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Abstract

The “friendship paradox” (Feld (1991)) states that, on average, people have strictly

fewer friends than their friends do. This is an accounting identity that stems from the

fact that people with more friends are counted as friends by more people. The point of

this paper is that this over-representation of the most popular people in others’ samples

distorts perceptions of norms and amplifies resulting behaviors to match those perceived

norms. I show that there are two things that drive people with more friends to behave

more extremely than people with fewer friends and thus to distort the perceived norms.

The first is that in any setting with strategic complementarities, people with more

friends have more social interaction and hence more complementarity to their actions.

The second is that people who have the most innate preference for a given activity form

more relationships as they benefit most from the complementarities. As proven here,

these two effects lead people with more friends to choose more extreme actions, which

in turn feeds back via the friendship paradox to increase overall perceptions of behavior

and then via complementarities to amplify average behavior. These theoretical results

are consistent with the multitude of studies finding that students (from middle school

through university) consistently overestimate peer consumption of alcohol, cigarettes,

and drugs. This amplifies students’ own behaviors, and can help explain problems with

adolescent abuse of drugs and binge-drinking, as well as other behaviors. The analysis

explains why policies that simply inform students of actual norms are effective in

improving the accuracy of their perceptions and reducing behavior. I also discuss how

these results change in cases of strategic substitutes, where individuals overestimate

free-riding by peers.

JEL Classification Codes: D85, D13, L14, O12, Z13

Keywords: Social Networks, Social Norms, Friendship Paradox, Networks, Games

on Networks, Complementarities, Peer Effects, Public Goods, Network Formation, So-

cial Norm Marketing

∗Department of Economics, Stanford University, Stanford, California 94305-6072 USA, external faculty

member at the Santa Fe Institute, and a fellow of CIFAR. Email: and jacksonm@stanford.edu. I gratefully

acknowledge financial support under ARO MURI Award No. W911NF-12-1-0509. Thanks to the participants

of WISE 2016 for helpful comments and suggestions.



1 Introduction

Social norms are governed by perceptions of others. Those perceptions are heavily deter-

mined by those around us.1 However, our friends are not a random selection from the

population: even on average we are biased in the samples with whom we interact. This can

systematically affect our actions and help explain a variety of distortions in peoples’ beliefs

and actions, ranging from consumption of cigarettes, alcohol, and drugs by adolescents to

our propensity to donate to charities.

The distortion stems from the “friendship paradox” that was pointed out by the sociol-

ogist Scott Feld in 1991. Feld observed that peoples’ friends have more friends than people

do, on average. That is, the average number of friends that a typical person’s friend has is

higher than the average number of friends that people have in the population. This follows

from the fact that a person with many friends is observed by more people than someone

who has few friends, and so peoples’ samples of friends end up weighting people not by their

proportions in the population but instead in proportion to their popularity.

The extent of the friendship paradox varies by setting, but is present in every network

in which there is at least one friendship involving people with different degrees (as proven

in Lemma 1 below). For example, in a rural Indian village discussed below, friends have

on average more than 40 percent more friends than the average villager. The friendship

paradox is greatly magnified by social media: a study of Twitter behavior by Hodas, Kooti,

and Lerman (2013) found that more than 98 percent of users had fewer followers than the

people whom they followed: typically a user’s “friends” had ten times as many followers,

or more, than the user. Given the increased use of social media, especially by adolescents,

the potential for biased perceptions in favor of a tiny proportion of the most popular users

becomes overwhelming. Given that students’ decisions of whether to engage in potentially

risky behaviors, as well as how much they should study, etc., tend to be influenced by

what they perceive others to be doing, students risk biasing their behaviors towards that

of students who have the most connections. This is not just true of students, but anyone

involved in choosing behaviors that are influenced by their perceptions of others’ behaviors.

The impact of the friendship paradox is evident in a series of studies finding that students

tend to over-estimate the frequency with which their peers smoke and consume alcohol and

drugs, and often by substantial margins. For instance, a study covering one hundred U.S.

college campuses by Perkins, Meilman, Leichliter, Cashin, and Presley (1999) found that

students systematically over-estimate consumption of eleven different substances, including

cigarettes, alcohol, marijuana, and a variety of other drugs. A further study by Perkins

focusing on alcohol consumption compared students self-reported drinking behavior - how

many drinks they had the last time they partied or socialized - to their perceptions of how

many the typical student at their school the last time she or he partied or socialized. The

median student (out of the more than 72000 students on the 130 colleges in the study

1For a broader discussion of norms and perceptions, see Han and Hirshleifer (2016).
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conducted from 2000 to 2003) answered 4 drinks and a quarter of the students answered 5

drinks or more. However, even given how high these overall average numbers are, more than

70 percent of the students over-estimated the alcohol consumption of the typical student at

their own school (see Table 2 in Perkins and Haines (2005)). To explain such misperceptions,

we don’t have to dig deeply into the psychology of the students. When students are attending

parties or social events, they are interacting disproportionately with the people who attend

the most parties - so students’ perceptions of alcohol consumption ends up over-representing

the people who attend more parties and under-representing those who attend infrequently.

This bias in observation due to the friendship paradox would not have any impact, how-

ever, unless those who have more connections end up behaving systematically differently

from those with fewer connections. In order for the friendship paradox to matter, it has

to be that more popular students are more likely to smoke or consume alcohol in order to

bias students’ estimates upwards. Indeed, there is empirical evidence for this in the context

of student consumption of drugs and alcohol. For instance, Valente, Unger, and Johnson

(2005), in a study of middle school students, found that each additional friendship accounted

for a 5 percent increase in the probability that a student smoked. Tucker, Miles, D’, Zhou,

Green, and Shih (2013) found similar numbers for alcohol, finding that being named as a

friend by five additional others accounted for a 30 percent increase in the likelihood that a

middle school student had tried alcohol.

The point of this paper is to explore the impact of the friendship paradox on behavior and

explain why we should expect more connected individuals to take systematically different

actions from less connected agents, and then how this feeds back to affect overall behavior.

The intuition is not difficult to see, but this is still important to explore and understand

given its wide-ranging implications.

As I establish here, there are two basic forces at work. One is that people who have the

most connections are most exposed to interactions with others, and thus given the interac-

tions with others in any setting of strategic complements (or substitutes), their behaviors

are most heavily influenced and most extreme. The second is that if people differ in their

tastes for a given activity, then it is the people who benefit most from that activity who

choose to have the most connections. So, if we endogenize the network, individuals with

the highest marginal payoff from a given activity choose to have the highest degree. This

further amplifies the effect, increasing the disparity of actions between high-degree and low-

degree individuals. Combined, these forces lead people’s most popular friends to exhibit

more extreme behaviors, and via feedback through the complementarities to bias the overall

behavior in the society. For instance, returning to the example above, since consuming al-

cohol by teenagers is in part (or largely) a social activity, the people who spend more time

socializing with others would have more reason to consume alcohol at an early age, and

would also tend be those who have a greater base proclivity to consume alcohol at an early

age. So, students who are more often seen as friends by others being more likely to consume

alcohol leads to biased samples and biased perceptions, consistent with the data, and feeds

back to produce high levels of activity overall.
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Before describing the formal model, let me begin with some background on the friendship

paradox and a simple illustration of how it can bias behaviors in the context of an example.

1.1 The Friendship Paradox

Let us begin with a quick look at the data set from Coleman (1961) that was originally cited

by Feld (1991). A portion of Coleman’s data is pictured in Figure 1.2 There are fourteen

girls pictured. For nine of the girls, their friends have on average more friends than they do.

Two girls have the same number of friends as their friends do on average, while only three

of the girls are more popular than their friends on average. On average the girls have 2.6

friends, while on average their friends have 3.2 friends.

Figure 1: Data from James Coleman’s (1961) study of high school friendships. Nodes are

girls and links are mutual friendships. The first number listed for each girl is how many

friends the girl has and the second number is the average number of friends that the girl’s

friends have. For instance, the girl in the lower left-hand corner has 2 friends, and those

friends have 2 and 5 friends, for an average of 3.5. 9 out of 14 of the girls are less popular

than their friends, 3 are more popular than their friends, and 2 are equal in popularity to

their friends. The average number of friends that the girls have is 2.6, while the average

number of friends that their friends have is 3.2.

To see the friendship paradox in more detail and in a larger network, consider a network

of connections between households from a rural Indian village Figure 2. The full distribution

of degrees and the distribution of degrees of neighbors is given in Figure 3, and we see that

friends’ degrees are more than forty percent larger than the average degree in the society.

The friendship paradox is easy to understand. The most popular people appear on many

other peoples’ friendship lists, while people with very few friends appear on relatively few

peoples’ lists. The following lemma provides a general statement of the friendship paradox,

2These are just two components of the network. The larger network not pictured here exhibits the same

phenomenon: 146 girls have friends (defined mutually), and f those, 80 have fewer friends than their friends

on average, while 25 have the same number as their friends, and 41 have more friends than their friends.
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Figure 2: The Friendship Paradox illustrated in a network of 135 households from a typical

rural Indian Village in the study of Banerjee, Chandrasekhar, Duflo, and Jackson (2013).

