
The Strategy and Technology of Conflict∗

Sandeep Baliga, Northwestern University
Tomas Sjöström, Rutgers University

December 16, 2016

Abstract

We consider a simple bargaining model where conflict occurs if the
players cannot agree to share a resource peacefully. Each player can
decide to challenge the status quo. A challenge is a strategic move, a
commitment to start a conflict unless the opponent makes a conces-
sion. Uncertainty about the cost of making a challenge generates a
unique equilibrium. Increasing the cost of conflict makes the players
more hawkish (the “stability-instability”paradox) because challenges
become more profitable. Actions are strategic substitutes if the cost
of conflict is large or if there is a small first-mover advantage, and
strategic complements if the cost of conflict is small and there is a
large first-mover advantage. When inequality is large, reducing in-
equality decreases the probability of conflict but, when inequality is
small, reducing inequality increases the probability of conflict (the
“Thucydides trap”). We also study the incentives to make strategic
investments ex ante to influence the cost of conflict or the payoff to
resources.

1 Introduction

Russia’s recent annexation of Crimea and China’s island-building in the
South China Sea caught the world off guard. The United States was left in a
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Dragu, Drew Fudenberg, Eric Maskin, Jean Tirole, Pierre Yared and seminar audiences
for comments. All remaining errors are our responsibility.
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position where it faced a stark choice between concession or a confrontation
that risked war. In effect, as Schelling [20] long argued, Russia and China’s
“strategic moves” created a first-mover advantage. These gambits have a
rich history. For example, after World War II the Soviet Union gained the
first-mover advantage in Eastern Europe, by occupying it in violation of the
Yalta agreement.1 If the West had not conceded, for example in Czechoslo-
vakia or Hungary, a military confrontation would have been quite likely —
the Soviets could not have retreated from these countries without a massive
loss of reputation.2 Conversely, US soldiers stationed in Western Europe
represented “the pride, the honor, and the reputation of the United States
government and its armed forces”(Schelling [20], p. 47). There would have
been no graceful way for them to retreat, leaving “the Soviet Union in no
doubt that the United States would be automatically involved in the event
of any attack on Europe”(Schelling [20]). An East-West confrontation was
avoided because the Soviets conceded Western Europe just as the West had
conceded Eastern Europe.
In this paper, we provide a model of conflict based on strategic moves

and their costs and benefits. The model allows us to address questions such
as: As the costs of conflict increase, what happens to the probability of war?
When might the strategic nature of conflict display escalation (deterrence)
so the marginal incentive to become aggressive increases (decreases) in an
opponent’s aggressiveness?

In our conflict game, each player may challenge the status quo division
of a contested territory. The challenge is a strategic move or commitment,
“a voluntary but irreversible sacrifice of freedom of choice”(Schelling [19]),
which means that a conflict is likely unless the opponent makes a conces-
sion. The optimal challenge is to make the largest claim the opponent would
concede to. If both players commit to incompatible positions, there is a
costly conflict. We show that the game can be represented as a two-by-two
matrix, with strategies labelled Hawk (the optimal challenge) and Dove (no

1At the Yalta conference in February 1945, it was agreed that the Soviet Union would
recover the territory it had lost after 1941. Elsewhere there were supposed to be free
elections and democratic governments.

2During the Berlin crisis, Khrushchev told an American visitor that Berlin was not
worth a war to the US. Khrushchev was then asked whether it was worth a war to the
Soviet Union. “No”, he replied, “but you are the ones that have to cross a frontier”
(Schelling [20], p. 46). Berlin was strictly inside the territory already controlled by the
Soviets, so it would be the West’s decision to risk a war by entering East Germany.
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challenge). With suffi cient uncertainty about the opponent’s cost of making
a challenge, there is a unique Bayesian-Nash equilibrium.
The technology of conflict determines the costs of conflict and the mag-

nitude of first-mover advantage. These two parameters map into properties
of different weapons that have been used at different points in time. For
example, nuclear weapons are very destructive and afford little first-mover
advantage when there is second-strike capability. On the other hand, after
the advent of cannons in the 1400s, forts provided little defense against attack
and there was significant first-mover advantage.3

