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Abstract

A growing literature examines trade-related dynamics at the product-level within firms

or plants. Product-level efficiency is a key theoretical component, and so is the ranking

of products by "core competence." However, data limitations make it difficult to construct

product-level efficiency, and productivity patterns across products within plants are largely

unexplored. We exploit a uniquely detailed Chilean datasetthat allows us to compute sev-

eral alternative efficiency measures (such as marginal costs, revenue productivity, physical

efficiency, and marginal costs), for each product within plants. We present novel stylized

facts in three areas. First, on product-level efficiency patterns, we show that productive

plants tend to be relatively efficient across the board, not just for their core products. Sec-

ond, we show that the typically used sales-based product ranks correctly reflect higher

physical efficiency (TFPQ); however – seemingly contradictory – marginal costs are higher

for top-ranked sales products. We show that this discrepancy is likely driven by product

quality and present a stylized model that underlines the importance of the ranking variable.

Finally, using the prominent metric of export skewness towards core products, we highlight

the importance of using the appropriate ranking variable when testing predictions of flexi-

ble manufacturing models. Product ladders based on marginal costs or revenue productivity

do not show export skewness, while TFPQ-based rankings do yield skewness towards the

most efficient product and thus aggregate efficiency gains from trade.
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1 Introduction

A growing literature examines how production within multi-product firms is affected by interna-

tional trade, and how the optimal response of these firms to competition influences productivity.

For example,Bernard, Redding, and Schott(2011), andMayer, Melitz, and Ottaviano(2014)

show that increased competition causes multi-product firmsto skew their production towards

their best performing ("core") products and to drop less profitable products from their portfo-

lio. Similarly, Eckel and Neary(2010) study cannibalization of own products and diseconomies

of scope when firms expand their product lines, moving away from their "core competence."

In the theory underlying these studies, product-specific competence depends on the efficiency

with which each product is produced. However, data limitations make it difficult to construct

product-level efficiency.1 In fact, productivity patterns across products within plants are largely

unexplored. To bypass this limitation, previous studies have constructed the product ladder

within firms using total sales (or exports) of each product, rather than efficiency as implied by

the theory.

In this paper, we use a uniquely rich dataset to explore product-level efficiency and core

competence in Chilean manufacturing. The Chilean data contain information on product-

specific inputs. This allows us to estimate markups at the plant-product level, following the

method pioneered byDe Loecker and Warzynski(2012), which is flexible with respect to the

underlying price setting model and the functional form of the production function. Our dataset

also includes physical units as well as revenues for each plant-product, allowing us to calcu-

late product prices (unit values). Dividing these by the corresponding markups yields marginal

costs at the plant-product level (De Loecker et al., 2016). We also compute physical productivity

(TFPQ) and revenue productivity (TFPR) at the plant-product level. We then use this rich set of

product-specific performance measures to examine productivity patterns within multi-product

plants. In addition, we use our efficiency measures to createproduct ranks within plants and

check to what extent conclusions in the previous literaturedepend on using sales as the ranking

variable.

We document a series of novel stylized facts that can be broadly summarized in three groups.

First, we examine productivity patterns within plants, finding that efficient plants tend to be ef-

ficient across the board, not merely for their core product. This supports a common feature

of flexible manufacturing models: product-level efficiencyis driven by a plant-level efficiency

draw, in combination with a product-specific term.2 These specifications imply that firms with

1The exception areDe Loecker, Goldberg, Khandelwal, and Pavcnik(2016), who study pass-through at the
product level;Garcia-Marin and Voigtländer(2013) andLamorgese, Linarello, and Warzynski(2014), who ex-
amine export-related efficiency gains at the product level;andDhyne, Petrin, Smeets, and Warzynski(2016) who
study the effects of import competition on product-level efficiency.

2For example, the models ofEckel and Neary(2010) andMayer et al.(2014), feature a firm-level draw that
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relatively high efficiency in their core product (compared to core products of other producers)

should also be relatively efficient in lower-ranked products. This is supported by the strong

positive correlation between the relative efficiencies of the core product and lower-ranked prod-

ucts. A related finding is that efficiency trends over time arecorrelated across products within

plants. That is, when plants become more efficient at producing one product, the production of

other products also becomes more efficient. This common component of efficiency growth has

important implications for models with endogenous growth in multi-product plants.

Our second block of results underlines the importance of thevariable that is used to rank

products. We show that the standard procedure to create product ladders according to sales

leads to a seemingly contradictory pattern: top-ranked sales products exhibit higher physical

efficiency (TFPQ) but also higher marginal costs (MC). We show that this difference is likely

driven by product quality: Unobserved product quality raises marginal costs via higher input

prices, but it leaves our measure of TFPQ largely unaffected. Consequently, top-sales products

tend to be produced at relatively high efficiency (high TFPQ), but at high marginal costs due to

expensive inputs. High TFPQ exerts a downward pressure on MCand prices, while high quality

exerts an upward pressure. In sales-based rankings, the latter prevails, so that top products are

sold at relatively high prices. Our findings thus support models that emphasize the importance of

the quality dimension, but they also point to the importanceof using the appropriate efficiency

measure when examining gains from reallocation across products within plants.

To rationalize these empirical findings, we built a stylizedmodel, combiningKugler and

Verhoogen’s (2012) framework of heterogeneous plants and endogenous qualitychoice with

Eckel and Neary’s (2010) model of multi-product plants. An important feature of themodel

is that – contrary to previous contributions – quality capability is distributed independently of

physical efficiency at the product level. This yields the feature that physical efficiency is not

perfectly correlated with product revenues (which in turn depend on both efficiency and quality).

In fact, product rankings based on revenues are ‘biased’ towards products with higher quality

capability draws, which can explain the observed higher MC for core products. On the other

hand, product rankings based on physical efficiency (TFPQ) are unaffected by quality, so that

core products have lower marginal costs.

Our final block of results examines the extent to which a central finding in models of flex-

ible manufacturing depends on the efficiency measure that isused to rank products. These

models (e.g.,Mayer et al., 2014) examine how competition across export destinations affects

the product mix within-plants. We take advantage of the factthat we observe direct measures

of efficiency for each product, and study whether the canonical model holds when actual effi-

serves as the marginal cost of the core product. Increasing distance from the core product then leads to successively
higher product-specific marginal cost.
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ciency is used to rank products, instead of the typically used ranking by export sales. When

using sales-based product ranks, we confirm the skewness of exports sales towards core prod-

ucts in more competitive destination markets. This is also true for TFPQ based product ranks.

Thus, exports to competitive markets are indeed skewed towards the most efficiently produced

product (as opposed to simply the most prominent one), affirming that this mechanism can lead

to aggregate efficiency gains. However, rankings based on marginal cost or revenue productiv-

ity (TFPR) do not imply skewness. This underlines the importance of correctly specifying the

productivity measure when examining gains from trade.

Our paper relates to a large literature that studies the relationship between international trade

and productivity. Papers such asPavcnik(2002), Bernard, Eaton, Jensen, and Kortum(2003),

andMelitz (2003) have examined selection across firms as a driver of productivity increases.

Recent contributions on multi-product firms, in turn, have instead focused on the reallocation of

resources across products within firms (Bernard et al., 2011; Mayer et al., 2014). Eckel, Iacov-

one, Javorcik, and Neary(2015) introduce endogenous choice of product quality in theEckel

and Neary(2010) framework. In this context, firms produce more of their corecompetence

products, but these products also have higher margins, providing incentives to invest in their

quality. Using Mexican manufacturing data,Eckel et al.(2015) show that firms in differentiated-

goods sectors tend to exhibit quality competence, while this is true to a lesser extent for firms

operating in homogenous-goods sectors.3 Papers in this literature have constructed core com-

petence measures based on total sales. The exception areDhyne et al.(2016), who estimate

firm-product efficiency shocks for multi-product plants in Belgium. Since the Belgian data do

not include product-level information on inputs,Dhyne et al.(2016) extend the single-product

production function methodology to estimate multi-product production functions, defining pro-

duction possibilities for each firm based on aggregated inputs and outputs. A downside of this

framework is that it applies only to given production tuples(e.g., all four-product firms that

produce the exact same set of products). In practice, this imposes a severe data restriction,

especially in small countries with relatively few firms.4

Relative to the existing literature, we make several contributions. First, we provide di-

rect evidence for assumptions that underly prominent models of flexible manufacturing such as

Bernard et al.(2011) or Mayer et al.(2014). For example, our finding that productive plants

tend to be relatively efficient at all their products supports the setup where a common efficiency

draw affects all products within a plant. To the best of our knowledge, we are the first to provide

3Quality differences are identified indirectly, through their effect on prices.
4To by-pass this issue, the authors aggregate all other outputs produced by the plant in an ad-hoc fashion, using

either revenues, or physical output indexes. Our approach,in contrast, does not need to impose any functional form
for aggregating product level information, or to assume allocation rules for assigning inputs to outputs, because we
infer product-specific input shares directly from the data.
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direct evidence that this assumption holds in the data. Second, we document a number of novel

stylized facts on the relationship between products’ salesrank and their underlying productivity,

marginal costs, and markups. We also show how the patterns inthe data are related to product

quality. Third, our results emphasize the importance of using the appropriate ranking variable

(i.e., efficiency measure) when testing predictions of flexible manufacturing models.

The rest of the paper is organized as follows. Section2 discusses our empirical framework,

shedding light on different efficiency measures such as marginal cost, physical productivity, and

revenue productivity. We also illustrate the empirical framework to estimate these measures.

Section3 describes our datasets. Section4 presents our empirical results and novel stylized

facts. Section5 sketches a stylized model that can help to rationalize our empirical findings.

Section6 concludes.

2 Empirical Framework

In this section, we discuss our efficiency measures and explain how we estimate them at the

plant-product level. Our first measure of efficiency isrevenue-basedtotal factor productivity

(TFPR) – the standard efficiency measure in the literature that analyzes productivity in the con-

text of international trade. We discuss why this measure mayfail to detect productivity differ-

entials. Our second efficiency measure is quantity productivity (TFPQ), and the third, marginal

cost. We discuss which potential biases affect the different measures, which is important since

we compare efficiency across products within plants.

2.1 Revenue vs. Physical Total Factor Productivity

Productivity is commonly measured in empirical studies as aresidual term between total output

and the estimated contribution of production factors. Ideally, total output should be computed

in terms of physical units of the final good. However, data on physical quantities are generally

scarce and have only recently become available for some countries. As a result, the majority of

studies use revenue as output variable for measuring productivity. From hereafter, we denote

this productivity measure – based on revenues as output variable – by TFPR, to differentiate

from its quantity-based counterpart, which we denote by TFPQ.

As shown in previous research, TFPR is a downward biased measure of TFPQ (Foster, Halti-

wanger, and Syverson, 2008). The intuition for this result can be illustrated using thedefinition

TFPR = P · TFPQ, whereP denotes the output price. If more efficient producers charge

lower prices, then TFPR will only show a fraction (or in the extreme, none) of the difference

in efficiency reflected by TFPQ.5 For instance, if preferences are CES and there are constant

5As we show below, there is an important exception where TFPR fully reflects differences in TFPQ across
producers: under constant returns to scale, if input pricesare the same for both producers and the two producers
charge differential markups in the same proportion as the difference in TFPQ.
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returns to scale, then any efficiency difference in TFPQ translates proportionately into differ-

ence in prices (since markups are constant with CES demand).Consequently, TFPR will show

no differential in efficiency. In empirical studies, the price bias of TFPR is commonly tackled

by deflating revenues with industry price indexes. However,within industries the bias does

not disappear, and cross-sectional differences in TFPR areaffected by the difference between

individual plants’ prices and the corresponding industry price index.