Nodes are households and links are other households with whom the household exchanges

favors (borrowing/lending kerosene and rice). Darker nodes have higher degree.

(a) Histogram: Blue = Own Degree,

Red = Avg. Neighbors’ Degree.

(b) Histogram: Ratio of Average Neighbors’ De-

gree over Own Degree.

Figure 3: Comparison of own to neighbors’ degrees in the network from Figure 2. The ratio

of the average of neighbors’ degrees compared to the average degree is 1.43.
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showing that it holds in all networks. One can find a variation of this lemma in Just,

Callender, and LaMar (2015).

A finite set N = {1, . . . , n} of agents, with generic indices i, j, are members of an undi-

rected3 network g ∈ {0, 1}n×n, so that g is symmetric and has 0’s on the diagonals. Agent

i ∈ N has di(g) =
∑

j gij links in the network.

Lemma 1 [The Friendship Paradox - General Networks]

For any network, the average degree of neighbors at least as high as the average degree

and the inequality is strict if and only if at least two linked agents have different degrees.

That is, 1
n

∑
i:di(g)>0

∑
j:gij>0 dj(g)

di(g)
≥

∑
i di(g)

n
, with strict inequality if (and only if) at least two

linked agents have different degrees.

The proof is straightforward and for completeness appears in the appendix. A stronger

characterization of the magnitude of the friendship paradox appears in Lemma 2 below, as

it can be derived once we give more structure to the set of networks considered. Other

variations on the friendship paradox and bounds on its magnitude in specific models can be

found in Jackson (2008, Section 4.2.1), Lattanzi and Singer (2015), Cao and Ross (2016).

This paradox, although easily understood, has wide-ranging implications, as we shall see.

1.2 An Example of the Impact of the Friendship Paradox

To see the implications of the friendship paradox most starkly, let us consider a simple

example.

A society of agents are influenced by their friends.4 The agents choose one of two actions,

either solid and plaid. They each have a slight preference for solid or plaid and in the first

period they follow those preferences. However, agents are conformists and prefer to mach

the majority of others, and only follow their own preference if there were equal numbers of

others in each style. They start with the choices in the upper left-hand figure, with only four

people preferring solid and eight preferring plaid. If they could all see the whole group and

best replied to that, then they would all choose plaid in the next period. However, instead

agents actually see and react to their neighbors in the network.

We start with the four most popular agents preferring solid, as pictured in Figure 4. The

remaining figures show what happens each following period under a best-reply dynamic, in

each period agents best respond to the choices that they see among their neighbors in the

previous period. So, Figure 5a has the best responses to Figure 4. The popular agents all

see each other and some others, but a majority of whom they see are solid and so they stay

with solid. Some other agents react to the popular agents and switch to solid. Iterating on

this in Figures 5b to 5b, Solid cascades and becomes the unanimous choice.

3The paradox extends to directed networks when one considers the average in-degree of friends.
4 To see similar examples illustrating biased estimation of opinions, see Lerman, Yan, , and Wu (2015).

On can also find examples in popular blogs (e.g., see Kevin Schaul’s Washington Post blog from Oct. 9,

2015 “A quick puzzle to tell whether you know what people are thinking”).
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Figure 4: The four most connected agents have a base preference for solid and the eight

others prefer plaid.

(a) Day 2, Four plaids switch to match the popular

agents.

(b) Day 3, More switch.

(c) Day 4, The changes to solids continue. (d) Day 5, All agents conform to solids.

Figure 5: Best reply dynamics: agents wish to match the behaviors of their neighbors and

use their own preference to break ties. The most popular are all friends with each other and

all stay with solid. Popular students are over-represented in other agents’ neighborhoods

and perceptions, and lead a cascade to solid.
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We see the role of the friendship paradox’s role by examining Figure 6, which shows

agents’ perceptions of the fraction preferring plaid based on their observations of their friends.

Three quarters of them see at least half preferring Solid even though the actual population

fraction is only one third.

Figure 6: The Friendship paradox at work. The fractions next to the agents are their

perceptions of the preferences are for solids over plaids, based on what they see among their

friends in the first period. Most of them perceive a majority preference for solid, with only

the few agents in the lower right perceiving a majority for plaids.

The effect in this example is consistent with a set of experiments by Kearns, Judd, Tan,

and Wortman (2009). They set up a laboratory version of a committee or political party

having to agree on a candidate, either red or blue. Groups of 36 subjects had to coordinate

unanimously on a candidate in order to get paid. Like our solid-plaid example above, the

subjects were connected in a network. They were at computer screens and could each toggle

back and forth between red or blue at any instant. They could also see which color their

friends in the network were supporting at any time; but they could not see the choices of

any other subjects beyond their friends. Their objective was to reach a consensus within

60 seconds. If all 36 subjects ever managed to reach the same color at some instant, then

the experiment ended with that being the consensus. If the subjects came to a consensus,

unanimously supporting the same candidate, then they won a monetary payment. If they

did not reach a consensus then they did not receive the payment. Again, similar to our solid-

plaid example, the subjects had preferences over the candidates. Some subjects received a

higher monetary payment if the red candidate was the consensus and others got paid more

if the blue candidate was the consensus. For instance, in some treatments, a red-supporting

subject got paid fifty cents if the group unanimously supported the blue candidate and a

dollar fifty if the group unanimously supported the red candidate, and nothing if the group

failed to reach unanimity. Thus, subjects preferred to have a consensus on their preferred

candidate, but would rather reach a consensus on the other candidate than to fail to reach

a consensus.

There were twenty seven runs of the experiment in which the network was set up in
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a manner similar to our solid-plaid example: only a small minority of the subjects were

supporters of one color and vast majority of subjects were supporters of the other color.5

The key was that the small minority of subjects preferring red were the ‘popular’ nodes -

having many more friends in the network.

A consensus was reached in 24 out of the 27 iterations of the experiment. More impor-

tantly, every one of the successful groups reached a consensus that was the minority group of

‘popular’ subjects’ preferred candidate, even though the majority preferred the other candi-

date. So, consistently, even when only six subjects preferred one color, and thirty preferred

the other, the group still settled on the preferred color of the small group of the most popular

subjects. Kearns et al. (2009) also ran some other variations of the experiment in which the

networks were instead structured to be more evenly balanced with more equal numbers of

supporters of red and blue, and in which the subjects had similar numbers of connections -

so without a set of popular subjects. In those versions of the experiment the coordination

was significantly less likely to occur: only 11 out of 27 groups managed to coordinate when

the number of connections was fairly evenly balanced among subjects.

1.3 The Contribution of the Current Paper

The experiments and example described above show how the friendship paradox can matter.

However, the example and experiment have starting behavior that is correlated with degree.

What is missing is an understanding of why higher degree individuals’ actions should exhibit

any systematic pattern that differs from others, and how this feeds back to the society. If

we had begun with higher degree individuals split evenly between solid and plaid in our

example, or blue and red in the experiments, then there would have been no predictable bias

in the outcome.

The contribution of this paper is to show why the friendship paradox matters by em-

bedding it in settings in which agents’ behaviors are influenced by their friends and the

overall level of activity of their friends. This builds on a previous literature that has estab-

lished comparative statics in games of strategic complements, including Jackson and Yariv

(2005, 2007); Ballester, Calvó-Armengol, and Zenou (2006); Galeotti, Goyal, Jackson, Vega-

Redondo, and Yariv (2010); Bergemann and Morris (2013); Bramoullé and Kranton (2014).

Generally, in games with strategic complements or substitutes, higher degree individuals are

exposed to more activity and are more affected. This leads them to take systematically

more extreme actions, which then feeds back to increase overall activity in the network.

Also, agents who benefit most from the activity choose to have more interactions, further

increasing their own behavior and that of others. As we show below, these two effects lead

to systematic and predictable overall distortions in the equilibria of such games played on

5The precise mix varied across iterations of the experiments: for instance with 6 subjects preferring red

and 30 preferring blue; or 9 preferring red and 27 preferring blue, or 14 preferring red and 22 preferring blue.

Which color was the minority was randomized across experiments so that some bias in peoples’ intrinsic

preferences over colors did not bias the results.

8



networks. This predictable pattern allows me to document the welfare implications of the

friendship paradox.

The results that I present are as follows. The main results demonstrate the two forces

described above. I start with the setting of a linear-quadratic game of strategic complements

in which a closed-form solution for behavior is obtainable. There I show how the fact that

agents’ actions are ordered by their degree biases overall activity upwards in a game on

a network compared to a benchmark society with uniform-at-random matching. Next, I

endogenize the network, showing that people with greater preference for an activity choose to

have higher degree, and that this leads to a further amplification of the overall activity in the

society. After studying the linear-quadratic setting, I use results on monotone comparative

statics to show that these two effects extend to a general class of supermodular games played

on networks. I also provide results on comparative statics and welfare orderings, showing how

the friendship paradox improves overall welfare in settings with positive externalities and is

harmful in settings with negative-enough externalities. Finally, I examine how the results

change when moving to a setting of strategic substitutes. There, higher degree agents (on a

fixed network) choose lower actions when they are exposed to a higher total action by their

friends. This leads agents in a network to perceive lower levels of behavior by their neighbors,

compared to a random matching, as the highest degree individuals take the lowest actions.

