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Abstract

We argue that the price of “discount-rate” risk reveals whether increases in equity
risk premia represent “good” or “bad” news to rational investors. We employ a new em-
pirical methodology and find that the price is negative, contrary to previous estimates.
This finding supports equilibrium models with stochastic technology or preferences as
the drivers of time-varying expected returns, but is inconsistent with canonical models
of sentiment. Our approach relies on using future realized market returns to consis-
tently estimate covariances of asset returns with the market risk premium. Covariances
drive observed patterns in the broad cross-sections of stock and bond expected returns.
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1 Introduction

Discount rates (expected excess returns) unquestionably vary significantly over time. Yet
there is little agreement as to why1. Is technology highly volatile? Are preferences par-
ticularly sensitive to economic conditions? Or are markets prone to fads and panics? The
question seems almost too vague given the nearly limitless number of potential explanations
for return predictability. The typical approach to addressing this question is to postulate a
particular model of beliefs and preferences and test how well that specific model fits with
empirical regularities. In this paper we approach the problem from a new perspective: we
categorize models based on whether rational investors (within each model) “like” or “dis-
like” states of the world with high expected returns. This dichotomy translates into the
premium or discount accruing to an asset based on its return covariance with discount-rate
shocks. We develop a new “model-free” empirical approach which overcomes the difficulty in
precisely estimating shocks to aggregate expected returns and does not rely on assumptions
about investors’ information set. We find that positive covariance with such shocks leads
to lower expected returns, implying states of the world with high discount rates are “bad”.
This finding supports models with stochastic technology or preferences as the drivers of
time-varying expected returns and is inconsistent with many canonical models of sentiment
(biased expectations).

We consider two broad classes of popular asset pricing models. The first class, which we
loosely label as “rational”, consists of models in which agents have objective beliefs about the
distribution of shocks in the economy. Time-varying risk premia (expected excess returns) are
due to stochastic technology or preferences. This class includes standard consumption based
models such as long-run risks with stochastic volatility (e.g., Bansal and Yaron, 2004) and
habits (e.g., Campbell and Cochrane, 1999, Constantinides, 1990), as well as models featuring
stochastic risk aversion (Dew Becker, 2011, Kozak, 2015) or ambiguity-averse agents (e.g.,
Drechsler, 2013), etc. The second group, which we label as “behavioral”, consists of models
in which some of investors have subjective (biased) beliefs. From the perspective of rational2

1“[D]iscount-rate variation is the central organizing question of current asset-pricing research.”
(Cochrane, 2011)

2We consider the perspective of an unconstrained investor with objective beliefs. For this agent, the
Euler equation holds with equality under the objective measure, which we can learn about from historic
data.
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investors, expected returns vary “exogenously”. Such models include Campbell and Kyle
(1993), Kim and Omberg (1996), Campbell and Viceira (1999), Barberis et al. (2015) etc3.

The key to our estimation is that both types of models typically posit the existence of
an unconstrained4 investor with objective beliefs. The models differ in how such investors
view discount rate shocks. In the “rational” class, expected returns are high during “bad
times”: states of the world with high marginal utility of consumption, volatility, ambiguity,
risk-aversion, or low surplus consumption ratio. Investors are willing to pay to hedge against
these states. This implies a negative price of risk for discount rate shocks. Rational investors
prefer to hold assets which pay off when risk premia increase. Consequently, they bid up the
prices of such assets so that in equilibrium, they have low expected returns.

In the “behavioral” class, rational investors consider states with high expected returns
as “good times”. They view discount rate variation as essentially exogenous. An increase
in risk premia (and associated drop in asset values) lowers utility due to the direct income
effect but is more than offset by the increase in utility due to better investment opportunities
(substitution effect)5. Rational investors in these models dislike states of the world with low
discount rates and are willing to pay to hedge against these states. This implies a positive
price of risk for discount rate shocks, contrary to the predictions of the rational class of
models6.

Our “model-free” estimation uses a broad cross-section of return anomalies and reveals
a striking pattern. We find that most of the variation in expected returns is explained by
covariance with our risk-premium factor, which commands an unambiguously negative price
of risk. This evidence suggests that an unconstrained investor with objective beliefs dislikes
states of the world with high aggregate risk premia. This result contrasts with much of the

3Kim and Omberg (1996) and Campbell and Viceira (1999) solve for a rational agent’s optimal invest-
ment policy (and implicitly her SDF) assuming that expected excess returns follow an AR(1) or Ornstein-
Uhlenbeck process. Adding a group of sentiment investors whose belief bias follows an AR(1) leads to results
obtained in these papers. Campbell and Kyle (1993) and Barberis et al. (2015) explicitly model the trad-
ing/beliefs of sentiment investors and solve analytically for the rational arbitrageurs’ value function. It is
trivial to derive the SDF given this closed form solution.

4We use unconstrained to mean the investor faces no binding hard constraints.
5Kim and Omberg (1996) analytically show this result for HARA utility with γ < 1. This includes

exponential utility and power utility with RRA > 1. Campbell and Viceira (1999) numerically show that
for Epstein-Zin preferences with power aggregator, it obtains if RRA > 1 and also IES 6= 1.

6We recognize it easy to write both “rational” and “behavioral” models with arbitrary sign of price of
risk (depending on the covariance of various shocks). Our analysis considers canonical models and captures
the economic intuition of these frameworks.

3



prior literature, in which the evidence is mixed but, perhaps, tilts towards a positive price
of risk7. Our findings thus imply that the time-variation in risk premia is an important
economic risk which affects asset prices and provide strong support for a rational basis
(technology or preference shocks) for time-varying expected market returns.

Our empirical investigation starts with a general two-factor SDF which contains shocks to
the market return and the market risk premium. Such an ICAPM representation (Merton,
1973) obtains for both “rational” and “behavioral” classes of models which we discussed
previously. We show how to condition down the pricing model implied by such a pricing
kernel in a general way. We do so under two different settings.

In the first approach we assume that conditional covariances are constant (but study the
robustness of this assumption via simulation later in the paper). We show that when discount
rates follow an AR(1) process, it is possible to replace conditional covariance with respect
to shocks to discount rates with unconditional covariances with respect to levels of discount
rates. This substitution results in a “twist” of the unconditional prices of risk relative to
their conditional expectations, but we show that the sign of the price of discount-rate risk
is preserved under very mild and economically realistic conditions.

We derive similar results in a setup with constant prices of risk, but with stochastic
volatility. Following Campbell et al. (2015), we assume a single state variable drives all
variances. We obtain similar unconditional results in this framework. Again, the sign of the
price of risk is preserved for reasonable calibrations8. Therefore, our results apply equally to
models with time-varying prices or quantities of risk.

Finally, we argue that the covariance of asset returns with the level of discount rates can
be consistently estimated by computing the covariance with future realized market returns.
This methodological insight allows us to estimate the pricing equation consistently, without
relying on any particular model or assumptions about the information set that investors use
(predictive variables).

This is not the first paper to estimate an ICAPM representation of expected asset re-
turns which includes shocks to discount rates. Where we differ from the prior literature is

7As a technical aside, we estimate the price of shocks to expected excess returns, but much of the
literature uses shocks to expected total returns. We prefer excess returns since they are inherently “real”
and thus avoid issues of changes in expected inflation.

8Bansal et al. (2014), Campbell et al. (2015) find the opposite price of risk because they rely on a
predictive VAR in their estimation and do not impose certain restrictions implied by their models.
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our approach to estimating covariances. Most previous papers such as Bansal et al. (2014),
Brennan et al. (2004), Campbell and Vuolteenaho (2004), Campbell et al. (2015), Koijen
et al. (2015) use predictive regressions, in the form of a vector auto-regression (VAR), to
estimate shocks to discount rates. We believe this approach is often unreliable. Different
sample periods (Chen and Zhao, 2009a) and alternative definitions of the state vector (Bansal
et al., 2014, Campbell and Vuolteenaho, 2004, Campbell et al., 2015, Chen and Zhao, 2009a)
deliver conflicting evidence on the price of discount-rate risk. Indeed, the sign of the esti-
mated price of discount rate shocks is inconsistent across, and even within, these studies.
To circumvent this issue, we use future realized returns to proxy for expected future returns
(see Section 2.3), yielding consistent estimates of covariances without the need to estimate
expected returns.

Further evidence of the relation between marginal utility and the market risk premium
comes from bonds. Long-term Treasury bonds have higher covariance with innovations to
market discount rates than do short-term bonds. This is consistent with a commonly held
view that long-maturity bonds are good hedges during times of market stress (when risk
premia are high). We decompose the average return differential between long and short
term government bonds into a large positive differential due to loadings on “level risk”
(interest-rate risk) and a large negative spread due to loadings on our “risk premium” factor.
These net to a slightly upward sloping term structure of expected bond returns. Our results
suggest that analyzing fixed income securities in isolation can lead to erroneous conclusions
about bond risks and risk premia.
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2 Empirical Framework

2.1 Conditional Pricing Model

We start by assuming that risk premia are earned due to exposure to only two sources of
risk: market risk (as in the CAPM) and “discount-rate” risk (risk due to time-variation in
expected excess market returns). We therefore postulate the following reduced-form two-
factor representation for expected returns:

Et
[
rit+1

]
+ V i

t

2 = δmt C
i,m
t + δλt C

i,λ
t (1)

where rit+1 denotes log returns on an asset i at time t+1 in excess of risk-free rate, δmt and δλt
are prices of market and discount-rate risk, respectively, V i

t = vart
(
rit+1

)
, and Ci,m

t and Ci,λ
t

are conditional covariances of asset returns with shocks to market returns rmt and shocks to
discount rates λt = Et

(
Rm
t+1

)
≡ Et

(
rmt+1

)
+ Vmt

2 , respectively9:

Ci,m
t = covt

[
rit+1, r

m
t+1

]
(2)

Ci,λ
t = covt

[
rit+1, u

λ
t+1

]
(3)

where uλt+1 = (Et+1 − Et)λt+1. Such a representation obtains in standard consumption
based models such as long-run risks with stochastic volatility (e.g., Bansal and Yaron, 2004)
and habits (e.g., Campbell and Cochrane, 1999, Constantinides, 1990), models featuring
stochastic risk aversion (Dew Becker, 2011, Kozak, 2015) or ambiguity-averse agents (e.g.,
Drechsler, 2013), as well as extrapolative expectations models, such as Campbell and Kyle
(1993), Kim and Omberg (1996), Campbell and Viceira (1999), Barberis et al. (2015) etc.

