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We propose a new class of unit root tests that exploits invariance properties

in the Locally Asymptotically Brownian Functional limit experiment associated

to the standard unit root model. The invariance structures naturally suggest

tests that are based on the ranks of the increments of the observations, their

average, and an assumed reference density for the innovations. The tests are

semiparametric in the sense that they are valid, i.e., have the correct (asymptotic)

size, irrespective of the true innovation density. For correctly specified reference

density, our test is point-optimal and nearly efficient. For arbitrary reference

density, we establish a Chernoff-Savage type result, i.e., our test performs as

well as commonly used tests under Gaussian innovations but has improved power

under other, e.g., fat-tailed or skewed, innovation distributions. We also propose

a simplified version of our test that exhibits the same properties, however the

Chernoff-Savage type result is restricted to Gaussian reference densities and can

only be demonstrated by simulations.

Keywords: unit root test, semiparametric power envelope, limit experiment,

LABF, maximal invariant, rank statistic.

1. INTRODUCTION

The recent monographs of Patterson (2011, 2012) and Choi (2015) provide an overview

of the literature on unit roots tests. This literature traces back to White (1958) and

includes seminal papers as Dickey and Fuller (1979, 1981), Phillips (1987), Phillips

and Perron (1988), and Elliott, Rothenberg, and Stock (1996). The present paper fits

into the stream of literature that focuses on “optimal” testing for unit roots. Impor-

tant early contributions here are Dufour and King (1991), Saikkonen and Luukko-

nen (1993), and Elliott, Rothenberg, and Stock (1996). The latter paper derives the

asymptotic power envelope for unit root testing in models with Gaussian innova-

tions. Rothenberg and Stock (1997) and Jansson (2008) consider subsequently the

non-Gaussian case.

The present paper considers testing for unit roots in a semiparametric setting.

Following earlier literature, we focus on a simple AR(1) model driven by i.i.d. in-
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novations whose distribution is considered a nuisance parameter. Apart from some

smoothness and the existence of relevant moments, no assumptions are imposed on

this distribution. From earlier work it is known that the unit root model leads to Lo-

cally Asymptotically Brownian Functional (LABF) limit experiments (in the Hájek-Le

Cam sense). As a consequence, no uniformly most powerful test exists (even in case

the innovation distribution would be known) – see also Elliott, Rothenberg, and Stock

(1996). In the semiparametric case the limit experiment becomes even more difficult,

precisely due to the infinite-dimensional nuisance parameter. Jansson (2008) derives

the semiparametric power envelope by mimicking ideas that hold for Locally Asymp-

totically Normal (LAN) models. However, the proposed test needs a full nonparamet-

ric score function estimator which complicates its implementation. Our optimal test

only requires a nonparametric estimation of a real-valued cross-information factor.

The main contribution of this manuscript is twofold. First, we provide a new deriva-

tion of the semiparametric asymptotic power envelope for unit root tests (Section 3).

This derivation is build upon invariance structures embedded in the semiparamet-

ric unit root model. To be precise, we use a “structural” description of the LABF

limit experiment (Section 3.2), obtained from Girsanov’s theorem. This limit exper-

iment corresponds to observing a multivariate Ornstein-Uhlenbeck process (on the

time interval [0, 1]). The unknown innovation density in the semiparametric unit root

model, takes the form of an unknown drift in the limit experiment. Within this limit

experiment, we subsequently (Section 3.3) derive the maximal invariant, i.e., a re-

duction of the data which is invariant with respect to the nuisance parameters (that

is, the unknown drift in the limiting Ornstein-Uhlenbeck experiment). It turns out

that this maximal invariant takes a rather simple form (all components, but one, of

the multivariate process have to be replaced by their associated bridges). The power

envelope for invariant tests in the limit experiment then follows from the Neyman-

Pearson lemma. An application of the Asymptotic Representation Theorem subse-

quently yields the local asymptotic power envelope (Theorem 3.2). We note that our

analysis of invariance structures in the LABF experiment is also of independent in-

terest and could, for example, be exploited in the analysis of optimal inference for

cointegration or predictive regression models. Moreover, it also gives an alternative

interpretation of the test proposed in Elliott, Rothenberg, and Stock (1996) as it is

also based on an invariant, though not the maximal one.

As a second contribution, we provide a new class of easy-to-implement unit root

tests that are semiparametrically optimal in the sense that their asymptotic power
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curve is tangent to the semiparametric power envelope (Section 4.1). The form of

the maximal invariant developed before suggests how to construct such tests based

on the ranks of the increments of the observations, the average of these increments,

and an assumed reference density. These tests are semiparametric in the sense that

the reference density need not equal the true innovation density, while they still

provide the correct asymptotic size. This reference density is not restricted to be

Gaussian, which it generally is in more classical QMLE results. When the reference

density is correctly specified, the asymptotic power curve of our test is tangent to

the semiparametric power envelope. Following Elliott, Rothenberg, and Stock (1996)

we also discuss the selection of a fixed alternative that yields a “nearly efficient”

test, i.e., one for which the asymptotic local power function is uniformly close to the

semiparametric power envelope. Our tests, despite the absence of a LAN structure,

satisfy a Chernoff and Savage (1958) type result (Corollary 4.1): with any reference

density our test outperforms, at any true density, its classical counterpart which in

this case, is the Elliott, Rothenberg, and Stock (1996) test. We provide, in Section 4.2,

an even simpler alternative class of tests. Both classes of tests coincide for correctly

specified reference density and, thus, share the same optimality properties. In case of

misspecified reference density, the alternative class still seems to enjoy the Chernoff-

Savage type property, though only for Gaussian reference density. This is in line

with with the traditional Chernoff-Savage results for Locally Asymptotically Normal

models.

The remainder of this paper is organized as follows. Section 2 introduces the model

assumptions and some notation. Next, Section 3 contains the analysis of the limit ex-

periment. In particular we study invariance properties in the limit experiment leading

to our new derivation of the semiparametric power envelope. The class of hybrid rank

tests we propose is introduced in Section 4. Section 5 provides the results of a Monte

Carlo study and Section 6 contains a discussion of possible extensions of our results.

All proofs are organized in the appendix.

2. THE MODEL

We consider observations Y1, . . . , YT generated from the classical component specifi-

cation

Yt = µ+Xt, t ∈ N,(1)

Xt = ρXt−1 + εt, t ∈ N,(2)
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where X0 = 0 and the innovations {εt} form an i.i.d. sequence with density f . We

impose the following assumptions on this innovation density.

Assumption 1

(a) The density f is absolutely continuous with a.e. derivative f ′, i.e. for all a < b

we have

f(b)− f(a) =

∫ b

a

f ′(e)de.

(b) Ef [εt] =
∫
ef(e)de = 0 and σ2

f = Varf [εt] <∞.

(c) The standardized Fisher-information for location,

Jf = σ2
f

∫
φ2
f (e)f(e)de,

where φf (e) = −(f ′/f)(e) is the location score, is finite.

(d) The density f is strictly positive, i.e., f > 0.

Let F denote the set of densities satisfying Assumption 1.

The imposed smoothness assumptions (a) on f are mild and standard. The finite

variance assumption (b) is important to our asymptotic results as it is essential to

the weak convergence, to a Brownian motion, of the partial-sum process generated by

the innovations.1 The zero mean assumption in (b) excludes a deterministic trend in

the model. Such a trend leads to an entirely different asymptotic analysis, see Hallin,

Van den Akker, and Werker (2011). The Fisher information in (c) is standardized

by the variance σ2
f so that it becomes scale invariant. The strict positivity of the

density f in (d) is mainly made for notational convenience. The assumption on the

initial condition, X0 = 0, is less innocent then it may appear. Indeed, it is known, see

Müller and Elliott (2003) and Elliott and Müller (2006), that, even asymptotically,

the initial condition can contain non-negligible statistical information.

The main goal of this paper is to develop tests, with optimality features, for the

semiparametric unit root hypothesis

H0 : ρ = 1, (µ ∈ R, f ∈ F) versus Ha : ρ < 1, (µ ∈ R, f ∈ F),

1Let us already mention that, although not allowed for in our theoretical results, we will also

assess the finite-sample performances of the proposed tests (Section 5) for innovation distributions

with infinite variance. For tests specifically developed for such cases we refer to Hasan (2001), Ahn,

Fotopoulos, and He (2003), and Callegari, Cappuccio, and Lubian (2003).
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i.e., apart from Assumption 1, no further structure is imposed on f and the intercept

µ is also treated as a nuisance parameter. It is well-known, and goes back to Phillips

(1987), Chan and Wei (1988) and Phillips and Perron (1988), that the contiguity

rate for the unit root testing problem, i.e., the fastest convergence rate at which it is

possible to distinguish (with non-trivial power) the unit root ρ = 1 from a stationary

alternative ρ < 1, is given by T−1. Therefore, in order to compare performances

of tests with this proper rate of convergence, we reparametrize the autoregression

parameter ρ into its local-to-unity form, i.e.,

(3) ρ = ρ
(T )
h = 1 +

h

T
,

and we can rewrite our hypothesis of interest as

H0 : h = 0, (µ ∈ R, f ∈ F) versus Ha : h < 0, (µ ∈ R, f ∈ F).

In the following section, we derive the (asymptotic) power envelope of tests that are

(asymptotically) invariant with respect to the nuisance parameters µ and f . Section 4

is subsequently devoted to tests, depending on a reference density g that can be freely

chosen, that are point optimal with respect to this power envelope and proves the

Chernoff-Savage result.

3. THE POWER ENVELOPE FOR INVARIANT TESTS

This section first introduces some notations and preliminaries (Section 3.1). Next,

we will derive the limit experiment (in Hájek-Le Cam sense) corresponding to the

component unit root model (1)-(2) and provide a “structural” representation of this

limit experiment (Section 3.2). In Section 3.3 we discuss, exploiting this structural

representation, a natural invariance restriction, to be imposed on tests for the unit

root hypothesis with respect to the infinite-dimensional nuisance parameter associated

to the innovation density. We derive the maximal invariant and obtain from this the

power envelope for invariant tests in the limit experiment.

3.1. Preliminaries

We first discuss a convenient parametrization of perturbations to the innovation den-

sity which we use to deal with the semiparametric nature of the testing problem. These

perturbations follow the standard approach of local alternatives in (semiparamet-

ric) models commonly used in experiments that are Locally Asymptotically Normal
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(LAN). We will see that, with respect to the innovation density f alone, the model is

actually LAN; compare also Remark 3.1 below. Moreover, we introduce some partial

sum processes that we need in the sequel, as well as their Brownian limits.