If the first-mover advantage increases (e.g., because new weapons encour-
age surprise attacks), so does the probability of conflict. The effect of an
increase in the cost of conflict (e.g., because new weapons are more destruc-
tive) is more subtle. If the parameters are such that the second-mover would
not surrender the whole resource, then an increased cost of conflict makes the
players more likely to challenge the status quo (and hence makes a conflict
more likely). The reason is that in this parameter region the second-mover
will concede more, the more costly a conflict would be, so the first-mover
advantage is increasing in the cost of conflict.
This seem to contradict the notion that the high cost of a nuclear war

prevents countries from challenging the status quo. However, challenges did
occur. Pakistan has employed terrorist groups to attack India under the
safety of a nuclear umbrella, and North Korea has attacked South Korean
assets after conducting nuclear tests. During the Cold War, Khrushchev as-
sisted the Cuban revolution in 1960, in defiance of the “Truman doctrine”.
Apparently he was convinced that the U.S. would not risk a major war by in-
vading Cuba after the Soviets had landed. That is, he may have felt it safe to
challenge the status quo precisely because a conflict between the superpowers
would have been so costly. Indeed, the “stability-instability”paradox is the
observation that there is an increase in conventional conflict after a country
acquires nuclear arms (Hart [10]). This paradox appears in our model when
the cost of conflict increases but not so much that the second-mover would

3There are many other examples. Before the advent of accurate cannon, siege warfare
created little first-mover advantage as forts could withstand attack for many years. While
sieges reduced normal economic activity, they were not exorbitantly costly. In the nine-
teenth century, first-mover advantage was predominant because of the use of trained mass
armies initiated by Napoleon and because of Prussian innovations in rapid, well-planned
attack with breech-loading, long range guns. See McNeil [14] for a study of changes in the
technology of war over time.
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concede everything. After that, the natural effect appears and an increase
in the cost of conflict reduces hawkish behavior. Hence, our model not only
shows the stability-instability paradox can emerge but why and when it can
emerge.

The magnitude of first-mover advantage and the destructiveness of con-
flict also determine whether actions are strategic complements or substitutes.
Both scenarios are possible in practice and indeed World War I is often de-
scribed as a war of aggression and World War II as failed deterrence.4 We
show that actions are strategic substitutes if the cost of conflict is high. If
the cost of conflict is low, then actions are strategic complements if the first-
mover advantage is large enough (e.g., if the first-mover is very likely to win
a conflict). This result is not obvious because there are two opposing effects:
with a large first-mover advantage, the cost of choosing Dove when the oppo-
nent chooses Hawk is high, but so is the benefit from choosing Hawk when the
opponent chooses Dove. However, the first effect dominates if utility func-
tions are concave, so that the cost of being caught out and losing territory
exceeds the benefit of acquiring more territory. This formalization of the no-
tion of first-mover advantage adds some clarity to concepts such as “offense
dominance”and “defense dominance”which are frequently discussed in the
literature on international relations (see Bueno de Mesquita [3]). Similarly,
our results on strategic substitutes versus complements illuminate discussions
of deterrence versus escalation.

Some contemporary commentary concerned with changes in relative wealth
and what impact they have on conflict. For example, what will happen as
China grows relative to the United States (Allison [1])? We allow endowments
to differ and study the impact of decreasing inequality on the probability of
conflict. (Inequality could be changing as the countries grow at different
rates.) We find that the poorer player, “the rising power”, is always more
aggressive than the richer player, “the status quo power”because he risks a
smaller endowment in conflict. Therefore, the rising power always becomes
less hawkish as inequality decreases - he has more to lose from being hawk-
ish as he becomes wealthier and this reduces the incentive to be aggressive.

4For example, Nye (p. 111, [18]) observes, “World Wars I and II are often cast as two
quite different models of war.. World War I was an unwanted spiral of hostility... World
War II was not an unwanted spiral of hostility-it was a failure to deter Hitler’s planned
aggression.” Also, see Jervis [11] for many other interpretations of conflicts using Stag
Hunt and Chicken as metaphors.
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Whether this dovishness is reciprocated depends on inequality. If inequal-
ity is large to begin with, the status quo power also becomes less aggressive
when inequality declines. He has little incentive to be hawkish when the
other player is dovish as he is wealthy to begin with. Hence, actions are
strategic complements for the status quo power and it responds to the rising
power’s declining aggressiveness in kind. When inequality is low, actions are
strategic substitutes for the status quo power. Therefore, it turns aggressive
as the rising power becomes more accommodating with declining inequality.
In fact, the probability of conflict can go up with declining inequality. But
this happens not because of the rising power but because of the status quo
power.