Next, we show that differences in revenue-productivity mayactually capture differences in

demand-side factors that lead to differential markups. Forsimplicity, assume for now a Cobb-

Douglas production function, whereγ = αL +αM + αK denotes the degree of returns to scale,

with the subscriptsL, M , andK denoting labor, material inputs, and capital, respectively. Total

and marginal costs are then given by:
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wherewi denotes the price of inputi andQ is physical output volume. We use the standard

notationA for physical efficiency (TFPQ). Assuming that there are approximately constant

returns to scale (γ = 1), it can be shown that (Katayama, Lu, and Tybout, 2009; Garcia-Marin

and Voigtländer, 2013):

∆TFPR = ∆µ−△φ(w) (3)

where we use△ to denote percentage (log-point) differences. Equation (3) implies that differen-

tial TFPR does not reflect efficiency differences – unless plants with higher TFPQ charge higher

markups or face lower input prices. On the other hand, when input price differences are not

meaningful, and under constant returns to scale, it can be shown that (3) implies that efficiency

differences△Ait are fully reflected by differential marginal costs, i.e.,△Ait = −△MCit (see

Garcia-Marin and Voigtländer, 2013, for a detailed discussion).

The above discussion shows that ideally, we would like to measure TFPQ directly. Marginal

cost is a good alternative measure of physical efficiency if production functions exhibit constant

returns to scale, and provided that input price differencesare minor.6 However, there are prac-

tical caveats. As we explain in section2.4, estimating TFPQ may be more demanding from

a data perspective and is more likely to be affected by measurement error than marginal cost.

6In the presence of increasing returns, marginal costs will tend to overestimate actual efficiency gains. In this
case, TFPQ is the preferable efficiency measure, since its estimation allows for flexible returns to scale.
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Nevertheless, we compute both TFPQ and marginal costs as alternative efficiency measures.

2.2 Productivity Estimation

To compute productivity we specify a Cobb-Douglas production function with labor (l), capital

(k), and materials (m) as inputs. FollowingDe Loecker et al.(2016), we estimate a separate

production function for each 2-digit manufacturing sector(s), using the subsample of single

product plants.7 The reason for using single-product plants is that one typically does not observe

how inputs are allocated to individual outputs within multi-product plants. For the set of single

product plants, no assumption on the allocation of inputs tooutputs is needed, and we can

estimate the following production function with standard plant-level information:

qit = βs
l lit + βs

kkit + βs
mmit + ωit + εit (4)

where all lowercase variables are in logs;qit are revenues of single-product planti in year

t, ωit is productivity,kit denotes the capital stock,mit are material inputs, andεit represents

measurement error as well as unanticipated shocks to output. Estimating (4) yields the sector-

specific vector of coefficientsβs = {βs
l , β

s
k, β

s
m}.

When computing TFPR, consistently with the literature, we deflate all nominal variables

(revenues, materials, wages) using 4-digit industry specific deflators provided by ENIA. In

contrast, when computing TFPQ we use quantities – as opposedto revenues – as output variable,

and since we do not observe physical inputs in a consistent way, we implement the correction

suggested byDe Loecker et al.(2016) to control for the plant-specific variation in input prices.8

We estimate (4) following the methodology byAckerberg, Caves, and Frazer(2015, hence-

forth ACF), who extend the framework ofOlley and Pakes(1996, henceforth OP) andLevin-

sohn and Petrin(2003, henceforth LP). This methodology controls for the simultaneity bias that

arises because input demand and unobserved productivity are positively correlated.9 The key

insight of ACF lies in their identification of the labor elasticity, which they show is in most cases

unidentified by the two-step procedure of OP and LP.10 We modify the canonical ACF proce-

7The 2-digit product categories are: Food and Beverages, Textiles, Apparel, Wood, Paper, Chemicals, Plastic,
Non-Metallic Manufactures, Basic and Fabricated Metals, and Machinery and Equipment.

8This source of bias appears to be less problematic when plantrevenues are used as output variable (seeDe
Loecker et al., 2016). Under quality considerations, plants charge higher prices for their outputs and pay more
for their inputs (Kugler and Verhoogen, 2012), implying that the input price bias tends to be compensatedby the
output price variation.

9We follow LP in using material inputs to control for the correlation between input levels and unobserved
productivity.

10The main technical difference is the timing of the choice of labor. While in OP and LP, labor is fully adjustable
and chosen int, ACF assume that labor is chosen att− b (0 < b < 1), after capital is known int − 1, but before
materials are chosen int. In this setup, the choice of labor is unaffected by unobserved productivity shocks between
t− b andt, but a plant’s use of materials now depends on capital, productivity, and labor. In contrast to the OP and
LP method, this implies that the coefficients of capital, materials, and labor are all estimated in the second stage.
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dure by specifying an endogenous productivity process thatcan be affected by export status and

plant investment. In addition, we include interactions between export status and investment in

the productivity process. Thus, the procedure allows exporting to affect current productivity

either directly, or through a complementarity with investment in physical capital. This reflects

the corrections suggested byDe Loecker(2013); if productivity gains from exporting also lead

to more investment (and thus a higher capital stock), the standard method would overestimate

the capital coefficient in the production function, and thusunderestimate productivity (i.e., the

residual). Finally, using the set of single-product plantsmay introduce selection bias because

plant switching from single- to multi-product may be correlated with productivity. Following

De Loecker et al.(2016), we correct for this source of bias by including the predicted probabil-

ity of remaining single-product,̂sit, in the productivity process as a proxy for the productivity

switching threshold.11 Accordingly, the law of motion for productivity is:

ωit = g(ωit−1, d
x
it−1, d

i
it−1, d

x
it−1 × diit−1, ŝit−1) + ξit (5)

wheredxit is an export dummy, anddiit is a dummy for periods in which a plant invests in physical

capital (followingDe Loecker, 2013).

In the first stage of the ACF routine, a consistent estimate ofexpected output̂φt(·) is ob-

tained from the regression

qit = φt(lit, kit, mit;xit) + εit

We use inverse material demandht(·) to proxy for unobserved productivity, so that expected

output is structurally represented byφt(·) = βs
l lit + βs

kkit + βs
mmit + ht(mit, lit, kit,xit).12

The vectorxit contains other variables that affect material demand (timeand product dum-

mies, reflecting aggregate shocks and specific demand components). Next, we use the esti-

mate of expected output together with an initial guess for the coefficient vectorβs to com-

pute productivity: for any candidate coefficient vectorβ̃
s
, productivity is given byωit(β̃

s
) =

φ̂t −
(
β̃s
l lit + β̃s

kkit + β̃s
mmit

)
. Finally, we recover the productivity innovationξit for the

given candidate vector̃β
s
: following (5), we estimate the productivity processωit(β̃

s
) non-

parametrically as a function of its own lagωit−1(β̃
s
), prior exporting and investment status, and

the plant-specific probability of remaining single-product.13 The residual isξit.

11We estimate this probability for single-product plants within each 2-digit sector using a probit model, where
the explanatory variables include product fixed effects, labor, capital, material, output price, as well as importing
and exporting status.

12We approximate the function̂φt(·) with a full second-degree polynomial in capital, labor, andmaterials.
13FollowingLevinsohn and Petrin(2003), we approximate the law of motion for productivity (the functiong(·)

stated in (5)) with a polynomial.
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The second stage of the ACF routine uses moment conditions onξit to iterate over candidate

vectorsβ̃
s
. In this stage, all coefficients of the production function are identified through GMM

using the moment conditions

E (ξit(β
s)Zit) = 0 (6)

whereZit is a vector of variables that comprises lags of all the variables in the production

function, as well as the current capital stock. These variables are valid instruments – including

capital, which is chosen before the productivity innovation is observed. Equation (6) thus says

that for the optimalβs, the productivity innovation is uncorrelated with the instrumentsZit.

Given the estimated coefficients for each product categorys (the vectorβs), TFPR can be

calculated both at the plant level and for individual products within plants. For the former, we

use the plant-level aggregate laborlit, capitalkit, and material inputsmit. We then compute

plant-level TFPR,̂ωit:

ω̂it = qit − (βs
l lit + βs

kkit + βs
mmit) (7)

whereqit are total plant revenues, and the term in parentheses represents the estimated contri-

bution of the production factors to total output in planti. Note that the estimated production

function allows for returns to scale (βs
l + βs

k + βs
m 6= 1), so that the residual̂ωit is not af-

fected by increasing or decreasing returns. When computingplant-level TFPR in multi-product

plants, we use the vector of coefficientsβs that corresponds to the product categorys of the

predominant product produced by planti.

Next, we compute our main revenue-based productivity measure –product-level TFPR. To

perform this step for multi-product plants, the individualinputs need to be assigned to each

productj. Here, our sample provides a unique feature: ENIA reports total variable costs (i.e.,

for labor and materials)TV Cijt for each productj produced by planti. We can thus derive

the following proxy for product-specific material inputs, assuming that total material is used

(approximately) in proportion to the variable cost shares:

Mijt = sTV C
ijt ·Mit where sTV C

ijt =
TV Cijt∑
j TV Cijt

(8)

Taking logs, we obtainmijt. We use the same calculation to proxy forlijt andkijt. Given these

values, we can derive plant-product level TFPR, using the vectorβs that corresponds to product

j:

ω̂ijt = qijt − (βs
l lijt + βs

kkijt + βs
mmijt) (9)

whereqijt are product-specific (log) revenues.

For estimating TFPQ, we modify the first stage of the ACF procedure (given by equation
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(6) in the paper), by including a vector of variables to proxy for input prices,14 and we modify

the second stage by adding lags of these variables as instruments to identify the additional

parameters. Given the quantity-based estimation of the production function (i.e., the vector of

quantity-based elasticitiesβs), we can back out physical productivity TFPQ, using the quantity-

equivalent of equation (9). On the output side, physical quantities are directly observed at the

plant-product level in the Chilean data. As for inputs, we use deflated plant-level expenditures

in the spirit ofFoster et al.(2008), and assign these to individual products using the reported

expenditure shares from ENIA (as calculated in (8)). With this information, we back out TFPQ

at the plant-product-year level.

2.3 Estimating Marginal Cost

To construct a measure of marginal production cost, we follow a two-step process. First, we

derive the product-level markup for each plant. Second, we divide plant-product output prices

(observed in the data) by the calculated markup to obtain marginal cost.

The methodology for deriving markups follows the production approach proposed byHall

(1986), recently revisited byDe Loecker and Warzynski(2012). This approach computes

markups without relying on market-level demand information. The main assumptions are that

at least one input is fully flexible and that plants minimize costs for each productj. The first

order condition of a plant-product’s cost minimization problem with respect to the flexible input

V can be rearranged to obtain the markup of productj produced by planti at timet:15

µijt︸︷︷︸
Markup

≡
Pijt

MCijt
=

(
∂Qijt(·)

∂Vijt

Vijt

Qijt

)

︸ ︷︷ ︸
Output Elasticity

/( P V
ijt · Vijt

Pijt ·Qijt

)

︸ ︷︷ ︸
Expenditure Share

, (10)

whereP (P V ) denotes the price of outputQ (inputV ), andMC is marginal cost. According to

equation (10), the markup can be computed by dividing the output elasticity of productj (with

respect to the flexible input) by the expenditure share of theflexible input (relative to the sales

of productj). Note that under perfect competition, the output elasticity equals the expenditure

share, so that the markup is one (i.e., price equals marginalcosts).

In our computation of (10) we use materials (M) as the flexible input to compute the output

elasticity – based on our estimates of (4) for the quantity version of the production function.16

14Following De Loecker et al.(2016), we include output prices and plant-product sales relative to the overall
sales of the same product, as well as the interaction of thesevariables with capital and materials.

15Note that the derivation of equation (10) essentially considers multi-product plants as a collection of single-
product producers, each of whom minimizes costs. This setupdoes not allow for economies of scope in production.
To address this concern, we show below that all our results also hold for single-product plants.

16In principle, labor could be used as an alternative. However, in the case of Chile, labor being a flexible input
would be a strong assumption due to its regulated labor market. A discussion of the evolution of job security and
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We then compute markups based on quantity estimates of the elasticitiesβs
m (as opposed to

revenue-based estimates). Note that since we use a Cobb-Douglas production function, the out-

put elasticity with respect to material inputs is given by the constant termβs
m. Consequently,

it is absorbed by the product fixed effects (which are implicit in our standardization that con-

structs the Tornqvist index, see Section3.2). Thus, potential bias due to mis-measuredβs
m (as

described inDe Loecker et al., 2016) does not affect our results.

