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Abstract

In a stochastic exchange economy where, due to beliefs’ heterogeneity,
agents engage in speculative trade, I investigate the Market Selection Hy-
pothesis that speculation rewards agents with accurate beliefs. Assuming
that markets are complete, I derive sufficient conditions for agents’ sur-
vival in terms of intertemporal substitution rates and portfolio expected
log-returns and use them to show that the Market Selection Hypothesis
fails generically. In particular, when agents have Epstein-Zin preferences,
beliefs heterogeneity may persist in the long-run or speculation may cause
the agent with the most accurate beliefs to vanish. Failures occur because
portfolio expected log-returns depend both on beliefs accuracy and risk pref-
erences, through the comparison with the growth-optimal portfolio. Failures
do not occur in CRRA economies because, due to the interdependence of
relative risk aversion and intertemporal elasticity of substitution, portfolio
returns not related to beliefs’ accuracy are compensated by the component
of saving that responds to uncertainty.
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1 Introduction

The dominant academic view of financial markets is that they facilitate hedging
and risk diversification. A complementary view is that trade also occurs due to
agents’ disagreement about assets’ return distributions. Indeed, also in standard
models of financial markets such as Lucas’ model or the CAPM, agents’ beliefs
heterogeneity makes them willing to hold different risky positions from those they
would have held under pure hedging. These positions are speculative, in that they
include a bet on the future realizations of assets’ fundamentals. In this paper I
investigate the effect of speculation on agents’ relative consumption dynamics by
identifying the separate roles of saving and portfolio decisions. The main result is
that speculation may have long-run consequences. In particular, beliefs’ hetero-
geneity may persist in the long-run or the agent with the most accurate beliefs
may vanish.

Although speculative incentives are certainly present, a widespread position of
financial economists is that speculation cannot have long-run consequences, and
thus its investigation cannot help to characterize assets’ returns in equilibrium.
The Market Selection Hypothesis (MSH) of Friedman (1953) applied to financial
markets presumes that investors with accurate beliefs can earn high returns by
taking positions against investors with inaccurate beliefs. Provided markets are
complete and the time horizon is long enough, these speculative positions should
thus allow accurate traders to dominate the market and to bring asset prices at
the fundamental value implied by their preferences and beliefs.1

In bounded economies with time-separable preferences, the argument is rigor-
ously established by Sandroni (2000) and Blume and Easley (2006). Indeed, when
markets are complete, each agent can trade to allocate his future consumption on
the path which he believes as more likely. In equilibrium, everything else being
equal, the agent with the most accurate beliefs assigns the highest likelihood to
paths that are actually realized and thus holds everything in the long run. Despite
the importance of the result, the exact role of portfolio and saving decisions for
its validity is still unclear. Sandroni (2000) and Blume and Easley (2006) char-
acterize an agent long-run consumption in terms of a survival index that depends
on discount factor and beliefs’ accuracy (as measured by the relative entropy).
For log-economies the discount factor is a saving rate and beliefs’ accuracy corre-
sponds to portfolio expected log-returns, so that having accurate beliefs leads to
profitable portfolio positions. Other preferences lead to different optimal saving
and portfolio decisions but the survival index remains the same.2

1Note, however, that depending on agents’ preferences and/or assets payoff structure vanishing
traders may have a price impact, see e.g. Kogan et al. (2006, 2009) and Cvitanić and Malamud
(2011).

2The incumbent literature finds similar results, see Section 1.1. For example, Yan (2008) shows
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In this paper I shed light on the determinants of survival in speculative markets
by deriving sufficient conditions for survival that depend on the separate contribu-
tion of saving and portfolio decisions. I work in a discrete-time exchange economy
with intermediate consumption and complete markets.3 I assume a finite number
of agents with heterogeneous beliefs and, possibly, preferences. The main result
is that speculative portfolio positions alone are not sufficient to support the MSH
but, instead, can lead to its failure. In particular, since both agents’ beliefs and
risk preferences determine their betting positions, the average returns of a portfo-
lio derived under correct beliefs are not necessarily higher than those of a portfolio
derived under incorrect beliefs. Importantly, saving may or may not “compensate”
for the under-performance of a portfolio derived under accurate beliefs. Due to
the interdependence of relative risk aversion and intertemporal substitution, sav-
ing does compensate in bounded CRRA economies as those studied in Sandroni
(2000) and Blume and Easley (2006) but does not compensate in more general
cases, possibly leading to MSH failures.4

Epstein-Zin preferences, being flexible enough to disentangle intertemporal and
intra-states consumption decisions, are a typical case where saving does not com-
pensate the component of portfolio returns that is not related to beliefs’ accuracy.
I show that there exist parametrizations where, with full probability:

• multiple agents survive and have a positive consumption share in the long-
run (long-run heterogeneity);

• either the agent with the most accurate beliefs vanishes or he dominates
(path dependency);

• the agent with the most accurate beliefs vanishes (vanishing of the accu-
rate trader).

Under long-run heterogeneity, which typically occurs when agents’ Relative
Risk Aversion (RRA) coefficient is larger than 1, beliefs heterogeneity is persistent
and state prices keep fluctuating between agents’ evaluations. The result could
help explaining stock market anomalies as recently suggested in Anderson et al.
(2005), Hong and Stein (2007), Cogley and Sargent (2009), Yu (2011), Bhamra
and Uppal (2014), Hong and Sraer (2016), and Baker et al. (2016).

that in an unbounded economy with Constant Relative Risk Aversion (CRRA) the survival index
depends on discount factor, beliefs’ accuracy and the coefficient of RRA. I clarify how this extra
term comes about in Section 4.2. See also footnote 5.

3For the sake of tractability I assume that the aggregate endowment growth rates follow and
i.i.d. process, see Assumption 2.1. Sufficient conditions for survival more general endowment
process can be established following the same approach.

4The result of Yan (2008) for unbounded CRRA economies can also be understood in terms
of this compensation. See Section 4.2.
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Under vanishing of the accurate trader or path dependency, the market
does not (may not) select for the most accurate beliefs. Nevertheless, a single agent
is rewarded in the long-run, and determines asset prices. I shall show that failures
to reward the most accurate trader may occur in economies where all agents hold
the same portfolio, so that only saving is relevant, as well as in economies where
the saving decision is homogeneous across agents, so that only portfolios matter.

The reason why speculation may fail to validate the MSH, and even allow for
long-run heterogeneity, is as follows. In Section 2, I show that the dynamics of
consumption shares depends on two key quantities: the ratio between the value
of next period possible consumption and current consumption, which is an in-
tertemporal substitution rate, and the return of the portfolio that allocates next
period consumption among the different states. In Section 3, I provide general
sufficient conditions for an agent (or a group of agents) to survive, dominate, or
vanish in terms of the comparison of log substitution rates and portfolio expected
log returns.5 In particular each agent portfolio expected log returns can be decom-
posed in a market risk premium, a premium for having beliefs more accurate than
market beliefs,6 and a term that depends on the comparison between his portfolio
and the log-optimal portfolio derived under his beliefs. It is this last term, named
Non-Log-Optimality (NLO) contribution, that makes MSH failures possible. By
definition, the term is zero when the portfolio is log-optimal. The term is instead
positive when beliefs and risk preferences are such that, at the prevailing market
prices, the chosen portfolio is closer to the log-optimal portfolio derived under cor-
rect beliefs than the log-optimal portfolio derived under the agent beliefs.7 In such
cases it is as if the agent is using a log-optimal portfolio and has “effective” beliefs
that are more accurate than his original beliefs. Effective beliefs can also be less
accurate than the original beliefs, making the non-log-optimality term negative.
Saving plays also a role and the comparison of agents’ intertemporal substitution
rates may or may not compensate for the (in)accuracy of effective beliefs.

To explicit the trade-off between saving and portfolio positions for a specific
choice of risk and time preferences, in Section 4, I apply the general survival
conditions of Section 3 to Epstein-Zin economies. Epstein-Zin preferences provide
a natural generalization of the benchmark CRRA case, allowing intertemporal and
risk preferences to be disentangled. First, in Section 4.1, I concentrate on cases
where only portfolio decisions matter for agents’ relative performance.8 When

5The dynamics of consumption shares follows a multiplicative process, thus expected log-
returns rather than expected returns determine survival.

6Market beliefs are defined as the beliefs of the representative agent, see Definition 2.1.
7The log-optimal portfolio derived using correct beliefs is the portfolio with maximal growth,

see Kelly (1956) and the literature surveyed in Section 1.1.
8This amounts to assume that all agents employ the same saving decision in equilibrium.

The latter occurs in Epstein-Zin economies where all agents have unitary IES parameter and the

4



all agents have log-optimal portfolios, the comparison of their returns depends
only on beliefs’ accuracy. The presence of agents with inaccurate beliefs implies
that the agent with the most accurate beliefs has positive expected log-returns
in every period. By speculating, he wins enough bets to eventually gain all the
aggregate endowment. The reasoning behind the MSH is valid. Outside of the
log framework, however, effective beliefs’ accuracy and beliefs’ accuracy differ and
non-log-optimality terms become important. Moreover, effective beliefs accuracy
depends on assets’ equilibrium returns. As a result, given two agents, it can
happen that an agent’s effective beliefs are the most accurate when the returns
are set by the other agent, and the other way round. In this case speculation does
not support dominance of a single agent but the outcome is long-run heterogeneity.
Alternatively, it could occur that one agent has the most accurate effective beliefs
for all possible equilibrium asset returns, even when his beliefs are inaccurate.
Depending on all agents’ risk preferences and beliefs, all types of MSH failures
might occur.

When saving is not homogeneous across agents, the comparison of intertem-
poral substitution rates plays also a role. In Sections 4.2-4.3, I study how both
saving and portfolio decisions matter for survival. MSH failures, in particular
long-run heterogeneity, remain possible. Bounded CRRA economies are instead
special because, due to the interdependence of RRA and intertemporal elasticity
of substitution (IES), the saving component due to uncertainty does compensate
exactly for the difference of accuracy between beliefs and effective beliefs reflected
in the NLO term (Section 4.2). However, this compensation occurs in terms of
agents’ relative performance. In Section 4.3, I show that it is enough that only
one agent has preferences not in the CRRA class to obtain MSH failures such as
long-run heterogeneity and path dependency.

The role of saving is confirmed in Section 4.4, where I analyze Epstein-Zin
economies where agents’ beliefs and risk preferences are such that every agent
holds the market portfolio in equilibrium. Agents do not exchange speculative bets
and portfolios become irrelevant.9 I derive the intuitive result that the agent who
sets the lowest interest rate when alone in the market has a higher intertemporal
substitution rate in every period and thus dominates in the long-run. Beliefs,
together with discount factors and IES coefficients, still play a role for long-run
outcomes but only because, through the saving under uncertainty channel, they
determine substitution rates. In these saving economies, the relative consumption
equilibrium dynamics is deterministic and the truth plays no role. Only vanishing
of the accurate trader remains possible, in accordance with Yan (2008).

same discount factors.
9Despite all agents earn the same returns, the contribution of beliefs’ accuracy and non-log-

optimality term to each agent expected log-returns does differ.
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Finally, I give simple examples in Section 5 and conclude in Section 6. Ap-
pendixes A-E collect the proofs and additional material. In the next section I
discuss the relation between my results and the literature.

1.1 Related Literature

Investors speculate when they take long and/or short positions that they would
have not otherwise taken if they had agreed on the underlying state process.10 A
number of contributions investigate the effect of speculation on asset prices and the
volume of trade (see e.g Varian, 1985, 1989; Harris and Raviv, 1993; Kandel and
Pearson, 1995) or the relation between speculation and financial innovations (see
e.g. Zapatero, 1998; Brock et al., 2009; Simsek, 2013). For example, Simsek (2013)
decomposes agents portfolio risk as the sum the variance that remains after hedging
and the variance due to speculation. The key result is that the speculative variance
always increases when new assets are introduced. Here, I am instead interested
in whether speculation can have long-run consequences. Indeed one could argue
that financial innovation is needed to enable accurate traders to dominate by
speculating against inaccurate traders. This work shows instead that, also in the
idealized framework of complete markets and general intertemporal equilibrium,
speculation may be a persistent feature of financial markets.

The relation between speculation and the MSH for financial economies has
received increasing attention at least since the works of DeLong et al. (1990, 1991)
and Blume and Easley (1992). DeLong et al. (1991) investigate whether noise
traders, i.e. traders with inaccurate beliefs, might survive or even dominate against
rational traders by bearing more risk. The answer is positive but the analysis is
based on a partial equilibrium model. Blume and Easley (1992) study the same
issue in a model where asset prices are set in equilibrium by all traders. They
investigate a sequence of temporary equilibria where agents save at a constant
rate and can use Arrow securities to transfer wealth across states. Controlling
for the saving rate, they find that when the trader with the most accurate beliefs
purchases a log-optimal portfolio, he gains all the wealth in the long run and
brings asset prices to reflect his beliefs. The result provides a support for the
growth optimal Kelly rule (Kelly, 1956) in equilibrium models. However, when
the trader with the most accurate beliefs does not use the log-optimal rule, Blume
and Easley are able to derive conditions for this trader to vanish.11

10The term speculation is also refereed to the purchase of an asset for the purpose of re-selling
it at a higher price to those who value it more, see Harrison and Kreps (1978) for a formal model.
See also Morris (1996) and Scheinkman and Xiong (2003).

11Blume and Easley (1992) work in an i.i.d. economy with Arrow securities. The studies sur-
veyed in Evstigneev et al. (2009) propose a generalization of the Kelly rule for more complicated
asset structures.
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Subsequent work by Sandroni (2000) and by Blume and Easley (2006) extend
the analysis to general equilibrium models with endogenous saving. Under the
assumption that markets are complete, the aggregate endowment is bounded, and
agents maximize an expected time-separable utility, the MSH holds: provided that
all traders discount future utility at the same rate, only the trader with the most
accurate beliefs dominates. The market does not select against traders whose
portfolios are not log-optimal, provided that their beliefs are accurate. Vanishing
of the accurate trader, can still occur but it depends on discounting future utility
too much. Results are derived by solving the social planner problem and are given
in terms of the comparison of a survival index that depends only on discount
factors and beliefs’ accuracy. Decentralized saving and portfolio positions are not
explicited and their role in supporting the MSH remains unclear.

A related contribution is Yan (2008), where the MSH is investigated in a
continuous-time economy where the aggregate endowment follows a Brownian mo-
tion and agents have CRRA preferences. Agents agree on the volatility of the
aggregate endowment process but disagree on its drift. The findings by Sandroni
(2000) and Blume and Easley (2006) are confirmed, provided that the survival
index takes also into account the RRA coefficient. When the economy is growing,
the agent with the lowest RRA coefficient (the highest IES) has, all else equal, a
higher survival index and thus dominates in the long-run.12

By finding failures of the MSH even in a general equilibrium framework, my re-
sults reconcile the findings of the earlier studies by DeLong et al. (1991) and Blume
and Easley (1992) with those of the later literature. Traders with inaccurate be-
liefs might survive, or even dominate, in equilibrium. Saving does not always offset
this result. The following quote from DeLong et al. (1991) nicely summarizes my
findings: noise traders (agents with inaccurate beliefs in my setting) survive when
“misperceptions make them unwittingly hold portfolio closer to those that would
be held by investors with log-utility” -and correct beliefs- (p. 3). In particular,
I find that whether a noise trader survives, dominates, or vanishes depends on a
trade-off between misperceptions and risk attitudes that can be expressed in terms
of beliefs and effective beliefs’ accuracy. Moreover, I explain why full dominance
can occur only in market with aggregate risk, confirming a finding of Blume and
Easley (1992) (Th. 5.4).13

For CRRA economies with intermediate consumption, I confirm the results of

12Other studies by Mailath and Sandroni (2003), Sandroni (2005), Jouini and Napp (2006,
2007), Cvitanić et al. (2012), Muraviev (2013), Bhamra and Uppal (2014), and Massari (2015,
2016) consider related cases. The main conclusion still holds, the only possible failure of the
MSH is the vanishing of the accurate trader.

