
is a measurable function of the firm’s current state and profit: Γ(π, s)[s′] denotes
the probability that tomorrow’s state is less than or equal to s′ given that today’s
state is s and today’s profit is π.2 Tomorrow’s state is stochastically increasing in
today’s state. Formally, for any profit π and any two states sH , sL such that sH > sL,
the distribution Γ(π, sH) strictly first-order stochastically dominates the distribution
Γ(π, sL). That is, Γ

(
π, sH

)
[s] ≤ Γ

(
π, sL

)
[s] for all s, and the inequality is strict for

some s. State transitions are independent across firms.
To derive the main results, I will assume that bankruptcy is a threat but is avoidable

if firms collude, and that firms’ financial strengths vary significantly over time. The
three formal conditions on the transition function Γ are as follows.

First, say that bankruptcy is avoidable if firms sharing the maximum feasible profit
will not go bankrupt: there exists ε > 0 such that for any active state s ∈ S,
Γ(π, s)[0] = 0 whenever

π ≥ min
{
πM , min

n∈{2,...,N}
πC(n)/n

}
− ε.

In particular, if bankruptcy is avoidable, then a monopolist will not go bankrupt.
Second, say that bankruptcy is achievable if stage-game competition is such that

a firm can, without unavoidably going bankrupt itself, impose low enough profits on
its rivals that a stream of such profits will eventually lead to bankruptcy. For each

2Section 6 relaxes the assumptions that transition and payoff functions are symmetric across firms
and that payoffs are independent of financial strength.
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number of active firms n ≤ N , let π(a, n) be the upper bound on a rival’s profit when
a firm plays action a:

π(a, n) ≡ sup
(a2,...,an)∈An−1

π(a2, . . . , an, a, a
Ø, . . . , aØ).

Then bankruptcy is achievable if there exist ε > 0 and a positive integer τ such that
the following two conditions hold: first, for each number of active firms n ≤ N , there
exists a (possibly mixed) action a(n) such that for any state s ∈ S and any sequence
of profits πτ = (π1, . . . , πτ−1) satisfying πt ≤ π(a(n), n) for each t ∈ {1, . . . , τ − 1},

Pr (st0+τ = 0|st0 = s, πτ ) ≥ ε;

and second,
Pr (st0+1 = 0|st0 = s, π) ≤ 1− ε

for any profit π.3

Finally, say that transitions are uniformly irreducible if whenever a firm’s profit
is high enough to avoid bankruptcy, then its state moves stochastically throughout
the state space S. Specifically, transitions are uniformly irreducible if for any ε0 > 0,
there exist ε1 > 0 and a positive integer τ such that the following holds: for any two
active states s, s′ ∈ S and any sequence of profits πτ = (π1, . . . , πτ−1), if

Pr (st0+τ = 0|st0 = s, πτ ) < ε1, then

Pr (|st0+τ − s′| ≤ ε0|st0 = s, πτ ) ≥ ε1.

Uniform irreducibility implies that there is a bound on the expected waiting time to
transition from any active state to the neighborhood of any other active state, con-
ditional on not going bankrupt, whenever a firm earns profits that make bankruptcy
unlikely, and that bound is independent of the exact level of profits.

The assumptions that bankruptcy is avoidable, that bankruptcy is achievable, and
that transitions are uniformly irreducible are maintained throughout:

3One well-known oligopoly where bankruptcy was not achievable is the Joint Executive Commit-
tee, the 1880s railroad cartel. Firms faced a “ ‘no-exit’ constraint,” as Porter (1983, p.303) puts it:
“bankrupt railroads were relieved by the courts of most of their fixed costs and instructed to cut
prices to increase business” (Porter, 1983, p.303, citing Ulen, 1978, pp.70-74).
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Assumption. Bankruptcy is both avoidable and achievable, and transitions are uni-
formly irreducible.

Those conditions rule out cases where in the long run all firms inevitably go bankrupt,
where the threat of bankruptcy is irrelevant, and where a firm’s financial strength is
stable and thus plays no strategic role.

It would be natural to assume that financial strength is worsening on average if
profits are low and increasing if profits are high, but that assumption is not necessary
for the no-collusion result (Theorem 1). In the case of Bertrand competition, adding
such a monotonicity condition yields the even stronger result that equilibrium profits
and prices must be low in every period with two or more active firms (Theorem 2).

In this setting, a strategy is a mapping from the current state vector and the history
of past state vectors and action profiles to an action for an active firm. Recall that a
bankrupt firm much play aØ every period.

Let Eδ(s) be the set of payoffs obtained in Nash equilibria, given initial state vector
s and discount factor δ. Fink (1964), Mertens and Parthasarathy (1987, 1991), and
Solan (1998) give sufficient conditions for Eδ(s) to be nonempty. In particular, a Nash
equilibrium exists for any initial state vector if the set of stage-game actions A and
the state space Ŝ are finite, or if the profit function π and transition function Γ are
continuous in actions and profits, respectively. (Recall that A is compact.) The stage
games in Examples 2-3 satisfy those conditions. Examples 1 and 4 do not satisfy
them, but nevertheless equilibria exist in those settings, as will be shown.

2.2. Price wars. One strategy available to any active firm i is to start a price war;
that is, to try and drive all its rivals into bankruptcy by playing the action a(n)
described in the definition of achievable bankruptcy in the previous section. Denote
by σPW , for “price war,” the strategy of playing a(n) whenever there are n− 1 active
rivals and earning the monopoly profit if all other firms exit.4 The expected payoff
from σPW provides a lower bound on a firm’s continuation payoff in equilibrium at
any state vector. That lower bound will play a key role in the proof of the no-collusion

4If multiple actions a(n) satisfy the definition of achievable bankruptcy, select any one.
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result (Theorem 1), specifically in Lemma 2 below. To analyze that bound, it will be
useful to introduce the following notation.

Given any state vector s and strategy profile σ, define for each active firm i ∈ I(s)
the possibly infinite random variable

T PWi (s, σ) ≡ min {τ > 0 : si,t+τ = 0|st = s, σ} .

T PWi (s, σ) denotes the number of periods until firm i goes bankrupt, starting from
state vector s, when firms use strategy σ. For each n ∈ {2, . . . , N}, initial state vector
s ∈ S(n), strategy profile σ, and active firm i ∈ I(s), define the probability

αi(s, σ) ≡ Pr
[
T PWi (s, σ) > max

j∈I(s)\{i}
T PWj (s, σ)

]
;

αi(s, σ) is the probability that firm i “wins” – that is, the probability that each other
active firm goes bankrupt first. For each firm j that is bankrupt at state vector s,
define αj(s, σ) ≡ 0.

The relevant lower bound on continuation payoffs in Lemma 2 depends on the
probability of winning a price war that a firm can guarantee itself by playing the
price-war strategy σPW :

αi(s) ≡ inf
σ−i

αi(s, (σPW , σ−i)).

The assumption that bankruptcy is achievable implies that αi(s) is strictly between
0 and 1 for any active firm i. The following lemma shows, straightforwardly, that
αi(s) increases when firm i’s financial position improves or when its rivals’ financial
positions worsen. That result follows because given any current profit level, the
distribution of a firm’s strength tomorrow is strictly increasing, in the sense of first-
order stochastic dominance, in its strength today. Note that Lemma 1 uses the
assumption that state transitions are independent across firms, conditional on profits.
All formal proofs are in the appendix.

Lemma 1. For each n ∈ {2, . . . , N} and each pair of active firms i, j, j 6= i, αi (s)
is strictly increasing in si and strictly decreasing in sj.

The next lemma, Lemma 2, says that when firms are patient, in equilibrium each
firm gets an expected payoff at least equal to the monopoly profit πM times the
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firm’s guaranteed probability of winning a price war αi(s). The idea is that given
state vector s, any active firm i can, by starting a price war, attain an expected
payoff of αi (s) πM discounted by EδT , where T is the random variable denoting the
length of a price war won by firm i. The expected length of the price war is bounded
independently of δ, so for δ close to 1 each firm can guarantee itself a payoff arbitrarily
close to αi (s) πM .

Lemma 2. For any ε > 0, there exist δ(ε) < 1 such that for any δ > δ(ε), each
n ∈ {2, . . . , N}, each initial state vector s ∈ S(n), and each firm i, firm i’s expected
payoff in any Nash equilibrium is at least αi (s) πM − ε.

In the next section, Lemmas 1 and 2 are used to provide a condition under which
firms cannot collude for long in equilibrium.

3. Immediate Price War

Suppose first that the set of active states S is finite, so that S = {1, . . . , K}. For
each number of active firms n, let si(n) ∈ S(n) denote the state vector where firm i’s
financial strength is si = K, the highest state, and sj = 1, the lowest non-bankruptcy
state, for each rival firm j ∈ I(si(n) \ {i}. By Lemma 1, αi (si(n)) represents a firm’s
highest guaranteed probability of winning a price war across all state vectors with
n − 1 rivals. If αi (si(n)) multiplied by the monopoly profit πM exceeds a 1/n share
of the maximum collusive profit πC(n), then patient firms will be unable to sustain
collusion, given that bankruptcy is achievable and avoidable and that transitions are
uniformly irreducible.

The intuition for the no-collusion result is that in the absence of bankruptcies,
the randomness of state transitions implies that a patient firm i can get a payoff
close to αi (si(n))πM by waiting until its most favorable state vector si(n) is reached
and then starting a price war. If nαi (si(n))πM > πC(n), though, the sum of those
payoffs exceeds the maximum total payoff available. Thus, bankruptcies must occur
in equilibrium.

For a general state space, the same argument applies as long as a firm’s winning
probability is high enough in a neighborhood of the most favorable state vector si(n),
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where si = K and sj = inf {s ∈ S} for each rival firm j. For ε > 0, define

αε(n) ≡ inf
{
αi (s) : s ∈ S(n),

∥∥∥s− si(n)
∥∥∥ ≤ ε

}
,

and let
α∗(n) ≡ sup

ε>0
{αε(n)} .

Then a sufficient condition for collusion to be impossible for patient firms is the
following:

Condition.