Finally we consider the incentive to make ex ante strategic moves before
the bargaining game is played out. For example, an improved defensive tech-
nology might reduce player A’s cost from conflict. The analysis of such ex
ante moves is similar Fudenberg and Tirole’s [9] analysis of strategic invest-
ment.5 The main difference arises from the fact that player A’s investment
can directly impact player B’s payoffs in a natural way. For example, if
player A’s investment in defensive technology reduces player B’s first-mover
advantage and makes player B soft, i.e., more likely to choose Dove in the
bargaining game, then the defensive technology confers a strategic advantage
on player A. Player A will then choose a “Top Dog”strategy and over-invest
in defensive technology. This is different from the Top Dog strategy in Indus-
trial Organization where over-investment is optimal when actions are strate-
gic substitutes and the investment makes the investor more aggressive. In
other cases, the results depend on the parameters in an intuitive way. Recall
that actions are strategic complements if the cost of conflict is low but the
first-mover advantage is large. Then an investment in defensive technology
which makes player A tough confers a strategic disadvantage on player A (it
makes player B more likely to choose Hawk). Player A will therefore choose
a “Puppy Dog”strategy, i.e., under-invest to become less threatening.

Our model of bargaining resembles the Nash demand game (Nash [16])
and Schelling’s ([19]) informal analysis of two-sided commitment in bargain-
ing.6 Unlike these classic contributions, we explicitly model first-mover ad-
vantage as well as the cost of bargaining breakdown and these two properties

5Tirole [23] has recently exapanded the scope of this theory to include two-stage games
with ex ante information acquisition.

6For example, Schelling(p. 26, [19]) describes haggling over the price of a house as
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are fundamental to our results. Fearon [7] has studied a model of one-sided
commitment via the ultimatum game. But this formulation cannot capture
the fact that both players can make moves and that their moves are not per-
fectly coordinated. Ellingsen and Miettinen’s [6] have also offered a model of
bargaining with costly commitments, in turn building on Crawford [4]. Craw-
ford’s model had multiple equilibria, including effi cient equilibria where the
parties made compatible commitments. Ellingsen and Mietinen [6] showed
that if making a commitment is costly, the number of equilibria is reduced.
But while we share the focus on strategic moves, the underlying games and
hence the results are different. More recently, Meirowitz, Morelli, Ramsay
and Squintani [15] also employ the Nash demand to study conflict. In their
model, there is a private arming decision, followed by communication and
bargaining. In our model, arming and bargaining are one and the same so
we end up with a quite different approach.

2 The Bargaining Game

There are two players, A and B. In the status quo, player i controls a share
ωi ∈ (0, 1) of a disputed territory, his endowment, where ω1 +ω2 = 1. Player
i’s utility of controlling a share xi is ui(xi), where ui is an increasing, strictly
concave and differentiable function on [0, 1]. If a conflict occurs, then each
player i ∈ {A,B} suffers a cost φi > 0.
The game has two stages. In stage 1, each player i can either make a

claim xi, where ωi < xi ≤ 1, or make no claim. A claim is a challenge (to
the status quo) which incurs a cost ci for the challenger.7 To make no claim

follows:

“If each party knows the other’s true reservation price, the object is to be
first with a firm offer. Complete responsibility rests with the other, who can
take it or leave it as he chooses (and who chooses to take it). Bargaining is
all over; the commitment (that is, the first offer) wins. Interpose some com-
munication diffi culty. They must bargain by letter; the invocation becomes
effective when signed but cannot be known to the other until its arrival. Now
when one person writes such a letter the other may already have signed his
own or may yet do so before the letter of the first arrives. There is then no
sale; both are bound to incompatible positions.”

7A challenge may be a (non-revokable) instruction to player i’s military to cross the
status quo demarcation, which requires physical resources and manpower. The military
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incurs no cost. The game ends after stage 1 if either no player makes a claim,
or both make claims. Stage 2 is reached if only one player makes a claim, in
which case the other chooses to concede or not to concede. The final outcome
is determined by three rules.

Rule 1. If nobody challenges in stage 1, then the status quo remains in
place.
Rule 2. If only player i challenges, and claims xi > ωi in stage 1, then

we move to stage 2. In stage 2, if player j concedes then player i gets xi and
player j gets 1 − xi. If player j does not concede, there is a conflict: with
probability σ, player i (the challenger) wins and takes all of the resource;
with probability 1− σ, player j wins and takes all of the resource.
Rule 3. If both players challenge the status quo in stage 1 then there is

a conflict. Each player i gets all of the resource with probability 1/2.