13Under no aggregate risk, if fair pricing holds, a trader with correct beliefs has also correct
effective beliefs in the limit when he consumes most of the endowment and sets assets’ returns.
This holds regardless of his preferences. Thus, noise traders can never dominate almost surely.
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the incumbent literature: neither long-run heterogeneity nor path dependency can
occur generically. As a novelty, I write the survival index in terms of its funda-
mental components, intertemporal substitution rates and expected log-returns, so
that a unique survival index can be given for the different cases (bounded vs un-
bounded economy, aggregate risk vs no aggregate risk). I also show that portfolio
returns can be decomposed in the sum of a market log-return, an accuracy pre-
mium, an a non-log-optimality term. This decomposition is helpful for formulating
the trade-off between beliefs’ accuracy and risk-preferences in relation to an agent
survival.14

Other influential works investigate the MSH in economies without intermedi-
ate consumption, see in particular Kogan et al. (2006, 2009) and Cvitanić and
Malamud (2010, 2011). Results in the two types of economies -with or without
intermediate consumption- are known to differ due to the effect of saving in the
former. Having clarified that saving rules (in particular intertemporal substitution
rates) are not only important per-se, but also for the fact that they might or not
compensate the NLO term of portfolio expected log-returns, my work reconciles
the findings of the two literature regarding the role of portfolio rules, in particular
their proximity to the growth-optimal portfolio. For example, in Section 5.1, I
show that the phenomenon of extinction reversal found in Cvitanić and Malamud
(2010) is possible also in economies with intermediate consumption.

In analyzing the MSH in Epstein-Zin economies, this paper is related to Borovička
(2015). He investigates the MSH in continuous-time exchange economies with two
agents having homogeneous Epstein-Zin preferences. My results, in particular that
MSH failures are possible and generic, confirm his findings. On the methodologi-
cal side the two papers are, however, quite different. Borovička solves directly the
central planner problem and characterizes agents (general equilibrium) optimal
policies in the partial equilibrium limit of one agent being alone in the economy.15

I study long-run survival in generality, showing the contributions of intertemporal
substitution rates, beliefs’ accuracy, and non-log-optimality terms in the case of
general saving and portfolio decisions (Sections 2 and 3). Epstein-Zin economies
become an application where the derivation of portfolio and saving decisions that
are not tied together is (partly) feasible (Section 4). I use Epstein-Zin preferences
because, in containing CRRA preferences as a special case, they allow to show how

14Sandroni (2000) and Blume and Easley (2006) work with general time-separable utilities.
Here I concentrate on the special case of CRRA preferences. In Appendix B I discuss why the
same link between saving and portfolio decisions should hold more in general.

15This strategy allows Borovička to derive market-selection outcomes for a larger region of
parameters than I do here. Whether this approach is possible also in discrete-time economies
and in economies with more than two agents is still an open issue. Note also that there exists
parametrizations that I consider and Borovička excludes, namely when the partial equilibrium
does not deliver an interior solution but the general equilibrium does.
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deviations from separability destroy the exact compensation between expected log-
returns and intertemporal substitution rates that holds in the separable case. My
results make clear that MSH failures may occur whenever, for at least one trader,
the component of expected log-returns that is not related to beliefs’ accuracy does
not match the saving component that responds to uncertainty. Finally, discrete
time economies allow for more freedom in the modeling of the economy, in par-
ticular of the aggregate endowment process and of the degree of inaccuracy of
agents.

Another related contribution is Easley and Yang (2015) where long-run relative
consumption outcomes are computed in a two-agent economy with an Epstein-Zin
investor and a loss-averse investor. Consistently with my results, it is shown that
the loss-averse investor vanishes because his portfolio is further away from the
growth-optimal one. Moreover, the loss-averse agent can survive and dominate
only when he saves more than the Epstein-Zin investor.

Within the market selection literature, other studies find long-run beliefs het-
erogeneity. Beker and Chattopadhyay (2010) and Cogley et al. (2013) focus on
two-agent economies with incomplete markets. Beker and Espino (2011) highlights
the importance of learning. Cao (2013) studies an economy where markets are en-
dogenously incomplete due to portfolio and collateral constraints. Guerdjikova and
Sciubba (2015) study economies where investors are ambiguity averse. Bottazzi
and Dindo (2014) and Bottazzi et al. (2015) extend the temporary equilibrium
analysis of Blume and Easley (1992) to general asset structures, short-lived and
long-lived respectively, and possibly incomplete markets.

2 The Economy

In this section, I introduce the exchange economy and show how, in presence of
heterogeneous agents, it is possible to characterize the dynamics of equilibrium
consumption and state prices directly from agents’ intertemporal substitution and
portfolio decisions.

Time begins at date t = 0 and it is indexed by t ∈ N0 = {0, 1, 2, . . .}.
S = {1, 2, . . . , S} is the set of states of the world, 2S is its power set, and Σ =
×∞t=0S is the set of paths σ. st ∈ S denotes the state realized at date t and
σt = (s0, s1, . . . , st) ∈ Σt the partial history till period t. To each partial history
there corresponds a node of the uncertainty tree. C(σt) is the cylinder set with
base σt, C(σt) = {σ ∈ Σ|σ = (σt, . . .)} and Ft the σ-algebra generated by the
cylinders, Ft = σ ({C(σt)∀σt ∈ Σt}). F is the σ-algebra generated by the union of
F, F = σ (∪tFt). By construction {Ft} is a filtration. P is a probability measure
on (Σ, {Ft}) and (Σ, {Ft},P) is the probability space on which I construct every-
thing. All random variables are adapted to the filtration {Ft} and xt(σt) may be
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used in place of xt(σ). The dependence on a sequence σ, or on a partial history
σt, is typically not explicited.

The economy contains I traders and a single consumption good. Trader i ∈
I = {1, 2, . . . , I} consumption in period t on path σ is cit(σ). A consumption
plan is a stochastic process {ct} and each trader i is endowed with the particular
consumption plan {eit}. The aggregate endowment is {et} and for all t, s, and σt
the growth rate of the economy is

gs,t(σt) =
et+1(σt+1)

et(σt)
when σt+1 = (σt, s) .

For all t and σt, I denote with ĝt the date t vector of de-trended growth rates

ĝs,t =
gs,t

exp EP[log gt]
. (1)

I assume that the growth process is i.i.d..

Assumption 2.1. For all t ∈ N0, s ∈ S, and σt ∈ Σt, gs,t = gs and P(C(σT )) =∏T
t=1 Pst for a measure P = (P1, . . . ,PS) on (S, 2S).

With an abuse of notation, I use P to denote both the measure on (Σ, {F})
and on (S, 2S). As it is briefly discussed in Section 5.1, the assumption is without
loss of generality for market selection purposes in that MSH failures can also be
obtained with more complicated growth processes.

Each agent objective is to maximize a certain utility of his consumption stream.
Agents may transfer their initial endowment across time and states by trading
assets in a complete market. In evaluating consumption streams {cit} agent i uses
subjective beliefs, a probability measure on (Σ, {F}). I shall assume that all agents
believe that the world is i.i.d., so that beliefs on (Σ, {F}) are generated by beliefs
on (S, 2S), that beliefs are absolute continue with respect to each other and the
truth, and that beliefs are heterogeneous.

Assumption 2.2. For all agents i ∈ I, beliefs on (Σ, {F}) are generated by con-
stant beliefs Qi on (S, 2S) with Qi

s > 0⇔ Ps > 0, for all s in S. Moreover, Qi 6= Qj

for all i and j in I.

As with Assumption 2.1, the i.i.d. part of Assumption 2.2 is without loss of
generality: as long as agents’ disagreement persists in the long-run, MSH failures
can be shown to occur also with more complicated beliefs. The absolute continuity
assumption is instead needed for the existence of an equilibrium, see Appendix A.3.
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Other than assuming that the market is complete I do not further specify its
structure.16 Asset prices are determined in equilibrium. I postpone the charac-
terization of agents’ consumption and asset demand and just assume for now that
there exists a no-arbitrage equilibrium where all agents’ consumption plans are
strictly positive.17 The notation for state prices mimic the one for conditional
probabilities: for τ > 0, qσt+τ ,t is the price of a unit of the consumption good
after partial history σt+τ relative to one unit of consumption in date t. Due to the
no-arbitrage condition state prices satisfy:

qσt+τ ,t =
qσt+τ ,0
qσt,0

.

Using the vector of one-period states prices, qt, one obtains the interest rate from
t to t + 1, rt, and the corresponding discount rate δt. Risk neutral probabilities
(normalized state prices) are Q0

t = rtqt.
In order to investigate the consumption dynamics, I characterize agents’ port-

folio and saving decisions as follows. Consider agent i equilibrium consumption
{cit} in two subsequent periods t and t+ 1. Since for each agent i consumption is
an adapted process, for every t and every history σt there exists a scalar δit > 0
and a vector αit ∈ ∆S

+ such that18
δit(σt) =

δt
∑

s∈S Q0
s,t c

i
t+1(σt, s)

cit(σt)
,

αs,t(σt) =
Q0
s,t c

i
t+1(σt, s)∑

s′∈S Q0
s′,t c

i
t+1(σt, s′)

, for all s ∈ S .

(2)

The scalar δit is the ratio between date t value of next period contingent con-
sumption and date t consumption, agent i intertemporal substitution decision in a
stochastic context, and it is thus related to how much agent i saves. The vector αit
gives agent i allocation decision across states, only for consumption in period t+1,

16Date t = 0 trading does not require agents to hold rational prices expectations but it amounts
to trade infinite assets in the initial period. Sequential trading of short- or long-lived assets makes
the opposite assumptions. Depending on the chosen asset structure, relevant assumptions on the
budget constraint should be taken to guarantee the existence of an equilibrium. In particular,
under date t = 0 trading no bankruptcy is allowed. Under sequential trading no bankruptcy and
no Ponzi schemes are allowed, see also Araujo and Sandroni (1999).

17When the aggregate endowment is growing I also assume that agents are discounting the
future enough so that their equilibrium value function is finite. See also Assumption A.1 in
Appendix A.

18The fact that both δit and αi
t are positive follows from showing that consumption is positive

in equilibrium.
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and it is thus related to agent i portfolio decision.19 When agents are maximizing
an objective function, the equilibrium value of agents’ intertemporal substitution
rates and portfolios is determined by a set of Euler equations. Rules are par-
ticularly simple when agent i maximizes the expected discounted stream of log
consumption with discount factor β, resulting in δit = β and αit = Qi. Exploiting
the analogy with the logarithmic trader we can consider δit as an effective discount
factor and αit as an effective belief. We shall write δit(δt,Q

0
t ) and αit(Q

0
t ) when we

want to underline the dependence of saving and portfolio rules on state prices. I
postpone to the next section the exact specification of both δit(δt,Q

0
t ) and αit(Q

0
t )

when agents have Epstein-Zin recursive preferences.

Given the sequence of portfolios {αit} and intertemporal substitution rates {δit},
from (2) the dynamics of agent i consumption is thus

cit+1(σt, s) =
δit
δt

αis,t

Q0
s,t

cit(σt) .

Similarly, in terms of relative consumption φit =
cit
et

, we have:

φit+1(σt, s) =
δit
δt

αis,t

Q0
s,t gs

φit(σt) . (3)

The same type of dynamics of consumption shares holds also for groups of
agents provided aggregate substitution rates and portfolios are defined. Consider
a subset J ⊂ I with J traders and define, for every t, σt, ΦJ

t =
∑

j∈J φ
j
t and

φJ,j
t =

φjt
ΦJ
t

so that φJ
t ∈ ∆J

+. By definition ΦI
t = 1 and φI,i

t = φit with φI
t = φt ∈ ∆I

+.

By repeating the same computation as in (2), aggregate substitution rates and
portfolio of group J are, respectively,

δJt =
∑
j∈J

δjtφ
J,j
t (4)

and
αJ
t =

∑
j∈J

αjtϕ
J,j
t , (5)

where20

ϕJ,j
t =

δjtφ
J,j
t

δJt
. (6)

19αi
t and δit can be interpreted as the one-period portfolio and saving decisions. The expressions

of the full portfolio and saving rules, ᾱi
t and δ̄it, are given in Appendix A.1.

20By construction also ϕt ∈ ∆J
+.

12



In fact, it can be checked that the consumption dynamics (3) can be written also
for groups as

ΦJ
t+1(σt, s) =

δJt
δt

αJ
s,t

Q0
s,t gs

ΦJ
t (σt) for all s and σt . (7)

Equilibrium prices and discount rates can be found by considering (7) for the
set I of all the agents as follows. Using that ΦI

t = 1 and summing (7) over s we
first find

δt =
δIt∑

s′∈S gs′ Q
0
s′,t

. (8)

Discount rates are determined by the aggregate substitution rate and take also
into account the rate of change in the aggregate endowment. Equilibrium state
prices are instead fixed by the clearing condition of the Arrow security markets.
The normalized value of the supply of Arrow security corresponding to state s is

ls(Q
0
t ) =

Q0
s,t et+1(σt, s)∑

s′∈S Q0
s′,t et+1(σt, s′)

=
Q0
s,t gs∑

s′∈S Q0
s′,t gs′

.

Using the above and the formula for discount rates (8) in (7) when J = I we find

ls(Q
0
t ) = αI

s,t(Q
0
t ) , for all s ∈ S . (9)

Normalized state prices are such that the aggregate portfolio, the convex combina-
tion of each agent’s portfolio, equates the normalized value of the aggregate supply.
Importantly, each agent impact on the aggregate portfolio depends, other than on
his relative consumption share, also on the ratio of between his intertemporal
substitution rates and the economy discount factors, see (4-6). When individual
demands are derived from the maximization of an objective function, equilibrium
state prices incorporates all agents risk preferences and beliefs, each agent i having
a contribution that depends on his weight ϕi. I provide a graphical representation
of market clearing condition using a supply and demand plot in Section 5.

The system of equations (3) and (8-9) for all i ∈ I, t ∈ N0, and σt ∈ Σt

characterizes agents’ relative consumption and state prices on an equilibrium path.
Thus, an equilibrium allocation and supporting prices can be computed iteratively
if:

C1 we know that a competitive equilibrium exists and is interior;

C2 for all t, σt one-period optimal portfolio and substitution decisions of all
agents can be recovered from quantities (state prices, agents’ beliefs and
consumption) known in σt;

13



C3 the equilibrium relative consumption distribution φ0 is known.

As it is shown in Appendix A and in the next section, conditions C1-C2 do hold,
for example, when agents’ intertemporal substitution rates and portfolios come
from the maximization of specific parametrizations of an Epstein-Zin recursive
utility. Regarding condition C3, note that long-run properties can be charac-
terized even when it does not hold. In fact, provided long-run outcomes of (3)
and (8-9) are identified for every initial consumption distribution, also equilibrium
long-run outcomes are characterized.

Before we use (7) to provide sufficient conditions for a group of agents to sur-
vive, dominate, or vanish it is useful to use aggregate portfolios αJ to introduce
the concept of group J beliefs. We assume that fair pricing holds under no ag-
gregate risk and define group J beliefs QJ

t in date t as those normalized state
prices that would hold in equilibrium in an economy with no aggregate risk and a
representative agent who invests using the aggregate portfolio αJ

t .

Definition 2.1. Given an economy with a set I of traders each with a sequence
of substitution rules {δit}, portfolios {αit}, and relative consumption process {φit},
group J ⊂ I has beliefs QJ

t (σt) ∈ ∆S
+ when they solve

1 = αJ
s,t(Q

J
t ) , for all s ∈ S .

In particular the beliefs of the entire set of traders I, QI
t(σt), are the market beliefs

in date-t-history-σt.

In a log economy where all agents have the same discount factor, group J beliefs
are a convex combination of all agents beliefs weighted by their consumption share,
in accordance with Rubinstein (1974).21

2.1 Epstein-Zin Economies

Saving and portfolio decisions can be explicitly derived when agents maximize
specific parametrizations of a recursive utility of the Epstein-Zin type as in Epstein
and Zin (1989). We assume that agent i with beliefs Qi maximizes a utility U i

that has a recursive structure of the type

U i
t =

(
(1− βi)c1−ρi

t + βi
(

EQi [(U
i
t+1)1−γi ]

) 1−ρi

1−γi

) 1

1−ρi

, t ∈ N0 . (10)

21By definition, if agent i preferences satisfy the fair pricing condition, then QJ
t = Qi when

J = {i}.
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βi ∈ (0, 1) is the discount factor; γi ∈ (0,∞) is the coefficient of Relative Risk
Aversion (RRA); ρi ∈ (0,∞) is the inverse of the coefficient of Intertemporal
Elasticity of Substitution (IES) on a deterministic consumption path. The utility
is defined also for γi = 1 and ρi = 1 by taking the appropriate limits, see also
Epstein and Zin (1989).

