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Abstract

The paper offers a novel view of the consequences for inequality of the joint evolution, endogenous

or exogenous, of social connections and human capital investments. It allows for intergenerational

transfers of both human capital and social networking endowments in dynamic and steady-state

settings of dynastic overlapping-generations models of increasing demographic complexity. Inter-

generational transfer elasticities exhibit rich dependence on social effects. The separable effects

on human capital dispersion of social interactions alone, as distinct from the joint effects with

the intertemporal evolution of skills, are analyzed. The dynamics of demographically increasingly

complex models are shown to be tractable. Their stochastic steady states allows us to study the

cross-section human capital distribution in the presence of shocks to underlying parameters that

may be interpreted as shocks to cognitive and non-cognitive skills.
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ENDOGENOUS SOCIAL NETWORKS AND INEQUALITY IN

AN INTERGENERATIONAL SETTING

1 Introduction

In a world where individuals interact in myriads of ways, one wonders how the benefits of

one’s connections with others compare with those conferred by individual characteristics

when it comes to acquisition of human capital. It is particularly interesting to be able to

distinguish between connections that are the outcome of deliberate decisions by individuals

and connections being given exogenously and beyond individuals’ control. Such a distinction

matters macroeconomically as well, if individuals stand to benefit from social connections in

ways that affect consumption and investment. Individuals may seek to form social links with

others, as an objective in its own right, in order to enrich their social lives and avoid social

isolation. Social links provide conduits through which benefits from interpersonal exchange

can be realized. Social isolation excludes them. The paper explores the consequences of

the joint evolution of social connections and human capital investments. It thus allows one

to study the full extent in which social connections may influence inequality in consump-

tion, human capital investment and welfare across the members of the economy. It embeds

inequality analysis in models of endogenous social networks formation. The novelty of the

model lies in its joint treatment of human capital investment and social network forma-

tion, while distinguishing between the case of impact on human capital from endogenous as

opposed to exogenous social networking.

The last few years have generated new research on social networks at a torrential rate,

including books, most notably Goyal (2009) and Jackson (2008), and hundreds of papers. So-

cial networks research was booming within econophysics for more than twenty years while be-

ing hardly noticed by economists. Nowadays, social network research is increasingly spread-

ing to virtually all economics fields, including notably experimental economics, too. Yet, as

Jackson (2014), p. 14, points out, studying endogenous network formation continues to be an

important priority. The present paper aims at a deeper understanding of the consequences
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of social network formation for inequality. Such an emphasis has an intuitive appeal, that is

whether social networking increases or decrease inequality.

It is straightforward to assess the difficulty of modeling social networking. For a given

number of individuals I, there are 2
I(I−1)

2 different possible networks connecting them. Thus,

to a typical social group of I = 100 there correspond 250×49 ≈ 101500 network configurations,

some of which are not topologically distinct. As Blume, Brock, Durlauf and Jayaraman

(2015) argue, there is no viable general theoretical model of network formation. Therefore,

to be able to conduct specific analyses that link differences in personal characteristics to dif-

ferences in outcomes after individuals have formed social networks, and have been influenced

by those they end up being in social contact with, one needs to be specific. It is for this

reason that we start with a fairly tractable model of social network formation, which is due

to Cabrales, Calvó-Armengol and Zenou (2011), which we extend into a dynamic model.2

The Cabrales, Calvó-Armengol, and Zenou framework originally starts from a familiar

linear-quadratic model of individual decision making, based on connecting with others in a

multi-person group context, with social links seen as outcomes of individual decisions, which

are associated with a noncooperative Nash equilibrium.3 A connection between any two

individuals is associated with a connection weight, whose magnitude depends on inputs of

effort by the two respective individuals, which can be either exogenous or functions of inputs

decided upon by the respective parties. The results are obtained in a framework where links

are symmetric (i.e., the underlying graph is undirected but weighted) and thus the benefits

are mutual. The formation of undirected (symmetric) links, as modelled here, presumes a

certain degree of social coordination. That is, individuals recognize that even though their

decisions are made in a non-cooperative context, they nonetheless result in social group

formation. Asymmetric links, as where my being influenced by others (as by looking up to

others) does not presume that those other individuals I am linked to are in turn influenced

by me, provide avenues of social influence but do not connote social relations as such.

This paper extends the Cabrales et al. model so as to allow for cognitive shocks in a

static context assuming a CES interactions structure. It then extends further by means of

a number of dynamic models of human capital investment and social network formation in
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order to allow for intergenerational transfers of wealth and of social connections. First, we

interpret the dynamic model as one with the representative individual being infinitely lived.

A variation of that model is to take social connections as given exogenously and not subject

to optimization. This variation allows us to highlight the importance of endogenous setting of

social connections for the cross-sectional distribution of human capital and explore conditions

under which the social connections help magnify or reduce the impact of the dispersion in

cognitive skills. When social connections are endogenous multiple equilibria become possible.

At the steady state solutions associated with either high or, alternatively low socialization

efforts, the distribution of human capital mirrors that of the cognitive skills. Next, we

follow a long tradition in economics that links life cycle savings, human capital investment

and intergenerational transfers. Starting from Loury (1981), but also Becker and Tomes

(1979)4, a number of papers have linked intergenerational transfers and the cross-section

distributions of income and of wealth. In a recent paper, Lee and Seshadri (2014) model

human capital accumulation in the presence of intergenerational transfers, while allowing

for multiple stages of investment over the life cycle, such as investment during childhood,

college decision and on-the-job human capital accumulation. Theirs is one of very few papers

that take Heckman’s forceful suggestion [see Cunha and Heckman (2007); Heckman and

Mosso (2014)] seriously, namely to allow for complementarity between early and later child

investments, inter alia, by means of a model of 78-overlapping generations (and thus many

more than the commonly used two overlapping generations) with infinitely lived altruistic

dynasties. Their model shows, using numerical simulation methods, that investment in

children and parents’ human capital have a large impact on the equilibrium intergenerational

elasticities of lifetime earnings, education, poverty and wealth, while remaining consistent

with cross-sectional inequality. They also show that education subsidies and progressive

taxation can significantly reduce the persistence in economic status across generations. But

they do not model social connections.

There is a long-standing empirical literature on different aspects of intergenerational mo-

bility across different countries. Corak (2013) emphasizes an empirical pattern, known as

the “The Great Gatsby Curve:” higher earnings inequality is associated with lower inter-
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generational mobility. Black and Devereux (2011) survey the key developments regarding

the forces driving the correlations between earnings among successive generations. Black,

Devereux and Salvanes (2009) report estimates of the intergenerational transmission of IQ

scores: an increase in father’s IQ at age 18 of 10% is associated with a 3.2% increase in son’s

IQ at the same age. While most empirical research focuses on the persistence of income or

of economic status across two successive generations, recent research has ventured into per-

sistence across up to four successive generations. In particular, Lindahl et al. (2015) obtain

estimates, using Swedish data, of intergenerational transmission of individual measures of

lifetime earnings for three generations and of educational attainment for four generations.

They find that estimates obtained from data on two generations severely underestimate

long-run intergenerational persistence in both labor earnings and educational attainments.

This in turn implies that much lower long-run social mobility in terms of dynastic human

capital, which they attribute to direct influence across generations by more distant family

members than parents. Specifically, the directly estimated coefficients by means of a single

regression of the great-grandparent’s education on that of the grandparent is 0.607, on that

of the parent 0.375 and on that of the child is 0.175. Similarly, the estimated coefficient of

the grandparent’s earnings on that of the parent is 0.356, and on that of the child is 0.184.

These are much larger than those imputed from conventionally estimated correlations of the

respective magnitudes between two successive generations.

Black et al. (2015) seek to separate the impact of genetic from environmental factors as

determinants of the intergenerational transmission of net wealth by means of administrative

data for a large sample of Swedish adoptees merged with similar information for their bi-

ological and adoptive parents. Comparing the relationship between the wealth of adopted

and biological parents and that of the adopted child, they find that, even prior to any in-

heritance, there is a substantial role for environment and a much smaller role for genetics.

In examining the role of bequests, they find that, when they are taken into account, the

role of adoptive parental wealth becomes much stronger. Their findings suggest that wealth

transmission is not primarily because children from wealthier families are inherently more

talented or more able but that, even in relatively egalitarian Sweden, “wealth begets wealth.”
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Specifically, the effect on the child rank in within-cohort wealth distribution of the rank of

biological parent wealth has an estimated coefficient of 0.162 and that of the adoptive parent

wealth of 0.222, while those for inheritance are 0.124 and 0.231, respectively, all very highly

significant statistically. These findings are also corroborated by Englund et al. (2013), who

use administrative data from Sweden that follow a panel of parents matched to their grown

children. They find that childrens initial endowments of net worth and their subsequent net

worth accumulations are positively correlated with parents’ net worth, and that children of

wealthy parents have higher earnings, even conditional on intergenerational correlation in

earnings. They argue that the intergenerational correlation in net worth comes largely from

housing wealth, which they explain in terms of correlations in home ownership among high

net worth parents and their children, as well as a number of other factors.

Clark (2014) has also contributed to revival of interest in the persistence of status over

long periods of time and the reasons for it. Using surnames to track generations, Clark

shows that true rates of social mobility are much slower than conventionally estimated.

Furthermore, they are not any higher now than in the pre-industrial era, and they vary

surprisingly little across societies. Social mobility rates are as slow in egalitarian Sweden

as they are in inegalitarian Chile. Clark’s findings pose awkward questions about whether

social policy can do much to increase the rate of regression to the mean of “elites and

underclasses.” Grönquist et al. (2014) report that the intergenerational correlation between

fathers and sons, obtained from Swedish records of military enlistment for 37 cohorts range

in 0.42–0.48 for cognitive, and around 0.42 for non-cognitive abilities. Their results show

that mother-son correlations in cognitive abilities are somewhat stronger than father-son

correlations, while no such difference is apparent for non-cognitive abilities. Furthermore,

to the intergenerational transmission from fathers to sons of cognitive skills, non-cognitive

skills also contribute in a statistically significant way, but with a numerically much smaller

coefficient, 0.445 vs. 0.069; and correspondingly, of non-cognitive skills, cognitive skills also

contribute in a statistically significant way, but with a numerically much smaller coefficient,

0.043 vs. 0.391. Such effects are strengthened by assortative mating; see Güell et al. (2015).

The present paper relies on these estimates as a source of motivation to study the role
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of both cognitive skills, which are enhanced with education and training, along with non-

cognitive skills, which are more closely related to social networking. Thus, the dynamics of

human capital accumulation may be jointly studied with the evolution of social connections.

It presents a sequence of models, with parents making decisions about how much wealth

to transfers to the children and about social connections along with investment in human

capital. Parents recognize that due to the timing of implementing their social networking

decisions their children stand to benefit from them, as they themselves have benefited from

the decisions of their own parents. By moving to a model with two overlapping generations,

we can determine how the pattern of dynamics reflects the demographic structure of the

economy. Furthermore, as the number of overlapping generations increases, the matrix char-

acterizing the dynamic evolution of the state variable has a multiplicative factorial structure:

each additional overlapping generation included contributes a factor to the product. Finally,

the paper examines a variation of the two overlapping generations model with two subpe-

riods which makes it possible for individuals to invest in augmenting the cognitive skills of

their children. The impact of availability of such investments on the dynamics of evolution

of human capital investments and social connections is considerably more complicated, but

a factorial structure is still evident.

The remainder of this document is organized as follows. Section 2 introduces the basic

model in a static setting. This model allows us to explore the empirical implications of

endogeneity of social connections by allowing for different assumptions about the effects of

interactions. While the value of interactions and their consequences for income inequality

have been explored before, notably by Benabou (1996) and Durlauf (1996; 2006), those ear-

lier analyses do not allow for social network formation. Next we use the model to explore the

case when each individual’s interactions with her social contacts are of the CES-type, as an

example of many alternative specifications. Section 2.2.1 introduces shocks to one of individ-

uals’ behavioral parameters that I interpret as shocks to cognitive skills. Section 3 presents an

infinite-horizon model of an evolving economy consisting of many agents who build connec-

tions among each other. Section 4 assesses some consequences for cross-sectional inequality.

Section 5 extends the model first to an overlapping generations setting with two-overlapping
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generations. Subsection 5.0.2 examines, in particular, the effects of social networking on

intertemporal wealth transfer elasticities, and subsection 5.2 introduces shocks to another

of individuals’ behavioral parameters that I interpret as shocks to non-cognitive skills. The

solution allows us to discuss the properties of models with more than two overlapping genera-

tions. These extensions allow for parents’ circumstances to influences their children’s wealth

endowments via transfers, social networking, as well as possibly persistent cognitive skills.

2 Endogenous Social Structure: The Cabrales, Calvó-

Armengol and Zenou Model

In commonly employed formulations of models of individuals’ actions subject to social inter-

actions and in the definition of the group choice problem each individual is typically assumed

to be affected by group averages of contextual effects and of decisions [Ioannides 2013, Ch.

2]. It is easy to contemplate that individuals may deliberately seek social interactions that

are not necessarily uniform across their social contacts and to examine their determinants.

In the absence of a “viable general theoretical model of network formation” [Blume, Brock,

Durlauf and Jayaraman (2015), p. 474] I adopt the Cabrales, Calvó-Armengol and Zenou

(2011) as a parsimonious starting point. Immediately below, I briefly develop their key re-

sults, with individuals’ engaging in networking efforts (socialization, in their terminology)

that determine the probabilities of contacting others simultaneously while deciding on their

own actions. Further below, I interpret individuals’ actions as human capital investments.

Individual i chooses action ki and socialization effort si, taking as given actions and

socialization efforts by all other individuals, i, j ∈ I, so as to maximize:

Ui,τ(i)(s,k) ≡ bτ(i)ki + a
I∑

j=1,j ̸=i
gij(s)kikj − c

1

2
k2i −

1

2
s2i , (1)

where τ(i) denotes the individual type5 individual i belongs to. I will simplify this no-

tation for clarity, when it is not necessary, by using i instead of τ(i). The terms s =

(s1, . . . , si, . . . , sI) denote the full vector of networking efforts, and k = (k1, . . . , ki, . . . , kI),

those of actions. The weights of social interaction gij, the elements of a social interactions
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matrix G, may be defined in terms of socialization efforts in a number of alternative ways.

In the simplest possible case, let the weights, which are obtained axiomatically by Cabrales

et al., be defined as:

gij(s) =
1∑I
j=1 sj

sisj, if ∀si ̸= 0; gij(s) = 0, otherwise. (2)

The coefficient of the interactive term in definition (1) is a key parameter in the determination

of s, the vector of connection intensities. Individual i chooses (si, ki) so as to maximize (1).

I follow Cabrales et al. (2011) and define, for later use, an auxiliary variable

ã(b) = a

∑
τ∈T b

2
τ∑

τ∈T bτ
, (3)

where T denotes the set of agent types, with generic element τ, as distinct from the set of

individuals, I, I = |I|, and the functions x̄(x), x2(x) are defined as follows:

x̄(x) ≡
∑
τ∈T xτ
|T |

, x2(x) ≡
∑
τ∈T x

2
τ

|T |
. (4)

The normalized sums in this definition reflect relative frequencies of individual types.

The first-order conditions are, with respect to ki, si, as follows:

bτ(i) + a
I∑

j=1,j ̸=i
gij(s)kj − cki = 0; (5)

a
I∑

j=1,j ̸=i
kikj

∂gij(s)

∂si
− si = 0. (6)

With gij(s) given by (2),

∂gij(s)

∂si
=
sj
∑I
h=1,h̸=i sh

(
∑I
j=1 sj)

2
.

Following Ballester et al. (2006) and Cabrales et al. (2011), it is convenient to rewrite the

first-order conditions, respectively, as follows:[
I− a

c
G(s)

]
· ck+ a diag (G(s)) · k = b. (7)

As they note, the matrix [I− a
c
G(s)] is invertible and has a particularly simple form, using

which (7) becomes:

ck+ a[I+ λa/c(s)G(s)] · diag (G(s)) · k = [I+ λa/c(s)G(s)] · b, (8)
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where λa/c ≡ a
c

x̄(s)

x̄(s)−a
c
x2(s)

. Rewriting (6), the first-order conditions for the si’s, yields:

si = aki
s · k
Ix̄(s)

− asiki
s · k

(Ix(s))2
− a

siki
Ix̄(s)

+ a
(siki)

2

Ix(s)2
, (9)

where s · k =
∑I
i=1 sjkj, while abusing notation and identify summing over types with

summing over individuals.

