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Abstract

Despite the ability to match an increasing number of data moments, equilibrium models,

employing the widely used Representative Agent simplifying construct, do not properly �t

the data, why? Using a �exible econometric model I provide, as a function of a set of key

drivers capturing violations to the models' key assumptions, a joint model-free test for the

Representative Agent EquilibriumModels (RAEMs) in the literature as well as the conditional

probability of their failures over time. I �nd such probabilities to be counter-cyclical, right-

skewed and on average high (around 47%). RAEMs are rejected in periods of high illiquidity

(market frictions) where the investors' level of disagreement (asymmetric information) is above

the median and aggregate expectations are irrationally downward biased. These periods

are followed by a decreasing demand to hold the market and, inconsistently with RAEMs

predictions, low realized returns. During economic recessions, models are more likely to fail

due to market frictions, while in normal times by the asymmetry in information.
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1 Introduction

The Representative Agent and the Rational Expectation paradigm are two pillars of the neo-

classical equilibrium models based on micro foundation and individual rationality. From a theo-

retical perspective, the simplifying Representative Agent device is an easy way out from complex

equilibria derived from the interactions of many di�erent economic agents while Rational Expec-

tations (the fact that agents' beliefs align with models' predictions) are a consistency requirement

to close such models.

Ever since Lucas (1978), passing through Campbell-Cochrane (1999), Bansal-Yaron (2004), Bansal

et al. (2014), Campbell et al. (2016), Barro (2006) and Wachter (2913) just to mention a few,

rational representative agent exchange economies have been widely adopted to design equilibrium

models matching by simulations an increasing number of empirical moments observed in the �nan-

cial markets. Nonetheless, their performances on actual data remain rather poor, that is, either

unreasonable parameter values are required (e.g. the Mehra-Prescott (1985) equity premium puz-

zle) or by using enough instruments one can always reject the given model (e.g. through the GMM

J-test),1 why?

I develop a uni�ed framework to answer this question: conditioning on a set of key drivers captur-

ing dimensions that go against the key assumptions common to the class of models under analysis

and exploiting a novel asset pricing restriction (Martin, 2016), I design a joint model-free test for

the Representative Agent Equilibrium Models (RAEMs) and derive the conditional probability

of their failures at each point in time in the main sample. Illiquidity, as a member of the family

of market frictions' proxies (measured by the negative of the Pasor-Stambaugh (2003) index),

investors' disagreement as a way of measuring information asymmetries (proxied by the Ludvig-

son et al. (2016) �nancial uncertainty index and the Rapach et al. (2016) short interest index),

and irrationally downward-biased expectations are the key fragilities of RAEMs. Sub-samples

within which the models fail, mostly driven by a negative risk premium, are characterized by

levels of illiquidity above the 75-th percentile, disagreement intensity over the median threshold

1See for example Hansen-Singleton 1982, Epstein-Zin 1991 and Savov 2011.
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and followed by subsequent periods of low market demand and negative realized returns. A poor

RAEMs �t of the data is justi�ed by a conditional probability to jointly reject these models that

is counter-cyclical, right skewed and quite high: it never goes below 33.18% and has a mean of

46.82%. The probabilities to reject the RAEMs exclusively due to illiquidity (market frictions)

and disagreement (asymmetry in information) are separately tracked over time, explain all the

main spikes in the overall conditional probabilities and unravel the di�erent motivations for which

the RAEMs fail over time. In particular, during recessions it is the illiquidity component, or more

generally the presence of substantial market frictions, that causes the models to fail, while during

normal times the disagreement proxies, or the failure of the symmetric information assumption,

are most predominant.

According to the equilibrium models the representative agent, in order to hold the market portfo-

lio in bad times, requires a high risk premium and under rational expectations the (conditional)

sample mean of the realized (ex-post) excess market return is a good estimator for the ex-ante

market expectations. Therefore the RAEMs predict high average realized market returns following

bad periods. Contrary to this prediction, periods of RAEMs' rejections which include all major

economic recessions and �nancial crises for a total of 25.43% of the main sample, are followed

by negative realized market returns. The evidence gathered in this study rather suggests that in

bad times irrationally pessimistic investors (short) sell the market pushing its price down, thus

generating negative returns.

This paper is not the �rst to document empirical inconsistencies with existing equilibrium mod-

els: the list is long and features Hansen-Singleton (1982)'s or Gallant-Tauchen (1989)'s type of

model-speci�c GMM tests, incompatibility of rational expectations and equilibrium models (e.g.

Greenwood-Schleifer (2014) and Amromin-Sharpe (2014)) and simulation-based critiques accord-

ing to which some relevant data features cannot be replicated even in the idealized models' frame-

works (e.g. Martin (2016) and Moreira-Muir (2016)). Nonetheless, this paper is the �rst to (i)

give a formal and constructive model-free joint test for the entire class of models and analyzes the

systematic drivers behind the rejection in both a static and a dynamic fashion, (ii) provide a test
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for rational expectations able to detect the direction of the bias and (iii) disentangle the di�erent

motives that in di�erent periods are behind the models' rejections. Left for future research is the

objective of assembling the new stylized facts into a new alternative theory model.

The rest of the paper is structured as follows: Section 2 sets the framework of the study explaining

the logic behind the model free test and the empirical design, Section 3 describes the data and mo-

tivates the choice of the drivers, Section 4 shows the results analyzing why and when the RAEMs

fail giving a detailed explanation of the �ndings, Section 5 contains some robustness checks and

Section 6 concludes. All the proofs, derivations and extra-analysis are in the Appendix (Section

7).

2 Framework

2.1 The logic behind the joint model free test

In a recent paper, Martin (2016) proposes a new asset pricing restriction linking the conditional

risk premium on the market to observables in the marginal investor's information set under weak

assumptions. I exploit this relation to provide a model free test for the pricing equation in the

context of the RAEMs

1 = E[M ×Ri] (1)

where M is the representative agent equilibrium inter-temporal marginal rate of substitution, Ri

is the gross return on asset i and E[·] is the expectation operator, which under rational expecta-

tions can be substituted by the (sub)sample mean. Each model di�ers in term of dynamics and

functional forms attached to M and Ri, assumes rational expectations and mainly focuses on the

market return Rmkt.

By the Fundamental Theorem of Asset Pricing (FTAP),2 the existence of the pricing equation (1)

such that M > 0 and an equivalent risk-neutral measure Q such that Rf = EQ[Ri], where Rf is

the risk-free return, is guaranteed by the Law of One Price, under the assumption of no-arbitrage,

2Ross (1973,1978), Harrison and Kreps (1979), Dybvig-Ross (1987).
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the absence of market frictions and by modeling uncertainty through the existence of a potentially

very large but �nite set Ω of states of the worlds. It is than straightforward, in the spirit of Martin

(2016), to derive the following proposition

Proposition 1. In an arbitrage free market where there exists a strictly positive stochastic discount

factor, M , satisfying the pricing equation and the Negative Covariance Condition (NCC)

Covt(Mt+1 ×Rmkt
t+1 , R

mkt
t+1 ) ≤ 0 (2)

it is possible to construct a real time conditional lower bound, LBt ≡
V arQt (Rmkt

t+1 )

Rt,f
, on the market

risk premium Et[Rmkt
t+1 −Rt,f ] by

LBt = 2

(
DYt

Ŝt

)2

 F̂t∫
0

ˆputt(k)dk +

∞∫
F̂t

ˆcallt(k)

 ≥ 0 (3)

by setting DYt = 1 the original Martin (2016) measure is recovered.3

Proof. See Appendix

The quantities with hats are ex-dividend, DYt is the gross dividend yield on the market portfolio

with respect to the period [t, t+ 1] assumed known4 at t, Ŝt is the closing market level at time t,

F̂t is the forward contract on the market with tenor 1 = (t+ 1)− t and �nally ˆputt(k) and ˆcallt(k)

are European options on the market with unity tenor and strike k. By the Put-Call parity5 the

forward contract F̂t ≡ F̂t(k
∗) is the unique point (k∗, F̂t(k

∗)) at which the call and put functions

intersect so that LBt is just a function of DYt, Ŝt, { ˆputt(ki), ˆcallt(ki)}ki∈Kt where Kt is the set of

observable strikes with unit tenor at time t.

As the next proposition points out, applying the logic of contraposition to Proposition 1 delivers

a test for the pricing equation.

3In the Robustness section I show how the two measures are empirically identical.
4This assumption is empirically without loss of generality given that it's impact in the data, as shown in the

Robustness section, is absent.
5Adjusted for dividends, i.e. ˆcallt(k) = ˆputt(k) + Ŝt − PV (Dt+1)− k

Rt,f
.
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Proposition 2. Given a violation of the lower bound measure (3) if M > 0 and the Negative

Covariance Condition in (2) holds the pricing equation is rejected.

Because M > 0 and the Negative Covariance Condition in (2) holds for the RAEMs class,6

following Proposition 2 a test for violations of the lower bound measure (3) is a joint model-free

test for the RAEMs. At this point, the only missing element for the formulation of such a test is

an operational de�nition of lower bound violations which is given next:

De�nition 1. Given a time series for the lower bound on the market premium at horizon 1 =

(t+ 1)− t, {LBt}t, computed through (3), and the associated7 time series for the excess (realized)

market return, {Rt+1 −Rt,f}t, a lower bound violation is a subsample over which the mean of the

excess market return is below that of the lower bound series.

2.2 Empirical Design

Armed with the model-free logic this section details how to design a framework to analyze

the RAEMs rejections in both a static and a dynamic fashion: statically through the design of

a formal test and dynamically through the derivation of a conditional probability to reject the

RAEMs based on the information available up to time t and the realization πt+1.