We interpret these rules as follows. If neither player challenges the status
quo, then there is no reason why either player should retreat from his initial
position, and the status quo remains in place. If only player i challenges
in stage 1 then he becomes the first-mover and player j the second-mover.
The challenge is a commitment to start a conflict unless player j concedes
the claim. If player j concedes, the challenger gets what he claims, and thus
increases his share of the resource. If player j does not concede, there is a
conflict which player i wins with probability σ; there is no way to “gracefully
back down”and avoid a conflict at this point. The first-mover advantage is
greater, the bigger is σ. But the first-mover advantage also depends on other
things, such as the cost of conflict (if conflicts are very costly, player j is
willing to concede more at stage 2). If both players challenge the status quo,
a conflict occurs because both players are committed to increase their share
of the resource.8 ,9

operation may be condemned by the international community, leading to a loss of repu-
tation and goodwill, possible sanctions or embargoes, etc. These costs would be included
in ci. For example, Stalin lost goodwill in the West when he violated the Yalta agree-
ment. Apparently, he did not value goodwill very highly —but this was not known in the
West. Similarly, Russia has invaded Ukraine and faced sanctions as a result. The Russian
economy is suffering but President Putin’s popular support is sky high.

8Rule 2 resembles Fearon’s [7] ultimatum game analysis of conflict. Unlike Fearon’s
model, our game is symmetric like Nash’s [16] demand game or Schelling’s [19] model of
bargaining. Rule 3 reflects their idea that conflict arises when players make incompatible
strategic moves.

9A more general formulation would be that if both choose to challenge, there is some
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To reduce the complexity of the exposition, we have assumed the two play-
ers are symmetric in terms of fighting strength. That is, σ is the same for each
player and each player’s probability of winning under rule 3 is 1/2. (General-
izing the model with asymmetric fighting strength would be straightforward.)
Further, we make two assumptions that eliminate some less interesting cases.

First, we assume that each player’s endowment is large enough that they
never want to actively invite conflict:

ui(ωi) > σui(0) + (1− σ)ui(1)− φi. (1)

The left-hand side is player i’s payoff from the status quo, and the right hand
side is his expected payoffwhen he is the second-mover and does not concede
(so there is a conflict which he wins with probability 1− σ). Therefore, each
player prefers the status quo to conflict if and only if σ > σi where

σi ≡
ui(1)− ui(ωi)− φi
ui(1)− ui(0)

. (2)

Hence, we assume:

Assumption 1 σ > σi for i ∈ {A,B}.

Note that if the cost of conflict is high enough, specifically φi > ui(1) −
ui(ωi), then Assumption 1 is automatically satisfied because σi < 0. Note
also that strict concavity implies ui

(
1
2

)
> 1

2
ui(1) + 1

2
ui(0). Therefore, in the

symmetric case where ωi = 1/2 we have σi < 1/2, so Assumption 1 is satisfied
whenever σ ≥ 1/2. (Of course, Assumption 1 may hold even for σ < 1/2.)

We now identify the minimum payoff that must be guaranteed to the
second-mover to concede without a fight and hence the maximum payoff
the first-mover can capture without a fight. We also identify some basic

probability α > 0 that player i ∈ {A,B} becomes committed before player j, in which case
we move to stage 2 where player j decides whether or not to concede. Thus, each player
would have a probability α of getting the first mover advantage. With probability 1− 2α,
they both become committed, and there is a conflict. Similarly, following Crawford [4] and
Ellingsen and Mietinen [6], we could assume that a challenge only leads to a successful
commitment with probability q < 1. But the more general model produces similar results
to our current model, which is the special case α = 0 and q = 1, so we present the simpler
model for the sake of exposition. In particular, unlike in the Ellingsen and Mietinen [6]
model, there would be no dramatic change in the set of equilibria at q = 1.

8



properties of these payoffs. Consider the second mover’s behavior if stage 2
is reached. If player i is the second-mover and concedes to the claim xj he
gets ui(1− xj). If he doesn’t concede, he gets

σui(0) + (1− σ)ui(1)− φi.

Thus, player i prefers to concede if

ui(1− xj) ≥ σui(0) + (1− σ)ui(1)− φi. (3)

This is satisfied for xj = 1 if

φi ≥ (1− σ) (ui(1)− ui(0)) . (4)

In this case, player i would rather concede the whole territory than have a
conflict. If instead

φi < (1− σ) (ui(1)− ui(0)) (5)

then the maximum claim he will concede to satisfies (3) with equality. Thus,
if player j makes the maximal claim that player i will concede to in stage 2,
player i’s share of territory will be:

ηi ≡
{
u−1i [σui(0) + (1− σ)ui(1)− φi] if φi < (1− σ) (ui(1)− ui(0)) ,

0 if φi ≥ (1− σ) (ui(1)− ui(0)) .
(6)