The typical approach in the literature is to condition down the Eq. 1 and test the resulting
unconditional pricing equation in the cross-section of equity returns. We proceed in this
manner in the following section.

9We assume the approximation Et

(
ri

t+1
)

+ V i
t

2 ≈ exp
[
Et

(
ri

t+1
)

+ V i
t

2

]
− 1 holds.
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2.2 Unconditional Pricing Model

Below we derive properties of the unconditional representation of Eq. 1 under two settings: (i)
homoskedasticity with time-varying risk prices (δs); and (ii) heteroskedasticity with constant
risk prices. In general, both approaches yield an unconditional pricing equation:

E
[
rit
]

+ V i

2 = δ̃mcov
(
rit, (Et − Et−1) rmt

)
+ δ̃λcov

(
rit, (Et − Et−1)λt

)
(4)

where V i = E (V i
t ). The expression requires estimating covariances with innovations to

discount rates. Discount rates innovations, however, are notoriously difficult to estimate
because of our limited ability to forecast levels of discount rates. We show below that under
certain assumptions we can substitute the second covariance in Eq. 4 with covariance with
respect to levels of discount rates, cov (rit, λt). Furthermore, if we consider the cross-section of
assets with zero exposure to the market (market-neutral), the unconditional pricing equation
becomes

E
[
rxit

]
+ V i

2 = δ̂λcov
(
rxit, λt

)
(5)

which is much easier to work with in practice. We use rxit notation to refer to market-neutral
excess returns.

2.2.1 Time-varying Prices of Risk

In this section we derive an unconditional representation and its properties in a homoskedas-
tic setting.

Assumption 1. All second moments are constant.

Technically, we can allow for “idiosyncratic” returns (uncorrelated with the two pricing
factors) to be arbitrarily heteroskedastic. Homoskedasticity means Eq. 1 takes the simpler
form:

Et
[
rit+1

]
+ V i

2 = δmt C
i,m + δλt C

i,λ (6)

In addition, we rely on the following simplifying assumption in our analysis:
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Assumption 2. Expected excess returns on the market portfolio follow an autonomous
AR (1) process:

λt = λ̄+ φ
(
λt−1 − λ̄

)
+ uλt (7)

where uλt ∼ N (0, σ2
λ).

Consider the cross-section of market-neutral excess returns rxit , i.e. assets for which

Et
[
rxit+1

]
+ V i

2 = δλt C
i,λ (8)

holds. We link the unconditional covariance of asset returns with the expected market return
and the conditional covariance Ci,λ using the formula of total covariance:

cov
(
rxit, λt

)
= Ci,λ + cov

(
δλt C

i,λ, φλt
)

=
[
1 + φcov

(
δλt , λt

)]
× Ci,λ (9)

Finally, by substituting this expression into Eq. 8 and taking unconditional expectations we
obtain the unconditional relation:

E
[
rxit

]
+ V i

2 ≡ δ̂λ × cov
(
rxit, λt

)
(10)

where
δ̂λ = δ̄λ

[
1 + φcov

(
δλt , λt

)]−1
(11)

and δ̄λ = E
[
δλt
]
.

The next two theorems provide conditions under which we can learn about sign
[
δ̄λ
]
from

sign
[
δ̂λ
]
.

Theorem 1. If the sign of expected price of discount-rate risk is equal to the sign of the
covariance between the price of discount-rate risk and the level of market discount rates(
sign

[
δ̄λ
]

= sign
[
cov

(
δλt , λt

)])
, a negative unconditional price of risk in equation Eq. 10

implies a negative expected conditional price, i.e., δ̂λ < 0 =⇒ δ̄λ ≡ E
[
δλt
]
< 0. Additionally,

δ̄λ > 0 =⇒ δ̂λ > 0, i.e., a positive expected conditional price of risk implies a positive
unconditional price in equation Eq. 10.
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The condition that sign
[
δ̄λ
]

= sign
[
cov

(
δλt , λt

)]
is economically motivated. It implies

that compensation for discount-rate risk tends to increase in times of high aggregate discount
rates. Proof of Theorem 1 in this case is straightforward and obtains directly from Eq. 10
and Eq. 11.

Below we provide an alternative argument under a different condition.

Theorem 2. Absence of near-arbitrage opportunities (when Sharpe Ratios are “reasonably”
bounded) implies that the signs of unconditional and expected conditional prices of discount-
rate risk are the same, sign

[
δ̂λ
]

= sign
[
δ̄λ
]
(the sign is fully preserved).

The sign is fully preserved if and only if 1 + φcov
(
δλt , λt

)
> 0. Equation (8) can be

rewritten as
SRi

t = δλt ρi,λσλ

where SRi
t = E[rxit]+V i

2
σi

is the conditional Sharpe ratio on asset i, ρi.λ = corrt
(
rxit+1, λt+1

)
,

and σ2
λ = vart (λt+1). The maximum (absolute) Sharpe ratio obtains for the the λ-mimicking

portfolio (ρi,λ = 1) and is equal to:

SRmax
t = δλt σλ

The standard deviation of this Sharpe ratio is

σ (SRmax
t ) = σ

(
δλt
)
σλ

Use this to rewrite the sign condition,

0 <1 + φcov
(
δλt , λt

)
=1 + φcorr

(
δλt , λt

)
σ
(
δλt
)
σ (λt)

=1 + φ√
1− φ2 corr

(
δλt , λt

)
σ
(
δλt
)
σλ

=1 + φ√
1− φ2 corr

(
δλt , λt

)
σ (SRmax

t )

We used the relationship between the conditional and unconditional variance of λt (σ2
λ =

(1− φ2)σ2 (λt)) in the derivation above. Since corr
(
δλt , λt

)
≥ −1 (-1 is the “worst case”
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setting), a sufficient condition is

σ (SRmax
t ) <

√
1
φ2 − 1

Consider an annual calibration. To be conservative, let φ = 0.7 — a value which allows
for slightly more high frequency variation in discount rates than that implied by only the
variation in D/P ratio, but is similar in magnitude to some of the “de-trended” and “de-
biased” estimates (Sabbatucci, 2015). For simplicity assume the mean max Sharpe ratio is
equal to 2× σ (SRmax

t ) so that the expected mimicking portfolio return is unlikely to change
sign. Such values imply that an annualized max SR on market-neutral strategies can reach
values 4 ×

√
1

0.72 − 1 ≈ 4.1 — above most plausible bounds on the maximum SR or the
variance of the SDF (e.g., Kozak et al., 2015). Therefore, the condition above is satisfied
under very weak assumptions that only rule out near-arbitrage opportunities.

2.2.2 Time-varying Quantities of Risk

We show how to condition down Eq. 1 in the presence of heteroskedasticity and constant
risk prices. We rely on the following two assumptions.

Assumption 3. All risk prices (δs) are constant.

Eq. 1 in this case takes the simpler form:

Et
[
rit+1

]
+ V i

t

2 = δmCi,m
t + δλCi,λ

t (12)

Additionally, as in Campbell et al. (2015), we assume that a single state variable drives all
variances.

Assumption 4. The conditional variance of the market follows a square-root (discrete-time
Cox-Ingersoll-Ross) process:

σ2
t+1 = σ2 + φσ

(
σ2
t − σ2

)
+ uσt+1 (13)

uσt+1∼ N
(
0, k2σ2

t

)
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where k2 is a constant relating the the conditional variance of variance to the conditional
variance of the market (σ2

t ). For any asset i, vart
[
rit+1

]
= k2

i σ
2
t . Further, all correlations

are constant.

Note that aggregate discount rates are proportional to the conditional variance of the
market,

λt ≡ Et
[
rmt+1

]
+ V m

t

2 = φm,σσ
2
t

where φm,σ = δm + δσkρm,σ and ρm,σ = corrt
(
rmt+1, u

σ
t+1

)
. Therefore, we can combine Eq. 12

and Assumption 4 to recast the pricing equation as:

Et
[
rit+1

]
+ V i

t

2 = δmCi,m
t + δσCi,σ

t (14)

with the following equations describing the mapping from Eq. 7 and Eq. 12 to Eq. 13 and
Eq. 14:

λt+1 = λ+ φm,σ
(
λt − λ

)
+ uλt+1 (15)

Ci,λ
t ≡ φm,σC

i,σ
t (16)

where λ = φm,σσ2 and uλt+1 = φm,σu
σ
t+1.

Again, consider the cross-section of market-neutral log excess returns rxit, i.e., any asset
for which for any t: Ci,m

t = 0. Further consider assets which are re-scaled to have constant
variance so V i

t = V i and Ci,j
t = σiσj,tρi,j. Solve for the unconditional covariance, cov (rxit, λt):

cov
(
rxit, λt

)
= E

[
covt

(
rxit, φm,σu

σ
t

)]
+ cov

[
Et−1

(
rxit

)
, Et−1

(
φm,σσ

2
t

)]
(17)

= φm,σE
[
Ci,σ
t

]
+ cov

[
δσCi,σ

t , φm,σφσσ
2
t

]
(18)

= φm,σE
[
Ci,σ
t

]
+ cov

[
δσkσiρi,σσt, φm,σφσσ

2
t

]
(19)

= φm,σρi,σσikE [σt] + φm,σρi,σσik × δσφσcov
[
σt, σ

2
t

]
(20)

= E
[
Ci,λ
t

] (
1 + δσφσ

cov [σt, σ2
t ]

E [σt]

)
(21)
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where V [σ2
t ] ≡ var (σ2

t ). Taking unconditional expectations of the conditional model gives:

E
[
rxit

]
+ V i

2 = δλ × E
[
Ci,λ
t

]
= δ̂λ × cov

(
rxit, λt

)
(22)

where

δ̂λ = δλ
(

1 + δσφσ
cov [σt, σ2

t ]
E [σt]

)−1

. (23)

The next theorem gives conditions under which we can learn about sign
[
δλ
]
from sign

[
δ̂λ
]
.