2.0.1 Solving with a Large Number of Agents

As I → ∞, the last three terms on the RHS of (9) vanish. Such simplifications via limiting

results as I → ∞, which Cabrales et al. (2011) make use of repeatedly, recur throughout

the present paper and will not be derived de novo each time they are invoked. Thus, (9)

becomes:

si = aki
s · k
Ix̄(s)

. (10)

Similarly, since gii(s) =
s2i∑I

j=1
sj
, diag (G(s)) vanishes at the limit, as I becomes large. Thus

(8) becomes:

ck = [I+ λa/c(s)G(s)] · b. (11)

From now on, all analytical results reported obtain for the limit of I → ∞. See Appendix,

Section 8.5, for further details.

2.1 The Cabrales, Calvó-Armengol and Zenou Benchmark Case

Having demonstrated in some detail the approach pioneered by Cabrales et al. (2011), I next

summarize their key result by means of the following proposition. For a proof, See Appendix

A, Proofs.

Proposition 1. When the number of agent types I is large:

Part a. The multi-person game admits the solution si = 0, ki =
1
c
bi, which will be referred

to as autarkic, and optimal actions and socialization efforts are given by:

ki = ϑbi, si = ϖϑbi, (12)
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where ϖ,ϑ Satisfy the system of algebraic equations:

ϖ = ãϑ; (13)

ϑ =
1

c−ϖ2
. (14)

Part b. The system of equations (13–14) admits two sets of positive solutions, provided that:

2
(
c

3

) 3
2

≥ ã. (15)

If agents do not value connections, a = 0, they do not exert socialization efforts, and

from (3) and (13), ϖ = 0. The autarkic solution follows: ki,aut =
1
c
bτ(i). If agents do exert

socialization efforts, that is they are connected, ϖ > 0, and ϑ∗ > 1
c
, and the ki’s exceed their

autarkic values. It is for this reason that Cabrales et al. refer to the equilibrium values of ϑ

as the social (synergistic) multiplier. Exerting socialization efforts and acquiring social links

provide incentives that lead to increased human capitals and improved individual welfare.

The feasibility condition for a non-autarkic solution, which Cabrales et al. obtain,6 readily

follows from the closed form solution of the cubic equation. For at least one solution to

exist, from (15), the magnitude of ã, the social interactions coefficient adjusted by the excess

dispersion of the individual cognitive skills, must not exceed a function of the marginal cost

of action coefficient. If the above condition is satisfied with inequality, then two solutions

exist, leading to a high and a low equilibrium, in the terminology of Cabrales et al., both of

which are stable and Pareto-rankable. The socially efficient outcome lies between those two

equilibria. Restrictions on parameter a on account of feasibility recur throughout the paper.

Numerous alternative formulations for the interaction structure are possible. A number

of alternative formulations are examined in an unpublished earlier version of Cabrales et al.

(2011), where the terms gij(s) are specified as gij(s;b). Notably, such an analysis demon-

strates the significance of homogeneity of degree less than or equal to one in connection

weights. If that degree exceeds one, then because of too many synergies, as I grows, the

social structure becomes infeasible.7
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2.1.1 Eliminating Equilibrium Multiplicity

As indicated above, Cabrales et al. prove that both high and low equilibria are stable and

Pareto-rankable. Equilibrium mutliplicity may be attractive in certain settings, because it

is known that outcomes may differ across communities that otherwise exhibit quite similar

fundamentals.8 Yet, it might be awkward in a macro context. One way to remove the

awkwardness is to embed the model in a macro framework. We can introduce an output

sector that produces a good using only labor as a input under constant returns. Individuals

supply their labor in the form of efficiency units, with aggregate supply being given by∑
i bihi, and are remunerated by means of a constant wage rate, ω. At equilibrium, profits

are zero. The fact that the high equilibrium is Pareto superior to the low equilibrium, allows

us to devise a subsidy and tax scheme (ξ(si), S(si)) so as to induce each individual to supply

socialization effort and invest in human capital consistent with the high equilibrium. Let the

wage subsidy be a function of si, ξ(si), so that gross wage income would be (1+ ξ(si))ωbihi.

Optimizing with respect to si leads individual i to exert greater effort and correspondingly

invest more in human capital. An associated lump-sum tax can leave each individual at

a desirable level of net income. The parameters of the subsidy and tax scheme may be

chosen so as the subsidy and tax scheme be revenue neutral, while inducing individuals to

choose human capital and socialization effort associated with the high level equilibrium.

This argument applies equally well to the dynamic settings where equilibrium multiplicity

emerges when social networking is endogenous, which we investigate further below, and will

not be repeated.

2.2 CES Interactions Structure

Social interaction weights may be generalized so as to involve the ki’s and thus express

complementarity effects. Here we explore a CES interactions structure of homogeneity of

degree one, but it is also possible to allow for individual characteristics to influence weights

in a great variety of ways, for homogeneity of degree other than in interactions weights.9

For example, the terms gij(s;b)kikj, express synergy weights between agents i and j. The
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marginal utility of human capital ki depends positively on those of other agents via a convex

structure. We generalize this assumption by means of a CES structure,10 which may be

either convex or concave in the inputs. It is well known that in the limit, such a structure

allows for an individual to benefit from the maximum or the minimum, respectively, among

all other individuals he interacts with [Benabou (1996); Polya et al. (1952), p. 15, Theorem

4].

That is, if the interaction term in (2) may be assumed to be instead of the form:

kisi

∑
j ̸=i

sj∑
i si

k
1− 1

ξ

j


ξ
ξ−1

, (16)

then it admits as a special case the original assumption (2), as well as a number of com-

monly used assumptions as additional special cases. That is, special cases of (16) are no-

table: 1. ξ → ∞ : ki si
sj∑
i
si
kj; 2. ξ → 1 : kisi

∏
j ̸=i k

(sj/
∑

i
si)

j ; 3. 1
ξ
→ ∞ : minj {kj} :

one bad apple spoils the bunch. 4. 1
ξ
→ −∞ : maxj {kj} : the best individual is the role model.

Case 1 coincides with the original specification in Section 1 above. Case 2 is the classic

Cobb-Douglas function as special case of the CES structure; case 3 is the Leontieff case;

case 4 is the extreme case of a convex interaction structure.11 Next I examine first the

deterministic case of special cases 3 and 4 above and then the uncertainty counterparts with

stochastic cognitive shocks. For proofs, see Appendix A, sections 8.2, 8.3, and 8.4.

Proposition 2. For the CES interactions assumption (16), under 1
ξ
→ ∞, which exhibits that

“One Bad Apple Spoils the Bunch, ” we have that

kj = bj
1

c− (abmin)2
, sj = bj

abmin

c− (abmin)2
. (17)

Therefore, human capitals and socialization efforts are still proportional to the respective

cognitive skills, but the social multiplier reflects the impact of the “one bad apple.” It exhibits

extreme aversion to the prospect of benefiting from interaction. For a proof, see Appendix

A, Proofs.

Proposition 3. For the CES interactions assumption (16), under 1
ξ
→ −∞, which exhibits
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that “The Best Individual is the Role Model,” we have that

kj = bj
1

c− (abmax)2
, sj = bj

abmax

c− (abmax)2
. (18)

Human capital investments and socialization efforts are still proportional to the respective

cognitive skill, and the social multiplier is now larger than in the previous example of “one

bad apple spoils the bunch.” Just like Lucas and Moll (2014), the social effect is associated

with learning from the “best individual” contacted as the role model. It exhibits extreme

optimism to the prospect of benefiting from interactions.

If individuals do not know the cognitive skills of others, but do know their own when

they have to make decisions, one could think of the socialization weights as defining a social

portfolio. With this in mind, I develop further the model under the assumption of uncertainty

with respect to individuals’ cognitive skills for the special cases of “one bad apple spoils the

bunch” and of “best individual is the role model” metaphors. The analysis is simplified

under the assumption that cognitive shocks are Fréchet-distributed. One could redefine the

CES interaction structure so as to highlight social connections instead of human capitals,

or even both types of effects. Such extensions, many of which are possible, are not pursued

further here.

2.2.1 Cognitive Shocks

Individual i observes the realization of bi = ψi and then sets (ki, si), which as a consequence

do depend on ψi. Individuals do not observe the realizations of others’ cognitive shocks,

and are thus subject to uncertainty about the impact of cognitive shocks of others on their

decisions. Proposition 4 below extends the case of “The Best Individual is the Role Model”

under the assumption that the cognitive shocks are independent and identically Fréchet-

distributed random variables.12

Proposition 4. If individuals set (ki, si) after they have observed their own cognitive shock,

bi = ψi, and the ψi’s are independent and identically Fréchet-distributed random variables
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with a cumulative distribution function given by exp
[
−
(
ψ−m
σ

)−χ]
, where (m,σ, χ) are pos-

itive parameters, denoting the minimum, scale, and shape parameters, respectively, then

ki = νψi and si = aνψi
[
m+ I

1
I νσΓ

(
1− 1

χ

)]
, where ν is a root of the cubic equation:

ν =
1

c− a2
[
m+ I

1
I σΓ

(
1− 1

χ

)]2
ν2
, (19)

where the scale parameter must satisfy χ > 1, χ > 2, for the mean, the variance to ex-

ist. Depending upon parameter values, this equation may have either one or two feasible

solutions, or none.

Feasibility is conceptual similar to condition (15), with ã now defined as:

ã ≡ a

[
m+ I

1
χσΓ

(
1− 1

χ

)]
. (20)

The optimal values of the ki’s are again proportional to their respective bi = ψi’s and so are

the si’s. The case of “One Bad Apple Spoils the Bunch” may also be handled by similar

techniques that also rely on extreme order statistics but is not pursued further here.13

“The Best Individual is the Role Model” solution is conceptually similar to the benchmark

case above (2.1), with an important difference. That is, whereas ã in the benchmark case

(3) adjusts a on account of the relative dispersion of the bi’s, definition (20) combines the

mean of the cognitive shock as well as its scale parameter, adjusted by a term that accounts

for the thickness of the upper tail. The smaller is the shape parameter χ, the thicker the

upper tail of the distribution of the cognitive shocks, and the smaller is Γ
(
1− 1

χ

)
, the less

the scale parameter σ contributes to ã, and the larger the social multipliers associated with

(19). An increase in m, the mean, alternatively in σ, the scale (dispersion) parameter, or

a larger χ, a thicker upper tail, increases ã, narrows the spread between the two feasible

roots by increasing the smaller and reducing the larger of the two. This in turn decreases

the larger social multiplier and increases the smaller social multiplier. In sum, while the

social multiplier reflects a richer set of parameters than in the benchmark case, the result is

qualitative similar to that case, confirming its robustness.
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3 Dynamics

A conventional dynamic analysis of such a model follows from defining an intertemporal

objective function for agents, and allowing for the first-order conditions to yield equations

exhibiting dynamic adjustment. Let us rewrite the definition of the utility per period14 (1)

as:

Ui,t(st−1; sit;kt−1, kit) ≡ bτ(i)kit + a
I∑

j=1,j ̸=i
gij(st−1)kitkjt−1 − c

1

2
k2it −

1

2
s2it. (21)

According to definition (21), it is networking efforts, that is interaction weights at time

t− 1, st−1, that affect spillovers at time t resulting from actions at time t− 1. Accordingly,

in deciding on her networking efforts and thus interaction weights, agent i anticipates the

impact on her utility in the next period. Specifically, agent i seeks to maximize

∞∑
t=0

ρtUi,τ(i),t(st−1; sit;kt−1, kit),

by choosing sequences of human capital investment and networking efforts {kit}∞0 , {sit}∞0 ,

taking as given all other agents’ contemporaneous decisions {k−it}∞0 , {s−it}∞0 , where ρ, 0 <

ρ < 1, denotes the discount rate. This optimization problem may be easily modified to allow

for depreciation of human capital and of links. The development of the dynamic models that

follow depend critically on timing conventions assumed. After much experimentations, the

assumptions made allow for a tractable development of the dynamics without sacrificing the

potential richness of the interactions between human capital and social networking decisions.

3.1 Joint Evolution of Human Capital and Social Connections

The dynamic analysis is summarized in Proposition 5, which follows next and whose proof

is given in the Appendix, Proofs.

Proposition 5. Agents’ choices of sequences of human capital investment and networking ef-

forts {kit}∞0 , {sit}∞0 , taking as given all other agents’ contemporaneous decisions {k−it}∞0 , {s−it}∞0 ,

0 < ρ < 1, satisfy:
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Part A. the system of difference equations

kt =
1

c
b+

a

c
G(st−1)kt−1; (22)

st = aρ[diag kt+1]
∂G(st)

∂st
kt, (23)

where [diag kt+1] denotes an I×I matrix with the elements of kt+1 along the main diagonal,

gij(st) is as defined by (2), and ∂G(st)
∂st

denotes a matrix with the terms ∂gij(sit)

∂st
as its ith row.

Part B. The steady state values of the system (22–23) (k∗i , s
∗
i ) coincide with those of the

static case (10–11), provided that one adjusts for the fact that to a in (11) there corresponds

aρ in (23).

Part C. The deviations ∆sit = sit − s∗i , ∆kit = kit − k∗i , defined as vectors, ∆kt,∆st satisfy

the linearized dynamical system

∆kt+1 =
[
a

c
G(s∗)− ρãϑ

ã

c
ϖϑ2diag[b]

]
∆kt, (24)

∆st = ρãϑ
[
a

c
G(s∗)− ρãϑ

ã

c
ϖϑ2diag[b]

]
G(s∗)∆kt. (25)

The local dynamic stability of the system depends on the properties of the matrices in the rhs

of (24) and of (96) for both non-zero steady state values of (k∗, s∗), defined by Proposition

1.

Some remarks are in order. The derivation of the first-order conditions for kit’s ignores,

in the sense of Nash equilibrium, the effect that agent i’s setting of kit has on the spillovers

to all agents in period t, taking them as given.

I note that the system is locally stable near both non-zero steady states, as in the case

of Cabrales et al. (2011). This result poses issues of equilibrium selection in the underlying

multi-person game, which are not pursued further in this paper. Further below, I show

that the basic dynamic model here also underlies models which allow for individuals to

make intergenerational transfers to their children. I note that stability of the human capital

process implies that of the networking efforts as well provided that ρ < ϖ−1 < 1.
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3.2 Evolution of Human Capital with Exogenous Social Connec-

tions

An examination of the evolution of human capital, given social connections, offers interesting

contrast for the case of endogenous connections. Assuming that {st}∞t=1 is exogenous and

given, and taking {k−i,t}∞t=1 , as given, individual i chooses {ki,t}∞t=1 , so as to maximize

lifetime utility according to (21). Under the assumptions of Nash equilibrium, human capitals

satisfy the sequence of difference equations (22), now rewritten in matrix form as:

kt =
1

c
bt +

a

c
G−diag(st−1)kt−1. (26)

To see the properties of this process, let us assume that both st and bt are constant, s,b.

Then, (26) admits a steady state, given by:[
I− a

c
G(s)

]
ck+ adiagG(s)k = b. (27)

As we argued above, for a large number of agents, the diagonal elements vanish, and the

second term on the lhs of (26) is approximately equal to zero.

The special properties of G(s) allow deriving conditions under which
[
I− a

c
G(s)

]−1
ex-

ists. Specifically, since G(s) is symmetric and positive, all of its eigenvalues are real. It has a

maximal simple eigenvalue, r, which is positive, and larger from the absolute values of all its

other eigenvalues. Then, by Theorem III, Debreu and Herstein (1953),
[
I− a

c
G(s)

]−1
exists

is positive, if and only if
1

r
>
a

c
. (28)

As Cabrales et al. (2011), show, the maximal eigenvalue is given by x2(s)
x(s)

and corresponds

to s as an eigenvector. Furthermore, by Lemma 3, Cabrales et al. (2011), p. 353,[
I− a

c
G(s)

]−1

= I+
a

c

1

1− a
c
x2(s)
x(s)

G(s).