The starting point of both analysis is an econometric model to forecast the excess market return

πt+1 ≡ Rmkt
t+1 −Rt,f

πt+1 = ft(D) + et+1 (4)

as a function of a set of key drivers D. The �exible modeling choice of the present study is a

polynomial of degree 2 able to capture the linear as well as the non-linear impact of the set of

key drivers D with a vector of parameters θt iteratively re-estimated at each time t in the main

sample to capture the time-varying impact of the drivers.

6Including Epstein-Zin (1989) with unity coe�cient of relative risk aversion and arbitrary elasticity of inter-
temporal substitution, Campbell and Cochrane (1999), Bansal and Yaron (2004), Bansal et al. (2014), Campbell
et al. (2016), Barro (2006), Wachter (2013) and Merton (1973) in the Campbell-Viceria (1999) formulation, see
Section III of Martin 2016.

7Lagged one period back so to match the forward looking expectations contained in LBt.
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2.2.1 The RAEMs joint model-free test

De�ne yt+1 ≡ πt+1 − LBt and assume yt+1 to be independent over time. The independence

assumption states that once we subtract the lower bound LBt, computed through (3), from the

excess market return process, πt+1, we are left with noise. Note that we are not restricting such

noise to be identically distributed. Given any process πt+1, the independence assumption can be

justi�ed either by thinking that the lower bound (3) is a good measure for the risk premium,

in which case subtracting a good proxy for the conditional mean of πt+1 from πt+1 just leaves a

random disturbance, or on the contrary by viewing LBt as a bad proxy containing enough noise

to o�set any predictable pattern in πt+1.

We can now formally state the RAEMs joint model-free test

De�nition 2. A joint model free test for the class of representative agent equilibrium models

(RAEMs) is a one-sided t-test

H0 : E[yt+1I
v
t (π̂t+1, LBt)] = 0 vs. H1 : E[yt+1I

v
t (π̂t+1, LBt)] < 0 (5)

with the nonnegative time t function Ivt (π̂t+1, LBt) ≡ 1[π̂t+1<LBt] capturing joint RAEMs violations

in case of rejection at the 1 − α con�dence level, π̂t+1 representing the time t forecast of πt+1

according to model (4) and yt+1 ≡ πt+1 − LBt being independent over time.

Note that, according to De�nition 1, the lower bound violations can be written as E[yt+1|Ft] < 0

for some �ltration Ft and E[yt+1|Ft] < 0 if and only if E[yt+1It] < 0 for any nonnegative function

It. De�nition 2 sets It ≡ Ivt (π̂t+1, LBt). Also, the i.d. assumption on the process yt+1 guarantees

that yt+1 and I
v
t (π̂t+1, LBt), given information up to time t, are independent so that the test does

not su�er from any kind of sample selection bias.

2.2.2 The conditional probability to reject the RAEMs

The dynamic part of the analysis tackle the issue of when the RAEMs are more problematic

rather then why. Remember that, by the logic of Proposition 2, in the RAEMs class, whenever the
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risk-premium Et[πt+1] is below its lower bound LBt we have a violation. Thus a way to capture, at

any given point in time t, the probability of having a lower bound violation and hence a RAEMs

rejection, is trhough the following object Pt(πt+1 < LBt).

In particular, using model (4) I construct the time-series of such conditional probabilities and

further produce the conditional contributions due to speci�c subset of drivers d ⊂ D.

Model (4) produces the forecast π̂t+1 at each time t which can be viewed as

πt+1 = π̂t+1 + εt+1 (6)

thus at each time t retrospectively, the researcher has at disposal the time series {ε̂t+1}tt=1 where

ε̂t+1 ≡ πt+1 − π̂t+1. One can then, according to (6), re-create the conditional distribution of

πt+1 by bootstrapping8 {ε̂t+1}tt=1 and compute Pt(πt+1 < LBt) by subtracting LBt, counting the

number of times {π(s)
t+1−LBt}Sims=1 is negative and dividing it by Sim, the number of bootstrapping

simulations.

Using a similar logic and model (4), the single contribution of subsets of drivers d ⊂ D on the

probability to reject the RAEMs, Pt(d : πt+1(d) < LBt) is also computable, this time only9 using

information up to time t. As a matter of facts, model (4) gives us πt+1 as a function of D and

the model parameters given information up to time t, θt. Pt(d : πt+1(d) < LBt) is computed by

looking at the joint empirical frequency of d using the sample {1, .., t} such that at time t for given

θt and d
c ≡ D − d �xed at their time t realizations πt+1(d) < LBt.

3 Data

The data used in this study is at the monthly frequency and covers the United States Financial

Markets over the period Feb : 1973 − Dec : 2014. The sample is spitted into a training sample

TS = {1, ..., Ts} and a main sample MS = {Ts + 1, ..., T} with Ts = Dec : 1989. Model (4) is

initially estimated in the training sample, thus π̂t+1 with t+1 = Ts+1 uses the parameter vector θt

8Or block-bootstrapping to more precisely take into account potential serial correlation.
9I.e. avoiding the usage of realization πt+1.
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calibrated exclusively in TS and for each following t ∈MS the parameter vector θt is re-estimated

using information up to time t included. The RAEMs analysis is conducted in MS only and the

choice of Ts is due to the unavailability of option data, needed to compute the lower bound LBt

according to (3), in the training sample. That is, Ts + 1 is the �rst date for which option quotes

are available. Any observation t re�ects the information available at the beginning of the t month

intended as the �rst business day of that month.10 The data is divided into two categories: (i) the

Main Variables, the key variable of interest, namely the market return Rmkt
t+1 , the risk-free return

Rt,f and the lower bound LBt and (ii) the Drivers D. Each category is detailed next.

3.1 Main Variables

The gross total market return is de�ned as Rt+1 ≡ Ŝt+1

Ŝt
DYt where Ŝ represents the daily closing

level of the Standard & Poor's 500 (SP500) index and DYt ≡ Dt+1

Ŝt+1
is the gross dividend yield with

{Dt} being the SP500 dividend time series (divided by 12) available on Prof. Shiller website.11

The gross return on a risk-free investment, Rt,f , is de�ned as the gross yield to maturity extracted

from the Center for Research in Security Prices (CRSP) continuously compounded yield curve

computed over liquid secondary market transactions on U.S. Treasuries.

The time-series of the market premium lower bound, {LBt}, is computed according to equation

(3) in the most conservative way by a cubic spline interpolation12 on the Chicago Board Options

Exchange (CBOE) SPX options bid prices; the data from January 1990 trhough December 1995

is provided by Optsum data, while data from January 1996 trough December 2014 is taken from

OptionMetrics. For dates t in which the data is not su�cient/absent to deliver LBt at the exact

options maturity of 1 month I linearly interpolate between the contemporaneous t lower bounds

with the two closest maturities.

The following table summarize the main variables

10For all the ambiguous cases in which it is not clear what is the exact timing of an observation recorded at t
we lag it back one period to make sure it is in the investor information set at time t. If anything, this step only
makes it harder to �nd the results of this study.

11http://www.econ.yale.edu/ shiller/data.htm
12In the Robustness section I show how very similar results are obtained if we use a linear interpolation instead.
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[ Table 1 goes about here ]

3.2 Drivers

The set D of drivers plays an important role in the interpretation of the RAEMs analysis: they

represent the conditioning upon which the equilibrium models fail. As such, they are selected with

the goal of describing dimensions that go against the RAEMs assumptions. In particular, we know

that the �rst order conditions of such models give the pricing equation (1) under the testable13

assumption of no-arbitrage and the absence of market frictions: thus the �rst couple of dimensions

we want to include should contain proxies for arbitrage opportunities and market frictions. We

also know that the class of RAEMs only deals with closed14 exchange economies thus the impact

of money and foreign markets is outside the scope of the models: for this reason the next couple

of dimensions we want to have are those which contains proxies for the value of money and the

impact of foreign markets on the pricing of the domestic assets. A �nal important dimension is

the one concerning the representative agent and its existence, as the proposition below motivates,

an essential (and stringent)15 assumption in this context is the homogeneity of investors' beliefs

Proposition 3. If the following hold

� The set of intervals t the time period [0, T ] can be divided into, the set Ω = {ωt}Tt=0 of states

of the world, and the set of investor types J are �nite

� Investor type j have homogeneous beliefs and standard16 von-Neumann Morgenstern utilities

over the consumption process {cj,t(ωt)}Tt=0

� The Law of One Price hold, the �nancial market is complete, arbitrage-free and features

a �nite number, N + 1, of primitive securities with ex-dividend price processes, STt =

(S0,t, ..., SN,t)

13As we detailed in Section 2 we also need the Law of One Price and the �niteness of the state space but these
are not testable.

14Or more generically, the impact of foreign markets is not explicitly modeled.
15An entire literature starting form Akerlof (1970), passing through Grossman-Stigliz (1980) studies the e�ect

of asymmetric information.
16Strictly increasing, strictly concave, time-additive and state-independent preferences.
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� The space of feasible net trades is linear (markets are frictionless)

Then for any aggregate endowment process the resulting exchange economies have Pareto optimal

competitive equilibria with prices that equivalently sustain a no-trade economy with a single agent,

with Inter-temporal Marginal Rate of Substitution (IMRS)

Mt+1 ≡ β
u′t+1(Ct+1)

u′t(Ct)

holding the market in equilibrium and optimally consuming the aggregate endowments Ct ≡
∑J

j=1 cj,t.

Proof. See Appendix.

the proposition shows how under the additional requirements of market completeness, vNM pref-

erences and the testable assumption of homogeneity in beliefs we can construct a no-trade economy

with a single agent, the representative agent,17 holding the market portfolio, in the RAEMs frame-

work.

In light of these reasoning and in the sake of parsimony I select the following drivers:

D = {F, SII, TAX, ILLIQ,MDI,BM,USDg} (7)

where:

1. F , as a proxy for investors' disagreement18 , is the Ludvigson et al. (2016) �nancial uncer-

tainty measure: computed as the cross-sectional average conditional volatility of the 1-month

Root Mean Squared Error in predictive regressions over approximately 150 monthly �nancial

time series.