Theorem 3. Absence of near-arbitrage opportunities implies that sign
[
δ̂λ
]

= sign
[
δλ
]
, i.e.,

the sign is fully preserved.

The sign is fully preserved if and only if 1 + δσφσ
cov[σt, σ2

t ]
E[σt] > 0. Consider a monthly

calibration. We estimate φσ = 0.79, cov [σt, σ2
t ] = 8.4 × 10−5, and E [σt] = 5.7% from

historical VIX data10 11). Substituting these values reduces the condition to δσ > −864.
How should we interpret this restriction on the risk price? The annualized conditional
Sharpe ratio of the volatility-mimicking portfolio is |δσkσt|. First we estimate k using the
relationship k2 = E[u2

σ,t+1]
σ2 and recover k ≈ 4%. Similar to the argument in Theorem 2,

consider the 97.5th percentile of σt still based on historic VIX). δσ = −864 gives a “max”
Sharpe ratio of 13 — implausibly high. Again, the condition above is satisfied under very
weak assumptions that only rule out near-arbitrage opportunities.

2.3 New Measure of the Covariance with Discount Rates

Aggregate discount rates, λt, are not directly observable by an econometrician. A vast liter-
ature (Bansal et al., 2014, Campbell and Vuolteenaho, 2004, Campbell et al., 2015) employs
a VAR setup with macroeconomic and financial variables to predict λt and back out the
corresponding shocks. A major limitation of such an approach is that it restricts the infor-
mation set to a small number of variables. Since investors are presumed to condition on all
available information, the forecasts from a predictive regression will not equal market expec-
tations. Additionally, even a small bias in the levels of risk premia forecasts often translates

10VIX technically gives risk neutral integrated variance over the next month which could differ arbitrarily
from the physical expectation.

11In annualized easier to understand units, E [σt] = 20% and s.d. (σt) = 8% .
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into significant misspecification of shocks inferred from a VAR. Indeed, Bansal et al. (2014)
and Campbell et al. (2015) estimate similar VARs with slightly different state variables and
obtain conflicting predictions. Chen and Zhao (2009b) show that VAR estimates are highly
sensitive to small changes in specification.

We employ a novel methodology designed to circumvent the issue. We use future realized
returns as an unbiased estimator of the current risk premia required by investors. The
following theorem illustrates this idea.

Theorem 4. Using the level of future realized market returns Rm
t+1 = exp (rmt )− 1 in place

of λt delivers a consistent estimate of the covariance, i.e.,

cov
(
rit, R

m
t+1

)
= cov

(
rit, λt

)
(24)

in population, where λt = Et
[
rmt+1

]
+ Vmt

2 .

Proof. For any information set Ft at time t such that rit ∈ Ft, Rm
t+1 = E

[
Rm
t+1 |Ft

]
+ εmt+1 ≈

λt + εmt+1. εmt+1 is the projection error and thus by definition is orthogonal to any information
at time t, E

[
εmt+1 |Ft

]
= 0. Unconditional covariances are therefore equal in population,

cov
(
rit, R

m
t+1

)
= cov

(
rit,E

[
Rm
t+1 |Ft

])
+ cov

(
rit, ε

m
t+1

)
= cov

(
rit, λt

)
(25)

Theorem 4 allows us to simply substitute Rm
t+1 in place of λt and shows that this ap-

proach delivers a consistent estimate of cov (rit, λt) in population. The in-sample estimator
ĉov

(
rit, R

m
t+1

)
of this covariance is, however, noisy since var (εm) � var

(
ελ
)
. We find that,

provided that λt is persistent, we can increase the power of the estimator by proxying for
λt with the sum of future realized excess returns, λ̂t:t+T = ∑T

j=0R
m
t+j+1. We establish via

simulation that estimation is robust to varying T , with the optimum around 12 months. In
Appendix D.2 we verify this result empirically. Further, under Assumption 2, the following
identity holds in population:

cov
(
rit, λ̂t:t+T

)
=
(

1− φT+1

1− φ

)
× cov

(
rit, λt

)
(26)

13



and hence the price of risk corresponding to the covariance cov
(
rit, λ̂t:t+T

)
is scaled by a

positive constant
(

1−φT+1

1−φ

)−1
relative to the price of risk implied by Eq. 4.

Naturally, λ̂t:t+T = ∑T
j=0R

m
t+j+1 is a rather imprecise estimator of the level of risk premia

λt; however, it proves to be informative for the purpose of estimating unconditional covari-
ances cov (rit, λt). Therefore, we are able to estimate Eq. 4 without directly estimating the
level of market risk premium λt. We establish statistical and economic significance of our
estimator in Section 3. The idea behind using future realized returns as a proxy for contem-
poraneous discount rates is related to Kelly and Pruitt (2013). In that paper the authors
use the Partial Least Squares (PLS) algorithm to construct a predictor of equity returns us-
ing the cross-section of dividend-price ratios. The methodology condenses the cross-section
of price-dividend ratios according to covariance with the forecast target – future realized
returns on the stock market. They therefore use a projection of future realized market re-
turns onto a set of dividend-price ratios as their predictor. Since we are only interested in
estimating the covariance with aggregate discount rates rather than predicting the market
in the time series, we can side-step the projection step and use future returns directly and
maintain consistency of the estimate.

2.4 Empirical Specification

Combining the previous results in Section 2.2 and Section 2.3:

E
[
rxit

]
+ V i

2 = δ̃λ̂ × cov
(
rit, λ̂t:t+T

)
(27)

where λ̂t:t+T ≡ Rm
t+1:t+T+1 = ∑T

j=0R
m
t+j+1 are future market excess returns cumulated over

T + 1 periods and δ̃λ̂ = δ̂λ
(

1−φT+1

1−φ

)−1
.

We can easily accommodate the case when the cross-section of assets is not market-neutral
by adding the market factor to our specification:

E
[
Ri
t

]
= δ̂m × E

[
Ci,m
t

]
+ δ̃λ̂ × cov

(
rit, λ̂t:t+T

)
(28)

where Ri
t ≡ [exp (rit)− 1] is the level of excess returns on an asset i. We provide required

derivations in Appendix A. Note that the first term in Eq. 28 requires computing as asset’s
expected conditional covariance with market returns while the second term contains the
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unconditional covariance with the level of discount rates.
All quantities in Eq. 28 are observable or easily computable and thus the relation can

be estimated by standard methods. Furthermore, we argued in Theorem 1, Theorem 2, and
Theorem 3 that a negative estimate of the unconditional price of the discount-rate risk δ̃λ̂
implies a negative value of the expected conditional price of risk, E

[
δλt
]
< 0 in Eq. 1.

3 Empirical Link Between Cross-Sectional and Aggre-
gate Expected Returns

We estimate the expected return relation of Eq. 28 using three sets of test assets. The first
is the canonical 25 portfolios formed by a two-way sort of firms on market capitalization
(ME) and book-to-market ratio (BE/ME), available at Ken French’s website.12 Lewellen
et al. (2010) highlight a key issue in estimating and testing asset pricing models. When the
test assets have a strong factor structure that captures much of the time-series variation as
well as the cross-sectional variation in expected returns, a spurious model with many factors
may still produce a remarkably good cross-sectional fit as long as the spurious factors are
correlated with the “true” factors. This result is not due to sampling variation; it holds in
population. A solution they propose is to add assets which increase the “dimensionality” of
the test asset space.

In addition to the canonical 25 portfolios, we construct a second alternative set of test
assets. We include fifteen portfolios consisting of five value-weighted quintile portfolios each
from independent sorts on size, book-to-market ratio, and momentum (prior 2-12)13. The
momentum factor, UMD (Carhart, 1997), is nearly uncorrelated with the size factor, SMB,
and is negatively correlated with the book-to-market factor, HML (Fama and French, 1996).
Further, sorting firms based on prior performance produces a reliable spread in average re-
turns subsumed by neither the size effect nor the book-to-market effect (Fama and French,
2008). Therefore, including momentum sorted portfolios as test assets makes it decidedly
more difficult for a model to fit the cross-section of expected returns. Our preferred estima-
tion uses these fifteen portfolios; for robustness and for comparison with the literature, we

12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
13Also available at Ken French’s website.
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perform all estimation using the Fama-French 25 portfolios as well.
Third, we estimate the model using 15 long-short portfolios which capture many promi-

nent features (anomalies) in the cross-section of returns.14 As shown in Kozak et al. (2015),
these returns have weaker factor structure than the Fama-French 25 portfolios, resulting in
many more “effective” test assets. Finally, we always include the value-weight market and
risk-free returns.

Following the spirit of Merton (1973), we use portfolio returns measured at daily fre-
quency15. All returns are measured over the period 01-Aug-1966 to 31-Dec-2013. Using
daily returns, rather than monthly, reduces the approximation error due to linearization of
the exponential function that we rely on in deriving Eq. 28. As noted in Campbell and
Vuolteenaho (2004), “July 1963 is when COMPUSTAT data become reliable and most of
the evidence on the book-to-market anomaly is obtained from the post-1963 period”. Fur-
thermore, in the pre-1963 sample, the “CAPM explains the cross-section of stock returns
reasonably well” (Campbell and Vuolteenaho, 2004). Since the beta arbitrage strategy can
only be constructed from 01-Aug-1966, we start our sample on that date16.