Thus, condition (28) that the maximal eigenvalue must satisfy suffices for the positivity of

x(s) − a
c
x2(s2), and thus of the second term of the expression for the inverse above. The

steady state value for k∗ becomes:

k∗ =
1

c
b+

a

c

1

1− a
c
x2(s)
x(s)

G(s)
1

c
b. (29)
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For the linear dynamical system (26), the unique steady state is stable, provided its maximal

eigenvalue is less than 1, which is equivalent with condition (28).

Human capitals at the steady state, given by (29), consist of two terms of which the

second only reflects the effects of social interactions. Inspection of the second term in the

rhs of (29) suggests that it consists of a vector whose term i is

a

c

si∑
i si

1

c

1

1− a
c
x2(s)
x(s)

s · b. (30)

It follows from (29) and (30), that human capitals consist of two terms: one is the autarkic

value, 1
c
bi; the second, above, involves a term that is common to all that is weighted by

the an individual’s socialization effort, relative to the sum of all efforts. Clearly, when the

social connections are not optimized, the exogenously social connections do matter. Both the

original dispersion of cognitive skills and of the social connections contribute to the dispersion

of human capital across the population. In contrast, it is optimizing over social connections

that renders human capitals and social connections proportional to the b’s. Finally, without

optimization over social networking, Eq. (23) are not part of the first-order conditions, and

no equilibrium multiplicity arises. Given social connections, human capitals are uniquely

defined on the transition to and at the steady state.

Clearly, when the social connections are not optimized, the exogenously social connec-

tions do matter. Both the original dispersion of cognitive skills and of the social connections

contribute to the dispersion of human capital across the population. Allowing for hetero-

geneity in the parameter a, which we interpret as proxying for social competence (in the

terminology of Clark (2014)) or for non-cognitive skills, or for its stochastic dispersion across

the population, which we explore in section 5.2 further below, adds an additional exogenous

source of dispersion in the evolution of human capitals.

3.2.1 A Stochastic Extension and the Upper Tail of the Distribution of Human

Capitals

By taking the evolution of social connections as exogenous, we explore the evolution of

human capital according to Eq. (26) while allowing for stochastic shocks to cognitive as well
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as non-cognitive skills. We recall the specification of cognitive shocks in section 2.2.1 above

and assume that the (column) vectors Ψt = (ψ1,t, . . . , ψI,t) are defined to represent the full

cognitive effect, where ψi,t =
1
c
bi,t, with Ψt being a random vector that is independently

and identically distributed over time. That is, the sequence of {Ψ0, . . . ,Ψt} is assumed to

be a stationary vector stochastic process. In addition, we assume that social connections

are exogenous but random. That is, the social networking efforts are denoted by Φt =

(ϕ1,t, . . . , ϕI,t) , so that instead of (26) we now have:

k̃t = Ψt + G̃(Φt)k̃t−1, t = 1, . . . , (31)

with a given k̃0. For the purpose of analytical convenience and without loss of generality, we

assume that the social interactions matrix G̃t = G̃(Φt) is defined to include the diagonal

terms too. Proposition 6 establishes a limit result for the upper tail of the distribution of

human capitals. For the details of the proof, see Appendix, Proofs. The result is obtained

by adapting Theorems A and B, Kesten (1973), as discussed in more detail in the Appendix.

Proposition 6. Let the pairs
{
G̃t,Ψt

}
be independently and identically distributed elements

of a stationary stochastic process with positive entries, where G̃t are I × I matrices and Ψt

are I− vectors. Under the additional conditions of Theorems A and B, Kesten (1973; 1974)

and the assumption of the function ||m|| = max|y|=1 |ym|, where y denotes an I row vector,

and m denotes an I × I matrix, as the matrix norm || · || for I × I matrices, and | · | denotes

the Euclidian norm, then:

Part A. The series

K ≡
∞∑
t=1

G̃(Φ1) · · · G̃(Φt−1)Ψt (32)

converges w. p. 1, and the distribution of the solution k̃t of (31) converges to that of K,

independently of k̃0.

Part B. For all elements x on the unit sphere in IRI , under certain conditions, there exists a

positive constant κ1, and

lim
v→∞

vκ1Prob {xK ≥ v} (33)

exists, is finite and for all elements x on the unit sphere of IRI , and for all the elements on

the positive orthant of the unit sphere is strictly positive.
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Proposition 6, Part A merely establishes properties of the limit of the vector of human

capitals. Part B relies on these properties to establish a Pareto (power) law for the upper

tails of the joint distribution of human capitals, characterized by (33). Its significance lies

in that a power law is obtained for a sequence of random vectors, not just a scalar random

variable. Its intuition is straightforward.15 Given a non-trivial initial value for the cognitive

shocks, Ψ(1), and an arbitrary initial value for human capitals, k̃0, the dynamic evolution

of human capital according to (31) keeps positive the realizations of human capital, while

the impact of spillovers is having an overall contracting effect that pushes the realizations

and thus the distributions of human capital, too, towards 0. The distribution is prevented

from collapsing at 0 by the properties of the contemporaneous cognitive shocks, Ψt, and from

drifting to infinity by the contracting effect of the spillovers. The contracting effect results

from the combination of two key requirements: First, a condition, condition (98) in the

Appendix, which requires that there exists a positive constant κ0, for which the expectation

of the minimum row sum of the social interactions matrix raised to the power of κ0, grows

with the number of agents I faster than
√
I, roughly speaking; and second, the geometric

mean of the limit of the sequence of norms of the social interactions matrix is positive but

less than 1.16

Thus, the upper tail of the joint distribution of xK, for all elements on the unit sphere of

IRI , is thickened by the combined effect of the contracting spillovers and tends to a power law,

∝ v−κ1 , with an exponent κ1 which is constant. This result is sufficient for the distribution

of human capital in the entire economy to also have a Pareto upper tail. Let fki denote the

limit distribution of ki, i = 1, . . . , I. Then, the economy-wide distribution of human capitals

is given by
∑
i#{i}fki(k), where #{i} denotes the relative proportion of types i agents.

Following Jones (2014), one may approximate the value of the Pareto exponent κ1 in terms

of the parameters of the distribution of G̃,Ψt.

The scalar counterpart of the conditions of Kesten’s theorems have been extensively

invoked in the economics literature. E.g., see Gabaix (1999), 761–762, whose approach can

be the starting point for linking the magnitude of the Pareto exponent approximating the

upper tail to the parameters of the underlying distribution of interest.
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4 Some Consequences for Inequality

Sticking to an interpretation of actions as human capital investments, the variation across

individual types, as expressed in the bi’s, can then be seen as a primitive determinant of

the distribution of human capital across a population, that is about “what you know.”

Here, we see that optimized individual human capitals are proportional to the individuals’

cognitive skills, with the factors of proportionality being functions of the distribution of

the bi’s across individuals. This can be demonstrated to hold for many different interaction

structures. Consequently, individuals’ utilities do depend on the distribution of the bi’s across

individuals in more complicated ways. In the simplest formulation, they depend on the first

and second moments of the distribution of the bi’s across types only. Individualizing the

interactions structure by including functions of the bi’s lead to more complicated moments

of the bi’s. Fully individualizing the interaction weights, or allowing for homogeneity of

degree less than, or greater than, one do not change the basic conclusion, namely that the

outcomes are proportional to bi’s, albeit with different multipliers.

In view of the optimal solution above for either the static or the steady state one in the

dynamic case, we may compute the corresponding optimum value of the individuals’ utility

functions. By using (13) and (14), the value becomes:

Ui,τ(i)(s
∗,k∗) =

1

2
ϑb2τ(i). (34)

In the case of autarky, Ui,τ(i),aut =
1
2
1
c
b2τ(i). Since from (14), if ϑ exists, which is ensured by

the condition that (13)–(14) have at least one solution, then ϑ > 1
c
.

Thus individuals’ self-organizing into a social network Pareto-dominates autarky, and

the optimum values of the quantity ϑ summarizes the impact of social networking, which

includes the consequences of the human capital decisions that that makes possible, on an

individual’s welfare. This is true for either of the two sets of values of (ϖ,ϑ), the two sets of

roots of (13)–(14), defined by Proposition 1. However, greater dispersion of the bi’s, that is

a larger value of ã, is associated with a smaller spread between the two alternative solutions.

The greater is ã, the greater is the smaller of the two roots, ϑmin, and the smaller the larger

of the two, ϑmax. Holding a constant, this occurs if x
2(b)
x(b)

is greater. The feasibility condition
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(15) provides an upward bound on ã. Greater dispersion of the bi’s, as indicated by a larger

value of ã, narrows the advantages, as expressed by the welfare value of outcomes, associated

with the larger social multiplier, relative to the smaller one. Too much dispersion in cognitive

skills renders socially advantageous networking infeasible.

Therefore, an attractive interpretation of this result is that the equilibrium solution for

ϑ, from Proposition 1, Part A, summarizes individuals’ benefits from self-organization into

social networks. Below, I take up the question about how the option to optimize the social

interactions weights affects outcomes about human capital at the steady state, that is, “how

whom you know” affects intergenerational transfers. In the models examined above, at the

steady state, all outcomes are proportional to the respective b’s, when social connections

are optimized. So, the variation of optimal actions and optimum utility across individuals

separates naturally into the impact of networking opportunities and of cognitive skill, being

proportional, to the bi, respectively b
2
i , with ϑ, the factor of proportionality, reflecting the

effect of the entire distribution of the bi’s via social networking. Thus, in a model where

proxies for cognitive skills are inherited, this feature may be relied on, in a model with a finite

number of overlapping generations, or in infinite-horizon model, to express inheritability. The

question then becomes to what extent “the human wealth you inherit” influences “whom

you know.”

4.1 Unstable Social Structures

When social connections are exogenous, a great number of possibilities arises. The devel-

opment in section 3.2 shows that the stability of the dynamic evolution of human capital

depends on the properties of the social network, relative to the parameters of the utility

function. Thus, when the social network does not satisfy conditions for stability, that is

when
x(s)

x2(s)
<
a

c
, (35)

and depending on initial conditions, one may think of whether it might be possible to have

sets of socially networked individuals whose human capitals converge over time, and while
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for others they diverge. Given any given set of social networking efforts, it is straightforward

to obtain conditions under which such groupings of individuals are feasible. Specifically, it

is straightforward to show that given that there is a grouping of h− 1 individuals for whom

xh−1(s)

x2h−1(s)
<
a

c
, (36)

then the lhs of (36) above increases, that is, xh−1(s)

x2h−1(s)
< xh(s)

x2h(s)
, provided that individual h being

added satisfies: si >
x2h−1(s)
xh−1(s)

. That is, a prospective new member of the group must have

sufficiently high networking effort in order to improve social networking for the entire group

she stands to join. Thus, by successive addition of such individuals the inequality sign in

the infeasibility condition (36) would be reversed and the condition for stability established.

Recall that the spirit of the model is that there exist many different individuals of each type.

Therefore, this ought to be understood as how different types of individuals with given social

networking efforts may self-organize into different social networks.

Applying these models to dynamic settings, where one may compare between given

weights, perhaps representing a given social structure, and optimized weights, one may thus

distinguish between given relationships, like familial ones, versus social networking across

familial relationships.

5 Intergenerational Transfers of Wealth and of Social

Connections

I obtain an analytically rich and tractable model by assuming that individuals have finite

lifetimes and are present in the economy in overlapping generations. Two overlapping genera-

tions model provides the groundwork for introducing more than two overlapping generations.

I note that a minimum of three overlapping generations will be necessary to express Heck-

man’s concern about allowing for at least two periods of investment in a child’s cognitive

and non-cognitive skills. That is, it is critical [see Cunha and Heckman (2007) and Cunha,

Heckman and Schennach (2010)] for the acquisition of cognitive and non-cognitive skills to

interact — there is dynamic complementarity among them — and investments in certain
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ages are more critical then in other ages. Moreover, these come earlier for cognitive capa-

bilities, later for non-cognitive capabilities, and vary depending on the particular biological

capability. Three-overlapping generations is the minimum number that allows for direct

effects between grandparents and grandchildren. Heckman and Mosso (2014) emphasize,

however, there have to be at least four periods in individuals’ lifetimes, with two periods for

a passive child who makes no economic decisions but who benefits from parental investment

in the form of goods, and two periods as a parent. This requires, of course, going beyond the

standard two-overlapping generations models used by many life cycle models. See section

5.3 below for steps in this direction.

The fact that parents are assumed to coexist with their children naturally allows me to

model that children may avail themselves of the social connections of their parents. Such

a natural “transfer in kind” can coexist with a wealth transfer. Both types of transfers are

central features of the models that follow.

5.0.1 A Two-Overlapping Generations Model of Intergenerational Transfers

Let subscripts y, o refer to individuals when they are young, old, respectively, and let time

subscripts refer to when the respective quantity is operative. A member of the generation

born at t receives a transfer ky,i,t from her parent when young; she herself takes advan-

tage at time t of social connections chosen by her parent’s generation: sy,t−1. Her cognitive

skills are given: by,i,t, bo,i,t+1. She chooses human capital investment and networking effort

(ko,i,t+1, sy,i,t); she benefits in period t+1 from ko,i,t+1; she and her entire generation benefit

from sy,t in time t+1. She chooses an endowment to her child in the form of human capital,

ky,i,t+1, and networking effort, so,i,t+1, from which her child benefits in the first period of her

own life at time t+ 1. We assume that the resource cost of investment ko,i,t+1 is incurred in

period t, but the adjustment costs is incurred in t+ 1 (when the benefits are also realized);

consistently, the resource cost of ky,i,t+1 is incurred in period t+1, but the parent anticipates

that the adjustment costs are incurred by the child in t+ 1.

In the remainder of this section we generalize the static model introduced above and
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obtain a system of dynamic equations. It coincides with that system in the special case of

cognitive skills which are equal across young and old and invariant over time: bi = by,i,t =

bo,i,t+1.

It is important to clarify the relevant peer groups underlying this formulation. With two

overlapping generations, we may define the peer groups for young generation t at time t as

the members of generation who were born at t − 1 when they are old at time t. That is,

the members of generation t benefit in period t from the human capitals ko,t and the social

networking of their parents’ generation, so,t. When they are old in period t+ 1 they benefit

by the human capitals and social contacts the members of their own generation themselves

decided on, ky,t, sy,t. In other words, in their first-period decisions about social connections,

individuals are conscious of the fact that they themselves would benefit from their own social

connections when they are old; in their second-period decisions about social connections, they

are conscious of the fact that their children would benefit from their own second-period social

connections when their children are young. Therefore, all second-period decisions are in effect

intergenerational transfers of capital and social connections. In the absence of uncertainty, all

decisions are of course made simultaneously, but being explicit about “timing” of networking

efforts would be crucial with sequential resolution of uncertainty, when such uncertainty is

introduced, as in section 5.1 below.

That is, the decision problem for a member of generation t, born at time t, is to choose

{ko,i,t+1, ky,i,t+1; sy,i,t,, so,i,t+1}, given {ky,i,t,ko,t, so,t}, namely human capital an individual re-

ceives at birth, the vector of human capitals of her parents’ generation, and their socialization

efforts, both in time period t. We obtain first-order conditions for each generation’s decision

variables by first defining the value functions and using the envelope property. The results

are summarized in the proposition that follows; the proof is in the Appendix, Proofs.

Proposition 7.

Part A. The value functions for individual i as of time t and for her child as of time t + 1

are defined respectively as follows, V [t]
i (ky,i,t,ko,t, so,t),V [t+1]

i (ky,i,t+1,ko,t+1, so,t+1), associated

with an individual’s lifetime utility when he is young at t and when he is old at t + 1, we
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have:

V [t](ky,i,t,ko,t, so,t)

= max
{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}

by,i,tky,i,t + a
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

+ ρV [t+1]
i (ky,i,t+1,ko,t+1, so,t+1)

 ;

V [t+1]
i (ky,i,t+1,ko,t+1, so,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

by,i,t+1ky,i,t+1 + a
∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

bo,i,t+2ko,i,t+2 + a
∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2


+ρV [t+2]

i (ky,i,t+2,ko,t+2, so,t+2)
}
.