Parameters are chosen such that the utility of the aggregate endowment is fi-
nite, implying that to the recursive formulation there corresponds an utility over
consumption streams, see Assumption A.1 in Appendix A.3.22 In these cases one
can use Euler equations to characterize (interior) equilibrium allocation as a func-
tion of market prices, see Appendix A.2. For generic values of the discount factor
βi, the IES coefficient ρi, and the RRA coefficient γi, Euler equations involving
subsequent time periods are coupled, so that the intertemporal and saving decision
depends on all future state prices and beliefs , violating C2. However, as I show
in Proposition A.1 in Appendix A, under specific preferences parametrization, op-
timal decisions can be recovered from contemporaneous prices and beliefs so that
C2 holds.23

For agent i, in date t and history σt one finds:

δit = δt

(
βi

δt

) 1

ρi

(∑
s′∈S

(Qi
s′)

1

γi (Q0
s′,t)

1− 1

γi

) γi

1−γi
1−ρi

ρi

, (11)

αis,t =
(Qi

s)
1

γi (Q0
s,t)

1− 1

γi∑
s′∈S(Qi

s′)
1

γi (Q0
s′,t)

1− 1

γi

for all s ∈ S . (12)

Intertemporal rates of substitution δt depend also on market discount rates, the IES
coefficient, and the discount factor. Portfolio decisions αt depend on beliefs, rela-
tive state prices, and the RRA coefficient. Viewed as a function of market prices,
we can define the Epstein-Zin intertemporal substitution rule, δ(·, ·; βi, ρi, γi,Qi)
such that δit = δ(δt,Q

0
t ; β

i, ρi, γi,Qi), and the Epstein-Zin portfolio rule, α(·; γi,Qi)
such that αis,t = αs(Q

0
t ; γ

i,Qi) for all s ∈ S. The dependence of intertemporal sub-
stitution rule on beliefs and normalized state prices represents a saving under
uncertainty component in that it would not be present under no aggregate risk,
i.e. if gs = g for all s, and if agents shared the same beliefs, Qi = Q for all i ∈ I.
The portfolio rule is particularly simple when γ = 1, leading to αi = Qi. Agent i

22For example, when the aggregate endowment is growing, a sufficient condition is that ρi > 1
or, when ρi < 1, that the agent i discounts future expected utility fast enough.

23The special cases are: ρi = 1; γi and Qi such that agent i holds the market portfolio in
equilibrium; the CRRA limit of γi = ρi. Despite many parameter specifications are left out,
these cases are enough to show that the MSH fails and to shed light on the role of saving and
portfolio decisions for market selection purposes.
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‘bets his beliefs’ as in the CRRA log-case (γ = ρ = 1). For this reason we shall
call this portfolio rule the log-optimal one also outside the CRRA framework.

Using rules, the market equilibrium condition (9) implicitly set date-t-history-
σt state prices depending on the date-t-history-σt consumption distribution. In
Section 4, I shall use the system of equations (3) and (8-9), with rules (δ, α) for
all i ∈ I, in order to characterize long-run consumption distributions and prices
iteratively. In the next section I provide survival results for general rules.

3 Market Selection

We are interested in studying whether, in terms of consumption, a group J ⊂ I

survives, vanishes, or dominates. Since aggregate consumption can be unbounded
or converge to zero, we can focus on the relative consumption ΦJ

t =
∑

j∈J φ
j
t .

Consistently with the literature define:

Definition 3.1. Group J survives on σ if lim supt→∞ΦJ
t (σ) > 0, he vanishes when

limt→∞ΦJ
t (σ) = 0, he dominates when limt→∞ΦJ

t (σ) = 1.

I shall show that intertemporal substitution rates and portfolio expected log-
returns can be used to give sufficient conditions for an agent to vanish, survive, or
dominate P-a.s.. The general idea is as follows.

Since the consumption dynamics (3) is a multiplicative process, the log-consumption

follows an additive process and zJt = log
ΦJ
t

1−ΦJ
t

is an adapted process defined on the

real line. In particular the evolution of {zJt } is governed by

zJt+1(σt+1) = zJt (σt) + εJt+1(σt+1) , (13)

where, denoting −J = I \ J,

εJt+1(σt+1) = log
δJt
δ−Jt

+ log
αJ
s,t

α−Js,t
when σt+1 = (σt, s) , for all s ∈ S .

To compute the drift of {zJt } Denote the relative entropy of Q with respect to
P , also Kullback-Leibler divergence, as

IP (Q) =
∑
s∈S

Ps log
Ps

Qs

,

Consistently with the incumbent literature define group J generalized survival in-
dex in node σt as

kJt := log δJt − IP (αJ
t ) . (14)
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In log economies δit = βi and αit = Qi, so that the generalized survival index
depends on discount factors and beliefs’ accuracy. More in general it depends on
effective discount factors and effective beliefs. This is similar to the approach that
has been followed by most of the literature, where survival indexes are derived
from the Euler equation of the Pareto optimal allocation problem. Here, instead,
survival indexes are derived directly from saving and portfolio decisions.

Although the two types of survival indexes are different, we shall show that
the sign of their difference, which determines whether relative growth rates are
positive or negative, is the same. From (13) and (14) the conditional drift of the
relative consumption process is

EP[εJt+1|Ft] = kJt − k−Jt . (15)

If group J has an higher survival index than group −J, the drift of the relative
consumption process is in its favor and thus group J gains, in expectation, con-
sumption.

The proposed survival index (14) has two advantages. First, it can be defined
also for groups, rather than only for individuals. It is so because the correct
unit of aggregation has been identified, named substitution rates and portfolios of
next period consumption. Second, it can be decomposed into the direct effect of
saving and portfolio decisions. The importance of saving is evident in the log of
substitution rates. It is intuitive that if group I postpones consumption in date
t with respect to the aggregate decision of all the other agent, then his relative
consumption has a positive contribution from date t to date t + 1. To interpret
the contribution of portfolio decisions let us compute the return of the portfolio
αJ
t . Using the relative consumption dynamics (7) one finds that the return in date

state st = s is

rJs,t :=

∑
j∈J c

j
t+1(σt, s)∑

j∈J
∑

s′∈S qs′,tc
j
t+1(σt, s′)

=
1

δt

αJ
s,t

Q0
s,t

.

Group J expected log-return in date t is thus

EP[log rJt |Ft] = log rt + µJ
t ,

where
µJ
t = IP (Q0

t )− IP (αJ
t ) (16)

is the expected log-return in excess of the log risk-free rate. In view of his role
for the market selection, I denote µJ

t , as group J growth premium in period t.
The growth premium can be itself decomposed into three parts by adding and
subtracting two terms, the relative entropy of the group beliefs IP (QJ), a measure
of accuracy of group J, and the relative entropy of the market beliefs IP (QI

t), a
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measure of accuracy of market beliefs. The growth premium decomposition leads
to

µJ
t = [IP (Q0

t )− IP (QI
t)] + [IP (QI

t)− IP (QJ
t )] + [IP (QJ

t )− IP (αJ
t )] . (17)

The first difference is the excess (log) risk premium of an agents with market
beliefs and log-preferences. By definition of market beliefs, this term is zero under
no aggregate risk. The second difference is an accuracy premium that rewards
(punishes) group J for being more (less) accurate than the market. It is zero
where a group’s belief coincide with market’s belief (e.g. when it is alone in the
economy). The third difference is a Non-Log-Optimality (NLO) term that rewards
(punishes) group J for having effective beliefs that are more (less) accurate than
beliefs QJ. It is zero when all members of the group have a log-optimal portfolio,
since in this case effective beliefs αJ and beliefs QJ coincide. The NLO contribution
measures whether group J agent is better-off or worse-off, in terms of expected log-
returns, by using a non-log optimal rules rather than the log-optimal rule derived
under its beliefs. If group J beliefs are correct, the NLO term is negative since
J would have been better off using a log-optimal portfolio. Effective beliefs are
less accurate. However, when group J beliefs are not correct, effective beliefs
could be more accurate than beliefs leading to a positive NLO contribution. NLO
terms measure the compensation between risk preferences and beliefs in relation
to expected growth.24

Using growth premia, the drift of the relative log-consumption dynamics can
be written as

EP[εJt+1|Ft] = log
δJt
δ−Jt

+ µJ
t − µ−Jt . (18)

where

µJ
t − µ−Jt = {IP (Q−Jt )− IP (QJ

t )}+ {[IP (QJ
t )− IP (αJ

t )]− [IP (Q−Jt )− IP (α−Jt )]}.

Other than on the comparison of substitution rates, the expected value of the
relative growth depends both on the relative accuracy of groups beliefs, the group
with more accurate beliefs having a higher contribution to its expected growth,
and on the relative size of NLO contributions. As we shall see, all results in the
paper are essentially due to the role of these NLO terms.

Two sets of results shall be derived from the difference of agents’ survival
indexes in (15) or (18). Using the Law of Large Numbers for uncorrelated martin-
gales, one can state necessary or sufficient conditions in terms of survival indexes
time averages.25

24See also the quote from DeLong et al. (1991) in Section 1.1.
25This approach is inspired by Sandroni (2000) (see e.g. his Proposition 3).
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Theorem 3.1. Under the Assumptions 2.1, 2.2, consider an economy with I

agents where a competitive equilibrium exists and is interior. Define substitution
rates {δi} and portfolios {αi} for all i ∈ I, t ∈ N0 and σt ∈ Σt as in (2). Given a
set J ⊂ I of agents, if

Prob

{
lim
T→∞

T∑
t=1

kJt − k−Jt
T

> 0

}
= 1 ,

then group J dominates P -a.s. If instead

Prob

{
lim
T→∞

T∑
t=1

kJt − k−Jt
T

< 0

}
= 1 ,

then group J vanishes.

Two problems arise when applying the theorem. First, since generalized sur-
vival indexes depend, through substitution rates and growth premia, on equi-
librium prices and discount factors, these sufficient conditions can be evaluated
analytically only under special assumptions. One example is homogeneous CRRA
economies, where the trade-off between saving and portfolio decisions does not de-
pend on market clearing price, see e.g. Proposition 4.2. Second, the theorem does
not provide sufficient conditions for survival but only for dominance and vanish-
ing. Assume for example that there exists an economy where it can be established
that two groups have the same average survival index. It could be so for two rea-
sons, either because dominance of one group is too slow (slower than exponential)
or, rather, because both groups are doing equally well and survive. In fact, the
following corollary can be established.

Corollary 3.1. Under the Assumptions of Theorem 3.1 if both groups J and −J
survive P -a.s, then their average generalized survival indexes are equal P -a.s..

The Corollary is particularly instructive when agents have the same substitu-
tion rules, since in this case all surviving agents must have effective beliefs that
are equally accurate. A specific example is in Section 4.1.

To establish sufficient conditions for survival it is enough to evaluate substitu-
tion rates and growth premia in the limit of one group consuming all the endow-
ment. For the generic subset J of I, given the relative consumption ΦJ ∈ [0, 1] and
relative consumption distributions φJ ∈ ∆J and φ−J ∈ ∆−J , denote

δJ(φJ, φ−J,ΦJ) and αJ(φJ, φ−J,ΦJ)
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the substitution and portfolio decisions used by group J when market equilibrium
prices and discount rates are determined by groups φJ and φ−J with relative size
given by ΦJ. When group J has all the relative consumption we write26

δJ|J = δJ(φJ, φ−J,ΦJ = 1) and αJ|J = αJ(φJ, φ−J,ΦJ = 1) .

kJ|J is the corresponding generalized survival index. Similarly δJ|−J and αJ|−J are
the rules used by group J when ΦJ = 0. The following theorem gives sufficient
conditions for survival of group J in terms of the sign of kJ|−J − k−J|−J.

Theorem 3.2. Under the same assumptions of Theorem 3.1, assume further that
the process {zJ} is bounded 27 and that its conditional drift EP[εJt+1|zJt = z ,Ft] is
continuous in z. If

min
φJ∈∆J ,φ−J∈∆−J

{
kJ|−J − k−J|−J

}
> 0 ,

then group J survives P -a.s.. If furthermore

max
φJ∈∆J ,φ−J∈∆−J

{
kJ|J − k−J|J

}
< 0 ,

then both groups survive P -a.s..

For a group of agents to survive it is sufficient to have the sum of log substitu-
tion rate and expected log returns larger than the rest of the agents, at the state
prices set by the latter and for all possible distribution of consumption within
groups. The result is rather intuitive. Using “limit” generalized survival indexes
it is also possible to establish when a group vanishes or dominates.

Theorem 3.3. Under the assumption of Theorem 3.2, consider a set J ⊂ I of
agents and assume further that the process has finite positive and negative incre-
ments.28 If

min
φJ∈∆J ,φ−J∈∆−J

{
kJ|−J − k−J|−J

}
> 0 and min

φJ∈∆J ,φ−J∈∆−J

{
kJ|J − k−J|J

}
> 0 ,

then group J dominates P -a.s.; if

max
φJ∈∆J ,φ−J∈∆−J

{
kJ|−J − k−J|−J

}
< 0 and max

φJ∈∆J ,φ−J∈∆−J

{
kJ|J − k−J|J

}
< 0 ,

26Note that both δJ|J and αJ|J still depend on φJ and φ−J. The dependence is omitted in
order to ease notation.

27The theorem requires a bounded process in the sense that with full probability the realized
innovation εJt should be bounded from above and from below. This is typically the case when
agents speculative position are bounded as well. See Appendix E.

28The process has finite positive and negative increments when with positive probability ε > 0
it increases of at least ε and it decreases with at least ε. See Appendix E.
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then group J vanishes P -a.s.; if

max
φJ∈∆J ,φ−J∈∆−J

{
kJ|−J − k−J|−J

}
< 0 and min

φJ∈∆J ,φ−J∈∆−J

{
kJ|J − kJ|−J

}
> 0 ,

then P -a.s. either group J or group −J dominates.

Both Theorem 3.2 and Theorem 3.3 rely on applications of the martingale
convergence theorem as used in Bottazzi and Dindo (2015). In economies with
more than 2 agents, they provide only weak sufficient conditions as, even when
one group has null relative consumption, the sign of the survival index difference is
likely to depend on the exact consumption distribution within both groups. In 2-
agent economies, however, groups are uniquely identified so that, provided agents’
“limit” survival indexes are not identical, one of the four sign combinations of the
two theorems applies: Sufficient conditions set by Theorems 3.2-3.3 become tight.

4 Selection in Epstein-Zin Economies

In this section I apply Theorems 3.2-3.3 to an exchange economy where substitu-
tion rates and portfolio decisions are derived from the maximization of an Epstein-
Zin recursive utility. This allows use to consider exchange economies where, in
equilibrium,

i) all agents use the same intertemporal substitution rate but hold different

portfolios -so that for all J log
δJt
δ−J
t

= 0 for all t and σt, but, generically,

µJ
t 6= µ−Jt ;

ii) at least one agent, say i, has interdependent intertemporal and risk prefer-
ences, so that log δit and µit are tied together and have common terms;

iii) all agents hold the market portfolio but use different intertemporal substitu-

tion rates so that for all J, t and σt, µ
J
t = µ−Jt but, generically, log

δJt
δ−J
t

6= 0.

Given i), we can analyze the property of the long-run consumption dynamics when
only growth premia matter. This is the content of Section 4.1. MSH failures are
generic. Due to ii), we can show that in CRRA economies there exists an exact
compensation between the difference of growth premia and log substitution rates.
As a result only vanishing of the accurate trader is possible and it is due to the
saving component. This is the content of Section 4.2. However, in Section 4.3,
we show that if at least one agent has not CRRA preferences all failures are still
possible. Given iii), we can move to analyze market selection when only saving
behavior matter, see Section 4.4. Again, only vanishing of the accurate trader
occurs. Despite beliefs heterogeneity matter for long-run outcomes, the relative
consumption dynamics is deterministic and the truth has no role.