Perturbations to the innovation density

To describe the local perturbations to the density f , we need the separable Hilbert

space

L0,f
2 = L0,f

2 (R,B) =

{
b ∈ Lf2(R,B)

∣∣∣∣ ∫ b(e)f(e)de = 0,

∫
eb(e)f(e)de = 0

}
,

where Lf2(R,B) denotes, the space of Lebesgue-measurable functions b : R → R
satisfying

∫
b2(e)f(e)de < ∞. Because of the separability, there exists a countable

orthonormal basis bk, k ∈ N, of L0,f
2 . This basis can be chosen such that bk ∈ C2,b(R),

for all k, i.e., each bk is bounded and two times continuously differentiable with

bounded derivatives. Hence each function b ∈ L0,f
2 can be written as b =

∑∞
k=1 ηkbk,

for some (ηk)k∈N ∈ `2 = {(xk)k∈N |
∑∞

k=1 x
2
k < ∞}. Besides the sequence space `2 we

also need the sequence space c00 which is defined as the set of sequences with finite

support, i.e.,

c00 =

{
(xk)k∈N ∈ RN

∣∣∣∣∣
∞∑
k=1

1{xk 6= 0} <∞

}
.

Of course, c00 is a dense subspace of `2. For bk ∈ L0,f
2 with Varf bk(ε) = 1, η ∈ c00 we

now introduce the following perturbation to the density f :

f (T )
η (e) = f(e)

(
1 +

1√
T

∞∑
k=1

ηkbk(e)

)
, e ∈ R.(4)

The rate T−1/2 is already indicative of the standard LAN behavior of the nuisance

parameter f as will formally follow from Proposition 3.2 below. The following propo-

sition shows that these perturbations are valid in the sense that they satisfy the

conditions on the innovation density that we imposed throughout on the model (As-

sumption 1).

Proposition 3.1 Let f satisfy Assumption 1 and suppose η ∈ c00. Then there

exists T ′ ∈ N such that for all T ≥ T ′ we have f
(T )
η ∈ F .
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Remark 3.1 In semiparametric statistics one typically parametrizes perturbations

(paths in semiparametric parlor) to a density by a so-called “non-parametric” score

h ∈ L0,f
2 , i.e., a perturbation takes the form f(e)k(T−1/2h(e))) ≈ f(e)(1 + T−1/2h(e))

for a suitable function k; see, for example, Bickel et al. (1998) for details. By using the

basis bk, k ∈ N, we instead tackle all such perturbations via the infinite-dimensional

nuisance parameter η. Of course, one would need to use `2 as parameter space to

“generate” all score functions h. We instead restrict to c00 which ensures (4) to be a

density (for large T ). For our purposes this restriction will be without cost. Intuitively,

this is since c00 is a dense subspace of `2 (so if a property is “sufficiently continuous”

one only needs to establish it on c00 because it extends to the closure).

Partial sum processes

To describe the limit experiment in Section 3.2, we introduce some partial sum pro-

cesses and their limits. These results are fairly classical but, for completeness, precise

statements are organized in Lemma A.1.

As usual, ∆ denotes differencing, i.e., ∆Yt = Yt − Yt−1. Define, for s ∈ [0, 1],

W (T )
ε (s) =

1√
T

[sT ]∑
t=2

∆Yt
σf

,

W
(T )
φf

(s) =
1√
T

[sT ]∑
t=2

σfφf (∆Yt), f ∈ F ,

W
(T )
bk

(s) =
1√
T

[sT ]∑
t=2

bk(∆Yt), k ∈ N.

The rationale of our notation is that we have ∆Yt = εt, for t ≥ 2, under the null

hypothesis of a unit root. Also note that the sums start at t = 2, so the partial

sum processes are (maximally) invariant with respect to the intercept µ. Using As-

sumption 1 we find, under the null hypothesis, weak convergence2 of W
(T )
ε , W

(T )
φf

,

and W
(T )
bk

to Brownian motions that we denote by Wε, Wφf , and Wbk , respectively.

These limiting Brownian motions Wε, Wφf , and Wbk are defined on a probability

space (Ω,F ,P0,0). Let us already mention that we will introduce a collection of prob-

ability measures Ph,η representing the limit experiment, in Section 3.2. We use the

notational convention that probability measures related to the limit experiment (i.e.,

2All weak convergences in this paper are in product spaces of D[0, 1] with the uniform topology.
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to the Brownian motions) are denoted by P, while probability measures related to

the finite-sample unit root model will be denoted by P(T ).

As ε and bk(ε) are orthogonal for each k, we find that Wε and Wbk , k ∈ N, are all

mutually independent. Moreover,

Var0,0[Wε(1)] = 1 and Var0,0[Wbk(1)] = 1.

As φf (ε) is the score of the location model, it is well known (see, for example, Bickel

et al. (1998)) that we have (under Assumption 1) Ef [φf (ε)] = 0 and Ef [εφf (ε)] = 1.

Consequently, again because ε and bk(ε) are orthogonal for each k, we can decom-

pose σfφf (ε) = σ−1
f ε+

∑∞
k=1 Jf,kbk(ε), with coefficients Jf,k = σfEf [bk(ε)φf (ε)]. This

establishes, for f ∈ F ,

(5) Wφf = Wε +
∞∑
k=1

Jf,kWbk .

Moreover, we have

(6) Cov0,0(Wφf (1),Wε(1)) = 1, Cov0,0(Wφf (1),Wbk(1)) = Jf,k, k ∈ N,

and

(7) Var0,0[Wφf (1)] = Jf = 1 +
∞∑
k=1

J2
f,k.

We remark that integrals like
∫ 1

0
W

(T )
ε (s−)dW

(T )
φf

(s) can be shown to converge weakly

to the associated stochastic integral with the limiting Brownian motions, i.e., to∫ 1

0
Wε(s)dWφf (s). Weak convergence of integrals like

∫ 1

0
(W

(T )
ε (s−))2ds follows from

an application of the continuous mapping theorem. Again, details are provided in

Appendix A.

3.2. A structural representation of the limit experiment

The results in the previous section are needed to study the asymptotic behavior of log-

likelihood ratios. These in turn determine the limit experiment, which we use to study

asymptotically optimal procedures invariant with respect to the nuisance parameters

f and µ. Thus, fix f ∈ F and µ ∈ R. Let, for h ∈ R and η ∈ c00, P
(T )
h,η;µ,f denote

the law of Y1, . . . , YT under (1)-(2) with autoregression parameter ρ given by (3)

and innovation density (4). The following proposition shows that the semiparametric

unit root model is of the Locally Asymptotically Brownian Functional (LABF) type

introduced in Jeganathan (1995).
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Proposition 3.2 Let µ ∈ R, f ∈ F , η ∈ c00, and h ∈ R.

(i) Then we have, under P
(T )
0,0;µ,f ,

log
dP

(T )
h,η;µ,f

dP
(T )
0,0;µ,f

= log
f

(T )
η (Y1 − µ)

f(Y1 − µ)
+

T∑
t=2

log
f

(T )
η

(
∆Yt − h

T
(Yt−1 − µ)

)
f(∆Yt)

(8)

= h∆
(T )
f +

∞∑
k=1

ηk∆
(T )
bk
− 1

2
I(T )
f (h, η) + oP (1),

where the central-sequence ∆(T ) = (∆
(T )
f ,∆

(T )
b ), with ∆

(T )
b = (∆

(T )
bk

)k∈N, is given

by

∆
(T )
f =

∫ 1

0

W (T )
ε (s−)dW

(T )
φf

(s) =
1

T

T∑
t=2

(Yt−1 − Y1)φf (∆Yt),

∆
(T )
bk

= W
(T )
bk

(1) =
1√
T

T∑
t=2

bk(∆Yt), k ∈ N,

and

I(T )
f (h, η) = h2Jf

∫ 1

0

(W (T )
ε (s−))2ds+ ‖η‖2

2 + 2h

∫ 1

0

W (T )
ε (s−)ds

∞∑
k=1

ηkJf,k

= h2Jf
1

T 2

T∑
t=2

(Yt−1 − Y1)2

σ2
f

+ ‖η‖2
2 + 2h

1

T 3/2

T∑
t=2

(Yt−1 − Y1)

σf

∞∑
k=1

ηkJf,k.

(ii) Moreover, with ∆f =
∫ 1

0
Wε(s)dWφf (s) and ∆bk = Wbk(1), k ∈ N, we have, still

under P
(T )
0,0;µ,f and as T →∞,

dP
(T )
h,η;µ,f

dP
(T )
0,0;µ,f

⇒ exp

(
h∆f +

∞∑
k=1

ηk∆bk −
1

2
If (h, η)

)
,(9)

where

If (h, η) = h2Jf

∫ 1

0

(Wε(s))
2ds+ ‖η‖2

2 + 2h

∫ 1

0

Wε(s)ds
∞∑
k=1

ηkJf,k.

(iii) For all h ∈ R and η ∈ c00 the right-hand side of (9) has unit expectation under

P0,0.

The proof of (i) follows by an application of Proposition 1 in Hallin, Van den Akker,

and Werker (2015) which provides generally applicable sufficient conditions for the
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quadratic expansion of log likelihood ratios. Of course, Part (ii) is not surprising and

follows using the weak convergence of the partial sum processes to Brownian motions

(and integrals involving the partial sum processes to stochastic integrals) discussed

above. Finally, Part (iii) follows by verifying the Novikov condition. All proofs are

organized in Appendix B.

Part (iii) of the proposition implies that we can introduce, for h ∈ R and η ∈ c00,

new probability measures Ph,η on the measurable space (Ω,F) (on which the processes

Wε, Wφf , and Wbk were defined) by their Radon-Nikodym derivatives with respect to

P0,0:

dPh,η
dP0,0

= exp

(
h∆f +

∞∑
k=1

ηk∆bk −
1

2
If (h, η)

)
.

Proposition 3.2 then implies that the sequence of unit root experiments (each T ∈ N
yields an experiment) weakly converges (in the Hájek-Le Cam sense) to the experi-

ment described by the probability measures Ph,η. Formally, we define the sequence of

experiments of interest by

E (T )(µ, f) =
(
RT ,B(RT ), (P

(T )
h,η;µ,f |h ∈ R, η ∈ c00)

)
, T ∈ N,(10)

and the limit experiment by, with BC the Borel σ-field on C[0, 1],

E(f) =
(
C[0, 1]× CN[0, 1],BC ⊗ (⊗∞k=1BC), (Ph,η |h ∈ R, η ∈ c00)

)
.(11)

Corollary 3.1 Let µ ∈ R and f ∈ F . Then the sequence of experiments E (T )(µ, f),

T ∈ N, converges (as T →∞) to the experiment E(f).