Part B. The first-order conditions with respect to (ky,i,t+1, ko,i,t+1) in vector form yield:

ky,t+1 =
a2

c2
G(sy,t)G(so,t+1)ky,t +

1

c
by,t+1 +

a

c2
G(so,t+1)bo,t+1 −

1

cρ

[
I+

a

c
G(so,t+1)

]
1. (37)

ko,t+1 =
a2

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

a

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1. (38)

These are all positive provided that bo,t+1 − 1
ρ
1 > 0,by,t+1 − 1

ρ
1 > 0.

The first order conditions with respect to (sy,i,t,, so,i,t+1) are:

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij
∂sy,i,t

(sy,t)ky,j,t; (39)

so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1; (40)

Part C. Sufficient conditions for the invertibility of I − a2

c2
G(so)G(sy) and thus for the ex-

istence of meaningful steady state values of (37–38) is that the product of
(
a
c

)2
and of the

largest eigenvalues of each of the positive matrices G(so),G(sy) be less than 1:

(
a

c

)2

· x
2(so)

x(so)
· x

2(sy)

x(sy)
< 1. (41)
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Part D. The steady state solutions of (37–38) may be written out in closed form because

[
I−

(
a

c

)2

G(sy)G(so)

]−1

= I+

(
a
c

)2
· x2(so)
x(so)

· x2(sy)
x(sy)

1−
(
a
c

)2 x2(so)
x(so)

· x2(sy)
x(sy)

G(sy; so), (42)

where the matrix G(sy; so) is defined via its i, j element as:

G(sy; so)ij =

∑
ℓ sy,ℓso,ℓ

Ix(sy)Ix(so)
sy,iso,j. (43)

The system of linear difference equations (37–38) is uncoupled in (ky,t,ko,t), given (sy,t, so,t, so,t+1).

Their steady state solutions are thus easily characterized, in terms of the inverse of I −
a2

c2
G(so)G(sy). Since the largest eigenvalue of G(so)G(sy) is bounded upwards by the prod-

uct of the largest eigenvalues of G(so) and G(sy) [Debreu and Herrstein (1953); Merikoski

and Kumar (2006), Thm. 7, 154–155], the inverse exists, provided that the product of a2

c2

with the largest eigenvalues of G(so) and of G(sy) is less than 1. The characterization of the

steady state solution in full detail in section 5.0.4 below allows us to examine these sufficient

conditions further.

In the case of three-overlapping generations, that is when children coexist with their par-

ents and their grandparents, we will have an additional set of equations for the respective

magnitudes associated with youth, adulthood and old-age, (ky,i,t, ka,i,t+1, ko,i,t+2; sy,i,t, sa,i,t+1, so,i,t+2).

An individual born at t, will take as given (ky,i,t, sy,i,t) and choose

(ka,i,t+1, ko,i,t+2, ky,i,t+3; sa,i,t+1, so,i,t+2, sy,i,t+3).

Intuitively, one would expect that the additional first-order conditions would introduce addi-

tional multiplicative terms to the matrix defining the dynamical system and additional terms

multiplying the respective cognitive skills vectors. That is, the endowment of cognitive skills

in each period of the life cycle introduce life cycle effects into the model, being weighted by

the respective social interactions matrix, as in 1
c
a
c
G(sy,t)by,t in Eq. (38) above. Given the

pattern of recurrence, we can guess what the counterpart of (38) should look like. Since

the respective endowments are not equal across time, steady state values for human capitals

differ at different stages of the life cycle.
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It is known from research on models with more than two overlapping generations [ see

Azariadis et al. (2004) and references there in ] that more than two overlapping generations

models usher in considerably more complicated properties in general equilibrium contexts.17

It is therefore interesting that complicating the demographic structure of the model leaves

tractable the structure that determines the dynamics of the model. Working through the

derivations formally in order to derive the counterpart of (38) confirms, in fact, this intu-

ition. More complex demographic structures would allow in principle for direct transfers

from grandparents to grandchildren, a factor that Mare (2011) deems important for deeper

understanding of intergenerational inequality.

5.0.2 Social Effects in Intergenerational Wealth Transfer Elasticities

Interpreting human capital ky,i,t as initial wealth for a member of the generation born at t

allows us to compute intergenerational wealth elasticities. This allows for a deeper under-

standing of estimated intergenerational wealth transfer elasticities.

We work from (37) and define the elasticity of ky,i,t+1 with respect to ky,i,t and account

only for direct effects, EL
ky,i,t+1

ky,i,t
= ∂ky,i,t+1

∂ky,i,t

ky,i,t
ky,i,t+1

, that is, effects on i’s decisions as opposed

to the impact of i’s decisions on decisions of other agents, which feed back to agent i’s

decisions. We write it for brevity as EL(k)t+1
t . It is easiest to see the effect under the

assumption that social networking is given. Then, from (37) and (38) we have a direct

effect, ∂ky,t+1

∂ky,i,t
= a2

c2
[G(sy,t)G(so,t+1)]col i . This effect is simply the increase in the transfer to

the child, ky,i,t+1, from an increase in first period wealth received by a member of the tth

generation. This is determined from trading off the resource cost of the transfer, which is

incurred by the parent in period t + 1, with the utility increase the parent enjoys from the

benefit to the child when the transfer is received in period t+1. This is why both adjacency

matrices, G(sy,t) and G(so,t+1), are involved in the expression for ∂ky,i,t+1

∂ky,i,t
.

However, because the transfer to the child, ky,i,t+1, and the parent’s social networking

effort when old, so,i,t+1, are jointly determined, the full benefit to the child also reflects how

the change in the parent’s social networking effort influences the human capital spillovers,
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which are associated with the parents’ human capitals in period t + 1, the second period

of their lives. We see from (38) that ko,i,t+1 is determined, given (ko,i,t, sy,i,t, so,i,t). Thus,

in using the interdependence of (ky,i,t+1, so,i,t+1), as in (40), to express the effect of ky,i,t on

ky,i,t+1 via so,i,t+1, we have:

∂so,i,t+1

∂ky,i,t+1

= ρa
I∑

j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1, (44)

given ko,t+1, so,−i,t+1. Therefore, an effect is generated on ky,i,t+1 due to its dependence on

so,i,t+1, which is obtained by partially differentiating the rhs of (37) with respect to so,i,t+1.

This analysis comes in handy when we examine the impact of differences in the parent’s

or in the child’s own cognitive skills on the transfer to the child. From (37) applied for time

t we have that an individual with higher first-period cognitive skills by,i,t receives a larger

transfers from his parent, ky,i,t
by,i,t

= 1
c
. This in turns induces a change in his own transfer to

his child, along the lines of the effects we just computed. Working in like manner we have

that an increase in the parent’s own second period cognitive skills bo,i,t+1 leads from (37) to

ky,t+1

bo,i,t+1
= a

c2
G(so,t+1)coli, which leads in turn to a change in so,1,t+1, exactly as we analyzed

earlier.

Social effects on the elasticity of intergenerational wealth transfers are generally not

acknowledged by the literature. They are present when social networking is endogenous,

but also when it is exogenous. The properties of the intergenerational wealth elasticity are

summarized by Proposition 8, whose proof is in the Appendix.

Proposition 8. The elasticity of the transfer to the child, ky,i,t+1, with respect to the transfer

the parent herself received from her own parent, ky,i,t, is given by

Part A.

EL(k)t+1
t =

a2

c2
[G(sy,t)G(so,t+1)]ii×

ky,i,t
a2

c2
[G(sy,t)G(so,t+1)]row i ky,t +

1
c
by,i,t+1 +

a
c2
[G(so,t+1)]row i bo,t+1 − 1

cρ

[
1 + a

c
G(so,t+1)row i1

] .
(45)

Part B.

0 < EL(k)t+1
t < 1;

∂

∂ky,i,t
EL(k)t+1

t > 0. (46)

29



Proposition 8 and Eq. (45) allow us to examine the model’s prediction for the relationship

between intergenerational wealth transfer elasticity and inequality. Corak (2013) popular-

ized the so-called “Great Gatsby Curve” for a cross section of countries. The curve shows

that across countries the intergenerational earnings elasticity increases with inequality. In

particular, Corak (2013), Fig. 1, plots the intergenerational elasticity of earnings, against

the Gini coefficient after taxes and transfers, for a number of OECD countries. It shows

that the greater the inequality of earnings the greater the intergenerational elasticity and

therefore the less the mobility in terms of earnings. The fit is not particularly tight, however

popular the curve is, and thus allows for a host of other effects, in principle. Fig. 2 and 3,

ibid., show that in the United States, sons raised by top and bottom decile fathers are more

likely to occupy the same position as their fathers. For sons of top (bottom) earning decile

fathers, the probability that their sons’ income fall in different deciles increases (decreases)

with the income decile.

Intuitively, the larger is EL(k)t+1
t , the greater the inheritability of wealth transfers.

Proposition 8, Part B, gives the exact dependence of EL(k)t+1
t , the elasticity to changes

in the inequality in the components of ky,t. It is straightforward to show that for values of

ky,i,t less (greater) than the mean, EL(k)t+1
t decreases (increases) in the dispersion of ky,i,t

around its mean, while holding the mean constant. Thus, at least when the coefficient of

variation is used as a measure of inequality, the intergenerational wealth transfer elasticity

decreases (increases) with inequality for wealth transfers less (greater) than the mean. Our

prediction above that the elasticity is increasing in the transfer the parent herself receives

is in agreement with the Great Gatsby Curve. The elasticity is decreasing in the child’s

cognitive skill when young and in the cognitive skill when old of the members of the parent’s

generation.

Englund et al. (2013) report empirical results in agreement with Proposition 8, Part B:

estimated intergenerational wealth elasticities range between 0.296 and 0.410, across regres-

sions of log five-year average child’s wealth against the log of five-year average parents’ wealth

for different age groups [ibid., Table A.3], and 0.497 and 0.530, across linear regressions [

ibid., Table 3].
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Proposition 7, Part D, allows us to clarify the social effects on the marginal effect of

increased initial wealth in a given period on that of descendants on initial wealth after more

than one generation. Specifically, by applying (37) iteratively backwards, for τ periods, and

under the assumption that the social network is fixed, we have that the coefficient of ky,t−τ in

the expression for ky,t is given by: ky,t = [(a/c)2G(sy)G(so)]
t−τ

ky,t−τ . In view of Proposition

7, Part D, this becomes:

ky,i,t =

[(
a

c

)2 x2(sy)

x(sy)

x2(so)

x(so)

]τ ∑
ℓ

sy,ℓso,ℓ
∑
j

sy,i
Ix(sy)

so,j
Ix(so)

ky,j,t−τ .

Thus, in view of (41), the effect of ky,i,t−τ on ky,i,t attenuates geometrically; indeed, so do the

effects of the human capitals of agents other than i, ky,j,t−τ , j ̸= i. The attenuation is weaker,

the greater the dispersion of socialization efforts, given that (41) holds. The greater the

relative socialization effort, the coefficients of the ky,j,t−τ in the summation above, the greater

the effect of the respective human capital. Furthermore, socialization efforts themselves have

a direct amplification effect via the term
∑
ℓ sy,ℓso,ℓ. Similar arguments apply for the effects

of cognitive skills, when young and when old.18

5.0.3 Moving across Neighborhoods over the Life Cycle

Suppose that individuals’ life cycle consists of additional periods and that in principle in-

dividuals may move across sites. We may associate each period in an individual’s life cycle

with a different site, each of which is characterized by a different social interactions matrix

Gℓ, ℓ = 1, . . . , L. Each agent’s i contribution to the social interactions matrix of each site

consists of a row and of a column. Row i, gij, j ̸= i, expresses the interactions effects from

other agents; column i, gji, j ̸= i, expresses the interactions effects on all other agents. The

multiplicative structure of (37), where agents moving across sites is reflected on the coeffi-

cient of ky,t, which would now be made up of the product of the respective social interactions

matrices, reflecting the effect of the three overlapping generations. Whereas the description

of an individual’s moving is somewhat unwieldy, the model is still helpful in tracking the

evolution of the vector of human capitals for the entire economy as the social interactions

matrix evolves exogenously. It would be interesting to generalize the model to account for
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deliberate choice of community, a topic that deserves attention in future research.

5.0.4 Steady States

The system of linear difference equations of section 5.0.1 could be examined further, and the

first-order conditions for the social networking efforts studied in greater depth, especially if

we were prepared to specify an exogenous process for the first- and second-period cognitive

skills and while being cognizant of the stability analysis. We may also obtain more precise

results by using both sets of first-order conditions at the steady state. However, a steady

state analysis typically serves as an important benchmark, and we turn to that next.

Let us assume that the by,i,t, bo,i,t are time-invariant, and let us define

b∗y,i ≡ by,i −
1

ρ
, b∗o,i ≡ bo,i −

1

ρ
.

Proposition 9 summarizes the results. The proof is in Appendix, Proofs.

Proposition 9. The steady state solutions for human capitals (ky,i, ko,i) are defined in terms

of the auxiliary variables ψy =
∑
j ̸=i

sy,jky,j∑
i
sy,i
, ψo =

∑
j ̸=i

so,jko,j∑
i
so,i
.

Part A. The steady state solutions for human capitals (ky,i, ko,i) satisfy

ky,i =
b∗y,i

c− ρa2ψ2
o

, ko,i =
b∗o,i

c− ρa2ψ2
y

; (47)

sy,i = ρaψy
b∗o,i

c− ρa2ψ2
y

, so,i = ρaψo
b∗y,i

c− ρa2ψ2
o

, (48)

where auxiliary variables (ψy, ψo) satisfy:

ψy =
1

c− ρa2ψ2
o

b∗
y · b∗

o

Ix(b∗
o)
; (49)

ψo =
1

c− ρa2ψ2
y

b∗
y · b∗

o

Ix(b∗
y)
, (50)

where b∗
y · b∗

o =
∑
b∗y,ib

∗
o,i.

Part B. If the vectors of cognitive skills (by,bo) are not too asymmetric, the system of

algebraic equations (49–50) may admit up to two sets of positive solutions, that define high-

level and a low-level equilibria, from which the steady state values of human capitals and

social networking efforts readily follow from (47–48).
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Thus, human capitals and networking efforts by young and old, (ky,i, ko,i; sy,i, so,i), are

uniquely defined in terms of the auxiliary variables (ψy, ψo) and parameters. They are

associated with high-level and low-level equilibria. Human capitals (ky,i, ko,i) are proportional

to their respective cognitive skills, ky,i to by,i, and ko,i to bo,i), though with different factors of

proportionality. In contrast, networking efforts, (sy,i, so,i), are proportional to the cognitive

skills corresponding to the life cycle period when individuals avail of them. That is, when

individuals are old, and when their children are young, (bo,i, by,i), again with different factors

of proportionality. This simply reflect the timing conventions that have been incorporated

in the model. Naturally, these solutions allow us again to express the optimum value of

lifetime utility at a steady state for each dynasty as quadratic functions of (by,i, bo,i), with

the economy-wide distributions of the (by,i, bo,i)’s represented through the equilibrium values

of (ψy, ψo). Note that in addition to the auxiliary functions x(b∗
y), x(b

∗
o) the cross-product

b∗
y · b∗

o of first- and second-period cognitive skills also enter, indicating dependence on more

complex moments of the distributions of cognitive skills.

Equations (49–50) have at most two solutions in (ψy, ψo), which can be characterized

easily but not solved for explicitly. The steady state values of all endogenous variables then

follow. Note that the life cycle model is crucial for the result: ψy and ψo would be equal to

one another, were it not for the fact that, by,i ̸= bo,i, first-period and second-period cognitive

skills are in general not equal to one another. Similarly, interesting complexity and accordant

richness follow if cognitive skills may be influenced by means of investment, which I explore

in section 5.3 further below.