17In reality, even if in the modern �nance jargon it is called the representative agent, such single agent is an
ex-post representative agent in that is mainly a device used to explain ex-post a set of observable prices thought to
be in equilibrium. Aggregate consumption in equilibrium is a function of the aggregate wealth and the asset prices,
this implies that if prices changes than also the (aggregate) endowment and thus the agent holding the market in
equilibrium change. Therefore the ex-post representative agent pins-down just a point, the equilibrium one, in the
aggregate demand function. A true ex-ante agent needs to have the extra additional requirement of preferences
that are independent from the aggregate endowment and the prices distributions. Unfortunately such agent can
only be derived under very restrictive assumptions. (See Lewbel (1989))

18In the Appendix it is shown that 80% of the variability of F can be explained using a number of disagreement
proxies only generating an estimate which correlates 0.9038 with the original series.
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2. SII, as a proxy for investors' disagreement19, is the Rapach et al. (2016) short interest

index: computed as the log of the equal-weighted mean of short interest (as a percentage of

share outstanding) across all publicly listed stocks on U.S. exchanges.

3. TAX, as a proxy for market frictions, is the annual time series of the rate of change on total

taxes paid on capital gains as reported by the U.S. Department of the Treasury.

4. ILLIQ, as a proxy for market frictions, is the negative of the Pastor-Stambaugh (2003)

liquidity index: computed as the (negative of the) aggregate average (over a month) daily

response of signed volume to next day return for all individual stocks on the New York Stock

Exchange and the American Stock Exchange.20

5. MDI, as a proxy for arbitrage opportunities, is the Pasquariello (2014) Market Dislocation

Index: computed as a monthly average of hundreds of individual abnormal absolute viola-

tions of three textbook arbitrage parities in stocks, foreign exchange and money markets.

6. BM , as a proxy for arbitrage opportunities (through miss-pricing), is the book-to-market

ratio taken from Goyal database:21 book-to-market value ratio for the Dow Jones Industrial

Average.

7. USDg, as a joint proxy for the value of money and the impact of foreign �nancial markets22,

is the U.S. Dollar appreciation index: computed as the linear return on the Trade Weighted

U.S. Dollar Index available from the Saint Louis Federal Reserve23

19High values of the index indicate that a sizable portion of investors is betting on the market going down by
short-selling stocks. Selling large amounts of stocks is only possible if on the other side of the transactions there
are buyers, i.e. investors who presumably think, for whatever reason, that holding the market is better.

20The intuition behind the measure is that if we view liquidity as the ability to trade large quantities without
moving the price and think of signed volume as a proxy for the order �ow then lower liquidity is re�ected in a
greater tendency for order �ow in a given direction on day d to be followed by a price change in the opposite
direction on day d+ 1.

21Available at http://www.hec.unil.ch/agoyal.
22The latter, as reported by Bertaut-Judson (2014) on behalf of the Board of Governors of the Federal Reserve

System, is a consequence of the fact that the U.S. runs a de�cit in the current account since 1985 and the excess
of imports over export has been funded primarily by foreign acquisitions of U.S. securities.

23The index is a weighted (over the volume of bilateral transactions) average of the foreign exchange value of
the U.S. dollar against the currencies of a broad group of major U.S. trading partners.
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The next table gives the summary statistics of the selected drivers

[ Table 2 goes about here ]

We conclude this subsection by illustrating, through the correlation matrix below, how the parsi-

moniously selected drivers, indeed cover a variety of di�erent information sources

[ Table 3 goes about here ]

The average absolute correlation is 0.1119 with the highest linear association of 0.3743 being the

one between F and ILLIQ followed by the 0.3187 between F andMDI. In the appendix we show

how, despite a level of correlation of 0.3743, F and ILLIQ are fundamentally di�erent in that

only the �rst one can be replicated by disagreement proxies, while in the Robustness section we

document how using a version ofMDI orthogonalized from F gives very similar results suggesting

the di�erence in the F and MDI contents is what is driving the result in the main speci�cation.

4 Results

This section contains the detailed analysis of the reason why the representative agent equilib-

rium models do not properly �t the data and when, over the last 25 years (the main sample MS)

in the U.S. market this is mostly the case. The last subsection provides a comprehensive summary

and interpretation of the analyzed results.

4.1 Why the Models fail?

We �rst tackle the motivations for the RAEMs failures through a static analysis in which we

show the result of the joint model-free test of De�nition 2 providing us with the subsample, Ivt ,

containing the violation periods as a function of the selected drivers D. We then use the violation

periods to perform a test for the rational expectations and look at how investors react to the

RAEMs failures.

13



4.1.1 RAEMs' failures

Remember that a joint model-free test for the RAEMs failures is a one sided t-test

H0 : E[yt+1I
v
t (π̂t+1, LBt)] = 0 vs. H1 : E[yt+1I

v
t (π̂t+1, LBt)] < 0

with yt+1 ≡ πt+1 − LBt assumed independent over time. Thus the starting point is an analysis

of the empirical properties of yt+1: Figure 1 shows the correlogram of yt+1 together with the

95% con�dence bands con�rming the absence of any linear form of dependence, while the other

statistics of interest are summarized in the table below

[ Table 4 goes about here ]

The statistics, in line with Martin (2016), document the unconditional tightness of the lower bound

measure in that the mean of y, 0.0028, is not statistically di�erent from 0 and con�rm the usual

estimate for the unconditional risk premium, 0.0061 (0.0732 annualized).

We next turn to the (conditional) joint model-free test for the RAEMs. Throughout the study,

in order to forecast the excess market return, π, we adopt a shrinkage full quadratic speci�cation

for model (4) in which we regress π on a constant, each driver in D, all the drivers' interactions

and their squares for a total of 35 regressors. To avoid over-�tting and improve the quality of the

forecasts, yielding a good 0.0981 out-of-sample R2, I use the iterated approach detailed in Lin et

al. (2016) which basically amounts to a regression shrinkage in which the out-of-diagonal elements

in the regressors' matrix are set to zero and the regressors' coe�cients are divided by 35. The

results are summarized in Table 5 and graphically in Figure 2.

[ Table 5 goes about here ]

Table 5 shows how the RAEMs are rejected at the 5% level conditional on periods captured by

the nonnegative function Iv ≡ 1[π̂t+1<LBt] with the help of model (4). As a matter of facts, the

conditional risk premium is below its average lower bound by a solid monthly 1.65%. Notice that

the negative �gure is driven by a conditional negative risk premium, on the order of −1%, rather
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than a very low average lower bound, which instead displays a conditional mean of 0.006 higher

than its unconditional counterpart 0.0033. Furthermore, the negativity of the risk premium is in

turn driven by an average negative market return, on the order of −0.4%, rather than the average

level of the risk free rate, a statistically positive 0.06%. Therefore RAEMs rejections are driven

by negative market returns; this insight is further corroborated by the analysis in the Robustness

section showing that the same rejections are obtained by �xing the lower bound and the risk free

time-series to their unconditional means.

Figure 2 gives a graphical description of the joint test, in dashed red plots the sub-sample of the

yt+1 process, displayed in blue, selected by the function Iv, the pink areas highlights the National

Bureau of Economic Research (NBER) recessions. The violations sub-sample covers 25.43% of

the main sample MS, contains the three NBER recessions as well as the 1998 Long-Term Capital

Management crisis and the sovereign debt crises in the aftermath of the 2008 Great Recession.

Note how the rejection periods mainly incarnates the de�nition of bad times.

Remember that Iv through model (4) is a function of the selected drivers D, it thus make sense

to use such drivers, designed to incorporate relevant non-overlapping dimensions against the as-

sumptions of RAEMs, to explain why these models fail. In order to achive this goal I run the

following regression

Ivt = β0 +Dtβ + ut (8)

and report the result in the next table

[ Table 6 goes about here ]

Note how the �rst three drivers F ,SII and ILLIQ are key: all their coe�cients are signi�cant at

the 1% level, their partial R2 are at least 3 times those of the remaining drivers and, as highlighted

by the last column of the table, running regression (8) only using the �rst three drivers explains

0.4537 of the violation function Iv, which is 90% of the variability explained by using the whole

set of drivers D.

We showed how F ,SII and ILLIQ are the main responsible for the RAEMs rejections; next we

illustrate how the violation sub-sample de�ned by Iv can indeed be characterized in terms of the
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main detected drivers. Consider the following model

dt = α1I
v
t + α2(1− Ivt ) + wt, with dt ∈ {Ft, SIIt, ILLIQt} (9)

model (9) compares the conditional mean of the dependent variable d in the violation periods with

the one computed in the rest of the main sample. Table 7 reports the results of model (9)

[ Table 7 goes about here ]

The key drivers F , SII and ILLIQ are substantially di�erent in periods of RAEMs failures,

as a matter of facts, the di�erence in their means in the violations' periods and non-violation'

periods are statistically signi�cant at the 1%. All drivers have higher values in rejections' periods,

in particular, the disagreement proxies (F and SII) are above their unconditional median while

illiquidity is above its unconditional 75-th percentile. Thus we conclude that rejections' periods

are characterized by substantial investors disagreement and high illiquidity.