α∗(n)πM >
1
n
πC(n). (NC)

Note that when the set of states S is finite, α∗(n) = αi (si(n)).
When Condition NC holds, then combining the payoff restrictions from Lemma 2

with uniformly irreducible state transitions yields the following result, stated formally
as Lemma 4 in the appendix: for any Nash equilibrium strategy profile and any state
vector with at least two active firms, the expected discounted time that elapses before
the first bankruptcy shrinks to zero as the discount factor δ approaches 1. Iterating
that result immediately yields the no-collusion result, Theorem 1. As firms become
patient, in any Nash equilibrium one firms quickly drives its rivals into bankruptcy.
Lemma 2’s payoff bounds imply that each firm i wins the price war with probability
at least αi (s), where s is the initial state vector.

Theorem 1. If Condition NC holds for each n ∈ {2, . . . , N}, then for any ε > 0,
there exists δ(ε) < 1 such that for any δ > δ(ε), any initial state vector s ∈ ŜN , and
any Nash equilibrium σ∗, the following hold:

• the expected discounted time until at most one firm remains active is less than
ε,
• there exist probabilities {xi (s|σ∗)}i,

∑N
i=1 xi (s|σ∗) ≤ 1, such that for each

firm i, xi (s|σ∗) ∈
[
αi (s) , 1−∑j 6=i αj (s)

]
and firm i has probability within ε

of xi (s|σ∗) of being the single survivor.

Thus, in the limit each firm i’s realized discounted average profit is πM with probability
xi (s|σ∗) and 0 with probability 1− xi (s|σ∗).
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Theorem 1 provides a straightforward sufficient condition for predation to domi-
nate collusion. When Condition NC holds for each number of active firms n ≤ N ,
then long-run behavior is predictable: a winner-take-all price war must occur.5 Note
that the theorem describes behavior in any Nash equilibrium, without the stricter
requirement of subgame perfection. Section 4 below illustrates Condition NC in the
examples from Section 2.

3.1. Necessity of Condition NC. Condition NC, the sufficient condition – given
the maintained assumptions of uniform irreducibility and achievability and avoidabil-
ity of bankruptcy – for long-run collusion to be unsustainable by patient firms is in
fact close to necessary. If at any state vector a 1/n share of the collusive profit πC(n)
is greater than the monopoly profit πM times the probability that a firm could win
a price war that it starts unilaterally, then equal sharing of πC(n) is sustainable in
equilibrium by patient firms. The distance between that condition and Condition
NC comes from two sources. The first is the difference between an anticipated and
an unanticipated price war. Recall that αi (s) is the probability that firm i wins a
price war starting from state vector s when its rivals try their best to stop it. An
unexpected deviation to start a price war would give the firm a one-period head start
and thus might yield a probability of winning slightly higher than αi (s). Second, a
firm’s optimal strategy in a price war may be more complicated than σPW . A strategy
that depended on the discount factor and the current state vector rather than just
the number of active rivals might generate a higher expected payoff.

The maintained assumptions also are close to necessary. If there were some state
vector s that was absorbing when at most one firm deviates from equal sharing of the
collusive profit πC(n), then patient firms could collude, so something like irreducibil-
ity is necessary for Theorem 1. Similarly, if bankruptcy were not achievable, then
standard repeated games constructions of collusive equilibria would apply. Lastly, if
bankruptcy were not avoidable, then under any profile of strategies in the long run
all firms would go bankrupt.

5In this case, the set of feasible and individually rational dynamic payoffs has full dimension, but
as δ → 1 the limiting set of equilibrium payoffs is a singleton. See Sorin (1986) for another example
of a stochastic game with that property.
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4. Examples

Recall that in the Bertrand and linear Cournot settings, Examples 1 and 2, the
maximum collusive profit πC(n) is the same as the monopoly profit πM for any number
of active firms n. In that case, Condition NC simplifies to α∗(n) > 1/n: if a firm in
a very favorable position has a better than even chance of winning a price war, then
a price war is inevitable.

On the other hand, in Cournot competition with quadratic costs and in Hotelling
competition, Examples 3 and 4, πC(n) is strictly higher than πM , and so a maximum
winning probability α∗(n) higher than 1/n is needed to rule out collusion. In fact, in
the Hotelling example with two firms, the collusive profit πC(2) is twice the monopoly
profit πM , so Condition NC does not hold for any probability α∗(2). In particular,
the strategy where both firms price at the profit-maximizing level p = 1

2 after every
history and neither goes bankrupt is an equilibrium.

The next subsection explores when Condition NC holds in the Cournot setting
with quadratic costs. The Bertrand case is the focus of Section 4.2.

4.1. Cournot competition with quadratic costs. To illustrate Condition NC, I
focus on Example 3, Cournot competition with quadratic costs, with two firms and a
discrete state space, so that the set of active states is S = {1, . . . , K}. Assume that
a firm goes bankrupt with positive probability only if its profits are zero or lower. In
that case, if a firm – without loss of generality, Firm 1 – wants to drive its rivals into
bankruptcy, it must produce quantity at least a/b in order to push the market price
down to zero. Otherwise, a rival firm could make strictly positive profit by choosing
a small enough quantity. But then Firm 1’s profit is no more than −c(a/b)2 < 0.
If the probability of bankruptcy is strictly decreasing in profit, then Firm 1 is at a
disadvantage.

Specifically, transitions are such that when Firm 1 starts a price war, then 1) after
each period each firm either moves down one state or stays at the current state, 2)
the probability γD > 0 that Firm 2, earning profit 0, moves down is constant across
active states, and 3) the probability that Firm 1, earning −c(a/b)2, moves down is
θγD, where θ ∈ [1, 1/γD). The parameter θ represents Firm 1’s disadvantage.
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Besides the parameters γD and θ, it will be useful to keep track of the ratio of
collusive profit πC(2) to monopoly profit πM . That ratio, R ≡ 2(b + c)/(2b + c), is
strictly between 1 and 2: colluding firms get more than πM but not twice as much.
Recall that K ≥ 2 is the number of non-bankruptcy levels of financial strength.

In this setting, Condition NC can be rewritten as

α∗(2) > R

2 . (1)

When Condition 1 holds, collusion is impossible for patient firms. The question, then,
is which parameter values satisfy Condition 1. In particular, first, for fixed values of
R, γD, and θ, how many states higher must Firm 1 be than Firm 2 to have a better
than R/2 chance of winning a price war that it starts? That is, how large must K be
for Condition 1 to hold? Second, when there are exactly two non-bankruptcy states,
how large can Firm 1’s disadvantage θ grow before it no longer has a better than R/2
chance of winning when it is strong and Firm 2 is weak?

The assumptions on the transition functions make it straightforward to calculate
the maximum guaranteed probability of winning a price war, α∗(2) = αi(K, 1), and
answer those questions. The details of the computation are in the online appendix.
The results are presented in Claim 1.

Claim 1. In the example above, Condition NC holds if the number of financial
strength levels K exceeds K(R, θ), where

K(R, θ) ≡ θ(
1− R

2

)
· e

+ 1.

Condition NC holds for any K ≥ 2 if the transition disadvantage θ is less than
θ̄(R) ≡ 4− 2R.

The required number of states K(R, θ) is increasing in both its arguments. When
the ratio R = πC(2)/πM is high, a firm needs a large strength advantage to make
the expected payoff from starting a price war more attractive than half the collusive
profit. When θ is higher, then the firm starting a price war moves toward bankruptcy
more quickly, so it needs a greater initial advantage to yield the same probability of
winning. For the same reasons, the upper bound θ̄(R) is decreasing.
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Figure 4.1. Minimum number of active states to ensure that Condi-
tion NC holds, as a function of R = πC(2)/πM , at transition disadvan-
tage θ = 1.5.

Numerically, as R increases from its lower bound R = 1, the threshold θ̄(R) de-
creases linearly from 2 until it hits its lower bound θ = 1 at R = 3

2 . That is, a
one-state advantage gives Firm 1 a better than even chance of winning the price war
as long as its state deteriorates no more than twice as quickly as Firm 2’s. At R = 3

2 ,
where collusive profit is 50 percent higher than monopoly profit, the thresholdK(3

2 , θ)
increases at a linear rate from 2.4 at θ = 1, to 3.9 at θ = 2, to 14.7 at θ = 10: collusion
is unsustainable when there are at least 3, 4, or 15 non-bankruptcy strength levels,
respectively, when Firm 1’s state deteriorates at the same rate as Firm 2’s, twice as
fast, or ten times as fast. Figure 4.1 shows how large K must be, as a function of R,
to rule out collusion when θ = 1.5.

4.2. Bertrand competition. This section focuses on Example 1, Bertrand compe-
tition with linear costs and no capacity constraints, a setting where the maximum
collusive profit πC(n) equals the monopoly profit πM . Again, a firm can go bankrupt
only if it earns zero profit or lower. Here, the price-war strategy σPW for firm i is to
set price pi = 0 in every period until either firm i or all its rivals go bankrupt. In this
Bertrand setting, the set of equilibrium payoffs Eδ(s) is nonempty for any discount
factor. The strategy profile where each active firm plays the price-war strategy σPW

constitutes a Nash equilibrium and is in fact subgame perfect.
When firm i plays σPW , then every firm, regardless of the pricing decisions of firms

other than i, makes a profit of zero in every period until either firm i or all its rivals
go bankrupt. It follows that two firms with the same financial strength have the same
chance of winning a price war, regardless of who starts it. Then for any state vector
s the sum across firms of the winning probabilities αi (s) is less than 1 only because
of the possibility that the last two active firms go bankrupt in the same period – that
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is, because of the positive probability that everyone loses the price war. When the
per-period probability of transitioning to bankruptcy is small, then the likelihood of
such a tie also is small. The following lemma formalizes that result.

Lemma 3. In the Bertrand case, if Γ(π, s)[0] < γ̄ for all π and all s > 0, then∑
i αi (s) ≥ 1− γ̄.

Lemma 3 has two implications. First, it means that Condition NC always holds
in the Bertrand case when the per-period probability of bankruptcy is low. Lemma 1
shows that αi is strictly monotonic in strength levels, so when the sum of the αi’s is
close to 1, it follows that a firm in a stronger state than its rivals has a strictly better
than 1/n chance of winning a price war: α∗(n) > 1/n. Theorem 1 then implies that
a price war is inevitable when firms are very patient.