This means xj = 1− ηi is the maximum share that player j, as first-mover,
can get without a fight.
Notice that when ηi is interior as (5) holds, we must have

ui(ηi) = σui(0) + (1− σ)ui(1)− φi. (7)

Equation (7) says that player i is indifferent between ηi and a conflict when
he is the second-mover. It reveals that ηi is decreasing in φi. That is, the
more costly a conflict would be, the more player i is willing to concede in
stage 2. This property will play a key role in some of our results below. Also,
when ηi is interior,

ui(0) < σui(0) + (1− σ)ui(1)− φi < ui(ωi), (8)
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where the first inequality is equivalent to (5) and the second is equivalent to
Assumption 1. In view of (8), if (5) and Assumption 1 hold then 0 < ηi < ωi.
In general, 0 ≤ ηi < ωi since either the first or second row of (6) may apply.10

We assume neither player knows the opponent’s cost of violating the
status quo and there is significant uncertainty about this cost. The idea that
players in conflict may have private information about their payoffs is natural.
As we show in the next section, our assumption that there is suffi ciently large
uncertainty also plays a technical role in ensuring a unique equilibrium and
simplifies our analysis.
We assume that for each i ∈ {A,B}, the cost ci is independently drawn

from a distribution F with support [c, c] and density f(c) = F ′(c). Player
i ∈ {A,B} knows ci but not cj. We refer to ci as player i’s type. If either the
support of F is very small, or the density of F is highly concentrated around
one point in the support, then the uncertainty is unimportant, because the
players in effect are fairly certain about each others’types. To avoid this,
we assume (i) that the support is not too small, and (ii) that the density is
suffi ciently “flat”:

Assumption 2 (Suffi cient uncertainty about types) (i)

c < min{ui(1− ηj)− ui(ωi),
1

2
ui(0) +

1

2
ui(1)− φi − ui(ηi)}

10Notice that Assumption 1 does not imply φi ≥ (1 − σ) (ui(1)− ui(0)). For example,
suppose ωi = 1/2. We have

σui(0) + (1− σ)ui(1)− ui(1/2) < (1− σ) (ui(1)− ui(0)) (9)

This inequality follows from

(1− σ) (ui(1)− ui(0))

− [σui(0) + (1− σ)ui(1)− ui(1/2)]

= ui(1/2)− ui(0) > 0.

Therefore, there is a range of φi, namely

σui(0) + (1− σ)ui(1)− ui(1/2)

< φi < (1− σ) (ui(1)− ui(0))

such that (8) holds.
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and

c̄ > max{ui(1− ηj)− ui(ωi),
1

2
ui(0) +

1

2
ui(1)− φi − ui(ηi)}

for i ∈ {A,B}. (ii)

f(c) <
1∣∣1

2
ui(0) + 1

2
ui(1)− φi − ui(ηi)− ui(1− ηj) + ui(ωi)

∣∣
for all c ∈ [c, c] and i ∈ {A,B}.

If F is uniform, then (ii) is redundant because (i) implies (ii). Indeed,
the uniform distribution is maximally “flat”. However, we do not restrict
attention to the uniform distribution. In the non-uniform case, (ii) guarantees
that the density is not highly concentrated at one point.

3 Equilibrium and Basic Comparative Statics
Results

Our model has a rich strategy set for each player. But we show only two
strategies are used in equilibrium and that there is a unique equilibrium. We
then perform comparative statics exercises with the equilibrium and deter-
mine when the stability-instability paradox can arise.

3.1 Equilibrium Analysis

We show that there is only one challenge a player would ever make. His other
option is not to challenge at all so we will show our bargaining game reduces
to a simple 2× 2 game.
We begin by showing that player i’s best challenge is to claim 1− ηj. If

both players challenge simultaneously, the outcome falls under Rule 3, and
any challenge will give the same lottery over outcomes. So to distinguish
between player i’s challenges, we need to consider what happens if stage 2 is
reached following a challenge by player i alone. In this case, sequential ratio-
nality implies that player j concedes if and only if player i’s claim satisfies
xi ≤ 1− ηj.11 So player i should certainly not claim strictly less than 1− ηj.
11If player i claims 1 − ηj then player j is indifferent between conceding and not con-

ceding, but we may assume he concedes in this case.
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If he claims exactly 1− ηj, there is no conflict, and player i’s payoff is

ui(1− ηj). (10)