4.1.2 Irrational Expectations

One of the key pillars of the RAEMs is the rational expectations assumption: as brie�y men-

tioned in the introduction this is a consistency requirement on the agents' expectations so that

they are aligned with the models' predictions. In other words, investors' expectations have to

be correct, at least on average and over time (Muth, 1961). Recently Greenwood-Shleifer (2014)

and Amromin-Sharpe (2014) documented how equilibrium-based required returns and investors'

expectations display a counter-intuitive negative correlation casting doubts on the compatibility

of rational equilibrium models and actual data. In this subsection I test whether we can detect

systematic biases in the investors' expectations in the presence of RAEMs rejections and in order

to do so I run the following regression

zt+1 − Et[zt+1] = γ1I
v
t + γ2(1− Ivt ) + ηt+1 (10)
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The random variable zt+1 is the quantity over which investors, using information up to time t

included, form expectations Et[zt+1]. Following the logic of model (9), I compare the conditional

mean of the forecast error, zt+1 − Et[zt+1], in the presence of RAEMs rejections, captured by γ1,

and in the rest of the sample, detected by γ2. Note that speci�cation (10), as speci�cation (9)

before, su�ers from the errors-in-variable problem in that the regressor Ivt is itself an estimate.24

Such bias in linear regressions de�ate the real (unobservable) coe�cients γ1 and γ2 towards zero,

so that any signi�cant result we �nd is robust to this problem.25 The next table reports the result

of this analysis

[ Table 8 goes about here ]

I use four di�erent popular �nancial indicators as random variables over which investors form

expectations and three di�erent methods to capture such expectations. In the �rst three column z

represents the return of the market in excess of the risk-free rate and the expectations are collected

from survey data (Gallup survey, American Association of Individual Investors and Shiller's survey)

validated in Greenwood-Shleifer (2014). z in the fourth column represent in�ation, Infl and the

expectations are the market implied (and priced) ones from the di�erence in the yield of 5-year

in�ation indexed treasury bounds and the yield of 5-year nominal treasury bonds. In the last

two columns z captures a key economic indicator, the U.S unemployment rate, UR, and a core

�nancial indicator, the spread between the BAA rated corporate bonds and the federal funds

rate, SP ; expectations in this case are computed as forecasts through the speci�cation of an

econometric model following the Box-Jenkins (1970) procedure (See Appendix for the details on

the speci�cation procedure).

Under the null of rational expectations γ1 = γ2 = 0, that is, there is no systematic bias in the

time series of forecasted errors zt+1 − Et[zt+1]. In 5 out of 6 cases covering the three di�erent

methodologies implemented for inferring the investors' expectations, γ1 > 0 with a signi�cance

level of 5% for the Gallup market return expectations and the model-based unemployment rate

expectations. Furthermore, in 4 out of 6 cases covering the survey and model-based expectations,

24We are in fact sure at the 95% that it contains RAEMs violations not at the 100%.
25This is the reason why I did not mention the issue while describing model (9).
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γ1 6= γ2 at the 5% and 1% level. These results suggest a consistently irrationally sizable downward

bias in the expectations during periods of RAEMs rejections. Note also that estimates for γ2,

the mean of the forecasting errors in the periods in which we do not reject the REEMs, are

economically negative in 5 out of 6 speci�cations and in 2 cases, covering the survey and model-

based expectations, are statistically signi�cant at the 1% level. This last set of results suggest

that the rational expectations assumption on its own, even when we cannot reject the RAEMs, is

problematic.

4.1.3 Low Demand for the Market Portfolio

The last piece of evidence I gather in the static analysis of the RAEMs failures concerns the

investors' aggregate reaction: we already documented that the RAEMs rejections periods are

characterized by times of high market illiquidity, disagreement and irrationally downward biased

expectations followed by negative market returns (which realize in t+ 1) and that the negativity

of the market return drives the risk premium below the average lower bound causing the RAEMs

failures. This subsection wants to provide a link between the former and the latter set of evidence.

Speci�cally I test whether or not rejections times are associated with a lower demand for the market

portfolio which, if present, justi�es the negativity of the realized market returns. The usual logic

of model (9) and (10) is implemented, this time yielding the following model speci�cation

qt+1 = δ1I
v
t + δ2(1− Ivt ) + ψt+1 (11)

where qt+1 is a proxy for the demand of the market portfolio. The next table illustrates the results

for this subsection

[ Table 9 goes about here ]

Three proxies for the market portfolio demand are used: the de-trended26 log volume of SPDR

SP500 ETF (measured as the log of the number of shares sold), V ol, the Rapach et al. (2016)

26The result still hold without the de-trending but time-series graphs (available upon request) show it might
wrongly pick up some time e�ects.

18



short interest index SII and the the net purchase position (purchases-sales) in U.S. equity from

foreign investors, NetEquityPurch. δ1 is statistically di�erent from zero (positive) at the 1% level

in all the speci�cations. Furthermore, δ1 is statistically di�erent (grater) than δ2 when the demand

proxies are the (log) number of SP500 ETF s sold, V ol, and the aggregate equity volume shorted

SII while the opposite occur for the case in which the demand proxy is the net purchase of U.S.

equities from foreign investors. Overall these evidence document how investors' demand for the

market portfolio is lower following RAEMs rejections periods.

4.2 When the Models fail?

The second part of the analysis of the RAEMs failures is dynamic: having certi�ed, at 95%

con�dence, that such models fail and attempted to explain the reason why we now turn to the

study of when it is more probable that this happens.

Figure 3 plots the conditional probability distribution P̂t(πt+1 < LBt) of rejecting the RAEMs at

each point in time in the main sampleMS against the negative of the GDP growth27 and shows its

empirical distribution. The probability to reject the RAEMs is right-skewed, well approximated

by a lognormal distribution, and always quite high: it has a mean of approximately 47% (median

of 41.08%) and never goes below 33.18%. The time-series is counter-cyclical, having a negative

correlation with respect to the U.S. GDP growth of 0.4817, and very high during the Great Reces-

sion period. Other notable spikes occur in periods of �nancial distress such as the 1998 long term

capital management crises or in the sovereign debt crises in the aftermath of the Great Recession.

Thus, unsurprisingly, models perform worst in periods of high �nancial distress, however more

interestingly, due to the counter-cyclical nature, the pattern generalizes to all periods of economic

contractions. As a matter of facts, in these periods the average probability to reject the RAEMs

is 48.17%, statistically greater than the analog probability, 45.63%, in periods of economic expan-

sions. Also, the fact that the probability to reject is always quite high justifying the documented

poor empirical �t.

27The pink areas represent the NBER recessions.
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Next I investigate the contribution of the main drivers d ⊂ D on the conditional probability to

reject the RAEMs. In the Robustness section I show how the ranking found in the static analysis

is the same and the �rst three most important drivers are still the disagreement proxies F, SII

and the illiquidity measure ILLIQ explaining 82.92% of the variability explained by all drivers.

The results are shown in Figure 4: in the upper graph the joint contribution of the disagreement

proxies F, SII, which can be viewed as a new structural index, is plotted in the form of a dashed

red line, the contribution of the illiquiity index ILLIQ, which can also be regarded as a novel

structural proxy, is represented by a dotted green line, while the overall conditional probability of

rejecting the RAEMs is still a solid blue line as in Figure 3. Note how the new indexes explain all

the most notable spikes in the overall rejection probabilities. The novel structural proxies, even

if, as expected28, are highly correlated (with a coe�cient of 0.7160), carry nonetheless di�erent

information as displayed by the bottom graph. The solid light blue line tracks the di�erence be-

tween the disagreement and the illiquidity series; positive values indicate an higher contribution

of structural disagreement while negative values a predominant contribution of structural illiquid-

ity. The emerging pattern is interesting, the RAEMs are impaired over time for di�erent reasons:

around NBER recessions the probability that models fail is mostly due to the illiquidity (or market

frictions) component, while in normal times is mostly the disagreement (thus the failure of the

symmetry-in-information assumption) part that drives the failures' likelihood.

4.3 What Is Wrong With Representative Agent Equilibrium Models?

In this last subsection we give a summary of the �ndings and a potential explanation.

The static analysis builds on the formal joint model-free test for the RAEMs class: the critical

identifying assumption of the test, the fact that the process yt+1 = πt+1 − LBt is independent,

is supported by the data in that no linear dependence is spotted in the series and, at least

unconditionally and in line with Martin (2016), LBt seems a good proxy for the risk-premium. We

thus certi�es that, at the 95% con�dence, the RAEMs class is rejected in the data conditioning,

28By construction they are both intimately linked to the overall rejection probability time-series.
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according to the objective rule Iv(π̂, LB), mainly on periods of high illiquidity where the level of

investors' disagreement is above the median, covering 25% of the main sampleMS and containing

all the three NBER recessions as well as other periods of �nancial instability such as the 1998

Long Term Capital Management crisis and the sovereign bond crisis in the aftermath of the Great

Recession. In the rejection periods, the conditional risk-premium (under rational expectations) or

simply the following period average excess realized market return is negative and systematically

lower than the mean lower bound (which by construction is nonnegative) causing the RAEMs

rejections as per Proposition 2. In spite of the attenuation bias caused by the usage of a proxy

capturing the RAEMs rejections with a Type I error of 5%, we are able to detect violations of

the Rational Expectations hypothesis: aggregate expectations, recorded through three di�erent

methodologies, systematically under-estimate the true variables of interest in periods in which

equilibrium models are rejected29 and instead overshoot in the rest of the sample where either we

do not have enough power to reject or supposedly the models hold. This seems to suggest that

rational expectations on their own, beyond their role in RAEMs, are problematic.

According to the equilibrium models, the representative agent, in order to hold the market portfolio

in bad times, requires an high risk premium, which, under rational expectations, should coincide

with high average realized excess market returns in following periods. This is not what we observe:

periods following bad times, substantially captured by the rejection sub-sample, are characterized

by a falling aggregate market demand and negative realized market returns and hence30 excess

market returns, rather suggesting the presence of pessimistic investors who, afraid of the poor

�nancial-economic conditions they observe in t, decide to (short) sell the market pushing the

demand down and causing negative realized returns in t+ 1.

The dynamic analysis detects an high conditional probability to reject the RAEMs at any point

in time in the main sample MS, a fact that justi�es the overall poor �t of this models to the data:

it never goes below 33.18% and on average is 47%. More importantly, it shows how the relative

importance of the main reasons behind the rejections, which are the same as the ones we detected

29In the case the variable of interest is the market return this evidence suggests investors' pessimism.
30Given the risk-free rate is almost never negative.