Given the substitute condition, agents respond to lower perceived actions by their neighbors

by increasing their own actions. Thus, when accounting for the behavior as a function of

degree and its feedback, we find that activity on a network ends up being higher in the

network setting than in a benchmark with uniform-at-random matching. However, once we

endogenize the network, the result in the case of strategic substitutes becomes ambiguous,

as then agents with greater preference for the activity choose higher degree, but this offsets

the proclivity of higher degree agents to free-ride more, leading to competing effects. Thus,

while the ordering in the context of endogenous networks with strategic complements is clear

and distorts behavior of all agents upwards, in the case of strategic substitutes the overall

effect is ambiguous.

2 A Model and the Friendship Paradox

2.1 Agents and Random Networks

A finite set N = {1, . . . , n} of agents, with generic indices i, j, are members of a random

network. We examine interactions at an interim stage, when each agent knows his or her

degree but not the full structure of the network. (For more on this perspective, see Jackson

and Yariv (2005, 2007); Manshadi and Johari (2009); Galeotti et al. (2010).) In particular,

agents do not know how many friends each of their friends has (or will have).6

6Indeed, there is evidence that people know little about many friends their friends have (e.g., see Friedkin

(1983); Krackhardt (1987, 2014)).
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Agent i ∈ N has di ∈ {1, 2, . . .} links in the network.7

Given some i, let Pi(d) be the degree distribution of the population of i’s potential neigh-

bors under a random network formation model, not conditioning on the fact that the person

ends up connected to i; and suppose that this marginal distribution is the same for each of

i’s neighbors. Let Ei[·] denote the expectation and Vari[·] be the variance associated with

Pi. This allows for general degree distributions, including scale-free distributions, Poisson

distributions, and hybrids. The only condition on the network formation process presumed

in what follows is that any idiosyncracies (e.g., homophily, assortativity, etc.) in the dis-

tribution are already accounted for in subscripting by i, which can thus condition on i’s

characteristics and degree, and then the relative chance that one of i’s links goes to a neigh-

bor with degree d will be in relative proportion to that degree. The then implies that the

probability that some given link of i connects to an agent who has degree d is given by

P̃i(d) =
d

Ei[d]
Pi(d). (1)

Let me emphasize the perspective here. A network has formed, or will form, and we

examine a particular node i who knows its degree di and the distribution from which the

degrees of its neighbors are drawn but not their actual degrees. The degrees of the potential

neighbors are described by Pi. If we look at any one of i’s links and ask what the distribution

of degrees of the neighbor on that link is, then it is described by P̃i(d).8 This follows directly

since people with higher degrees must be friends more frequently – in proportion to their

degree. For instance, if half of the population has degree 2 and half has degree 1, then two

thirds of the friends in the network must be of degree 2 as they are twice as likely to be

linked to as the degree 1 people.

2.2 The Friendship Paradox

Let Ẽi denote expectations with respect to P̃i. From (1) it follows that the expected degree

of i’s neighbors (the expectation of d under P̃i(d)) is

Ẽi[d] =
∑
d

dP̃i(d) =
∑
d

d
d

Ei[d]
Pi(d) =

Ei[d
2]

Ei[d]
= Ei[d] +

Vari[d]

Ei[d]
. (2)

This leads to the following lemma, which is a more explicit statement of the friendship

paradox in the context of a random network model.

Lemma 2 [The Friendship Paradox]

The expected degree of a neighbor of any agent i is Ẽi[d] = Ei[d] + Vari[d]
Ei[d]

.

7Agents who are isolated play no role in what follows, and so I focus on the population of agents who

have at least one connection in the network, and so di is always positive.
8For more discussion of this, see Newman, Strogatz, and Watts (2001) and Section 4.2 of Jackson (2008).
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In an extreme case, in which all nodes are perfectly positively assortatively matched, then

Vari[d] = 0 and the expected degree of a node’s neighbor is simply the same as its degree.

However, generally there is some variation in degree across neighbors and so the paradox

implies that the average degree of the population of potential neighbors will be strictly less

than the average realized neighbors’ degree.

In particular, if the expectations, Ei are similar across agents and we can drop the

subscript, and the variance is positive (the network has some possibility of not being regular),

then we get an immediate corollary that

E[d] < Ẽ[d] = E[d] +
Var[d]

E[d]
.

So, the expected degree of a neighbor is the population average plus a factor which is the ratio

of the variance of the distribution over the average. Moreover, all agents whose degrees are

no higher than average, or in fact are even slightly above average, have strictly lower degrees

than the expected degrees of their neighbors. It is only agents whose degrees are substantially

above the average (by at least Var[d]
E[d]

) who have degrees as high as their neighbors’ expected

degrees.

3 A Linear-Quadratic Game

Let us now analyze the impact of the friendship paradox in the context of a setting with

strategic complementarities.

Before turning to the general case, let us first explore how the friendship paradox plays

out in a linear quadratic game. This is a variation on the games studied by Ballester, Calvó-

Armengol, and Zenou (2006); Bergemann and Morris (2013); Bramoullé and Kranton (2014);

Belhaj, Bramoulle, and Deröıan (2014); de Marti and Zenou (2015).9 The advantage of the

linear-quadratic formulation is that it admits a closed-form solution and cleanly illustrates

the intuition behind the general results.

Agent i has a type θi ∈ Θ, where Θ is a compact subset of IR+. Types have a support

that includes positive values, and may be correlated with degrees (as we will derive in the

endogenous network case below). So, extend Pi and P̃i denote the probability distributions

that i perceives jointly over the types and degrees of her potential neighbors (unconditionally

and conditional upon being linked, respectively); and so when using Pi and P̃i in the previous

section we were considering its marginal just on degrees.

Agent i chooses an action xi ∈ IR+ and gets utility described by

θixi + axi
∑
j∈Ni

xj −
cx2i
2

+ φ
∑
j 6=i

xj

where Ni are i’s neighbors in the network. The scalar a > 0 captures the level of com-

plementarity of an agent’s action with his or her friends’ actions, c > 0 scales the cost of

9For an overview, see Jackson and Zenou (2014).
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taking the action, and φ ∈ IR is a parameter that captures the extent of global externalities

- either positive or negative. For instance, if xi is a level of criminal activity then φ would

be negative, while if xi is a level of knowledge acquisition or human capital investment then

φ would be positive.

Agents choose their actions simultaneously knowing their own types and degrees and

expecting over the degrees of their neighbors, and so maximize

θixi + axiEi

[∑
j∈Ni

xj

]
− cx2i

2
+ φEi

[∑
j 6=i

xj

]
. (3)

In cases in which the random network is such that each of i’s neighbors comes from the

same distribution, then we can write this as

θixi + axidiẼi [xj]−
cx2i
2

+ φEi

[∑
j 6=i

xj

]
. (4)

Note that the first expectation is over i’s neighbors, so conditions on being linked to them

and hence the Ẽi reflecting the friendship paradox, while the second expectation is over the

whole population as it is a global externality and so is simply Ei.

I consider the Bayesian equilibria of this game.

3.1 Equilibrium

To solve for an equilibrium in closed form, consider the case in which all agents face the

same degree distribution over their neighbors’ types and degrees; so Pi is the same for all

i. Let Ẽ [·] denote Ẽi [·j], for a generic i. Agents may still differ with regards to their own

realized type and degree, but their expectations over the rest of the population are similar.

Lemma 3 [Equilibrium Characterization]

If c > aẼ [d], then there is a unique Bayesian equilibrium to the game. It is symmetric

and the associated equilibrium actions are:

xfriend(θi, di) =
θi
c

+
adiẼ [θ]

c
(
c− aẼ [d]

) . (5)

In what follows, let us maintain the assumption that c > aẼ [d].10

The following comparative statics on the equilibrium as we change c, a, P are straight-

forward variations on results in the literature (e.g., Ballester et al. (2006); Galeotti et al.

(2010)). These comparative statics offer helpful insight in the proofs of the main results that

follow, as it shows how varying the distribution of degrees affects the equilibrium, which

is one way of thinking about what happens due to the friendship paradox which changes

degrees relative to population averages. Let xfrienda,c,P , U friend
a,c,P denote the dependence of the

equilibrium actions and utilities on the parameters of the setting.