Left open is the possibility that firms may collude for a large number of periods
before a price war starts. The logic of Theorem 1 uses the fact that a firm facing the
most advantageous vector of states prefers an immediate price war because it knows
that its position can only deteriorate. If all firms are in intermediate states, though,
then they may be willing to wait and see whether their positions will improve. (See
an example with a fixed δ in Section 5.4.) However, the second implication of Lemma
3 is that under a mild monotonicity condition on state transitions, that possibility
can be ruled out in the Bertrand case when the per-period probability of bankruptcy
is low. The monotonicity condition specifies that a higher profit for a firm today
strictly improves the distribution over the next period’s financial strength:

Definition 1. State transitions are strictly monotonic if for any profit levels π, π′ ∈
[0, πM ] such that π′ > π and any non-bankruptcy state s ∈ S, Γ(π′, s) strictly first-
order stochastically dominates Γ(π, s).

Strict monotonicity means that a firm would improve its chance of winning a price
war by being the first to undercut its rivals. When the sum of the αi’s is close to 1,
Theorem 1 implies that for high δ, there is very little scope in equilibrium to punish
such a deviation. The vector of financial states pins down payoffs almost completely,
and so if undercutting improves a firm’s relative position even a little, then it would be
a profitable deviation for a patient firm. Under the monotonicity condition, Theorem
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2 shows that when the per-period bankruptcy probability is small and firms are
patient, then in any period when more than one firm is active, the market price (that
is, the lowest price set by an active firm) is low with high probability and expected
profits are close to zero.

Theorem 2. Suppose that state transitions are strictly monotonic, and choose any
ε > 0. In the Bertrand case there exists γ̄(ε) > 0 such that whenever Γ(π, s)[0] < γ̄ for
all π and all s > 0, there is a δ(ε) < 1 with the following property: for any δ > δ(ε),
any initial state vector s ∈ ŜN , and any Nash equilibrium σ∗, in any period on the
equilibrium path where at least two firms are active, both the total expected profit and
the probability that the market price exceeds ε are less than ε.

Theorem 2 implies that in subgame perfect equilibrium prices and profits are low
at any history, on or off the equilibrium path, with at least two active firms.

The proof is similar to the proof that profits are zero in a one-shot Bertrand equi-
librium – if total profit were high, then some firm could increase its profit by under-
cutting. The argument is slightly more complicated here because firms maximize the
discounted stream of payoffs rather than just today’s profit. The additional pieces of
the argument are as follows: monotonicity of state transitions implies that a firm can
improve its expected financial strength tomorrow and weaken its rivals by increasing
its profit today at its rivals’ expense. When the sum of the αi’s is close to 1, Lemma
1 and Theorem 1 show that a firm’s equilibrium payoff is increasing in its financial
strength and decreasing in its rivals’. Thus, in equilibrium undercutting must not
yield a one-shot boost in profit – total profit must therefore be low. In contrast
to the usual folk-theorem argument for repeated games, where a one-shot deviation
yields a gain of order 1− δ, here a deviation can have long-lasting effects.

4.2.1. Entry and Joint Monopolization. In the model in Section 2, the number of
active firms cannot increase, although it may decrease through bankruptcies. In this
section, I consider the effect of allowing new firms to enter the market in the Bertrand
case. As Genesove and Mullin (2006, p.47) point out, “The continued exercise of
market power depends upon deterring entry.” In their survey of empirical studies
of cartels, Levenstein and Suslow (2006, Sections 4.4.4 and 5) find that entry was
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a major cause of cartel breakdowns. Harrington (2006, pp.68-69), similarly, argues
that entry in the international vitamin C market “most likely caused the collapse of
the cartel” in the 1990s. The standard model of competition with free entry (in the
absence of increasing returns to scale) predicts that entry will drive industry profits
to zero – collusion and entry are incompatible.6

Here, however, that effect is reversed. Theorem 1 shows that in the absence of
entry, patient firms cannot collude when Condition NC holds. If potential new firms
can choose to enter at a small cost, however, then collusion may become sustainable.
A potential competitor that sees a single incumbent firm may be willing to pay the
entry cost because it has a chance to survive the resulting price war and earn positive
profits. If there are multiple incumbent firms, then the entrant’s odds of winning are
much lower and may not justify the entry cost. That is, joint monopolization may
be profitable when monopolization by a single firm is not, because the ability of the
cartel to jointly deter entry (“parallel exclusion”) is greater than a single firm’s.7

Formally, say that entry is possible if the following holds: there is a countably
infinite sequence of potential entrants. At the start of each period, with probability
ρe > 0 (independent across time) the next potential entrant i gets a one-time op-
portunity to enter the market by paying cost ce > 0. If firm i decides not to enter,
then it gets payoff zero. If firm i enters, then it immediately becomes active with a
financial state drawn from a commonly known distribution Fe over the set of active
states S. Firm i observes its realized financial state before making its entry decision.
As before, history is publicly observed.

Theorem 3 shows that when entry is possible, there is an equilibrium in which a
cartel of n∗ > 1 firms colludes on the monopoly price. The firms in the cartel deter
entry by threatening to jointly wage a price war against any new entrant.

Theorem 3. When entry is possible in the Bertrand setting, then there is an SPE in
which in the long run i) there are n∗ active firms, ii) firms collude (set the monopoly

6See Harrington (1989) for an exception.
7A single active firm can deter entry if the cost of entry is high enough relative to an entrant’s

chance of winning a price war, as might be the case if a new firm is financially weak.
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price pM in each period), and iii) no entry occurs, as long as n∗ exceeds a finite lower
bound n and δ exceeds a lower bound δ(n∗) < 1.

The proof is constructive: firms price collusively when there are no more than n∗

firms and price at marginal cost otherwise. If a firm deviates, then other firms price
at marginal cost as long as the deviating firm is still active. Entry is allowed when
there are fewer than n∗ firms, but any further entry is treated as a deviation and
punished. The details of the proof are straightforward but somewhat tedious.8

Together, Theorems 1 and 3 show that the possibility of entry can make the market
less competitive, at least in the short run – instead of an initial price war followed
by eventually monopolization, consumers face joint monopolization from the start.9

That finding suggests that, as Hemphill and Wu (2013) argue, the practice of parallel
exclusion merits more attention in antitrust analysis.

Theorem 3 deals with the limiting case of perfect patience and shows the existence
of a collusive equilibrium where entry is deterred completely. For a high but fixed
level of patience, it is possible to construct similar equilibria where collusion is again
sustainable, but occasional entry does occur, especially among stronger potential
competitors – parallel exclusion discourages entry better than a monopolist could, but
still not perfectly. Such equilibria match qualitatively the behavior of the shipping
cartels in Scott Morton (1997) toward entrants.

5. Patterns of Collusion for Fixed δ

Theorem 1 shows that in the limit as firms’ discount factor δ approaches 1, collusion
cannot be sustained in equilibrium when Condition NC holds. The focus of this
section is to consider patterns of predation and collusion that may occur for less than
perfect levels of patience.

8Theorem 3 is the only place where the assumption in the Bertrand example that firms have
zero fixed costs matters. If firms faced a positive fixed cost, then there would be an upper bound,
possibly below n, on the number of active firms in the long run: firms not making enough profit to
cover their fixed costs would go bankrupt.

9Besides the collusive equilibrium described in Theorem 3, when entry is possible there are also
other equilibria that may feature lower prices.
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5.1. The role of patience. Increasing firms’ patience has conflicting effects on the
ability to collude. There is the usual repeated-game effect: a patient firm is less
willing to sacrifice future collusive profits for a one-time gain from undercutting its
rivals, so increasing δ makes collusion easier to sustain. On the other hand, increasing
δ also makes a firm value a potential future stream of monopoly profits more highly
relative to the short-run losses of a price war, so collusion becomes harder to sustain.
Proposition 1 in the online appendix describes examples where in one case raising δ
facilitates collusion, but in another case it destroys the possibility of collusion.

Note that the effect of adding a positive trend to demand for the firms’ product
(so that the monopoly profit πM increases over time) is qualitatively similar to that
of an increase in δ: the opportunity cost of a price war today is lower relative to the
value of future monopoly profits, but the one-shot gain from undercutting today is
similarly smaller relative to the value of future collusive profits.

5.2. Cartel size. Changes in the number of firms have a similarly ambiguous ef-
fect. The more rivals a firm has, the smaller its share of the collusive profit and the
greater the one-time benefit from undercutting the monopoly price. However, a firm’s
chances of winning a price war also decrease with the number of other firms. In the
standard model of repeated Bertrand competition, only the first effect is present, and
so increasing the size of a cartel always reduces the incentive to collude.

Proposition 2 in the online appendix describes one example where collusion on the
monopoly price is sustainable with two or three firms but not with four, and another
example where three firms cannot collude but two or four can. Those patterns suggest
that when the initial number of firms is high, there may be a price war that lasts
not until only one firm is left, but until the number of active firms is consistent with
collusion. In that case, long-run cartel size may depend on initial conditions.

5.3. Unequal market shares. For a fixed level of patience, collusion with unequal
sharing of profits may be sustainable when symmetric sharing is not. In particular,
giving a larger share to firms in strong financial states can help sustain collusion. The
difficulty with symmetric sharing is that a strong firm’s advantage in the probability
of winning a price war is not matched by an advantage in profits. Transferring profit
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from weak firms to a strong firm can reduce the strong firm’s incentive to start a price
war in two ways. First, it obviously increases the firm’s instantaneous profit. Second,
if higher profits today lead to higher expected financial states tomorrow, then the
transfers increase the average number of periods that the strong firm will maintain
its advantage and corresponding high profits.10

Proposition 3 in the online appendix describes a two-firm example in which sym-
metric collusion, where each firm gets half the total collusive profit each, period is not
sustainable. There is, though, an SPE such that when the firms’ financial strengths
are uneven, the stronger firm gets 90 percent of the profit.11

To share profit unequally, firms could, for example, divide the market into regions
of different sizes and assign each region to a specific firm. Griffin (2000, p.11) presents
evidence that “members of most cartels recognize that price-fixing schemes are more
effective if the cartel also allocates sales volume among the firms,” and Harrington
(2006, p.25) in his study of European cartels in the late twentieth century finds that
“[a]ll but a few cartels had an explicit market sharing arrangement.” Harrington’s
(2006, pp.31-33) descriptions of (i) bargaining over sales quotas between large and
small firms in the lysine and calcium chloride cartels and (ii) variations over time
in the assigned cartel market shares for vitamins B2 and B5 are consistent with the
phenomenon in Proposition 3. Alternatively, firms might simply transfer money to
each other. Levenstein and Suslow (2006, section 4.4.2) give examples.