As a proxy for the excess return on the wealth portfolio, rmt , we use the log excess
return on the value-weight portfolio of all common equity traded on the NYSE, AMEX,
and NASDAQ. Of course the standard critique applies that there exist many assets, both
traded (foreign securities) and non-traded (real-estate, human capital) that are not included
in this portfolio (Roll, 1977). As discussed above, we construct λ̂t = ∑H

i=1 r
m
t+i. For our

preferred specification, we set H = 126 trading days, or one-half year. Our results are
quantitatively robust across various choices of H, using daily or monthly frequency of returns
(see Appendix D).

Table 1 shows the estimated covariances of asset returns with the factors. Panel A shows
cov (rit, rmt ); Quintile 1 represents large firms, growth firms, and recent losers in relation to
the dimensions, size, book-to-market, and momentum, respectively. Analogously, Quintile 5
represents small firms, value firms, and recent winners. The column to the right of Quintile 5

14We include the most of the anomalies listed in Novy-Marx and Velikov (2014) but exclude strategies
which: (1) which cannot be constructed from 1963 onwards, (2) are high turnover (such as monthly rebalanced
net issuance), and (3) gross margins and asset turnover, since they are subsumed by gross profitability, as
shown in Novy Marx (2013).

15We replicate the analysis at monthly frequency and obtain very similar results (see Appendix D).
16To sort portfolios on βi,m, we use three years of daily data to estimate pre-ranking values.
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Table 1: Covariances

This table shows covariances and annualized mean returns estimated over 01-Aug-1966 to 31-
Dec-2013. Panel A lists the covariances of portfolio returns with the market return, Ci,m =
cov

(
rxit, rx

m
t

)
. Panel B depicts the covariances of portfolio returns with the risk premium factor,

Ci,λ = cov
(
rxit, λ̂t

)
. Panel C shows the the annualized expected excess returns on each portfolio,

E [Rei ]. The column "FFC" represents the Fama-French-Carhart portfolios: SMB, HML, and UMD.
The last column represents the Q5-Q1 spread portfolio. t-statistics (in parentheses) are adjusted
for serial correlation using Newey-West procedure with 252 lags (1 year). All covariances are scaled
by the variance of the daily market excess returns.

Q1 Q2 Q3 Q4 Q5 FFC Q5-Q1

Panel A: E
[
Ci,mt

]
ME 1.02 0.97 0.95 0.94 0.80 -0.08 -0.21
BE/ME 1.05 0.96 0.93 0.90 0.95 -0.14 -0.10
Prior 2-12 1.20 1.00 0.93 0.92 1.06 -0.09 -0.14

Panel B: Ci,λ

ME 0.11 0.08 0.02 -0.05 -0.09 -0.11 -0.20
(1.2) (0.7) (0.2) (-0.4) (-0.7) (-1.9) (-2.2)

BE/ME 0.14 0.07 0.03 0.01 -0.10 -0.20 -0.24
(1.5) (0.7) (0.3) (0.1) (-1.0) (-2.7) (-2.9)

Prior 2-12 0.28 0.17 0.09 0.05 0.03 -0.18 -0.26
(2.0) (1.8) (1.1) (0.5) (0.2) (-1.8) (-2.1)

Panel C: E
[
Rit
]

ME 5.73 7.60 8.06 8.07 7.31 1.86 2.28
BE/ME 5.32 6.80 6.65 8.06 9.81 4.58 5.11
Prior 2-12 1.26 5.95 5.84 7.35 9.77 7.79 10.70

represents the Q5-Q1 spread portfolio. The FF column gives the estimates for the canonical
Fama-French-Carhart (FFC) factors, SMB, HML, and UMD. The covariances match the
well known pattern in market betas – their inability to explain the cross-section of size,
book-to-market, and momentum sorted portfolios.

Panel B reports cov
(
rit, λ̂t

)
for the same portfolios with Newey-West t-statistics in paren-

theses.17 In all three dimensions (size, book-to-market, and momentum), cov
(
rit, λ̂t

)
de-

17Moving block bootstrap gives similar standard errors.
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Figure 1: Univariate fit. The top left plot shows sample values of E [Rei ] vs cov
(
rxit, λ̂t

)
for the

15 quintile portfolios: 5 size (me), 5 book-to-market (bm) and 5 momentum (m) sorted portofios.
The plot in the top right panel depicts same results for the 25 Fama-French portfolios. The first
number in portfolio labels refers to ME quintile (1=large; 5=small); the second number corresponds
to BE/ME quintile (1=growth; 5=value). The bottom plot is for anomaly long-short portfolios.
PC1 and PC2 are the first two principal components of anomaly returns. The sample is from
01-Aug-1966 to 31-Dec-2013.

creases from left to right. That is to say, when the “risk premium”, λt, rises, small stocks are
expected to fall more than large stocks, value stocks are expected to fall more than growth
stocks, and recent winners are expected to fall more than recent losers. Though using real-
ized market returns in place of expected returns produces consistent covariance estimates,
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they are less precisely estimated due to the noise present in realized returns. Still, the co-
variances of the spread portfolios with λ̂t are statistically significantly different from zero
and the covariances follow a reliable pattern, suggesting that our results are not spurious.
Panel C shows sample average returns which increase monotonically from left to right across
quintiles, consistent with the well known size, value, and momentum phenomena. Panels
B and C suggest a strong relationship between cov

(
rit, λ̂t

)
and E [Re

i ], which can be clearly
seen in Figure 1.

Figure 1 (a) plots sample values of E [Re
i ] vs cov

(
rit, λ̂t

)
for the 15 quintile portfolios.

Figure 1 (b) is the same plot for the 25 Fama-French portfolios and Figure 1 (c) shows the
various anomalies. The graphs confirm that cov

(
rit, λ̂t

)
and E [Re

i ] line up well in the cross-
section of assets, suggesting the λt risk factor rationalizes the size, value, momentum effects,
and the various anomalies. The downward sloping pattern of average returns vs. cov

(
rit, λ̂t

)
strongly suggests a negative price of risk.

3.1 Estimation Results

We estimate the risk price vector δ = [δm δλ]
′
using GMM with a pre-specified block-diagonal

weighting matrix (Cochrane, 2001, Chapter 11.5). It is equivalent to the standard two-
stage estimation procedure. Covariances Ci,λ ≡ cov

(
rit, λ̂t

)
and Ci,m ≡ E [cov (rit, rmt )] are

estimated in the first stage by just-identified GMM, which yields the standard formulas for
sample covariance. In the second stage, we estimate risk prices (SDF coefficients) via an
OLS regression of sample mean returns on the covariances estimated from the first stage.
In addition to the two-factor model, we estimate unconditional (standard) versions of the
Sharpe-Lintner CAPM and well as the Fama-French-Carhart (FF augmented with the UMD
“momentum” factor of Carhart, 1997)18. For ease of comparison, all models are written and
estimated in terms of covariances instead of regression βs. Below is a summary of the pricing
equations, where δs are interpreted as risk prices (coefficients in the SDF):

2-Factor model: E [Rei ] = α+ Ci,mδm + Ci,λδλ (29)

CAPM: E [Rei ] = α+ Ci,mδm (30)

4-Factor FFC: E [Rei ] = α+ Ci,mδm + Ci,smbδsmb (31)

+ Ci,hmlδhml + Ci,umdδumd

18For these models, Ci,m ≡ cov
(
ri

t, r
m
t

)
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where Ci,X ≡ cov
(
rxit, Xt

)
. Recall, the key parameter is δλ; rational models such as long-run risks

or habits predict δλ < 0 whereas sentiment models of irrational expectations predict δλ>0. We also
estimate the models under the restriction that the zero-beta rate equals the risk-free rate (α = 0).

Estimated risk prices are given in Table 2 along with sample R2 and mean absolute
pricing errors. We follow Campbell and Vuolteenaho (2004) and define R2 as 1 −

∑
i
e2
i

V(E[Rei ])
,

where ei is the difference between model expected and actual average return for asset i.
This allows for negative R2 in the case of restricted models. Standard errors are calculated
using a moving block bootstrap (Horowitz, 2001) and are consistent across various choices
of block size.19 Quantitatively, the two-factor model fits the cross-section of average returns
nearly as well as the 4-factor FFC model. The estimated intercept is nearly zero, both
statistically and economically. While a good fit is not strictly necessary for the purpose of
interpreting δλ, it alleviates a concern that we might be estimating a parameter from a badly
misspecified model. Though cov

(
rit, λ̂t

)
is not very well estimated for any individual test

asset, the cross-sectional spread in covariances is strong enough to yield precise estimation of
δλ. H0 : δλ = 0 is rejected for all conventional significance levels, implying that discount rate
shocks are economically important and lead to significant hedging demand.Covariance with
the risk premium factor is able to capture a large portion of the cross-sectional variation in
average returns due to the size, book-to-market, and momentum effects. Our estimate of δλ
is unambiguously negative, providing support for “rational” models of time-varying expected
returns. The cross-sectional fit of our 2-factor and 4-factor Fama-French-Carhart model is
shown in Figure 2. The graphs plot model implied mean excess returns on the horizontal
and sample average returns on the vertical axis. The 45◦ line represents a model with perfect
in-sample fit (100% R2).

Lewellen et al. (2010) document that when test assets have a strong factor structure,
OLS R2 is a poor guide to model fit, both in sample and (even in) population. Their first
suggestion for mitigating this concern is to include more portfolios, “sorted [by] other char-
acteristics” (besides size and B/M) as test assets. We include momentum sorted portfolios,
which are notoriously difficult to fit. Second, they suggest to impose model implied restric-
tions on risk-premia. We already present results with zero-beta rates set to the risk-free
rate. Further imposing that the model expected return on the market equals its average

19We bootstrap the entire GMM system, so uncertainty in the first-stage covariance estimates is fully
incorporated in the standard errors of risk prices.
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Table 2: Risk Price Estimates

This table shows risk prices estimates for the two-factor model, CAPM, and Fama-French-
Carhart model. The test assets are value-weighted quintile portfolios sorted on ME,
BE/ME, and Prior2-12. α is annualized (in %) and "-" indicates that the value is re-
stricted to zero. MAPE is average absolute pricing error, annualized. Moving block
bootstrap t-statistics are in parentheses. The sample is from 01-Aug-1966 to 31-Dec-2013.