21



4.1 Selection of Portfolios

When all agents have the same IES parameter ρi = 1 and discount rate βi = β,
agents choose the same intertemporal substitution rate in equilibrium: δit = β for
all i, t and σt. As a result the comparison of generalized survival indexes as in
(15) is a comparison of growth premia:29

kJt − k−Jt = µJ
t − µ−Jt . (19)

When i is the representative agent (homogeneous preferences and beliefs econ-
omy, hedging is the only motive behind trade), date t normalized state prices and
market discount factors are given by

Q0
s,t |i = Qis ĝ

−γi
s∑

s′∈S Qi
s′ ĝ
−γi
s′

, for all s ,

δt|i = = βe−EP[log g]
∑
s∈S Qis ĝ

−γi
s∑

s∈S Qis ĝ
1−γi
s

= β∑
s∈S Q0

s,t gs
,

(20)

where ĝ is the vector of de-trended growth rates as in (1). Date t equilibrium
saving and portfolio decisions are

αis,t|i = Qis ĝ
1−γi
s∑

s∈S Qi
s′ ĝ

1−γi
s′

for all s ,

δit|i = β .
(21)

Equilibrium discount rates, normalized state prices, and portfolio decisions are
particularly simple when there is no aggregate risk, gs = g for all s ∈ S, leading to
and Q0

t = αit|i = Qi and δt|i = β
g
.

Under heterogeneous beliefs and, possibly, RRA coefficients, equilibrium mar-
ket discount rates and normalized state prices do instead depend on the contempo-
raneous consumption distribution. A simplification of (9) occurs because all agents
are saving at the same rate. Agents’ price impacts ϕ and relative consumption
weights φ coincide so that

αI
t(Q

0
t ) =

∑
i∈I

αis,t(Q
0
t )φ

i
t for all s ∈ S ,

while the market discount factor is

δt =
β∑

s∈S Q0
s,t gs

.

It is instructive to consider the well-known case of a log-economy, γi = γ = 1 for
all agents, first.

29When the IES parameter ρi is one, the one-period decisions δit and αi
t coincide with the ’full’

saving and portfolio decisions δ̄it and ᾱi
t, see also Appendix A.
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Log-Optimal Portfolios The relative consumption dynamics is particularly
simple when γ = 1, as each agent “bets” his own beliefs. Aggregate portfolio
and aggregate beliefs coincide and are a convex combination of all agents beliefs.
In an economy with I agent consider the relative performance of agent i and agent
j. The difference of growth premia is:

µit − µ
j
t = IP (Qj)− IP (Qi) . (22)

If agent i has more accurate beliefs, then he has a larger growth premium in
every period. The dynamics of the log consumption ratio of i and j has positive
drift, implying that agent j vanishes with respect to agent i (equivalently, agent i
dominates with respect to agent j).30 If, moreover, agent i has the most accurate
beliefs with respect to any other agent, then he also dominates against all of them
in a I-agent economy. In a log-economy speculation enables the agent with the
most accurate beliefs to play a favorable game of chance in every period. The
result is well known. For equilibrium economies it goes back at least to Blume and
Easley (1992).31

Non Log-optimal Portfolios When agents portfolio rule are not log-optimal,
portfolio choices do not correspond to beliefs. It is still convenient to evalu-
ate agents’ portfolios through the lenses of log-optimality. Using the decompo-
sition (17) the difference of agent i and agent j growth premia is

µit − µ
j
t =

{
IP (Qj)− IP (Qi)

}
+
{[
IP (Qi)− IP (αit)

]
−
[
IP (Qj)− IP (αjt )

]}
.

The first part depends on the relative accuracy of beliefs, as in log-economies.
When RRA is not 1, however, the difference of growth premia depends also on the
difference of endogenously determined NLO terms.

Exploiting Theorems 3.2-3.3, it is sufficient to characterize the relative portfolio
performance at the prices set by each agent in isolation to establish if an agent
survives, vanishes, or dominates. Denoting the NLO contribution of agent i as νit ,
in the limit of agent i having all the consumption, from (12) and (20) one finds

νi|i − νj|i =
1− γj

γj
(
IP (Qj)− IP (Qi)

)
+ ∆i,j|i (23)

30A version of Theorem (3.1) can also be stated for the relative performance of subsets of J

and H of I that do not form a partition of I. In this case the process is {zJ,H = log ΦJ

ΦH } and
dominance is relative to the other group.

31The result is straightforward when beliefs are distinct as assumed in 2.2. It is more subtle to
establish when beliefs are not uniformly bounded away from each-others, for example when more
agents learn the correct probabilities but with different speed of convergence. See also Sandroni
(2000), Blume and Easley (2006), and Massari (2015, 2016).
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where

∆i,j|i = log

∑
s∈S(Q

j
s ĝ

1−γj
s )

1

γj (Qi
s ĝ

1−γi
s )

1− 1

γj∑
s∈S Qi

s ĝ
1−γi
s

. (24)

Adding the contribution due to beliefs relative accuracy, the difference of general-
ized survival indexes when agent i dominates can be written as

ki|i − kj|i = µi|i − µj|i =
1

γj
(
IP (Qj)− IP (Qi)

)
+ ∆i,j|i .

Even if agent i has correct beliefs, Qi = P, ∆i,j|i could still be so negative to
imply a higher portfolio expected log-return for agent j at the prices determined
by agent i. The same holds for µi|j − µj|j, which can be found by interchanging
the role of agent i and j. Not only µi|i − µj|i can be negative even if i has correct
beliefs but, also, the signs of µi|i − µj|i and µi|j − µj|j can be different. The
following proposition is an application of Theorems 3.2-3.3 to these Epstein-Zin
2-agent economies. I state the result by comparing the relative accuracy of beliefs
with ∆i,j|i and ∆i,j|j.

Proposition 4.1. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of an economy with two agents, i and j, maximizing an Epstein-Zin utility
with ρi = ρj = 1 and βi = βj = β.

i) If
γi∆j,i|j < IP (Qj)− IP (Qi) < −γj∆i,j|i ,

then ki|j − kj|j > 0, ki|i − kj|i < 0 and both agents survive P-almost surely.

ii) If
−γj∆i,j|i < IP (Qj)− IP (Qi) < γi∆j,i|j ,

then ki|j − kj|j < 0, ki|i − kj|i > 0 and there exists two sets Γ+ and Γ− with
P(Γ+ ∪ Γ−) = 1 such that agent i dominates on σ when σ ∈ Γ+ and agent j
dominates on σ when σ ∈ Γ−.

iii) If

IP (Qj)− IP (Qi) > γi∆j,i|j and IP (Qj)− IP (Qi) > −γj∆i,j|i ,

then ki|j − kj|j > 0, ki|i − kj|i > 0 and agent i dominates P-almost surely.
Likewise, if both reversed inequalities hold, so that ki|j − kj|j < 0 and ki|i −
kj|i < 0, then agent j dominates P-almost surely.
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For a given relative beliefs’ accuracy, the endogenous component of the NLO
term can be such that both agents survive, meaning that disagreement is persis-
tent; both dominate, but on different paths; or only one agent dominates, but
not necessarily the one with most accurate beliefs. Assume trader i has less ac-
curate beliefs than trader j. The reason behind the survival, or even dominance,
of a trader i is that his NLO compensation can be larger than the corresponding
compensation of agent j. Stated in different terms, the accuracy of effective be-
liefs, which depend also on preferences and equilibrium prices, can overturn the
accuracy premium. Overall, agent i could hold a portfolio closer to the growth
optimal portfolio than the portfolio held by agent j. It is enough to check for the
above to happen at the prices set by either agent consuming all the endowment in
one period to say whether i dominates on almost all paths, survives on almost all
paths, or dominates on a set of paths with positive measure. I provide a graph-
ical representation of all possible outcomes using a supply and demand plot in
Section 5.

A restriction on the possible long-run dynamics occurs when agents have ho-
mogeneous risk preferences γ. The following corollary relies on the fact that under
no-aggregate risk, or with aggregate risk and S = 2, the difference of NLO com-
pensations can be ordered.32 When γ > 1, agent i cannot have a higher NLO term
at the prices determined by j than he has at his prices, thus excluding that both
agents dominate on different path. When γ < 1, agent i cannot have a higher
NLO term at the prices he determines than he has at the prices determined by j,
thus excluding that both agents survive and that beliefs disagreement is persistent.
The following corollary proves the statement.

Corollary 4.1. Under the assumption of Proposition 4.1, assume γi = γj = γ,
no aggregate risk, or aggregate risk but S = 2. If γ > 1, then only cases i) and iii)
are possible. If instead γ < 1, then only cases ii) and iii) are possible. If otherwise
γ = 1, and IP (Qi) 6= IP (Qj), only case iii) is possible.

In homogeneous risk aversion economies, for all γ, either agent could dominate
almost surely. However, survival of both agents can only occur when they have
less risky portfolio than log-optimal ones. This is because risk aversion implies
conservative positions even in presence of non accurate beliefs. More risk averse
portfolios with incorrect beliefs tend to be close to log-optimal portfolios with cor-
rect beliefs at the prices set by the other agent, thus leading to accurate effective
beliefs. On the contrary, path dependency can only occur when agents hold more
risky portfolio than log-optimal ones. Non accurate beliefs leads to extreme port-
folios. Less risk averse portfolios with incorrect beliefs tend to be very far from
the log-optimal portfolio with correct beliefs at the prices set by the other agent,

32The case of S = 2, a binomial tree economy, is the one exploited in the examples of Section 5.
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thus leading to less accurate effective beliefs. Beliefs heterogeneity is persistent in
the first case and transient in the second.

Finally, the next corollary is another application of Proposition 4.1 that ad-
dresses the fate of an agent with correct beliefs.

Corollary 4.2. Under the assumption of Proposition 4.1, assume that agent i has
correct beliefs, Qi = P.

i) If agent i has γi = 1, then he dominates P-almost surely

ii) If the economy has no aggregate risk, then either i dominates P-almost surely
or case ii) of Proposition 4.1 can occur.

iii) Otherwise, any of the cases of Proposition 4.1 can occur.

Since the log-optimal portfolio derived under correct beliefs guarantees the
highest growth-premium for all prices, an agent who use this portfolio dominates
almost surely.33 When instead the agent with correct beliefs does not use the log-
optimal rule, anything can happen. Not only can he vanish, but there are also cases
where he is not the only survivor and beliefs heterogeneity is persistent. However,
agents’ co-existence can never occur when there is no-aggregate risk. The reason
is that in such an economy, if agent i has correct beliefs the equilibrium portfolio
he holds in the limit of having all the consumption is also log-optimal (both imply
fair pricing under no aggregate risk), leading to correct effective beliefs αi|i = P.
As a result µi|i−µj|i is always positive and by having a higher growth premium at
the returns he sets, both long-run heterogeneity and almost sure vanishing never
occur.34

4.2 Selection in CRRA Economies

I turn to analyze the outcome of selection when agents not only hold different
portfolios but also differ in how they transfer consumption intertemporally. I start
with CRRA economies, for which it is known that only one agent dominates gener-
ically, see Sandroni (2000) and Blume and Easley (2006) for bounded economies
and Yan (2008) for unbounded economies. I illustrate how all their results emerge
in terms of substitution and portfolio decisions, and how they can be generalized.

33The result is well known at least since Kelly (1956). It was first extended to economies where
prices are set in equilibrium by Theorem 5.1 of Blume and Easley (1992). See also the discussion
after Proposition 1 in Sandroni (2000).

34When ρ = 1 the economy is equivalent to one where saving is exogenously fixed to β and
portfolio are chosen myopically. With this respect the possibility that an agent with correct
beliefs vanishes P-almost surely in economies with aggregate risk is equivalent to Theorem 5.4
of Blume and Easley (1992). All other MSH failures are new.
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Throughout this section I assume that for all i ∈ I the RRA coefficient γi and
the IES coefficient ρi coincide, leading to substitution and portfolio decisions that
are optimal for a CRRA agent with RRA coefficient γi.

When agent i is the representative agent (homogeneous preferences and beliefs),
the joint solution of (9) and (11-12) leads to

Q0
s,t |i = Qis ĝ

−γi
s∑

s′∈S Qi
s′ ĝ
−γi
s′

, for all s ,

δt|i = βie−γ
i EP[log g]

∑
s∈S Qi

s ĝ
−γi
s = βe−γ

i EP[log g]∑
s∈S Q0

s,t ĝ
γi
s

.
(25)

Agent i equilibrium saving and portfolio decisions are

δit|i = βie(1−γi) EP[log g]
∑

s∈S Qi
s ĝ

1−γi
s ,

αis,t|i = Qis ĝ
1−γi
s∑

s′∈S Qi
s′ ĝ

1−γi
s′

, for all s .
(26)

The situation is different when agents have heterogeneous beliefs. I consider
economies with homogeneous preferences first.

4.2.1 Homogeneous γ

When agents have heterogeneous beliefs and discount factors, but have the same
RRA coefficient, the difference of agent i and agent j NLO terms computed at the
generic set of prices Q0

t is

νit − ν
j
t =

(
1− γ
γ

)(
IP (Qj)− IP (Qi)

)
+ log

∑
s∈S(Q

j
s)

1
γ (Q0

s,t)
1− 1

γ∑
s∈S(Q

i
s)

1
γ (Q0

s,t)
1− 1

γ

.

As we have shown in the previous section, for a given relative beliefs’ accuracy
there could be prices for which agent i has higher growth premium and prices
where the opposite occurs. Preferences play a role. (The result applies also here
since, for a given γ, CRRA portfolio decisions and Epstein-Zin portfolio decisions
coincide.)

Given the difference of generalized survival indexes in (15), in order to establish
long-run outcomes we should complement the analysis of portfolio decisions with
the analysis of saving. Give the CRRA intertemporal substitution rules in (11),
the log-ratio of agent i to agent j substitution rate is

log
δit
δjt

=
1

γ
log

βi

βj
+ log

∑
s∈S(Q

i
s)

1
γ (Q0

s,t)
1− 1

γ∑
s∈S(Q

j
s)

1
γ (Q0

s,t)
1− 1

γ

.

Other than by the discount factor and IES coefficient 1/γ, the comparison of
agents’ substitution rates ratio depends also on beliefs Qi, Qj and normalized

27



state prices Q0. This last terms reflect how agents adjust their saving in speculative
markets. As a function of Q0, ∑

s∈S

(Qi
s)

1
γ (Q0

s,t)
1− 1

γ

has a maximum of 1 in Qi when γ > 1 and a minimum of 1 in Qi when γ < 1.
When γ < 1 an agent postpones consumption from one period to the next whenever
normalized state prices do not coincides with his beliefs. The opposite occurs when
γ > 1.

Importantly, the comparison of the saving under uncertainty terms depends on
normalized state prices and individual beliefs through a term that matches exactly
the price dependent part of the NLO term. Given that the two terms off-set each
others, the difference of generalized survival indexes is determined, for all t and
σt, only by (exogenously given) discount factors and beliefs:

kit − k
j
t =

1

γ

(
log

βi

βj
+ IP (Qj)− IP (Qi)

)
.

CRRA economies with homogeneous preferences behave, as market selection is
concerned, as log-economies: controlling for discount factors only beliefs’ accuracy
matters.35

We have explained why the comparison of generalized survival indexes can be
given in terms of the survival index defined in Blume and Easley (2006),

kiBE = log βi − IP (Qi) .

In fact, although kt and kBE differ, it is the sign of kit−k
j
t that matters and, as we

have just showed, this sign is equal to the sign of kiBE − k
j
BE for all t and σt. Note

however that the RRA coefficient still matters for the relative consumption dy-
namics in that it determines the speed of convergence.36 We recover the following
result as an application of Theorem 3.1:37,38

Proposition 4.2. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of a CRRA economy with I agents where γi = γ for all i ∈ I. If there exists

35In fact, in all these economies market selection works as Bayesian learning on the set of
agents beliefs, see Massari (2016).

36Note that the speed of convergence has direct effects on long-run survival in large economies,
see Massari (2015)

37See Section 3.1 of Blume and Easley (2006) for the same result in an economy with bounded
aggregate endowment. The result holds also when the aggregate endowment is not bounded and
the growth process is i.i.d., as shown by Yan (2008).

38When discount factors and beliefs are such that survival indexes are equal results are more
subtle, see Blume and Easley (2009). These cases are however non-generic.
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an agent, say i, such that

kiBE > kjBE for all j 6= i ,

then for all t, σt, k
i
t− k

j
t > 0 for all j 6= i, and agent i dominates P-almost surely.

In particular, if agent i is the only agent with correct beliefs, Qi = P, and if he
has βi ≥ βj for all j 6= i, then he dominates P-almost surely.