5.4. Recurring collusion. The logic behind Theorem 1 is that when a firm is at
its strongest and all its rivals are at their weakest, then the firm’s position can only
worsen, so it has an incentive to start a price war right away. When firms are at even
strength, though, each may be willing to wait and see whether its position will improve

10The nonmonotonic effects of patience and cartel size on the sustainability of collusion in Propo-
sitions 1 and 2 also apply to asymmetric collusion, although the examples become more complicated.

11Transfers play a different role here than in the collusive equilibrium of Harrington and Skrzypacz
(2007). There, transfers help with the incentive constraint: a firm that exceeds its quota must make
a transfer to its rivals in the next period. (Harrington and Skrzypacz, 2011, list examples of such
schemes.) Here, transfers help with the individual rationality constraint by encouraging the strong
firm to participate in the cartel. In Athey and Bagwell (2001) and Athey et al. (2004), where firms’
costs vary over time, dividing quantity allows firms to allocate production efficiently.
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while in the meantime earning collusive profits. In the online appendix, Proposition
4 presents a Bertrand example where there is no equilibrium in which the two firms
always collude on the monopoly price pM . There is, however, an SPE in which they
price at pM when they have equal strength, and they set price 0 otherwise.12

6. Robustness

The availability of a public randomization device does not affect any of the results.
If firms could commit to future prices, then a price war need not result, because weak
firms could credibly promise to give a currently strong firm a high share of profits
forever. However, Lemma 2 would still hold – initial financial strengths would still
influence long-run payoffs, which are restricted by the threat of a price war.

The appendix proves a stronger version of Theorem 1 that allows both stage-game
payoff functions and state transition functions to vary both by firm and by state. For
example, a firm with a lower marginal cost than its rivals or a lower probability of
transitioning to bankruptcy would have an advantage in a price war for any vector
of financial strengths. Each firm’s probability of winning a price war would still be
increasing in its own strength and decreasing in its rivals strengths, though, and so
the argument behind Theorem 1 goes through with no substantial changes. Even
a firm with a permanent advantage would want to “lock in” that advantage at its
highest point by starting a price war.

Private states. In the model of Section 2, firms’ financial strengths are publicly
observed, but I speculate that the no-collusion result extends to the case of asym-
metric information. Suppose that each firm observes its own state but not the states
of other firms. Instead, a firm knows only which of its rivals are still active. In every
period (except possibly the first, if firms start at the strongest state), the uniform
irreducibility condition implies that each firm assigns probability bounded away from
zero to its’ rivals being in states below the strongest state K. When a firm is in or
very close to state K, then, it expects to have an advantage over its rivals in a price
war. Thus, the argument behind Theorem 1 likely still holds.

12Fershtman and Pakes (2000) present a somewhat similar example, in which collusion cannot be
sustained between one firm in a high-quality state and two other firms in very low-quality states.
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More precisely, uniform irreducibility implies the following: there exists ε > 0 such
that for any vector of states s, after each period, regardless of the action profile
a played, either 1) the probability that one or more firms go bankrupt is at least
ε or 2) for each active firm i, the probability that firm i moves to a new state s′i /∈
[si − ε, si + ε] is at least ε. If neither condition held, then the outcome from repeatedly
playing a starting from state vector s would contradict the definition of uniform
irreducibility. Then the probability that a firm in state K moves to a state below
K − ε is at least ε whenever an action unlikely to lead to bankruptcy is played. Since
tomorrow’s state is stochastically increasing in today’s state, the probability that a
firm is in a state below K−ε after such an action is at least ε regardless of its previous
state. Thus, no matter what information firm i has about firm j’s state in period t
– even if firm j’s action choice in period t perfectly reveals its period-t state – firm
i must assign probability no higher than 1− ε to firm j’s state in period t+ 1 being
above K−ε, as long as the action profile in period t was unlikely to cause bankruptcy.

For any sequence of actions, with high probability either a bankruptcy occurs or
each firm approaches the strongest state K, and so the logic of Theorem 1 still
applies. Condition NC extends to a sufficient condition for the no-collusion result
with private states: just replace α∗(n) with a firm’s probability of winning if it starts
a price war when it is close to state K and each of its n − 1 rivals is below state
K − ε with probability at least ε. Note that in the Bertrand case the set of equilibria
is nonempty, because the price-war strategy profile is still a Nash equilibrium with
private states. In fact, it is a sequential equilibrium when combined with appropriate
beliefs. Existence of equilibrium in the general case is not guaranteed, though.

Unbounded state space. In the model so far, there is an upper bound K on the
space of financial strengths. However, the argument behind the no-collusion result
does not rely on the state space being bounded. Rather, the proof requires the
existence of a state vector at which a firm 1) has a high probability of winning a price
war, so that Condition NC holds, and 2) expects that its probability of winning will
very likely decrease in the future. Those conditions are satisfied if conditional on the
action profile a firm’s state follows a stationary autoregressive process, for example.
The key is that the process be mean-reverting, although the mean and the rate of
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reversion may depend on actions. I speculate that that property plus irreducibility is
enough for the no-collusion result.

The same holds true if states are private information. When a firm reaches a state
high enough above the action-conditional mean, then the independence across firms
and the mean-reverting nature of the state transitions make it very likely that its
rivals are weaker. Thus, the firm expects to have an advantage in a price war. Mean
reversion will erode that advantage, so the firm prefers an immediate price war.

7. Other dynamic games

The logic behind the no-collusion result extends to a broad class of dynamic games.
Suppose that there are a finite set of players I and a metric space S representing the
set of states. State transitions may depend on actions. In each state s, each player in
a subset I(s) ⊆ I can choose to end the game, in which case players receive a vector
of termination payoffs, w(s), that depends on the state. In each period that the game
continues, players receive stage-game payoffs as a function of their actions and the
state. For a game that ends in period T , then, players’ overall payoffs are given by

(1− δ)
(
T−1∑
t=1

δt−1u(at, st)
)

+ δT−1w(sT ), (2)

where st and at are the realized state and the chosen action profile, respectively, in
period t.13 For any strategy profile σ and initial state s, let U δ(σ, s) be the expectation
over actions, states, and the stopping time of the payoff vector in Expression 2.

For each state s, let Σ∞(s) denote the set of strategy profiles under which no player
ever stops the game, given initial state s. Define

ū(s) ≡ lim sup
δ→1

[
sup

σ∈Σ∞(s)

∑
i∈I

U δ
i (σ, s)

]

as the upper bound on the sum of payoffs for patient firms achievable by such strate-
gies. (In the model of Section 2, that upper bound is the maximum collusive payoff.)

13Such games are related to stopping games, although the literature on stopping games typically
assumes that payoffs are undiscounted, that a player’s only action choices within a period are to
stop or continue, and that there is a fixed vector of payoffs that players receive if no one ever stops.
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Denote by B(s, ε) the closed ball of radius ε centered at state s. Let S(i, ε) ≡
{s ∈ S : i ∈ I(s′) ∀s′ ∈ B(s, ε)}, and let I∗ ⊆ I denote the set of players for whom
S(i, ε) is nonempty for some ε > 0: players in I∗ can stop the game in some neigh-
borhood of states. Next, for each player i ∈ I∗, ε > 0, and state s ∈ S(i, ε), let

w̄εi(s) ≡ inf {wi (s′) : s′ ∈ B(s, ε) } ,

and define

w̄i ≡ sup
ε>0,s∈S(i,ε)

{w̄εi(s)}

as player i’s highest termination payoff across all neighborhoods where player i has
the chance to end the game. (That value corresponds to the monopoly profit πM

times α∗(N).) The no-collusion result extends as follows:

Theorem 4. In the class of dynamic games described above, if i) for any ε > 0,
there exists a finite T (ε) such that the expected transition time from s to B(s′, ε)
is less than T (ε) for any two states s and s′ and any strategy σ ∈ Σ∞(s), and ii)∑
i∈I∗ w̄i > sups∈S ū(s), then as δ → 1, in any equilibrium the expected discounted

time until some player ends the game shrinks to zero.

The proof of Theorem 4 is essentially identical to that of Theorem 1 and is omitted.
The intuition is as before: if the sum of payoffs that players have a chance to guarantee
themselves by ending the game exceeds the total available payoffs, then players cannot
commit to continue the game even if doing so is efficient. Examples might include
deciding when to call a vote or election, or an employer trying to break up a strike
by making expiring offers of higher wages to individual workers in sequence.

The model in Section 2 differs from the class of stochastic games considered here
in two ways. First, when firms compete the “stop” decision is not a one-time choice:
firms can conduct a price war for a while and then return to colluding. Second, the
value of stopping depends on the discount factor, which determines the relative weight
on the low profits during a price war in total discounted payoffs. Neither difference
is important as firms become patient.
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8. Summary and Discussion

This paper models oligopolistic competition between patient firms. After a string
of low profits, firms can be driven into bankruptcy and permanent exit. The expected
time until bankruptcy during a price war depends on the firm’s financial strength,
which varies stochastically over time. That feature changes the range of equilibrium
outcomes for patient firms dramatically: under Condition NC collusion is unsustain-
able, and every Nash equilibrium involves an immediate price war that lasts until at
most one firm is left. That result is robust to several natural extensions of the model,
and it can be generalized to a broad class of stochastic games. The possibility of
entry at a small cost may facilitate collusion. The model also characterizes patterns
of firm behavior for fixed levels of patience.

The discussion of entry and joint monopolization in Section 4.2.1 suggests that
antitrust policies toward parallel exclusion are important. (Hemphill and Wu, 2013,
argue that “we lack a ... robust understanding of parallel exclusion” (p.1253), and
that there has been a “neglect of [its] importance” in legal analysis (p.1182).) In
the simple model here, exclusion occurs only through the threat of price wars, but
vertical integration and control of inputs, tying contracts and rebates, and patents
could have similar effects.

Finally, note that the model in Section 2 can be applied very naturally to inter-
national relations. Instead of price wars, there are actual wars where countries with
stochastically varying military strength levels compete for productive resources. In
that context, Condition NC represents a substantial weakening of Powell’s (2004)
sufficient condition for war, Condition (2).14 While Powell (2004, p.238) uses Con-
dition (2) to argue that “rapid shifts in the distribution of military power lead to
war,” he also says that such “shifts ... due to differential rates of economic growth
are empirically too small to account for war through this mechanism.” The analysis
here suggests that the possibility of large gradual shifts in the future can cause war in
the present. Krainin and Wiseman (forthcoming) examine this issue in more detail.