The Asymptotic Representation Theorem (see, e.g., Chapter 9 in Van der Vaart (2000))

implies that for any statistic AT which converges in distribution to the law Lh,η, under

P
(T )
h,η;µ,f , there exists a (randomized) statistic A, defined on E(f), such that the law of

A under Ph,η is given by Lh,η. This allows us to study (asymptotically) optimal infer-

ence: the “best” procedure in the limit experiment yields a bound for the sequence

of experiments. If one is able to construct a statistic (for the sequence) that attains

this bound, it follows that the bound is sharp and the statistic is called (asymptot-

ically) optimal. This is precisely what we do: Section 3.3 establishes the bound and

in Section 4 we introduce a statistic attaining it.

To obtain more insight in the limit experiment E(f) the following proposition, which

follows by an application of Girsanov’s theorem, provides a “structural” description

of the limit experiment.
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Proposition 3.3 Let f ∈ F , η ∈ c00, and h ∈ R. Then the processes Zε and

Zbk , k ∈ N, defined by the starting values Zε(0) = Zbk(0) = 0 and the stochastic

differential equations, for s ∈ [0, 1],

dZε(s) = dWε(s)− hWε(s)ds,

dZbk(s) = dWbk(s)− hJf,kWε(s)ds− ηkds, k ∈ N,

are Brownian motions under Ph,η. Their joint law is that of (Wε, (Wbk)k∈N) under P0,0.

3.3. The limit experiment: invariance and power envelope

Using Proposition 3.3 we first discuss a natural invariance structure, with respect to

the infinite-dimensional nuisance parameter η, for the limit experiment. We derive

the maximal invariant and apply the Neyman-Pearson lemma to obtain the power

envelope for invariant tests in the limit experiment. In Section 3.4 we then exploit

the Asymptotic Representation Theorem to translate these results to obtain (asymp-

totically) optimal invariant test in the sequence of unit root models.

Consider the testing problem for the limit experiment E(f). We thus observe the

processes Wε and Wbk , k ∈ N, (continuously) on the time interval [0, 1] from the

model (Ph,η |h ∈ R, η ∈ c00). We are interested in the power envelope for testing the

hypothesis

(12) H0 : h = 0, (η ∈ c00) versus Ha : h < 0, (η ∈ c00).

We focus on test statistics that are invariant with respect to the value of the nuisance

parameter η, i.e., these test statistics take the same value irrespective of the value of

η. We now formalize this invariance structure.

Introduce, for η ∈ c00, the transformation gη = (gηk)k∈N : CN[0, 1] → CN[0, 1]

defined by, for W ∈ C[0, 1],

(13) gηk : [gηk(W )] (s) = W (s)− ηks, s ∈ [0, 1],

i.e., gηk adds a drift s 7→ −ηks to W . Proposition 3.3 implies that the law of

(Wε, (gηk(Wbk))k∈N) under Ph,0 is the same as the law of (Wε, (Wbk)k∈N) under Ph,η.
Hence our testing problem (12) is invariant with respect to the transformations gη.

Therefore, following the invariance principle, it is natural to restrict attention to test

statistics that are invariant with respect to these transformations as well, i.e., test

statistics t that satisfy

(14) t(Wε, (gηk(Wbk))k∈N) = t(Wε, (Wbk)k∈N) for all gη, η ∈ c00.
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Given a process W let us define the associated bridge process by BW (s) = W (s) −
sW (1). Now note that we have, for all s ∈ [0, 1] and k ∈ N,

Bgηk (W )(s) = [gηk(W )](s)− s[gηk(W )](1)

= W (s)− sηk − s(W (1)− 1× ηk)

= W (s)− sW (1)

= BW (s),

i.e., taking the bridge of a process ensures invariance with respect to adding drifts

to that process. Define the mapping M by M(Wε, (Wbk)k∈N) := (Wε, (Bbk)k∈N), with

Bbk = BWbk . It follows that statistics that are measurable with respect to the σ-field,

M = σ (M(Wε, (Wbk)k∈N)) = σ(Wε, (Bbk)k∈N),(15)

are invariant (with respect to gη, η ∈ c00). It is, however, not clear that we did not

throw away too much data. Formally, we need M to be maximally invariant which

means that each invariant statistic is M-measurable. The following theorem, which

once more exploits the structural description of the limit experiment, shows that this

indeed is the case.

Theorem 3.1 The σ-fieldM in (15) is maximally invariant for the group of trans-

formations gη, η ∈ c00, in the experiment E(f).

The above theorem implies that invariant inference must be based on M. An

application of the Neyman-Pearson lemma, usingM as observation, yields the power

envelope for the class of invariant tests. To be precise, consider the likelihood ratios

restricted to M, which are given by

dPMh
dPM0

= E0

[
dPh,η
dP0,η

| M
]
,

where the conditional expectation indeed does not depend on η precisely because

of the invariance. To calculate this conditional expectation we first introduce Bφf =

BWφf , i.e., the bridge process associated to Wφf defined in (5). Now we can decompose

∆f =
∫ 1

0
Wε(s)dWφf (s) = I + II with

I =

∫ 1

0

Wε(s)dBφf (s) +Wε(1)

∫ 1

0

Wε(s)ds,

II =

(
∞∑
k=1

Jf,kWbk(1)

)∫ 1

0

Wε(s)ds.
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Note that part I is M-measurable. Under P0,0 the random variables Wbk(1), k ∈ N,

are independent to Wε and Bbk , k ∈ N. Indeed, the independence to Wε holds by

construction and the independence to Bbk is a well-known, and easy to verify, property

of Brownian bridges. We thus obtain, since If (h, η) is M-measurable as well,

E0

[
dPh,η
dP0,η

| M
]

= exp

(
h× I − 1

2
If (h, η)

)
× E0,0

[
exp

(
∞∑
k=1

(hJf,k

∫ 1

0

Wε(s)ds+ ηk)Wbk(1)

)
| M

]

= exp

(
h× I − 1

2
If (h, η) +

1

2

∞∑
k=1

(hJf,k

∫ 1

0

Wε(s)ds+ ηk)
2

)
.

This yields
dPMh
dPM0

= exp

(
h∆∗f −

1

2
h2I∗f

)
with

∆∗f =

∫ 1

0

Wε(s)dBφf (s) +Wε(1)

∫ 1

0

Wε(s)ds,(16)

I∗f = Jf

∫ 1

0

W 2
ε (s)ds−

(∫ 1

0

Wε(s)ds

)2 ∞∑
k=1

J2
f,k(17)

= Jf

∫ 1

0

W 2
ε (s)ds−

(∫ 1

0

Wε(s)ds

)2

(Jf − 1) ,

where the last equality follows from (7). Note that this likelihood ratio is indeed

invariant with respect to η and one can also verify directly that I∗f is the quadratic

counterpart of ∆∗f .

We can now formalize the notion of point-optimal invariant tests in the limit

experiment. To that end, let us denote the (1 − α)-quantile of dPMh /dPM0 under

P0,η, which does not depend on η, by c(h, f ;α). Define the size-α test φ∗f,α(h̄) =

I
{

dPM
h̄
/dPM0 ≥ c(h̄, f ;α)

}
, for a fixed value of h̄ < 0. Note that this is an oracle test

depending on f , and the feasible version will be provided in Section 4. The power

function of this oracle test is given by

h 7→ π∗f,α(h; h̄) = E0

[
φ∗f,α(h̄)

dPMh
dPM0

]
.

An application of the Neyman-Pearson lemma yields the following corollary.

Corollary 3.2 Let f ∈ F and α ∈ (0, 1). Let φ be a (possibly randomized) test

that isM-measurable and is of size α, i.e., E0φ ≤ α. Let π denote the power function



14

of this test, i.e., π(h) = Ehφ. Then we have

π(h̄) ≤ π∗f,α(h̄; h̄).

The test φ∗f,α(h̄) thus is point optimal, i.e., its power function is tangent to the power

envelope3 h 7→ π∗f,α(h;h) at h = h̄.

Remark 3.2 The semiparametric power envelope π∗f,α of the limit experiment in

Proposition 3.3 is scale invariant, i.e., invariant with respect to the value of σf > 0.

This is easily seen from the fact that Wε, Wφf and Jf are all scale invariant.

Remark 3.3 The notion of invariance in the limit experiment leads to another

interpretation of the Elliott, Rothenberg, and Stock (1996) statistic. Note thatMε =

σ (Wε(s); s ∈ [0, 1]) is also invariant, though not maximally so. We now calculate the

likelihood ratio conditional on observingMε only, by further projecting the likelihood

ratio on Mε:

dPMε
h

dPMε
0

= E0

[
dPMh
dPM0

| Mε

]
= exp

(
h

∫ 1

0

Wε(s)dBε(s) + hWε(1)

∫ 1

0

Wε(s)ds−
1

2
h2I∗f

)
× E0

[
exp

(
h

∫ 1

0

Wε(s)dBb(s)

)
| Mε

]
= exp

(
h

∫ 1

0

Wε(s)dWε(s)−
1

2
h2I∗f

)
× exp

(
1

2
h2

[∫ 1

0

W 2
ε (s)ds−

(∫ 1

0

Wε(s)ds

)2
]

(Jf − 1)

)

= exp

(
h

∫ 1

0

Wε(s)dWε(s)−
1

2
h2

∫ 1

0

W 2
ε (s)ds

)
,

where Wb(s) =
∑∞

k=1 Jf,kWbk(s) and Bb(s) = BWb(s) for notational simplicity. As a

result, the Elliott, Rothenberg, and Stock (1996) test statistic equals the likelihood

ratio statistic from using the (non-maximal) invariant Mε. This is an alternative

explanation for the improved power of our tests. Moreover, for Gaussian f , we have

3Here and later in this section, the early usage of the concept “power envelope” (instead of “upper

bound”) is due to the fact that it is shown to be pointwise attainable in Section 4.
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Mε = M and obtain point-optimality of the Elliott, Rothenberg, and Stock (1996)

test for this case.4

3.4. The asymptotic power envelope for asymptotically invariant tests

Now we translate the results for the limiting LABF experiment to the unit root

model of interest. To mimick the invariance in the limit experiment we introduce the

following definition.

Definition 1 A sequence of test statistics ψ(T ) is said to be asymptotically invariant

if the distribution of ψ(T ) weakly converges, under P
(T )
h,η;µ,f for all h ≤ 0 and η ∈ c00,

to the distribution of an invariant test in the limit experiment E(f), under Ph,η.

The Asymptotic Representation Theorem (see, e.g., Chapter 9 in Van der Vaart

(2000)) now yields the following main result on the asymptotic power envelope.

Theorem 3.2 Let f ∈ F , µ ∈ R, and α ∈ (0, 1). Let φT (Y1, ..., YT ), T ∈ N, be an

asymptotically invariant test of size α, i.e., lim supT→∞ E0,ηφT ≤ α for all η ∈ c00. Let

πT denote the power function of φT , i.e., πT (h, η) = Eh,ηφT . Then we have

lim sup
T→∞

πT (h, η) ≤ π∗f,α(h;h), η ∈ c00 and h < 0. �

The power envelope for invariant tests in the limit experiment thus provides an

upper bound to the asymptotic power of invariant tests for the unit root hypothesis.