If the agent with most accurate beliefs has also the largest discount factors,
then he dominates. Note, however, that the dominance is due by the aggregate
effect of saving and portfolio decision. Whereas in log-economies, the agent with
the most accurate beliefs dominates due to his portfolio, in non-log economies
portfolios may not always reward the agent with most accurate beliefs. Whether
growth premia favor the agent with the most correct beliefs depends on both beliefs
and risk preferences of all the other agents, as we have pointed out in Section 4.1.
Dominance still occur but the differentiated saving is crucial to the result. In
other words, despite log-economies and CRRA non-log economies are equivalent
in terms of the long-run outcome of the relative consumption process, economically
how those long-run outcomes are achieved is rather different. I provide a specific
example in Section 5.

Note also that the same result of Proposition 4.2 can be established also for
more general aggregate endowment processes than we assume in Assumption 2.1,
such as an unbounded economy with non i.i.d. growth. In fact, despite the growth
process influences both equilibrium growth premia and log substitution rates, we
have just shown that its impact drops out in their sum.

4.2.2 Heterogeneous γ

When preferences are heterogeneous the difference of log substitution rates and
log-optimality premia depends on state prices and, thus, on agents’ consumption
distribution. However, it is still possible to characterize the long-run dynamics
based only on (exogenous) agents’ characteristics by computing the relative ef-
fect of saving and portfolio decisions in the limit of one agent having most of
consumption in one period.

As in Section 4.1, I concentrate on two-agent economies, and denote agents
with i and j. In the limit of agent i having all of the consumption the difference
of portfolio log-optimality premia coincides with (23). The ratio of intertemporal
substitutions is instead given by

δi

δj
|i =

(
βi

βj
e(γj−γi) EP[log g]

) 1

γj
∑

s∈S Qi
s ĝ

1−γi
s∑

s∈S(Q
j
s ĝ

1−γj
s )

1

γj (Qi
s ĝ

1−γi
s )

1− 1

γj

. (27)
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As with homogeneous preferences, the price dependent component of the NLO
terms in (24) and the saving component that incorporates beliefs heterogeneity
cancel out. As a result

ki|i − kj|i =
1

γj

(
log

βi

βj
+ IP (Qj)− IP (Qi) + (γj − γi) EP[log g]

)
. (28)

In particular, asymptotic drifts depend on beliefs only through their accuracy. In
this case, however, the drift depends also on the expected log growth rate of the
economy. Defining the modified survival index

kiY = log βi − IP (Qi)− γi EP[log g] (29)

one obtains

ki|i − kj|i =
1

γj
(
kiY − k

j
Y

)
and ki|j − kj|j =

1

γi
(
kiY − k

j
Y

)
.

The modified survival index, which is the equivalent to the one established by Yan
(2008) for continuous-time economies, takes into account discount factors, beliefs,
and IES/RRA coefficients γ. The latter matters for survival when EP[log g] 6= 0
because it influences an agent’s substitution rate, as it is evident from (27). When
EP[log g] is positive, a large IES (low γ) denotes a high propensity to transfer
consumption to future dates and it is thus advantageous for survival.

Similarly to Proposition 4.1, it is only the ‘asymptotic’ drift, whose sign is equal
to the difference of modified survival indexes kY , that determines who dominates.39

Generically, no long-run heterogeneity of beliefs is possible.40

Proposition 4.3. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of a CRRA economy with two agents, i and j. If

kiY > kjY ,

then ki|j − kj|j > 0, ki|i − kj|i > 0, and agent i dominates. In particular, if agent
j has correct beliefs and agent i has non correct beliefs but

IP (Qi) < log
βi

βj
+ (γj − γi) EP[log g] ,

then agent j vanishes.

39Also in these cases however, preferences, in particular those of the negligible agent, still
matter for the speed of convergence.

40Previous works establish the result also in I-agent economies, see Sandroni (2000), Blume
and Easley (2006), Yan (2008), or even in economies with a continuous of agents, see Massari
(2015).
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As with homogeneous preferences economies, the derivation of the survival
index clarifies the relative importance of portfolio and saving decisions. As with
Proposition 4.2, the proposition can be generalized for economies where the growth
process is not i.i.d.. In this case the survival index becomes time dependent and
the relative importance of having a lower IES or having accurate beliefs changes
over time. For example, provided discounts rate are equal, only one of the two
factors matters for survival in the limit cases of EP[log g(t)] converging to zero or
diverging (provided the equilibrium is still well defined).

I appendix B I discuss the applicability of these results to other expected time-
separable utilities.

4.3 CRRA and (IES= 1, RRA 6= 1) Economies

In an economy where not all agents have CRRA preferences, the compensation
between saving under uncertainty and NLO terms should not occur. As a result
all MSH failures should be possible. I show that this is indeed the case by studying
an economy with a CRRA agent, agent i, and an Epstein-Zin agent with IES 1,
agent j. In particular, I shall exploit the results from the previous section and
compare agent j to a CRRA investors with same RRA coefficient and beliefs, an
investor that would hold the same one period portfolio α, but who uses a different
substitution rule. The portfolio analysis is thus the same as for CRRA economies,
implying that νi|i − νj|i is as in (23), and we can focus the attention on changes
in substitution rates.

We need to distinguish the case of agent i, the CRRA agent, dominating from
the case of agent j, the Epstein-Zin agent, dominating. When agent i dominates,
he sets the market discount rate. Agent j differs from a corresponding CRRA
agent with IES = 1/γj in that his substitution rate is δj|i = βj instead of

δ(j,CRRA)|i = (βj)
1

γj (βi)
1− 1

γj
∑
s∈S

(Qj
s)

1

γj (Qi
s)

1− 1

γj g
γi

γj
(1−γj)

s (30)

which is obtained from (11) with ρj = γj and market discount factor δ set by agent
i. As a consequence

δi

δj
|i = δi,(j,CRRA)|i

δ(j,CRRA)|i
βj

.

Expliciting δ(j,CRRA)|i and using the difference of survival indexes found for the
CRRA case one finds

ki|i−kj|i =
1

γj
(kiY−k

j
Y )+

(
1− 1

γj

)
log

βi

βj
+log

∑
s∈S

(Qj
s)

1

γj (Qi
s)

1− 1

γj g
γi

γj
(1−γj)

s . (31)
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The relative performance of agent i and j is not only governed by the differences
of kY survival indexes, as in the CRRA case. Provided γj 6= 1, otherwise we would
be back in a CRRA economy, there is an extra term, due to saving, that matters
for the survival of agent j. Even when agent i has a higher modified survival
index than agent j, the ordering of generalized survival indexes might be different.
In fact agent j can still survive provided he postpone consumption more than he
would have done as a CRRA agent with IES = 1/γj. The above equation gives
the precise trade-off.

The other case of interest is when the Epstein-Zin agent, j, dominates. With
respect to a CRRA economy there are two differences. As when i dominates,
agent j saves at a different rate then if he had a CRRA substitution rule with
IES = 1/γj. Now, however, also agent i substitutes at a different rate because
the equilibrium interest rate imposed by agent j is not as in the corresponding
CRRA economy. As a result:

δi

δj
|j = δi,(j,CRRA)|(j,CRRA)

δi|j
δi|(j,CRRA)

δ(j,CRRA)|(j,CRRA)

δj|j
,

After some simplifications,

δi

δj
|j = δi,(j,CRRA)|(j,CRRA)

(∑
s∈S

Qj
s g

1−γj
s

) 1

γi

.

Exploiting what we know for CRRA economies the difference of generalized sur-
vival indexes becomes

ki|j − kj|j =
1

γi
(kiY − k

j
Y ) +

1

γi
log
∑
s∈S

Qj
s g

1−γj
s (32)

The ordering of survival indexes kY is not enough to determine long-run outcomes.
There is an extra term due to the fact that the Epstein-Zin agent has not IES =
1/γj, so that both the amount he saves and the discount rate he imposes differ
from the corresponding CRRA economy.

Based on the sign of (31) and (32) it is still possible to characterize long run
outcomes along the lines of Proposition 4.1. I particular I shall concentrate on
the case when both agents survive, so that beliefs heterogeneity is persistent and
consumption keeps fluctuating. For simplicity, I assume that the economy has a
constant aggregate endowment, gs = 1 for all s ∈ S. When agent j dominates,
he sets as the same equilibrium discount factor δt = βj as a CRRA agent with
IES = 1/γj, and also saves at the same rate βj. As a result agents’ relative
performance can be given in terms of survival indexes as in a CRRA economy and
(32) becomes

ki|j − kj|j =
1

γi
(kiBE − k

j
BE) .
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However, when agent i dominates, agent j substitutes differently than he would
have done under CRRA preferences with IES = 1/γj, as can be seen from (31)
with gs = 1 for all s. Survival of both agents is established in the next corollary.

Corollary 4.3. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of a two-agent exchange economy, with a CRRA agent, i, and an Epstein-
Zin agent with IES = 1, j, and assume that the aggregate endowment is constant.
If

0 < kiBE − k
j
BE < (γj − 1) log

βj

βi
− γj log

∑
s∈S

(Qj
s)

1

γj (Qi
s)

1− 1

γj ,

then ki|j − kj|j > 0, ki|i − kj|i < 0, and both agents survive P-almost surely.

Provided beliefs are heterogeneous, the last term of the inequality is positive
when βj ≥ βi and γj > 1, so that IES = 1 > 1/γj. The result confirms that it
is the differentiated saving of the Epstein-Zin agent j with respect to the corre-
sponding CRRA agent that, in not balancing exactly the term coming from the
portfolio NLO term, might keep him alive even when his modified survival index
is lower than that of agent i.

4.4 Selection of Intertemporal Substitution Rates

In Section 4.1, we have seen that speculation that results only in different portfolios
could generate MSH failures. Here I address the opposite issue, that is, whether
the differentiated saving decisions that are due to different preferences and beliefs
could lead to market selection failures when growth premia do not play a role.

In order to answer this question, I investigate the outcome of market selection
when all agents hold the same portfolio in equilibrium (the market portfolio) so
that only saving matters. It turns out that the constraint imposed by the equal
portfolio requirement, see Assumption 4.1 below, is such that the ‘ordering’ of
substitution rates is stable. An intuitive result holds: the agent who fixes the
highest market discount rate when alone in the market is also the one who saves
the most for all possible equilibrium prices, and thus dominates in the long run.

Agents hold the same portfolio when they agree on normalized prices, or

Q0
s =

Qi
s g

γi

s∑
s′∈S Qi

s′ g
γi

s′

for all s ∈ S , (33)

for all i ∈ I. The condition can always be met in the sense that, given a set
of normalized state prices Q0, for any RRA coefficient γ there exists beliefs Qi,
namely

Qi
s =

Q0
s g
−γi
s∑

s′∈S Q0
s g
−γi
s

for all s ∈ S ,
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such that (33) holds. We can thus assume

Assumption 4.1. There exists a vector Q ∈ ∆S
+ such that for all i ∈ I beliefs Qi

and RRA coefficients γi it holds

Qi
s g

γi

s∑
s′∈S Qi

s′ g
γi

s′

= Qs for all s ∈ S . (34)

If the aggregate endowment were not risky, or if it were risky but all agents had
the same risk preferences γ, each agent holding the market portfolio would only
occur under homogeneous beliefs. However the combination of a risky aggregate
endowment and heterogeneous risk preferences is such that agents could still hold
the same portfolio in equilibrium even when they have heterogeneous beliefs. The
case is non-generic, perturbing the belief of an agent would break (34), but it serves
the purpose of analyzing selection of substitution rates in stochastic economies.

When all agents hold the same portfolio in equilibrium, long-run outcomes are
only determined by the comparison of their substitution rates in (11). When the
initial allocation is such that each agent i starts with a fraction φi of the aggregate
endowment, agents exchange claims on the aggregate endowment to transfer their
consumption across dates. Agents with a long position are saving more than
agents with a short position and are thus gaining consumption in relative terms.
Speculative motives and risk sharing motives inter-act in such a way that agents
are not betting.

The next proposition establishes that whether the fact that an agent has a
long or short position can be established by comparing the discount rate that they
would set when alone in the market. Whether an agent dominates or vanishes
thus depends on the comparison of these single-agent economy rates. At this
purpose I derive δ|i, the equilibrium rate when i is the representative agent. Simple
computations lead to

δ|i = βie−ρ
i EP[log g]

(∑
s∈S

Qi
s ĝ
−γi
s

)(∑
s∈S

Qi
s ĝ

1−γi
s

) γi−ρi

1−γi

. (35)

The role of the IES coefficient ρi in setting discount rates stands out.

Proposition 4.4. Under the Assumptions 2.2, 4.1, A.1, consider the equilibrium
paths of an economy with I agents maximizing Epstein-Zin preferences.

i) if for all j 6= i
δ|i > δ|j ,

then for all t, σt, and P, kit − k
j
t > 0 for all j 6= i, and i dominates on all

σ ∈ Σ;
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ii) if there exist a j 6= i such that

δ|i < δ|j ,

then for all t, σt, and P, kit − k
j
t < 0, and i vanishes on all σ ∈ Σ.

The proof relies on showing that for each pair of agents i and j, the ordering
of market discount rates δ|i and δ|j implies a stable ordering of substitution rates
δit and δit for all equilibrium discount factors δt.

It is important to note that although beliefs do matter, in that through the
saving under uncertainty channel they induce higher or lower substitution rates,
the truth does not matter in these economies. Agents transfer consumption only
across time and not across states. No bets are exchanged. The relative consump-
tion dynamics is deterministic and sufficient conditions i) and ii) imply a stable
order of survival indexes for all measures P.41 Dominance and vanishing hold on
every path σ.

Proposition 4.4 establishes only sufficient conditions in that it could happen
that two agents define the same maximal discount rate in equilibrium, yet save
differently. These situations are even less generic than Assumption 4.1.

Proposition 4.4 can be combined with Proposition 4.3 in the case of CRRA
preferences, γi = ρi for all i ∈ I. Under Assumption 4.1, modified survival indexes
kY reflect only a differentiated saving behavior and dominance occurs universally,
the truth has no role. Indeed, although the survival index kY seems to depend on
P, the constraint imposed on beliefs by (34) is such that survival indexes computed
under different P are all equal. The agent with the highest survival index dominates
on all path σ ∈ Σ.

Proposition 4.5. Under the Assumptions 2.1, 2.2, 4.1, A.1, consider the equilib-
rium paths of a CRRA economy. Survival indexes {kiY , i ∈ I} do not depend on
the truth P. The agent with the highest survival index kY dominates on all σ ∈ Σ.

The comparison of rates δ|i is also particularly simple in an Epstein-Zin econ-
omy without aggregate risk leading to the following corollary.

Corollary 4.4. Under the assumptions of Proposition 4.4, assume further that
there is no aggregate risk, gs = g for all s ∈ S. If for all j 6= i

βig−ρ
i

> βjg−ρ
j

,

then i dominates on all σ ∈ Σ.

41As long as agents’ beliefs are i.i.d. and all hold the market portfolio, i.e. Assumptions 2.2 and
4.1 respectively, Assumption 2.1 can be relaxed and the statement holds for any P on (Σ, {F}).
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Under no aggregate risk, the saving economy ’survival index’ δ|i can be sim-
plified to βig−ρ

i
, which expresses the trade off between discount factors and IES

coefficient. As in deterministic economies, controlling for discount factors, when
g > 1 the agent with highest IES (lowest ρ) dominates. The opposite result holds
when g < 1.

Under aggregate risk, although the comparison of equilibrium discount factors
can still be simplified due to Assumption 4.1, its implication for preferences, dis-
count factors, and beliefs is not straightforward. The following Corollary analyzes
’growing’ 2-agent economies.

Corollary 4.5. Under the assumptions of Proposition 4.4, consider only two
agents, i and j, with βi = βj and ρi < 1 < ρj. If log EQ0 [ĝ] + EP [log g] ≥ 0,
then agent i dominates surely.

Controlling for discount factors, in an growing economies where market beliefs
are not too pessimistic, having a IES larger than 1 is sufficient for dominating
against an agent with IES lower than 1, irrespectively of risk preferences.

5 Examples

In this section I shall consider simple illustrative examples of two-state, S = 2,
speculative economies. The advantage of working with only two states is that equi-
librium substitution rates, portfolios, and state prices have a convenient graphical
representation in a 2 dimensional plot. Due to normalizations, only the first com-
ponent of state prices needs to be tracked, the same holds for portfolios. Dropping
time indexes to simplify the notation, Q0 shall be the normalized price of state
1, Qi the probability assigned by agent i to the realization of state 1, δi(δ,Q0)
the intertemporal substitution rule, and αi(Q0) the portfolio that allocates next
period consumption.