10If costs are too low, then there is no equilibrium as the feedback drives best responses to be infinite.
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Lemma 4 [Comparative Statics]

Compare two settings (a, c, P, φ) and (a′, c′, P ′, φ).11 An increase in local complementar-

ities, a decrease in the cost of action, a first order stochastic dominance increase in the dis-

tribution of neighbors’ degrees, or a mean-preserving spread in the degree distribution, all in-

crease equilibrium actions of every type and the equilibrium utility of every type of agent. That

is, if a ≥ a′, c ≤ c′ and either P̃ ≥FOSD P̃ ′ or P is a mean-preserving spread of P ′,12 with at

least one of the inequalities being strict, then xfrienda,c,P (θi, di) > xfrienda′,c′,P ′(θi, di) for all i and for

every θi, di. Correspondingly, if φ is not too negative, then U friend
a,c,P (θi, di) > U friend

a′,c′,P ′(θi, di),

with the reverse inequality if φ is negative enough.

The comparative statics are intuitive. Increasing the interaction factor, decreasing the

cost of actions, and increasing the spread of degrees in the society, all increase the levels of

activity by agents and the feedback effects, as well as the amplification due to the friendship

paradox.

3.2 The Benchmark of a Playing with the Population

To understand the impact of the friendship paradox on behavior let us compare the equilib-

rium behavior in a network to the equilibrium behavior in a benchmark in which, instead

of being in a network, agents are just randomly matched with the population for each of

their interactions.13 Denote the equilibrium in this case by xbench. This is the same as the

equilibrium in (5) except that expectations are taken over the whole population with even

weighting, E, rather than conditional expected degrees of neighbors by the fact that they

are in a network (Ẽ). That is, instead of maximizing (4) agents maximize

θixi + axidiEi [xj]−
cx2i
2

+ φEi

[∑
j 6=i

xj

]
. (6)

and so the solution is

xbench(θi, di) =
θi
c

+
adiE [θ]

c(c− aE[d])
.

This benchmark still allows people to have different numbers of interactions, but those

interactions are with other individuals chosen uniformly at random from the population

(independently of his or her degree), rather than within a network. So, this is a situation in

which people care about the average level of behavior in the population but still can differ

in how many interactions they have.

11Changes in φ do not impact actions, only welfare.
12 P̃ ≥FOSD P̃ ′ indicates first-order stochastic dominance. Note that this condition applies to the distri-

bution of neighbors’ degrees, and it would not follow from stochastic dominance of P over P ′ (see footnote

19 in Galeotti et al. (2010)). In contrast, the mean-preserving spread is directly on the underlying degree

distributions.
13This benchmark would also hold in the case of a directed network in which a neighbor’s degree and type

is completely uncoupled from the fact that the agent is a neighbor.
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3.3 The Friendship Paradox and Increased Social Norms of Be-

havior

First, let us consider cases in which θj and dj are uncorrelated so that the expectation of a

neighbor’s θj is simply a random draw from the populations’ distribution of θ’s: Ẽ[θ] = E[θ].

This allows us to separate the two effects of the degree of the agent and their preference

types. In Section 3.7 we endogenize the networks in which case these become correlated.

It follows from (5) that the equilibrium behavior of agents in a network is given by

xfriend(θi, di) =
θi
c

+
adiE [θ]

c(c− aẼ[d])
.

Thus, the ‘friend’ introduces the ‘friendship paradox’ to the equilibrium relative to the

benchmark case, reflected in the Ẽ in the denominator. Given that Ẽ[d] > E[d], the actions

in of every type of agent are strictly higher in the case with network matching than in the

benchmark, as summarized in the following proposition.

Proposition 1 [The Impact of the Friendship Paradox on Behavior]

Consider a random network model, (a, c, φ, P ), that has a degree distribution that has a

positive variance and for which Ẽ[θj] = E[θj].

Then, xfriend(θi, di) > xbench(θi, di) for all θi and di. Thus, Ẽ[xfriend] > E[xfriend] >

E[xbench].

Proposition 1 states that equilibrium actions of all types of agents are strictly higher

when they are interacting in a network and exposed to the friendship paradox, as compared

to being randomly matched to the population without weighting by degree. It also states

that expected neighbors’ actions are even higher than the population average under the

network equilibrium. This last observation is really what drives the result: neighbors in a

network have higher expected degree than the population average and so are expected to

take higher actions given the complementarities. Higher neighbors’ actions feed back via the

complementarities and raise the overall equilibrium behaviors in the network compared to

the population-matching benchmark.

To get an impression of how the magnitude of the network effect varies with parameters,

I have plotted the ratio of xfriend/xbench evaluated at the average degree and type in Figure

7. The x-axis varies the background parameters, which can all be collapsed to one parameter

c/(aE[d]) capturing the relative cost of action compared to the social interaction factor and

average degree. Three curves are plotted for different values of how different the average

degrees of neighbors are compared to the average degree. Utility comparisons are even more

extreme as actions enter those quadratically - so these curves would be squared.

3.4 Welfare Implications

The ranking of equilibrium actions has strong welfare implications: we can Pareto rank the

two different scenarios, depending on the nature of the global externalities.
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Figure 7: The ratio of xfriend/xbench evaluated at the average degree and type. The x-axis

is the value of c/aE[d] and the three different curves correspond to three different values of

Ẽ[d]/E[d], with the 1.43 version from the Indian village data, and the other two for higher

and lower ratios.

Let U friend(θi, di) denote the expected utility of an agent of type θi, di under the equi-

librium associated with the random network (so (4) evaluated with respect to (5)), and

U bench(θi, di) be the corresponding expected utility (6) under the benchmark expectations

(of population matching) and the corresponding benchmark equilibrium actions.

Proposition 2 [Strict Pareto Rankings]

Consider a random network model (a, c, φ, P ), that has a degree distribution that has a

positive variance and for which Ẽ[θj] = E[θ]. If externalities are positive or not too negative

(there exists φ < 0 such that if φ ≥ φ), then the utility of every agent is higher in the network

setting than in the population-matching benchmark: U friend(θi, di) > U bench(θi, di) for all θi
and di. If externalities are negative enough (there exists φ ≤ φ < 0 such that if φ ≤ φ), then

the inequality is reversed: U friend(θi, di) < U bench(θi, di) for all θi and di.

The intuition behind the proposition is as follows. There are two forms of externalities:

local ones which are positive and come through the complementarities of the actions of the

agents, and global ones which could be positive or negative. In the case where both forms

of externalities are positive, then having higher actions by other agents strictly increases

an agent’s payoff from any given level of action, and thus from the best response too. In

that case, the actions of neighbors in the network setting are strictly higher than in the

benchmark and so each agent of any type gets a higher utility from any possible action that

she takes, and thus also when comparing best responses. The same is true if the global

externalities are not too negative, as then every agent still sees a bigger positive effect from
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local neighbors than negative effect overall. Once, the global externality is negative enough,

agents’ utilities are hurt so much by others’ increased actions, that even the benefits that

they see from the local externality cannot offset the loss, and in that case they prefer to have

lower actions of all agents and so prefer the benchmark setting to the network setting.

In the region of medium-sized negative externalities, between φ and φ, some types of

agents prefer to be in the network equilibrium and others prefer the population-matching

benchmark. In that middle range, people with higher types and degrees benefit enough

from the feedback due to the friendship paradox to overcome the negative externalities and

prefer the network setting, while people with lower types and degrees do not and prefer the

benchmark setting.

Generally, neither setting has fully Pareto efficient actions, since agents are only max-

imizing their own utilities and not taking into account the externalities that their actions

have on others. Nonetheless, this shows that the friendship paradox has strong welfare im-

plications compared to what would happen without networked interactions. In cases such as

investing in education or human capital (e.g., studying), which have positive externalities,

the fact that people may base their choices off of popular individuals who have more incen-

tives to invest in human capital is welfare-enhancing. In contrast, in cases such as delinquent

behaviors among teens which have substantial negative externalities, the friendship paradox

decreases welfare.

3.5 Increased Inequality

The friendship paradox also increases the inequality in actions and welfare among the popu-

lation. This is captured in the following proposition (see also Proposition 8 in the appendix).

Proposition 3 [Increased Inequality]

Consider a random network model (a, c, φ, P ), that has a degree distribution that has

a positive variance and for which Ẽ[θj] = E[θ]. Consider any i and two different degrees

di > d′i. Then

xfriend(θi, di)− xfriend(θi, d′i) > xbench(θi, di)− xbench(θi, d′i)

and

U friend(θi, di)− U friend(θi, d
′
i) > U bench(θi, di)− U bench(θi, d

′
i)

for all θi.

The proposition states that the friendship paradox increases the inequality in actions

and payoffs between more and less popular/central (higher versus lower degree) individuals.

The intuition behind this proposition is that agents benefit from the interaction with their

neighbors, and higher degree people enjoy greater interactive effects. Since the friendship

paradox produces larger expected actions of neighbors, this increases the difference in the

local externality experienced by higher versus lower degree individuals, which affects both
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actions and payoffs in the same direction. The difference in global externalities is the same

regardless of degree, so those are inconsequential.

The same comparison follows if instead of comparing the friendship actions or utility

to the benchmark, one compares settings with more social interactions (e.g., a first order

stochastic dominance shift in P̃ or an increase in a or lower c) to one with less social

interactions. This is shown as Proposition 8 in the appendix.