The next section introduces a class of tests that attains this bound (point-wise)

and, thereby, demonstrates that the bound indeed constitutes the asymptotic power

envelope for invariant unit root tests. We also provide a Chernoff-Savage type result

for this class of tests.

4. A CLASS OF SEMIPARAMETRICALLY OPTIMAL HYBRID RANK TESTS

The appearance of the bridge process Bφf in the “efficient central sequence” ∆∗f nat-

urally suggests the (partial) use of ranks in the construction of feasible test statistics.

Indeed, we can construct an empirical analogue of Bφf by considering a partial-sum

process which only depends on the observations via the ranks Rt of ∆Yt amongst

4Similarly, one could try to derive the statistic resulting from using MB = σ (Bbk(s); s ∈ [0, 1])

as an invariant. However, that does not seem to lead to an insightful result.



16

∆Y2, . . . ,∆YT . We allow for the use of a reference density g that may or may not be

equal to the true underlying innovation density f . Our findings compare to Quasi-

ML methods: if the true innovation density happens to be the same as the selected

reference density the inference procedure is point-optimal. At the same time, the

procedure is valid, i.e., has proper asymptotic size, even in case the true innovation

density does not coincide with the reference density. Note that these results also hold

in case the reference density is non-Gaussian, while Quasi-ML results are generally

restricted to Gaussian reference densities.

We need the following mild assumption on the reference density.

Assumption 2 The density g ∈ F , with finite variance σ2
g , satisfies

lim
T→∞

σ2
g

T

T∑
i=1

φ2
g

(
G−1

(
i

T + 1

))
= Jg,

with location score function φg(e) := −(g′/g)(e), where Jg is the standardized Fisher

information5 for location of g.

Now we can formulate the following direct extension of Lemma A.1 in Hallin, Van

den Akker, and Werker (2011). The proof is omitted.

Lemma 4.1 Let f ∈ F , µ ∈ R, and g satisfy Assumption 2. Consider the partial

sum process, defined on [0, 1],

(18) B
(T )
φg

(s) =
1√
T

[sT ]∑
t=2

σgφg

(
G−1

(
Rt

T + 1

))
,

where Rt denotes the rank of ∆Yt, t = 2, . . . , T . Then, under P
(T )
0,0;µ,f and as T →∞,

we have6

(19)

 W
(T )
ε

W
(T )
φf

B
(T )
φg

⇒
 Wε

Wφf

Bφg

 and

(20)

∫ 1

0

W (T )
ε (s−)dB

(T )
φg

(s)⇒
∫ 1

0

Wε(s)dBφg(s).

5Similarly as the standardized Fisher information Jf of f , Fisher information Jg of g is also

standardized, by the variance σ2
g , so that it is scale invariant.

6Equation (20) holds because of the Theorem 2.1 in Hansen (1992).
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Here, Bφg is the associated Brownian bridge of Wφg , which itself is a Brownian motion

defined on the same probability space (Ω,F ,P0,0) as Wε and Wφf , with covariance

matrix

Cov0,0

Wε(1)

Wφf (1)

Wφg(1)

 =

1 1 σεφg
Jf Jfg

Jg

 ,(21)

where

σεφg = σ−1
f σg

∫ 1

0

F−1(u)φg(G
−1(u))du,(22)

Jfg = σfσg

∫ 1

0

φf (F
−1(u))φg(G

−1(u))du.(23)

4.1. The hybird rank tests based on a reference density

The weak convergence in Lemma 4.1 indicates that constructing the partial sum pro-

cesses as described above (with rank statistics and a reference density g for B
(T )
φg

), as

T approaches infinity, corresponds to observing the σ-fieldMg = σ(Wε(s), Bφg(s); s ∈
[0, 1]) in the limit. Clearly,Mg ⊆M7 so thatMg is invariant for the group of trans-

formations gη. When g = f ,Mg =M so that it is maximally invariant, which means

that we capture all available information about h.

The following proposition establishes the likelihood ratio restricted to the informa-

tion Mg.

Proposition 4.1 Define the standard Brownian motion W⊥, under P0,0, via the

decomposition

(24)
Wφg

σεφg
= Wε +

√
Jg
σ2
εφg

− 1W⊥,

and denote associated Brownian bridge by B⊥. The likelihood ratio dPh/dP0 restricted

to the outcome space Mg is given by

dPMg

h

dPMg

0

= E0

[
dPMh
dPM0

| Mg

]
= exp

(
h∆g −

1

2
h2Ig

)
,(25)

7This is due to the decomposition Bφg
= σεφg

Bε +
∑∞
k=1 Jg,kBbk .
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with

∆g = ∆ε + λ∆⊥, and(26)

Ig =

∫ 1

0

W 2
ε (s)ds+ λ2

(
Jg
σ2
εφg

− 1

)[∫ 1

0

Wε(s)
2ds−

(∫ 1

0

Wε(s)ds

)2
]
,(27)

where ∆ε =
∫ 1

0
Wε(s)dWε(s), ∆⊥ =

√
Jg/σ2

εφg
− 1

∫ 1

0
Wε(s)dB⊥(s), and λ = (Jfgσεφg−

σ2
εφg

)/(Jg − σ2
εφg

).

Remark 4.1 The result of Proposition 4.1 can also be achieved by firstly applying

Girsanov’s Theorem to the following experiment

dWε(s) = hWε(s)ds+ dZε(s),

dWφg(s) = hJfgWε(s)ds+ ηgds+ dZφg(s),

to get the likelihood ratio of σ(Wε(s),Wφg(s), s ∈ [0, 1]) and, subsequently, taking the

expectation of it conditional onMg. The experiment above is obtained by combining

the limit experiment in Proposition 3.3 and the covariance matrix in (21). Here ηg =∑
k ηkJg,k with Jg,k = Cov0,0(Wφg(1),Wbk(1)).

Observe that W⊥ is a standard Brownian motion under P
(T )
0,0;µ,f which is independent

ofWε. When g = f , we have Jfg = Jf = Jg and σεφg = 1, so that λ = 1 andBφg = Bφf .

As a result ∆g = ∆∗f and Ig = I∗f .

The central idea to construct a hybrid rank test is to use a (quasi)-log-likelihood

ratio test based on LMg(h, λ) = h∆g− 1
2
h2Ig from (25), where we replace Wε and Bφg

by their finite-sample counterparts from Lemma 4.1 and the unknown parameters σ2
f

and λ by estimates. Therefore, we impose the following condition.

Assumption 3 There exist consistent, under the null hypothesis, estimators σ̂2
f >

0 a.s., σ̂εφg , and Ĵfg of σ2
f , σεφg , and Jfg, respectively. More precisely, for all f ∈ F ,

we have σ̂2
f

p→ σ2
f , σ̂εφg

p→ σεφg , and Ĵfg
p→ Jfg, under P

(T )
0,0;µ,f as T →∞.

Such estimators are easily constructed, although Ĵfg is somewhat more involved.

Estimating the real-valued cross-information Jfg requires nonparametric techniques,

but is considerably simpler than a full nonparametric estimation of φf . Estimating

Jfg can be done along similar lines as estimating the Fisher information Jf , see,
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e.g., Bickel (1982), Bickel et al. (1998), Schick (1986), and Klaassen (1987). A direct

rank-based estimator of Jfg has been proposed in Cassart, Hallin, Paindaveine (2010).

Next, based on a chosen reference density g satisfying Assumption 2 and some

estimators σ̂f , σ̂εφg and Ĵfg satisfying Assumption 3, we introduce the following two

partial sum processes:

Ŵ (T )
ε (s) =

1√
T

[sT ]∑
t=2

∆Yt
σ̂f

,(28)

B̂
(T )
⊥ (s) =

(
Jg
σ̂2
εφg

− 1

)− 1
2
[
B

(T )
φg

(s)

σ̂εφg
−
(
Ŵ (T )
ε (s)− Ŵ (T )

ε (1)[sT ]
)]

,(29)

where B
(T )
φg

(s) is defined in (18). Then, given a fixed alternative h̄ < 0, we define

L̂
(T )
Mg

(h̄, λ̂) := h̄∆̂(T )
g −

1

2
h̄2Î(T )

g ,(30)

with

∆̂(T )
g = ∆̂(T )

ε + λ̂∆̂
(T )
⊥ ,

Î(T )
g =

∫ 1

0

(
Ŵ (T )
ε (s−)

)2

ds

+ λ̂2

(
Jg
σ̂2
εφg

− 1

)[∫ 1

0

(
Ŵ (T )
ε (s−)

)2

ds−
(∫ 1

0

Ŵ (T )
ε (s−)ds

)2
]
,

where ∆̂
(T )
ε =

∫ 1

0
Ŵ

(T )
ε (s−)dŴ

(T )
ε (s), ∆̂

(T )
⊥ =

√
Jg/σ̂2

εφg
− 1

∫ 1

0
Ŵ

(T )
ε (s−)dB̂

(T )
⊥ (s) and

λ̂ = (Ĵfgσ̂εφg − σ̂2
εφg

)/(Jg − σ̂2
εφg

).

By Slutsky’s theorem and (19), we have
[
Ŵ

(T )
ε B̂

(T )
φg

]′
⇒
[
Wε Bφg

]′
, and thus[

Ŵ
(T )
ε B̂

(T )
⊥

]′
⇒
[
Wε B⊥

]′
. It follows L̂

(T )
Mg

(h̄, λ̂) ⇒ LMg(h̄, λ). Define the critical

value cMg(h̄, σεφg , λ, Jg;α) by the (1 − α)-quantile of LMg(h̄, λ). This leads to the

feasible test

φ
(T )
Mg

(h̄, α) := I
{
L̂

(T )
Mg

(h̄, λ̂) ≥ cMg(h̄, σ̂εφg , λ̂, Jg;α)
}
.

Since these tests are based on the ranks of ∆Yt, but also their average, we name them

Hybrid Rank Tests (HRTs). We can now state our main theoretical result.

Theorem 4.1 Let µ ∈ R, f ∈ F , α ∈ (0, 1), h̄ < 0, and g satisfy Assumption 2.

Then we have:
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(i) The Hybrid Rank Test φ
(T )
Mg

(h̄, α) is asymptotically of size α.

(ii) The Hybrid Rank Test φ
(T )
Mg

(h̄, α) is asymptotically invariant.

(iii) The Hybrid Rank Test φ
(T )
Mg

(h̄, α) is point-optimal, at h = h̄, if g = f .