If we were to assume, as in section 3.2, that the social networking efforts are given

exogenously, in that case those of young and of old agents, with values not necessarily

coinciding with the steady state ones, then a number of additional results are possible.

First, under the assumption that the social networking efforts are constant over time, (sy, so),

the system of equations (37–38) implies that a single equation for aggregate capital kt =

ky,t + ko,t, may be obtained. The dynamics are exactly the same as in each of the two

systems and no further discussion is necessary. Second, we may reformulate the evolution of

human capitals in stochastic terms, as in the analysis of section 3.2.1 but now in terms of
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(ky,t,ko,t). Similar results regarding stochastic limits in the form of a power law are likely to

be obtained.

Such results may be strengthened in the following way. Intuitively, as the number of

overlapping generations increases, the matrix for human capitals in the laws of motion (37),

(38), becomes the product of increasing number of factors. In the limit, as the number of

overlapping generations tends to infinity, the product of stochastic matrices may be handled

by techniques similar to those of section 3.2.1, leading to power laws.

5.1 Stochastic Shocks to Cognitive Skills

We turn next to the evolution of human capitals when the vector of cognitive skills, the

by,t,bo,t’s, is assumed to be stochastic and social connections are given.19 This allows us to

explore in greater depth the consequences of different specifications for the intergenerational

dependence of skills in the presence of social connections. The economy evolves as follows:

individual i after is born time t is endowed with cognitive skills, by,i,t, an exogenous state

variable, and a wealth transfer from her parent ky,i,t, an endogenous state variable whose

evolution is described in detail below. Individual i avails herself of social interactions in

exactly the same way as in the deterministic model above. I simplify the model by assuming

that socialization efforts remain constant over time, so by the old, and sy by the young, but

will briefly explore the consequences of their endogeneity.

I assume that once (by,i,t, ky,i,t) are realized at the beginning of time t, individual i’s

own second-period cognitive skills, denoted by bo,i,t+1 and is to be realized in period t+1, is

distributed conditional on by,i,t according to N(mo,i+
σo
σy
ρo(by,i,t−bm,y,i), σ2

o(1−ρ2o)). I assume

that the cognitive skills of individual i’s child, denoted by by,i,t+1 and is to be realized in

period t+ 1, follows an AR(1) process,

by,i,t+1 = b̄y,i + ρbby,i,t + ϵy,i,t+1, (51)

where b̄y,i is constant, and the stochastic shock ϵy,i,t+1 is IID with distribution N(0, σ2
ϵ ). The

unconditional distribution of by,i,t is N(bm,y,i, σ
2
b ), where σ

2
b = 1

1−ρ2
b
σ2
ϵ . Thus, conditional on

by,i,t, by,i,t+1 is distributed according to N((1− ρb)bm,y,i + ρbby,i,t, σ
2
ϵ ), where bm,y,i =

1
1−ρb

b̄y,i.
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Let bm = (bm,y,bm,o), with (bm,y,i, bm,o,i), as the components of the respective vectors. The

unconditional variance-covariance matrix of by,t is σ
2
b I. In view of the above assumptions, the

conditional expectations E [bo,i,t+1|by,i,t] and E [by,i,t+1|by,i,t] are known once by,i,t is realized in

the beginning of period t and as we see shortly, are sufficient to characterize the individual’s

decision problem.

Proposition 10. Individual i chooses second period human capital and transfer to her child,

(ko,i,t+1, ky,i,t+1), given the realization of by,i,t, and subject to uncertainty with respect to her

own second period skills and her child’s first period skills, (bo,i,t+1, by,i,t+1).

Part A. Defining the individual’s decision problem of Proposition 7 under uncertainty yields

the first-order conditions in vector form, the stochastic counterpart of (37–38):

ky,t+1 =
a2

c2
G(sy)G(so)ky,t +

1

c
E [by,t+1|t] +

a

c2
G(so)E [bo,t+1|t]−

1

cρ

[
I+

a

c
G(so)

]
1, (52)

ko,t+1 =
a2

c2
G(so)G(sy)ky,t +

1

c
E [bo,t+1|t] +

a

c2
G(sy)E [by,t|t]−

1

cρ

[
I+

a

c
G(so)

]
1, (53)

Part B. Given social connections (G(sy),G(so)), the state of the economy is described by

the stochastic system for (ky,t,by,t), where ky,t evolves according to

ky,t+1 =
a2

c2
G(sy)G(so)ky,t +Gadj,k(so)by,t +Ck, (54)

ko,t+1 =
a2

c2
G(sy)G(so)ky,t +Gadj,o(sy)by,t +Co, (55)

where:

Gadj,y(so) =
1

c

[
ρbI+ ρo

σo
σb

a

c
G(so)

]
;

Cy =
1

c

[
(1− ρb)I−

a

c
ρo
σo
σb

G(so)
]
bm,y +

a

c2
G(so)bm,o −

1

cρ

[
I+

a

c
G(so)

]
1; (56)

Gadj,o(sy) =
1

c

[
σo
σy
ρoI+

a

c
G(sy)

]
;

Co =
1

c

[
bm,o −

a

c
ρo
σo
σb

bm,y

]
− 1

cρ

[
I+

a

c
G(so)

]
1; (57)

and by,t is an exogenous vector stochastic process, denoting first-period cognitive skills,

introduced above.
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Part C. Under the additional assumption that the vector of means and the variance-covariance

matrix are time invariant, the stationary steady state is given by:

k∗
y =

1

c

I+
(
a
c

)2
· x2(so)
x(so)

· x2(sy)
x(sy)

1−
(
a
c

)2 x2(so)
x(so)

· x2(sy)
x(sy)

G(sy; so)

 [1
c
bm,y +

a

c2
G(so)bm,o −

1

cρ

[
I+

a

c
G(so)

]
1

]
.

(58)

The deviation ∆ky,t = ky,t−k∗
y has a multivariate normal stationary limit distribution with

mean 0 and variance covariance matrix Σy,∞ that satisfies:

Σy,∞ =
a4

c4
G(sy)G(so)Σ∞G(so)G(sy) +Gadj,y(so)σ

2
b IG

T
adj,y(so). (59)

A necessary and sufficient condition for the existence of a positive definite matrix Σ∞ is that

the matrix a2

c2
G(sy)G(so) be stable, for which by Proposition 7, Part C, a sufficient condition

is that a2

c2
times the product of the largest eigenvalue of G(sy) and of G(so) be less than 1.

For the special case of (2) this condition is (41).

If a2

c2
G(sy)G(so) is stable, then:

Σy,∞ =

[
I−

(
a

c

)4

G(sy)
2G(so)

2

]−1

Gadj,y(so)G
T
adj,y(so)σ

2
b

=

I+
(
a
c

)4
· x2(so)
x(so)

· x2(sy)
x(sy)

1−
(
a
c

)4 [x2(so)
x(so)

· x2(sy)
x(sy)

]2G(sy; so)

Gadj,k(so)G
T
adj,k(so)σ

2
b , (60)

where the matrix G(sy; so) is defined via its (i, j) element in (43).

Part D. Under the above assumptions the vector the stationary steady state for ko,t satisfies

k∗
o =

I+
(
a
c

)2
· x2(so)
x(so)

· x2(sy)
x(sy)

1−
(
a
c

)2 x2(so)
x(so)

· x2(sy)
x(sy)

G(sy; so)

 [k∗
y +

1

c

[
bm,o +

a

c
G(sy)bm,y −

1

ρ

[
I+

a

c
G(so)

]
1

]]
.

(61)

The deviation ∆ko,t = ko,t− k∗
o has a multivariate normal stationary limit distribution with

mean 0 and variance covariance matrix Σo,∞ that is given by an expression as in (60), with

Gadj,o, defined in (57), in the place of Gadj,k. where σ
2
oI denotes the variance covariance

matrix of bo. A necessary and sufficient condition for the existence of a positive definite

matrix Σ∞ is that the matrix a2

c2
G(sy)G(so) be stable, for which by Proposition 7, Part C,
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a sufficient condition is that a2

c2
times the product of the largest eigenvalue of G(sy) and of

G(so) be less than 1. For the special case of (2) this condition is (41). If a2

c2
G(sy)G(so) is

stable, Σo,∞ is given by the counterpart of (60) with σ2
o in the place of σ2

y.

Part E. The cross-sectional distribution of first-period human capitals at the stochastic

steady-state, the ky,i’s, when we do not distinguish individuals’ identities, is given by a

mixture of univariate normals, with weights equal to I−1, the relative proportion of agent

types in the population (assuming for simplicity that |τ(i)| = I−1), with mean and variance

given by:

Meanky =
1

I

∑
i

k∗y,i, Varky =
1

I

∑
i

(k∗y,i)
2 +

1

I
trace (Σy,∞)−

(
1

I

∑
i

k∗y,i

)2

. (62)

The respective cross-sectional distribution of second-period human capitals as well as that

of the joint distribution of the first-period human capital individuals receive and the transfer

they make to their children is obtained in like manner.20

Let us first discuss these results. The conditional expectations on the rhs of Eq. (52)-(53)

are expressed in terms of by,t, and are thus known once the by,i,t’s are realized. This allows us

to solve out for the expectations and rewrite (52) in the form of (54). Furthermore, by using

the envelope theorem in the derivations of Part A, the cognitive skill of an individual’s child,

by,i,t+1, which is realized at the beginning of period t+1, enters via its expectation only, while

the inheritability parameter do enter the derivations. Thus the resulting Eq. (54), which

is stochastic, may be solved in the standard fashion for such stochastic equations, which is

accomplished by Part C above.

The properties of G(sy),G(so) are crucial determinants of the properties of the means,

(k∗
y,k

∗
o) and of the variance-covariance matrices of the limit distribution, Σy,∞,Σo,∞. It

is straightforward to generalize the above results if different individuals’ cognitive skills,

the components of (by,t,bo,t) are not independent and identically distributed draws from

the same distribution. It is interesting that even if the components of (by,bo) are not

independent and identically distributed random variables, the variance covariance matrices

of human capitals display a lot of richness, on account of the social interactions structure,

when it is exogenous. In view of (43), the vectors of cognitive skills are multiplied by sy,iso,j
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in the expressions for steady state human capitals. When the social interactions structure is

endogenous, the fact that human capitals are proportional to their respective cognitive skills

vectors, (b∗
y,b

∗
o), constitutes an important benchmark for the analysis.

Two particularly notable features of Part E, Proposition 10, are: one, even though the

ky,i’s are correlated, the variance of their cross-sectional distribution does not depend on the

pattern of correlations beyond what is reflected on the trace (Σy,∞) . The latter does reflect

full dependence on the social structure. And two, the cross-sectional distribution as a convex

mixture of normal densities might exhibit tails that are thicker and might not be unimodal.

I note that in (62), in addition to the determinants of ky, the other new element is the trace

of G(sy; so), which from (43) involves a new term:

(
∑
ℓ sy,ℓso,ℓ)

2

Ix(sy)Ix(so)
.

Therefore, both then mean and variance increase with heterogeneity in social connection

efforts, as measured by x2(so)
x(so)

· x2(sy)
x(sy)

, other things being equal. But the expression for the

variance includes an additional effect, the correlation of first- and second-period social inter-

actions efforts in the numerator of the above expression. Thus, the greater this correlation,

cet. par., the greater the variance of the cross-sectional distribution at the steady state.

In sum, the different forces determining the dispersion of human capital at the steady

state are summarized neatly in (59) and are of course reflected in the expression for the

variance of the cross-sectional distribution (62). The first factor in the rhs of (59) is only a

function of the properties of the social interactions part of the model. The second factor21

Gadj,k(so)G
T
adj,k(so) reflects the interaction of the correlation coefficient ρo between first-

and second-period own cognitive skills with the second-period social interactions matrix,

and that between first-period cognitive skills and those of the child, ρb, which enters directly

and independently of social interactions. The third is the variance of the shock σ2
b in the

AR(1) structure expressing intertemporal evolution of individual cognitive shocks. To the

best of my knowledge this decomposition is a new finding.
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5.2 Stochastic Shocks to Non-Cognitive Skills

James Heckman and his collaborators have argued that economists can help decisively in

establishing quantitatively the role of non-cognitive skills on par with cognitive skills in hu-

man development. See Heckman (2008). Economists often concentrate on the so-called “Big

Five”, abbreviated as OCEAN.22 It is understood that these factors represent personality

traits at the broadest level of abstraction, and summarize a large number of distinct, more

specific personality traits, all of which are subject to intensive research by psychologists and

now by economists. as well.23 In an admittedly cavalier manner, I adopt ( for the purpose

of exposition) the convention that the social interactions coefficient a which expresses the

value an individual attaches to social interactions measures non-cognitive skills, in the sense

of an individual’s ability to benefit from social interactions reflects personality traits.

I redefine the individual’s decision problem to individualize a as (ay,i,t, ao,i,t+1) and assume

them to be random variables. We redefine the value functions of Proposition 7, Part A, when

choosing (ko,i,t+1, ky,i,t+1), and consequently the individual treats as uncertain the value that

she would derive from ko,i,t+1 in her second period of her own life and the value accruing to

her child from the transfer ky,i,t+1. The former depends on the human capitals of others,

ky,j,t, j ̸= i, which are known when she makes the decision at time t, but the effect depends

on the realization of ay,i,t+1. The latter depends on the cognitive skills of the child at time

t+1 and the realization of the social interactions effect ao,i,t+2 at time t+2. The results are

summarized by Proposition 11; the proof is immediate.

Proposition 11. Under the assumption that the social interactions coefficients in the problem

defined by Proposition 7, Part A, is a random variable, the definitions of the value functions,

as in Propositions 7 and 10, for individual i as of time t and for her child as of time t + 1,

V [t]
i (ky,i,t, so,t; ai,t), V [t+1]

i (ky,i,t+1, so,t+1; ai,t+1), that are associated with an individual’s life-

time utility when he is young at t and when he is old at t+ 1, are modified accordingly and

given in the Appendix.

Under the assumption that that the networking efforts are constant, sy,t = sy, so,t = so,
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the first-order conditions for human capitals (ky,i,t+1, ko,i,t+1) in vector form are:

ky,t+1 =
Āy,t+1Āo,t+1

c2
G(sy,t)G(so,t+1)ky,t+

1

c
by,t+1+

Āy,t+1

c2
G(so,t+1)bo,t+1−

1

cρ

[
I+

Āy,t+1

c
G(so,t+1)

]
1.

(63)

ko,t+1 =
Āy,t+1Āo,t+1

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

Āy,t

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1,

(64)

where Āy,t+1, Āo,t+1 denote the diagonal matrices composed of the conditional means

E [ay,i,t+1|t], E [ao,i,t+1|t].

Part B. If Āy,, Āo,t are time invariant, sufficient conditions for the existence of meaningful

steady state values of (ky,ko) amount to sufficient conditions for the invertibility of

I− c−2ĀyĀoG(so)G(sy), (65)

namely that the product of the largest ay,iao,i
c2

times the largest eigenvalues of each of the

matrices G, (so)G(sy) be less than 1.

Allowing for a stochastic non-cognitive shock via parameters ai,t’s does not change sub-

stantially the first-order conditions. The linear-quadratic nature of the problem makes for

only the conditional means to enter, and the difference from the deterministic case is note-

worthy only if the random variables ai,t were not IID over individuals and time. E.g., if

ai,t is serially correlated over time, the system of equations (63–64) becomes stochastic.

It is also conceptually straightforward to allow for correlation between cognitive and non-

cognitive shocks, that is between ai,t and first-period cognitive skills, by,i,t, and therefore with

(by,i,t+1, bo,i,t+1), as well. Such a generalization may be accommodated by the tools employed

by Proposition 10. Although the derivations would not be trivial extensions of Proposition

10, they are tractable. The steady state means and variance covariance matrix would reflect

the stochastic dependence parameters between the stochastic processes for by,t, ay,t. The fact

that incorporating stochastic variation in non-cognitive skills (or, social competence) is fairly

tractable is good news from the viewpoint of seeing the impact of all three possible sources of

variation of human capitals across the population. Although solving (63)–64) for the steady

states is no longer so straightforward as before, the three sources of variation are clear. For
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both the ky,i’s and the ko,i’s, the respective period autarkic solution, 1
c
by,i is augmented by

means of a component that reflects social interactions in both periods multiplicatively, ad-

justed by the mean non-cognitive skills, and a component that reflects 1
c
bo,i, adjusted by the

social interactions weights associated with the second period in individuals’ lifetimes and by

the mean non-cognitive skills. Thus, individuals’ non-cognitive skills have spillovers on other

individuals’ behavior. The expressions for the steady-state solutions are little simplified if

we assume that the mean non-cognitive effects and the social interaction weights are time

invariant and equal across first- and second periods of individuals’s lifetimes.