α δm δλ δsmb δhml δumd R2 MAPE

2-Factor model - 3.21 -8.73 - - - 84 0.816
(3.2) (-3.7)

0.196 3.13 -8.68 - - - 84 0.824
(0.5) (3.2) (-3.8)

CAPM - 2.63 - - - - 21.8 1.61
(2.8)

2.1 1.81 - - - - 26.3 1.64
(3.3) (1.9)

4-Factor FFC - 4.57 - 2.11 9.58 7.2 93.8 0.467
(3.9) (0.7) (2.9) (4.1)

0.184 4.49 - 2.09 9.52 7.16 93.8 0.478
(1.0) (4.0) (0.7) (2.9) (4.1)

leaves our results quantitatively unchanged (unreported). Because the risk-premium factor
is not a traded return, we cannot similarly restrict its price of risk. Finally, they recommend
reporting confidence intervals for R2 rather than just point estimates. Bootstrap simulation
rejects the null H0 : R2 = 0 with p ≈ 5%.

3.2 Anomaly Portfolios

To further test the ability of Eq. 28 to summarize expected returns, we estimate it using
a cross-section of anomaly portfolios defined in Novy-Marx and Velikov (2014)20, which
represent a broad set of empirical regularities with seemingly very different fundamental
drivers. However, as shown in Kozak et al. (2015), a pricing model using the first few
principal components of returns produces high R2 in fitting the cross-section of average

20We construct our own portfolios at daily frequency using their definitions.
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Figure 2: Performance of our 2-factor and 4-Factor Fama-French-Carhart models using
quintile portfolios. The plot shows sample average, E [Rei ], vs model expected , Ê [Rei ], excess
returns. The 2-Factor model with restricted intercept on the left, and 4-factor FFC model with
restricted intercept on the right. m1-m5 correspond to momentum quintile portfolios (losers to
winners). bm1-bm5 correspond to book-to-market quintiles (growth to value). me1-me5 correspond
to size quintiles (large to small). The sample is from 01-Aug-1966 to 31-Dec-2013.

returns. This gives us hope that one (or a few) basic economic mechanism is responsible for
the variety of anomalies.

Table 3 shows parameters of the pricing models in Equations (29)-(31), estimated using
the long-short anomaly returns21. We also include two principal components (labeled PC1
and PC2) as test assets. The estimated risk prices are similar to those in Table 2. Now,
however, the 2-factor model significantly outperforms the 4-factor FFC model in fitting the
cross-section of average returns (with restricted intercept). Notably, the t-statistics on risk
prices are much higher than in Table 2. This is due to the weaker factor structure in the
anomaly portfolios as compared to the test assets used before (quintile portfolios sorted on
ME, BE/ME, and Prior2-12). Weaker cross-sectional correlation of returns results in more

21Because the anomaly portfolios are long-short, they tend to have CAPM βs near zero. Sample β
estimates are very noisy and yield unreliable estimates of δM . To address this issue, we orthogonalize
each anomaly return against the market portfolio before estimating asset pricing models. This procedure
is equivalent to giving infinite weight to the market portfolio in the second stage estimation (like GLS).
Without this restriction, the model R2 slightly improves, at the cost of very poor fit for E [Rm].
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Table 3: Risk Price Estimates using Anomaly Portfolios

This table shows risk price estimates for our two-factor, CAPM, and FFC models. Test assets are
long-short anomaly portfolios. α is annualized and "-" indicates that the intercept is restricted to
zero. MAPE is average absolute pricing error, annualized. Moving block bootstrap t-statistics are
in parentheses. The sample is from 01-Aug-1966 to 31-Dec-2013.

α δm δλ δsmb δhml δumd R2 MAPE

2-Factor model - 3.75 -13.6 - - - 56.4 2.6
(3.7) (-6.6)

1.92 2.77 -10.9 - - - 61.5 2.48
(1.8) (2.4) (-5.1)

CAPM - 2.21 - - - - -226 7.31
(2.2)

7.26 -0.319 - - - - 5.43 3.78
(6.3) (-0.3)

4-Factor FFC - 5.12 - -2.63 13.1 11.7 25.4 3.15
(4.2) (-0.7) (3.2) (6.0)

4.41 2.13 - -3.14 6.73 7.7 72.9 1.82
(4.2) (1.6) (-0.8) (1.7) (3.7)

“effective” test assets, improving statistical power. Figure 3 shows graphically the fit of
our 2-factor and 4-factor FFC models (with restricted zero-beta rate). The 2-factor model is
visibly superior to the 4-factor FFC model in fitting the average anomaly returns. As before,
we find δλ < 0, providing evidence for “rational” models in which time of high aggregate risk
premia are “bad” (high marginal utility states).

4 Bond Risks and Risk Premia

In the previous section we showed that relatively “safe” portfolios, such as growth, large,
and recent losers stocks, have high covariance with market discount rates and thus tend to
be good hedges against equity market turmoils. Government bonds are perhaps the most
obvious and likely alternative hedging instruments. Indeed, interest rates tend to fall during
times of market turmoils, and bond prices tend to rise. Such an embedded “flight-to-quality”
mechanism arises in both types of models: rational and behavioral. Both types imply that
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Figure 3: Performance of our 2-factor and 4-Factor Fama-French models using anomaly
portfolios. The plot shows sample average, E [Rei ], vs model expected , Ê [Rei ], excess returns. The
2-Factor model with restricted intercept on the left, and 4-factor FFC with restricted intercept on
the right. Assets are anomaly long-short portfolios from 01-Aug-1966 to 31-Dec-2013. PC1 and
PC2 denote two largest principal components of anomaly returns.

bond returns positively covary with aggregate equity discount rate shocks.
In this section we study bond and stock risk premia jointly, with particular emphasis

on bonds. Numerous papers explore risk premia either for equities or for fixed income
securities, yet few study these assets in a unified framework.22 Our empirical findings are
consistent with models’ predictions: bond returns covary positively with aggregate equity
discount rate shocks and bonds command an unambiguously negative risk premium with
respect to discount-rate shocks due to their hedging value. Analyzing bonds in isolation,
and thereby ignoring bonds’ hedging value with respect to changing equity risk premia,
misses a substantial component of bond return premia.

4.1 Data

We use zero-coupon treasury yields from Gürkaynak et al. (2006) (GSW), which provides a
daily constant maturity yield curve from 1961 onward. Though the data are smoothed by

22Recent work in this area includes Koijen et al. (2015).
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the use of a Svensson polynomial (extension of Nelson-Siegel), the yields are usually very
close to the unsmoothed yields derived using the methodology of Fama and Bliss (1987) and
“for many purposes the slight smoothing in GSW data may make no difference” (Cochrane
and Piazzesi, 2008). The advantage of GSW yields is the daily observation frequency, which
we have argued in Section 3 is important to our empirical strategy. Prior to 1971, the GSW
yields only include maturities up to seven years. Post-1971 they includes maturities to 30
years, though there is some question of the reliability of the very long maturity yields. To
match the timing of our stock data, we use maturities up to seven years over the same
sample period as for stocks, 01-Aug-1966 to 31-Dec-2013. To construct zero-coupon bond
returns from the GSW yields, we use the daily parameter estimates available online.23 This
allows us, for example, to recover the yield on a bond with 364 days to maturity. This
yield is necessary for calculating the daily return on a one-year bond. For excess returns,
we subtract the return on a one month T-bill, the same procedure we use for excess stock
returns. We use the 3-month zero-coupon yield24 as our proxy for the short rate, rft .

4.2 Estimating the price of “level risk”

Studying bonds in isolation, Cochrane and Piazzesi (2008) conclude that expected excess
bond returns are well captured by the single-factor model, Et [ri+t] = Ci,BδB,t, where Ci,B ≡
covt [ri,t+1, ∆levelt+1] and levelt+1 is the “level of interest rates”. We proxy for levelt+1 with
rft , the 3-month T-bill rate. We estimate the model using returns on zero-coupon bonds
with maturities one to seven years and recover δB ≈ −57 . The cross-sectional R2 is 95%
with 0.08% annualized mean absolute pricing error. Figure 4 shows graphically the good fit
of the level model for bonds.

Given our findings in Section 3 and the “flight-to-quality” mechanism in both rational
and behavioral models, we argue that δB, the price of “level risk”, is underestimated in bond-
only models. The problem is a classic case of omitted variables bias. Eq. 28 suggests at least
two such missing variables, Ci,λ = cov

(
rxit,

∑H
i=1 rx

m
t+i

)
and Ci,M = cov (rxit, rxmt ). Table 4

shows Ci,B, Ci,λ and Ci,m across maturities. First note that Ci,M ≈ 0 for all maturities
(bonds have almost zero market βs). More importantly, ∀i, Ci,λ ≈ −15 × Ci,B. Cross-

23http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
24GSW note that yields on bonds with maturities shorter than three months are strongly affected by

liquidity issues.
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Figure 4: Univariate Bond Pricing. The plot shows sample average, E [Rei ], vs model expected,
Ê [Rei ], excess returns from a single factor bond model.

sectionally, corr (Ci,B, Ci,λ) ≈ 1.0. Since we know from Section 3.1 that δλ 6= 0, the univariate
level model suffers greatly from omitted variables bias. Using the estimate of δλ = −9 , a
back-of-the-envelope calculation suggests the true δB = −57 − 15 × 8.8 = −189. In other
words, the required compensation for bearing level risk is much higher than is estimated
from a univariate model of bond expected returns. Treasury bonds, in addition to loading
positively on level risk, also provide investors a hedge against increases in the risk premium
on stocks. Thus, bonds earn lower average excess returns than in a hypothetical economy
where the expected excess market return is constant.