Theorem 4.1 shows the HRTs are valid irrespective of the choice of the reference

density and point-optimal for a correctly specified reference density. The proof of

this theorem is based on weak convergence of the test statistic L̂
(T )
Mg

(h̄, λ̂) to its limit

LMg(h̄, λ) as shown above. Then, (i) is derived directly by the design of the test; (ii)

is proved by the fact that LMg(h̄, λ) is M-measurable. The proof of (iii) comes from

last part of Proposition 4.1: when g = f , LMg(h, λ) = log
(
dPMh /dPM0

)
.

Corollary 4.1 (Chernoff-Savage type result) Fix α ∈ (0, 1) and h̄ < 0. The Hybrid

Rank Test φ
(T )
Mg

(h̄, α) is, for any reference density g satisfying Assumption 2, more

powerful, at h = h̄ and for µ ∈ R and f ∈ F , than the Elliott, Rothenberg, and Stock

(1996) test. Both tests have equal power if f is Gaussian.

Proof: Recall once more that L̂
(T )
Mg

(h̄, λ̂) weakly converges to LMg(h̄, λ), which, in

the limit, is the likelihood ratio restricted to the σ-field Mg. Then, by the Neyman-

Pearson Lemma, we conclude from Mε ⊆ Mg that the HRT is more powerful than

the Elliott, Rothenberg, and Stock (1996) test at h = h̄. Recalling the decomposition

(24), write the limit experiment in Remark 4.1 as

dWε(s) = hWε(s)ds+ dZε(s),

dW⊥(s) = h
Jfg − σεφg√
Jg − σ2

εφg

Wε(s)ds+
ηg√

Jg − σ2
εφg

ds+ dZ⊥(s).

When f is Gaussian, W⊥ (or Wφg) provides no more information about h than Wε

since Jfg = σεφg . In that case the HRT and the Elliott, Rothenberg, and Stock (1996)

test are asymptotically equivalent. Q.E.D.

Corollary 4.1 is a particularly useful result for applied work. The HRT dominates

its classical canonical Gaussian counterpart, i.e., the Elliott, Rothenberg, and Stock

(1996) test in the present model, for any reference density g. Traditionally, this claim

can only be made for Gaussian reference densities, but the non-LAN framework here

even allows for a stronger result. Our formulation of the testing problem using invari-

ance arguments is convenient in this respect: the larger the invariant σ-field that is

used, the more powerful the test.
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The situation can be compared to Quasi Maximum Likelihood methods. However,

again, in classical situations these methods are generally restricted to Gaussian refer-

ence densities. In the present setup, any reference density g (subject to the regularity

conditions imposed) can be used. The resulting test will always be valid, but more

powerful in case the reference density chosen is closer to the true underlying density

f .

Remark 4.2 The additional power of the HRT compared to the Elliott, Rothenberg,

and Stock (1996) test is not free of charge due to the stronger weak convergence

assumption employed. Consequently, the class of models for which the HRTs are

valid forms a sub-class of the class where the Elliott, Rothenberg, and Stock (1996)

tests are valid. In this sub-class, the HRT dominates the Elliott, Rothenberg, and

Stock (1996) test, but outside they may even loose validity. In the opposite direction,

the Müller and Watson (2008) low-frequency unit root test can be applied in a even

larger class of models than the Elliott, Rothenberg, and Stock (1996) tests. Again,

within the class of models where the Elliott, Rothenberg, and Stock (1996) test is

valid, it has lower power. A more general and detailed discussion in this direction can

be found in Müller (2011).

Our test will still be relevant in many applications, notably those where policy

implications are derived under an i.i.d. assumption on the innovations. Also, our ap-

proach can most likely be extended to situations where the innovations are described

by some explicit dynamic location-scale model. We come back to this point in Sec-

tion 6.

4.2. The approximate hybrid rank tests

A somewhat inconvenient aspect of the hybrid rank tests is that we need to estimate

Jfg. As mentioned before, this is (much) less complicated than estimating the score

function φf , but might still be considered cumbersome, despite all references men-

tioned below Assumption 3. Moreover, the critical value cMg(h̄, σ̂εφg , λ̂, Jg;α) depends

on estimates σ̂εφg and λ̂ (henceforth Ĵfg). This introduces no difficulty to implement-

ing the test, however, when it comes to simulations, the computational effort will

be significant. Therefore, we introduce additionally a simplified version of the hybrid

rank test. This simplified test is obtain by setting λ = 1, which holds in case g = f .
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To be precise, define

(31) L̂(T )
g (h̄) := L̂

(T )
Mg

(h̄, 1) = h̄∆̂(T )
g −

1

2
h̄2Î(T )

g ,

where

∆̂(T )
g =

1

σ̂εφg

∫ 1

0

Ŵ (T )
ε (s−)dB̂

(T )
φg

(s) + Ŵ (T )
ε (1)

∫ 1

0

Ŵ (T )
ε (s−)ds,(32)

Î(T )
g =

Jg
σ̂2
εφg

∫ 1

0

(
Ŵ (T )
ε (s−)

)2

ds−
(∫ 1

0

Ŵ (T )
ε (s−)ds

)2
(

Jg
σ̂2
εφg

− 1

)
,(33)

and Lg(h̄) := LMg(h̄, 1). By the same arguments as before, we have L̂
(T )
g (h̄)⇒  Lg(h̄).

Denoting the (1− α)-quantile of Lg(h̄) by cg(h̄, σεφg , Jg;α), this leads to the feasible

test

φ(T )
g (h̄, α) := I

{
L(T )
g (h̄) ≥ cg(h̄, σ̂εφg , Jg;α)

}
.

Since φ
(T )
g (h̄, α) is an approximate version of the Hybrid Rank Test φ

(T )
Mg

(h̄, α), we

refer to it as Approximate Hybrid Rank Test (AHRT).

Theorem 4.2 Under the same conditions as Theorem 4.1, the asymptotic properties

of the Hybrid Rank Tests — validity, invariance, and point-optimality when g = f

— also hold for the Approximate Hybrid Rank Tests.

The proof of Theorem 4.2 follows along the same lines as that of Theorem 4.1 but

using the weak convergence L̂
(T )
g (h̄) ⇒ Lg(h̄). The simulation results in Section 5

show that these asymptotic properties carry over to finite samples.

Remark 4.3 (Chernoff-Savage result for the AHRTs) Although we are not able

to provide a rigorous mathematical proof, the Monte-Carlo study indicates that the

Chernoff-Savage property is also preserved for the AHRT, at least in case the refer-

ence density g is chosen to be Gaussian. Such a result would be more in line with

applications of the Chernoff-Savage result in classical LAN situations.

From a computational point of view, the AHRT has the advantage that nonpara-

metric estimation of Jfg is no longer needed. This significantly reduces the com-

putational effort in the Monte-Carlo study. Indeed, even though the critical value

cg(h̄, σεφg , Jg;α) is still data dependent, it is, for given α, h̄, and reference density g,

a function of only one argument — the parameter σεφg . Observe, by Cauchy-Schwarz,

that σεφg is bounded by
√
Jg. Table I and Figure 1 show that, for three canonical
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reference densities, the critical values are well approximated by a polynomial regres-

sion of order 5. In the Section 5, we use these estimated critical value functions for

computational speed.

TABLE I

This table provides estimated critical value functions for three reference

densities: Gaussian (Jg = 1), Laplace (Jg = 2), and Student t3 (Jg = 2) at α = 5% and

h̄ = −7σεφg
. For each case, the critical value function is estimated by OLS using

simulated critical values, see Figure 1, on the interval [0,
√
Jg] with a grid where

adjacent points are 0.01 apart.

g

Gaussian cg(−7σεφg , σεφg , 1; 5%) = 0.96 + 1.88σεφg − 3.98σ2
εφg

+ 6.74σ3
εφg
− 5.45σ4

εφg
+ 1.69σ5

εφg

Laplace cg(−7σεφg , σεφg , 2; 5%) = 0.25 + 2.30σεφg − 3.58σ2
εφg

+ 4.30σ3
εφg
− 2.45σ4

εφg
+ 0.54σ5

εφg

Student t3 cg(−7σεφg , σεφg , 2; 5%) = 0.25 + 2.30σεφg − 3.58σ2
εφg

+ 4.30σ3
εφg
− 2.45σ4

εφg
+ 0.54σ5

εφg

4.3. Possible extensions

We discuss three possible extensions of HRTs and AHRTs: a version based on signed

rank statistics in case the error distribution is known to be symmetric, a version based

on aligned ranks for the case where the innovations εt are serially correlated, and

a version based on a nonparametrically estimated reference density which addresses

globally optimality in F . Note that these cases may be concurrent and we can combine

these extensions accordingly. Details of proofs and associated Monte-Carlo study are

left for future work.

Remark 4.4 (Symmetric error distributions) In this remark we consider the case

that f ∈ F is known to be symmetric. The density f is modeled nonparametrically as

in equation (4) but with all perturbation scores bk(e) being even functions. We have

Jf,k = σfEf [bk(ε)φf (ε)] = 0 since the score function φf is odd. As a consequence, ∆f

is independent of ∆bk for all k. This gives adaptivity8 for testing the parameter of

interest h in the presence of the nuisance parameter η: applying Girsanov’s Theorem

8A discussion about definition of “adaptive” in this nonstandard unit root testing problem can

be found in Section 5 of Jansson (2008).
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gives the limit experiment structurally as in Proposition 3.3

dZε(s) = dWε(s)− hWε(s)ds,

dZφf (s) = dWφf (s)− hJfWε(s)ds,

dZbk(s) = dWbk(s)− ηkds k ∈ N.

The equation for Wφf is not omitted since (5) does not hold anymore. By the same

method used to prove Theorem 3.1, we can show that σ(Wε,Wφf , Bbk) is maximal

invariant. Subsequently, after some simple algebra, we find the semiparametric power

envelope based on this maximal invariant coincides with parametric power envelope

where f is known. This verifies again the adaptation result from Jansson (2008) under

the same condition with the new approach. To demonstrate that the semiparametric

power envelope is sharp, we propose a test based on signed-rank statistics. This is a

natural counterpart of the maximal invariant in the sequence

Ŵ (T )
ε (s) =

1√
T

[sT ]∑
t=2

∆Yt
σ̂f

,

Ŵ
(T )
φg

(s) =
1√
T

[sT ]∑
t=2

stσgφg

(
G−1

(
T + 1 +R+

t

2(T + 1)

))
where (R+

1 , ..., R
+
T ) are the ranks of absolute values of (ε̂1, ..., ε̂T ), and (s1, ..., sT ) are

signs of (ε̂1, ..., ε̂T ). The symmetric reference density g is assumed to be symmetric

with variance σg, score function φg and quantile function G−1. Under the symmetric

density condition, Ŵ
(T )
ε and Ŵ

(T )
φf

weakly converges to Wε and Wφf , respectively.