The second component needed in (10) – the expenditure share for material inputs – is di-

rectly observed in our data in the case of single-product plants. For multi-product plants, we use

the proxy described in equation (8) to obtain the value of material inputsP V
ijt ·Vijt = Mijt. Since

total product-specific revenuesPijt·Qijt are reported in our data, we can then compute the plant-

product specific expenditure shares needed in (10).17 This procedure yields plant-product-year

specific markupsµijt.

Finally, because output prices (unit values)Pijt are also observed at the plant-product-year

level, we can derive marginal costs at the same detail,MCijt. To avoid that extreme values drive

our results, we only use observations within the percentiles 2 and 98 of the markup distribution.

The remaining markup observations vary between (approximately) 0.4 and 5.6.

2.4 Marginal Cost vs TFPQ

In the following, we briefly discuss the advantages and limitations of marginal cost as compared

to quantity productivity (TFPQ) as a measure of efficiency inthe context of our study. For

now, suppose that the corresponding quantity-based input elasticitiesβs have been estimated

correctly.18 Then, in order to back out TFPQ by using (7), ideally both output and inputs

need to be observed in physical quantities. Output quantities are available in some datasets.

But for inputs, this information is typically unavailable.Thus, researchers have adopted the

standard practice of using industry-level price indexes todeflate input expenditures (Foster et al.,

2008). This approximation may lead to biased TFPQ estimates if input prices or the user cost

of capital vary across firms within the same industry. A further complication arises if one aims

to compute product-specific TFPQ for multi-product plants,where physical inputs need to be

firing cost in Chile can be found inMontenegro and Pagés(2004).
17By using each product’s reported variable cost shares to proxy for product-specific material costs, we avoid

shortcomings of a prominent earlier approach: since product-specific cost shares were not available in their dataset,
Foster et al.(2008) had to assume that plants allocate their inputs proportionately to the share of each product in
total revenues. This is problematic because differential changes in markups across different products will affect
revenue shares even if cost shares are unchanged.De Loecker et al.(2016) address this issue by using an elaborate
estimation technique to identify product-specific material costs; this is not necessary in our setting because the
uniquely detailed Chilean data allow us to directly computeproduct-specific material costs from reported data.

18To compute TFPQ, the elasticities in the production function (4) must be estimated in quantities. Estimating
this vector is challenging in itself: When estimating the production function (4), product-specific output and inputs
have to be deflated by proper price indexes. In addition, if input quantities are not available and input expenditure
is used instead, the estimation of the production function coefficients is biased (seeDe Loecker et al., 2016).
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assigned to individual products. While our dataset has the unique advantage that plants report

the expenditureshare of each product in total variable costs (which is sufficient to derive the

product-specific material expenditure share needed in (10) to compute markups), it does not

contain information on how to assign inputquantitiesto individual products. Thus, assigning

mit, lit, andkit to individual products is prone to error. This is especiallytrue in the case of

capital, which is typically not specific to individual output products. In light of these limitations,

most studies compute TFPQ at the plant or firm level. An additional complication arises forkit
in TFPQ calculations because the capital stock is only available in terms of monetary values

and not in physical units.

Contrast this with the computation of markups in (10), still assuming thatβs has been

correctly estimated. The output elasticity with respect tomaterial inputs is given byβs
m, and –

for single-product plants – the expenditure share for material inputs is readily available in the

data. For multi-product plants, we use the approximation with reported variable cost shares in

equation (8) to back out plant-product specific input expenditure shares. Thus, plant-product

specific markups can be immediately calculated in our Chilean data.19

We now turn to the estimation ofβs, which is challenging and may introduce further error.

When using a Cobb-Douglas production function, this issue is less severe for markups than

for TFPQ in the context of our analysis. The computation of markups uses onlyβs
m from the

vectorβs. Note that measurement error ofβs
m will affect the estimatedlevel of markups, but

not our analysis across producers of the same product: because we analyzedifferencesat the

product level,βs
m is the same across producers and cancels out. In other words,the estimated

differencesin markups in (10) are only driven by the observed material expenditure shares, but

not by the estimated output elasticityβs
m.20 Contrast this with the computation of TFPQ, which

uses all coefficients inβs, multiplying each by the corresponding physical input (or deflated

input expenditures) in (7). In this case, analyzing differences in TFPQ will not eliminate errors

and biases in the level ofβs.

3 Data

Our primary dataset is a Chilean plant panel for the period 1996-2007, theEncuesta Nacional

Industrial Anual(Annual National Industrial Survey – ENIA). We combine thisdataset with

Chilean customs data over the period 2001-2005. A key advantage of the Chilean data is

that multi-product plants are required to report product-specific total variable costs. These are

19Note that when computing product-level markups for multi-product plants, we only need to proportionately
assign the expenditure share ofmaterial inputs to individual products. This procedure is not neededfor labor or
capital.

20For the same reason, we could in principle use estimates ofβs from therevenueproduction function, i.e., the
same coefficients used to compute TFPR.
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crucial for the calculation of plant-product level markupsand marginal costs in multi-product

plants, as described in Section2.3.

Data for ENIA are collected annually by the ChileanInstituto Nacional de Estadísticas(Na-

tional Institute of Statistics – INE). ENIA covers the universe of manufacturing plants with 10

or more workers. It contains detailed information on plant characteristics, such as sales, spend-

ing on inputs and raw materials, employment, wages, investment, and export status. ENIA

contains information for approximately 5,000 manufacturing plants per year with unique iden-

tifiers. Out of these, about 20% are exporters, and roughly 70% of exporters are multi-product

plants. Within the latter (i.e., conditional on at least oneproduct being exported), exported

goods account for 80% of revenues. Therefore, the majority of production in internationally

active multi-product plants is related to exported goods. Finally, approximately two third of

the plants in ENIA are small (less than 50 workers), while medium-sized (50-150 workers) and

large (more than 150 workers) plants represent 20 and 12 percent, respectively.

In addition to aggregate plant data, ENIA provides rich information for every good produced

by each plant, reporting the value of sales, its total variable cost of production, and the number

of units produced and sold. Products are defined according toan ENIA-specific classification

of products, theClasificador Unico de Productos(CUP). This product category is comparable

to the 7-digit ISIC code.21 The CUP categories identify 2,242 different products in thesample.

These products – in combination with each plant producing them – form our main unit of

analysis.

Customs data is collected by the ChileanServicio Nacional de Aduanas(National Customs

Service) and covers the universe of export transactions over the period 1991-2010. Each export

transaction includes an identifier for the exporting firm, the 8-digit Harmonized System cate-

gory of the product, and the destination country, FOB value,physical volume, and units of each

shipment. For the period 2001-2005, we can match this data with ENIA at the plant-product

level. For this period, ENIA provides information for the 7-digit Central Product Classification

(CPC) code for each product in addition to their CUP. We first use correspondence tables be-

tween HS and CPC product categories (provided by theUnited Nations Statistical Division) to

consolidate HS-level customs data to the CPC level used by ENIA in 2001-05. Next, we merge

the resulting dataset with ENIA at the CPC level. Finally, wecollapse the data from the CPC to

the CUP level, so as to obtain the same level of disaggregation as the remaining product-level

data in ENIA.

Note that the unit of observation in ENIA are plant-products, while in Customs the units are

firm-products. However, this does not represent a serious obstacle for matching both datasets.

21For example, the wine industry (ISIC 3132) is disaggregatedby CUP into 8 different categories, such as
"Sparkling wine of fresh grapes," "Cider," "Chicha," and "Mosto."

12



First, even for multi-plant firms we can match observations at the plant-product level provided

that the same exported product is not produced simultaneously in two different plants of the

same firm. Second, the vast majority of plants in ENIA (over 97% of the total) are single-plant

firms. Thus, the potential for conflict is limited. For the fewcases where we cannot establish

a unique match between Customs and ENIA, we drop the corresponding observations from the

sample.

3.1 Sample Selection and Data Consistency

In order to ensure consistent plant-product categories in our ENIA panel, we follow three steps.

First, we exclude plant-product-year observations that have zero values for total employment,

demand for raw materials, sales, or product quantities. Second, whenever our analysis involves

quantities of production, we have to carefully account for possible changes in the unit of mea-

surement. For example, wine producers change in some instances from "bottles" to "liters."

Total revenue is generally unaffected by these changes, butthe derived unit values (prices) have

to be corrected. This procedure is needed for about 1% of all plant-product observations; it is

explained in more detail inGarcia-Marin and Voigtländer(2013). Third, a similar correction is

needed because in 2001, ENIA changed the product identifier from CUP to the Central Product

Classification (CPC V.1) code. We use a correspondence provided by the Chilean Statistical In-

stitute to match the new product categories to the old ones (seeGarcia-Marin and Voigtländer,

2013, for detail). After these adjustments, our sample consistsof 118,178 plant-product-year

observations.

3.2 Tornqvist Index for Cross-Sectional Comparisons

Productivity measures that are based on units of output – such as physical productivity (TFPQ)

or marginal costs – cannot be immediately compared across products, because the output of

different products is measured in different units. To tackle this issue, we construct unit-free

Tornqvist indexes. This procedure involves two steps. First, for each variablexijt – defined

for productj of plant i in period t – we define its initial normalized value (x̃ij0) as the log

difference of variablex with its average over all plants producing the same product (measured

in the same unit of output) in the first period productj is produced by planti (i.e., x̃ij0 =

ln xij0− (1/I)
∑

s∈I ln xsj0).22 Note that our implicit assumption here is that physical units of

the same product, measured in the same unit, are comparable.Of course, this ignores possible

differences in quality, as we discuss in detail below.

In the second step, once we obtain the initial value for the normalized variable, the levels

22Products in ENIA are defined at the 7-digit level. For some products, units of measurement vary. For example,
wine may be measured in bottles or boxes. In these cases, we use a separate category for each product-unit. We
also trim the data, excluding the top- and bottom 2% within each product category before normalizing. This avoids
that the initial levels̃xij0 are affected by outliers.
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for the remaining periods are computed recursively as:

x̃ijt = x̃ij,t−1 +∆ lnxijt (11)

where∆ ln xijt = ln xijt − lnxij,t−1. The advantage of this normalization is that, provided that

the product is produced by a sufficiently large number of plants, its level in any period can be

interpreted as the log-deviation from the average computedover all plants producing the same

product.

3.3 Validity of the Sample

Before turning to our empirical results, we check whether our data replicate some well-documented

systematic differences between single and multiple-product plants. First, Table1 reports the

prevalence of multi-product plants in our sample. Results suggest that in our sample, multi-

product plants are a similarly represented as in the U.S., for which Bernard, Redding, and

Schott(2010) provide statistics.23 Despite the fact that multi-product plants represent less than

half of the plants, they account for the majority of output (60 percent). The third row in the table

reveals that the average multi-product plant produces 3.7 products. This is also very similar to

the number reported for the U.S. byBernard et al.(2010).

Table 1: Prevalence of plants / firms producing multiple products in Chile / U.S.

(1) (2)

Chile U.S.

Share of multi-product plants 48.7% 39%

Share of output by multi-product plants 60.0% 87%

Mean products per multi-product plant 3.7% 3.5%

Notes: The table provides statistics for multi-product plants, comparing the US
and Chile. Products are defined at the 7-digit level. The third row reports the
average number of products produced by a typical multiple-product plant. The
numbers for the U.S. (column 2) are for the Census of Manufacturing of 1997,
and come fromBernard et al.(2010). The U.S. figures correspond to firms,
whereas those for Chile are for plants. However, 97% of all firms are single-
plant in Chile, making a comparison viable.