This means that as a society experiences technological changes that enable greater social

interaction, then for behaviors that involve complementarities there will be an increase in

inequality in behavior and welfare between agents who have more interactions and those

who have fewer. This provides a very different lens into increased inequality than other

discussions of inequality in the literature.

3.6 Misperceptions and the Friendship Paradox

The above comparison was between a case in which people maximize their utility from

interacting with their friends to settings in which they maximize their utility from interacting

with the population average.

Another interesting case to consider, which may apply to many social settings, is one in

which people really care about the population average, but they mistakenly react to their

friends - so they believe that their friends are representative and do not understand the

friendship paradox.

Thus, they best respond to their friends and play xfriend but their utility is really relative

to the population average (6). Let us call the resulting expected utility in this case Umisperc.

Proposition 4 [Strict Pareto Rankings with Misperceptions]

Consider a random network model (a, c, φ, P ), that has a degree distribution that has a

positive variance and for which Ẽ[θj] = E[θ].

First,

U friend(θi, di) > Umisper(θi, di)

for all θi and di, regardless of φ.

Next, if global externalities are positive enough (there exists φ > 0 such that if φ ≥ φ),

then:

Umisper(θi, di) > U bench(θi, di)

for all θi and di. If global externalities are negative enough (there exists φ ≤ φ < 0 such that

if φ ≤ φ), then:

U bench(θi, di) > Umisper(θi, di)

for all θi and di.

Umisper is always worse than U friend since the global externalities are the same and one

loses some of the local interaction effect. The more interesting comparison is with the
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benchmark case. Here the inflation of behavior helps in cases of positive-enough global

externalities and improves welfare, with the opposite conclusion in the case of negative-

enough externalities. The comparison is ambiguous near 0 global externalities, since others’

actions are higher leading to higher complementarity effects (which are positive), but people

are not best-responding given that they are misperceiving the behaviors of others.

3.7 Endogenous Interactions and Further Amplifications of Be-

havior

We have seen that complementarities lead agents with higher degrees to take higher

actions, which feed back to lead to further increase the actions of all agents given that

higher degree individuals have a disproportionate impact on others’ behaviors. This is one

effect of networks and the friendship paradox on behavior.

I now outline how a second effect amplifies this first effect. People with higher tastes

for the action – agents with higher θi’s – benefit more from the interactions with others,

and thus prefer to have a higher degree. Thus, when we model network formation we see a

positive correlation between θi and di. For instance, people who get more enjoyment from

some interactive behavior (especially in a social context, for instance adolescents with a

predisposition for drugs or alcohol) will prefer to interact more. This selection effect further

increases the behavior of agents with high degrees, as they benefit not only from the increased

complementarity that accompanies their high degrees, but they also tend to have higher base

propensities for high behavior to begin with. This amplifies the feedback and thus behaviors

throughout the population.

To see how this works, I now endogenize the network and derive the relationship between

θi and di rather than assuming that they are independent.

Consider a game in which agents choose di ∈ {0, 1, . . . , n − 1} in a first stage (as a

function of their θi’s), and then choose xi in a second stage. Also, consider the case in

which the choices of di’s are private, so that agents do not observe others’ choices (given

that they do not see their neighbors’ degrees). The game in which those choices are public

has similar results but seems less natural, and this formulation allows the use of Bayesian

equilibrium rather than perfect Bayesian; but there do not appear to be any interesting

strategic differences between the games.

Forming relationships is costly, and in order to obtain a closed-form solution, consider a

quadratic cost function of the form C(di) =
kd2i
2

for k > 0.

Let the distribution over types be i.i.d. across agents and be atomless with compact

support. This ensures that any symmetric equilibrium is essentially in pure strategies, as at

most a set of measure 0 of types ever have multi-valued best responses.14 The extension to

14Given that the set of agents who ever are indifferent are of measure 0, any equilibrium that involves

mixing has a counter-part in which the indifferent agents do not mix (and their decisions do not affect any

other agents’ best responses given their negligible measure) and the equilibrium still results in the same
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distributions with atoms is straightforward since degree choices are still nondecreasing (in

the sense of first order stochastic dominance) and each type mixes over at most two adjacent

degrees.

Let dendog(θi) be the (Bayesian) equilibrium degree choice of an agent of type θi and

xendog(θi, d
endog(θi)) be the resulting equilibrium actions in the second period, in the overall

endogenous-network equilibrium. 15

I do not require that the agents’ choices of di be compatible with a feasible network

across all agents. For instance, if n = 3 and d1 = 1 while d2 = d3 = 2 then there is no

network that can give all of the agents their preferred degrees at the same time. For large

n the probability that any agent misses their preferred degree by even one link goes to 0,

presuming some simple bounds on preferred degrees, in standard random network models

such as the configuration model. Thus, I ignore this effect and allow agents to unilaterally

decide on their degree, but the model could be extended to use the configuration model and

account for agents’ expectations that their degree is not exactly realized. This would prevent

solving for the equilibrium in closed form, but would still lead to qualitatively similar results.

Agents maximize their expected utility, anticipating equilibrium choices of the other

agents. The degree and action choices must solve

max
di,xi

θixi + axidiẼ
[
xendog(θj, dj(θj))

]
− cx2i

2
− φ(n− 1)E

[
xendog(θj, dj(θj))

]
− kd2i

2
, (7)

where expectations are relative to the equilibrium distribution of others’ choices.

Symmetric pure-strategy equilibria exist, and as there can be multiple equilibria I provide

results that hold for any symmetric pure-strategy equilibrium with at least two degrees.16,17

Proposition 5 [Endogenous Network Amplifications]

Let P endog(d) be the endogenous equilibrium degree distribution associated with a sym-

metric pure-strategy equilibrium and suppose that it involves at least two degrees and that

c > a(n − 1).18 Then each agent chooses a degree which is a nondecreasing function of the

distributions over degrees and actions.
15The notation indicating the dependence of xendog on dendog(θi) is redundant as they are both tied down

in equilibrium as a function of θi, but this notation will also be useful in comparing actions to the benchmark.
16The game is not quite supermodular, as actions depend both on types and degree. For example, if one

increases the degree that a low type chooses, then that increases the probability that a friend is of a low

type, which can decrease expected neighbors’ actions. Nonetheless, best responses are still monotone, and

essentially unique and can be taken as step functions with at most n values, and so can be taken to be

compact in the weak topology, and then existence is easy to establish from standard arguments.
17Here the equilibrium may not be unique. For instance, there always exists an equilibrium in which all

agents choose di = 0 given that they expect all others do as well. But the characterization here applies

to equilibria in which some agents choose a positive degree. Such equilibria exist by standard arguments

when restricting degree choices to be positive, and then such equilibria remain an equilibrium without that

restriction for k that are not too overwhelming.
18This last condition is stronger than is needed, which is that c > aẼ[d], but this is a sufficient condition

and independent of the endogenous degrees.
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agent’s type. Moreover, for all θi for which dendog(θi) > 0:

xendog(θi, d
endog(θi)) > xfriend(θi, d

endog(θi)) > xbench(θi, d
endog(θi)).

Proposition 5 distinguishes the two effects that we have been discussing. First, the bias of

having higher degree people be neighbors more often leads them to have more influence, and

their natural tendency to prefer higher actions given their higher rate of interaction leads to

higher behaviors by agents of all types. Second, higher-type agents benefit more from having

higher degrees leading to a positive correlation between degree and type, further increasing

high-degree agents’ actions and further increasing the behaviors of all agents.

Given these rankings of actions for each type and degree, it follows directly that the

average rankings follow the same rule. There is also an extension of the welfare result,

Proposition 2, to this case: with externalities that are positive or not too negative, all types

of agents prefer the endogenous equilibrium to the friendship paradox equilibrium without

correlation between types and degrees, to the benchmark case of playing with population

averages; while with very negative externalities the ranking is exactly reversed.

Proposition 6 [Strict Pareto Rankings with Endogenous Networks]

Consider a random network model (a, c, φ), and let P endog(d) be the endogenous equilib-

rium degree distribution and suppose that it involves at least two degrees and that c > a(n−1)

and k > a(n − 1). If externalities are positive or not too negative (there exists φ < 0 such

that if φ ≥ φ), then

U endog(θi, d
endog(θi)) > U friend(θi, d

endog(θi)) > U bench(θi, d
endog(θi))

for all θi. If externalities are negative enough (there exists φ < φ < 0 such that if φ ≤ φ),

then the inequality is reversed.

Note that it is important for these comparisons to make them relative to the degree

distribution P endog as that allows for expectations to be compared across the settings, and

otherwise it is not clear which degree distribution to use for comparison.

4 General Games with Complementarities

I now show that the results above extend to general network games with strategic comple-

ments.19 Omitted definitions here are standard from the literature on supermodular games

(e.g., see Milgrom and Shannon (1994); Van Zandt and Vives (2007)).