Remark 4.5 (Serial-correlated errors) In this remark, we discuss possible extension

for the case where errors are possibly serially correlated. To be specific, in model

equation (2), let vt denote the innovation at time t instead of εt, and model it as

vt = γ1vt−1 · · · − γpvt−p + εt. We assume the same assumptions on εt as above. The

inference for ρ is adaptive to the present of γ in the sense that their corresponding

score functions are asymptotically independent (see Section 7 of Jansson (2008)).

Therefore, replacing γ by some consistent estimator γ̂ will not affect the result of

testing ρ (asymptotically). Recall the i.i.d error case considered above, we use ∆Yt,

which actually plays the role of estimates ε̂t for εt under the null hypothesis, and

Rt, which is the rank of ε̂t, to build the HRT and the AHRT statistics. In this case,

estimates for εt becomes ε̂t = ∆Yt − γ̂1∆Yt−1 · · · − γ̂p∆Yt−p, and subsequentially,
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the rank of the new estimates ε̂t, Rt, becomes aligned ranks. Consistency of γ̂ gives

the consistency of ε̂t. Then, with these consistent estimates of errors and associated

aligned ranks, the convergences in (19) and (20) are preserved and hence the properties

of HRTs and AHRTs are also preserved for the aligned-rank-based versions.

Remark 4.6 (Nonparametrically estimated reference density) The Hybrid Rank

Test and the Approximate Hybrid Rank Test are optimal when the reference den-

sity g coincides with the actual innovation density f . It is therefore reasonable to

consider these test using a nonparametric estimate of f , say f̂ , as reference density.

Commonly such estimate is based on the order statistics of the innovations εt and

thus independent of the ranks in the HRT. Under a suitable consistency condition,

the HRT based on f̂ asymptotically behaves as the HRT based on the true innovation

density f . Thus, such test achieves the optimality properties of Theorem 4.1 and The-

orem 4.2 globally. Notably, even if there exists relatively large bias in the estimation

of f , the usage of rank statistics ensures zero expectation of the feasible score func-

tion φf̂ [F̂
−1(Rt/(T + 1))], which furthermore ensures the validity of the HRTs and

the AHRTs. This argument can also be showed with the fact that rank-based score

converges to Brownian bridge as T →∞, and
∫ 1

0
Wε(s)dBφf (s) =

∫ 1

0
W ε(s)dWφf (s),

where W ε(s) = Wε(s)−
∫ 1

0
Wε(s)ds. Thus, a drift in Wφf caused by estimation bias

will be canceled out.

5. MONTE CARLO STUDY

This section reports the results of a Monte Carlo study to corroborate our asymptotic

results, and to analyze the small-sample performances of the Approximate Hybrid

Rank Tests. As mentioned earlier, we use the Approximate Hybrid Rank Tests in this

simulation to avoid having to simulate the critical value for each individual replication.

For the fixed alternative, we choose h̄ = −7σεφg for two reasons. First, when g = f ,

we have σεφg = 1 and hence h̄ = −7, which is in line with the Elliott, Rothenberg,

and Stock (1996) paper. Second, if we choose h̄ = −7, the critical value will approach

−∞ when σεφg → 0. The corresponding critical value functions for various reference
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densities are provided in Table I. The estimators for σ2
f and σεφg we use are

σ̂2
f =

1

T − 1

T∑
t=2

(∆Yt −
1

T

T∑
t=2

∆Yt)
2,(34)

σ̂εφg =
1

T − 1

T∑
t=2

∆Yt
σ̂f

σgφg

(
G−1

(
Rt

T + 1

))
.(35)

Moreover, to simplify the notations, we denote the Approximate Hybrid Rank test

with reference density g by AHRTg and, in particular, by AHRTφ for Gaussian ref-

erence density. Throughout we use the significance level α = 5% and all simulations

are based on 20,000 Monte-Carlo repetitions.

We compare our AHRT with two alternatives. First we consider the Dickey-Fuller

test (denoted by DF-ρ) from Dickey and Fuller (1979). This test is based on the

statistic T (ρ̂ − 1) where ρ̂ is the least-squares estimator in the regression Yt = µ +

ρYt−1 + εt. The critical values for this test are -13.52 for T = 100 and -14.05 for

T = 2500. The second competitor is the Elliott, Rothenberg, and Stock (1996) test

with h̄ = −7. This test is based on the statistic [S(ᾱ)− ᾱS(1)]/ω̂2 with ᾱ = 1 +T−1h̄

and S(a) = (Ya − Zaβ̂)′(Ya − Zaβ̂), with Ya and Za defined as

Ya = (Y1, Y2 − aY1, ..., YT − aYT−1)′,

Za = (1, 1− a, ..., 1− a)′,

where β̂ is estimated by regressing Yᾱ on Zᾱ. Since in the present model we employ

the i.i.d. assumption on the innovations, the long-run variance estimator ω̂2 is chosen

to be ê′ê/T , where ê is the residual vector from the regression ∆Yt = µ+ δYt−1 + εt.

The critical values for this test are 3.11 for T = 100 and 3.26 for T = 2500. We

do not consider the Dickey-Fuller t-test as it is dominated by the DF-ρ test in the

current model. Similarly, the Elliott, Rothenberg, and Stock (1996) DF-GLS test is

also omitted as it behaves asymptotically the same as the Elliott, Rothenberg, and

Stock (1996) test, but can be oversized in small samples.

5.1. Large-sample performance

In order to check the large-sample performance, we compare the three tests mentioned

above in a setting of T = 2, 500.

Figure 2 shows the power curves for 9 combinations of 3 innovation densities f and

3 reference densities g. Each are chosen to be Laplace, Student t3, or Gaussian. In line
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with our theoretical results, we find that the AHRT outperforms the two competitors

in most cases. More specifically, when g = f (the graphs on the diagonal), the AHRTf

has power very close to the semiparametric power envelope and it is tangent to it at the

point h = −7. Moreover, when the reference density g is Gaussian (the three right-

most graphs), the AHRTφ outperforms the competitors for all three true densities

f . This corroborates the Chernoff-Savage property of the AHRTφ test mentioned

in Remark 4.3. When both g and f are Gaussian, the AHRT test and the Elliott,

Rothenberg, and Stock (1996) test have indistinguishable power.

In order to investigate the Chernoff-Savage result even further, we consider in Fig-

ure 3 the AHRTφ test for nine true innovation densities f . These include innovation

densities f that are extremely heavy-tailed, skewed, or both. The first row of graphs

shows three extremely heavy-tailed distributions: Student t2, Student t1, and a sta-

ble distribution with stability parameter α = 0.5, skewness parameter β = 0, scale

parameter c = 1, and location parameter µ = 0. As these densities do not all satisfy

our maintained assumptions, these graphs do not show power envelopes.

The top three graphs in Figure 3 show that the AHRTφ is much more powerful than

its competitors and that its power increases with the heaviness of the tail. The second

and third row show the effect of skewness in f . Specifically, the AHRTφ power function

when f is skewed-normal (with skewness 0.8145) is higher than that when f is normal

(in Figure 2). This indicates that the AHRTφ can acquire power from skewness. The

same conclusion can be drawn from the comparison of the AHRTφ power function

for t4 and that of a skewed t4 with skewness ≈ 2.7. To further remove the effects of

the other moments, in the third row, we also employ the Pearson distributions with

identical mean, variance and kurtosis, but different skewness — skewness = 1 for

Pearson-I, skewness = 3 for Pearson-II, and skewness = 6 for Pearson-III. Comparing

the corresponding three AHRTφ power functions, it seems that the larger the skewness

of the true distribution f is, the more powerful the AHRTφ becomes.

A final remark on the size of the AHRT. In all cases where the true density f

satisfies our maintained assumption, i.e., f ∈ F (that is all cases in Figure 2 and the

skewnormal, t4, Pearson-I, Pearson-II, and Pearson-III in Figure 3), the simulated

sizes are between 4.9% and 5.1%. This verifies the validity of the AHRTs claimed in

Theorem 4.2. In the other cases, i.e., f 6∈ F , the AHRT is somewhat conservative.

More precisely, the simulated sizes of the AHRTφ are 4.845%, 4.085%, 3.725%, and

4.735% for the t2, t1, stable, and skew-t4 distribution, respectively. This result seems

consistent over all simulations, but we have not been able to provide formal proof.
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5.2. Small-sample performance

We finally report the performance of the AHRTs and the two competitors described

above for samples of size T = 100. Figures 4 and 5 are the small-sample versions,

with T = 100, of Figures 2 and 3, respectively. We observe that, even with a slight

downward shift of the power functions for all three tests considered, the findings of

the large-sample case remain valid in the small-sample case. For larger values of h,

the DF-ρ test sometimes dominates the other two tests. Again, when f is significantly

away from the Gaussian density, irrespective of the choice of g, the AHRT dominates

the other two tests.

Concerning the small-sample size, we find it to range from about 4.0% to 4.5% for

the cases where f ∈ F . Again, when f does not satisfy our maintained assumptions

(f 6∈ F) the AHRT turns out to be conservative. More precisely, we find a size of 3.7%,

3.1%, 2.4%, and 4.1% for the t2, t1, stable, and skew-t4 distribution, respectively. This

makes the improved power even more remarkable.

It may also be useful to illustrate the convergence of the power function of the

AHRTf to the semiparametric power envelope as sample size T increases. This is the

purpose of Figure 6. For three cases: Gaussian, Laplace, and Student t3, we find that

the convergence indeed occurs already at relatively small samples, which is not always

the case for alternative unit root tests.

6. CONCLUSION AND DISCUSSION

This paper has provided a structural representation of the limit experiment of the

standard unit root model in a univariate but semiparametric setting. Using invari-

ance arguments, we have derived the semiparametric power envelope. These invariance

structures also lead, using the Neyman-Pearson lemma, to point-optimal semipara-

metric tests. The analysis naturally leads to the use of rank-based statistics.

Our tests are asymptotically valid, invariant, and (with a correctly chosen reference

density) point-optimal. Moreover, we establish a Chernoff-Savage type property of

our test: irrespective of the reference density chosen, our test outperforms its classical

competitor which in this case is the Elliott, Rothenberg, and Stock (1996) test. Finally,

we introduced a simplified version of our test and show, in a small Monte-Carlo study,

that our theoretical results carry over to small samples.