Furthermore, the stochastic structure for the (ay,t, ao,t+1) may be generalized to allow

for persistent heterogeneity and random variation in each period. This would allow one to

compare the empirical performance of such extensions of the model with alternative formu-

lations that allow for amplification of social interactions effects either intergenerationally,

as suggested by the results of Lindahl et al. (2015), or within and across social groups, as

elaborated by Ioannides and Loury (2004) and Calvó-Armengol and Jackson (2004).

5.3 Investment in Cognitive Skills in a Model of Two Overlapping

Generations with Two Subperiods Each

We reformulate the model to allow individuals to use resources to influence the cognitive

skills of their children, while we retain the feature that their social networking decisions

also influence their children’s social networks, via the social structure which influences the

child but results from parents’ decisions. We continue to interpret the latter as influence

via non-cognitive skills. We retain the overlapping generations structure and assume that

youth and adulthood lasts for two subperiods each, early youth and youth, and adulthood

and old age, respectively. Here t indexes subperiods. So, an adult at time t, who was born

at time t− 2 and is in her third subperiod of her life, gives birth to a child. The child lives

for four subperiods, t, t + 1, t + 2, t + 3, during two of which she overlaps with the parent

who is still alive, and then lives on for two more subperiods. She in turn gives birth to her

own children at time t+2, when she herself is an adult. Individuals make decisions affecting
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the household only in adulthood and old age. For a child born at time t, her cognitive skills

when she become an adult at time t+ 2 are determined24 by the given input at birth, by,i,t,

which may be constant, and investments (ιc1,t, ιc2,t+1):

by,i,t+2 = bo,i,t+3 = β0by,i,t + β1ιc1,t + β2ιc2,t+1, (66)

where β0, β1, β2 are positive parameters, and (ιc1,t, ιc2,t+1) are resource costs, which are in-

curred, contemporaneously with the respective adjustment costs, in time periods t, and t+1,

the first and second subperiods in a child’s life time, 1
2
γ1ι

2
c1,t,

1
2
γ1ι

2
c2,t+1, respectively. Invest-

ments (ιc1,t, ιc2,t+1) as decision variables are part of the individual’s life cycle optimization.

Proposition 12. For an individual born at t, cognitive skills and human capital in period

t are given, (by,i,t, ky,i,t); she benefits from the networking efforts of the parents’ genera-

tion, so,t−1, who are in the third subperiod of their lives. She chooses at time t her own

second subperiod human capital and the first subperiod transfer to her own child at time

t + 2, respectively {ko,i,t+1, ky,i,t+2}; and the first and second subperiod networking efforts,

{sy,i,t,, so,i,t+1}, respectively. She benefits herself in her own second subperiod and her child

benefits when the child is in her first subperiod of her life and the parent herself in her

third subperiod of her life. The adjustment costs for decisions {sy,i,t,, ko,i,t+1}, are incurred

in period t. The optimization problem treats the cognitive skills, by,i,t+2, of the individual’s

child and the transfer she receives when she becomes an adult, ky,i,t+2, as being determined

simultaneously.

Part A. The first order conditions for (ιc1,t, ιc2,t+1) yield:

by,i,t+2 = bo,i,t+3 = β0by,i,t + ρρβ[ky,i,t+2 + ρko,i,t+3]− ρβ, (67)

where parameter ρβ is defined as ρβ ≡
(
ρβ1
γ1

+ β2
γ2

)
.

Part B. The first-order conditions with respect to (ky,t+2,ko,t+2) yield a first-order linear

difference system in ko,t+2:

ko,t+3 = beff +
a

ρ∗c
G(sy,t+2)

[
I− â

c
G(sy,t+2)

]−1
a

ρ̃ccs
G(so,t+2)ko,t+2, (68)

where ρ∗ ≡ 1− ρ2ρβ
c
, ρ̃ ≡ 1− ρρβ

ccs
, ccs ≡ c− ρρβ, and â ≡ aρ2ρβ

ρ∗ρ̃ccs

(
1− ρ3ρ2β

ρ∗ρ̃cccs

)−1

, and beff are
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constant. The optimal ky,t+2 follows from ko,t+2 according to:

ky,t+2 =

[
I− â

c
G(sy,t+2)

]−1 [
b′
eff +

a

ρ̃ccs
G(so,t+2)ko,t+2

]
, (69)

where b′
eff is a constant.

Part C. The stability of (68) rests on the spectral properties of

a

ρ∗c

a

ρ̃ccs
G(sy,2)G(so,2)

I+ â

c

1

1− â
c

x2(sy,2)

x(sy,2)

G(sy,2)

 , (70)

provided that â
c

x2(sy,2)

x(sy,2)
< 1. A sufficient condition for the stability of (68) is that a

ρ∗c
a
ρ̃ccs

times

the product of the maximal eigenvalue of G(sy,2) and of G(so,2) times 1 plus the maximal

eigenvalue of â
c

1

1− â
c

x2(sy,2)

x(sy,2)

G(sy,2) be less than 1.

It follows that the first-order condition for ky,i,t+2 must reflect the influence that decision

has, as implied by the optimization problem, on by,i,t+2. Since by,i,t+2 = bo,i,t+3 the utility

per period from the last two subperiods of the child’s lifetime contribute to the first-order

conditions.

In a notable difference from the previous model, we now see a key new role for the social

networking that individuals avail of when young. The product G(sy,t+2)G(so,t+2) is adjusted

by
[
I− â

c
G(sy,t+2)

]−1
. Intuitively, this effect acts to reinforce the effects of social networking

when the child is young and in her first subperiod of the child’s life. This readily follows

from (68) and (69) above and may be simplified by using the results of Proposition 7, Part

D. Feedbacks are generated due to the investment in cognitive skills.

It is important to recognize that the derivation of (68), as well as those of (37) and

(38) earlier, do not make use of first-order conditions for the social connections. Therefore,

if we were to expand the number of overlapping generations, then the system of linear

equations in the human capitals is updated iteratively and links the initial and final human

capital vectors by means of the product of the social interactions matrices associated with

each intervening generation. Thus, in an extension of the model where individuals may

move across communities and avail themselves of different social interactions in different

communities, the impact of residential histories is reflected on the product of the respective
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matrices. As indicated earlier in section 5.0.3 above, it would be interesting to address

in future research the equilibrium outcome for an entire economy when individuals make

deliberate decisions about community choice.

6 Conclusions

The dynamic models analyzed by this paper offer a novel view of the joint evolution of hu-

man capital investment and social networking. The dynamic models of the paper share the

important feature namely that individuals’ lifetime human capital accumulation plans are

distinguished from intergenerational transfers, while allowing for an endogenous social struc-

ture. In our basic model with overlapping generations, individuals receive a transfer from

their parents in the first period of their lives and avail themselves of the social connections

that their parents chose for that same period. They in turn choose their own second-period

human capital, own second-period social connections, and transfer to their children. The

dynamical system involving the vectors of life cycle accumulation and transfers, given the

social network, is still linear in those magnitudes and tractable. The endogeneity of the

social structure makes that analysis quite more complicated but considerably richer. Yet,

the tools of the paper do allow us to study the underlying steady states for individuals’ life

cycle accumulation, intergenerational transfers, and social connections for themselves and for

their children in great detail. The elasticity of the intergenerational transfer received by an

individual is increasing in the intergenerational transfer received by the parent, exhibits rich

dependence on social effects, and is positive and less than 1. The dynamics of demographi-

cally increasingly complex models are shown to be tractable. The effects of stochastic shocks

to cognitive as distinct from non-cognitive skills are studied by means of a novel interpreta-

tion of individual preferences with social interactions. The stochastic steady state analysis

allows us to study the cross-section steady-state human capital distribution in the presence of

shocks to cognitive skills. The paper offers a novel view of the consequences for inequality of

the joint evolution, endogenous or exogenous, of social connections and human capital invest-

ments. It allows for intergenerational transfers of both human capital and social networking
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endowments in dynamic and steady-state settings of dynastic overlapping-generations mod-

els of increasing demographic complexity. Intergenerational transfer elasticities exhibit rich

dependence on social effects. The paper highlights the separable effects on human capital

dispersion of social interactions alone, as distinct from the joint effects of the intertemporal

evolution of skills. To the best of my knowledge this decomposition is a new finding. The

dynamics of demographically increasingly complex models are shown to be tractable. Their

stochastic steady states allows us to study the cross-section human capital distribution in the

presence of shocks to underlying parameters that may be interpreted as shocks to cognitive

and non-cognitive skills.

Interestingly, the consequences for inequality of the endogeneity of social connections are

underscored by examining our models when social connections are assumed to be exogenous.

When social connections are an outcome of ad hoc decision making and not optimized, indi-

viduals’ human capital reflect an arbitrarily more general dependence on social connections

across individuals. The dependence does not reduce to aggregate statistics and highlights

both “whom you know” and “what you know” in the determination of individual human

capitals and their steady-state distribution. When individuals optimize over their social

connections, their actions make up for the arbitrariness of outcomes and thus reduce depen-

dence to a smaller set of fundamentals.

There are many aspects of the present paper that deserve further attention in future

research. To name a few, in addition to the need to deal with the equilibrium selection

problem and to develop more general stochastic formulations, one would be to fully explore

the interfaces between network formation and neighborhood choice, where one must also

account for the costs associated with clustering to attractive neighborhoods; another would

be to allow individuals to learn from others’ social competence and to introduce a firmer

link with the job market; yet another would be to examine how the network formation

process might be influenced by public policy. Modeling explicitly the acquisition of cognitive

and non-cognitive skills as a joint process and their importance as components of jobs also

appears to be interesting. Although no general theory of network formation is available,

endogenous networks may be defined for those different classes of problems, all of which
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bear upon the emergence of inequality.
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Term Intergenerational Persistence of Human Capital: An Empirical Analysis of Four

Generations.” Journal of Human Resources. 50(1):1–33

49



Loury, Glenn C. 1981. “Intergenerational Transfers and the Distribution of Earnings.”

Econometrica. 49(4):843–867.

Lucas, Jr. Robert E., and Benjamin Moll. 2014. “Knowledge Growth and the Allocation

of Time.” Journal of Political Economy. 122(1):1–51.

Mare, Robert D. 2011. “A Multigenerational View of Inequality.” Demography. 48:1–23.

Merikoski, Jorma K., and Ravinder Kumar. 2004. “Inequalities for Spreads of Matrix Sums

and Products.” Applied Mathematics E-Notes. 4:150–159.

Samuelson, Paul A. 1958. “An Exact Consumption-Loan Model of Interest With or Without

the Social Contrivance of Money.” Journal of Political Economy. 66(6):467–482.

Stevens, Margaret. 2007. “New Microfoundations for the Aggregate Matching Function.”

International Economic Review. 48(3):847–868.

Notes

1Disclosure. Tufts University is the only source of support for this paper.

2Albornoz, Cabrales, and Hauk (2014) develop a conceptually similar use of the Cabrales et al. model,

but in a static context.

3 This basic model may be augmented to account for a variety of motivations, such as altruism, conformism

and habit formation. See Ioannides (2013), Ch. 2.

4See Goldberger (1989) for a skeptical view of some of Becker and Tomes’ specific predictions. Goldberger

also welcomes broadly behavioral predictions obtained by sociologists but not necessarily emanating from

utility maximization. He hints that sociological predictions that strong intergenerational links for socioeco-

nomic status may be understated by economists’ focus on intergenerational effects on income and its impact

on inequality.

5Cabrales et al. follow standard practice in this literature and define a finite number of types of players

and work with an m−replica game, for which the total number of individuals is a large multiple of the

number of types. In this fashion, as we see further below, it is possible to increase the number of individuals

in order to reduce the influence of any single one of them and be able to characterize outcomes in a large

economy. Ibid., p. 341.
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6In (ϖ,ϑ)− space, the tangent from the origin to the graph of (14) must have slope less than ã−1.

7Formulations of determinants of interactions with rich demographics may be helpful in accommodating

the range of empirical issues broached by Ioannides and Loury (2004).

8See the discussion in Cabrales et al., p. 351. As they argue, this can help to explain why, “in different

locales, children whose parents have similar characteristics (e.g. income, education level) or are similarly

talented as other children (say, measured by I.Q.) end up having very different educational outcomes or

different levels of parental educational efforts.”

9The interaction weights here, in contrast to Cabrales et al.’s axiomatic derivation of weights gij , are

proposed in an ad hoc fashion. Nonetheless, they may also formalized in like manner to Stevens (2007),

exploiting the intuition that they are really elements of a matching function.

10The so-called CES structure is in turn a special case of a mean value with an arbitrary function [Hardy

et al. (1952), p. 65]. That is, let y(k) be a function, which is assumed to be continuous and strictly

monotonic, in which case so is its inverse, y−1(k). The CES structure defined here is simply y−1 (
∑
gy(k)) ,

for y(k) = k1−
1
ξ .

11In fact, a feature such as the last one is relied upon by Lucas and Moll (2014), where individuals divide

their time between producing goods using their existing knowledge and interacting with others in search of

new productivity-enhancing ideas. Such interactions take the form of pairwise meetings, which is simply

an opportunity for each individual to observe the productivity of someone else. If that is higher than his

own, he adopts it in place of the one he came in with. To ensure that the growth generated by the process

is sustained, Lucas and Moll assume that the stock of good ideas to be discovered is inexhaustible. It is

possible to introduce this set of possibilities once we have allowed for shocks that in effect renew the set of

productive ideas.

12The case of cognitive shocks that are independent and conditionally identically Fréchet-distributed ran-

dom variables is discussed in Appendix A, section 8.4.

13 In a nutshell, one may work with the properties of minimum of a set of random variables mini{ψi}i∈I via

−maxi{−ψi}i∈I . Such a treatment may rely on the properties of the reverse-Weibull class of distributions

whose distribution function, given by exp[−(−ψ)χ], for x < 0, and equal to 1, for x ≥ 0, has positive support

only over the negative half axis of the real line. See De Haan and Ferreira (2006).

14See Ioannides and Soetevent (2007) who assume preferences that accommodate more general social effects

than those allowed for here. For example, when a conformist global effect is present, modeled by individuals’

suffering disutility from the gap between own human capital and the lagged average human capital in the

economy, and coexists with local effects, expressed in terms of comparison of an individual’s outcome with

those of his social contacts, the model involves expectations of individuals’ future actions. The resulting

51



system of second-order difference equations with expectations may be characterized. See ibid., Proposition

4. We leave for future research the consequences of such assumptions for endogenous social structures.

15This argument is reminiscent of arguments explaining the emergence of power laws elsewhere in the

economics literature. See for the city size distribution case Ioannides (2013), Ch. 8.

16The convergence in distribution of G̃(Φ1) · · · G̃(Φt), t → ∞, to a non-zero matrix is of independent

interest and may be ensured under appropriate and not very restrictive conditions. See Kesten and Spitzer

(1984).

17In fact, Samuelson (1958) itself is cast in terms of three-overlapping generations. Azariadis, Bullard and

Ohanian (2004) find additional properties in economies with many overlapping generations, in particular

with respect to monotonicity (or non-monotonicity) of the equilibrium price when consumptions in different

periods are weak gross substitutes.

18Of course, the above expression is not the complete solution one obtains by iterating backwards. Terms

associated with cognitive effects also matter.

19The case of non-cognitive skills is examined further below.

20I thank Vassilis Hajivassiliou for his help with the proof of Part E, Proposition 10.

21This expression becomes Gadj,k(so)Σ
2
bG

T
adj,k(so), if the shocks in the AR(1) structure (51) are corre-

lated and have a full variance-covariance matrix Σ2
b .