14Krainin (forthcoming) presents a different generalization, for the case of two countries facing a
deterministic sequence of vectors of minmax values.
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Appendix A. Appendix: Proofs from Section 2.2

Proof of Lemma 1. Pick an n ∈ {2, . . . , N}, a state vector s ∈ S(n), and an active
firm i ∈ I(s). Choose another state vector s′ ∈ S(n) such that s′i > si and s′j = sj

for each firm j 6= i. Then the fact that the distribution Γ(π, s′i) strictly first-order
stochastically dominates Γ(π, si) for any profit level π means that after any finite
sequence of actions, the distribution over firm i’s state conditional on starting at state
s′i strictly first-order stochastically dominates the distribution conditional on starting
at state si. It follows that T PWi (s′, σ) strictly first-order stochastically dominates
T PWi (s, σ) for any strategy profile σ. Therefore, αi (s′) > αi (s), and αj (s′) < αj (s)
for each j ∈ I(s) \ {i}, since the condition that bankruptcy is achievable implies that
each of those values is strictly between 0 and 1. �

Proof of Lemma 2. First recall that a bankrupt firm j gets a continuation payoff of
zero, and that αj (s) = 0, as required. Recall also that at any state vector where firm
i is a monopolist (that is, where only firm i is active), firm i receives continuation
payoff πM . To see that an active firm i must get at least a payoff of approximately
αi (s)πM in any Nash equilibrium when the firms are patient, define τi(s) as the upper
bound on the expected time in a price war started by firm i until all of firm i’s rivals
are bankrupt, conditional on firm i winning the price war:

τi(s) ≡ sup
σ−i

E

[
max

j∈I(s)\{i}
T PWj (s, (σPW , σ−i))| max

j∈I(s)\{i}
T PWj (s) < T PWi (s, (σPW , σ−i))

]
.

Let

τ ∗ ≡ sup {τi(s′) : s′ ∈ S(n), i ∈ I(s′)} .

The assumption that bankruptcy is achievable ensures that these expectations exist
and that the supremum is finite. Then regardless of the strategy of rival firms, the
expected payoff to firm i from starting a price war in state s is at least αi (s) δτ∗πM ,
which converges to αi (s) πM as δ converges to 1. (Note that δT is convex in T , so
EδT ≥ δET .) For high enough δ, then, firm i can guarantee itself a payoff arbitrarily
close to αi (s) πM , and so its equilibrium payoff must be at least that high. �
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Appendix B. Proof from Section 3

Here, I prove a more general version of Theorem 1 that holds without the assump-
tions that firms are symmetric and that payoffs are independent of the state. Now
firms may have different action spaces, payoff functions, state spaces, and transition
functions, and payoff functions may depend on the (active) state, as long as the as-
sumptions on those objects from Section 2 still hold for each firm. A firm i’s chance
of winning a price war now depends not only on the number of active firms but on
their identities, and so does the maximum collusive profit.

Let I denote a subset of the N players and S(I) ⊆ S the set of state vectors at
which exactly the firms in I are active: S(I) ≡ {s : I(s) = I}. Define πC(I, s) as
the maximum collusive stage-game profit that the firms in I can achieve together at
state vector s ∈ S(I), and let

πC(I) ≡ sup
s∈S(I)

πC(I, s).

Similarly, let πMi (s) be the monopoly profit for an active firm in state s, and let

πMi ≡ inf
s∈S

πMi (s).

Lemma 1 goes through as before, as does Lemma 2 once πM is replaced with πMi .
Let si(I) ∈ S(I) denote the state vector where si = Ki, the highest state for firm

i, and sj = inf {s ∈ S}, the lower bound on non-bankruptcy states, for each active
rival firm j ∈ I \ {i}. For ε > 0, define

αεi(I) ≡ inf
{
αi (s) : s ∈ S(I),

∥∥∥s− si(I)
∥∥∥ ≤ ε

}
,

and let

α∗i (I) ≡ sup
ε>0
{αεi(I)} .

The generalization of Condition NC to the general setting is the following:
∑
i∈I

α∗i (I)πMi > πC(I). (NC*)

Theorem 5 extends the no-collusion result, Theorem 1, to the general case.
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Theorem 5. If Condition NC* holds for every subset of at least two players I, then
for any ε > 0, there exists δ(ε) < 1 such that for any δ > δ(ε), any initial state vector
s ∈ ŜN , and any Nash equilibrium σ∗, the following hold:

• the expected discounted time until at most one firm remains active is less than
ε,
• there exist probabilities {xi (s|σ∗)}i,

∑N
i=1 xi (s|σ∗) ≤ 1, such that for each

firm i, xi (s|σ∗) ∈
[
αi (s) , 1−∑j 6=i αj (s)

]
and firm i has probability within ε

of xi (s|σ∗) of being the single survivor.

The first part of Theorem 5 follows from iterating the following lemma. Lemma
2 then yields the second part. Let T b be the random variable denoting the number
of periods until the first bankruptcy; the distribution of T b depends on the strategy
profile and the initial state vector.

Lemma 4. Choose any subset I of at least two active firms. If Condition NC*
holds, then for any ε > 0, there exist δ(ε) < 1 and a finite integer T̄ (ε) such that
for any δ ≥ δ(ε), any initial state vector s ∈ S(I), and any Nash equilibrium σ∗,
Pr
[
T b > T̄ (ε)|s, σ∗

]
< ε. It follows that limδ→1E

[
δT

b|s, σ∗
]

= 1.

Proof of Lemma 4. For each δ ∈ (0, 1), let σδ be a Nash equilibrium of the game with
discount factor δ and initial state vector s, and let v(σδ) denote the corresponding
vector of equilibrium expected payoffs. By Condition NC* and the definition of
α∗i (I), there exists ε0 > 0 such that ∑i∈I α

ε0
i (I)πMi > πC(I). Denote the number of

active firms by n ≡ #(I), and choose a positive ε∗ <
[∑

i∈I α
ε0
i (I)πMi − πC(I)

]
/2n.

Define
P (I) ≡ πC(I)

−2nε∗ +∑
i∈I α

ε0
i (I)πMi

< 1,

and choose an integer m∗ > ln(1
2ε)/ ln(P (I)), so that (P (I))m∗ < 1

2ε.
For each firm i ∈ I, let T i be the random variable denoting the (possibly infinite)

number of periods until a state vector s′ within ε0 of firm i’s most favorable state
vector si(I), so that αi(s′) ≥ αε0i (I), is reached. Let T ≡ maxj∈I T j, the time at
which the ε0-neighborhood of each active firm’s most favorable state vector has been
reached. Define Tm∗ as the random variable denoting the (possibly infinite) number
of periods until m∗ such collections of arrivals occur.
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Choose a positive η such that

η < min
{
ε

2 ,
nε∗∑

i∈I (αε0i (I)πMi − ε∗)

}
.

Uniform irreducibility implies that for some finite threshold T̂ (η), either

Pr
[
T b ≤ T̂ (η)|s, σ

]
≥ 1− η or Pr

[
Tm

∗ ≤ T̂ (η)|s, σ
]
≥ 1− η

for any strategy σ. For any δ, if the first inequality holds, then Pr
[
T b > T̂ (η)|s, σδ

]
<

ε by the definition of η. Otherwise, we must have Pr
[
Tm

∗ ≤ T̂ (η)|s, σδ
]
≥ 1− η. In

that case, by Lemma 2, we have that for all δ above some δ̂(ε∗) < 1 and for each firm
i, firm i’s equilibrium continuation value if state vector si(I) is reached is at least
αε0i (I)πMi − ε∗. It follows that for such δ,

vi(σδ) ≥ Pr
[
T b > T i|s, σδ

]
E
[
δT

i |T b > T i, s, σδ
] (
αε0i (I)πMi − ε∗

)
.

Since the sum of equilibrium expected profits cannot exceed the maximum collusive
profit (recall that any active firm can mimic the “inactive action” aØ of a bankrupt
firm), summing across active firms yields

πC(I) ≥ ∑
i∈I vi(σδ)

≥ ∑
i∈I Pr

[
T b > T i|s, σδ

]
E
[
δT

i |T b > T i, s, σδ
] (
αε0i (I)πMi − ε∗

)
≥ ∑

i∈I Pr
[
T b > T |s, σδ

]
E
[
δT

i |T b > T i, s, σδ
] (
αε0i (I)πMi − ε∗

)
≥ ∑

i∈I Pr
[
T b > T |s, σδ

]
E
[
δT

i |s, σδ
] (
αε0i (I)πMi − ε∗

)
≥ ∑

i∈I Pr
[
T b > T |s, σδ

]
E
[
δT

m∗ |s, σδ
] (
αε0i (I)πMi − ε∗

)
.

(3)

The fourth inequality follows from the fact that when T b < T i, then T i is infinite:
after a firm in I exits, the neighborhood of si(I) is never reached.

Because

E
[
δT

m∗ |s, σδ
]
≥ Pr

[
Tm

∗ ≤ T̂ (η)|s, σδ
]
δT̂ (η) ≥ (1− η)δT̂ (η),

the definition of η implies that there exists a threshold δ̃(ε∗) < 1 such that for all
δ > δ̃(ε∗), ∑

i∈I
E
[
δT

m∗ |s, σδ
] (
αε0i (I)πMi − ε∗

)
≥
∑
i∈I

(
αε0i (I)πMi − 2ε∗

)
. (4)
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Plugging Expression 4 into Expression 3 yields

πC(I) ≥
∑
i∈I

Pr
[
T b > T |s, σδ

] (
αε0i (I)πMi − 2ε∗

)
,

and rearranging gives

Pr
[
T b > T |s, σδ

]
≤ πC(I)
−2nε∗ +∑

i∈I α
ε0
i (I)πMi

= P (I)

for all δ ≥ δ∗(ε∗) ≡ max
{
δ̂(ε∗), δ̃(ε∗)

}
.