If ηj = 0, player i’s best challenge is certainly to claim xi = 1. If ηj > 0,
we must consider what happens if player i claims strictly more than 1− ηj.
Then there will be a conflict which, by Rule 2(b), gives player i expected
payoff

σui(1) + (1− σ)ui(0)− φi. (11)

But (11) is strictly smaller than (10). To see this, note that, by definition
of ηj, if player i claims 1− ηj then player j’s payoff is uj(ηj) whether there
is a conflict or not (see (7)). But conflicts are ineffi cient since φi > 0, so
player i strictly prefers to not have a conflict and get 1− ηj for sure. Thus,
(11) is strictly smaller than (10), so claiming 1 − ηj is strictly better than
claiming xi > 1 − ηj. Thus, we define player i’s optimal challenge to be to
claim xi = 1 − ηj. Notice that player i can compute his optimal challenge
without knowing cj, since ηj is independent of cj.
For convenience, we will label the optimal challenge Hawk (or H). To not

make any challenge is labelled Dove (or D). Thus, we obtain the following
2 × 2 payoff matrix. Player i chooses a row, player j a column, and only
player i’s payoff is indicated:

Hawk (claim xj = 1− ηi) Dove (no challenge)
Hawk (claim xi = 1− ηj) 1

2
ui(0) + 1

2
ui(1)− φi − ci ui(1− ηj)− ci

Dove (no challenge) ui(ηi) ui(ωi)
(12)

Remark 1 If only one player challenges the status quo, part of the resource
is transferred to the challenger, but there is no conflict and no ex post inef-
ficiency. An ineffi cient conflict occurs only when both players challenge the
status quo.

Remark 2 We know that ui(1− ηj) > σui(1) + (1− σ)ui(0)− φi, and also
ωi > ηi so ui(ωi) > ui(ηi). Therefore, if σ ≥ 1/2 then

ui(1− ηj)− ci >
1

2
ui(0) +

1

2
ui(1)− ci − φi. (13)

The inequality (13) also holds when ωj ≤ 1/2, since in this case 1 − ηj >
1 − ωj ≥ 1/2. Thus, if either σ ≥ 1/2 or ωj ≤ 1/2 (or both) then player
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i always prefers player j to choose Dove, whatever action player i himself
chooses. If, however, σ < 1/2 and ωj > 1/2 then player i may actually want
player j to choose Hawk if player i himself chooses Hawk.

Next, we show that under Assumption 2, the bargaining game has a
unique equilibrium.
Player i is a dominant strategy hawk if Hawk (H) is his dominant strat-

egy.12 Player i is a dominant strategy dove if Dove (D) is his dominant
strategy.13 Assumption 2(i) implies that the support of F is big enough to
include dominant strategy types of both kinds.
Suppose player i thinks player j will choose H with probability pj. Player

i’s expected payoff from playing H is

−ci + pj

(
1

2
ui(0) +

1

2
ui(1)− φi

)
+ (1− pj)ui(1− ηj),

while his expected payoff from D is

pjui(ηi) + (1− pj)ui(ωi).

Thus, if he chooses H instead of D, his net gain is

−ci + pj

(
1

2
ui(0) +

1

2
ui(1)− φi − ui(ηi)

)
+ (1− pj)

(
ui(1− ηj)− ui(ωi)

)
.

(14)
A strategy for player i is a function gi : [c, c]→ {H,D} which specifies an

action gi(ci) ∈ {H,D} for each type ci ∈ [c, c]. In Bayesian Nash equilibrium
(BNE), all types maximize their expected payoff. Therefore, gi(ci) = H if
(14) is positive, and gi(ci) = D if (14) is negative. If (14) is zero then type
ci is indifferent, and for convenience we assume he chooses H in this case.
Player i uses a cutoff strategy if there is a cutoff point x ∈ [c, c] such that

gi(ci) = H if and only if ci ≤ x. Because the expression in (14) is monotone
in ci, all BNE must be in cutoff strategies. Therefore, we can without loss
of generality restrict attention to cutoff strategies. Any such strategy is
identified with its cutoff point x ∈ [c, c]. If player j uses cutoff point xj, the

12Formally, ui(1−ηj)−ui(1/2) ≥ ci and 1
2ui(0) + 1

2ui(1)−φi−ui(ηi) ≥ ci with at least
one strict inequality.
13Formally, ui(1−ηj)−ui(1/2) ≤ ci and 1

2ui(0) + 1
2ui(1)−φi−ui(ηi) ≤ ci with at least

one strict inequality.
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probability he plays H is pj = F (xj). Therefore, using (14), player i’s best
response to player j’s cutoff xj is the cutoff xi = Γi(xj), where

Γi(x) ≡ F (x)

(
1

2
ui(0) +

1

2
ui(1)− φi − ui(ηi)

)
+(1− F (x))

(
ui(1− ηj)− ui(ωi)

)
.