This intuition is formalized by estimating the 3-factor bond model given by Eq. 34.
Table 5 gives estimated risk prices (δs) from the following models:

2-Factor model: E [Re
i ] = Ci,mδm + Ci,λδλ (32)

Univariate Level Risk: E [Re
i ] = Ci,BδB (33)

3-Factor bond model: E [Re
i ] = Ci,mδm + Ci,λδλ + Ci,BδB (34)
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Table 4: Bond Covariances

This table shows covariances of government bonds with the bond ”level“ factor, Ci,B =
cov

(
rxit,∆r

f
t

)
; the stock excess returns market factor, Ci,m = cov

(
rxit, rx

m
t

)
; and the discount

rate factor, Ci,λ = cov
(
rxit,

∑H
i=1 rx

m
t+i

)
, estimated over 01-Aug-1966 to 31-Dec-2013. t-statistics

in parentheses are adjusted for serial correlation using the Newey-West procedure with 252 lags (1
year). All covariances are scaled by the variance of the market daily excess returns. The sample is
from 01-Aug-1966 to 31-Dec-2013.

1Y 2Y 3Y 4Y 5Y 6Y 7Y

Ci,B -0.004 -0.006 -0.009 -0.011 -0.012 -0.014 -0.015

Ci,M 0.002 0.002 0.003 0.004 0.006 0.008 0.010

Ci,λ 0.051 0.094 0.130 0.162 0.191 0.218 0.242
(3.6) (3.7) (3.8) (4.0) (4.1) (4.1) (4.2)

where Ci,B ≡ cov
[
rxit,∆r

f
t

]
and δB is the price of the “level” risk. All models are estimated

with the intercept restricted to zero. The 2-factor model is estimated using only the stock
portfolios from Section 3 (15 quintile portfolios; both stocks and bonds are used as test
assets) and hence the risk price estimates are the same as in Section 3.1. The univariate
Level Risk model is estimated using only bond excess returns; bonds are also the only test
assets. The 3-factor bond model is estimated using all assets, stock portfolios (15 quintile
portfolios) as well as bonds. Estimated values for δm and δλ are essentially unchanged in the
3-factor bond model (relative to the 2-factor estimates). The R2 of the 2-factor model is so
low because bonds are included as test assets. Importantly, δB in the 3-factor bond model
is −187 � −54. This is nearly equal to the back of the envelope prediction given above.
Table 6 gives annualized percent returns by maturity in sample, as implied by the univariate
Level Risk model, and as implied by the 3-factor bond model. It shows the joint stock and
bond performs on par with the level risk model in pricing bonds.

Figure 5 shows average returns vs our 3-factor bond model expected returns for bonds
and stock portfolios, with model implied mean excess returns on the horizontal and sample
average returns on the vertical axes. The 45◦ line represents a model with perfect in-sample
fit (100% R2). Stocks fit almost as well as in Figure 2 (using our 2-factor model) and bonds
fit quite well. It is worth emphasizing that this result is not merely mechanical. Given two
factor models, each fitting either cross-section of stocks or bonds, a combined model with all
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Table 5: Risk Price Estimates

This table shows premia estimates for our 2-factor model (estimated using 15 stock quintile port-
folios only; both bonds and stocks included as test assets), the Level Risk model (estimated using
bond returns; only bonds used as test assets), and the 3-factor bond model (estimated using both
quintile stock portfolios and bonds to price both). Model intercepts are restricted to zero. MAPE is
average absolute pricing error, annualized. Moving block bootstrap t-statistics are in parentheses.
The sample is from 01-Aug-1966 to 31-Dec-2013.

δM δλ δB R2 MAPE

2-Factor model 3.21 -8.73 - -9.23 2.22
(est. stocks only; pricing bonds & stocks) (3.2) (-3.8)

Level Risk - - -56.8 97.7 0.0613
(bonds only) (-1.8)

3-Factor bond model 2.29 -7.61 -187 95.3 0.496
(bonds and stocks) (2.4) (-3.8) (-4.3)

Table 6: Bond Expected Returns

This table shows bond annualized percent returns by maturity in sample (second column), as
implied by the univariate Level Risk model (third column), and as implied by our 3-Factor ICAPM
(last column). The sample is from 01-Aug-1966 to 31-Dec-2013.

Sample Mean Level Risk 3-Factor bond model

1-year bond 0.73 0.56 0.7
2-year bond 1.1 0.98 1.1
3-year bond 1.4 1.3 1.5
4-year bond 1.6 1.6 1.8
5-year bond 1.8 1.9 2
6-year bond 2 2.1 2.1
7-year bond 2.2 2.2 2.1

factors need not fit the joint cross-section of bonds and stocks (see Koijen et al. 2015).
Figure 6 decomposes the expected excess return on the various bonds. The premium due

to market risk, Ci,M , is excluded since it is negligible for bonds. Bonds earn a large premium
for loading on the “level risk”, whereas they command a large negative premium for loading
on the “risk premium” factor. This is consistent with a “flight-to-quality” (Caballero and
Krishnamurthy, 2008) interpretation where investors’ appetite for risk falls and they attempt
to rebalance their portfolios towards safer securities (like U.S. government debt and “good
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Figure 5: Joint Bond and Stock Pricing. The figure shows average returns vs our 3-factor
bond model expected returns for bonds and 15 quintile stock portfolios. The line represents a
model with perfect in-sample fit (100% R2).

companies”). Since it is impossible for everyone to rebalance in this way at the same time,
prices adjust instead of quantities. The prices of “risky” assets fall relative to the prices of
“safer” assets.

Koijen et al. (2015) have a seemingly similar decomposition, albeit with a very different
interpretation. Our 3-factor bond model as well as their model both feature a level factor
and a market factor. Instead of our expected stock return factor, they use an expected bond
return factor (CP from Cochrane and Piazzesi, 2005). Whereas bond returns load positively
on our factor, λ, they load negatively on CP . Koijen et al. (2015) find a positive price of
CP risk whereas we find a negative price of λ risk. The product of loading × risk price
yields a negative number in both cases, and hence the pictures look quite similar, but with
different interpretation. We find that bonds hedge against increases in expected stock returns
but Koijen et al. (2015) find that bonds respond negatively to increases in expected bond
returns. Finally, our estimated model produces a term structure of expected returns which
is consistent with the data (Table 6). In contrast, the estimates in Koijen et al. (2015) result
in a flat term structure.
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Figure 6: Decomposition of Bond Risk Premia. The figure decomposes the total expected
excess return on bonds of maturities 2-5 years (yellow rightmost bars) onto two components: risk
premia earned due to the loading on the ”level“ factor (dark-green leftmost bars), Ci,B; and risk
premia earned due to the loading on the ”risk premium“ factor (light-green middle bars), Ci,λ. The
premium due to market risk, Ci,M , is excluded since it is negligible for bonds.

5 Predicting the Future Market using Cross-Section

In our empirical methodology, we use future realized excess returns as a proxy for today’s
market expectation of future excess returns. We further show that this proxy is key in
explaining the cross section of stock returns. This observation can be viewed from the reverse
perspective. If time-varying expected returns manifest in the cross-section, the cross-section
of stock returns can provide information about expected future returns. Indeed, “priced
factors ... are innovations in state variables that predict future returns.” (Brennan et al.,
2004). It is therefore natural to ask whether cross-sectional variables can predict future
returns and to what extent. Few recent papers have looked at this question. Kelly and
Pruitt (2015) use the cross-section of dividend-price ratios and show that they indeed predict
future returns significantly better than the aggregate dividend-price ratio alone.

Our aim is not to construct the optimal predictor; we only want to show that predictabil-
ity is indeed present and use it as a robustness check of our methodology. If future returns
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Table 7: Time-series predictability of market excess returns using Fama-French factors

The table shows time-series predictability of the stock market risk premium using returns on SMB,
HML, and UMD. We estimate the following regression:

t+k∑
t+1

rxM = a+ [DPt MRKT t−63:t SMBt−63:t HMLt−63:t UMDt−63:t] b+ εM,t+1.

Daily sample from 01-Aug-1966 to 31-Dec-2013. Newey-West t-statistics in parentheses.

DP MRKT SMB HML UMD R2

3 months 0.018 0.049 - - - 0.01
(1.3) (0.8)

6 months 0.036 0.015 - - - 0.014
(1.2) (0.2)

9 months 0.051 0.0043 - - - 0.019
(1.2) (0.0)

12 months 0.065 -0.025 - - - 0.023
(1.2) (-0.3)

3 months 0.019 0.064 -0.3 -0.21 -0.18 0.071
(1.5) (0.8) (-2.8) (-2.8) (-3.0)

6 months 0.037 0.0095 -0.38 -0.38 -0.24 0.072
(1.5) (0.1) (-2.4) (-2.4) (-2.1)

9 months 0.052 -0.032 -0.37 -0.44 -0.31 0.069
(1.4) (-0.3) (-2.1) (-2.0) (-2.1)

12 months 0.065 -0.046 -0.41 -0.35 -0.39 0.067
(1.3) (-0.3) (-1.6) (-1.5) (-2.4)

help to explain the cross-section, the cross-section of returns themselves mechanically must
predict future returns. We want to ensure the covariances reported in Table 1 and Fig-
ure 1 are economically significant. As such, we use the returns on SMB, HML, and UMD

portfolios to forecast future market returns:

H∑
i=1

rxMt+i = a+ [DPt MRKT t−63:t SMBt−63:t HMLt−63:t UMDt−63:t] b+ εM,t+1 (35)

Each of theMRKT, SMB,HML,UMD factors is computed using the past 63 trading days
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Table 8: Time-series predictability of market excess returns using anomalies

The table shows time-series predictability of the stock market risk premium using the first principal
component of anomaly long-short portfolios. We estimate the following regression:

t+k∑
t+1

rxM = a+ [DPt MRKT t−63:t PC1t−63:t] b+ εM,t+1.