That is, the probability that the first bankruptcy occurs after the ε0-neighborhood
of each active firm i’s most favorable state vector si(I) is reached is at most P (I) when
δ is high enough. Once each neighborhood has been reached, repeat the argument.
Thus, the probability that no firm goes bankrupt beforem∗ such collections of arrivals
of most favorable neighborhoods is at most (P (I))m

∗
< 1

2ε. Then, since we are
considering the case Pr

[
Tm

∗ ≤ T̂ (η)|s, σδ
]
≥ 1− η, we have

Pr
[
T b > T̂ (η)|s, σδ

]
= Pr

[
T b > T̂ (η) and T b > Tm

∗ |s, σδ
]

+ Pr
[
T b > T̂ (η) and Tm∗ ≥ T b|s, σδ

]
≤ Pr

[
T b > Tm

∗|s, σδ
]

+ Pr
[
Tm

∗
> T̂ (η)|s, σδ

]
≤ (P (I))m∗ + η

≤ ε
2 + ε

2 = ε.

To complete the proof, set T̄ (ε) = T̂ (η), and choose a threshold δ(ε) ∈ (δ∗(ε∗), 1)
such that (1 − ε)δT̄ (ε) > 1 − 2ε for all δ ≥ δ(ε). Then for all δ ≥ δ(ε) and any Nash
equilibrium σδ, Pr

[
T b > T̄ (ε)|s, σδ

]
< ε and E

[
δT

b|s, σδ
]
≥ (1 − ε)δT̄ (ε) + ε · 0 >

1− 2ε. �

Appendix C. Proofs from Section 4.2

Proof of Lemma 3. In the Bertrand example, the price-war strategy σPW gives each
firm a profit of zero, so

αi(s) = Pr
[
T PWi (si) > max

j∈I(s)\{i}
T PWj (sj)

]
,

where
T PWi (s) ≡ min {τ > 0 : si,t+τ = 0|st = s, πi,t′ = 0 ∀t′ ≥ t}
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is the number of periods until firm i goes bankrupt, starting from state s, when it
earns zero profit in every period. Let T(1) and T(2) be the highest and second-highest
realized values of T PWi (si), i ∈ I(s). Then the probability that no firm wins the
price war, 1−∑i αi (s), is the probability that T(1) = T(2). Because state transitions
are independent across firms, the probability that the last firm goes bankrupt in the
same period as the second-to-last firm (that outcome includes the case that the last
n > 2 firms all go bankrupt at the same time) is no greater than γ̄, the bound on the
per-period probability of going bankrupt. Thus, 1−∑i αi (s) ≤ γ̄. �

Proof of Theorem 2. First, note that for any η > 0, strategy profile σ∗ can be a Nash
equilibrium for small γ̄ and large δ only if no firm i has a deviation on the path of
play such that i) for any vector of other firms’ prices in the support of σ∗−i, firm i’s
profit in the period is weakly higher and every other firm j’s profit is weakly lower,
and ii) firm i’s expected profit in the period increases by at least η. (Call such a
deviation an “η-deviation.”) The reason is the following. Lemma 3 shows that for
any ε′ > 0, ∑i αi (s) ≥ 1 − ε′/2 whenever Γ(π, s)[0] < γ̄(ε′) ≡ ε′/2 for all π and all
s > 0. In that case, it follows that 1 −∑j 6=i αj (s) ≤ αi (s) + ε′/2 for each firm i, so
Theorem 1 implies that there exists δ(ε′/2) < 1 such that firm i’s equilibrium payoff
in any state vector s, vi(σ∗, s), is within ε′ of αi (s) πM whenever δ ≥ δ(ε′/2). That is,
vi(σ∗, s) is close to the payoff that results from all firms earning zero profits in every
period until only one survives:

vi(σ∗, s) ≤ ε′ + (1− δ)0 + δE [αi (s′) |s, π = 0, s′i 6= 0]πM .

Because state transitions are strictly monotonic (by assumption), and αi (s) is strictly
increasing in si and strictly decreasing in s−i (by Lemma 2),

E [αi (s′) |s, πi = η, π−i = 0, s′i 6= 0] > E [α1 (s′) |s, π = 0, s′i 6= 0] .

Thus, for small enough ε′ and γ̄, and large enough δ, an η-deviation by firm i would
give firm i a total expected payoff strictly greater than vi(σ∗, s). In Nash equilibrium,
then, no firm has an η-deviation on the path of play.

The next step is to show that if total expected profit (in the current period) is at
least ε, then some firm has an η-deviation. Suppose that total expected profit is at
least ε, and choose η > 0 such that ε > 2N2η/(N − 1).
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For each active firm i, let

p̄−i ≡ min
j∈I(s),j 6=i

max
{
p : p ∈ supp σ∗j

}
,

the highest price in the support of the pricing strategy of all of firm i’s rivals; p̄−i is
the supremum of the range of prices that firm i can set to make sales with positive
probability. Observe that a price pi > p̄−i cannot be in the support of firm i’s
equilibrium strategy, because if it were, then firm i would have an η-deviation. Setting
price pi > p̄−i yields a profit of 0. Since total expected profit is at least ε, there must
be some firm j (possibly j = i) that expects profit at least ε/N . Instead of setting
pi > p̄−i, firm i can mimic the part of firm j’s strategy below p̄−i; that is, firm i can
play according to σ̂i(σ∗j , p̄−i), where

σ̂i(σ∗j , p̄−i)[p] ≡


σ∗j (p)∫

p′≤p̄−i
σ∗j (p′) if p ≤ p̄−i

0 otherwise.

Strategy σ̂i yields expected profit at least 1
2ε/N (sharing firm j’s profit), and by

assumption 1
2ε/N > Nη/(N − 1) > η. Further, σ̂i always yields profit at least 0 (the

profit from setting pi > p̄−i), and yields each competing firm a weakly lower profit
than would setting pi > p̄−i. Therefore, σ̂i would be an η-deviation from pi > p̄−i.

Thus, when δ is high, in equilibrium no firm sets a price above the support of any
other firm’s pricing strategy: the upper bound on equilibrium prices is the same for
all firms. Let p̄ denote that common upper bound. For x > 0, let the decreasing,
right-continuous function q∗−i(x) ≡ Pr [pj ≥ p̄− x ∀j 6= i|σ∗] denote the probability
that each firm j 6= i sets price p̄ − x or higher. If q∗−i(0) = 0, then for small enough
x pricing above p̄ − x cannot be part of firm i’s equilibrium strategy: setting price
p̄− x yields a profit close to 0, and playing σ̂i(σ∗j , p̄− x) (that is, mimicking the part
of the most profitable firm j’s strategy below p̄− x) would be an η-deviation.

It must be, then, that q∗−i(0) > 0 for each firm i: firm i sets price pi = p̄ with
positive probability. Setting pi = p̄ can be part of firm i’s equilibrium strategy only if
q∗−i(0) satisfies q∗−i(0)π(p̄)/N > 1

2ε/N − η; otherwise, the mimicking strategy σ̂i(σ∗j , p̄)
would be an η-deviation from pi = p̄. On the other hand, setting a price just below p̄

is an η-deviation from pi = p̄ unless q∗−i(0)π(p̄)/N > q∗−i(0)π(p̄)− η. That is, it must
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be the case that
1
2ε−Nη < q∗−i(0)π(p̄) < N

N − 1η,

implying that

ε <
2N
N − 1η + 2Nη = 2N + 2N(N − 1)

N − 1 η = 2N2

N − 1η,

but by assumption ε > 2N2η/(N − 1). This is a contradiction, so total expected
profit in equilibrium must be less than ε.

Finally, note that if the probability that the market price exceeds ε is at least ε,
then by setting price ε a firm would make expected profit at least επ(ε) > 0. Given
any η > 0, that strategy would be an η-deviation unless the equilibrium expected
profit is at least επ(ε) + η. As was just shown, though, the discount factor δ can be
chosen high enough that equilibrium profit is below that level. Thus, it must be that
for high enough δ, the probability that the market price exceeds ε is less than ε. �

Proof of Theorem 3. The equilibrium strategy σ∗ can be represented by a countable-
state automaton: one on-path state ω<n∗ for the case where there are fewer than n∗

active firms, one on-path state ω=n∗ when there are n∗ active firms, one on-path state
ω>n

∗ when there are more than n∗ active firms, and two “punishment states” for each
firm j (both those initially active and potential entrants): ωj,≥n∗ for the case where
there are at least n∗ active firms, and ωj,<n∗ when there are fewer than n∗ active firms.
In state ω>n∗ , σ∗ specifies that any potential entrant stays out, and that active firms
set a price of 0. In state ω=n∗ , entrants stay out, and firms set the monopoly price
pM . In state ω<n∗ , a potential entrant enters, and firms set the monopoly price pM .
In each punishment state ωj,≥n∗ , entrants stay out, firm j (the firm being punished)
sets price pM , and any other active firms set a price of 0. In each punishment state
ωj,<n

∗ , entrants enter, firm j sets price pM , and any other active firms set a price of
0.

In a slight abuse of terminology, define a “unilateral deviation by firm i” in a
period as the case where either a single firm i deviates from the specified actions or
a potential entrant deviates from the specified entry decision and then a single firm i

deviates from the specified price. (Using this definition will mean that only the last
deviation in a period will be punished.)
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Transitions between state of the automaton are as follows: from state ωt = ωj,≥n
∗

or ωt = ωj,<n
∗ , if there are no unilateral deviations and firm j is active at the end of

the period, then the next state is again a punishment state for firm j: either ωj,≥n∗ (if
the number of active firms at the end of the period, nt+1, is at least n∗) or ωj,<n

∗ (if
nt+1 < n∗). If firm i deviates unilaterally and is still active at the end of the period,
then either ωt+1 = ωi,≥n

∗ or ωt+1 = ωi,<n
∗ , according to the value of nt+1. If either i)

there are no unilateral deviations and firm j is not active at the end of the period,
or ii) firm i deviates unilaterally and is not active at the end of the period, then the
next state is one of the on-path states, according to the value of nt+1: ωt+1 = ω>n

∗ if
nt+1 > n∗, ωt+1 = ω=n∗ if nt+1 = n∗, and ωt+1 = ω<n

∗ if nt+1 < n∗.
From state ωt ∈

{
ω>n

∗
, ω=n∗ , ω<n

∗
}
, transitions are similar: if firm i deviates

unilaterally and is still active at the end of the period, then ωt+1 = ωi,≥n
∗ or ωt+1 =

ωi,<n
∗ , according to the value of nt+1. If either i) there are no unilateral deviations,

or ii) firm i deviates unilaterally and is not active at the end of the period, then the
next state is one of the on-path states, according to the value of nt+1.