19For more background on these and related games, see Jackson and Yariv (2005, 2007); Sundararajan

(2007); Jackson (2008); Manshadi and Johari (2009); Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv

(2010).
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Each agent i chooses a strategy from a set Xi, which is a compact metric lattice with

associated partial order ≥i. For each i, let θi lie in a partially ordered set Θ. The utility of

agent i with degree di of type θi when other agents play actions x−i is given by

ui(xi; (xj)j∈Ni
, θi, di),

where Ni is the realized set of neighbors of i.20

Following Van Zandt and Vives (2007), let us say that ui has a smooth dimension if

Xi = Xi1 ×Xi2 in which Xi1 is a compact interval of IR and Xi2 is a complete lattice, ui is

continuously differentiable in xi1, and ∂ui/∂xi1 is strictly increasing in θi, di.

Agents choose actions as a function of their types θi, di. Let there be some given mea-

sure on types θ in the population denoted µ. Let agents view their neighbors’ degrees as

independent across neighbors and independent of the types. Given are distributions on the

degrees of agents other than i in the population Pi, and associated P̃i defined by (1), which

could be functions of (θi, di). Let xfriendi (θi, di) and xbenchi (θi, di) denote Bayesian equilibrium

strategies corresponding to beliefs over neighbors’ types and degrees defined by µ × P̃i and

µ× Pi, respectively.

Proposition 7 [Network Distortions on Behavior: General Games with Strategic Comple-

ments]

Consider a game for which ui is continuous, bounded, and supermodular in xi, and satis-

fies increasing differences in (xi; (xj)j∈Ni
, θi, di), for each i. Let Pi have weight on at least two

degrees and Pi and P̃i be monotone functions of θi, di.
21 Then maximal Bayesian equilibria,

xfriendi and xbenchi exist and are nondecreasing in θi, di. Moreover,

xfriendi (θi, di) ≥i xbenchi (θi, di) for all i and θi, di.

If for each i, ui has a smooth dimension on which xfriendi1 (θi, di) and xbenchi1 (θi, di) are interior

for all (θi, di), then

xfriendi1 (θi, di) >i x
bench
i1 (θi, di) for all i and θi, di.

Proposition 5 extends to the general case as well, presuming that ui satisfies increasing

differences in (xi, di; (xj)j∈Ni
, θi), presuming that there are nontrivial degree distributions in

equilibrium.

We also have an immediate corollary that if local externalities are positive (so that ui is

increasing in (xj)j∈Ni
), then the expected utility of the equilibria are ordered in the same way

as the actions, while if local externalities are negative (ui is decreasing in (xj)j∈Ni
) then the

welfare ordering is the reverse of the actions. Incorporating global externalities then requires

20We could also allow for global externalities as a function of x−i. For simplicity, I drop that notation,

but the results below apply directly, just with the additional notation, since Ni is defined to be the set of

other agents whose actions interact strategically with i’s action.
21Thus, if θ′i, d

′
i ≥ θi, di, then P ′i ≥ Pi and P̃ ′i ≥ P̃i in the sense of first order stochastic dominance.
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a comparison between local and global effects, which do not change the results if they move

in the same direction, but may lead to ambiguous effects if they conflict in direction, and

then the statement requires a large enough negative global externality to reverse the welfare

ordering.

The results surrounding the endogenous network also extend, as under appropriate mono-

tonicity conditions higher types prefer higher degrees and higher actions. However, the game

of degree choices is not supermodular. If a lower preference type increases its degree, then

that becomes relatively more frequent as a neighbor, and can partly crowd out higher types

being in a neighborhood in expectation, and so can lower the expected actions of a neigh-

bor. This does not overturn the logic of the analysis form before - as degree will still be a

non-decreasing function of type and so are actions. It just means that the techniques from

supermodular games cannot be used in the proofs, and one needs to argue directly based on

the monotonicity of strategy choices (and existence comes from continuity and compactness).

Such direct arguments are used in the proof of Proposition 5, as even the linear-quadratic

setting is not supermodular when endogenizing degree. So one can simply mimic the logic

of that proof to extend the endogenous degree choice to more general utility formulations.

5 Public Goods and Strategic Substitutes

The results above concern games of strategic complements. That is a case of fundamental

interest since many interactions fall into that category. Games with strategic substitutes also

apply to many settings, such as those in which agents share tasks or contribute to local public

goods. Let me briefly discuss how the results change in the case of substitutes.

With strategic substitutes the interaction of incentives between agents is reversed com-

pared that under strategic complements. In a game of local strategic substitutes, i’s utility

is again described by a function of the form

ui(xi, (xj)j∈Ni
, θi, di),

in which we maintain the same assumptions as in the case of complementarities before,

except that we reverse the direction of how (xj)j∈Ni
and di affect changes in utility with

regards to changes in xi. In particular, in this case ui satisfies increasing differences in

(xi; (−xj)j∈Ni
, θi,−di).22 So, agents prefer to take lower actions if they have more neighbors

and/or those neighbors take higher actions. It is still possible that agents have utility that

increases in (xj)j∈Ni
and di, but the incentives to choose a higher xi decreases as an agent

sees more activity by others in their neighborhood. This applies to standard local public

goods games.

In such a setting, using similar arguments to those behind the results above, with a sign

reversal, it follows that x∗(θi, di) is nondecreasing in θi and nonincreasing in di. This then

22The sign on θi is not reversed, as this still captures an agent’s personal predisposition for the behavior.
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also provides implications for the friendship paradox. When matched with higher degree

neighbors (presuming independence between θs and ds), one expects less activity from those

neighbors than when matched with lower degree neighbors. Thus, the network setting leads

agents to expect less action by their neighbors than in the benchmark population matching

setting, and so this ultimately leads agents to increase their own actions in response.

To see how this works in more detail, let us consider a canonical example. The example

is that of a best-shot public goods game (e.g., see Galeotti et al. (2010)).

In this setting, each agent chooses an action xi ∈ {0, 1} - whether to provide a local

public good. Providing the good costs c > 0. The agent’s payoff is then the max of the

actions in his or her neighborhood, including her own action. In particular, the payoff is

θiI[xi+
∑

j∈Ni
xj>0] − cxi,

where I is the indicator function. This applies to settings in which if one agent invests in

the public good then all of his friends can share in the value of the good. Examples include

completing a task, or buying a book that can be lent to friends, or acquiring information

that can be shared with the friends (but for simplicity does not transfer multiple hops). Each

agent would prefer that a neighbor provide the good, but would rather provide the good if

no neighbor does.

Let π̃i denote the probability agent i perceives that any given one of her neighbors will

provide the public good. Then agent i prefers providing the public good if

θi − c ≥ θi[1− (1− π̃i)di ]

or (presuming that π̃i < 0)

θi ≥
c

(1− π̃i)di
.

Thus, presuming that π̃i < 0, there is a threshold

ti(di) =
c

(1− π̃i)di
> 0

for which the agent’s best response is to provide the public good (xi = 1) if θi > ti(di) and

not to provide the public good (xi = 0) if θi < ti(di).
23 Note that ti(di) is increasing in di.

When the distribution of neighbors’ degrees and types is the same across agents, the

probability that a random neighbor will provide the public good in a symmetric equilibrium,

denoted by π̃, is then

π̃ =
∑
d

Pr [θ > t(d)] P̃ (d).

In equilibrium this must solve

π̃ =
∑
d

Pr

[
θ >

c

(1− π̃)d

]
P̃ (d).

23In a case in which θi has an atomless distribution, the indifferent case is negligible and otherwise there

may be some mixing at the precise threshold of ti(di).
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Given that the right hand side is decreasing in π̃ and is positive when π̃ = 0 (presuming that

c lies in the support of θ), this has a unique solution, associated with the unique symmetric

equilibrium.

Next, note that first order stochastic dominance shifts in P̃ (d) lead the right hand side

to decrease for every value of π̃ and so the equilibrium value of π̃ must decrease.24

This in turn, leads to a lower value of t(d), since it is increasing in π̃.

Thus, we see that tbench(di) > tfriend(di) for every di, and so the thresholds are lower

under the friendship paradox. This means that there is more public goods provision by

all degrees of agents under the friendship paradox, but this comes from the reaction to an

overall lower expected probability that a random neighbor provides the public good under

the friendship paradox.

Note, however, that the expected utility of an agent of any given degree generally tends

to go down in the network setting compared to the random matching setting, since agents are

matched with agents of higher degrees and expect less activity from their neighbors overall.

Thus, even though the network setting incentivizes more activity by agents, this is because

they are more frequently matched with high degree agents who tend to free-ride more on the

action. This leads to lower expected utilities by each type of agent and overall.

Although I have analyzed the case of the best-shot public goods game, it is clear that

the reasoning applies to more general games, similarly to the way that the linear-quadratic

results generalized in the previous section.