Next, followingBernard et al.(2010), we run the regression

ln(yist) = αst + δ dMP
ist + εist , (12)

23Note that the U.S. statistics fromBernard et al.(2010) are for firms, whereas those for Chile are for plants.
However, 97% of all firms in the Chilean data are single-plant, which renders a comparison viable.
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whereyist denotes several characteristics of planti in sectors and periodt, dMP
ist is a dummy for

multi-product plants, andαst denotes sector-year fixed effects.24 The coefficientδ reports the

multi-product premium – the percentage-point difference of the dependent variable between sin-

gle and multi-product plants. Table2 reports multi-product plant premia for the Chilean ENIA.

Within their respective sectors, multi-product plants arelarger both in terms of employment

and sales, are more likely to be exporters, but are not more productive (measured by revenue

productivity). This is in line with evidence byBernard et al.(2010) for the United States.

Table 2: Multiple-Product versus Single-Product Firm Characteristics

(1) (2) (3) (4)

Dependent Variable log(workers) log(sales) Export dummy ln(TFPR)

Multi-product plant dummy .325*** .395*** .0411*** .0026
(.0223) (.0561) (.0056) (.0099)

Sector-Year FE X X X X

Observations 53,536 53,536 53,536 53,536
R2 0.039 0.074 0.018 0.657

Notes: The table reports the percentage-point difference of the dependent variable between
multi-product and single-product plants in a panel of approximately 9,600 (4,500 average per
year) Chilean plants over the period 1996-2007. All regressions control for sector-year effects
at the 2-digit level. Standard errors (in parentheses) are clustered at the sector-year level. Key:
*** significant at 1%; ** 5%; * 10%.

4 Empirical Results

In this section we present our empirical results. We begin with results on productivity patterns

within multi-product plants. We then turn to product ranks by core competence and establish

novel stylized facts on how plant-product performance measure vary along the product ladder.

Next, we shed light on the role of product quality by highlighting different patterns for ho-

mogenous vs. differentiated products. Finally, we show to what extent the ranking variable that

is used to create product ladders within plants affects a prominent mechanism in international

trade – efficiency gains due to the skewness of sales towards core products.

4.1 Product- and Plant-Specific Efficiency

A common assumption in models of flexible manufacturing suchasBernard et al.(2011) and

Mayer et al.(2014) is that producers draw a firm-specific productivity component that effects

all products. On top of this, there is a product-specific efficiency component (or a demand

component, which is typically isomorphic to efficiency). Asa result of this setup, these models

24 We control for sector-year effects at the 2-digit level.
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feature selection both across firms within industries, and also across products within firms. So

far, data limitation have prevented a direct test of the fundamental assumption that the efficiency

with which individual products are produced should be positively related to the efficiency of the

firm overall. Instead, the literature has largely focused ontesting thepredictionsof the selection

models, such as the skewness of exports in top- vs. lower-ranked products. We get back to these

patterns below in Section4.5. Here, we directly examine the relationship between product- and

plant-level efficiency.

Table3 presents our results, using log TFPQ of the top-ranked (core) product as dependent

variable. The sample includes all plants that produce at least 5 products in any given sample

year.25 Product ranks are computed based on product-specific TFPQ, which is made comparable

across products using the Tornqvist index described in Section 3.2. In columns 1-4, we compute

the rank in each sample period, potentially allowing products to switch ranks within plants

over time. Before describing our results, note that all regressions include product-year fixed

effects. Thus, we compare the efficiency of a given plant’s top-ranked product to the efficiency

in production of thesameproduct by all other plants that also produce this product. We refer to

this as "relative efficiency."

Column 1 in Table3 shows that there is a strong positive correlation between the relative

efficiency in producing the top product and the relative efficiency of producing the second-

ranked product. The coefficients can be interpreted as elasticities, so that a doubling in the

relative efficiency of producing the second product is associated with a 67% increase in the

efficiency of the top product. In columns 2 and 3, we confirm a strong correlation also for

the 3rd and 4th ranked products, respectively. As one shouldexpect, the magnitude of the

coefficient declines as we move to lower-ranked products, but it remains both statistically and

economically highly significant. In column 4, we compute theaverage relative efficiency for

all non-top products (i.e., below rank 1) produced by a plant. Again, we find a strong positive

correlation with efficiency of the top-product. Doubling the average relative efficiency of all

other products is associated with a 56% increase in TFPQ of the top-product.

In columns 5-8, we change the way in which we rank products. Wenow keep the rank from

the first year of the sample constant over the entire sample period. This excludes the possibility

that products change their ranks within plants. We obtain coefficients that are very similar to

those in columns 1-4, suggesting that rank switches are unlikely to affect our results. In sum,

the strong correlation of product efficiencies establishesour first stylized fact:

Stylized Fact1. Plants with high relative efficiency in their core products tend to be relatively

efficient also in other products.

25If a plant produces fewer than 5 years in some years, but not inothers, it is dropped from our sample during
the years in which it produces fewer than 5 products.
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Table 3: Co-movement of TFPQ across products (by TFPQ rank)

Dep. Var.: TFPQ of the best-performing product

(1) (2) (3) (4) (5) (6) (7) (8)

log(TFPQ) Top 2nd .671*** — — — .517*** — — —
(.0207) (.0352)

log(TFPQ) Top 3rd — .529*** — — — .468*** — —
(.0231) (.0342)

log(TFPQ) Top 4th — — .374*** — — — .379*** —
(.0223) (.0368)

Avg. Log(TFPQ) Rest — — — .559*** — — — .510***
(.0224) (.0329)

Plant FE No No No No No No No No
Product-year FE Yes Yes Yes Yes Yes Yes Yes Yes
Reference period for rank‡ Current Current Current Current First First First First
Observations 2,305 2,246 2,141 2,305 1,545 1,429 1,227 1,848
R-squared .645 .495 .337 .474 .395 .377 .294 .310

Notes: The table regresses plant-product physical productivity(TFPQ) of the best performing product of the plant
on TFPQ of the second, third and fourth top products (columns1-3, and 5-7 respectively), and against the average
log TFPQ of all products below rank 1 produced by the plant (columns 4 and 8). The sample includes all plants
that produce at least 5 products. Within-plant product rankings are computed in terms of normalized product
TFPQ (based on the Torqvist index described in section3.2). Standard errors (clustered at the plant level) are in
parenthesis. Key: *** significant at 1%; ** 5%; * 10%.
‡ This describes the sample year in which we rank products. In columns 1-4, we compute the rank in each sample
period, potentially allowing products to switch ranks within plants over time. In columns 5-8, we keep the rank
from the first year constant over the entire sample period.

Next, in Table4, we introduce plant fixed effects. This analysis exploits only within-

plant variation over time, thus exploring the co-movement of product-specific efficiency within

plants. In other words, we examine whether there is a tendency for the top-ranked product’s

efficiency to rise when the production of other products in the same plant becomes more ef-

ficient (or vice-versa).26 We again obtain statistically highly significant coefficients. As one

would expect, the magnitude of the coefficients is smaller than in Table3, because plant fixed

effects absorb the plant-level efficiency component that affects all products. Nevertheless, the

coefficients are economically meaningful, suggesting thata doubling in the average efficiency

of all non-top products is associated with a 25% increase in efficiency of the top product. The

strong positive coefficients in Table4 suggest that there is a significant tendency of efficiency

co-movement between products produced by the same plant. This is our second stylized fact:

Stylized Fact2. Efficiency tends to co-move across products within plants.

26In Table4, we only present results for stable product ranks. In fact, one reason to rank products in the first
sample year and keep this ranking constant over time is that otherwise – with product rank switches – it would be
impossible to examine efficiency over time of products with agiven rank.
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This stylized fact goes beyond the standard framework of models of flexible multi-product

manufacturing, where firms receive a given efficiency draw that does not change over time, and

where re-allocation of resources across plants and products drives efficiency gains. Stylized

fact 2, in contrast, focuses only on efficiency trendswithin plants.27 Our results thus imply

that potential extensions that introduce innovation into models of flexible manufacturing need

to allow for co-movement of efficiency gains across products. This can be achieved either by

focusing on innovation in the plant-level efficiency component, or by introducing spillovers

from innovation in one product to other products produced bythe same plant.

Table 4: Within-Plants Comovement of TFPQ across products

(1) (2) (3) (4)

log(TFPQ) Top 2nd .264*** — — —
(.0569)

log(TFPQ) Top 3rd — .266*** — —
(.0580)

log(TFPQ) Top 4th — — .327*** —
(.0601)

Avg. Log(TFPQ) Rest — — — .248***
(.0509)

Plant FE Yes Yes Yes Yes
Product-year FE Yes Yes Yes Yes
Reference period for rank‡ First First First First
Observations 1,545 1,429 1,227 1,848
R-sq .929 .928 .929 .924

Notes: The table regresses plant-product physical productivity(TFPQ) of the best performing
product of the plant on TFPQ of the second, third and fourth top products (columns 1–3, respec-
tively), and against the average log TFPQ of all products below rank 1 produced by the plant
(column 4). The sample includes all plants that produce at least 5 products. Within-plant product
rankings are computed in terms of normalized product TFPQ (based on the Torqvist index de-
scribed in section3.2). Standard errors (clustered at the plant level) are in parenthesis. Key: ***
significant at 1%; ** 5%; * 10%.
‡ In determining product ranks, we keep the product’s efficiency rank from the first year constant
over the entire sample period.

4.2 Core Competence and Plant-Product Performance

In the following, we examine various product-specific performance measures within multi-

product plants. In the first part of our analysis, we follow the standard procedure of ranking

products within plants by their sales revenues. Later, we present results for alternative product

27Contributions such asBustos(2011) andGarcia-Marin and Voigtländer(2013) suggest that these within-plant
efficiency gains can be substantial after export entry, andAmiti and Konings(2007) andDe Loecker et al.(2016)
show similar within-plant efficiency gains when trade provides access to new or cheaper imported inputs.
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ranks based on product-level efficiency (TFPQ). We regress different outcome measuresyijt for

productsj produced by planti in yeart on product rank dummiesRr
ijt, with r = {1, ..., 4}:

yijt =

4∑

r=1

βrR
r
ijt + δit + γj + εijt (13)

For consistency across the different specifications, we standardize all dependent variables us-

ing the Tornqvist index, i.e., we also standardize those variables that can be compared in their

raw form (such as sales revenues).28 Due to the standardization, all regressions implicitly ac-

count for product fixed effects. The regressions also include plant-year fixed effectsδit, so that

we only exploit variation across products within plants. Finally, εijt denotes the error term.

The excluded category in regression (13) comprises all products with rank 5 or higher. Conse-

quently, coefficientsβr are to be interpreted as percentage increase in outcomey when going

from products with rank below 5 to product rankr.

Table5 presents our results. Column 1 merely serves illustrative purposes, showing by how

much sales increase when going to higher-ranked products. Top-ranked products account for

more than three times higher revenues than products ranked 5th or below. Columns 2 and 3 split

the difference in revenues into differences in quantities and prices, respectively. Quantity sold

accounts for the largest part of the sales differences alongthe product ladder. Sales prices also

increase with product rank, but this is less pronounced: top-ranked products are sold at about

21% higher prices than products ranked 5th or below (column 3). The fact that core products

are sold at higher prices is in line with quality-based models of flexible manufacturing such as

Eckel et al.(2015). The findings in columns 1-3 thus replicate previous findings. Next, we move

towards results that are new to the literature, because product-specific efficiency measures have

not been available. Column 4 shows that there are no significant differences in TFPR across

products within plants. This is our third stylized fact:

Stylized Fact3. Within plants, revenue productivity (TFPR) is fairly uniform across product

ranks.

If we take simple models of misallocation such asHsieh and Klenow(2009) to the product

level within plants, uniform TFPR means that managers efficiently allocate resources to the

individual products. However, this is not astonishing, given that most of the frictions that are

typically discussed in the literature (such as access to finance) apply at the plant level, and thus

equally to different productswithin plants.