21



statically, changes over time: in periods of economic recessions the more severe issue is the one of

market frictions (illiquidity) while in normal time it is more a matter of asymmetric information.

5 Robustness

Any of the subsection below is independent and can be read on its own.

5.1 Linear versus cubic spline lower bound

In order to compute the lower bound measure at time t, LBt, according to equation (3) we use

the SPX option (Put and Call) bid quotes at horizon 1 month for the di�erent available strikes

as at the end of day t from Optsum and Optionmetrics. In order to compute the integral in (3)

we �rst need to interpolate the functions ˆput(k) and ˆcall(k) over a continuum of strikes. Because

theoretically we know of the convexity of these functions, in the study so far we have used a

cubic-spline interpolation. Another obvious interpolant option is the linear one; Figure 5 shows

the time-series of lower bounds in the main sample MS computed with the linear as well as the

cubic-spline method

[ Figure 5 goes about here ]

the upper graph plots the two time series while the bottom one shows, in percentage, the abso-

lute di�erence in terms of the cubic-spline approximation. The two time-series are overall very

similar, the mean absolute di�erence is 2.4358% with most of the di�erences in the periods pre-

Optionmetrics (i.e until 1996). All the results in the paper are una�ected by the way we compute

the bounds.

5.2 The impact of dividends on the lower bound measure

Martin (2016) derives a lower bound for the risk premium, LBM , which is an implicit function

of the market dividends. In his formulation dividends are assumed known and part of the SP500
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index.31 Following this assumption all the contracts on the SP500 are to be considered as if written

on the total value of the index rather than the ex-dividend one, an expedient which simplify the

derivations and it is equivalent to the assumption that there are no dividends at all: as a matter

of fact in my derivation LB ≡ LBM if and only if the gross dividend yield DYt is equal to 1. I

argue that, more realistically, one should account for the fact that such contracts are written on

the ex-dividend level of the SP500 so that dividends (or divided yields), even if assumed known,

should become an explicit input in the lower bound derivation. Empirically whether they are a

function of the dividends or not and whether dividends are indeed to be considered deterministic

or stochastic turns out to be irrelevant in the current analysis. However, the realization of such

a convenient simpli�cation, would have been otherwise impossible to detect if no such formula,

namely equation (3), for the bound as a function of dividend had been derived. I now make the

argument concrete by showing Table 10 which compares the key moments of the lower bound

empirical distributions under the Martin, LBm
M , and the current, LBm setup for the linear m ≡ l

interpolation as well as the cubic-spline m ≡ cs

[ Table 10 goes about here ]

the four distributions are virtually the same: it is evident how the empirical role of deterministic

dividends be negligible. Nonetheless, the conclusion in the current framework is even more general:

if dividends were stochastic and the correlation between the gross dividend yield and the ex-

dividend market return was zero, ρ ≡ corr(DYt, R̂
mkt
t ) = 0, then V arQ(Rmkt

t+1 ) ≈ V arQ(R̂mkt
t+1 ) so

LBm
M would still be a good overall measure. The overall in-sample correlation is ρ̂ = −0.0515 with

a p-value of 0.2334. I thus conclude that the impact of dividends is empirically irrelevant.

5.3 RAEMs' rejections driven by negative market returns

In the Results section I show that the joint model-free test for the RAEMs rejects the models

at the 95% con�dence and that the result seems to be due to the negativity of the market return.

In this subsection I con�rm this evidence by running, and rejecting, an analog joint test where I

31This way the stochastic component of S only comes from the ex-dividend level Ŝ.

23



keep the lower bound measure and the risk-free rate at their unconditional mean. Since we know

from Table 4 that unconditionally the lower bound is quite tight and below the risk premium, it

follows that the rejection mainly steams from the dynamic of the market return.

[ Table 11 goes about here ]

note how the results are very similar to those of the main joint model-free test displayed in Table

5.

5.4 Explaining RAEMs' failures via the rejection probabilities

In section 4.1.1 (Table 6) we show that the key drivers in the rejection of the RAEMs are

the disagreement proxies F and SII as well as the (negative) of the Pastor-Stambaugh (2003)

illiquidity index ILLIQ, a similar conclusion can be reached if instead of explaining the joint

rejections, captured by the indicator function Ivt (π̂t+1, LBt) ≡ 1[π̂t+1<LBt], we regress the drivers D

on the conditional probabilities to reject the RAEMs according to the model

Pt(πt+1 < LBt) = β0 +Dtβ + ut (12)

the results are reported in the following table

[ Table 12 goes about here ]

note that, according to the partial R2, F, SII and ILLIQ are still the �rst most important

variables capturing 82.82% = 0.6876
0.83022

× 100 of the variation explained by all drivers.

5.5 Drivers: purging the MDI index

When we �rst introduced the drivers D in section 3.2 we showed how the correlation between

MDI and F , 0.3187 as reported in Table 3, is the second highest. In this subsection I argue that

the two variables still carry fundamentally di�erent information. As a matter of fact, I construct
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a new MDI variable, MDIO, as the residual from the regression

MDIt = b0 + b1Ft + et (13)

MDIOt is by construction orthogonal to Ft, nonetheless substituting it to the original MDI in the

speci�cation of the drivers' matrix D I still �nd all the results32 detailed in section 4. I conclude

that the di�erence in the F andMDI contents seems to be what is driving the results in the main

speci�cation.

6 Conclusions

In this paper I investigate the reasons why the popular consumption-based equilibrium frame-

work of the representative agent, featuring exchange economies and rational expectations, does

not properly �t the data despite the growing number of empirical moments that it is now able to

match by simulations.33 In order to do so, I use a �exible econometric model to predict the market

risk premium, function of a set of drivers capturing testable dimensions against the assumptions

of the models, in conjunction with a novel restriction linking the conditional risk premium on

the market to observables in the marginal investor's information set (Martin, 2016). The selected

drivers cover four dimensions with proxies for the failure of the symmetric information assump-

tion, the absence of market frictions and arbitrage as well as proxies for the impact of money and

foreign markets on the pricing of domestic assets.

I �nd that irrationally downward-biased aggregate expectations in periods of substantial asym-

metric information and high market frictions cause the Representative Agent Equilibrium Models

(RAEMs) to have a poor �t to the data. These �ndings are corroborated by a counter-cyclical con-

ditional probability to reject the models at any point in time in the main sample, featuring a high

average of approximately 47% which never goes below 33%. During bad times equilibrium models

32Available upon request.
33See for example Campbell-Cochrane (1999), Bansal-Yaron (2004), Bansal et al. (2014), Barro (2006) and

Wachter (2913).
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require the rational investor to demand higher risk premia, in contrast, data suggest pessimistic

investors depress market prices pushing the conditional risk-premium below its lower bound by

selling the market portfolio. Tracking the contribution of the main drivers to the RAEMs' re-

jection probability over time reviles the RAEMs' probability to fail during economic recessions is

mostly due to market frictions while in normal times to asymmetric information.

Left to future research is the task of assimilating these new documented facts into a theory model

able to justify them.

7 Appendix

7.1 Proof of Proposition 1

First I show why LBt is a lower bound for the market risk premium Et[Rmkt
t+1 − Rt,f ] then I

derive equation (3).

Suppose markets are arbitrage free and there exist a stochastic discount factor M , satisfying the

pricing equation (1) then by the FTAP M > 0 and there exist an equivalent risk-neutral measure

Q such that Rf = E[Ri] for any gross return Ri.

By de�nition the conditional risk neutral variance for the market return at horizon t + 1 can be

written as

V arQt (Rmkt
t+1 ) ≡ EQ

t [Rmkt
t+1

2]− EQ
t [Rmkt

t+1 ]2

where Rmkt
t+1 is the gross cum-dividend market return. Still from FTAP we can go back and forth

from the physical probability measure and the risk-neutral one, thus EQ
t [Rmkt

t+1
2] = Et[Rt,fMt+1R

mkt
t+1

2]

and by the de�nition of risk-neutral measure, EQ
t [Rmkt

t+1 ]2 = Rt,f
2, hence

V arQt (Rmkt
t+1 ) = Et[Rt,fMt+1R

mkt
t+1

2]−R2
t,f
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dividing the above equation by the gross risk-free return Rt,f and rearranging

V arQt (Rmkt
t+1 )

Rt,f

= Et[R
mkt
t+1 −Rt,f ] + Covt(Mt+1R

mkt
t+1 , R

mkt
t+1 )

if Covt(Mt+1R
mkt
t+1 , R

mkt
t+1 ) ≤ 0, the NCC, then LBt ≡

V arQt (Rmkt
t+1 )

Rt,f
is a lower bound for RPt ≡

Et[R
mkt
t+1 −Rt,f ].