As potential future work we mention the use of similar ideas to construct hybrid

rank-based tests in more general time-series models which, for instance, allow for
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serial correlation in the error terms, a deterministic time trend term, or stochastic

volatility. Also, the structural representation of the limit experiment and its invariance

properties can be applied to other non-stationary time-series models (for instance

cointegration or predictive regression models).
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APPENDIX A: WEAK CONVERGENCE OF PARTIAL SUM PROCESSES

Introduce the filtrations F(T ) :=
(
F (T )
u , u ∈ [0, 1]

)
, T ∈ N, defined by F (T )

u :=

σ
(
Yt, t ∈ N : t ≤ [uT ]

)
, u ∈ [0, 1]. The angle-bracket process

〈
A

(T )
i , A

(T )
j

〉
(u) and the

straight-bracket process
[
A

(T )
i , A

(T )
j

]
(u) are now well-defined for all F(T )-adapted lo-

cally square-integrable martingales and semimartingales A
(T )
i , respectively (see, e.g.,

Jacod and Shiryaev (2002)). If A
(T )
i , i = 1, 2, are square-integrable martingales of

the form A
(T )
i (u) =

∑[uT ]
t=1 I

(i)
Tt with I

(i)
Tt Ft-measurable, we have

[
A

(T )
1 , A

(T )
2

]
(u) =∑[uT ]

t=1 I
(1)
Tt I

(2)′
Tt and

〈
A

(T )
1 , A

(T )
2

〉
(u) =

∑[uT ]
t=1 E

[
I

(1)
Tt I

(2)′
Tt | Ft−1

]
. Recall that for a square-

integrable martingale with continuous sample paths the angle-brackets and straight-

brackets coincide.

The lemma below shows that the partial sum processes introduced in Section 3.1

weakly converges to the associated Brownian motions. Due to the i.i.d.-ness of the

innovations, the lemma is a direct corollary to the functional central limit theo-

rem VIII.3.33 in Jacod and Shiryaev (2002).

Lemma A.1 Let f ∈ F and let, with m ≥ 2, k1, . . . , km−2 ∈ N. Define, with the
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notation of Section 3.1,

W(T ) = (W (T )
ε ,W

(T )
φf
,W

(T )
b1
, . . . ,W

(T )
bm−2

)′ and

W = (Wε,Wφf ,Wb1 , . . . ,Wbm−2)
′.

Then we have, in DRm [0, 1] and under P
(T )
0,0;µ,f ,

W(T ) ⇒W ,(36)

and, still under P
(T )
0,0;µ,f ,

(37)
〈
W(T ),W(T )

〉
(1) =

[
W(T ),W(T )

]
(1) + oP(1) = Varf

(
W(1)

)
+ oP(1).

APPENDIX B: MAIN PROOFS

Proof of Proposition 3.1:

For notational convenience we drop the superscript “(T )” in the following and thus

write fη instead of f
(T )
η . It is clear, since η has finite support, that we have fη > 0

for large enough T . The mean restrictions
∫
bk(e)f(e)de = 0, together with the finite

support of η, guarantee that fη integrates to 1. Similarly,
∫
bk(e)ef(e)de = 0 implies

Efη [εt] = 0. Of course, absolute continuity of fη follows from f ∈ F and, again

because η has finite support,
∑∞

k=1 ηkb ∈ C2,b(R). These properties also easily yield

Varfη [εt] <∞. Only Jfη <∞ requires a bit of straightforward calculus. We have

f ′η(e) = f ′(e)

(
1 +

1√
T

∞∑
k=1

ηkbk(e)

)
+ f(e)

1√
T

∞∑
k=1

ηkb
′
k(e), a.e..

There exist C1, C2 <∞ such that we have (for all T )
∥∥1 + T−1/2

∑∞
k=1 ηkbk

∥∥
∞ ≤ C1

and
∥∥T−1/2

∑∞
k=1 ηkb

′
k

∥∥2

∞ ≤ C2. Moreover, there exists C3 > 0 such that, for all

T ≥ T ′, ‖(1 + T−1/2
∑∞

k=1 ηkbk)
−1‖2

∞ ≤ C3. Using these observations we immediately

obtain, for T ≥ T ′,∫ (
−
f ′η(e)

fη(e)

)2

fη(e)de ≤ 2C1Jf + 2C2C3

∫
fη(e)de <∞,

which concludes the proof. Q.E.D.

Proof of Proposition 3.2:

We first note that Part (iii) directly follows from an application of Corollary 3.5.16

in Karatzas and Shreve (1991). In the following we evaluate, unless mentioned oth-

erwise, expectations, OP’s, and oP’s under P
(T )
0,0;µ,f . We first establish Part (ii) and
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prove the quadratic expansion (i) afterwards. Let k1, . . . , km denote the elements for

which η does not vanish, i.e. ηkj 6= 0 and ηi = 0 for i 6∈ {k1, . . . , km}. And let

aT = (hT , ηk1 , . . . , ηkm)′ and a = (h, ηk1 , . . . , ηkm)′.

Proof of Part (ii): First we introduce auxiliary processes ∆̃(T ), T ∈ N, by

∆̃(T )(r) =

(∫ r

0

W (T )
ε (s−)dW

(T )
φf

(s),W
(T )
bk1

(r), . . . ,W
(T )
bkm

(r)

)
, r ∈ [0, 1].

A combination of Lemma A.1 with Theorem 2.1 in Hansen (1992) (the conditions are

trivially met) yields ∆̃(T ) ⇒ ∆̃ in DRm+1 [0, 1], where ∆̃ is given by

∆̃(r) =

(∫ r

0

Wε(s)dWφf (s),Wbk1
(r), . . . ,Wbkm

(r)

)′
,

r ∈ [0, 1] (which we evaluate under P0,0). Using this weak convergence, the identity

[A,B](r) = A(r)B(r) − A(0)B(0) −
∫ r

0
A(s−)dB(s) −

∫ r
0
B(s−)dA(s) and the con-

tinuous mapping theorem in combination with Theorem 2.1 in Hansen (1992) (the

condition to this theorem is met as ∆̃(T ) is a martingale with respect to F(T ) and as

we have
∑T

t=1 E|∆̃(T )(t/T )− ∆̃(T )((t− 1)/T )|2 = O(1)) yields,

(38)
(

∆̃(T )(1),
[
∆̃(T ), ∆̃(T )

]
(1)
)
⇒
(

∆̃(1),
〈

∆̃, ∆̃
〉

(1)
)
.

The quadratic variation at time 1,
〈

∆̃, ∆̃
〉

1
, is given by

〈
∆̃1, ∆̃1

〉
1

= Jf

∫ 1

0

W 2
ε (s)ds,

〈
∆̃j+1, ∆̃j+1

〉
1

= 1,〈
∆̃1, ∆̃j+1

〉
1

= Jkj ,f

∫ 1

0

Wε(s)ds, and
〈

∆̃1+i, ∆̃1+j

〉
1

= 0,

or i 6= j ∈ {1, . . . ,m}. The angle brackets of ∆̃(T ) at time 1,
〈

∆̃(T ), ∆̃(T )
〉

1
, take a sim-

ilar form (just replace the limiting Brownian motions by their empirical analogues).

On noting that we have

I(T )
f (h, η) = a′

〈
∆̃(T ), ∆̃(T )

〉
1
a and If (h, η) = a′

〈
∆̃, ∆̃

〉
1
a,(39)

the proof of Part (ii) follows if we show

(40)
〈

∆̃(T ), ∆̃(T )
〉

1
−
[
∆̃(T ), ∆̃(T )

]
1

= oP(1).
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Indeed, a combination of (38)-(40) with the continuous mapping theorem yields (ii).

To demonstrate (40) we first note that Lemma A.1 yields, for i, j = 1, . . . ,m,
〈

∆̃
(T )
1+i, ∆̃

(T )
1+j

〉
(1)−[

∆̃
(T )
1+i, ∆̃

(T )
1+j

]
(1) = oP(1). So we only need to consider

r
(T )
1 =

[
∆̃

(T )
1 , ∆̃

(T )
1

]
1
−
〈

∆̃
(T )
1 , ∆̃

(T )
1

〉
1

=
1

T 2

T∑
t=2

σ−2
f (Yt−1 − Y1)2

(
σ2
fφ

2
f (εt)− Jf

)
and

r
(T )
2,j =

[
∆̃

(T )
1 , ∆̃

(T )
1+j

]
1
−
〈

∆̃
(T )
1 , ∆̃

(T )
1+j

〉
1

=
1

T 3/2

T∑
t=2

σ−1
f (Yt−1 − Y1)

(
σfφf (εt)bkj(εt)− Jf,kj

)
,

for j = 1, . . . ,m. We have

E(r
(T )
2,j )2 =

1

T
Varf [σfφf (ε1)bk1(εt)]

∫ 1

0

E(W (T )
ε (u−))2du = o(1).

For r
(T )
1 the same line of reasoning can be followed in case φf (ε1) has a finite fourth

moment. This, however, does not need to be the case under Assumption 2. Therefore

we resort to an application of Theorem 2.23 in Hall and Heyde (1980) which shows

that r
(T )
1 = oP(1) if, for all δ > 0,

T∑
t=2

1

T 2
E
[
(Yt−1 − Y1)2φ2

f (εt)1{|(Yt−1−Y1)φf (εt)|>δT} | Ft−1

]
= oP(1).(41)

Using the notation ζ(M) = E
[
σ2
fφ

2
f (ε1)1{|σfφf (ε1)|≥M}

]
, we see that the left-hand-side

of the previous display is bounded by

ζ

(
δ
√
T

‖W (T )
ε ‖∞

)∫ 1

0

(
W (T )
ε (u−)

)2
du = oP(1),

by a combination of Lemma A.1, the continuous mapping theorem, and ζ(M) → 0

as M →∞ (dominated convergence). This concludes the proof of Part (ii).

Proof of Part (i): We use Proposition 1 in Hallin, Van den Akker, and Werker

(2015) to prove the expansion. To this end we set P̃T = P
(T )
hT ,η;µ,f , PT = P

(T )
0,0;µ,f , and

FTt = σ(Y1, . . . , Yt). And we introduce

STt =
(
T−1(Yt−1 − Y1)φf (∆Yt), T

−1/2bk1(∆Yt), . . . , T
−1/2bkm(∆Yt)

)′
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for t = 2, . . . , T and T ∈ N. Notice that (see the proof of Part (ii) above) ∆̃(T )(1) =∑T
t=1 STt.

In the notation of Proposition 1 in Hallin, Van den Akker, and Werker (2015) we

have, for t ≥ 2,

(42)

LRTt =
f (∆Yt − wTt)

(
1 + 1√

T

∑m
j=1 ηkjbkj (∆Yt − wTt)

)
f(∆Yt)

with wTt =
hT
T

(Yt−1−µ),

Assumption 1 implies (see, e.g., Le Cam (1986, Section 17.3) and Le Cam and Yang

(2000, Section 7.3)) that the mapping e 7→ f 1/2(e) is differentiable in quadratic mean:
√
f(e− w)√
f(e)

= 1 +
1

2
[φf (e)w + r(e, w)] ,

where

(43) Er2(ε1, w) = oP(w2),

which implies, by Cauchy-Schwarz inequality,

(44) Er(ε1, w) = oP(w).