28We also use the standardized sales revenues when ranking products within plants. Results are almost identical
when we rank products by their raw sales instead. Also, for outcome variables that can be compared across products
in their raw form (sales revenues, TFPR, and markups) results are very similar when we use the non-standardized
variables instead.
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Table 5: Core Competence by Sales Rank and Plant-Product Performance

(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: log(Sales) log(Volume) log(Price) log(TFPR) log(TFPQ) log(MC) log(Markup)

Top product 3.245*** 3.106*** .211*** .0124 1.945*** .183*** .00401
(.0303) (.0408) (.0267) (.00907) (.0393) (.0268) (.00623)

Top 2nd 2.455*** 2.424*** .139*** .0154* 1.544*** .106*** .00324
(.0259) (.0370) (.0259) (.00862) (.0363) (.0265) (.00581)

Top 3rd 1.804*** 1.788*** .0863*** .0189** 1.144*** .0504* .00887
(.0242) (.0371) (.0266) (.00807) (.0375) (.0269) (.00605)

Top 4th 1.180*** 1.188*** .0659** .0111 .712*** .0319 .00814
(.0229) (.0384) (.0269) (.00867) (.0390) (.0272) (.00632)

Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Industry-year FE Yes Yes Yes Yes Yes Yes Yes

N 14,304 14,304 14,523 14,304 14,304 14,304 14,304
R-sq .834 .726 .475 .629 .603 .499 .771

Notes: The table regresses each column variable against categorical variables for the top, second, third and fourth
best performing product of the plant. Within-plant productrankings are computed in terms of normalized product
TFPQ (based on the Torqvist index described in section3.2). We update the rank in each sample period, potentially
allowing products to switch ranks within plants over time. The sample includes all plants that produce at least 5
products. Standard errors (clustered at the plant-year level) are in parenthesis. Key: *** significant at 1%; ** 5%;
* 10%.

In column 5 of Table5 we compare physical efficiency (TFPQ) across product ranks.There

are two important features that distinguish TFPQ from TFPR (see Section2). First, TFPQ is

computed based on physical quantities and thus not affectedby differences in output prices.

Second, TFPQ is estimated using physical input quantities (based on detailed plant-specific

input price indexes). Thus, TFPQ is not affected by differences in input costs (e.g., due to

different quality of inputs). Given that output prices are higher for top products (column 3), we

would expect a tendency for TFPR to be higher. On the other hand, if top products are produced

at higher quality, then TFPR would tend to be lower than TFPQ.We find a strong trend of TFPQ

to increasein product rank. This is our fourth stylized fact:

Stylized Fact4. Within plants, physical efficiency (TFPQ) is significantly larger for core prod-

ucts.

The fact that TFPQ differences (column 5) are substantiallylarger than those in TFPR (col-

umn 4) suggests that top products are produced at higher input costs. Consequently, core prod-

ucts are likely produced at higher quality. Marginal costs (MC) offer a way to check whether

this interpretation is true. The main difference between marginal costs and TFPQ is that the for-

mer are affected by input prices, while the latter is not.29 Thus, if input prices are significantly

higher for core products, then two counter-acting forces are at play: on the one hand, higher

29An additional difference is that marginal costs are affected by increasing (or decreasing) returns to scale, while
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efficiency (TFPQ) for core products would imply lower MC. On the other hand, more expen-

sive inputs would raise MC. Thus, a quality driven increase in input prices would imply that

marginal costs fall less strongly for core products, as compared to the corresponding increase in

TFPQ of top products. In fact, if the quality-driven increase in input prices is strong, marginal

costs may evenincreasefor core products, turning the the TFPQ pattern around. Thisis indeed

the case in our data. Column 6 in Table5 shows that marginal costs are significantly higher for

top-ranked products. This is our fifth stylized fact:

Stylized Fact5. In a sales-based product ranking, marginal costs are higherfor core products

within plants.

In the context of this stylized fact, the sales-based product ranking plays an important role,

as we discuss in detail below. Stylized facts4 and5 constitute an important – previously undoc-

umented – pattern: While core products (in terms of sales) exhibit significantly higher physical

efficiency in production, they are produced athighermarginal costs. This apparent contradic-

tion can be reconciled by quality: as has been previously argued byEckel et al.(2015) and

Antoniades(2015), product quality is a potentially powerful dimension thatcan help to explain

empirical patterns in multi-product firms. If the higher input cost due to product quality raises

marginal cost, then this explains the reversed patterns of TFPQ vs. MC. However, it is crucial

that product quality affects marginal costs, i.e., that thequality-related cost is not fixed. Since

previous models of product quality in flexible manufacturing have typically featured a fixed in-

vestment in product quality, they cannot explain the pattern in our data. We discuss this in more

detail in Section4.3

Finally, we turn to the behavior of markups along the productladder. Column 7 in Table

5 shows that there is no significant difference in markups across products. This is our sixth

stylized fact:

Stylized Fact6. In a sales-based product ranking, markups do not vary systematically across

product ranks within plants.

The absence of markup differences along the product ladder can be rationalized in the con-

text of the above discussion. Core products (when ranked by sales) tend to have higher marginal

costs. Higher MC are associated with lower markups in demandsystems that allow for flexible

markups, such asMelitz and Ottaviano(2008). On the other hand, quality upgrading is partic-

ularly pronounced for products with more scope for product differentiation, i.e., in industries

with long quality ladders (Khandelwal, 2010). Since we find evidence that core products are

produced at relatively high quality, this should lead to higher markups. In sum, the non-results

TFPQ is not. However, we show inGarcia-Marin and Voigtländer(2013) that this is unlikely to affect TFPQ vs
MC in the Chilean data, because returns to scale are close to one.
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for markups may emerge because of the tendencies towards lower markups (due to higher MC)

and higher markups (due to higher quality) of core products cancel each other.

Note that in this context, the product ranking by sales is important. Typically, models of

flexible manufacturing feature (unobserved) product-specific efficiency, which the theory uses

to rank products. In the data, however, products are ranked by sales revenues. This is valid as

long as product efficiency ranks map one-to-one into productsales ranks. Our results suggest

that this is not necessarily the case. Below, in Section4.4 we rank products by TFPQ and

discuss the arising differences in results.

4.3 Product Differentiation and the Role of Quality in Production

Models that introduce quality in flexible manufacturing derive their basic insight from a mech-

anism whereby producers have higher incentives to invest inquality of more efficient (core)

products. There is an original draw of plant-level marginalcosts. Then, for the core prod-

uct, marginal cost corresponds to the plant-level MC draw, and it increases successively with

products’ distance from the core. In other words, product-specific MC is lowest for the core

product. Thus, the core product offers higher profit margins, which in turn makes it easier to

recover fixed costs that are incurred when raising product quality. The incentives to invest in

product quality are particularly strong when there is a highscope for product differentiation

(Eckel et al., 2015). We explore this dimension in the following, after discussing an important

discrepancy between existing theories and our findings.

The investment in product quality is typically modeled as a fixed cost. This implies that

on top of the original product-specific marginal cost, thereis anaveragecost of investment in

quality, which declines with volume produced. Together, the two cost component yield the "full

marginal cost" (Eckel et al., 2015). This raises the question which exact cost components are

captured by our different efficiency measures. First, recall from our discussion above that TFPQ

is not affected by higher input prices due to higher product quality. Thus, TFPQ is close to the

"original marginal cost" of products, before quality adjustments.30 Second, note that marginal

costs, by construction, do not reflect fixed cost of improvingproduct quality. Thus, if the stan-

dard setup with fixed cost of quality was correct, we should not observe an increase in marginal

costs as product quality grows. However, the fact that we do see significantly higher MC for

core products (while TFPQ is also higher) suggests that higher quality drives upmarginalcosts

– and not only average total costs, as assumed by existing theories. Consequently, to match the

patterns in the data, future models of flexible manufacturing with a quality dimension should

feature increasing marginal costs as quality rises.

30This holds as long as higher product quality does not slow down the production process. For example, in the
case of high-quality rug production, more time is dedicatedfor to each rug (Atkin, Khandelwal, and Osman, 2014).
In this context, TFPQ would be lower for high-quality products. If, in turn, higher quality is mostly associated with
more expensive inputs that are otherwise processed similarly, TFPQ will be unaffected by quality.
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We have argued that the different patterns of core product for the performance measures

TFPQ vs. MC reflect higher product quality of core products. In the following, we explore

this point further, using the insight that investment in quality is particularly profitable in more

differentiated industries. In Table6 we repeat the regressions from Table5, but now estimating

separate coefficients forβr in (13) for plants operating in industries with homogenous products

(Panel A) vs. differentiated products (Panel B).31 For sales revenues and volume, the results in

Table6 are very similar for homogenous and differentiated products. In contrast, the pattern

for prices differs substantially: in the homogenous category, there is only a small difference in

output prices for the top product as compared to lower rankedproducts. In the differentiated

category, on the other hand, prices are significantly higherfor core products. This is in line with

quality playing a more important role in differentiated products, confirming the results inEckel

et al.(2015).

Next, we turn to our productivity measures. TFPR shows essentially no differences across

product ranks in either of the two subsets (column 4). The pattern for TFPQ is very similar in

both subsets: there is a strong increase in TFPQ as we move up the product ranks towards core

products. Since TFPQ is unlikely to be confounded by qualitydifferences, finding very similar

patterns for homogenous vs. differentiated products makessense. In contrast, results differ sub-

stantially for MC in the two subsets: for homogenous products, there is no apparent difference

by product rank, while for differentiated products, MC increase strongly for core products. This

result is in line with rising MC reflecting increasing product quality. The following stylized fact

summarizes the results for product differentiation:

Stylized Fact7. The pattern of systematically higher TFPQ for core products(Stylized fact4)

holds equally for homogenous and differentiated products.In contrast, the pattern of increasing

MC for core products (Stylized fact5) holds only in the subset of differentiated products.

This stylized fact underlines the important differences inefficiency measures. It also sup-

ports our interpretation that TFPQ is unlikely to be affected by quality differences, while rising

MC – with simultaneously increasing TFPQ – reflect the costs of higher product quality.

31We define the degree of differentiation at the plant level based on the liberal classification inRauch(1999).
For this, we use concordances between SITC (used by Rauch) and ISIC codes of the main product (used by the
Chilean ENIA). This yields a plant-level classification into homogenous and differentiated. "Homogeneous" is for
product categories that according toRauch(1999) are "traded on organized exchanges" or are "referenced priced";
"differentiated" is based on Rauch’s "differentiated" category.
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Table 6: Core Competence by Sales Rank: Sample Splits by Product Differentiation

(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: log(sales) log(volume) log(Price) log(TFPR) log(TFPQ) log(MC) log(Markup)

Panel A: Homogeneous Products

Top product 3.396*** 3.166*** .0904* .00927 1.993*** .0648 -.0010
(.0443) (.0653) (.0523) (.0138) (.0701) (.0503) (.0104)

Top 2nd 2.549*** 2.471*** .0628 .00569 1.647*** .0224 -.0078
(.0365) (.0595) (.0502) (.0135) (.0657) (.0493) (.0100)

Top 3rd 1.826*** 1.753*** .00278 .00303 1.252*** -.0342 -.0031
(.0348) (.0607) (.0517) (.0119) (.0671) (.0501) (.0097)

Top 4th 1.154*** 1.075*** .0292 .0100 .734*** -.0208 .0116
(.0330) (.0663) (.0527) (.0124) (.0716) (.0507) (.0108)

Panel B: Differentiated Products

Top product 3.121*** 3.052*** .307*** .0140 1.912*** .275*** .0152**
(.0409) (.0511) (.0253) (.0120) (.0429) (.0264) (.0076)

Top 2nd 2.382*** 2.383*** .187*** .0225** 1.466*** .167*** .0115*
(.0359) (.0467) (.0275) (.0111) (.0393) (.0273) (.0068)

Top 3rd 1.792*** 1.815*** .146*** .0313*** 1.062*** .112** * .0179**
(.0329) (.0457) (.0271) (.0109) (.0414) (.0276) (.0077)

Top 4th 1.207*** 1.279*** .0863*** .0113 .702*** .0661** .00447
(.0313) (.0443) (.0282) (.0119) (.0420) (.0284) (.0075)

Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Product FE Yes Yes Yes Yes Yes Yes Yes
Observations 14,304 14,304 14,304 14,304 14,304 14,304 14,304
R-squared .835 .726 .472 .629 .603 .501 .771

Notes: The table regresses each column variable against categorical variables for the top, second, third and fourth
best performing product of the plant, interacted with a dummy for homogenous products. Within-plant product
rankings are computed in terms of normalized product sales (based on the Torqvist index described in section3.2).
We update the rank in each sample period, potentially allowing products to switch ranks within plants over time.
The sample includes all plants that produce at least 5 products. We define degree of differentiation at the plant
level based on the liberal classification inRauch(1999). For this, we use concordances between SITC (used by
Rauch) and ISIC codes of the main product (used by the ChileanENIA). This yields a plant-level classification
into homogenous and differentiated. "Homogeneous" is for product categories that according toRauch(1999) are
"traded on organized exchanges" or are "referenced priced"; "differentiated" is based on Rauch’s "differentiated"
category. Standard errors (clustered at the plant-year level) are in parenthesis. Key: *** significant at 1%; ** 5%;
* 10%.
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4.4 TFPQ-Based Product Ranking

Most models of flexible manufacturing rank products in termsof physical efficiency. However,

in empirical tests of these models’ prediction, products are typically ranked based on sales.