(15)
The function Γi is the best-response function for cutoff strategies.
The role of Assumption 2(i) is to rule out corner solutions, where all types

do the same thing. Indeed.

Γi(c) = ui(1− ηj)− ui(ωi) > c

and

Γi(c) =

(
1

2
ui(0) +

1

2
ui(1)− φi

)
− ui(ηi) < c̄

by Assumption 2(i), so the equilibrium cutoff point will be strictly between
c and c.

Since the function (ΓA(xB), (ΓB(xA)) : [c, c̄]2 → (c, c̄)2 is continuous, a
fixed-point (x̂A, x̂B) ∈ (c, c̄)2 exists. This is a BNE (where player i uses
cutoff x̂i). Thus, a BNE exists. The slope of the best response function is
Γ′i(x) = Ωif(x), where

Ωi ≡
1

2
ui(0) +

1

2
ui(1)− ui(ηi)− ui(1− ηj) + ui (ωi)− φi. (16)

A standard suffi cient condition for the existence of a unique equilibrium
is that the absolute value of the slope of each player’s best response function
is less than 1. Assumption 2(ii) guarantees this. Thus, while Assumption
2(i) guarantees that any BNE is interior, Assumption 2(ii) guarantees that
there is a unique BNE.

3.2 First-Mover Advantage, The Cost of Conflict and
the Stability-Instability Paradox

If the two players are symmetric ex ante (before they draw their types), in
preferences over territory, costs of conflict and endowments, then we can drop
the subscripts on ui, φi, ωi and ηi. The payoff matrix becomes:

Hawk (claim xj = 1− η) Dove (no challenge)
Hawk (claim xi = 1− η) 1

2
u(0) + 1

2
u(1)− φ− ci u(1− η)− ci

Dove (no challenge) u(η) u(1
2
)
(17)
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Also, the unique BNE must be symmetric, and the equilibrium cutoff x̂ is
the same for both and implicitly defined by the equation

x̂− ΩF (x̂) = u(1− η)− u(1/2). (18)

where

Ω ≡ 1

2
u(0) +

1

2
u(1)− u(η)− u(1− η) + u

(
1

2

)
− φ (19)

The symmetry assumption allows us to easily derive comparative statics
results. Consider first how η depends on φ and σ. If φ > (1−σ) (u(1)− u(0))
then η = 0 and dη/dσ = dη/dφ = 0. But if φ < (1−σ) (u(1)− u(0)) then (7)
holds the second-mover concedes more if σ and φ increase as he is a weaker
position if he triggers a conflict by playing Hawk:

dη

dσ
= −u(1)− u(0)

u′(η)
< 0 (20)

and
dη

dφ
= − 1

u′(η)
< 0. (21)

While both greater first-mover advantage and a higher cost of conflict de-
crease a second-mover’s payoff η, they have different equilibrium effects on
the probability of conflict.

Consider an increase in first-mover advantage, e.g. the advent of accurate
siege cannon. By definition, the magnitude of σ affects payoffs when player
i challenges and is lucky to catch player j by surprise (i.e. when the action
profile is HD) or in the reverse situation when player j catches player i by
surprise (i.e. when the action profile is DH). In the former case, higher σ
allows player i to extract more resources from player j - u(1 − η) increases.
This increases his incentive to play Hawk. In the latter case, player i concedes
more when he is himself caught offguard - u(η) decreases. This also increases
his incentive to play Hawk. Once σ becomes so high that η = 0, there is no
further impact on the payoff functions and the probability of conflict does not
change. There is then no non-monotonicity or stability-instability paradox
in changes in first-mover advantage: increasing first-mover advantage also
increases the equilibrium probability of conflict.
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Proposition 3 Suppose the players are symmetric ex ante. An increase
in first-mover advantage σ increases the probability of conflict if φ < (1 −
σ) (u(1)− u(0)). It has no effect on the probability of conflict when φ >
(1− σ) (u(1)− u(0)).