22These are: Openness (curiosity and receptivity), Conscientiousness (including being well organized and

efficient), Extraversion (including friendliness and whether one is high energy), Agreeableness (including

friendliness and compassion), and N euroticism (which includes self-confidence and sensitivity to stress).

23In a key contribution to the empirical literature on skill formation, Cunha, Heckman and Schennach

(2010) estimate the technology of cognitive and non-cognitive skill formation. They allow for adult outcomes

to develop from a multistage process, where cognitive and non-cognitive skills in each stage are produced

(by means of CES production functions) by cognitive and non-cognitive skills at the preceding stage along

with investment and the cognitive and non-cognitive skills of an individual’s parents.

24The assumption of infinite substitutability of investments in cognitive skills according to (66) is a limit

case of the assumption of finite substitutability by Heckman and Mosso (2014), and is made for analytical

convenience.
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8 Appendix A: Proofs

8.1 Proposition 1. Proof

It readily follows from (10) that the necessary conditions imply that si
ki

is independent of i.

Let the common ratio be
si
ki

= ϖ. (71)

With the notation introduced in (4) above, the auxiliary term λa/c in (11) becomes, using

(10):

λa/c =
a

c

x̄(s)

x̄(s)− a
c
x2(s)

=
a

c−ϖ2
.

In view of these results, (11) is simplified as follows:

cki = bi +
a

c−ϖ2
si

∑I
j=1 bjsj

I s̄
. (72)

Using the previous results with the equation, it follows that ki/bi is constant,

ki
bi

= ϑ. (73)

Thus,

cϑ = 1 + ϑ
a

c−ϖ2

x2(b)

x(b)
,

Recalling the definition of ã in (3) above, (10) becomes:

ϖ = ãϑ. (74)

This allows us to write the above condition as:

ϑ =
1

c−ϖ2
. (75)

The system of equations (74–75) define the solution (ϖ∗, ϑ∗), to the multi-person game.

The solutions for (ki, si) follow:

k∗i = ϑ∗bτ(i), si = ϖ∗ϑ∗bτ(i). (76)

Q.E.D.
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8.2 Proposition 2. Proof

For this case, the first-order conditions are:

bi + asi min
j ̸=i

{kj} − cki = 0; (77)

aki min
j ̸=i

{kj} − si = 0. (78)

This leads a system of two equations, just as before:

ϑ−1 + aϖ min
j ̸=i

{kj} = c; (79)

amin
j ̸=i

{kj} = ϖ. (80)

Disregarding the imprecision that minj ̸=i{kj} = minj∈I{kj} we have that minj∈I{kj} =

ϑminj∈I{bj} = bmin. Thus,

ϖ = abmin, ϑ =
1

c− (abmin)2
,

and solutions (17 follow. Q.E.D.

8.3 Proposition 3. Proof

8.3.1 The Best Individual is the Role Model”

For this case, the first-order conditions are:

bi + asimax
j ̸=i

{kj} − cki = 0; (81)

akimax
j ̸=i

{kj} − si = 0; (82)

By substituting for si from (82) into (81), the resulting equations are defined solely in terms

of k as fixed points of:

ki =
bi
ci

1

c− a2 (maxj ̸=i{kj})2
, i ∈ I.

By working in like manner as above, we have that:

ϖ = abmax, ϑ =
1

c− (abmax)2
,

and kj = bj
1

c−(abmax)2
, sj = bj

abmin

c−(abmax)2
. and solutions (18 follow. Q.E.D.
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8.4 Proposition 4. Proof

For this case, the first-order conditions are:

ψi + asi Eψj|ψi max
j ̸=i

{kj(ψj)} − cki = 0; (83)

aki Eψj|ψi max
j ̸=i

{kj(ψj)} − si = 0; (84)

By substituting for si from (84) into (83), we get:

ki(ψi)

ψi
=

1

c− a2
[
Eψj|ψi maxj ̸=i{kj(ψj)}

]2 . (85)

Under our assumption that the ψi’s are independently distributed, the RHS of (85) does

not depend on ψi and therefore so should the LHS. This suggests that ki(ψi)
ψi

= νi, where νi

is an deterministic endogenous variable, that is independent of ψi and ψj, j ̸= i but does

depend on all parameters of the problem. That is, ki(ψi) = ψiνi, ∀i ∈ I. Condition (85) may

be rewritten as:

νi =
1

c− a2
[
Eψj|ψi maxj ̸=i{νjψj}

]2 , i ∈ {I}. (86)

Let us assume that the random variables ψj are Fréchet-distributed and conditionally in-

dependent, whose cumulative distribution is given by: exp
[
−
(
ψ−mi
σi

)−χ]
, where (mi, σi, χ)

are positive parameters, denoting the minimum, scale, and shape parameters, respectively. It

follows that the cumulative distribution function of ψiνi is given by: exp
[
−
(
κ−miσi
νiσi

)−χ]
. The

corresponding cumulative distribution function of maxj ̸=i{σjνj} is given Πj ̸=i (Prob {ψjνj ≤ κ}) .

The expectation of maxj ̸=i{ψjνj} is obtained by integrating the density corresponding to the

above cumulative distribution function. The expectation is a function of the νj’s, and so

is the RHS of (86). The unknown (ν1, . . . , νi, . . . , νI) follow as solutions to the system of

equations (86). The solutions for the networking efforts, the si’s, follow from (84).

If the ψi’s are identically distributed,mi = m,σi = σ, then the expectation of maxj ̸=i{ψjνj}

is readily obtained from the extreme order statistics theory and defines only one ratio, ν.

The maximum of the realizations of a number of independently and identically Fréchet

distributed random variables is also Fréchet distributed with scale parameter I
1
χσ. Its ex-

pectation is given in closed form by m+ I
1
I νσΓ

(
1− 1

χ

)
, provided that χ > 1. The unknown
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ν satisfies

ν =
1

c− a2
[
m+ I

1
I σΓ

(
1− 1

χ

)]2
ν2
, (87)

which is a cubic equation in ν. Depending upon parameter values, this equation may have

either one or two feasible solutions, or none. Feasibility is conceptual similar to condition

(15), with ã now defined as:

ã ≡ a

[
m+ I

1
χσΓ

(
1− 1

χ

)]
. (88)

Q.E.D.

8.5 Proposition 5. Proof

It is easier to work with the scalar versions of Eq. (22) – (23):

kit =
1

c
bτ(i) +

a

c

I∑
j=1,j ̸=i

gij(st−1)kj,t−1; (89)

sit = aρ
I∑

j=1,j ̸=i
kit+1kjt

∂gij(st)

∂sit
, (90)

The proof of Part A is straightforward. Part B follows readily once we remove the time

subscripts. Regarding Part C we work as follows. By linearizing system (22–23) in the

standard fashion and by denoting by ∆xit = xit−x∗i deviations from steady-state values, we

have:

∆kit =
a

c

I∑
j=1,j ̸=i

gij(s
∗)∆kj,t−1 +

a

c

I∑
j=1,j ̸=i

k∗j

I∑
h=1

∂gij
∂sh

|s∗∆sh,t−1. (91)

∆sit = aρk∗i

I∑
j=1,j ̸=i

k∗j

I∑
h=1

∂2gij
∂si∂sh

|s∗∆sht+aρk∗i
I∑

j=1,j ̸=i

∂gij
∂si

|s∗∆kjt+

aρ I∑
j=1,j ̸=i

k∗j
∂gij
∂si

|s∗
∆kit+1,

(92)

where except for the time-subscripted variables, all others assume their steady-state values.

The asymptotic results invoked earlier allow us to simplify these conditions.First, we note

that:
∂gij
∂sh

= − sisj(∑I
h=1 sh

)2 , h ̸= i, j;
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∂gij
∂si

=
sj
∑
h̸=i sh(∑I

h=1 sh
)2 ;

∂gij
∂sj

=
si
∑
h̸=i sh(∑I

h=1 sh
)2 ;

The terms sj
∑
h̸=i sh tend to Iϖ2ϑ2b̄, and the terms

(∑I
h=1 sh

)2
tend to ϖϑI2(b̄)2. When

applied to the rhs of (91) above, as I → ∞, the last two of the derivatives above tend to

zero and the second term in the rhs of (91) yields, in vector form:

−a
c

1∑I
j=1 s

∗
j

Diag[si
∑
j,j ̸=i

k∗j s
∗
j ]∆st−1.

Similarly, the first and second terms in the rhs of (92) also vanish. System (91–92) may now

be written as follows, where we advance the time subscript for t in the first equation:

∆kt+1 =
a

c
G(s∗)∆kt −

ã

c
ϖϑ2diag[b]∆st−1, (93)

∆st = ρãϑ∆kt+1. (94)

By using (94) in (93) we get:

∆kt+1 =
[
a

c
G(s∗)− ρãϑ

ã

c
ϖϑ2diag[b]

]
∆kt, (95)

By using (95) in (94) we see that the changes in networking efforts, ∆st, are determined by

the contemporaneous values of the changes in human capitals, the ∆kt’s. That is:

∆st = ρãϑ
[
a

c
G(s∗)− ρãϑ

ã

c
ϖϑ2diag[b]

]
G(s∗)∆kt. (96)

The dynamic evolution of the human capitals is determined by (24), and therefore of the

networking efforts as well through (96).

The properties of the matrix a
c
G(s∗) fully determines the dynamics, and its properties

are in turn determined by those of the steady state solutions. We know from Cabrales et

al. (2011) that the largest eigenvalue of G(s∗) is equal to x2(s∗)

x(s∗)
and corresponds to s as an

eigenvector. Therefore, the condition

a

c

x2(s)

x(s)
=

1

c
ϖϑã < 1
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is sufficient for the stability of the solution of (95). In view of Proposition 1, this condition

becomes:

ϖ2 < c,

which is satisfied for both non-zero steady states.

For the stability of (96) it is required that

aã(b)ρϑ

c

x2(s∗)

x(s∗)
=
ρ

c
ϖ3 < 1.

A sufficient condition for this to hold is that ρ < ϖ−1 < 1. Q.E.D.

8.6 Proposition 6. Proof

As indicated in the text, we assume that the social interactions matrix G̃t = G̃(Φt) is defined

to include the diagonal terms too. We assume that the pairs
{
G̃t,Ψt

}
are independently

and identically distributed elements of a stationary stochastic process with positive entries.

Adopting as matrix norm || · || for I × I matrices the function ||m|| = max|y|=1 |ym|, where

y denotes an I row vector, and m denotes an I × I matrix.25 If

E ln+ ||G̃(Φ1)|| < 0,

then

Lim1 = lim
(
ln ||G̃(Φ1) · · · G̃(Φt)||

1
t

)
(97)

exists, is constant and finite w.p. 1. If we assume that the G̃’s are such that Lim1 < 0, then

||G̃(Φ1) · · · G̃(Φt)|| converges to 0 exponentially fast. If |Ψ1|κ < ∞ for some κ > 0, that is

if the starting shock is not too large, with the norm | · | being defined as the Euclidian norm,

then the series of the vectors of human capital

K ≡
∞∑
t=1

G̃(Φ1) · · · G̃(Φt−1)Ψt

converges w. p. 1, and the distribution of the solution k̃t of (31) converges to that of K,

independently of k̃0. This is simply a rigorous way to establish the limit human capital

vector.
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In particular, from (97), if Lim1 < 0, then the norm of the product of t successive social

interactions matrices, raised to the power of t−1, is positive but less than 1. In that case,

Kesten (1973) shows that the distribution ofK can have a thick upper tail. That is, according

to Kesten (1973), Theorem A, if in addition to the above conditions there exists a constant

κ0 > 0, for which

E

 1

I
1
2

min
i

 I∑
j=1

G̃1i,j


κ0

≥ 1, and E
{
||G̃1||κ0 ln+ ||G̃1||

}
<∞, (98)

then there exists a κ1 ∈ (0, κ0] such that

lim
v→∞

Prob
{
max
n≥0

|xG̃1 · · · G̃n| > v
}
∼ X(x)v−κ1 , (99)

where 0 ≤ X(x) < ∞, with X(x) > 0, where the (row) vector x belongs to the positive

orthant of the unit sphere of IRI , exists and is strictly positive. If, in addition, the components

of Ψ1 satisfy:

Prob {Ψ1 = 0} < 1, Prob {Ψ1 ≥ 0} = 1, E|Ψ1|κ1 <∞,

then for all elements x on the unit sphere in IRI , then condition (33) follows. That is, the

upper tail of the distribution of xK,

lim
v→∞

vκ1Prob {xK ≥ v} (100)

exists, is finite and for all elements x on the positive orthant of the unit sphere in IRI is

strictly positive.

The intuition of condition (98) is that if there exists a positive constant κ0, for which the

expectation of the minimum row sum of the social interactions matrix raised to the power

of κ0, grows with the number of agents I faster than
√
I, roughly speaking, but does not

grow too fast so as to blow up, then the contracting effect of the social interactions system

does not send human capitals to zero, when the economy starts from an arbitrary initial

condition, say when when all initial human capitals are uniformly distributed. The intuition

of condition (97) is that the geometric mean of the limit of the sequence of norms of the

social interactions matrix is positive but less than 1. Q.E.D.
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8.7 Proposition 7. Proof

The decision problem for a member of generation t, born at time t, is to choose

{ko,i,t+1, ky,i,t+1; sy,i,t,, so,i,t+1},

given {ky,i,t, so,t}. We express the first-order conditions by first defining the value functions

V [t]
i (ky,i,t, so,t),V [t+1]

i (ky,i,t+1, so,t+1), associated with an individual’s lifetime utility when he

is young at t and when he is old at t+ 1, we have:

V [t](ky,i,t, so,t)

= max
{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}

by,i,tky,i,t + a
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

+ ρV [t+1]
i (ky,i,t+1, so,t+1)

 .
Correspondingly,

V [t+1]
i (ky,i,t+1, so,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

by,i,t+1ky,i,t+1 + a
∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

bo,i,t+2ko,i,t+2 + a
∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2

+ ρV [t+2]
i (ky,i,t+2, so,t+2)

 .
Parts A and B readily follow. The first-order conditions with respect to (ko,i,t+1, sy,i,t,; ky,i,t+1, so,i,t+1)

are, respectively:

ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
; (101)

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij
∂sy,i,t

(sy,t)ky,j,t; (102)

−ρ+ ρ
∂V [t+1]

i

∂ky,i,t+1

(ky,i,t+1, so,t+1) = 0;

−ρso,i,t+1 + ρ
∂V [t+1]

i

∂so,i,t+1

(ky,i,t+1, so,t+1) = 0.

60



Using the envelope property, the partial derivatives of the value function above,

∂V [t+1]
i

∂ky,i,t+1

(ky,i,t+1, so,t+1),
∂V [t+1]

∂so,i,t+1

(ky,i,t+1, so,t+1)

are equal to the partial derivatives of the respective utility per period. That is, using the

envelope property, the last two equations become:

ky,i,t+1 =
1

c
by,i,t+1 +

a

c

∑
j ̸=i

gij(so,t+1)ko,j,t+1 −
1

cρ
; (103)

so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1; (104)

We can summarize the first-order conditions for the k’s in matrix form as follows.

ko,t+1 =
1

c
bo,t+1 +

a

c
G(sy,t)ky,t −

1

cρ
1; (105)

ky,t+1 =
1

c
by,t+1 +

a

c
G(so,t+1)ko,t+1 −

1

cρ
1, (106)

where 1 is a I− vector of 1’s. From these we may obtain two single first-order difference

equations: first in ky,t, by substituting for ko,t+1 from (105) in the rhs of (106), and then in

ky,t, by substituting for ky,t from (106) in the rhs of (105). That is, (37 – 38) in the main

text follow, reproduced here as well for clarity:

ky,t+1 =
a2

c2
G(sy,t)G(so,t+1)ky,t+

1

c
by,t+1+

a

c2
G(so,t+1)bo,t+1−

1

cρ

[
I+

a

c
G(so,t+1)

]
1. (107)

ko,t+1 =
a2

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

a

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1. (108)

Part C. Since the largest eigenvalue of G(so)G(sy) is bounded upwards by the product

of the largest eigenvalues of G(so) and G(sy) [Debreu and Herrstein (1953); Merikoski and

Kumar (2006), Thm. 7, 154–155], the inverse exists, provided that the product of a2

c2
with

the largest eigenvalues of G(so) and of G(sy) is less than 1. A sufficient condition for this is

that the products of a
c
and each of the largest eigenvalues of G(so),G(sy) are less than 1.