We concentrate on portfolio rules first. Figure 1 illustrates two examples of
CRRA portfolio rules, showing how normalized equilibrium prices are determined
by their aggregation. In the left panel, there is no aggregate risk. In the right panel,
there is aggregate risk. In both cases, according to the market equilibrium equation
(9), the equilibrium price Q0 is found at the intersection of aggregate portfolio, the
convex combination of rules α1(Q0) and α2(Q0) with the first component of the
normalized supply, l1(Q0). Under no aggregate risk, left panel, (normalized) state
prices and market beliefs coincide. Under aggregate risk, right panel, (normalized)
state prices and market beliefs do not coincide. The latter are still given by the
interception of the aggregate demand with the diagonal of the plot. In a dynamic
economy agents’ price impacts {ϕ} are given both by relative consumption and
substitution rates, as in (6).
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Figure 1: Market equilibrium with CRRA rules. In homogeneous (heterogeneous)
economies clearing prices are determined by the intersection of a rule (a convex
combination of rules) with the normalized supply. Left panel: no-aggregate risk.
Right panel: aggregate risk, g1 = 2g2.

On the same plot one can also visualize the stability conditions. It is convenient
to assume that the two states are equally likely, P = (1/2, 1/2). In this case
the relative entropy IP (Q) becomes symmetric around its minimum Q = 1/2,
IP (Q) = IP (1 − Q). As a result portfolio premia can be evaluated using the
euclidean distance of their first components: given αi, αj ∈ (0, 1), IP (αi) R IP (αj)

if and only if |αi − 1/2| R |αj − 1/2|.42

In Figure 2, I add a graphical representation of the growth premium and of its
decomposition. I assume that agent i is the representative investor, so that his
beliefs are market beliefs, and:

µi = IP (Q0)− IP (αi(Q0)) =
[
IP (Q0)− IP (Qi)

]
+ νi .

In the panel the solution of αi(Q) = Q is equal to agent i belief Qi. The horizontal
line P represents the true probability that state 1 is realized. The vertical euclidean
distance between the two horizontal lines P and Qi is proportional to IP (Qi). The
full expected return µi computed at the equilibrium price Q0 can thus be visualized
as the difference of the distances of Q0 = 0.3 and αi(Q0) from P. When, as in the
plot, αi(Q0) is further away than Q0 the growth premium is negative. Although
beliefs are more accurate than prices, i.e. IP (Q0) − IP (Qi) > 0, by non using a
log-optimal portfolio agent i has a negative NLO term ηi, as can be visualized by
the difference of the distances of Qi and αi(Q0) from P. Effective beliefs are less
accurate than beliefs. As we shall see also the opposite might occur.

This graphical analysis can be used to illustrate the finding of Corollary 4.1.
The left panel of Figure 3 shows an example where agents are more risk adverse

42If P 6= (1/2, 1/2) one should simply re-scale the vertical axis to compare ’left’ and ’right’
portfolio deviations from the truth.
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Figure 2: Expected log-returns decomposition agent i is the representative agent
and Q0 = 0.3.

than the log agent, γi = γj > 1. Assume that agent i beliefs are more accurate
than agent j beliefs. If both agents had log-optimal portfolios then agent i would
have positive expected log-returns in every period. However by using less risky
portfolios each agent receives a particularly high NLO term when state prices
coincide with the other agent belief. As a result, notwithstanding that agent j has
less accurate beliefs, there exist state prices where agent j has a higher expected
log-return. The right panel of Figure 3 shows the same example when γi = γj < 1.
In this case each agent receives a particularly low NLO compensation term when
prices are close to the beliefs of the other agent.

In Epstein-Zin economies where agents have the same ρ = 1 and the same
β, only growth premia matter for survival. Portfolios as in the left panels are
associated to long-run heterogeneity whereas portfolios as in the right panel are
associated to dominance depending on the initial conditions, case i) and ii) of
Proposition 4.1 respectively.

These considerations can be used to illustrate the findings of Corollary 4.2 on
the possible failures to dominate of an agent who knows the truth. Assuming
aggregate risk, in Figure 4 I analyze the case of a RRA coefficient γ larger than
1. In the left panel I plot portfolio rules. Only two rules at the time should be
considered, the one of the agent who knows the truth, agent one with Q1 = P,
and the rule of agent 2 having inaccurate beliefs. Three degrees of inaccuracy are
considered. Given that state 1 is the good state, (g1 = 2g2), in case k agent 2 is
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Figure 3: Comparison of growth premia in a market without aggregate risk and
two agents with the same RRA coefficient γ and heterogeneous beliefs. Left panel:
portfolio rules when γ > 1. Right panel: portfolio rules when γ < 1.

very optimist, in case j agent 2 is optimist, in case i agent 2 is pessimist. In the
right panel, I plot the difference of expected log-returns (and thus growth premia)
in the limit of either agent 1 or agent 2 is dominating, µ1|1 − µ2|1 and µ1|2 − µ2|2
respectively, as a function of the beliefs of agent 2. The three cases i, j, k, are
identified on the horizontal axis. In this panel the comparison with relative beliefs’
accuracy is also presented. If beliefs’ accuracy were the only source of portfolio
expected log-returns agent 1 would have positive expected log-returns larger than
those of agent 2 and thus dominate in the long-run.
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Figure 4: Comparison of growth premia in a market with aggregate risk (g1 = 2g2)
when one agent has correct beliefs when γ = 2. Left panel: portfolio rules. Right
panel: limit portfolio expected log returns as a function of agent 2 beliefs Q2.

However, also NLO terms play a role and determine the sign combinations
of asymptotic drifts. From these signs and Theorems 3.2-3.3, we can infer that
knowing the truth leads to dominance (against pessimists as agent i), vanishing
(against optimists as agent j), or survival of both (against extreme optimists as
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agent k). The plot confirms the intuition in DeLong et al. (1991) about the trade-
off between optimism and risk aversion but clarifies that depending on the degree of
optimism both dominance of the noise trader or survival of both agents is possible.
The reason is that when agents’ RRA is higher than γ = 1, a noise trader with
optimistic beliefs might have a portfolio that is closer to the log-optimal portfolio
derived under the truth than the portfolio derived using correct beliefs. When
optimism is mild (as for agent j) the latter observation holds for all possible
equilibrium prices and the optimistic trader dominates. When the optimism is
strong (as for agent k) there are prices where it is the agent with correct beliefs
that has a higher growth premium. Since each agent has a higher growth premium
at the prices set by the other agent, both survive. Trading never settles and state
prices keep fluctuating between the evaluation of the rational trade and that of
the noise trader. An equilibrium path of normalized state prices and of relative
consumption shares is shown in Figure 5. State prices keep fluctuating between
the two agents evaluation and never settle down.
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Figure 5: Equilibrium path of state s = 1 normalized prices (left panel) and
agents’ relative consumption shares (right panel) when g1 = 2g2, ρ1 = ρ2 = 1,
β1 = β2 = β ∈ (0, 1), γ1 = γ2 = 2, Q1 = P = (1/2, 1/2), Q2 = (4/5, 1/5).

As established in Corollary 4.2, when γ > 1 path dependency never occurs.
Figure 6 shows instead portfolio rules and asymptotic drifts for the case γ < 1.
In this case the possible outcomes are dominance, vanishing, or path-dependency.
Given the trade-off between risk aversion and degree of optimism/pessimism, here
the irrational agent is chosen optimist (agent k), pessimist (agent j), or very
pessimist (agent i). The rational agent dominates against an optimist (as agent k),
vanishes against a pessimist (as agent j), and might dominate or vanish, depending
on the realization σ, against an extreme pessimist (as agent i).

As explained in Section 4.2, in CRRA economies the relative size of portfolios
growth premia is exactly as the one I have just discussed for these Epstein-Zin
economies. However, in CRRA economies, the component of intertemporal substi-
tution rates that incorporates beliefs heterogeneity compensates for the inaccuracy
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Figure 6: Comparison of growth premia in a market with aggregate risk (g1 = 2g2)
when one agent has correct beliefs when γ = 0.4. Left panel: portfolio rules. Right
panel: limit portfolio expected log returns as a function of agent 2 beliefs Q2.

of effective beliefs. In Figure 7, I plot the log-ratio between the intertemporal rate
of substitution of the agent with correct beliefs (agent 1) and the intertemporal
rate of substitution of agent 2 as a function of his beliefs Q2. In the left panel
γ > 1. In the right panel γ < 1. In all cases the combined effect of saving and
portfolio returns is such that the aggregate effect if proportional to the difference
of the relative entropy of beliefs, IP (Q2)−IP (Q1), leading to the dominance of the
accurate trader. For example when γ > 1 and the accurate agent is trading with an
optimist he always saves more enough to counterbalance the under-performance of
his portfolio (see e.g. agent j and k in the left panel). A similar effect occurs when
γ < 1. Importantly, note that saving does not always go in favor of the correct
agent and in many cases the contribution of portfolios is still crucial. Whether the
correct agent dominates due to his portfolios, to saving, or to the sum of the two
needs to be judged case by case.
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5.1 Generalizations

All the above examples are in two-agent economies. When more than two agents
are trading in the same market there is no conceptual difficulty, growth premia
and substitution rates are still determining long-run outcomes. The limitation is
technical in that growth premia need to be evaluated in the limit of one group of
agents consuming all the aggregate endowment, and in these limits state prices
depend on all remaining agents’ consumption distribution. Using Theorems 3.2-
3.3, sufficient conditions similar to those of Proposition 4.1 are established but
are far from being tight. In Figure 8, I present three examples of three-agent
economies. In the left panel, under no-aggregate risk, agent i survives against the
combination (j, k), because the growth premium of i is larger than the growth
premium of (j, k) for all prices determined by (j, k). However, agent i does not
dominate and both i and (j, k) survive. Under aggregate risk, instead, agent i
dominates. In the right panel, agent i vanishes.

These three agents economies shed light on the phenomenon of extinction re-
versal as shown in Cvitanić and Malamud (2010). Consider agent j and agent k in
isolation. Since for all equilibrium prices agent j has higher growth premia than
agent k, then he dominates almost surely. Assume now that a log-optimal agent
with correct beliefs is also trading in the market. His portfolio rule coincides with
the line denoted as P. By dominating, this third agent moves equilibrium prices
to Q0 = P. At these prices, growth premia of agent k become larger than those of
agent j so that extinction reversal occurs. Generalized survival indexes, depending
on endogenous quantities, might change their order.

The same weakening of the sufficient conditions applies also to non i.i.d. economies.
When the growth rate g follows a generic process, or when beliefs are not i.i.d., equi-
librium prices computed under the assumption that an agent, or a group of agents,
consumes the aggregate endowment become a random variable. Growth premia
should thus be compared for all the relevant possible histories of the process. Only
when inequalities hold in all these cases, they are sufficient to characterize long-run
outcomes.

Finally note that the same approach used in this paper can be extended beyond
Epstein-Zin economies whenever an equilibrium path of prices and consumption
distribution can be shown to exist, and date t one-period portfolio and substitution
rules depend on information up to t. The system of equations (3) and (8-9) can
be used to characterize consumption and state prices in the long-run, and thus to
address the MSH. The recursive preferences proposed in Weil (1993) combining a
unitary IES parameter and a constant ARA portfolio choice are a possible case.

Alternatively, one can consider temporary equilibrium model of sequential trad-
ing where agents are not assumed to have rational expectations on future prices.
Assume that each agent decides how much wealth to save and how to allocate
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Figure 8: Three-agent economies. Left panel: agent i survives but does not dom-
inate under no-aggregate risk, and dominates under aggregate risk. Right panel:
agent i vanishes.

the saved wealth to the purchase of Arrow securities by using (adapted) rules δ̄it
and ᾱit that depend only on the information available till time t − 1. If future
prices and current prices are involved, expectations should be computed given the
information up to t−1. Then, one period saving and portfolio rules δit and αit, can
be easily derived from the wealth dynamics as

δit =
δ̄it

1−δ̄it

∑
s∈S(1− δ̄it+1(σt−1, s))ᾱ

i
s,t

αis,t =
(1−δ̄it+1(σt−1,s))ᾱis,t∑

s′∈S(1−δ̄it+1(σt−1,s′))ᾱis′,t
, for all s ∈ S .

(36)

One period substitution and portfolio rules depend only on the information up
to period t. Exchange economies where some agents maximize a CRRA utility
and have rational price expectations while other agents use ‘behavioral rules’ of
this sort can also be analyzed. Whether an agent vanishes, survives, or dominates
is determined the by comparison of log substitution rates and growth premia as
established in Theorems 3.2-3.3.

6 Conclusion

This paper explains why in dynamic stochastic exchange economies where agents
have heterogeneous beliefs, speculation may not support the Market Selection Hy-
pothesis. The result is established by characterizing long-run outcomes of agents’
relative consumption process in terms of the comparison of agents’ log substitution
rates and portfolio growth premia. The latter are shown to depend on the market
log-risk premium, an accuracy premium, and a non-log-optimality term.

In the special case of log-economies, provided discount factors are equal, com-
parison of portfolio growth premia depend only on agents’ relative accuracy. Port-
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folio speculative positions favor the agent with correct beliefs. However, outside
the log-utility framework, the growth premium depends both on beliefs’ accuracy
and on the comparison of an agent’s portfolio choice with the corresponding log-
optimal portfolio. This last term, named the Non-Log-Optimality (NLO) contri-
bution, leads to generic failures of Market Selection Hypothesis. In an Epstein-Zin
economy where all agents use the same intertemporal substitution rates, three
types of failures are identified: multiple agents survive a.s., leading to hetero-
geneity of beliefs also in the long run; the agent with accurate beliefs vanishes
on some paths and dominates on others; the agent with accurate beliefs vanishes
a.s.. The failures are shown to be robust to cases where agents use different in-
tertemporal substitution rates. CRRA economies are instead special because, due
to interdependence of intertemporal and risk preferences, the response to beliefs
heterogeneity incorporated in intertemporal substitution rates and NLO terms
compensate each-others. The only long-run outcome is the dominance of a unique
agent, so that the only possible MSH failure is the vanishing of the agent with
the most accurate beliefs. However, also in CRRA economies, the relative impor-
tance of saving and portfolio decisions for long-run survival depends on all agents’
preferences and beliefs.
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T. Hens and K. Schenk-Hoppé (Eds.), Handbook of Financial Markets: Dynam-
ics and Evolution. North-Holland (Handbooks in Economics Series).

Friedman, M. (1953). Essays in Positive Economics. Univ. Chicago Press.

Guerdjikova, A. and E. Sciubba (2015). Survival with ambiguity. Journal of
Economic Theory 155, 50–94.

Harris, M. and A. Raviv (1993). Differences of opinion make a horserace. Review
of Financial Studies 6, 473506.

Harrison, J. M. and D. M. Kreps (1978). Speculative investor behavior in a
stock market with heterogeneous expectations. The Quarterly Journal of Eco-
nomics 92, 323–336.

Hong, H. and D. Sraer (2016). Speculative betas. Journal of Finance 71 (2),
2095–2144.

Hong, H. and J. Stein (2007). Disagreement and the stock market. Journal of
Economic Perspectives 21 (2), 109–128.

Jouini, E. and C. Napp (2006). Heterogeneous beliefs and asset pricing in discrete
time: An analysis of pessimism and doubt. Journal of Economic Dynamics and
Control 30, 1233–1260.

Jouini, E. and C. Napp (2007). Consensus consumer and intertemporal asset
pricing with heterogeneous beliefs. Review of Economic Studies 74, 1149–1174.

Kandel, E. and N. Pearson (1995). Differential interpretation of public signals and
trade in speculative markets. Journal of Political Economy 103, 831872.

46



Kelly, J. (1956). A new interpretation of information rates. Bell System Technical
Journal 35, 917–926.

Kogan, L., S. Ross, J. Wang, and M. Westerfield (2006). The price impact and
survival of irrational traders. The Journal of Finance 61, 195–229.

Kogan, L., S. Ross, J. Wang, and M. Westerfield (2009). Market selection. NBER
working paper no. 15189.

Lamperti, J. (1960). Criteria for the recurrence or transience of stochastic pro-
cesses. Journal of Mathematical Analysis and Applications 1, 316 – 330.

Ma, C. (1993). Market equilibrium with heterogeneous recursive-utility-
maximizing agents. Economic Theory 2, 243–266.

Mailath, G. and A. Sandroni (2003). Market selection and asymmetric information.
Review of Economic Studies 70, 343–368.

Massari, F. (2015). Market selection in large economies: A matter of luck. Working
Paper, University of New South Wales, Sydney.