Newey-West t-statistics in parentheses. The sample is from 01-Aug-1966 to 31-Dec-2013.

DP MRKT NMVPC1 R2

3 months 0.019 0.044 - 0.011
(1.3) (0.6)

6 months 0.038 0.02 - 0.016
(1.3) (0.2)

9 months 0.056 -0.007 - 0.022
(1.3) (-0.1)

12 months 0.071 -0.017 - 0.027
(1.3) (-0.2)

3 months 0.022 -0.053 -0.26 0.058
(1.6) (-0.7) (-4.7)

6 months 0.042 -0.099 -0.32 0.051
(1.5) (-1.1) (-3.3)

9 months 0.059 -0.13 -0.34 0.048
(1.5) (-1.1) (-2.4)

12 months 0.075 -0.15 -0.37 0.05
(1.4) (-1.4) (-2.3)

(3 months). Results are robust to varying the lag length.
The top panel of Table 7 reports the coefficient estimates, t-statistics of estimated co-

efficients in Eq. 35, and R2 at various horizons, k, (3, 6, 9, and 12 months) with only the
market and dividend-price ratio included as predictors. There is little evidence of return pre-
dictability at horizons up to one year, as evidenced by the insignificant t-statistics and low
R2. The bottom panel shows results when including SMB,HML, and UMD as additional
predictors25. We find that all of the coefficients for each variable at 3-9 months horizon are

25Estimated coefficients are nearly identical if we exclude MRKT and DP (unreported).
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significant and negative and R2 increases substantially. We conclude that covariances of FFC
factors with expected future market returns are economically significant. Related evidence
of predictability is documented by Liew and Vassalou (2000). They show that SMB and
HML help forecast future rates of economic growth.

Finally, we repeat the forecasting exercise using the first principal component of the
anomaly long-short returns (PC1). Table 8 shows that PC1 alone has similar forecasting
ability26 to the three FFC factors combined. The statistical significance for PC1 is substan-
tially higher, likely because SMB,HML, and UMD each contain substantial idiosyncratic
“noise”, adding uncertainty to the estimates.

6 Conclusion

Economists agree that risk premia (expected excess returns) vary significantly over time but
substantially disagree as to why. We tackle this issue with a new approach, studying the
cross-sectional implications of various models. In models where some traders have biased
expectations, rational investors consider times of high expected returns as “good times.” In
contrast, in models with stochastic preferences (risk-aversion) or technology (habits or long-
run risks), investors dislike these states of the world. In both types of models, the logic of
Merton (1973) implies that shocks to aggregate risk premia should enter the pricing kernel.
However, the two types give opposite predictions for sign of the equilibrium price of risk for
such shocks.

We estimate a general ICAPM representation of returns which obtains in both types of
models. Instead of employing the typical VAR approach for estimating shocks to discount
rates, we overcome the unobservability of expected market returns by using future realized
returns as a proxy. This allows us to estimate factor loadings without actually observing
the factor itself. Using this “model-free” empirical strategy and return data on a large set
well known asset pricing anomalies, (including size, value, and momentum) we estimate a
negative price of risk. Our main conclusion is that shocks to aggregate expected excess
returns are perceived as “bad” by rational traders, who requires higher expected returns for
holding exposure to these shocks. This evidence is consistent with “rational” explanations for
time-varying risk premia and is inconsistent with canonical models of biased expectations.

26As measured by R2
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Appendix

A Unconditional Pricing Model: Non-Market-Neutral
Assets

We provide extensions of our arguments in Section 2.2 to the case when test assets have non-zero
covariances with the aggregate market return.

A.1 Time-varying Prices of Risk
Consider the cross-section of assets with non-zero exposure to the market:

cov
(
rit, λt

)
= Ci,λ + cov

(
δmt C

i,m + δλt C
i,λ, φλt

)
=
[
1 + φcov

(
δλt , λt

)]
× Ci,λ + φcov (δmt , λt)Ci,m (36)

Finally, by substituting this expression into Eq. 6 and taking unconditional expectations we obtain
the unconditional relation:

E
[
rit

]
+ V i

2 = δ̂mCi,m + δ̂λcov
(
rit, λt

)
(37)

where

δ̂m = δ̄mt − φδ̂λcov (δmt , λt)

δ̂λ = δ̄λ
[
1 + φcov

(
δλt , λt

)]−1

and δ̄m = E [δmt ], δ̄λ = E
[
δλt

]
.

A.2 Time-varying Quantities of Risk
Consider the cross-section of assets with non-zero exposure to the market:

cov
(
rit, λt

)
= E

[
covt

(
rit, φm,σu

σ
t

)]
+ cov

[
Et−1

(
rit

)
, Et−1

(
φm,σσ

2
t

)]
(38)

= φm,σE
[
Ci,σt

]
+ cov

[
δmCi,mt + δσCi,σt , φm,σφσσ

2
t

]
(39)

= E
[
Ci,λt

](
1 + δσφσ

V
[
σ2
t

]
E
[
σ2
t

])+ δmφm,σφσ
V
[
σ2
t

]
E
[
σ2
t

]E [Ci,mt ]
(40)

37



where V
[
σ2
t

]
≡ var

(
σ2
t

)
. Taking unconditional expectations of the conditional model gives:

E
[
rit

]
+ V i

2 = δ̂mE
[
Ci,mt

]
+ δ̂λ × cov

(
rit, λt

)
(41)

where

δ̂m = δm
(

1− δ̂λφm,σφσ
V
[
σ2
t

]
E
[
σ2
t

]) (42)

δ̂λ = δλ
(

1 + δσφσ
V
[
σ2
t

]
E
[
σ2
t

])−1

. (43)

A.3 Empirical Specification
Both in the case of time-varying prices of risk and in the case of time-varying quantities of risk we
thus estimate the model

E
[
rit

]
+ V i

2 = δ̂m × E
[
Ci,mt

]
+ δ̂λ × cov

(
rit, λt

)
. (44)

The price of market risk δ̂m is distorted, but the price of discount-rate risk δ̂λ is the same as in
our derivations in Section 2.2. Therefore all the theorems about the sign of the discount-rate risk
(Theorem 1, Theorem 2, Theorem 3) go through.

B Bootstrap
We construct standard errors for risk prices using the moving block bootstrap procedure as follows.
There are N test assets, k factors, and T periodic observations. All moments are sample moments
taken as expectations across T . The general model is rt = C

′
δ + εt. C is an N × k matrix of

univariate covariances, cov (rt, ft), where ft are the k factors. Notice the model is homoskedastic.
δ is the vector of risk prices, and εt is the vector of pricing errors. The null hypothesis is that δ = 0
and E [εt] = 0. The alternative is δ 6= 0.

Bootstrap procedure:

1. Estimate Ĉ and δ̂ via GMM

2. Construct r̃t = rt − E [rt]

(a) r̃t is satisfies the null hypothesis of risk-neutrality and maintains all other properties of
the true DGP which are shared with the null. In particular, cov (r̃t, ft) = cov (rt, ft)
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3. Let L be the bootstrap window width. Let X =



r̃
′
1 f

′
1

...
...

r̃
′
T f

′
T

r̃
′
1 f

′
1

...
...

r̃
′
L f

′
L


. To generate bootstrap sample

i, randomly draw j from U [1, T ]. Let sj = X (i : i+ L, :) in Matlab’s indexing convention.
Append sj to Xi, which is initialized as [∅]. Repeat until Xi is of length T . Unless T/L is
an integer, the process yields a bootstrap sample of incorrect length. Build Xi to be at least
length T then trim.

4. Estimate the two-stage regression on sample Xi and save the estimate δ̂i

5. Repeat B times (we use 100,000 replications). The estimated δ̂i should be approximately
mean zero, and std

(
δ̂i
)
≈ SE

(
δ̂
)

6. Perform usual asymptotic tests

C Model Calibration
We present a model (and calibration) featuring time-varying risk-aversion. Consider the dynamic
problem of an investor with Epstein-Zin preferences and unitary elasticity of intertemporal substi-
tution (ψ = 1) and time varying coefficient of risk aversion (γt). Denote his wealth at time t as Wt,
his vector of additional state variables at t as Xt = {αt}, and let αt ≡ 1− γt, ρ ≡ 1− 1

ψ . Investor’s
value function J (Wt, Xt) is given by

J (Wt, Xt) = max
{C,Θt}

lim
ρ→0

{
(1− δ)Cρt + δ (Et [J (Wt+1, Xt+1)αt ])

ρ
αt

} 1
ρ

= max
{C,Θt}

{
C1−δ
t (Et [J (Wt+1, Xt+1)αt ])

δ
αt

}
, (45)

where Ct is investor’s consumption at time t and θt is a vector of weights allocated to each asset in
his portfolio.

Let Rt+1 denote a vector of returns on n assets available to an investor and let rt ≡ ln (Rt+1).
His budget constraint is given by

Wt+1 = (Wt − Ct) θ′tRt+1. (46)

We assume log consumption growth ∆ct+1 ≡ ln
(
Ct+1
Ct

)
and risk aversion parameter follow AR(1)
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processes and that their shocks are uncorrelated,

∆ct+1 = µc + σcε
c
t+1 (47)

γt+1 = µγ + ργt + σγε
γ
t+1 (48)

C.1 Solution
Market clearing requires Ct = Dt, θt = 1n, and Wt = Pt.

Since preferences are homogeneous of degree one in wealth, we define

J (Wt, Xt) = φ (Xt)Wt ≡ φtWt (49)

Taking the log of Eq. 45 and evaluating first-order conditions for consumption yields:

Ct = (1− δ)Wt.

A unit elasticity of substitution therefore implies that consumption is proportional to wealth,
i.e. that agents possess a form of (rational) myopia in consumption and savings decisions. The
optimal portfolio choice is fully dynamic though unless risk aversion is also unity (Giovannini and
Weil, 1989).