In games of strategic substitutes, endogenizing the network leads to ambiguous effects

on overall actions and welfare. In most such settings, people who have higher payoffs from

the activity also tend to benefit from having higher degree (presuming that there is some

marginal gain from neighbors’ provision of the public good on top of one’s own provision).25

This leads to an overall ambiguous effect as agents’ high type pushes them to take higher

actions but their increased endogenous degree tends to reduce their actions - and the overall

effect depends on the parametric specification. Thus, while the results from the strategic

complements in terms of comparisons on a fixed network have (reversed) analogs in the case

of strategic substitutes, the case in which the network is endogenized does not extend. This

means that the overall impact of the friendship paradox in the case of strategic substitutes

can be ambiguous and will depend on details of the preferences - whether the individual

incentives to provide the good or the local externalities dominate.

24Higher values of d lead to higher values of c
(1−π̃)d , which lead to lower values of Pr

[
θj >

c
(1−π̃)d

]
.

25In the case of the best-shot public goods game, the endogenous network formation game becomes degen-

erate. Any agent who intends to provide the public good in that game gets no additional value from having

neighbors. Thus, the only agents who would choose to pay to have connections would be those planning

not to provide the public good - but then they would not want to have connections in that case. To have

a nontrivial game in which anyone forms connections, agents have to be endowed with some base degree.

In that case, in equilibrium, only the lowest degree agents would provide the public good. Those agents

actually turn out to be the higher θ agents in this particular game.
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6 Concluding Remarks

‘Popular’ individuals disproportionately impact the perceptions in a society. If popular

individuals tended to act the same as others this would not systematically bias peoples’

perceptions of norms or the norms themselves. However, as we have shown, there are two

ways in which popular individuals and their behaviors differ from others. First, they have

more interactions and that leads them to act more extremely for any behavior that involves

strategic complementarities. Second, people who are more predisposed to like a certain

behavior will also seek to have more interactions involving that behavior, amplifying the

effect. As shown in this paper, these two distortions both lead to increases in perceptions of

behavior and ultimately feed back to increase the overall behavior in a society.

Depending on the nature of the externalities of an activity the effect of the friendship

paradox can be good or bad. For instance, these results help us to understand student’

systematic over-estimation of their peers’ delinquencies that involve social interaction. Thus,

this helps explain why drug and alcohol problems are pervasive in high school and college

environments. Interestingly, the friendship paradox can also be Pareto improving in settings

with positive externalities. It is worth noting that these distortions can be even further

exacerbated by social media, where distortions in the number of interactions can be even

more extreme and in which what is posted or communicated is also biased towards behaviors

that are social in nature.

Understanding the friendship paradox’s role in the formation of social norms has policy

implications.26 It sheds light on the importance of role models and information access in

improving norms. Our analysis explains why programs known as ‘social norm marketing’

have been successful. In such programs, one simply informs people of the true population

behavior. A first instance of this was use by Northern Illinois University (see Haines and

Spear (1996)). The study found no improvement due to a traditional educational intervention

in which they taught students about dangers of alcohol and emphasized that it was ok

to abstain; but then when they used a new program of informing students of the actual

(reported) rates of binge drinking they found significantly improved perceptions of others’

rates of binge drinking and reduced binge drinking overall .27 Since then many other social

norm marketing programs have been used and studied, including a study by DeJong et al.

(2006) that involved 18 universities with controls, and reached similar conclusions. Social

norm marketing has been tried in a variety of settings, for instance in improving perceptions

of others’ behavior and decreasing the incidence of drinking and driving in a controlled trial

in Montana (Perkins, Linkenbach, Lewis, and Neighbors (2010)). Other variants on such

26 This fact has not been lost on marketers and is also an important driver of identifying most-at-risk

individuals, for instance using snowball sampling to identify people most at risk for HIV. Taking advantage

of the visibility of friends can also help in fostering adoption of new programs (e.g., Kim et al. (2015)).
27In the base period 43 percent of the students reported binge drinking. In that same survey just over 69

percent of the students perceived binge drinking as the ‘norm’. At the end of the study of the new program,

just over 34 percent of students reported binge drinking and 51 percent perceived it as the norm.
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programs that our analysis explains are ones that target the highest consuming students,

providing them with information about how their behavior ranks compared to the rest of

the population (e.g., see Agostinelli et al. (1995)). Our analysis explains why providing

information of actual norms should improve perceptions and norms in any settings with

complementarities and overall negative externalities, in which people really care about how

their behavior matches with the overall population and not just their friends, but base their

perceptions of the norm on their own experiences.

Note that our analysis also providesinsight regarding situations in which agents hide

behaviors - where we can think of the action above to be either to avoid a behavior or hide

it. If agents are worried about reputation, then agents who have more interactions might be

more likely to hide that they undertake some behavior. This leads people to underestimate a

behavior, and their lowered perceptions of the norm can lead to more hiding of the behavior.

It would be interesting to explore the implications of such results for perceived norms and

openness of behavior, for instance, of homosexuality in some societies - and policies such as

‘don’t ask don’t tell’.
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Appendix

Proof of Lemma 1: Consider a network g. The average degree of agents in the network is∑
i di(g)

n
=

1

n

∑
i<j:gij=1

2.

The average degree of neighbors is

1

n

∑
i:di(g)>0

∑
j:gij=1 dj(g)

di(g)
=

1

n

∑
i<j:gij=1

dj(g)

di(g)
+
di(g)

dj(g)
.

Thus, it suffices to show that
dj(g)

di(g)
+
di(g)

dj(g)
≥ 2

and that the inequality is strict if and only if di(g) 6= dj(g). Note that

dj(g)

di(g)
+
di(g)

dj(g)
− 2 =

(dj(g)− di(g))2

di(g)dj(g)
.

The right hand side of the above equation is nonnegative, and positive if and only if dj(g) 6=
di(g).

Proof of Lemma 3: From the first order condition of maximizing (3), it follows that the

best response of i as a function of i’s type and degree is

xi(θi, di) =
θi
c

+
aEi

[∑
j∈Ni

xj

]
c

.

and so

xi(θi, di) =
θi
c

+
adiẼi [xj]

c
.

Taking expectations of both sides of the above expression for xi(θi, di) with respect to Ẽ

yields

Ẽ [x] =
Ẽ [θ]

c
+
aẼ [d] Ẽ [x]

c
.

Thus,

Ẽ [x] =
Ẽ [θ]

c− aẼ [d]
.

Substituting the above expression into the solution for xi(θi, di) leads to the following

characterization of equilibrium (when Pi’s are the same for all i),

xfriend(θi, di) =
θi
c

+
adiẼ

[
xfriend

]
c

=
θi
c

+
adiẼ [θ]

c
(
c− aẼ [d]

) ,
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as claimed in the lemma.

Proof of Lemma 4: Recall that

xfriend(θi, di) =
θi
c

+
adiE [θ]

c(c− aẼ[d])
.

This is increasing in a, decreasing in c (under the maintained assumptions that on c > aẼ[d]).

Note that Ẽ[d] is increasing as we take a first order stochastic dominance shift in P̃ , and

also as we take a mean preserving spread of P since Ẽ[d] = E[d2]
E[d]

. The comparative statics

in actions follow directly.

From (4) we know that

U friend = θix
friend(θi, di)+ax

friend(θi, di)diẼi

[
xfriend(θj, dj)

]
−cx

friend(θi, di)
2

2
+φEi

[∑
j 6=i

xfriend(θj, dj)

]
.

So, suppose that we start at a′, c′, P ′ and the corresponding xfriend. Keeping i’s ac-

tions fixed change to a, c, P . From the above comparative statics in actions it follows that

Ẽi

[
xfriend(θj, dj)

]
and Ei

[∑
j 6=i x

friend(θj, dj)
]

both increase with a, decrease with c, and

increase as we take a first order stochastic dominance shift in P̃ , and also as we take a

mean preserving spread of P . Thus, for a nonnegative φ, we end up with a strict increase in

the resulting U . Now, adjust xfriend to be the best response to a, c, P and utility can only

increase. So, overall payoffs have gone up for all types. Given that this is a strict inequality

when φ is 0, across all types and degrees in a compact set, and utilities are continuous in φ,

this also holds for some negative φ’s, establishing the first welfare comparison of the lemma.

Next, note that the equilibrium actions are independent of φ. Given that Θ is compact

and degrees are bounded by n− 1, and utility and actions are continuous in types, there is

a maximum gain in

θix
friend(θi, di) + axfriend(θi, di)diẼi

[
xfriend(θj, dj)

]
− cxfriend(θi, di)

2

2

due to the change from a′, c′, P ′ to a, c, P . Call this X (which we know is positive from

above, as it corresponds to φ = 0). There is also a change in Ei

[∑
j 6=i x

friend(θj, dj)
]

which

is some Y > 0. Then provided X + φY < 0, then the welfare comparison will be negative.

So, setting φ < −X/Y completes the proof.