Massari, F. (2016). Trading in the market: A necessary and sufficient condition
for a trader to vanish. Working Paper, University of New South Wales, Sydney.

Morris, S. (1996). Speculative investor behavior and learning. The Quarterly
Journal of Economics 111, 1111–1133.

Muraviev, R. (2013). Market selection with learning and catching up with the
joneses. Finance and Stochastics 17, 273–304.

Peleg, B. and M. Yaari (1970). Markets with countably many commodities. In-
ternational Economic Review 11 (3), 369–377.

Rubinstein, M. (1974). An aggregation theorem for securities markets. Journal of
Financial Economics 1, 225–244.

Sandroni, A. (2000). Do markets favor agents able to make accurate predictions.
Econometrica 68 (6), 1303–1341.

Sandroni, A. (2005). Market selection when markets are incomplete. Journal of
Mathematical Economics 41, 91–104.

Scheinkman, J. and W. Xiong (2003). Overconfidence and speculative bubbles.
Journal of Political Economy 111, 1183–1219.

47



Simsek, A. (2013). Speculation and risk sharing with new financial assets. The
Quarterly Journal of Economics 128, 1365–1396.

Varian, H. R. (1985). Divergence of opinions in complete markets: A note. Journal
of Finance 40, 309–317.

Varian, H. R. (1989). Differences of opinion in financial markets. In C. Stone
(Ed.), Financial Risk: Theory, Evidence and Implications. Dordrecht: Kluwer
Academic, 1989.

Weil, P. (1993). Precautionary saving and the permanent income hypothesis.
Review of Economic Studies 60, 367–383.

Yan, H. (2008). Natural selection in financial markets: Does it work? Management
Science 54, 1935–1950.

Yu, J. (2011). Disagreement and return predictability of stock portfolios. Journal
of Financial Economics 99, 162–183.

Zapatero, F. (1998). Effects of financial innovations on market volatility when be-
liefs are heterogeneous. Journal of Economic Dynamics and Control 22, 597626.

48



A General Equilibrium with Epstein-Zin Agents

A.1 Saving and portfolio decisions

Saving and portfolio decisions, δ̄it and ᾱit respectively, can be computed starting
from intertemporal substitution rates and one-period portfolio decisions, δit and αit
respectively. Agent i wealth (total net worth) after history σt is

wit = cit +
∑

T>0, σt+T

qσt+T ,t c
i
t+T ,

where σt+T takes values in Σt+T (σt), the subset of Σt+T whose elements have a
common history σt. Iterating the consumption dynamics (3) in the expression for
wit above one finds

wit(σt) = cit(σt)

1 + δit(σt) + δit(σt)
∑

T>0, σt+T

T∏
τ=1

δit+τ (σt+τ )α
i
st+τ ,t+τ−1(σt+τ−1)

 .

Defining agent i date t saving decision as δ̄it such that cit = wit(1− δ̄it) we find

δ̄it = δit
1 +

∑
T>0, σt+T

∏T
τ=1 δ

i
t+τα

i
st+τ ,t+τ−1

1 + δit + δit
∑

T>0, σt+T

∏T
τ=1 δ

i
t+τα

i
st+τ ,t+τ−1

. (37)

When an interior equilibrium is well defined δ̄it ∈ (0, 1).
From the saving decision δ̄it and the consumption dynamics (3) it is possible to

derive the wealth dynamics

wit+1 = δ̄it
ᾱis,t
qs,t

wit on (σt, s) , (38)

where we have defined ᾱit as

ᾱis,t(σt) = αis,t(σt)
δit(σt)

δ̄it(σt)

1− δ̄it(σt)
1− δ̄it+1(σt, s)

. (39)

or, in terms of one-period portfolios and substitution rates,

ᾱis,t = αis,t
1 + δit+1(σt, s) + δit+1(σt, s)

∑
T>0, σt+1+T

∏T
τ=1 δ

i
t+1+τ (σt+1+τ )α

i
st+1+τ ,t+τ

(σt+τ )

1 +
∑

T>0, σt+T

∏T
τ=1 δ

i
t+τ (σt+τ )α

i
st+τ ,t+τ−1(σt+τ−1)

.

ᾱit is agent i ‘full’ portfolio decision in node σt in that it specifies, how to allocate
saved wealth δ̄itw

i
t among future states. It can be easily checked that ᾱit ∈ ∆s

+ and
that the date t+ 1 return of the full portfolio in state s is ᾱs,t

qs,t
.

Although full and one-period decisions differ, there exists a limit under which
they coincide. The following result characterizes when it is the case.
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Lemma A.1. If in equilibrium agent i intertemporal substitution rates are history-
independent (deterministic),

δit(σt) = δit(σ
′
t) for all t, σt, σ

′
t

then
ᾱit = αit

If, moreover, intertemporal substitution rates are time-independent,

δit = δit+1 = δi for all t,

then
δ̄it = δi .

Proof. Provided intertemporal substitution rates are history-idependent, i.e. de-
terministic, the ratio

δit(σt)

δ̄it(σt)

1− δ̄it(σt)
1− δ̄it+1(σt, s)

on the left hand side of (39) is one for all s ∈ S, proving the first part of the
Lemma. If substitution rates are also constant, the sum of the geometric series of
compounded rates can be computed leading to δ̄it = δi.

A.2 Portfolio and saving decisions under Epstein-Zin pref-
erences

In agent agent i maximizes a recursive utility of the type (10) one can use the
first order conditions, see e.g. Epstein and Zin (1991), to characterize equilibrium
allocation and prices. In terms of saving and portfolio decisions one finds

Qi
s

qs,t
(βi)

1−γi

1−ρi

(
δitα

i
s,t

qs,t

)−ρi 1−γi
1−ρi

(
ᾱis,t
qs,t

) ρi−γi

1−ρi

= 1 for all s, t, σt , (40)

where we have used that
ᾱis,t
qs,t

is the return of agent full portfolio. Unless we are

in the CRRA case, γi = ρi, the full portfolio ᾱit enters in the first order condition.
Since ᾱit depends on all future one-period substitution and portfolio decisions, all
first order conditions are coupled. However when Lemma A.1 applies, ᾱit and αit
coincide so that (40) can be solved to find one-period optimal decisions in terms
of beliefs, preferences, and market prices.

We have the following
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Proposition A.1. If in equilibrium agent i intertemporal substitution rates are
history-independent, then for all t and σt, it holds

δit = δt

(
βi

δt

) 1

ρi

(∑
s′∈S

(Qi
s′)

1

γi (Q0
s′,t)

1− 1

γi

) γi

ρi
1−ρi

1−γi

, (41)

αis,t =
(Qi

s)
1

γi (Q0
s,t)

1− 1

γi∑
s′∈S(Qi

s′)
1

γi (Q0
s′,t)

1− 1

γi

, s = 1, . . . , S . (42)

Moreover, ᾱit = αit.

Proof. The result follows from the application of Lemma A.1, which allows to use
αit in place of ᾱit, and from the direct solution of (40) in terms of αit and δit.

When substitution rates are history-independent both substitution and portfo-
lio decisions depend only on contemporaneous market prices and rates, as in an ex-
pected utility framework. The functions δi(·, ·) and αi(·) such that δit = δi(δt,Q

0
t )

and αit = αi(Q0
t ) are, respectively, the intertemporal substitution rule and one-

period portfolio rule of agent i.
Although the proposition does not say when equilibria are such that the one-

period substitution decision coming from these rules is history, or time, indepen-
dent, one can judge directly from the functional form in (41). This is the content of
the next two corollaries. The first illustrates the well-known case of simple saving
rules when the IES parameter is 1.

Corollary A.1. If agent i has ρi = 1, then for all t and all σt δ̄
i
t = δit = βi and

ᾱit = αit = αi(Q0
t ).

Proof. Other than from direct substitution of ρ = 1 in (41), the result can be
established starting from the Euler equation of the recursive formulation limit, see
Epstein and Zin (1991).

The corollary applies also when growth rates are not i.i.d.. Instead the next
result applies only when the economy is i.i.d., both in beliefs and growth rates, see
Assumptions 2.1-2.2.

Corollary A.2. In an economy where Assumptions 2.1-2.2 hold, if all agents hold
the market portfolio, then for all t and σt agent i one-period substitution decisions
are as in (41) with

Q0
s,t =

(
Qi
s

gγ
i

s

)(∑
s′∈S

Qi
s′

gγ
i

s′

)−1

, s = 1, . . . , S . (43)
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Proof. Under Assumptions 2.1-2.2 beliefs and growth rates are i.i.d. so that, when
all agents hold the market portfolio, state prices as well as one-period portfolio
decisions do not depend on time and states. One-period substitution rules still
depend on time, through the market discount rate, but do no depend on partial
histories as the dynamics of discount rates is deterministic. As a result Lemma A.1
applies and Proposition A.1 holds.

A.3 General equilibrium

Given an economy with a set I of Epstein-Zin agents, consumption paths {cit}
for all i, normalized states prices {Q0

t}, and market discount rates {δt} generated
by (3-9) with rules as in (41-42) are an equilibrium of the exchange economy for
a given initial allocation {ci0 for all i} provided that: i) an interior equilibrium is
shown to exist, otherwise the system (3-9) might have no solutions; ii) agents value
function are finite in equilibrium, so that recursive preferences are well defined and
Euler equations are sufficient, see also Epstein and Zin (1989) and Ma (1993).

Regarding i), under time-0 trading the existence of an equilibrium follows from
Peleg and Yaari (1970), provided the recursive formulation of utility gives a well de-
fine utility over consumption streams and provided strict desirability holds. Both
require finiteness of the value functions, that is ii). Since Epstein-Zin preferences
are dynamically consistent, as long as markets are (dynamically) complete and an
equilibrium exists, time-0 trading and sequential trading achieve the same equilib-
rium allocations. Depending on the chosen asset structure, different assumptions
on the budget constraint are necessary to guarantee the existence of an equilib-
rium: under date t = 0 trading no bankruptcy is allowed, under sequential trading
no bankruptcy and no Ponzi schemes are allowed, see also Araujo and Sandroni
(1999). When an equilibrium exists, it must be interior: agents consumption is
positive on all paths σ due to the fact that for every t consumption in t and ex-
pected value of date t+ 1 utility are evaluated via a CES aggregator with a finite
elasticity of substitution equal to 1/ρ. As a result, it is never optimal to have
zero consumption. Regarding ii) a sufficient condition is that each agent value
function is finite when he consumes all the aggregate endowment along the paths
of maximal and minimal growth, that is, assuming that there is no uncertainty in
the economy. To see why, name s+ the state of maximal growth and s− the state
of minimal growth. Agent i utility on the path {est} = {e0, gse0, g

2
se0, . . .}, with s

either s+ or s−, can be easily computed from (10) as

U i
0 =

(
(1− β)

∞∑
t=0

e0

(
βig1−ρi

s

)t) 1

1−ρi

.
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The time zero utility is finite provided that

βig1−ρi
s < 1 s = s+, s− (44)

Note also that since the path of maximum and minimum growth are certain, and
no agent consumes all the aggregate endowment, then

{es−t } ≤ {cit} ≤ {e
s+
t }

(inequalities for sequences are valid component by component). Adding that pref-
erences are monotone, the latter implies

U i
0({cit}) ∈ (∞,∞)

for all the feasible allocations {cit}, provided that agent i preferences satisfy the
bound (44).

The argument is concluded by assuming that for each agent i ∈ I discount
factors βi and IES coefficients ρi are such that both inequalities (44) hold. We
have the following.

Assumption A.1. For every agents i ∈ I, the discount factor βi and the IES
parameter ρi are such that (44) in both the maximum and minimum growth state.

Finally, I have not excluded the possibility that multiple equilibria exist. As
long as each equilibrium obeys (3-9), the market selection results derived from
growth premia and intertemporal rates of substitutions apply.

B Time-separability beyond the CRRA case

Sandroni (2000) and Blume and Easley (2006) show that discount factors and
beliefs determine long-run survival for all economies where preferences are repre-
sented by an expected time-separable utility with Bernoulli utility u(c) satisfy-
ing u′(c) > 0, u′′(c) < 0, and limc→0 u

′(c) = +∞, provided that the aggregate
endowment is bounded from above and from below. Does the the same trade-
off between portfolio log-returns and log substitution ratios hold also when u is
not of the CRRA type? Under the same assumptions on u, the marginal utility
fi(c

i) = dui(ci)/dci is a strictly decreasing positive function unbounded from above
with well defined inverse f−1

i (·). Solving the Euler equations leads to the following
portfolio and substitution rule:

δit =
∑

s′∈S f
−1
i

(
Q0
s′,t

βi Qi
s′,t
fi (c

i
t)

)
Q0
s′,t
cit

,

αis,t =
f−1
i

(
Q0
s,t

βi Qis,t
fi(cit)

)
Q0
s,t

cit

δit
.
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Although it is difficult to use the former to characterize long-run consumption, it is
evident that the two are related. Moreover, given the decomposition of a portfolio
growth premium, fi determines only the NLO term. As with CRRA preference,
in order for the asymptotic relative ’ranking’ not to depend on normalized state
prices, NLO terms and differences of log substitution rates should compensate
each-other.

C Other recursive preferences

In this Section I derive intertemporal and portfolio decisions for the recursive
preferences used in Weil (1993).

D Proofs of Section 3

Proof of Theorem 3.1 and of Corollary 3.1 The Theorem 3.1 is a direct
application of the Law of Large Numbers for uncorrelated martingales, see also
Proposition 1 in Sandroni (2000) for a similar application.

Consider the additive process zJt with innovation εJt . The process {Zt} with

Zt = εJt − E[εJt |Ft−1]

is a uncorrelated martingale with zero expected value so that, by the LLN for
uncorrelated martingales,

lim
T→∞

∑T
t=1 Zt
T

= 0 P-almost surely .

By assumption

lim
T→∞

∑T
t=1 E[εJt |Ft−1]

T
> 0 P-almost surely .

The latter implies
lim
T→∞

zJT = +∞ .

Given the proof of the Theorem above the Corollary can be proved by contradic-
tion.

Proof of Proposition 4.1 Given a filtered probability space (P,Σ,=) and a real
process {xt} defined on (Σ,=), adapted to the filtration {=t}, Bottazzi and Dindo
(2015) prove the following theorems, which rely on the Martingale Convergence
Theorem and owe to Lamperti (1960).
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Theorem D.1. Consider a finite increments process xt with |xt+1 − xt| < B P-
a.s.. If there exist M > B and ε > 0 such that, P-a.s., E [xt+1|xt = x,=t] < x− ε
for all x > M and E [xt+1|xt = x,=t] > x + ε for all x < −M , then there exists a
real interval L = (a, b) such that for any t it is Prob{xt′ ∈ L for some t′ > t} = 1.

Theorem D.2. Consider a finite increments process xt with |xt+1 − xt| < B P-
a.s.. and such that for all t Prob {xt+1 − xt > γ|=t} > γ for some γ > 0. If there
exist M > B and ε > 0 such that, P-a.s., E [xt+1|xt = x,=t] > x+ ε for all x > M
and E [xt+1|xt = y,=t] > x+ ε for all x < −M , then Prob {limt→∞xt = +∞} = 1.

Theorem D.3. Consider a finite increments process xt with |xt+1−xt| < B P-a.s..
and such that for all t Prob {xt+1 − xt > γ|=t} > γ and Prob {xt+1 − xt < −γ|=t} >
γ for some γ > 0. If there exist M > B and ε > 0 such that, P-a.s., E [xt+1|xt = x,=t] >
x + ε for all x > M and E [xt+1|xt = y,=t] < x − ε for all x < −M , then there
exists two sets of initial conditions, Γ+ and Γ− with Γ+ ∪ Γ− = R, such that
limt→∞xt = +∞ if x0 ∈ Γ+ and limt→∞xt = −∞ if x0 ∈ Γ−.

Theorem 3.2 are a direct application of the three theorems above having xt =
zJt . By the permanence of sign theorem, continuity of the conditional drift in
z guarantess that the sign of the drift of the process in the limit of one group
dominating is equal to the the sign of the drift in a properly chosen neighborhood
around it.