Given our product-specific efficiency measures, we can make progress on this front. First, we

need to pick the ‘right’ efficiency measure for our ranking. Our results above suggest that

TFPQ is the most appropriate variable to capture physical efficiency. In the following, we thus

use TFPQ to rank products and examine whether this affects the results that we obtained above

for the commonly used sales-based rankings.

Table7 replicates the results from Table5, estimating regression (13) for TFPQ-based prod-

uct ranks. Already the first column suggests that sales-based ranks do not map one-to-one

into TFPQ-based ranks. While sales revenues increase significantly with higher product rank,

the top product is now only sold 217% more than products ranked fifth or lower. In contrast,

this number was 324% for the sales-based ranking in Table5. While the pattern of physical

units sold (column 2) is similar to our results above, product prices (column 3) show a strik-

ing difference: In our sales-based ranking, prices were higher for top-ranked products. For the

TFPQ-based ranking, the opposite is true – prices arelower for top-ranked products. TFPR

again shows no significant differences across product ranks(column 4), while TFPQ is increas-

ing by construction (column 5). Next, column 6 shows that thepattern for marginal costs is also

reversed, as compared to the sales-based ranking: top products are produced at lower marginal

costs. Finally, markups are slightly higher for top-rankedproducts, but the magnitude of the

coefficient is small. Our next stylized fact summarizes the most striking difference between

sales- and TFPQ-based product rankings.

Stylized Fact8. When products are ranked by their physical efficiency, the pattern for prices and

marginal costs (Stylized fact5) is reversed: Prices and marginal costs are lower for products

with higher TFPQ.

This finding implies that prominent results in the literature depend crucially on the variable

that is used to rank products. For example,Eckel et al.(2015) find that core products (ranked

by sales) are sold at higher prices, and they interpret this as evidence for higher product quality.

The model ofEckel et al.(2015) actually classifies core products based on their physical effi-

ciency (marginal costs, not accounting for quality). This is most closely reflected by TFPQ. We

replicate the finding byEckel et al.(2015) in the sales based ranking. But when we use TFPQ

as a ranking variable (i.e., the ranking that is more closelyreflecting their model), we obtain the

opposite results.

We can rationalize the striking difference in results in thecontext of our discussion of the

alternative efficiency measures. Recall that TFPQ is largely unaffected by product quality, so

that the corresponding ranking reflects largely physical efficiency (and thus lower marginal
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Table 7: Plant-product outcomes by TFPQ-based product rank

(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: log(Sales) log(Volume) log(Price) log(TFPR) log(TFPQ) log(MC) log(Markup)

Top product 2.172*** 3.172*** -.479*** -.00753 3.142*** -.498*** .0183***
(.0417) (.0434) (.0293) (.00859) (.0332) (.0288) (.00631)

Top 2nd 1.664*** 2.427*** -.334*** -.00695 2.414*** -.341*** .0129**
(.0381) (.0397) (.0278) (.00873) (.0296) (.0270) (.00580)

Top 3rd 1.177*** 1.798*** -.211*** -.00173 1.793*** -.214*** .00827
(.0387) (.0385) (.0262) (.00806) (.0271) (.0256) (.00590)

Top 4th .689*** 1.067*** -.118*** .000486 1.129*** -.127*** .00872
(.0397) (.0383) (.0262) (.00822) (.0260) (.0258) (.00619)

Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Industry-year FE Yes Yes Yes Yes Yes Yes Yes

N 14,304 14,304 14,304 14,304 14,304 14,304 14,304
R-sq .629 .720 .489 .628 .802 .519 .771

Notes: The table regresses each column variable against categorical variables for the top, second, third and fourth
best performing product of the plant. Within-plant productranking are computed in terms of normalized product
TFPQ (see section3.2 for details). We compute the rank in each sample period, potentially allowing products to
switch ranks within plants over time. The sample includes all plants that produce at least 5 products. Standard
errors (clustered at the plant-year level) are in parenthesis. Key: *** significant at 1%; ** 5%; * 10%.

costs, which translate into lower prices). In contrast, total sales are also (positively) affected

by product quality. Thus, ranking products based on sales lifts high-quality products to the top

ranks, implying higher marginal costs and higher prices. Consequently, empirical studies have

to carefully choose the ranking variable, according to the mechanism that they are seeking to

examine.

4.5 Exporting and Skewness of Sales

One of the main implications of models with flexible manufacturing and variable markups (e.g.,

Mayer et al., 2014) relates to the impact of competition across export destinations on the within-

plant product mix. In these models, in response to a more competitive market, plants lower their

markups in all products and concentrate their sales in theirbest products. In practical terms, the

literature tests this prediction by analyzing whether top products account for a larger share of

exports in more competitive (tougher) markets – approximated by market size in terms of gross

domestic product.32

In this section, we take advantage of the fact that we observedirect measures of efficiency

for each product, and study whether the canonical model holds when actual efficiency is used to

rank products, instead of ranking products by export sales.Following Mayer et al.(2014), we

32In the model, the parameter that measures competition is thenumber of firms/varieties in each destination
market. Tougher markets are characterized by a larger number of varieties; in them each firm has a lower residual
demand, and thus reduces its price-cost markups.

26



estimate the relationship between export sales skewness between the top and the second-ranked

product for each export market. Skewness is defined assict = ln (yr=1
ict /yr=2

ict ), whereyr=1
ict and

yr=2
ict are export sales of the top and second-ranked product, respectively, of planti exporting

to destination countryc in year t. Note that thus, the top and second-ranked export product

are determined for each destination country separately.33 We check whether the variable that is

used to rank productsr affects our results. We run the following regression:

sict = β lnGDPct + γXc + δit + εict (14)

We use a set of controls for geographical distance (distancebetween Santiago – the capital city

of Chile – and the capital city from the destination country), location (whether the importing

country shares a border with Chile), and similarity to Chile(whether the importing country

shares the same official language as Chile, and whether it wasa Spanish colony). All regressions

include plant-year fixed effectsδit.

Table8 presents our results. First, in column 1 we use export data for the universe of Chilean

exporters between 2001 and 2005. Here, we intend to verify whether the Chilean export data

displays the same behavior as the sample used byMayer et al.(2014) for the case of France. The

positive and significant coefficient on log GDP suggests thatin response to increased competi-

tion, Chilean exporters also tend to concentrate their sales in their most important product(s). In

column 2 we repeat the analysis, but this time restricting the sample to the set of plant-products

in the Chilean ENIA that we can confidently match to customs data. Despite the considerably

smaller sample size, we find the same pattern for this restricted sample. Thus implies that the

Mayer et al.(2014) mechanism also holds in our matched sample. We also confirm the main

pattern in column 3, where we use total sales (both in the domestic and export markets, as

reported in ENIA) to rank products.34

Next, we focus on our main efficiency measures. We find no relation between export sales

skewness and the degree of competition in the export market,when using TFPR or marginal

cost (columns 4 and 6, respectively). In contrast, when using TFPQ to define the ranking of

best performing products (column 5), we find a positive and significant coefficient on log GDP.

33In principle, it would be possible to use an alternative global export sales ranking to construct a different
skewness measure, e.g., define the main products in terms of their sales toall countries. However, asMayer
et al.(2014) show with customs level French data for 2003, the correlation between local and global rankings is
relatively high – above 60 percent – and very stable across samples. In addition, when we use the global ranking,
our sample shrinks considerably. Most exported products are sold to only a few export destinations, which makes
it impossible to apply the ranking of the top two products to many countries, simply because the top two products
are not sold to all countries.

34Note that in this case, the top product for a given destination market is defined as the one with highest domestic
sales that is exported to this destination. The same appliesto columns 4-6, but with the ranking based on TFPR,
TFPQ, and MC, respectively.
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Table 8: Export sales skewness across destinations

Dep.Var.: Skewness of destination-specific export sales between top- and second-ranked product

Products ranked Export sales Sales TFPR TFPQ MC

according to: (1) (2) (3) (4) (5) (6)

log(RGDP) .0391*** .111*** .128** .0275 .174** .0845
(.0082) (.0407) (.0557) (.0703) (.0827) (.0790)

log(Distance) .0008 -.202 -.286 -.444** -.776*** -.327
(.0212) (.131) (.203) (.218) (.270) (.284)

Colony -.0565 .189 .519 .525 -.518 .550
(.0634) (.358) (.448) (.552) (.540) (.608)

Border with Chile -.128*** -.176 -.217 -.0538 -.230 .275
(.0325) (.172) (.288) (.338) (.356) (.347)

Common Official -.0507 -.0581 -.162 -.431 -.277 .322
Language (.0348) (.181) (.251) (.291) (.350) (.268)

Sample: Customs Customs Customs Customs Customs Customs
Only & ENIA & ENIA & ENIA & ENIA & ENIA

Plant-year FE Yes Yes Yes Yes Yes Yes
N 45,107 1,952 1,816 1,509 1,075 1,256
R-sq .545 .470 .480 .557 .577 .538

Notes: The table reports the relation between export sales skewness and market size – measured in terms of log
real GDP – across destinations, by different ranking variables. The dependent variable in all regressions is the
logarithmic difference between export sales of the top and the second-ranked product for each destination. In
columns 1, the export sales rank is computed in each destination market with information from customs data.
Columns 2 repeats the exercise, but only for plants that are reported by both customs and ENIA. Columns 3-6 rank
the top two products in terms of total sales, TFPR, TFPQ and marginal cost, respectively. In all columns, the top
product in each destination is defined conditionally on the product being exported to that destination (i.e., the top
product in the destination may not coincide with the top product globally). The same is true for the second-ranked
product. All regressions control for plant-year fixed effects. Standard errors (in parentheses) are clustered at the
plant-year level. Key: *** significant at 1%; ** 5%; * 10%.
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These results lead to our final stylized fact:

Stylized Fact9. The finding that skewness (higher sales of core products) in more competitive

markets depends crucially on which variable is used to rank products. TFPR or MC as ranking

variables do not imply skewness. The standard result of skewness is only obtained when ranking

products by sales (as is common) or in terms of physical productivity (TFPQ).

Why do product rankings based on TFPR or marginal cost fail toshow a higher skewness

of exports in more competitive markets? As we discussed before, marginal cost reflects not

only efficiency, but also differences in product quality. Thus, a higher ranked product in terms

of marginal cost (lower value), may be related to either higher production efficiency, or lower

product quality. Does, marginal costs reflect two opposing forces, so that the resulting ranking

is not meaningful for efficiency-based mechanisms. Similarly, TFPR does not fully reflect

efficiency differences when plants pass part of their efficiency advantage on to customers in

the form of lower prices. Thus, TFPR and marginal cost-basedrankings are likely to be less

informative than the TFPQ-based counterpart for defining the best performing products of the

plant.