Next, I derive equation (3). From the de�nition of variance, using hats to denotes ex-dividend

quantities and letting S be the cum-dividend market level

V arQt (Rmkt
t+1 ) ≡ EQ

t

[(
St+1

St

)2
]
− EQ

t

[
St+1

St

]2

= EQ
t

( Ŝt+1

Ŝt
DYt

)2
−Rt,f

2

=
(DYt)

2Rt,f

(Ŝt)2
EQ
t

[
Ŝ2
t+1

Rt,f

]
−Rt,f

2

by no arbitrage (see Martin 2016), since the options are written on Ŝt

EQ
t

[
Ŝ2
t+1

Rt,f

]
= 2

∫ ∞
0

ˆcallt(k)dK = 2

(∫ F̂t

0

ˆcallt(k)dK +

∫ ∞
F̂t

ˆcallt(k)dK

)

since deep-in-the-money call options are neither liquid in practice nor intuitive to think about, it

is convenient to split the range of integration for EQ
t

[
Ŝ2
t+1

Rt,f

]
into two and use the put-call parity to

replace in-the-money call prices with out- of-the-money put prices. Assume that Market Dividends

are paid as lump sums Dt+1 at the and of the period [t : t+ 1] but before t+ 1, then the following

is true

max(St+1 −Dt+1 − k, 0) = max(k − St+1 +Dt+1, 0) + (St+1 −Dt+1)− k

since Ŝt+1 = St+1 −Dt+1

max(Ŝt+1 − k, 0) = max(k − Ŝt+1, 0) + (St+1 −Dt+1)− k
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by linearity of the pricing equation

ˆcallt(k) = ˆputt(k) + Ŝt − PV (Dt+1)− k

Rt,f

where PV (Dt+1) = EQt
[
Dt+1

Rt,f

]
= (1 −DYt)EQt

[
Ŝt+1

Rt,f

]
= DYt−1

DYt
Ŝt and the last equality comes from

Rt,f = EQt
[
St+1

St

]
. Applying the put-call parity

∫ F̂t

0

ˆcallt(k)dK =

∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt −

DYt − 1

DYt
Ŝt

)
− F̂ 2

t

2Rt,f

=

∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt
DYt

− F̂t
2Rt,f

)

which implies

EQ
t

[
Ŝ2
t+1

Rt,f

]
= 2

[∫ F̂t

0

ˆputt(k)dK + F̂t

(
Ŝt
DYt

− F̂t
2Rt,f

)
+

∫ ∞
F̂t

ˆcallt(k)dK

]

plugging EQ
t

[
Ŝ2
t+1

Rt,f

]
in V arQt (Rt+1) =

(DYt)2Rt,f

(Ŝt)2
EQ
t

[
Ŝ2
t+1

Rt,f

]
−Rt,f

2 delivers equation (3)

LBt = 2
(Qt)

2

(Ŝt)2

(∫ F̂t

0

ˆputt(k)dK + ˆcallt(k)dK

)

7.2 Proof of Proposition 3

Denote homogeneous agents' beliefs as {{pt(ωt)}ωt}Tt=0 with p0(ω0) = p0 = 1. De�ne a Lucas

type economy where each asset pays dividendsDT
t = (D0,t, ..., DN,t) at t. Since the space of feasible

net trades is linear agent j at time t can trade (buy and sell) any asset in any (even in�nitesimal)

quantity αTj,t = (α0
j,t, ..., α

N
j,t). The problem that investor j faces is

max
{{cj,t(ωt),αj,t(ωt)}ωt}t

∑
t

βtj
∑
ωt

pt(ωt)uj,t(cj,t(ωt))
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subject to

cj,t(ωt) + αj,t(ωt)
TSt(ωt) ≤ αj,t(ωt)

T (St(ωt) +Dt(ωt)) for every t and ωt

where βtj is the subjective time discount factor of agent j and uj,t is strictly incising and strictly

concave. The market is required to clear in the aggregate meaning

Ct(ωt) ≡
∑
j

cj,t(ωt) =
∑
i

Di,t(ωt) for every t and ωt

From the F.O.C. of agent j problem with respect to αj,t

St(ωt) =
∑
ωt+1

βj
u′j,t+1(cj,t+1(ωt+1))

u′j,t(cj,t(ωt))

pt+1(ωt+1)

pt(ωt)
(St+1(ωt+1) +Dt+1(ωt+1))

De�ne for every t, |ωt| ≡ Ωt, then the market payo� matrix that can be reached from time t at

state ωt is characterized by

Yt+1(ωt) =


S0
t+1(1) +D0

t+1(1) · · · S0
t+1(Ωt+1) +D0

t+1(Ωt+1)

...
. . .

...

SNt+1(1) +DN
t+1(1) · · · SNt+1(Ωt+1) +DN

t+1(Ωt+1)


because the market is complete rank(Yt+1(ωt)) = Ωt+1 and N + 1 is large enough such that

N + 1 = Ωt+1. Further de�ne

zjt+1(ωt) =


βj

u′j,t+1(cj,t+1(1))

u′j,t(cj,t(ωt))
pt+1(1)
pt(ωt)

...

βj
u′j,t+1(cj,t+1(Ωt+1))

u′j,t(cj,t(ωt))
pt+1(Ωt+1)
pt(ωt)


thus the F.O.C. can be rewritten as

St(ωt) = Yt+1(ωt)z
j
t+1(ωt)
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and the payo� matrix Yt+1(ωt) is invertible and z
j
t+1(ωt) is uniquely determined. That is for any

agent j and i

βj
u′j,t+1(cj,t+1(ωt+1))

u′j,t(cj,t(ωt))

pt+1(ωt+1)

pt(ωt)
= βi

u′i,t+1(ci,t+1(ωt+1))

u′i,t(ci,t(ωt))

pt+1(ωt+1)

pt(ωt)
≡ pt+1(ωt+1)

pt(ωt)
Mt+1(ωt+1) ≡ mt+1(ωt+1)

note that the state contingent claim that pays 1 unit of consumption in state ωt+1 only can now

be obtained through the asset allocation αt(ωt)
T = (α0

t (ωt), ..., α
N
t (ωt)) such that

(α0
t (ωt), ..., α

N
t (ωt)) = (1, 0, ..., 0)Yt+1(ωt)

−1

thus in a complete market any state contingent claim at any time t is attainable. De�ne φ0(ωt+1)

as the time 0 price of the contingent claim that at t + 1 delivers 1 unit of consumption if state

ωt+1 realizes, then by the Law of One Price

φ0(ωt+1) = price0((α0
t (ωt), ..., α

N
t (ωt)) = (1, 0, ..., 0)Yt+1(ωt)

−1)

the set {{φ0(ωt)}ωt}t contains all the state prices of the economy, where by de�nition φ0(ω0) =

φ0 = 1.

The fact that the market is complete enable to re-state the problem of agent j as follows

max
{{cj,t(ωt)}ωt}t

∑
t

βtj
∑
ωt

pt(ωt)uj,t(cj,t(ωt))

subject to ∑
t

∑
ωt

φ0(ωt)cj,t(ωt) ≤
∑
t

∑
ωt

φ0(ωt)ej,t(ωt)

where ej,t(ωt) is the agent (exogenous) endowment at time t in state ωt. From the F.O.C. of this

problem

φ0(ωt) = βtj
u′j,t(cj,t(ωt))

u′j,0(cj,0)
pt(ωt) for every t and ωt
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where u′j,0(cj,0) = δj and δj is the Lagrange multiplier, note that

φ0(ωt) = mt(ωt)×mt−1(ωt−1)× ...×m1(ω1) for every t and ωt

I next show that the competitive equilibrium allocations {{c1,t}t, ..., {cJ,t}t} are Pareto optimal.

A Pareto optimal allocation is a feasible allocation, that is

∑
j

cj,0 = C0

and ∑
j

cj,t(ωt) = Ct(ωt) for every t and ωt

such that it does not exist any other allocation which is feasible and can strictly increase at least

one individual's utility without decreasing the utilities of the others. From the classical second

welfare theorem (see e.g. Varain (1978)), it is known that corresponding to every Pareto optimal

allocation, there exist a set of non-negative numbers, {λj}j, such that the same allocation can be

achieved by a social planner solving the following problem

max
{{{cj,t(ωt)}ωt}t}j

∑
i

λj
∑
t

βtj
∑
ωt

pt(ωt)uj,t(cj,t(ωt))

subject to ∑
j

cj,0 = C0

and ∑
j

cj,t(ωt) = Ct(ωt) for every t and ωt

where in order to avoid the trivial (and unrealistic) case of Pareto Optima where only some investor

get something I require the Pareto weights to be strictly positive. It is then easy to show that

the F.O.C of this problem are the same of these of last problem provided we set the Lagrange

multipliers of this problem, γt(ωt), equal to the state prices, i.e. γt(ωt) = φ0(ωt) > 0 and we set
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the Pareto weights such that λj = 1
δj

where δj was the j-th Lagrange multiplier in the previous

problem. Thus the competitive equilibrium allocations {{c1,t}t, ..., {cJ,t}t} are Pareto optimal.

The last step of the proof concern the construction of the single agent economy which, given the

stream of endowments
∑

t

∑
ωt
ej,t(ωt) for each agent j, is sustained by the same set {{φ0(ωt)}ωt}t

of state prices that sustains the competitive equilibrium in the multi-agent economies that we have

de�ned in this proof. De�ne

βt =
∑
j

λj∑
j λj

βtj

u0(W0) = max
{wj,0}j

∑
j

λjuj,0(wj,0)

subject to ∑
j

wj,0 = W0

ut(Wt(ωt)) = max
{wj,t(ωt)}j

1

βt

∑
j

λjβ
t
juj,t(wj,t(ωt))pt(ωt)

subject to ∑
j

wj,t(ωt) = Wt(ωt)

note then from the feasibility constraints it follows that

u′0(C0) = J

and

u′t(Ct(ωt)) = J
φ0(ωt)

βt

now consider an agent whose utility function and endowments are
∑

t β
t
∑

ωt
pt(ωt)ut(Ct(ωt)) and

{{Ct(ωt)}ωt}t respectively where Ct(ωt) =
∑

j ej,t(ωt) for every t and ωt so that the market clears.