E Proofs of Section 4

Proof of Proposition 4.1 Statement i) of the Proposition follows from The-
orem D.1, provided we prove that the log consumption ratio xt = zi,jt has finite
increments B. In fact, by continuity of the conditional drift43, there exists an
M > B such that the drift hypothesis of Theorem D.1 are satisfied when the limit
of the drift is positive for z → −∞ and negative for z → +∞. The latter follows
from by the assumed inequality on relative beliefs accuracy and NLO terms, as
explained in the text above the proposition. Using the same argument statements
iii) and ii) follow from Theorem D.2 and Theorem D.3, respectively, provided
we prove that the log consumption ratio zi,jt has finite increments and a finite
probability to jump of at least a given step. This is the content of the following
lemma.

43The continuity of the conditional drift follows from the continuity CRRA rules αi and αj

seen as a function of z, which in turn follows from the existence of continuous maps qs(φ
i) in

the neighborhood of φi = 1 and φi = 0 (due to the local uniqueness of homogeneous economy
equilibria).
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Lemma E.1. Under the assumption of Proposition 4.1 the log relative consump-
tion process zi,jt = xt has finite increments, that is, there exists a B > 0 such
that

|xt+1 − xt| < B P−almost surely .

Moreover if one of the sufficient conditions i) to iii) hold the process has a finite
probability of jumping of at least a given step, that is, there exists a γ > 0 such
that

Prob {xt+1 − xt > γ|=t} > γ and Prob {xt+1 − xt < −γ|=t} > γ .

Proof. The process zi,jt = xt has innovation

εi,js,t+1 = log
αis(qt)

αjs(qt)
on (σt, s) ,

where α are as in (12) with qt = Q∗t . For each s and t, equilibrium prices qs,t are
in the interval (min{qjs, qis},max{qjs, qis}), where qi (qj) is the vector of state prices
when agent i (j) dominates. Name Ω = ×s∈S [min{qjs, qis},max{qjs, qis}]. Regarding
the finite increment requirement, note that for each s there exists a maximum
innovation given by

εs = max

{∣∣∣∣log
αis(qt)

αjs(qt)

∣∣∣∣ for q ∈ Ω

}
.

Choosing B > max{εs , s ∈ S} suffices for the requirement. Turning to the exis-
tence of γ, such that jumps of at least γ occur with probability at least γ, note
that if qis = qjs for all s then qt = qi = qj for all t and, from the market clearing
equation (9) αi(qt) = αj(qt) for all t. It follows that not only εi,jt = 0 for all t
but also µit − µjt = 0 for all t so that none of the drift conditions i) to iii) can
be satisfied. As a result we exclude that qi 6= qj and equilibrium prices qt belong
to the interior of Ω. To conclude the proof note that in equilibrium there are no
arbitrages, as a result for all t and qt ∈ Ω there exists at least an s and an s′ such
that

εi,js,t > 0 and εi,js′,t < 0

(Otherwise the zero-price portfolio αi(qt)− αj(qt), or αj(qt)− αi(qt), would be an
arbitrage). For every q ∈ Ω let ε+(q) the maximum of such jumps (the upper
envelope of εs(q) for all s) and ε−(q) the lowest of such jumps. The two functions
are continuous in q and Ω is compact so they have a maximum and a minimum.
Moreover, since by the non arbitrage argument ε+(q) > 0 and ε−(q) < 0, the
minimum of ε+(q) is positive, ε+− > 0, and the maximum of ε−(q) is negative,
ε−+ < 0. Choosing

γ = min{ε+−, |ε−+|,Ps s ∈ S}
finishes the proof.
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Proof of Corollary 4.1 Define

µi,j|h = µih − µ
j
h and νi,j|h = νih − ν

j
h .

Under no-aggregate risk, es,t = e for all s ∈ S and t ∈ N0. Computing the difference
νi,j|i − νi,j|j with rules as in (12) , gives

νi,j|i − νi,j|j = log
∑
s∈S

(Qj)
1
γ (Qi)1− 1

γ + log
∑
s∈S

(Qi)
1
γ (Qj)1− 1

γ .

For x in the simplex ∆S, the function

f(x; Q) =
∑
s∈S

(x)
1
γ (Q)1− 1

γ

is convex with a minimum equal to 1 in x = Q when γ ∈ (0, 1), it is concave with
a maximum equal to 1 in x = Q when γ ∈ (1,∞). As a result, when γ > 1,
µi,j|j > µi,j|i so that

µi,j|i > 0⇒ µi,j|j > 0 .

When γ ∈ (0, 1) µi,j|j < µi,j|i so that

µi,j|i < 0⇒ µi,j|j < 0 .

The two sign implications together with Proposition 4.1 prove the statement.

Consider now the aggregate risk case with S = 2. Since both state prices
and beliefs belong to the simplex, growth premia can be seen as a function of
one variable only. Focusing on state s = 1, e.g. the state with highest aggregate
endowment growth, name q ∈ (0, 1) the state price and Qi,Qj ∈ (0, 1) agents
beliefs, w.l.o.g. Qj < Qi. A CRRA portfolio rule (12) is thus a real function
α(q; Q) : (0, 1) × (0, 1) → (0, 1). The function is increasing in q when γ ∈ (1,∞)
and decreasing when γ ∈ (0, 1). It is always increasing in Q. Denote qi as the
state price that clears the market when i is the representative agent. From (20)
when S = 2

qi =
Qi

Qi +(1−Qi)
(
g1
g2

)γ
and similarly for qj. Since g1 > g2 and Qi > Qj, then qi > qj for all γ ∈ (0,∞).

When γ > 1,
µi,j|i > 0⇒ µi,j|j > 0

proves the statement together with Proposition 4.1. Since α(q; Q) is increasing in
Q

αj(qj) < αi(qj) and αj(qi) < αi(qi) .
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Moreover since α(q; Q) is increasing also in q

αj(qj) < αj(qi) and αi(qj) < αi(qi) .

Growth premia depend of relative entropies of the form IP (α). The function IP (x)
is defined on (0, 1), is convex, and has a minimum equal to zero in x = P . Assume
by absurd that µi,j|i > 0 and µi,j|j < 0, then in must hold that

αj(qi) < P < αi(qj)

as all the other cases would result in a different signs combinations. Since P <
αi(qj) and αi(qj) < αi(qi) then

IP (αi(qi)) > IP (αi(qj)) .

µi,j|i > 0 instead implies

IP (αj(qi)) > IP (αi(qi)) ,

and µi,j|j < 0 implies
IP (αi(qj)) > IP (αj(qj)) .

The last three inequalities imply

IP (αj(qi)) > IP (αj(qj))

which is absurd given the fact that P > αj(qi) > αj(qj).
The proof is similar for γ ∈ (0, 1). Now it is

µi,j|i < 0⇒ µi,j|j < 0

that proves the statement together with Proposition 4.1. α(q; Q) is still increasing
in Q but it is now decreasing in q

αj(qj) > αj(qi) and αi(qj) > αi(qi) .

Assume by absurd that µi,j|i < 0 and µi,j|j > 0, then it must hold that

αi(qi) < P < αj(qj)

Since P > αi(qi) and αi(qj) > αi(qi) then

IP (αi(qj)) > IP (αi(qi)) .

µi,j|i < 0 instead implies

IP (αi(qi)) > IP (αj(qi)) ,

and µi,j|j > 0 implies
IP (αj(qj)) > IP (αi(qj)) .

The last three inequalities imply

IP (αj(qj)) > IP (αj(qi))

which is absurd given the fact that P < αj(qj) < αj(qj).
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Proof of Corollary 4.2 Since when agent i has γi = 1 and correct beliefs his
growth premium is maximum for all equilibrium returns, then both (µi|i − µj|i)
and (µi|j − µj|j) are positive and statement i) follows from case iii) of Proposi-
tion 4.1. Regarding ii) since under no aggregate risk normalized state prices are
equal to beliefs in the limit of an agent consuming all the aggregate endowment,
irrespectively from his risk preferences, then an agent with correct beliefs has a
maximal growth premium when he dominates. It follows that if i has correct be-
liefs, then (µi|j − µj|j) > 0. Applying Proposition 4.1 either case ii) or iii), with
him dominating P-almost surely, are possible. Regarding the statement iii) of the
corollary, examples of preferences and beliefs such an agent with correct beliefs
dominates, vanishes, or survives are given in Section 5 Figures 4-6.

Proof of Proposition 4.2 Given two agents i and j, w.l.o.g. kiBE > kjBE, so

that the process zi,jt = log
φit
φjt

has drift

E[εi,jt+1|Ft s.t. z
i,j
t = z] =

1

γ
(kiBE − k

j
BE) > 0

for every log consumption ratio z ∈ (−∞,+∞). By direct application of Theo-
rem 3.1 i dominates a.s. with respect to agent j.

Finally if ki > kj for all j 6= i, then each j vanishes against i. Then also all
agents (but i) vanish against i,

lim sup
t→∞

∑
j 6=i φ

j
t

φit
= lim sup

t→∞

1− φit
φit

= 0,

so that i dominates. When only i has correct beliefs, provided βi ≥ βj for all
j 6= i, then also ki > kj for all j 6= i and the same result follows.

Note at last that although the relative log-consumption dynamics depends,
through market equilibrium prices, on the growth process gt its drift does not. It
follows that the same result holds for any growth process gt (provide the economic
equilibrium is well defined).

Proof of Proposition 4.3 The relative consumption process {zi,jt } has inno-
vation εi,js,t+1. As shown in the main text the relative size of the survival indexes

KY determines the sign of E[εi,jt+1|Ft s.t. z
i,j
t = z] in the limit of z → ±∞. The

proof follows by applying Theorem D.2 along the same line of the proof of Propo-
sition 4.1.

In particular, we have to show that i) when both limit conditional drifts are
positive there exists a γ > 0 such that Prob{εi,jt+1 > γ} > γ and, vice-versa, when
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limits conditional drifts are negative there exists a γ > 0 such that Prob{εi,jt+1 <

−γ} > γ; ii) there exists a B such that Prob{|εi,jt+1| < B} = 1 .
To prove i), for every s define

fs(qs) = εs,t+1 = log
(βi Qi

s)
1

γi

(βj Qj)
1

γj

q
1

γj
− 1

γi

s

as the innovation when both i and j use CRRA saving and portfolio rules. When
i dominates qs = qis = βi Qi

s g
−γi
s and

fs(q
i
s) =

1

γj
log

(
βi Qi

s

βj Qj

)
gγ

j−γi
s .

Likewise when j dominates

fs(q
j
s) =

1

γi
log

(
βi Qi

s

βj Qj

)
gγ

j−γi
s .

Since fs(q
i
s) and fs(q

j
s) differ only for a constant of proportionality they are either

both positive or both are negative. Note also that fs(qs) is monotone, either
increasing or decreasing depending on the relative size of γi and γj. All this
together and the fact that qs ∈ (qis, q

j) (w.l.o.g. qis < qjs) implies that

fs(qs) > min{fs(qis), fs(qjs)}. for all qs ∈ (qis, q
j) . (45)

When the process is such that

lim
z→±∞

E[εi,jt+1|Ft s.t. z
i,j
t = z] > 0

then there exists at least one s such that fs(q
j) > 0 and fs(q

i) > 0. By (45)

fs(qs) > min{fs(qis), fs(qjs)}.

for all qs ∈ (qis, q
j). Naming γ = min{min{fs(qis), fs(qjs)},Ps s ∈ S} proves that

Prob{εi,jt+1 > γ} > γ .

When the conditional drift is negative at the borders, the proof follows the same
lines with γ = min{|max{fs(qis), fs(qjs)}|,Ps s ∈ S} .

To prove ii) we need to show that there exists a B such that

|fs(qs)| < B

for every s. Given the properties of fs exploited to prove point i) it also

|fs(qs)| < max{|fs(qis)|, |fs(qjs)|}.

Choosing B > max{|fs(qis)|, |fs(qjs), s ∈ S} proves the result.
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Proof of Corollary 4.3 The corollary follows from the application of Theo-
rem D.1. The theorem has two hypothesis: that the log relative consumption
process has finite increments, and that the drift at ±∞ points to the center. This
second hypothesis holds provided parameters are as specified, as it is proved in
the main text immediately before the Corollary. I turn to show that also the
finite increment hypothesis holds. Name qi and δ|i the normalized state price vec-
tor and market discount rate set by agent i when he consumes all the aggregate
endowment. In a two-agent economy state prices are in the interior of the set
Ωq = ×s∈S [min{qjs, qis},max{qjs, qis}] and market discount rate in the interior of
Ωδ = [min{δ|j, δ|i},max{δ|j, δ|i}]. Given the continuity of one-period substitution
and portfolio rules of both agents, for each s there exists a maximum innovation
given by

εs = max

{∣∣∣∣log
δi(δ, q)αis(q)

δj(δ, q)αjs(q)

∣∣∣∣ for q ∈ Ωq , δ ∈ Ωδ

}
.

Choosing B > max{εs , s ∈ S} suffices for the requirement.

Proof of Proposition 4.4 Under Assumption 4.1 all agents i ∈ I hold the
market portfolio so that αi = αj for all i and j. As a result for any couple (i, j)
the log relative consumption dynamics zi,jt derived from (3) is deterministic and
has innovation equal to

εi,jt+1 = log
δit
δjt
.

Substitution rates are given by (11). Market rates δt are set by

δt =

∑
i∈I δ

i
tφ
i
t∑

s∈S Q0
s gs

. (46)

where Q0 is the set of normalized state price that supports all agents holding the
market portfolio. Defining for each agent i

ki =
(βi)

1

ρi∑
s∈S Q0

s gs

(∑
s∈S

(Qi
s)

1

γi (Q0
s)

1− 1

γi

) γi

1−γi
1−ρi

ρi

,

which does not depend on time given that beliefs and market equilibrium prices
are i.i.d., equation (46) becomes

1 =
∑
i∈I

(
1

δt

) 1

ρi

kiφit =
∑
i∈I

f i(δt)φ
i
t ,
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where f i is defined appropriately. Since ρi > 0 for all i, each function f i is
decreasing in δt. Moreover it holds f i(δ|i) = 1, where δ|i is the interest rate set by
i when he has all the aggregate endowment:

δ|i =
βi∑

s∈S Q0
s gs

(∑
s∈S

Qi
s g

1−γi
s

) 1−ρi

1−γi

.

It follows that for each i
f i(δ) R 1 ⇔ δ Q δ|i .

As a result, for each t

δt ∈ (min{δ|i, i ∈ I},max{δ|i, i ∈ I}) .

Moreover for each t and j

f j(qt) < max{δ|i i ∈ I}

if δ|j < max{δ|i i ∈ I}, and

f j(qt) > max{δ|i i ∈ I}

if δ|j = max{δ|i i ∈ I}. Since by construction δit = δtf
i(δt) we have proved that if

i defines the maximal rate δ|i, then his substitution rate is higher than that of all
other agents and dominates. Dominance is sure because the dynamics of market
discount rates and substitution rates is deterministic. As a result, the same relative
consumption dynamics occurs for all path σ. In the same way, if i does not define
the maximum rate δ|i, then he vanishes.

Proof of Proposition 4.5 The result follows by noticing that under Assump-
tion 4.1

Qi
s g
−γi
s

Qj
s g
−γj
s

=

∑
s′∈S Qi

s′ g
−γi
s′∑

s′∈S Qi
s′ g
−γi
s′

for all s ∈ S ,

so that survival indexes kY do not depend on P, and by applying Proposition 4.4.

Proof of Corollary 4.4 Under no aggregate risk, Assumption 4.1 implies that
for all i, j ∈ I Qi = Qj = Q0. From simple computation it holds

δ|i Q δ|j ⇔
βi

βj
gρ

j−ρi Q 1 .

The above and Proposition 4.4 prove the statement.
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Proof of Corollary 4.5 Under Assumption 4.1, beliefs and normalized state
prices are such that when βi = βj

δ|i
δ|j

= (
∑
s∈S

Q0
s gs)

ρj−ρi

(∑
s∈S(Qi

s)
1

γi (Q0
s)

1− 1

γi

)γi 1−ρi
1−γi

(∑
s∈S(Qj

s)
1

γj (Q0
s)

1− 1

γj

)γj 1−ρj
1−γj

.

As a function of beliefs Q (∑
s∈S

(Qs)
1
γ (Q0

s)
1− 1

γ

)γ 1−ρ
1−γ

has a stationary point in Q = Q0 where it is equal to one. Moreover it is convex
when ρ ∈ (0, 1) and concave when ρ > 1. It follows that, provided

∑
s∈S Q0

s gs ≥ 1,
ρi < 1 < ρj implies that the ratio δ|i/δ|j > 1. Applying Proposition 4.4 concludes
the proof.

63