Part D. We follow the line of proof in Lemma 3, Cabrales et al. (2011), p. 353, we

explore whether
[
I−

(
a
c

)2
G(sy)G(so)

]−1

may be written in close form. Writing out the

generic element of the matrix product G(sy; so) yields

G(sy; so)i,j =

∑
ℓ sy,ℓso,ℓ
Ix(so)

sy,iso,j
Ix(sy)

.
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For the higher powers ofG(sy)G(so) we use the symmetry of each of the matricesG(sy),G(so)

and the result in ibid. to write for the generic element of G(sy) (and similarly for G(so)) as

follows:

[G(sy)]
2
i,j =

x2(sy)

x(sy)
[G(sy)]i,j.

Thus by trivial induction and provided that condition (41) in the main text holds, the power

expansion for the above matrix converges and is given by (42) in the main text.

Q.E.D.

8.8 Proposition 8. Proof

Part A readily follows from the derivations in the main text and the following derivation,

for the total effect of an increase in first period wealth on the transfer to the child. That is,

from (37) and (40) we have:

d ky,i,t+1

d ky,i,t
=
∂ky,i,t+1

∂ky,i,t

1 + ρa
I∑

j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1
∂so,i,t+1

∂ky,i,t+1

 ,
where the partial derivative of ky,t+1 with respect to so,i,t+1 is given by:

a2

c2
G(sy,t)

∂

∂so,i,t+1

G(so,t+1)ky,t +
∂

∂so,i,t+1

G(so,t+1)

[
a

c2
bo,t+1 −

a

ρc2
1

]
,

with

∂

∂so,i,t+1

G(so,t+1) =


0 0 . . . so,1,t+1∑

j ̸=1
so,1,t+1

. . . 0

so,1,t+1∑
j ̸=i so,j,t+1

so,2,t+1∑
j ̸=i so,j,t+1

. . . 0 . . .
so,I,t+1∑
j ̸=i so,j,t+1

0 0 . . .
so,I,t+1∑
j ̸=I so,j,t+1

. . . 0

 ,

Part B follows by inspection of (45), and provided that the sufficient conditions for the

positivity of (ky,t,ko,t) in Part B, Proposition 7, hold. Q.E.D.

8.9 Proposition 9. Proof

Part A. By applying equations (105), (102), (106), and (104) we have:

cko,i = b∗o,i + asy,i
∑
j ̸=i

sy,jky,j∑
i sy,i

; (109)
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sy,i = ρako,i
I∑

j=1,j ̸=i

sy,jky,j∑
i sy,i

; (110)

cky,i = b∗y,i + aso,i
∑
j ̸=i

so,jko,j∑
i so,i

; (111)

so,i = ρaky,i
I∑

j=1,j ̸=i

so,jko,j∑
i so,i

. (112)

Note that the auxiliary variables, ψy, ψo, defined in the main text do not depend on i. From

(109) and (110), and (112) and (112), we have:

ρko,i(cko,i − b∗o,i) = s2y,i = ρ2a2ψ2
yk

2
o,i;

ρky,i(cky,i − b∗y,i) = s2o,i = ρ2a2ψ2
ok

2
y,i.

We may thus solve for ky,i, ko,i, and then by using the definitions of ψy, ψo, for sy,i, so,i, we

obtain solutions for ky,i, ko,i and sy,i, so,i in terms of (ψy, ψo) as in (47–48 ) in the main text.

Finally, by substituting back into the definitions of ψy, ψo, we obtain obtain third-degree

equations in ψy, ψo, (49–50).

Part B. Equations (49–50) have at most two solutions in (ψy, ψo), provided that

b∗
y · b∗

o

Ix(b∗
y)
<
c

a

(
c

ρ

) 1
2

;
b∗
y · b∗

o

Ix(b∗
o)
<
c

a

(
c

ρ

) 1
2

.

Q.E.D.

8.10 Proposition 10. Proof

Part A. Transforming the individual’s decision problem in the obvious way allows us to derive

first order conditions, the stochastic counterpart of (37)–38). They are as follows:

ky,i,t+1 =
1

c
E [by,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(so)E [ko,j,t+1|i, t]−
1

cρ
; (113)

ko,i,t+1 =
1

c
E [bo,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(sy)E [ky,j,t|i, t]−
1

cρ
. (114)

These conditions may be rewritten readily as in the main text.
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For Part B, from the stochastic assumptions we have that:

E [bo,i,t+1|by,i,t] = mo,i +
σo
σy
ρo(by,i,t − bm,y,i); E [by,i,t+1|by,i,t] = (1− ρb)bm,y,i + ρbby,i,t.

These expressions are used to write (52)–(53) by defining Gadj,y(so),Gadj,o(sy), in the form

of (54)–(55).

Parts C and D readily by Proposition 4.1 of Bertsekas (1995): ∆ky,t = ky,t − k∗
y has a

multivariate normal limit distribution with mean 0 and variance covariance matrix Σ∞ that

satisfies (58) in the main text. The explicit solutions for Σy,∞,Σo,∞ follow by iterating (58),

if the matrix a2

c2
G(sy)G(so) is stable.

For Part E, consider the discrete random variable J taking values in {1, 2, . . . , I − 1, I},

with equal probabilities I−1, and define the random vector D = (d1, d2, . . . , di, . . . , dI), with

di = 1, iff i = J ; di = 0, iff i ̸= J. We assume that the shocks introduced in the main part of

Proposition 10 are statistically independent of the random index J and the corresponding

dummy random vectorD. Finally, consider the univariate random variable Zt that consists of

randomly selecting on element the human capital vector, that is “anonymizing” this vector:

Zt = DT∆ky,t =
∑
i

Di∆ky,i,t.

In this representation, one and only one of the Di binary random variables will take the value

1 and all the others will be 0, so Zt = ∆ky,i,t with equal probability I−1. Since the Di’s are

fully independent of the ∆ky,i,t’s, and each Di takes the value 1 with equal probability I−1,

the expressions in (62) in the main text follow. The full probability density and distribution

functions of Zt follow directly from its definition. It is a mixture of univariate normal

distributions. It is important to note that since only one of the ∆ky,i,t is realized at any

one time, the covariance/correlation structure between the ∆ky,i,t is irrelevant. Only the

individual variances matter. Still, the results reported in (62) reflect the social structure

and, in addition, ensure a much richer outcome, as the cross-sectional distribution might no

longer be unimodal.

Similar derivations readily follow for ko,i,t and the joint distribution of (ky,i,t, ky,i,t+1), the

latter being the stochastic counterpart of Social Effects in Intergenerational Wealth Transfer
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Elasticities, discussed in section 5.0.2 of the main text. This involves deriving an expression

for the covariance of (∆ky,i,t+1,∆ky,i,t) as:

Covar(∆ky,i,t+1,∆ky,i,t) = E [ky,i,t+1ky,i,t]− (k∗y,i)
2,

which involves elementary but tedious derivations. Q.E.D.

8.11 Proposition 11. Value functions

V [t](ky,i,t, so,t; ai,t)

= max
Eai,t+1

{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}
Eai,t+1

by,i,tky,i,t + ai,t
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

+ ρV [t+1]
i (ky,i,t+1, so,t+1; ai,t+1)

 ;

V [t+1]
i (ky,i,t+1, so,t+1; ai,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

Eai,t+2

by,i,t+1ky,i,t+1 + ai,t+1

∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

bo,i,t+2ko,i,t+2 + ai,t+1

∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2

+ ρV [t+2]
i (ky,i,t+2, so,t+2; ai,t+2)

 .

8.12 Proposition 12. Proof

An individual born at t takes cognitive skills and human capital as given, (by,i,t, ky,i,t), and

benefits from the networking efforts of the parents’ generation, so,t−1, who are in the third

subperiod of their lives when she is born. She chooses at time t the second subperiod hu-

man capital and the first subperiod transfer received by the child at time t+ 2, respectively

{ko,i,t+1, ky,i,t+2}; and the first and second subperiod networking efforts, {sy,i,t,, so,i,t+1}, re-

spectively. These benefit herself in the second subperiod of her life, and benefit her child

too, when the child is in her first subperiod of her life and she herself in her third subperiod

of her life. For analytical convenience, I assume that the adjustment costs for decisions
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{sy,i,t,, ko,i,t+1}, are both incurred in period t. The optimization problem implies that the

cognitive skills, by,i,t+2, of the individual’s child and the transfer she receives when she be-

comes an adult, ky,i,t+2, are determined simultaneously. The definition of the value function

for the problem now changes to:

V [t](ky,i,t, so,t−1) = max
{ko,i,t+1,ky,i,t+2;ιc1,t,ιc2,t+1;sy,i,t,,so,i,t+1}

{
ρ2V [t+2](ky,i,t+2, so,t+1)

+by,i,tky,i,t + a
∑
j ̸=i

gij(so,t−1)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1 − ιc1,t −

1

2
γ1ι

2
c1,t+

ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+2 − ιc1,t+1 −

1

2
γ1ι

2
c1,t+1

 .
The first order conditions for ι1,t, ι2,t+1 are:

−1− γ1ιc1,t + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc1,t
+
∂bo,i,t+3

∂ιc1,t

]
= 0.

−ρ[1− γ2ιc2,t+1] + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc2,t+1

+
∂bo,i,t+3

∂ιc2,t+1

]
= 0.

Using the envelope property we rewrite the partial derivation of the value function above

and get:

−1− γ1ι1,t + ρ2β1 [ky,i,t+2 + ρko,i,t+3] = 0.

−1− γ2ι2,t+1 + ρβ2 [ky,i,t+2 + ρko,i,t+3] = 0.

Solving for ι1,t, ι2,t+1 yields:

ι1,t =
1

γ1
(ρ2β1[ky,i,t+2 + ρko,i,t+3]− 1); ι2,t+1 =

1

γ2
(ρβ2[ky,i,t+2 + ρko,i,t+3]− 1).

This in turn yields condition (67) in the main text:

by,i,t+2 = bo,i,t+3 = β0by,i,t + ρρβ[ky,i,t+2 + ρko,i,t+3]− ρβ, (115)

where the auxiliary parameter ρβ is defined as ρβ ≡
(
ρβ1
γ1

+ β2
γ2

)
. For some of the analysis

below we assume that by,i,t is constant, so that cognitive skills do not necessarily steadily

increase. Of course, such a figure could be incorporated.

It follows that the first-order condition for ky,i,t+2 must reflect the influence that decision

has, as implied by the optimization problem, on by,i,t+2. Since by,i,t+2 = bo,i,t+3 the utility
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per period from the last two subperiods of the child’s lifetime contribute to the first-order

conditions. The first order conditions are:

−ρ+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂ky,i,t+2

+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

∂by,i,t+2

∂ky,i,t+2

= 0.

After using the envelope property and (115), this yields the following:

−1 + ρ

by,i,t+2 + a
∑
j ̸=i

gij(so,t+1)ko,j,t+2 − cky,i,t+2

+ ρ2ρβky,i,t+2 + ρ3ρβko,i,t+3 = 0.

This condition is rewritten as:

ky,i,t+2 =
1

ccs
by,i,t+2 +

a

ccs

∑
j ̸=i

gij(so,t+1)ko,j,t+2 +
ρ2

ccs
ρβko,i,t+3 −

1

ρccs
, (116)

where the auxiliary variable ccs is defined as: ccs ≡ c− ρρβ. This condition may be rewritten

by using (115) to eliminate by,i,t+2 by expressing it in terms of (ky,i,t+2, ko,i,t+3).

In addition, the first-order conditions for ko,i,t+1, sy,i,t,, so,i,t+1 are as follows:

ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
. (117)

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij(sy,t)

∂sy,i,t
ky,j,t; (118)

so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij(so,t+1)

∂so,i,t+1

ko,j,t+1. (119)

Conditions (118) and (119) are similar, respectively, to (39) and (40) and thus may be

manipulated at the steady state in like manner to the steady state analysis in section 5.0.4

above. It is more convenient to write Eq. (117) by advancing the time subscript as follows:

ko,i,t+3 =
1

c
bo,i,t+3 +

a

c

∑
j ̸=i

gij(sy,t+2)ky,j,t+2 −
1

cρ
. (120)

By using (67) to write for bo,i,t+3 in terms of its solution in terms of (ky,i,t+2, ko,i,t+3) and

rewriting the conditions for (ky,i,t+2, ko,i,t+3) in matrix form, we have:

ko,t+3 =
β0
ρ∗c

b− ρβ
ρ∗

i+

[
ρρβ
ρ∗c

I+
a

ρ∗c
G(sy,t+2)

]
ky,t+2, (121)
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where ρ∗ ≡ 1− ρ2ρβ
c
.

ky,t+2 =
β0
ρ̃ccs

b− 1

ρ̃ρccs
i+

a

ρ̃ccs
G(so,t+2)ko,t+2 +

ρ2ρβ
ccs

ko,t+3, (122)

where ρ̃ ≡ 1 − ρρβ
ccs
. However, by substituting from (121) for ko,t+3 in the rhs of (122), we

have: [(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)
I− aρ2ρβ

ρ∗ρ̃cccs
G(sy,t+2)

]
ky,t+2

= β0

[
ρ2ρβ
ρ̃ρ∗cccs

+
1

ρ̃ccs

]
b−

[
1

ρ̃ρccs
+

ρ2ρ2β
ρ̃ρ∗ccs

]
i+

a

ρ̃ccs
G(so,t+2)ko,t+2.

By dividing through by 1− ρ3ρ2β
ρ∗ρ̃cccs

and denoting

â ≡ aρ2ρβ
ρ∗ρ̃ccs

(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)−1

,

we may solve the previous equation with respect to ky,t+2 as follows:

ky,t+2 =

[
I− â

c
G(sy,t+2)

]−1 [
b′
eff +

a

ρ̃ccs
G(so,t+2)ko,t+2

]
,

where b′
eff is the resulting new constant. By substituting into the rhs of (121), we obtain a

single first-order linear difference system in ko,t+2:

ko,t+3 = beff +
a

ρ∗c
G(sy,t+2)

[
I− â

c
G(sy,t+2)

]−1
a

ρ̃ccs
G(so,t+2)ko,t+2, (123)

where beff denotes the resulting constant. Thus, this equation depends on both networking

efforts by the young and the old in two successive periods, G(sy,t+2),G(so,t+2).

In a notable difference from the previous model, we now see a key new role for the social

networking that individuals avail of when young. The product G(sy,t+2)G(so,t+2) is adjusted

by
[
I− â

c
G(sy,t+2)

]−1
. Intuitively, this effect acts to reinforce the effects of social networking

when young. This readily follows from (121) and (121) above. Feedbacks are generated due

to the investment in cognitive skills. Mathematical results invoked upon earlier can still be

used to determine the stability of (123). That is,
[
I− â

c
G(sy,2)

]−1
admits a simple expression,

following steps similar to those employed above, provided that the maximal eigenvalue of

â
c
G(sy,2) is less than 1, that is:

â

c

x2(sy,2)

x(sy,2)
< 1.
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Thus: [
I− â

c
G(sy,2)

]−1

= I+
â

c

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2).

Thus, the stability of (123) rests on the spectral properties of

a

ρ∗c

a

ρ̃ccs
G(sy,2)G(so,2) +

a

ρ∗c

â

c

a

ρ̃ccs

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2)
2G(so,2).

By Theorem 1, Merikoski and Kumar (2004), 151–152, the maximal eigenvalue of the sum

of two real symmetric (Hermitian) matrices is bounded upwards by the sum of the maximal

eigenvalues of the respective matrices. Thus, a condition for the stability of (123) readily

follows and involves (sy,2, so,2) along with the other parameters of the model. Q.E.D.
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