Then the state prices must be set so that the agent optimal consumption is to hold the aggregate

endowments. Therefore, using the time 0 consumption good as the numeraire, the ratio of state

prices φ0(ωt+1)
φ0(ωt)

must be equal to the single agent's marginal rate of substitution between time t in
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state ωt and time t+ 1 in state ωt+1, a necessary condition which is indeed satis�ed

Mt+1(ωt+1) ≡ β
u′t+1(Ct+1(ωt+1))

u′t(Ct(ωt))

pt+1(ωt+1)

pt(ωt)
=
φ0(ωt+1)

φ0(ωt)

It is straightforward to show that the set {{φ0(ωt)}ωt}t of state prices are indeeed equilibrium

prices in the economy of the single agent. As a matter of fact the agent solves

max
{{Ct(ωt)}ωt}t

∑
t

βt
∑
ωt

pt(ωt)ut(Ct(ωt))

subject to ∑
t

∑
ωt

φ0(ωt)Cj,t(ωt) =
∑
t

∑
ωt

φ0(ωt)(
∑
j

ej,t(ωt))

from the F.O.C

φ0(ωt+1) = βt+1u
′
t+1(Ct+1(ωt+1))

u′0(C0)
pt+1(ωt+1)

thus

φ0(ωt+1)

φ0(ωt)
= β

u′t+1(Ct+1(ωt+1))

u′t(Ct(ωt))

pt+1(ωt+1)

pt(ωt)
≡Mt+1(ωt+1)

As a last important remark notice that the single agent utility is a function of the Pareto optimal

weights {λj}j and that for each j λj = 1
γj
and γj is the Lagrange multiplier for (

∑
t

∑
ωt

(φ0(ωt)(ej,t((ωt))−

cj,t((ωt))))) so that by changing the (exogenous) endowment distribution {{ej,t((ωt))}ωt}t or, in

general, the aggregate endowment distribution {{
∑

j ej,t((ωt))}ωt}t the equilibrium point changes

and also potentially the agent that at the new equilibrium point holds the market. Because in

general endowments as well as the ex-dividend asset prices St are functions of a set of state vari-

ables {Z1
t , ..., Z

s
t } by changing the state variables both prices and endowments changes leading to

a potential change in the single agent who holds the market.
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7.3 The Ludvigson et al. 2016 �nancial uncertainty index F as disagree-

ment

In this subsection I show how the �nancial uncertainty index F , designed to capture �the condi-

tional volatility of a disturbance that is unforeseeable from the perspective of economic agents�,34

can be viewed as a proxy for disagreement. Since, unlike the classical disagreement proxies avail-

able in the literature, the monthly data for F dates back to the sixties, it is particularly convenient

for my study which uses an overall sample starting in February 1973.

The reason why we can think of F as a proxy for disagreement is due to the fact that its time-series

can be almost replicated by a nonlinear regression which is only a function of the classical dis-

agreement proxies available in the literature and the Rapach et al. (2016) short interest index SII

(also being a proxy for disagreement). In particular, on top of SII I use the standard deviation of

the I/B/E/S time-series of 1-year SP500 top.down earning-per-share analysts' forecasts (avail-

able from January 1992), EPSTD,the Yu (2011) bottom-up disagreement measure computed by

aggregating disagreements regarding the individual assets in the SP500 portfolio (available from

January 1982 to December 2011), EPSBU , and the Carlin et al. (2014) disagreement measure

calculated as the level of disagreement among Wall Street mortgage dealers about prepayment

speeds (available from January 1993 to December 2012), CLM .

The following graph shows the time-series of F and F̂t, the estimate of F from the model

Ft = β0 + f(EPSTD, EPSBU , CLM,SII) + ut

where f(·) is a full second order polynomial in its arguments.

34See Ludvigson et al. 2016
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The adjusted R2 of the regression is 0.8028 while the correlation between the two time-series is

0.9038.

7.4 The fundamental di�erence between F and ILLIQ

This subsection is basically an extension of the previous one: in order to show the di�erence

in nature of the two indexes despite a correlation of 0.3743, I repeat the analysis conducted on F

to ILLIQ. The model is

ILLIQt = β0 + f(EPSTD, EPSBU , CLM,SII) + ut

where f(·) is a full second order polynomial in its arguments. This time, very di�erently from the

case of F I �nd a regression adjusted R2 of approximately 2%. I conclude that ILLIQ, unlike F ,

cannot be replicated by disagreement proxies, thus containing fundamentally di�erent information.

7.5 Forecasting the Unemployment and the Spread between BAA cor-

porate yields and the federal funds rate

In this subsection I show how I speci�ed, following the Box-Jenkins (1970) procedure, the fore-

casting models for the Unemployment rate, UR, and the spread between the BAA rated corporate
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bonds and the federal funds rate, SP , yielding the time-series for the conditional expectations

Et[URt+1] and Et[SPt+1] respectively.

For both time-series I used the autocorrelation and partial autocorrelation functions and plotted

the �rst di�erences in order to generate a set of candidate parameters for the ARIMA class of

time-series model to be used, then I exploited the AIC and BIC criteria to select the optimal set of

parameters and �nally performed an Augmented Dickey-Fuller test to check for stationarity. The

time-series of conditional expectations, Et[yt+1] with y ∈ {UR, SP}, are computed as iterative

out-of-sample one-step ahead forecasts using the best speci�ed stationary ARMIA model. If the

model is correctly speci�ed, the innovations εt+1 = yt+1−Et[yt+1] should be independent over time

and have zero mean.35

The results are displayed in the graphs below

as shown in the upper autocorrelation plot for εUR, the best selected ARIMA model, calibrated

in the sample Jan : 1948 −Dec : 1989, features a �rst di�erence in UR to which an AR process

of order 3 has been applied and generates out-of-sample innovations with no systematic (linear)

dependence and a mean not statistically signi�cant from zero. The bottom graph reports the

analogous analysis for the case of SP ; results are similar to those of UR except that the best

35Which is not guaranteed by construction since the forecast are out of sample.
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selected model, calibrated in the sample July : 1954 − Dec : 1989, is an ARIMA(4,1,0), i.e. the

�rst di�erence of SP is modeled through an AR process of order 4.
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9 Tables

Table 1: Statistics on Main Variables

Variable Mean Std.Dev. Min Max N. Obs.

Rt+1 − 1 0.0093 0.0457 -0.2162 0.1705 494

Rt,f − 1 0.0042 0.0029 0.000 0.0138 494

LBt 0.0033 0.0032 0.000 0.0347 291

The table summarizes the main variables: Rt+1− 1 is the total linear return on the SP500, Rt,f − 1 is the 1-month

yield to maturity on U.S. Treasuries and LBt is the market premium lower bound measure computed through (3).

Observations are at the monthly frequency (not annualized). The lower bound statistics are computed in the main

sample Jan : 1990 − Dec : 2014 while the market and the risk-free returns' ones are computed over the entire

sample Feb : 1973−Dec : 2014.
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Table 2: Statistics on the selected drivers D

Variable Mean Std.Dev. Min Max N. Obs.

F 0.9187 0.1755 0.6336 1.5464 494

SII 0.0114 0.9990 -2.1931 2.9358 494

TAX 0.1211 0.2999 -0.4984 0.9998 494

ILLIQ 0.0300 0.0647 -0.2010 0.4610 494

MDI -0.0271 0.1611 -0.6519 1.4715 494

BM 0.4948 0.2935 0.1205 1.2065 494

USDg 0.0022 0.0130 -0.0409 0.0663 494

The table summarizes the selected drivers D over the entire sample Feb : 1973 −Dec : 2014. F is the Ludvigson

et al. (2016) �nancial uncertainty measure: computed as the cross-sectional average conditional volatility of the

1-month Root Mean Squared Error in predictive regressions over approximately 150 monthly �nancial time series.

SII is the Rapach et al. (2016) short interest index: computed as the log of the equal-weighted mean of short

interest (as a percentage of share outstanding) across all publicly listed stocks on U.S. exchanges. TAX is the

annual time series of the rate of change on total taxes paid on capital gains as reported by the U.S. Department of

the Treasury. ILLIQ is the negative of the Pastor-Stambaugh (2003) liquidity index: computed as the (negative

of the) aggregate average daily response over a month of signed volume to next day return for all individual stocks

on the New York Stock Exchange and the American Stock Exchange. MDI is the Pasquariello (2014) Market

Dislocation Index: computed as a monthly average of hundreds of individual abnormal absolute violations of three

textbook arbitrage parities in stocks, foreign exchange and money markets. BM is the book-to-market value ratio

for the Dow Jones Industrial Average. USDg is the U.S. Dollar appreciation index: computed as the linear return

on the Trade Weighted U.S. Dollar Index available from the Saint Louis Federal Reserve; the index is a weighted

(over the volume of bilateral transactions) average of the foreign exchange value of the U.S. dollar against the

currencies of a broad group of major U.S. trading partners.
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Table 3: Pearson correlation matrix for the drivers D

Variable F SII TAX ILLIQ MDI BM USDg

F 1

SII 0.0703 1

TAX -0.2139 -0.0594 1

ILLIQ 0.3743 0.1240 -0.0422 1

MDI 0.3187 -0.0200 -0.0549 0.1442 1

BM 0.0982 -0.2427 0.0141 0.1213 -0.0128 1

USDg 0.0005 -0.1036 0.0191 -0.0139 0.0772 0.1055 1

The table displays Pearson correlation coe�cients for the selected drivers D, described in the notes to Table 2, over

the entire sample Feb : 1973−Dec : 2014.