The initial state also is determined by the number of active firms at the start of
the game: ω1 = ω>n

∗ if n1 > n∗, ω1 = ω=n∗ if n1 = n∗, and ω1 = ω<n
∗ if n1 < n∗.

Note that if firms follow σ∗, then the outcome will be as specified in the theorem. It
remains to show that the strategy is a best response.

First, consider the incentive of an active firm to deviate from the specified price.
In any state, the expected discounted average payoff vdev to a firm i from deviating
converges to zero as δ approaches 1: after the period of the deviation, the expected
time τ until firm i goes bankrupt is finite. (Even if firm i outlasts its current competi-
tors, entrants will continue the price war and eventually drive firm i into bankruptcy.)
Thus,

lim
δ→1

vdev ≤ lim
δ→1

(1− Eδτ )πM = 0.

(Since δτ is convex in τ , Eδτ ≥ δEτ .) In state ω=n∗ or ω<n∗ , following the equilibrium
strategy σ∗ yields an active firm a payoff of πM/n∗. Thus, for high enough δ, no
active firm gains from deviating from price pM in state ω=n∗ or ω<n∗ .

Neither does an active firm i have an incentive to deviate from pM in state ω>n∗ ,
ωj,<n

∗ , or ωj,≥n∗ , j 6= i: there is no short-run gain from deviating (since other firms
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are setting price 0, if firm i sets a higher price it will make no sales), and deviating
reduces the continuation value (since then firm i will be punished). Similarly, in state
ωi,<n

∗ or ωi,≥n∗ , firm i cannot gain from deviating: its choice of price does not affect
its continuation value, and setting price pM is optimal in the short run (whether or
not there are any active rivals).

Finally, consider the incentives of a potential entrant to deviate from the prescribed
entry-no entry choice. Staying out yields a payoff of 0. In state ω<n∗ , following σ∗ and
entering yields a payoff of πM/n∗ − (1− δ)ce, which is positive for large δ. Entering
in state ωj,<n∗ gives a payoff of close to at least

(
πM/n∗

)
α− (1− δ)ce, where

α ≡ inf
s∈S

α1 (s,K) > 0

is the lower bound on firm i’s probability of outlasting the punished firm j (at which
point the price war ends). Again, that value is positive for large δ.

In state ω>n∗ , ω=n∗or ωj,≥n∗ , j 6= i, σ∗ specifies staying out and getting payoff 0.
Entering can yield a positive profit only if the firm outlasts all currently active rivals
in the subsequent price war, which occurs with probability no higher than αn∗ , where

αn
∗ ≡ max

s∈S(n∗)
αi (s) .

Even if the firm succeeds in becoming the only active firm, eventually entrants will
drive it into bankruptcy; as above, let Eτ denote the (finite) expected number of
periods until that bankruptcy. Then the expected payoff from entering is no more
than αn∗Eτ(1− δ)πM − (1− δ)ce; since

lim
n∗→∞

αn
∗ = 0,

that expected payoff is negative for large enough n∗.
Thus, if n∗ is large enough, and δ is large enough relative to n∗, then σ∗ is an

SPE. �
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Online Appendix

Appendix D. Proof from Section 4.1

Proof of Claim 1. Let α(k) denote the value of α1(k, 1), the guaranteed probability of
winning a price war for Firm 1 when it is in state k and Firm 2 is in state 1. Observe
that α(K) = α∗(2), so Condition 1 is equivalent to α(K) > R/2.

The function α(k) satisfies the following system of equations:

α(1) = γD(1− θγD) + (1− γD)(1− θγD)α(1)
α(k) = γD + (1− γD)

[
(1− θγD)α(k) + θγDα(k − 1)

]
for k > 1.

That is, when both firms are in state 1, then Firm 1 wins the price war if Firm 2’s
state deteriorates and Firm 1’s does not. If neither firm’s state changes, then Firm 1
has again probability α(1) of winning. Similarly, when Firm 1 starts at state k > 1,
then it wins for sure if Firm 2’s state moves down, it wins with probability α(k − 1)
if only Firm 1’s state moves down, and it wins with probability α(k) if neither state
changes. Recall that in in the example a firm’s state cannot move up during a price
war.

Rearranging yields

α(1) = 1− θγD
1 + θ(1− γD) , α(k) = 1− β + βα(k − 1) for k > 1,

where

β ≡ θ(1− γD)
1 + θ(1− γD) ∈ (0, 1).

The dependence of β on θ and γD is suppressed for readability. Taking differences
yields

∆(2) = (1− β)(1− α(1)), ∆(k) = β∆(k − 1) for k > 2,

where ∆(k) ≡ α(k)− α(k − 1). Thus,

α(k) = α(1) + ∆(2) + ∆(3) + . . .∆(k)
= α(1) + ∆(2) + β∆(2) + . . . βk−2∆(2)
= α(1) + 1−βk−1

1−β ∆(2)
= α(1) + (1− α(1))(1− βk−1),



44 THOMAS WISEMAN

so α(K) > R/2 if
R
2 < α(1) + (1− α(1))(1− βK−1)

⇔
θK(1−γD)K−1

[1+θ(1−γD)]K
= βK−1(1− α(1)) < 1− R

2 .

The left-hand side is maximized at γD = (θ − K + 1)/θ, so plugging in that value
gives the sufficient condition

θ/(K − 1)
[K/(K − 1)]K

< 1− R

2 .

At K = 2, that condition becomes
θ

4 < 1− R

2 .

Rearranging yields the second part of the claim.
For the first part of the claim, note that [K/(K − 1)]K > e, so α(K) > R/2 if

θ/(K−1)
[K/(K−1)]K < θ/(K−1)

e
< 1− R

2

⇔
K > θ

(1−R
2 )e + 1,

as desired. �

Appendix E. Proofs from Section 5

All the examples in this section are from the Bertrand case, and in all the following
propositions, “sustainable” means that there is an SPE that generates the specified
outcome, and “unsustainable” means that there is no Nash equilibrium that yields
that outcome.

E.1. Patience and cartel size.

Example 5. There are two, three, or four firms (N ∈ {2, 3, 4}) and two non-
bankruptcy states (S = {1, 2}). The discount factor is either δ = 0.8 or δ = 0.82.
Transition rates satisfy the following:

• Γ(π, 2)[1] = 0.1 and Γ(π, 2)[0] = 0 for all π ≥ 0;
• Γ(π, 1)[1] > 0.1 for all π ≥ 0 and Γ(0, 1)[1] = 1; and
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• Γ(0, 1)[0] = 0.09 and Γ(π, 1)[0] = 0 for all π > 0.

That is, the probability that a strong firm becomes weak is 0.1 for any level of
profits. The probability that a weak firm becomes strong is less than 0.9 for any
profit and 0 given no profit. Only a weak firm earning zero profit can go bankrupt,
and the probability that such a firm goes bankrupt is 0.09.

Example 6. There are two, three, or four firms (N ∈ {2, 3, 4}) and two non-
bankruptcy states (S = {1, 2}). The discount factor is either δ = 0.9 or δ = 0.95.
Transition rates satisfy the following:

• Γ(π, 2)[1] = 0.15 and Γ(π, 2)[0] = 0 for all π ≥ 0;
• Γ(π, 1)[1] > 0.15 for all π ≥ 0 and Γ(0, 1)[1] = 1; and
• Γ(0, 1)[0] = 0.1 and Γ(π, 1)[0] = 0 for all π > 0.

Proposition 1. In Example 5, when N = 4, collusion on the monopoly price πM is
unsustainable when δ = 0.8 but sustainable when δ = 0.82. In Example 6, when N =
3, collusion on the monopoly price πM is sustainable when δ = 0.9 but unsustainable
when δ = 0.95.

Proposition 2. In Example 5, when δ = 0.8, collusion on the monopoly price πM

is sustainable when N = 2 or N = 3 but unsustainable when N = 4. In Example 6,
when δ = 0.9, collusion on the monopoly price πM is unsustainable when N = 2 or
N = 4 but sustainable when N = 3.

Proof of Propositions 1 and 2. Note that a price war (where all firms price at 0 until
only one is left) is always an SPE, and it gives all players their minmax payoffs.
Thus, a given on-path strategy profile is sustainable (in either Nash or subgame
perfect equilibrium) if and only if no firm can gain by a one-shot deviation followed
by a price war.

First consider Example 5, and suppose that there are two active firms (n = 2). Let
vss
′

2 (δ) denote the expected continuation payoff after a deviation (that is, the payoff
from a price war) to a firm in state s whose rival is in state s′. In particular,

v21
2 (δ) = (1− δ)0 + δ

[
.09πM + (1− .09).1v11

2 (δ) + (1− .09)(1− .1)v21
2 (δ)

]
v11

2 (δ) = (1− δ)0 + δ
[
.09 · 0 + (1− .09).09πM + (1− .09)2v11

2 (δ)
]
.
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Collusion on the monopoly price pM is part of an SPE if a firm prefers collusive
profits (πM/2) to the profit from an optimal deviation: undercutting its rival and
starting a price war. Note that if a firm prefers not to deviate when it is strong (state
2) and its rival is weak (state 1), then it cannot gain from deviating in any other state
vector. The reason is that the equilibrium payoff is the same for any state vector, and
so is the one-shot profit from undercutting, while the expected continuation payoff in
a price war vss′2 (δ) is increasing in the firm’s state s tomorrow and decreasing in its
rival’s s′; the condition in both examples that Γ(π, 1)[1] > Γ(π, 2)[1] for all π implies
that tomorrow’s state is positively correlated with today’s for each firm.

Let ∆2(δ) denote the payoff from that optimal deviation:

∆2(δ) ≡ (1− δ)πM + δ
[
.09πM + (1− .09).1v11

2 (δ) + (1− .09)(1− .1)v21
2 (δ)

]
.

At δ = 0.8, solving yields v21
2 (0.8) ≈ 0.250πM , v11

2 (0.8) ≈ 0.194πM , and ∆2(0.8) ≈
0.450πM . Since ∆2(0.8) < 1

2π
M , no deviation is profitable, and collusion is sustain-

able.
When there are three active firms, again the best time to deviate is when a firm is

strong and its rivals are weak. The relevant price war payoffs in that case are

v211
3 (δ) = (1− δ)0+

δ
[
(.09)2 πM + 2 · .09(.91) [.1v11

2 (δ) + .9v21
2 (δ)] + (.91)2 [.1v111

3 (δ) + .9v211
3 (δ)]

]
,

v111
3 (δ) = (1− δ)0+

δ
[
.09 · 0 + (.09)2 (.91)πM + 2 · .09(.91)2v11

2 (δ) + (.91)3v111
3 (δ)

]
.