Let BTt = T−1/2
∑m

j=1 ηkjbkj (∆Yt − wTt), B0
Tt = T−1/2

∑m
j=1 ηkjbkj (∆Yt), and intro-

duce

Rb
T t = 2

(√
1 +BTt − 1− 1

2
B0
Tt

)
,(45)

where, by Taylor’s theorem (twice) and the assumption that the continuous derivatives

of bkj are bounded, we have

max
2≤t≤T

|Rb
T t| = oP(

1

T
).(46)

Recall that aT = (hT , ηk1 , . . . , ηkm)′ and a = (h, ηk1 , . . . ηkm)′. We have, for t ≥ 2,

(47)√
LRTt =

(
1 +

1

2
wTtφf (εt) +

1

2
r(εt, wTt)

)(
1 +

1

2
B0
Tt +

1

2
Rb
T t

)
= 1+

1

2
a′TSTt+

1

2
RTt,

with

RTt = r(εt, wTt) +Rb
T t +

1

2
(B0

Tt +Rb
T t) (φf (εt)wTt + r(εt, wTt)) .(48)
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So we can conclude that expansion (i) holds once we verify the conditions in Propo-

sition 1 of Hallin, Van den Akker, and Werker (2015).

Condition (a). This is immediate as aT converges by assumption.

Condition (b). Square-integrability follows from our assumption f ∈ F . Display (2)

in Condition (b) of Hallin, Van den Akker, and Werker (2015) follows immedi-

ately from the independence of εt and FT,t−1, Eφf (εt) = 0, and Ebkj(εt) = 0,

j = 1, ...,m. The second equation in Display (3) in Condition (b) is immediate as

JT =
∑T

t=1 E [STtS
′
Tt|Ft−1] = 〈∆̃(T ), ∆̃(T )〉1 = OP(1) (see (38)). Next we verify the

conditional Lindeberg condition (the first equation in Display (3)), which is, for all

δ > 0,

T∑
t=2

E
[
(a′TSTt)

21{|a′TSTt|>δ}|Ft−1

]
= oP(1).(49)

Observe

T∑
t=2

E
[
(a′TSTt)

21{|a′TSTt|>δ}|Ft−1

]

=
T∑
t=2

E

(hT
T

(Yt−1 − Y1)φf (∆Yt) +
m∑
j=1

ηkj√
T
bkj(∆Yt)

)2

1{
(a′TSTt)

2
>δ2

}|Ft−1


≤ (m+ 1)2

T∑
t=2

E

[(
h2
T

T 2
(Yt−1 − Y1)2φ2

f (∆Yt)1{(m+1)2h2T (Yt−1−Y1)2φ2f (∆Yt)>δ2T 2}

)
|Ft−1

]

+
m∑
j=1

(m+ 1)2

T∑
t=2

E

[
η2
kj

T
b2
kj

(∆Yt)1{
(m+1)2η2kj

b2kj
(∆Yt)>δ2T

}|Ft−1

]
.

To complete the proof, we just need to show separately that, for any given δ > 0,

T∑
t=2

E

[(
h2
T

T 2
(Yt−1 − Y1)2φ2

f (∆Yt)1{|(m+1)hT (Yt−1−Y1)φf (∆Yt)|>δT}

)
|Ft−1

]
= oP(1),(50)

T∑
t=2

E

[
η2
kj

T
b2
kj

(∆Yt)1{|(m+1)ηkj bkj (∆Yt)|>δ
√
T}|Ft−1

]
= oP(1).(51)

Here, (50) and (51) can be shown in the same way as (41) is proved.

Condition (c). By (43) and (44), we have E[r2(εt, wTt)|Ft−1] = oP(T−2) and E[r(εt, wTt)|Ft−1] =

oP(T−1). Moreover, since all bkjs are bounded, we have max2≤t≤T |B0
Tt| = OP(T−1/2)
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and
∑T

t=1E[B0
Tt|Ft−1] = OP(1). Together with (46), this yields

T∑
t=2

E
[
(r(εt, wTt) +Rb

T t)
2|Ft−1

]
= oP(1),

T∑
t=2

E
[
(r(εt, wTt) +Rb

T t)(B
0
Tt +Rb

T t) (φf (εt)wTt + r(εt, wTt)) |Ft−1

]
= oP(1),

T∑
t=2

E
[(

(B0
Tt +Rb

T t) (φf (εt)wTt + r(εt, wTt))
)2 |Ft−1

]
= oP(1),

and, thus, by (48), we have

T∑
t=2

E
[
R2
Tt|Ft−1

]
= oP(1).

This establishes Display (4). As we assumed the density f to be strictly positive,

Display (5) is immediate by plugging in (42) to its left-hand side.

Condition (d). This follows easily from

log
f

(T )
η (Y1 − µ)

f(Y1 − µ)
= log

[
1 +

1√
T

m∑
j=1

ηkjbkj(ε1)

]
= oP(1).

This completes the proof. Q.E.D.

Proof of Theorem 3.1:

Let G be the group of translations gη with η ∈ c00 defined in (13). Invariance of

M has been shown in Section 3.3. In order to prove that M is maximal invari-

ant, following the idea in Section 6.2 of Lehmann and Romano (2005), we establish

that M((Wε(s), (Bbk(s))k∈N)′, s ∈ [0, 1]) = M((W̃ε(s), (B̃bk(s))k∈N)′, s ∈ [0, 1]) implies

W̃ε(s) = Wε(s) and W̃bk(s) = gηk(Wbk(s)) with s ∈ [0, 1], for some gη = (gηk)k∈N ∈ G.

Suppose M((Wε(s), (Bbk(s))k∈N)′, s ∈ [0, 1]) = M((W̃ε(s), (B̃bk(s))k∈N)′, s ∈ [0, 1]),

that is

Wε(s) = W̃ε(s),

Bbk(s) = B̃bk(s), k ∈ N.

This implies, for ηk = Wbk(1)− W̃bk(1),

Wε(s)− W̃ε(s) = 0,

Wbk(s)− W̃bk(s) = ηks, k ∈ N.
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Hence W̃ε(s) = Wε(s) and W̃bk(s) = gηk(Wbk(s)) with s ∈ [0, 1], which completes the

proof. Q.E.D.

Proof of Proposition 4.1:

Recall Mg = σ(Wε, Bφg) ⊆ M = σ(Wε, Bbk ; k ∈ N), the likelihood ratio of Mg can

be derived by taking the expectation of the likelihood ratio of M conditional on the

information Mg. We find

dPMg

h

dPMg

0

= E0

[
dPMh
dPM0

∣∣∣Mg

]
= E0

[
exp

(
h

{∫ 1

0

Wε(s)dBφf (s) +Wε(1)

∫ 1

0

Wε(s)ds

}

− 1

2
h2

{
Jf

∫ 1

0

W 2
ε (s)ds−

(∫ 1

0

Wε(s)ds

)2

(Jf − 1)

})∣∣∣Mg

]
.

Based on the covariance matrix (21) and using λ = (Jfgσεφg − σ2
εφg

)/(Jg − σ2
εφg

), we

have the decomposition Wφf = (1−λ)Wε+λWφg/σεφg +W‡, where W‡ is a Brownian

motion (not necessarily standard) independent of both Wε and Wφg . Together with

the decomposition Wφg/σεφg = Wε +
√
Jg/σ2

εφg
− 1W⊥, we have

Wφf = Wε + λ

√
Jg
σ2
εφg

− 1W⊥ +W‡.

Define Bε = BWε , B⊥ = BW⊥ , and B‡ = BW‡ . It follows

Bφf = Bε + λ

√
Jg
σ2
εφg

− 1B⊥ +B‡.
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Plugging this into the previous equation leads to

dPMg

h

dPMg

0

=E0

[
exp

(
h

{∫ 1

0

Wε(s)

(
dBε(s) + λ

√
Jg
σ2
εφg

− 1dB⊥(s) + dB‡(s)

)

+Wε(1)

∫ 1

0

Wε(s)ds

}
− 1

2
h2

{
Jf

∫ 1

0

W 2
ε (s)ds−

(∫ 1

0

Wε(s)ds

)2

(Jf − 1)

})∣∣∣Mg

]

=E0

[
exp

(
h

{∫ 1

0

Wε(s)dWε(s) + λ

√
Jg
σ2
εφg

− 1

∫ 1

0

Wε(s)dB⊥(s) +

∫ 1

0

Wε(s)dB‡(s)

}

− 1

2
h2

{
Jf

∫ 1

0

W 2
ε (s)ds−

(∫ 1

0

Wε(s)ds

)2

(Jf − 1)

})∣∣∣Mg

]

=E0

[
exp

(
h {∆ε + λ∆⊥ + ∆‡} −

1

2
h2 {〈∆ε + λ∆⊥ + ∆‡,∆ε + λ∆⊥ + ∆‡〉}

) ∣∣Mg

]
where ∆ε and ∆⊥ are defined in the present proposition, and ∆‡ :=

∫ 1

0
Wε(s)dB‡(s).

Under P0,0 the process B‡ is independent of Wε and Bφg (henceforth B⊥). Conse-

quently, 〈∆ε,∆‡〉 = 0 and 〈∆⊥,∆‡〉 = 0. Noting that ∆ε, ∆⊥, 〈∆ε〉, 〈∆⊥〉 and 〈∆‡〉
are all Mg-measurable, we thus obtain,

dPMg

h

dPMg

0

= E0

[
exp

(
h {∆ε + λ∆⊥ + ∆‡} −

1

2
h2
{
〈∆ε〉+ λ2〈∆⊥〉+ 〈∆‡〉

}) ∣∣Mg

]
= exp

(
h {∆ε + λ∆⊥} −

1

2
h2
{
〈∆ε〉+ λ2〈∆⊥〉+ 〈∆‡〉

})
E0

[
exp (h∆‡) |Mg

]
= exp

(
h {∆ε + λ∆⊥} −

1

2
h2
{
〈∆ε〉+ λ2〈∆⊥〉

})
.

The last equality holds since E0

[
exp (h∆‡) |Mg

]
= exp

(
1
2
h2〈∆‡〉

)
.

Q.E.D.
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Figure 1.— Fitted regression lines for the critical value functions in Table I. Each

critical value is simulated using Brownian motions with a time step 0.001 over the

interval [0, 1] and 10,000,000 replications.
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Figure 2.— Asymptotic power functions of the Hybrid Rank Test for various

reference densities g and other selected unit root tests under the true innovation

densities f : Gaussian, Laplace, Student’s t3.
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Figure 3.— Illustration of the Chernoff-Savage result. The figure shows asymp-

totic power functions for the Gaussian Hybrid Rank Test and selected unit root tests

under various true innovation densities f .
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Figure 4.— Small-sample (T = 100) power functions of selected unit root tests

and various true innovation densities: Gaussian, Laplace, Student t3.
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Figure 5.— Small-sample (T = 100) power functions of selected unit root tests

and various true innovation densities.
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Figure 6.— Powers of HRTg when g = f with different sample sizes.
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