Proof of Proposition 1: Recalling from (2) that

Ẽ [d] =
∑
d>0

d
P (d)d

E[d]
=

E[d2]

E[d]
,

it follows from Lemma 3, and the fact that the expectations over types of neighbors is the

same as the unconditional expectation, that the equilibrium actions are

xfriend(θi, di) =
θi
c

+
adiE [θ]

c(c− aE[d2]
E[d]

)
. (8)
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The first part of the proposition, that xfriend(θi, di) > xbench(θi, di) for all θi and di, then

follows from comparing our expression for xfriend(θi, di) above to that of xbench(θi, di), and

noting that the only change is in the denominator with a comparison between E[d2]
E[d]

and E[d].

The first claim then follows directly since whenever P has a positive variance, then

E[d2]

E[d]
=

Var[d] + E[d]2

E[d]
=

Var[d]

E[d]
+ E[d] > E[d].

This also then implies that E[xfriend] > E[xbench], since these are ordered pointwise. The

fact that Ẽ[xfriend] > E[xfriend] follows from the fact that P̃ strictly first order stochastically

dominates P and xfriend is increasing in di, which completes the proof.

Proof of Proposition 2: This follows from proof of Lemma 4, noting that difference the

xbench, U bench and xfriend, U friend just corresponds to a change in the use of P versus P̃ , which

is a strict mean preserving spread.

Proof of Proposition 3: This follows from proof of Proof of Proposition 8, below, noting

that difference the xbench, U bench and xfriend, U friend just corresponds to a change in the use

of P versus P̃ , which is a strict mean preserving spread.

Proposition 8 [Increased Inequality, Part II]

Compare two settings (a, c, P, φ) and (a′, c′, P ′, φ).28 An increase in local complemen-

tarities, a decrease in the cost of action, a first order stochastic dominance increase in the

distribution of neighbors’ degrees, or a mean-preserving spread in the degree distribution, all

increase equilibrium actions of every type and the equilibrium utility of every type of agent.

That is, if a ≥ a′, c ≤ c′ and either P̃ ≥FOSD P̃ ′ or P is a mean-preserving spread of P ′,

with at least one of the inequalities being strict, then

xfrienda,c,P (θi, di)− xfrienda,c,P (θi, d
′
i) > xfrienda′,c′,P ′(θi, di)− xfrienda′,c′,P ′(θi, d

′
i)

and

U friend
a,c,P (θi, di)− U friend

a,c,P (θi, d
′
i) > U friend

a′,c′,P ′(θi, di)− U friend
a′,c′,P ′(θi, d

′
i)

for all i and θi and di > d′i.

Proof of Proposition 8: To see the first claim, note that

xfrienda,c,P (θi, di)− xfrienda,c,P (θi, d
′
i) =

a(di − d′i)E [θ]

c(c− aẼ[d])
.

This is increasing in a, decreasing in c, and increasing in Ẽ[d] = E[d2]
E[d]

which increases when

either P̃ ≥FOSD P̃ ′ or P is a mean-preserving spread of P ′ (at least one strict). This

establishes the first part of the result.

28Changes in φ do not impact actions, only welfare.
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Note that substituting xfriend(θi, di) into (4) it follows that

U friend(θi, di) =

(
θi + adiẼi

[
xfriend(θj, dj)

])2
2c

+ φEi

[∑
j 6=i

xfriend(θj, dj)

]
.

Thus,

U friend(θi, di)−U friend(θi, d
′
i) =

(
θi + adiẼi

[
xfriend(θj, dj)

])2
−
(
θi + ad′iẼi

[
xfriend(θj, dj)

])2
2c

Notice that this expression is increasing in a and Ẽi

[
xfriend(θj, dj)

]
and decreasing in c.

Given that Ẽi

[
xfriend(θj, dj)

]
increases as we make the claimed changes from a′, c′, P ′ to

a, c, P , the result then follows˙

Proof of Proposition 5: Consider a pure strategy symmetric equilibrium in which agents

put positive probability on a positive degree - so that there is some interaction.

First note that in any such symmetric equilibrium, it must be that since agents are

replying when choosing degrees and action levels, their action levels must also be best replies

to the other action levels holding their degree choices fixed. Thus, taking the first order

conditions of (7) with respect to xi the equilibrium xi’s satisfy

xendog(θi, d(θi)) =
θi
c

+
ad(θi)Ẽ

[
xendog(θj, d(θj))

]
c

=
θi
c

+
ad(θi)Ẽ [θj]

c(c− aẼ[d(θj)])
. (9)

The second equality follows from solving for the equilibrium values as in Lemma 3, taking

the d(θ) choices as given, with the only difference being that now the numerator has the ex-

pectation Ẽ [θj] (rather than E [θj]), which conditions on the fact that the degree of neighbors

now correlates with their degrees.

Next, consider some i and let us examine the best response choices of di, knowing that

these must be best responses anticipating that actions will be according to xendog.

Let us first consider the choice of an agent as if he or she were maximizing a continuous

random variable. Taking the first order conditions of (7) with respect to di (and invoking

the Envelope Theorem with respect to xendog(θi, di) as a function of di) for the maximization

of i’s expected utility leads to

axendog(θi, di)Ẽ
[
xendog(θj, dj(θj))

]
− kdi = 0.

The second derivative of the expected utility is

∂xendog(θi, di)

∂di
aẼ
[
xendog(θj, dj(θj))

]
− k.

From (9) it follows that ∂xendog(θi,di)
∂di

=
aẼ[xendog(θj ,dj(θj))]

c
and so the second derivative is

a2Ẽ
[
xendog(θj, dj(θj))

]2
c

− k,
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which is negative by assumption (since ck > a2(n− 1)2 ≥ a2Ẽ
[
xendog(θj, dj(θj))

]2
) .

Thus, the expected utility is strictly concave in di and has a maximum at a point solving

kdi = axendog(θi, di)Ẽ
[
xendog(θj, dj(θj))

]
.

Then, substituting for xendog(θi, di) and solving for di, the optimal degree ignoring integer

constraints is:

d∗i =
θi
c

[
caẼ

[
xendog(θj, dj(θj))

]
ck − aẼ [xendog(θj, dj(θj))]

2

]
.

Given the strict concavity of the expected utility function, the maximizing integer choice

for dendog must put probability only on either highest integer that does not exceed d∗i or the

lowest one that is not smaller than d∗i .

Next, note that (from (7)

∂2EUi(θi, di)

∂θi∂di
= a

∂xendog(θi, di)

∂θi
Ẽ
[
xendog(θj, dj(θj))

]
= aẼ

[
xendog(θj, dj(θj))

]
/c > 0.

This implies, together with the strict concavity of utility in di, that if the some θi weakly

prefers di to some lower d′i, then any higher type strictly prefers the higher degree. This

implies that the the optimal dendog(·) is nondecreasing, and that at most a set of measure 0

of types will be indifferent between two degrees, and so the strategy can be taken to be pure.

The comparison between xfriend(θi, d
endog(θi)) and xbench(θi, d

endog(θi)) follows from Propo-

sition 1, just substituting in the induced equilibrium degree distribution.

To make the comparison between xfriend(θi, d
endog(θi)) and xendog(θi, d

endog(θi)), note that

the only difference is that

xendogi =
θi
c

+
adiẼ [θ]

c(c− aE[d2]
E[d]

)

while

xfriendi =
θi
c

+
adiE [θ]

c(c− aE[d2]
E[d]

)
,

and so it boils down to a comparison between Ẽ [θ] and E [θ]. Note that

Ẽ [θ] =
∑
d

E[θ|dendog(θ) = d]
P (d)d

E[d]
>
∑
d

E[θ|dendog(θ) = d]P (d) = E [θ] ,

whenever there are at least two degrees chosen in equilibrium. This follows from the fact

that dendog(θ) is nondecreasing in θ and pure, and so E[θ|dendog(θ) = d] is increasing in d,

together with the fact that P (d)d
E[d]

strictly first order stochastically dominates P (d), which

completes the proof.

Proof of Proposition 6: The comparisons between U friend and U bench follow from Propo-

sition 2. To compare U endog to U friend, one follows a parallel argument except now the
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additional fact that dendog is nondecreasing and the ordering between xendog and xfriend leads

the expectations of others’ actions to be higher under the endogenous equilibrium.

Proof of Proposition 7: The existence and monotonicity of greatest equilibria, in both

the network and population matching cases, follows from Proposition 14 in Van Zandt and

Vives (2007). The ordering between actions follows from the fact that P̃i strictly first order

stochastically dominates Pi (given that Pi has weight on at least two degrees) and Proposition

16 in Van Zandt and Vives (2007), as we can view the only difference between xfriendi and

xbenchi as a change in the distributions over neighbors’ degrees. The distribution over other

agents’ types is unchanged, given the independence, and then to see the first order stochastic

dominance, note that P̃i(d)/Pi(d) = d/E[d] which is strictly increasing in d. The strict

ordering of actions in the case with a smooth dimension and all interior actions then follows

from their Corollary 17.29

29Note that their proof extends to the case in which the stochastic dominance is strict only on one dimension

of agents’ types, here degrees, and that dimension drives a strict increase in the derivative of utility with

respect to the smooth dimension of actions.
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