Stylized fact9 is important because it confirms the underlying mechanism behind the within-

plant productivity enhancing effect of competition as inBernard et al.(2011) or Mayer et al.

(2014): in response to increased competition, plants skew their sales towards their more efficient

performing products. As a consequence, plant-level productivity increases. So far, only indirect

evidence has been provided for this mechanism, since previous empirical studies have relied

on sales-based rankings (which may be affected by many otherfactors that are unrelated to

production efficiency) or on structural simulation. We provide direct evidence, by showing

that firms skew their exports more towards products with higher physical efficiency in more

competitive countries.

5 A Stylized Multi-Product Plant Model with Quality Choice

In this section we present a stylized model that can reconcile the empirical patterns documented

above. In particular, the model can help to explain why the results for prices depend crucially on

whether we rank products by sales revenues or by physical productivity. The model combines

Kugler and Verhoogen’s (2012) framework of heterogeneous plants and endogenous quality

choice withEckel and Neary’s (2010) model of multi-product plants. Since our main goal is

to understand factors behind price dispersion within plants in a given year, we solve the model

in partial equilibrium. We focus on a single monopolistically competitive industry producing a

differentiated final good. A caveat of this model is that it features constant markups. However,

this is not a major constraint because the data show only minor markup differences across

products within plant-years (Stylized fact6).
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5.1 Preferences

The representative consumer derives utility from the consumption of a continuum of differenti-

ated varieties, each of which may have different degrees of product quality:

U =

[∫

ω∈Ω

[q(ω)x(ω)]
σ−1

σ dω

] σ
σ−1

(15)

whereω is an index for varieties from the product spaceΩ; σ is the elasticity of substitution

between varieties;x(ω) is the quantity of each varietyω consumed; andq(ω) is product quality,

interpreted here in broad terms as product appeal.

Cost minimization leads to the usual CES demand equation, augmented by product quality:

x(ω) = Xq(ω)σ−1

(
p(ω)

P

)−σ

(16)

wherep(ω) is the price of varietyω, P is the aggregate (quality-adjusted) price index, andX is

aggregate (quality-adjusted) consumption.

5.2 Production

Our model features a continuum of plantsi, each of them producing several products that we

index by ij, i.e., productj produced by planti. We assume that each plant produces unique

varieties from the product spaceΩ. Consequently, demand for a given varietyx(ω) given by

(16) has its equivalentxij on the production side. As inMelitz (2003), multi-product plants are

heterogenous in their overall (plant-level) efficiency, given byλi. We assume thatλ is drawn

from a fixed distributionG(λ) with support[λ,∞], and that this capability draw is known to the

plant only after it enters the market.35

In addition, plants vary in the efficiency of the individual varieties they produce. This

product-specific efficiency term requires a more elaborate explanation. Production of each va-

riety ij is carried out using an intermediate input, supplied by a perfectly competitive market.

Plants can purchase inputs of different quality. Perfect competition in the input producing sector

allows us to assume that one unit of input with qualityc is sold at costc. FollowingEckel and

Neary(2010) andMayer et al.(2014), we assume that plants can produce any number of vari-

eties, but each additional variety entails a higher marginal cost. There is a fixed production cost

f that the plant has to incur for each product that is produced (Bernard et al., 2010). Each plant

has a "core competence," corresponding to the product the plant produces most efficiently. To

rank products within plants, we adopt the notationmij ∈ N0, representing increasing distance

35To get a productivity draw, plants have to pay a fixed cost as inMelitz (2003). Since our model is in partial
equilibrium, we take the existence of plants as given and thus abstract from explicitly modeling entry decisions at
the plant level. Nevertheless, we do model the decision on how many products each plant produces.
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from the core competence. For the core product,mij = 0, and for periphery products,mij ≥ 1.

This establishes a product ladder, where productsmij are produced with marginal cost

MC(mij , λi) =
cij

φmijλi
≡

cij

λ̃ij

(17)

with φ ∈ (0, 1), and wherecij is the quality (and cost) of the intermediate input used to produce

varietyij. Note that product-specific efficiencỹλij ≡ φmijλi is increasing inλi and decreasing

in product rankmij . In words, more productive plants (higherλi) tend to be more efficient

at any given ladder stepmij . However, within plants, products further from the core (higher

mij) are produced at higher marginal cost (for any given input quality cij). Next, we derive the

optimal choice of input and output quality,cij andqij.

In modeling the relationship between efficiency and productquality, we adapt the first vari-

ant of the firm-level model described inKugler and Verhoogen(2012) to the context of multi-

product plants. This involves two assumptions. First, quality upgrading involves no fixed-cost.

Second, in the production of product quality, product-specific efficiency λ̃ij and input quality

cij are complements according to the following CES function:

qij(mij) =

[
1

2

(
λ̃b
ij

)θ
+

1

2

(
c2ij
)θ
] 1

θ

(18)

whereθ < 0 measures the degree of complementarity between input quality and plant-product

capabilityλ̃ij in the production of product quality, andb is a parameter that reflects each plant’s

ability for translating higher plant-product capability into higher product quality. Consequently,

higherb increases a plant’s incentives to improve product quality.We assume thatb is plant-

product specific, i.e.,b ≡ bij , and it is randomly drawn – before plants decide their product

range – from a fixed distributionF (b) with support[b,∞]. Importantly, we assume thatbij is

independently drawn for each productij, so that it is independent of the product rankmij . Thus,

our setup allows for different plants that produce similar products to have different product-

specific quality capability. For example, among two furniture plants, one may have an advantage

at producing high-quality chairs, and the other, at producing high-quality beds. In addition,

sinceb ≡ bij is drawn at random, production may be particularly quality-sensitive for lower-

ranked products (highermij). Nevertheless, the complementarity in (18) introduces atendency

for products closer to the core to be produced at higher quality (since these have higherλ̃ij).

This will be crucial for our results.
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5.3 Profit maximization

Plants maximize each product’s profits over their choices ofoutput pricepij and input quality

cij , taking as given each product’s demand:36

π(pij , cij; λ̃ij) =

(
pij −

cij

λ̃ij

)
xij − f (19)

wherexij is given by product demand as given by (16). Optimization yields the optimal levels:

c∗ij(λi, mij , bij) =
(
λ̃ij

)bij/2
(20)

q∗ij(λi, mij , bij) =
(
λ̃ij

)bij
(21)

p∗ij(λi, mij , bij) =

(
σ

σ − 1

)
c∗ij

λ̃ij

=

(
σ

σ − 1

)(
λ̃ij

) bij
2
−1

(22)

r∗ij(λi, mij , bij) = X · P σ

(
σ − 1

σ

)σ−1 (
λ̃ij

)(σ−1)
(

bij
2
+1

)

(23)

wherec∗ij represents optimal input quality chosen by planti for its productj, q∗ij is optimal

output quality,p∗ij is the optimal output price, andr∗ij is (maximized) revenue.

5.4 Decision to Produce Products

Plants receive their efficiency drawλi together with quality capability drawsbij for a sufficiently

large number of (potentially produced) productsij, which are ranked bymij = {0, 1, 2, ...}.

Plants decide to produce a productij if its variable profits exceed the (annualized) fixed cost

f . Note that with CES demand (and thus constant markupσ/(σ− 1)) and marginal costs being

constant in quantityxij , variable profits for a product are given by1
σ
rij. Thus, total profits

associated with productij follow directly from (23): πij =
1
σ
rij − f , which depends on plant-

level efficiencyλi, product rankmij , and quality capabilitybij . Thus, the zero-profit condition

associated with productij is:

πij (λi, mij , bij) =
1

σ
· r∗ (λi, mij , bij)− f = 0 (24)

whereλi andmij can be combined to the product-specific efficiency termλ̃ij ≡ φmijλi, which

is reflected in (23). Thus, the model features two sources of heterogeneity (λ̃ij andbij). How-

ever, for the purpose of the simulation exercise we present below, we only need to know if the

36We assume as inMayer et al.(2014) that there is no within- or across-plant-product cannibalization (i.e.,
product demand is not directly affected by individual products produced by the same plant, or by products produced
by other plants.
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combined capability componentγij ≡
(
λ̃ij

)(σ−1)
(

bij
2
+1

)

is above or below a threshold at which

product-specific profits are zero. This threshold componentfollows from (23) and (24), and it

is defined by the following expression:

γij =
f

κ1

(25)

whereκ1 ≡ (σ − 1)σ−1σ−σXP σ, which is constant across plants. Plants decide to produce

products for whichγij = (φmijλi)
(σ−1)

(

bij
2

+1
)

≥ γij. Note that the steps on the product ladder

that are observed in the data do note necessarily reflect the theoretically possible ladder steps

mij = {0, 1, 2, ...} for a given planti. For example, if the product withmij = 1 has a very low

drawbij , it may not be produced, while (some) subsequent productsmij > 1 may be produced.

While the remaining (i.e., produced) products are still clearly ranked by their efficiencỹλij ,

the differences iñλij across produced products may vary substantially, depending on a plant’s

draws ofbij .

5.5 Model Predictions

The stylized model delivers several insights. We discuss these following the order of the stylized

facts documented above.37 Both stylized facts1 and2 follow directly from the model setup.

Product-specific efficiency is given bỹλij ≡ φmijλi. For the core product, this equalsλi.

Consequently, for plants with high core efficiencyλi, other productsmij ≥ 1 also tend to be

produced more efficiently (stylized fact1), and efficiency tends to co-move across products

provided that innovation (or shocks) affect the plant-level λi (stylized fact2).

Revenue-based product ranking

We now turn to stylized facts4-7, all of which are derived from ranking products based on sales

revenues.38 Following (23), product-specific revenues are proportional toλ̃
(σ−1)

(

bij
2

+1
)

ij , where

product-specific efficiencỹλij reflects TFPQ (since it is independent of product quality). Thus,

products with higher̃λij or higherbij will be ranked closer to the core. Note thatbij affects the

product rank – a crucial difference to the purely TFPQ-basedrankings that we discuss below.

At the same time, sincebij ≥ 0 is distributed independently of the product rankmij , products

with high revenues will also – at least on average – tend to have highλ̃ij. In words, for revenue

based rankings, TFPQ will tend to be larger for core products(stylized fact4). Qualitatively, this

pattern holds irrespective of the average capability for quality differentiation, i.e., irrespective

of the mean ofbij (first part of stylized fact7). In particular, it holds even in the extreme case

37Our model yields also a prediction for product variety: Plants with higher core efficiencyλi tend to produce a
larger product portfolio. Since this prediction follows also from previous models, we discuss it in the appendix.

38We discuss stylized fact3 below.

33



when there is no potential for quality differentiation (bij = 0).

Next, marginal costs are given by (17), so that (20) impliesMCij = λ̃
bij
2
−1

ij . Since products

with higherλ̃ij or higherbij are closer to the core, these products’ marginal costs will also tend

to be higher (stylized fact5). Note that for relatively smallbij (low degree of quality differenti-

ation), the revenue-based ranking is mostly driven by differences in physical efficiencỹλij . At

the same time, for products with lowbij , the exponent inMCij is close to zero or even becomes

negative. Thus, the relationship betweenMCij and (revenue-based) product rank is ambigu-

ous for (relatively) undifferentiated products. In fact, for completely homogenous products

(bij = 0), the relationship is negative, and for somewhat differentiated products withbij ≈ 2,

the relationship is flat (second part of stylized fact7). Nevertheless, since the revenue-based

ranking is ‘biased’ towards high-bij products, core products are more likely to have particularly

highbij draws and thus also highMCij . Consequently, core products can exhibit systematically

higher marginal costs in revenue-based rankings even ifbij is relatively small on average. We

show this in the simulation below. Finally, stylized fact6 on relatively constant markups along

the product ladder follows by construction in our model, dueto CES demand.