Table 4: Statistics on y and its components

Statistic y π Rmkt Rf LB

Mean 0.0028

Mean 0.0061∗∗ 0.0033∗∗∗

Mean 0.0086∗∗∗ 0.0025∗∗∗

The table summarizes the statistics of yt+1 ≡ πt+1−LBt and its components (πt+1 ≡ Rmktt+1 −Rt,f being the excess

market return and LBt the lower bound measure for the risk premium Et[πt+1] computed through (3)) over the

main sample Jan : 1990−Dec : 2014. One star symbols the statistic is signi�cantly di�erent from zero at the 10%

level, two stars at the 5% and three stars at the 1%.
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Table 5: Joint model-free test for the RAEMs: statistics on y|Iv and its components

Statistic y|Iv π|Iv Rmkt|Iv Rf |Iv LB|Iv

Cond.Mean -0.0165∗∗

Cond.Mean -0.010 0.006∗∗∗

Cond.Mean -0.004 0.006∗∗∗

The table summarizes the statistics of yt+1 ≡ πt+1−LBt and its components (πt+1 ≡ Rmktt+1 −Rt,f being the excess

market return and LBt the lower bound measure for the risk premium Et[πt+1] computed through (3)) conditional

on the nonnegative function Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5%

level (as shown in the �rst entry of the second column) over the main sample Jan : 1990 −Dec : 2014. One star

symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the

1%.
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Table 6: Explaining the RAEMs rejections

Variable β
Partial

R2
Adj. R2

Adj. R2

(F, SII, ILLIQ)

F 1.1557∗∗∗ 0.1224 0.5039 0.4537

SII 0.1295∗∗∗ 0.0931 0.5039 0.4537

ILLIQ 1.9897∗∗∗ 0.0829 0.5039 0.4537

BM 0.9655∗∗∗ 0.0298 0.5039

USDg 4.6158∗∗ 0.0158 0.5039

TAX 0.1910∗ 0.0121 0.5039

MDI -0.0921 0.0008 0.5039

The table reports the result (omitting the constant term) from the regression Ivt = β0 + Dtβ + ut ranked by

partial R2 on the β coe�cients over the main sample Jan : 1990−Dec : 2014. Ivt is a non-negative step function

Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5% level, while Dt is the matrix of

selected drivers (For a description of the drivers see notes to Table 2). The last column shows the adjusted R2 of

the regression when Dt only includes the �rst three most important drivers (i.e. F ,SII and ILLIQ). One star

symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the

1%.
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Table 7: RAEMs' rejections in terms of the main drivers' characteristics

Coe�. F SII ILLIQ

α1 1.0646∗∗∗ 0.7926∗∗∗ 0.0765∗∗∗

Sig.atMed. YES YES YES

Sig.at75pc. NO NO YES

α2 0.8469∗∗∗ -0.1419 0.0045

α1 − α2 0.2177∗∗∗ 0.9345∗∗∗ 0.0720∗∗∗

The table shows the result from the regression dt = α1I
v
t + α2(1 − Ivt ) + wt over the main sample Jan : 1990 −

Dec : 2014. dt ∈ {Ft, SIIt, ILLIQt} is one among the main drivers while Ivt is a non-negative step function

Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5% level. Rows three and four

report whether or not the estimate for α1 is statistically grater than the unconditional median and 75-th percentile.

One star symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three

stars at the 1%.
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Table 8: Irrational Expectations Tests

Coe�.
πt+1 −

EGat [πt+1]

πt+1 −

EAAt [πt+1]

πt+1 −

ESht [πt+1]

Inflt+1 −

Et[Inflt+1]

URt+1 −

Et[URt+1]

SPt+1 −

Et[SPt+1]

γ1 0.7489∗∗ 0.2535 -0.0024 0.3806 0.0488∗∗ 0.0910∗

γ2 0.4242∗∗∗ -0.1403 -0.1384 0.1291 -0.0197∗∗∗ -0.0187

γ1 − γ2 1.1732∗∗∗ 0.3938∗∗ 0.1360 0.2515 0.0685∗∗∗ 0.1097∗∗∗

The table shows the result from the regression zt+1 − Et[zt+1] = γ1I
v
t + γ2(1 − Ivt ) over the main sample Jan :

1990 −Dec : 2014. z is the random variable according to which investors form expectations Et[zt+1], while Ivt is

a non-negative step function Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5%

level. In the �rst three column z is the return of the market in excess of the risk-free rate and the expectations

are collected from survey data (Gallup survey, American Association of Individual Investors and Shiller's survey)

validated in Greenwood-Shleifer (2014). z in the fourth column represent in�ation, Infl and the expectations are

the market implied (and priced) ones from the di�erence in the yield of 5-year in�ation indexed treasury bounds

and the yield of 5-year nominal treasury bonds. In the last two columns z de�nes the U.S unemployment rate,

UR, and the spread between the BAA rated corporate bonds and the federal funds rate, SP ; expectations in this

case are computed as forecasts through the speci�cation of an econometric model following the Box-Jenkins (1970)

procedure. One star symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5%

and three stars at the 1%.
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Table 9: Market portfolio demand

Coe�. V olt+1 SIIt+1 NetEquityPurcht+1

δ1 0.3055∗∗∗ 0.7617∗∗∗ 3069∗∗∗

δ2 -0.1054∗ -0.1481 5545

δ1 − δ2 0.4109∗∗∗ 0.9097∗∗∗ -2476∗∗

The table shows the result from the regression qt+1 = δ1I
v
t + δ2(1 − Ivt ) + ψt+1 over the main sample Jan :

1990 −Dec : 2014. qt+1 is a proxy for the demand for the market portfolio in t + 1 and Ivt is a non-negative step

function Iv ≡ 1[π̂t+1<LBt] isolating the periods in which the RAEMs are rejected at the 5% level. Three proxies for

qt+1, corresponding to the di�erent columns, are used: the de-trended log volume of SPDR SP500 ETF (measured

as the log of the number of shares sold), V ol, the Rapach et al. (2016) short interest index SII and the the net

purchase position (purchases-sales) in U.S. equity from foreign investors, NetEquityPurch. One star symbols the

statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the 1%.

Table 10: The role of dividends

Measure Mean Std. Min. Qtl. 0.25 Qtl. 0.5 Qtl. 0.75 Max.

LBl
M 0.3279 0.3181 0.0702 0.1527 0.2505 0.3943 3.4812

LBl 0.3293 0.3198 0.0706 0.1532 0.2512 0.3956 3.5023

LBcs
M 0.3296 0.3178 0.0687 0.1475 0.2536 0.3925 3.4501

LBcs 0.3311 0.3196 0.0691 0.1481 0.2552 0.3940 3.4710

The table shows the summary statistic of the empirical distribution in the main sample Jan : 1990 −Dec : 2014

of the lower bound measures computed through (3). LBmM , with m ∈ {l, cs}, corresponds to the case the dividend

yield DY is set to 1, which is the Martin (2016) formulation, m ∈ {l, cs} being the measure calculated via the linear

and the cubic-spline approximation. LBm, represents the measure which uses the SP500 dividends from Shiller.
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Table 11: RAEMs' rejections driven by negative market returns

Statistic y|Iv π|Iv Rmkt|Iv R̄f L̄B

Cond.Mean -0.0133∗∗

Cond.Mean -0.010 0.003

Cond.Mean -0.004 0.003

The table summarizes the statistics in the main sample Jan : 1990 − Dec : 2014 concerning the joint model free

test for the RAEMs detailed in De�nition 2 and Table 5. Di�erently from the main test reported in Table 5, this

one �xes the risk-free rate and the lower bound measure to their unconditional mean, R̄f , and L̄B respectively.

One star symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three

stars at the 1%.
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Table 12: Explaining the RAEMs' rejection probabilities

Variable β
Partial

R2
Adj. R2

Adj. R2

(F, SII, ILLIQ)

SII 0.0461∗∗∗ 0.2102 0.8302 0.6876

ILLIQ 0.5315∗∗∗ 0.1052 0.8302 0.6876

F 0.2055∗∗∗ 0.0689 0.8302 0.6876

USDg 1.9219∗∗∗ 0.0489 0.8302

MDI 0.1416∗∗∗ 0.0323 0.8302

BM 0.1694∗∗∗ 0.0163 0.8302

TAX 0.0233 0.0032 0.8302

The table reports the result (omitting the constant term) from the regression Pt(πt+1 < LBt) = β0 + Dtβ + ut

ranked by partial R2 on the β coe�cients over the main sample Jan : 1990 − Dec : 2014. Pt(πt+1 < LBt) is

the conditional probability to reject the RAEMs at time t introduced in section 2.2.2, while Dt is the matrix of

selected drivers (For a description of the drivers see notes to Table 2). The last column shows the adjusted R2 of

the regression when Dt only includes the �rst three most important drivers (i.e. F ,SII and ILLIQ). One star

symbols the statistic is signi�cantly di�erent from zero at the 10% level, two stars at the 5% and three stars at the

1%.
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10 Figures

Figure 1: autocorrelation function of yt+1

The autocorrelation function of yt+1 ≡ πt+1 − LBt (πt+1 ≡ Rmktt+1 − Rt,f being the excess market return and LBt

the lower bound measure for the risk premium Et[πt+1] computed through (3)) together with the 95% con�dence

bands.
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Figure 2: joint model-free test for the RAEMs

The �gure displays in solid blue the time series of yt+1 ≡ πt+1−LBt (πt+1 ≡ Rmktt+1 −Rt,f being the excess market

return and LBt the lower bound measure for the risk premium Et[πt+1] computed through (3)) while in dashed

red the time series highlighting the sub-sample in which the RAEMs are jointly rejected at the 5% level. The pink

shaded areas emphasize the NBER recessions.
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Figure 3: conditional probability to reject the RAEMs

The �gure displays the conditional probability to reject the RAEMs: the upper graph plots the time-series, solid

blue line, against the negative of the U.S. GDP growth, dashed line, and the pink areas represents the NBER

recession over the main sample Jan : 1990 − Dec : 2014. The lower graph illustrates the empirical distribution

against the lognormal benchmark and reports the minimum the 25-th, the 50-th, the 75-th quantiles and the

maximum.
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Figure 4: di�erent motivations behind RAEMs' failures over time

The �gure displays the contribution to the conditional probability to reject the RAEMs of the main drivers: in

the upper graph the joint contribution of the disagreement proxies F, SII is plotted in the form of a dashed

red line, the contribution of the illiquiity index ILLIQ, is represented by a dotted green line, while the overall

conditional probability of rejecting the RAEMs is still a solid blue line as in Figure 3. In the bottom graph the solid

light blue line tracks the di�erence between the disagreement and the illiquidity series; positive values indicate an

higher contribution of disagreement (asymmetric information) while negative values a predominant contribution of

illiquidity (market frictions).
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Figure 5: The lower bound measure: linear versus cubic-spline interpolation

The �gure displays the two di�erent interpolation scheme adopted in the study to compute the lower bound

measure according to equation (3). The upper graph plots the two time-series of lower bounds under the di�erent

interpolations, while the bottom one shows, in percentage, the absolute di�erence in terms of the cubic-spline

approximation.
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