The payoff from the optimal deviation, ∆3(δ), is

(1− δ)πM+
δ
[
(.09)2 πM + 2 · .09(.91) [.1v11

2 (δ) + .9v21
2 (δ)] + (.91)2 [.1v111

3 (δ) + .9v211
3 (δ)]

]
.

At δ = 0.8, solving yields v211
3 (0.8) ≈ 0.107πM , v111

3 (0.8) ≈ 0.073πM , and ∆3(0.8) ≈
0.307πM . Since ∆3(0.8) < 1

3π
M , no deviation is profitable, and collusion is again

sustainable. Repeating that analysis for the case of four active firms, however,
yields v2111

4 (0.8) ≈ 0.056πM , v1111
34 (0.8) ≈ 0.034πM , and ∆4(0.8) ≈ 0.256πM . Since

∆4(0.8) > 1
4π

M , a firm gains by undercutting when it is strong and its rivals are all
weak. Thus, collusion is not sustainable.
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In summary: in Example 5, collusion on the monopoly price is sustainable at δ = 0.8
when there are two or three active firms, but not when there are four. Applying the
same analysis for δ = 0.82 yields ∆4(0.82) ≈ 0.247πM . Since ∆4(0.82) < 1

4π
M , in that

setting collusion is sustainable.
In Example 6, similar calculations yield ∆2(0.9) ≈ 0.506πM , ∆3(0.9) ≈ 0.3328πM ,

∆4(0.9) ≈ 0.252πM , and ∆3(0.95) ≈ 0.395πM . Thus, at δ = 0.9, collusion on the
monopoly price is sustainable by three firms but not by two or four. At δ = 0.95,
such collusion is not sustainable by three firms, either. �

E.2. Unequal market shares.

Example 7. There are two firms (N = 2) and two non-bankruptcy states (S =
{1, 2}). The discount factor is δ = 0.95. Transition rates satisfy the following:

• Γ(π, 2)[1] = 0.17 for π ∈ [0, 0.75πM ], Γ(π, 2)[1] = 0.05 for π > 0.75πM , and
Γ(π, 2)[0] = 0 for all π ≥ 0;
• Γ(π, 1)[2] = 0.05 for π ∈

(
0, 0.25πM

)
, Γ(π, 1)[2] = 0.1 for π ≥ 0.25πM , and

Γ(0, 1)[2] = 0; and
• Γ(0, 1)[0] = 0.1 and Γ(π, 1)[0] = 0 for all π > 0.

Proposition 3. In Example 7, collusion on the monopoly price πM where the firms
split the monopoly profit πM each period is unsustainable. If the firms can divide
market demand (or, equivalently, if they can transfer money to each other), then
there is a collusive SPE in which (i) the firms set the monopoly price pM each period,
(ii) when s1 = s2, both firms get profit πM/2, and (iii) when si > sj, firm i gets profit
0.9πM and firm j gets profit 0.1πM .

Proof. The proof is similar to the proofs of Propositions 1 and 2. First, calculating
the value of v21, the expected continuation payoff from a price war to a firm in
state 2 whose rival is in state 1, yields v21 ≈ 0.513πM>1

2π
M , so equal sharing is not

sustainable: the strong firm would prefer to start a price war.
As before, a price war is always a SPE. Therefore, again as before, to prove that

the specified unequal sharing strategy is a SPE, it is sufficient to show that no firm
can gain by a one-shot, on-path deviation followed by a price war. Let v̂ss′ denote the
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expected continuation payoff from the specified strategy to a firm in state s whose
rival is in state s′. In particular,

v̂21 = (1− δ).9πM + δ [(.05)2v̂12 + (.05)(.95) (v̂22 + v̂11) + (.95)2v̂21]
v̂12 = (1− δ).1πM + δ [(.05)2v̂21 + (.05)(.95) (v̂22 + v̂11) + (.95)2v̂12]
v̂22 = (1− δ).5πM + δ [(.17)2v̂11 + (.17)(.83) (v̂21 + v̂12) + (.83)2v̂22]
v̂11 = (1− δ).5πM + δ [(.1)2v̂22 + (.1)(.9) (v̂21 + v̂12) + (.9)2v̂11] .

Solving yields v̂21 ≈ 0.638πM , v̂12 ≈ 0.362πM , and v̂22 = v̂11 = 0.5πM . Next, let
∆ss′ denote the expected continuation payoff from the optimal deviation (undercut-
ting the price pM and starting a price war) to a firm in state s whose rival is in state
s′:
∆21 = (1− δ)πM + δ

[
.1πM + .9 (.05v11 + .95v21)

]
∆12 = (1− δ)πM + δ [(.1)(.17)v21 + (.1)(.83)v22 + (.9)(.17)v11 + (.9)(.83)v12]
∆22 = (1− δ)πM + δ [(.05)(.17)v11 + (.05)(.83)v12 + (.95)(.17)v21 + (.95)(.83)v22]
∆11 = (1− δ)πM + δ

[
.1πM + .9 (.1v21 + .9v11)

]
.

Solving yields ∆21 ≈ 0.577πM , ∆12 ≈ 0.268πM , ∆22 ≈ 0.364πM , and ∆11 ≈
0.474πM . Since ∆ss′ < v̂ss

′ for every state vector ss′, deviating is never profitable,
and the specified strategy is an SPE. �

E.3. Recurring collusion.

Example 8. There are two firms (N = 2) and two non-bankruptcy states (S =
{1, 2}). The discount factor is δ = 0.95. Transition rates satisfy the following:

• Γ(π, 2)[1] = 0.05 and Γ(π, 2)[0] = 0 for all π ≥ 0;
• Γ(π, 1)[1] = 0.99 for all π ≥ πM/2 and Γ(0, 1)[1] = 1; and
• Γ(0, 1)[0] = 0.06 and Γ(π, 1)[0] = 0 for all π > 0.

Proposition 4. In Example 8, collusion on the monopoly price πM is unsustainable.
There is an SPE in which when both firms are active, they set the monopoly price pM

in any period in which s1 = s2, and set price 0 otherwise.

Proof. Define the strategy σ∗ as follows: in the first period, and after any history in
which neither firm has deviated, actions are as specified in the proposition. After
a deviation, both firms set price 0 until one firm goes bankrupt. For states s, s′ ∈
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{1, 2}2, let vss′ denote the expected payoff to a firm in state s whose rival is in state
s′ if both follow σ∗. Those values satisfy the following equations:

v21 = (1− δ)0 + δ
[
.06πM + (1− .06).05v11 + (1− .06)(1− .05)v21

]
v12 = (1− δ)0 + δ [.06 · 0 + (1− .06).05v11 + (1− .06)(1− .05)v12]
v22 = (1− δ)1

2π
M + δ [(1− .05).05 [v21 + v12] + .052v11 + (1− .05)2v22]

v11 = (1− δ)1
2π

M + δ [(1− .01).01 [v21 + v12] + .012v22 + (1− .01)2v11] .

Solving yields v21 ≈ 0.509πM , v12 ≈ 0.133πM , v22 ≈ 0.386πM , and v11 ≈ 0.451πM .
Similarly, let vss′ denote the expected continuation payoff after a deviation (that is,
the payoff from a price war) to a firm in state s whose rival is in state s′:

v21 = (1− δ)0 + δ
[
.06πM + (1− .06).05v11 + (1− .06)(1− .05)v21

]
v12 = (1− δ)0 + δ [.06 · 0 + (1− .06).05v11 + (1− .06)(1− .05)v12]
v22 = (1− δ)0 + δ [(1− .05).05 [v21 + v12] + .052v11 + (1− .05)2v22]
v11 = (1− δ)0 + δ

[
.06 · 0 + (1− .06).06πM + (1− .06)2v11

]
.

Solving yields v21 ≈ 0.474πM , v12 ≈ 0.098πM , v22 ≈ 0.187πM , and v11 ≈ 0.334πM .
To verify that σ∗ is an SPE, it is necessary to check only that neither firm wants to

deviate first. (After the first deviation, the price that a firm sets does not affect its
payoff.) When both firms are in state 2, a firm’s best deviation would be to a price
just below pM , yielding an expected payoff of

(1− δ)πM + δ
[
(1− .05).05

[
v21 + v12

]
+ .052v11 + (1− .05)2v22

]
≈ 0.237πM .

Since 0.239 is less than the payoff from σ∗, v22 ≈ 0.386πM , a firm cannot gain from
deviating. Similarly, when both firms are in state 1, undercutting yields

(1− δ)πM + δ
[
.06πM + (1− .06).01v21 + (1− .06)(1− .01)v11

]
≈ 0.406πM .

The payoff from σ∗, v11 ≈ 0.451πM , is higher, so again the deviation is not profitable.
Finally, note that when the firms have asymmetric strengths (and are setting price

0 under σ∗), deviating to a different price has no effect on today’s profit and lowers
continuation payoffs (since vss′ < vss

′ for all s, s′ ∈ {1, 2}2). Thus, σ∗ is an SPE.
To see that there is no Nash equilibrium in which the two firms always collude on

the monopoly price, observe that in that case a strong firm would gain by undercutting
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a weak rival: the resulting payoff,

(1− δ)πM + δ
[
.06πM + (1− .06).05v11 + (1− .06)(1− .05)v21

]
≈ 0.524πM ,

strictly exceeds 1
2π

M . �

In the equilibrium of Proposition 4, on average a price war lasts for 9.3 periods.
It ends either when the weaker firm goes bankrupt (probability 0.56) or when the
stronger firm’s state declines and the now-evenly matched firms start to collude again
(probability 0.44). On average, then, there are 1.8 distinct price wars before one firm
goes bankrupt. When both firms are initially strong, the interval of collusion lasts
on average for 11.5 periods; when both are weak, collusion lasts for 50.3 periods on
average. Thus, from an initial state vector where both firms are weak, the expected
time until one firm goes bankrupt is 106 periods. By comparison, if both firms priced
at 0 until one went bankrupt, the expected time till bankruptcy would be only 8.6
periods. Significant collusion can occur, although that collusion is only temporary.
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