Efficiency-based product ranking

We now turn to the predicted patterns when products are ranked by their physical efficiencỹλij

within plants (stylized fact8). Recall from our discussion above thatMCij = λ̃
bij
2
−1

ij . This

reflects the two-sided effect that higher product-specific efficiency λ̃ij has on marginal costs:

on the one hand, according to (17) a more efficient product is produced with lower marginal

cost; but on the other hand, plants choose a higher quality for more efficient products, which

raises input cost as given by (20). As long asbij < 2 (i.e., for plant-products with relatively

low quality capability), the latter effect dominates so that marginal costs (and thus prices, given

the constant markup) arelower for more efficient products. Consequently, if the parameterb

is relatively small on average, then our model predicts thatmarginal costs and prices are on

average lower for core products, in line with stylized fact8. A low averageb can have two

reasons: our sample may be dominated by relatively undifferentiated products, orb may be

low even for differentiated products. To shed more light on this angle, we replicate the results

from Table7 for the subsamples of homogenous vs. differentiated products.39 TableA.1 in

the appendix shows that marginal costs and prices are significantly smaller for core products

in the subsample of ‘homogenous’ products (Panel A). However, this pattern prevails (albeit,

as expected, somewhat weaker) in the subsample with differentiated products (Panel B). This

suggests that the parameterb is relatively small on average even for differentiated products. We

39We define the degree of product differentiation at the plant level based on the liberal classification inRauch
(1999). "Homogeneous" is for product categories that are "tradedon organized exchanges" or are "referenced
priced"; "differentiated" is based on Rauch’s "differentiated" category.
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use this below in the calibration to choose a conservative parametrization such thatb has a mean

of 2.

Finally, we turn to stylized fact3 on TFPR, which is given by the product ofpij and TFPQ.

Note that this stylized fact holds for both revenue- and efficiency-based rankings in Tables5 and

7. Here, we discuss it in the context of the latter. Using (22), we obtainTFPRij = pijλ̃ij =

λ̃
bij
2

ij . Consequently, TFPR should be increasing in physical efficiency, unlessbij is very small

on average. In revenue based rankings, wherebij also affects the ranking, core products should

show an even clearer pattern of higher TFPR. A possible explanation why we do not find this

in the data is that we follow the most commonly used methodology to compute TFPR, using

sector-level deflators for input prices (as opposed to plant-level deflators, as we do for TFPQ).

If core products are of higher quality, they will also tend tohave higher input costs – which

TFPQ empirically takes into account, but not TFPR. Consequently, the common strategy for

estimating TFPR may fail to correctly identify the (revenue-based) productivity advantage of

core products.

5.6 Main Predications and Simulation

In the theoretical description above we argued that our stylized model can replicate the stylized

facts found in the data if i) quality capability is drawn independently of the product-specific

efficiency rankmij , and ii) if quality capabilityb is relatively small on average. In the following,

we calibrate and simulate the model to further support this argument.

We present a simulation of the model based on equations (20)–(23) and show how our

simple framework can account for the divergent results thatwe obtain for prices when we rank

products within plants by sales revenues versus physical productivity.40 Following the recent

trade literature, we specify a Pareto distribution for coreefficiencyλ. For the particular values

of the shape parameterk of the core efficiency distribution, and for the size of the step of the

efficiency ladder (ω), we follow the values presented inMayer et al.(2014). In particular, we set

k = 3.25, andω = 0.96. The former parameter is in the middle of the range of shape parameters

considered byMayer et al.(2014). Regardingω, we set its value to be consistent withk = 3.25

according to the strategy described inMayer et al.(2014).41 We set the elasticity of substitution

σ = 5, which implies an average markup of1.25. As in the case of core efficiencies, we specify

40Before proceeding, a word of caution is due. The simulation exercise provides evidence that the model can
potentially fit the puzzling patterns documented in the data; however, it is not calibrated tofit the data. That is, we
do not estimate or calibrate the model to particular momentsin the data. Instead, we guide the choice of parameters
based on estimates available in the related literature whenever possible, and choose values that generate product
distributions close to the empirical distribution in Table1 for the remaining parameters that are not readily available
from previous contributions.

41Mayer et al.(2014) show that when core efficiencies are distributed Pareto, there is a linear relationship
between log-revenues of each variety and its associated ladder stepm, with the slopeϑ ≡ k lnω. We take their
estimates of̂ϑ = −0.13 from French export data andk = 3.2 as given, to recoverω.
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a Pareto distribution forb over [1,+∞), with shape parameter equal to 2,42 and impose zero

correlation betweenλ and b. Finally, we choose the combined capability thresholdγ∗
ij(mij)

so that 48.7% of all simulated plants produce multiple products. This matches the share of

multi-product plants in ENIA reported in Table1.

The simulation algorithm involves the following steps: (i)DrawN plant-specific core effi-

ciency componentsλ (whereN is the number of plants drawn); (ii) DrawN ×M plant-product

specificbij (with M the maximum number of products that we allow each plant to have); (iii)

Given (λ, bij), check for each product whetherγij(mij) is greater thanγ∗
ij(mij); if not, drop

the product form the sample, and (iv) Compute variables of interest, such as plant-product price

and revenues. For the particular exercise we present in thissection, we setN = 10, 000 and

M = 30.

Figure1 shows the simulation results. The left panel ranks productswithin plants by rev-

enues as given by (23), while the right panel ranks products by plant-product-specific efficiency,

as given bỹλ(m) = ωmλ.43 The figure shows the same pattern as found in the Chilean manu-

facturing data: prices are higher for core products when ranked by revenues, but they are lower

for core products when ranked by physical productivity. Thesame reversal holds for marginal

costs, which we do not separately show since MC are proportional to prices, given the constant

markup. The intuition for the reversal is as discussed in thetheoretical section above: revenue-

based product ranks are ‘biased’ towards products with highb draws, which are also associated

with higher MC and prices. Thus, the simulation also underlines the importance of the ranking

variable: product ladders based on efficiency vs. revenues yield radically different results for

prices and marginal costs.

6 Conclusion

Product-level efficiency is a key theoretical component in agrowing literature that examines

trade-related dynamics within firms or plants. So far, data limitations have made it difficult to

construct product-level efficiency, and productivity patterns across products within plants were

largely unexplored. We exploited a uniquely detailed Chilean dataset to compute several alter-

native efficiency measures at the product level within plants. We have established numerous

novel stylized facts in three areas. First, on product-level efficiency patterns, we showed that

productive plants tend to be relatively efficient across theboard, not just for their core prod-

ucts. This provides direct evidence for a central assumption that underlies prominent models of

flexible manufacturing such asBernard et al.(2011) or Mayer et al.(2014). There, a common

efficiency draw affects all products within a plant. Our finding that productive plants tend to

42The main results presented below are unchanged in a reasonable neighborhood for this value.
43To be consistent with results in Tables5 and7, we control in both panels of Figure1 for plant fixed effects.

Thus, the figure displays variation across productswithin plants.
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Figure 1: Simulated Revenue and Price Across Products within Plants

Notes: The figure shows the simulated average revenue and price across products within plants, resulting from
simulating the model in section5. Productm = 0 corresponds to the core product defined according to physical
productivity (left) and product revenue (right). We only consider plants producing 5 or more products. The
parameters underlying the simulation are listed in Section5.6. Both panels controls for plant fixed effects and
simulate the model for a single year.

be relatively efficient at all their products supports this setup. Second, we have shown that the

typically used sales-based product ranks correctly reflecthigher physical efficiency (TFPQ);

however – seemingly contradictory – marginal costs are higher for top-ranked sales products.

We showed that this discrepancy is likely driven by product quality. Our results thus emphasize

the importance of using the appropriate ranking variable when testing predictions of flexible

manufacturing models. The same is true for results that involve the prominent metric of export

skewness towards core products. Product ladders based on marginal costs or revenue produc-

tivity do not show export skewness, while TFPQ-based rankings do yield skewness towards the

most efficient product and thus aggregate efficiency gains from trade.
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APPENDIX

Model Prediction on Product Variety

Our model yields a prediction for product variety produced by plants: Plants with higher core

efficiencyλi tend to produce a larger product portfolio. This predictionis not novel. It also

follows from the models byEckel and Neary(2010), Bernard et al.(2010), Bernard et al.(2011),

andMayer et al.(2014). In the context of our model, the prediction is obtained as follows. For

givenλi andmij, the zero-profit condition (24) implicitly defines a thresholdbij(λi, mij) such

that for quality capability drawsbij ≥ bij, the plant chooses to produce the product. Note that

(24) implies that a plant-product with lower efficiencỹλij (either due to lowλi or due to high

mij) requires a higherbij to be produced profitably.1 Thus, varieties closer to the core (lowmij)

are produced even ifbij is relatively low. In contrast, periphery varieties require increasingly

higherbij to be produced profitably. Sincebij is distributed independently ofmij , the model

predicts that – on average – plants with relatively high coreefficiencyλi tend to produce a wider

range of varieties than plants with relatively low core efficiency. Note that this proposition holds

on average. However, the model allows for heterogeneity: plants with lowλi may still produce

a rich set of products if they have particularly high drawsbij for many productsij.

Additional Empirical Results

1This can be shown by solving (24) for bij as a function of̃λij ≡ φmijλi:

bij(λ̃ij) = 2

[
1

(σ − 1)

[log(f)− log((σ − 1)σ−1σ−σXP σ))]

log(λ̃ij)
− 1

]
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Table A.1: Core Competence by TFPQ Rank: Sample Splits by Product Differentiation
(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: log(sales) log(volume) log(Price) log(TFPR) log(TFPQ) log(MC) log(Markup)

Panel A: Homogeneous Products

Top product 1.962*** 3.384*** -.666*** -.0260** 3.735*** -.727*** .0116
(.0677) (.0728) (.0535) (.0129) (.0524) (.0543) (.0101)

Top 2nd 1.480*** 2.565*** -.460*** -.0300** 2.878*** -.503*** .00384
(.0619) (.0668) (.0490) (.0118) (.0478) (.0507) (.00950)

Top 3rd .930*** 1.866*** -.296*** -.0162 2.128*** -.337*** .00408
(.0652) (.0648) (.0479) (.0119) (.0447) (.0487) (.00959)

Top 4th .527*** 1.057*** -.119** -.0105 1.341*** -.138*** .00119
(.0658) (.0634) (.0482) (.0132) (.0432) (.0479) (.00984)

Panel B: Differentiated Products

Top product 2.323*** 3.008*** -.302*** .00579 2.695*** -.322*** .0229***
(.0520) (.0522) (.0267) (.0115) (.0374) (.0281) (.00801)

Top 2nd 1.793*** 2.324*** -.222*** .0103 2.076*** -.221*** .0198***
(.0472) (.0480) (.0280) (.0125) (.0334) (.0271) (.00720)

Top 3rd 1.358*** 1.754*** -.131*** .00822 1.563*** -.128*** .0109
(.0461) (.0465) (.0248) (.0109) (.0305) (.0253) (.00741)

Top 4th .800*** 1.087*** -.122*** .00761 1.000*** -.132*** .0142*
(.0486) (.0471) (.0262) (.0103) (.0292) (.0271) (.00790)

Plant-year FE Yes Yes Yes Yes Yes Yes Yes
Product FE Yes Yes Yes Yes Yes Yes Yes
Observations 14,304 14,304 14,304 14,304 14,304 14,304 14,304
R-squared .630 .721 .496 .629 .811 .524 .771

Notes: The table regresses each column variable against categorical variables for the top, second, third and fourth
best performing product of the plant, interacted with a dummy for homogenous products. Within-plant product
rankings are computed in terms of normalized product sales (based on the Torqvist index described in section3.2).
We update the rank in each sample period, potentially allowing products to switch ranks within plants over time.
The sample includes all plants that produce at least 5 products. We define degree of differentiation at the plant
level based on the liberal classification inRauch(1999). For this, we use concordances between SITC (used by
Rauch) and ISIC codes of the main product (used by the ChileanENIA). This yields a plant-level classification
into homogenous and differentiated. "Homogeneous" is for product categories that according toRauch(1999) are
"traded on organized exchanges" or are "referenced priced"; "differentiated" is based on Rauch’s "differentiated"
category. Standard errors (clustered at the plant-year level) are in parenthesis. Key: *** significant at 1%; ** 5%;
* 10%.
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