Substitute Eq. 49 into Eq. 45:

φt = (1− δ)1−δ δδ
(
Et
[
φαtt+1

(
RMt+1

)αt]) δ
αt (50)

or
Et
[
Btφ

αt
t+1

(
RMt+1

)αt]
= 1, (51)

where Bt =
(

(1−δ)1−δδδ

φt

)αt
δ

.
Take logs and guess that lnφt = a0 + a1γt:

a0 + a1γt = (1− δ) ln (1− δ) + δ (a0 + a1 [µγ + ργt]) (52)

+δµc + 1
2δ (1− γt)

(
a2

1σ
2
γ + σ2

M

)
,

where we used the fact that EtrMt+1 = µc − ln δ (follows from Eq. 46). It follows that

a1 = −1
2δ
a2

1σ
2
γ + σ2

M

1− δρ < 0. (53)

Portfolio problem of an investor is given by

max
θt

Et
[
φαtt+1

(
θ′tRt+1

)αt]
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subject to θ′1n = 1. First-order conditions:

Et
[
φαtt+1

(
RMt+1

)αt−1 (
Rit+1 −R1

t+1

)]
= 0,

where R1
t+1 denotes the return on any asset withing a portfolio (for instance, risk-free rate). Com-

bining this equation with Eq. 51, we obtain the Euler equation for any asset:

Et
[
Btφ

αt
t+1

(
RMt+1

)αt−1
Rit+1

]
= 1 (54)

Taking logs and computing conditional expectations of a log-normally distributed variable, it follows
that the risk premium on any asset is given by:

EtR
i
t+1 − r

f
t = γtcovt

(
rit+1, r

M
t+1

)
+ a1 (γt − 1)︸ ︷︷ ︸

<0 if γt>1

covt
(
rit+1, γt+1

)
(55)

Specializing this to the market return we get the expression for the market risk premium

λt ≡ EtRMt+1 − r
f
t = γtσ

2
M

and can therefore express Eq. 55 in the form of Eq. 6:

EtR
i
t+1 − r

f
t = γtcovt

(
rit+1, r

M
t+1

)
+ a1
σ2
M

(γt − 1) covt
(
rit+1, λt+1

)
. (56)

C.2 Calibration
The pricing relation Eq. 55 is of the same form as Eq. 6 and hence conditioning down according
to Theorem 2 and Theorem 1 apply. We calibrate the model at daily frequency assess plausible
magnitudes of unconditional risk prices predicted by the model. We use the following parameter
values (annualized):

• time preference parameter (from Bansal and Yaron, 2004) δ = 0.976;

• persistence of risk aversion (estimated D
P persistence from Sabbatucci (2015)) ρ = 0.7;

• volatility of market returns (from data) σM = 16%

• length of the cumulative sum of market returns T = 126 trading days

• average risk aversion of γ̄ = 3.5

• unconditional volatility of risk aversion σγ√
1−ρ2

= 1.25;

Based on these parameters, expected conditional risk prices are EδMt = γ̄ = 3.5 and Eδλt =
a1
σ2
M

(Eγt − 1) = −875, where a1 is given by Eq. 53. To find unconditional prices of risk, we rely on
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Eq. 11. As a result, we obtain δ̂M = 3.5 and δ̃λ̂ = −7.5, similar to the estimates in Section 3.1.
The results are quite insensitive to the choice of σγ , and δ̃λ̂ increases (in absolute value) with
ρ. For example, ρ = 0.75 gives δ̃λ̂ = −9.3 and ρ = 0.8 yields δ̃λ̂ = −12.3. The calibration
implies std

[
Et
(
rMt+1

)]
≈ 3.3% (annualized), consistent with the (implied) estimate of ≈ 3.4% from

Sabbatucci (2015).

D Robustness
We present additional results showing the sensitivity of our results to changes in specification (or
lack thereof).

D.1 Monthly Estimation
Table 9 presents risk price estimates using monthly returns on our primary test assets. The esti-
mated parameters and model fit are very similar to the daily results in Table 2. The 4-factor FF
model fit has improved to nearly perfect, but the estimated risk prices (δsmb, δhml, δumd) are half
of the corresponding values in Table 2. In an i.i.d serially uncorrelated model, the SDF coefficients
should be identical no matter what the frequency of observation27. This result suggests the 4-factor
model is overfit, and hence, the estimates are not consistent across frequency.

D.2 Future Market Return Horizon
Table 11 shows estimated δλ and cross-sectional R2 using alternative horizons, T , to define λ̂ =∑T
j=2 rx

M
t+j ranging from six months to two years (using daily return data). All estimates restrict the

zero-beta rate. δλ declines almost monotonically with T , which is expected since cov
(
rxit+1, λ̂t+1:t+T

)
increases with T and hence δλ must decline. Cross-sectional R2 are fairly stable across horizon,
with a peak at one year. Table 12 shows the results of repeating the exercise using monthly returns.
The point estimates and patterns are similar, confirming that our results aren’t driven by the choice
of horizon for future market returns.

D.3 Fama-French 25
Our main results are presented using value-weighted quintile portfolios sorted on ME, BE/ME, and
Prior2-12. Table 13 gives estimates using daily returns on the Fama-French 25 portfolios sorted on
ME and BE/ME. As before, the 4-factor model has better fit than our 2-factor model but at the
expense of less stable estimates across horizons and test assets.

27Ignoring error from log-linearization
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Table 9: Risk Price Estimates (Monthly Returns)

This table shows risk prices estimated using monthly returns from August 1966 to December 2013
for the two-factor model, the CAPM, and the augmented Fama-French model. The test assets
are value-weighted quintile portfolios sorted on ME, BE/ME, and Prior2-12. α is annualized and
"-" indicates that the intercept is restricted to zero. MAPE is average absolute pricing error,
annualized. Moving block bootstrap t-statistics are in parentheses.

α δm δλ δsmb δhml δumd R2 MAPE

2-Factor model - 2.94 -9.27 - - - 78.1 0.974
(8.3) (-7.2)

1.24 2.46 -9.25 - - - 79.5 0.991
(3.5) (6.4) (-7.2)

CAPM - 2.67 - - - - 31 1.53
(7.7)

1.35 2.15 - - - - 32.7 1.61
(3.9) (5.8)

4-Factor FFC - 3.98 - 1.33 6.49 4.2 94.5 0.45
(9.5) (1.3) (7.7) (11.1)

0.111 3.92 - 1.35 6.46 4.19 94.5 0.457
(1.6) (9.5) (1.3) (7.7) (11.1)
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Table 10: Risk Price Estimates: Anomalies (Monthly Returns)

This table shows risk prices estimated using monthly returns from August 1966 to December 2013
for the two-factor model, the CAPM, and the augmented Fama-French model. The test assets are
value-weighted anomaly portfolios. α is annualized and "-" indicates that the intercept is restricted
to zero. MAPE is average absolute pricing error, annualized. Moving block bootstrap t-statistics
are in parentheses.

α δm δλ δsmb δhml δumd R2 MAPE

2-Factor model - 3.53 -14.4 - - - 58.4 2.51
(9.2) (-13.8)

1.94 2.56 -11.5 - - - 63.6 2.45
(4.0) (6.4) (-11.2)

CAPM - 2.97 - - - - -232 7.33
(7.7)

7.28 -0.224 - - - - 5.34 3.69
(13.2) (-0.5)

4-Factor FFC - 4.31 - 1.98 8.81 5.52 27.4 2.95
(9.1) (1.9) (9.7) (12.3)

4.42 1.93 - 0.186 4.48 3.81 70.1 1.84
(8.8) (3.7) (0.2) (4.5) (8.5)

Table 11: Alternative Horizons (Daily Returns)

Estimated risk price of discount rate factor and cross-sectional R2 for alternative choices of moving
average horizon. Data are daily returns with value-weighted quintile portfolios sorted on ME,
BE/ME, and Prior2-12 as test assets. Moving block bootstrap t-statistics are in parentheses.

6m 9m 12m 15m 18m 21m 24m

δλ -8.7 -6.9 -7.5 -6.2 -6.9 -4.5 -4.1
(-3.8) (-3.5) (-4.2) (-3.8) (-4.2) (-3.7) (-3.7)

R2 84 79 90 83 84 80 82
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Table 12: Alternative Horizons (Monthly Returns)

Estimated risk price of discount rate factor and cross-sectional R2 for alternative choices of moving
average horizon. Data are monthly returns with value-weighted quintile portfolios sorted on ME,
BE/ME, and Prior2-12 as test assets. Moving block bootstrap t-statistics are in parentheses.

6m 9m 12m 15m 18m 21m 24m

δλ -9.3 -7.3 -7.3 -6.7 -7 -5 -5.1
(-7.2) (-6.5) (-7.2) (-7.0) (-7.5) (-7.0) (-7.1)

R2 78 70 72 70 70 72 73

Table 13: Risk Price Estimates (FF 25 portfolios sorted on ME and BE/ME)

This table shows premia estimated using monthly returns from 01-Aug-1966 to 31-Dec-2013 for
the two-factor model, the CAPM, and the augmented Fama-French model. The test assets are the
25 portfolios sorted on ME and BE/ME. α is annualized and "-" indicates that the intercept is
restricted to zero. MAPE is average absolute pricing error, annualized. Moving block bootstrap
t-statistics are in parentheses.

α δm δλ δsmb δhml δumd R2 MAPE

2-Factor model - 3.28 -8.59 - - - 73.1 1.09
(3.1) (-3.4)

1.79 2.55 -8.13 - - - 75 1.1
(2.0) (2.6) (-3.4)

CAPM - 3.34 - - - - -9.08 2.38
(3.2)

5.22 1.2 - - - - 9.38 2.18
(3.3) (1.2)

4-Factor FFC - 6.01 - 4.41 14.8 14.6 77.2 1.03
(3.7) (1.7) (3.8) (1.9)

1.09 5.39 - 4.27 14.1 13.5 77.9 1.04
(2.8) (3.5) (1.6) (3.7) (1.8)
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