Proof. Totally differentiating (18) we obtain

(1− Ωf(x̂))
dx̂

dσ
= − [u′(η)F (x̂) + u′(1− η)(1− F (x̂))]

dη

dσ
(22)

where 1 − Ωf(x̂) > 0 from Assumption 2. From (6), the expression in (22)
vanishes if φ > (1−σ) (u(1)− u(0)). In this case, the second-mover concedes
everything, so an increased σ has no effect on behavior. But if φ < (1 −
σ) (u(1)− u(0)) then (20) holds. From (22), the equilibrium cutoff increases,
so each player becomes more likely to choose H when σ increases.

Consider an increase in the cost of conflict, e.g. the advent of nuclear
weapons. What impact will this have on the probability of conflict? The
obvious intuition is that players will shrink from aggression because the costs
of conflict when they are both hawkish have increased. But when φ is low, an
increase in the cost of conflict confers a first-mover advantage for the same
reasons as an increase in σ : it increases the incentive to play Hawk when the
opponent plays Dove as the opponent will concede more, and it increases the
incentive to play Hawk when the opponent plays Hawk as a dovish player
has to concede more. When φ is low, these two effects overcome the incentive
to shrink from conflict when φ increases. Thus, the equilibrium probability
of conflict actually increases with φ when φ is low as both players become
more aggressive trying to exploit increased first-mover advantage. For a
suffi ciently high cost of conflict, players will concede everything when faced
with a surprise hawkish move. Further increases in the cost of conflict do
not increase first-mover advantage and the probability of conflict falls with
higher φ. Therefore we identify the impact of increased costs of conflict
on first-mover advantage as the source of the stability-instability paradox.
Increasing φ causes “instability” at low costs of conflict and “stability” at
high costs of conflict:

Proposition 4 Stability-Instability Paradox Suppose the players are sym-
metric ex ante. An increase in the cost of conflict φ increases the probability
of conflict if φ < (1− σ) (u(1)− u(0)), but reduces the probability of conflict
when φ > (1− σ) (u(1)− u(0)).
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Proof. When φ < (1−σ) (u(1)− u(0)), totally differentiate (18) with respect
to φ and use (21) to obtain

dx̂

dφ
=

1

1− Ωf(x̂)

u′(1− η)

u′(η)
(1− F (x̂)) > 0.

Since the equilibrium cut-off increases, the players become more likely to
choose Hawk, the higher is the cost of conflict.
When φ > (1 − σ) (u(1)− u(0)), an increase in φ will have no effect on

η, and therefore it will reduce the probability of conflict. Indeed, when η is
fixed at 0 we get

dx̂

dφ
= − 1

1− Ωf(x̂)
F (x̂) < 0.

4 Strategic Complements and Substitutes

Two-by-two matrix games are often used as stylized models of conflicts. A
key distinction is between games of strategic complements, such as stag hunt,
and games of strategic substitutes, such as chicken. Intuitively, the game has
strategic complements (substitutes) if the gain from becoming more hawkish
is greater (smaller), the more hawkish is the other player. The stag hunt
game is a model of Hobbes’s “state of nature”, where conflict is caused by
lack of trust, while chicken is a model of preemption and deterrence. In pre-
vious work (e.g., Baliga and Sjöström [2]), the results depended crucially on
whether actions were assumed to be strategic complements or substitutes.
Now we will use the payoff matrix (12) to characterize situations where ac-
tions are likely to be substitutes or complements.14

If player j chooses Hawk, then if player i switches from Dove to Hawk
player i’s net gain is

1

2
ui(0) +

1

2
ui(1)− φi − ci − ui(ηi) (23)

If instead player j chooses Dove, then if player i switches from Dove to Hawk
player i’s net gain is

ui(1− ηj)− ci − u(ωi). (24)

14Historical studies (see Jervis [11] or Nye [18]) also emphasize the distinction between
situations where toughness feeds on itself in a cycle of fear (as in stag hunt), and situations
where a suffi cient show of toughness might force an opponent to back down (as in chicken).
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Actions are strategic complements for player i if (23) is greater than
(24), which is equivalent to Ωi > 0, where Ωi is defined by (16). They are
strategic substitutes for player i if Ωi < 0. The game is said to have strategic
substitutes (resp. complements) if the actions are strategic substitutes (resp.
complements) for both players.
We begin by showing that when there is no first-mover advantage, the

game must have strategic substitutes. In this case, there is little to nothing
to gain from an unmet challenge and nothing to lose by facing an hawkish
opponent. This implies actions are strategic substitutes. For example, be-
sieged cities could survive for years before the advent of cannons and perhaps
there was no first-mover advantage.

Proposition 5 The game has strategic substitutes if σ ≤ 1/2.

Proof. If ηi > 0 then (7) holds so

Ωi ≡
(
σ − 1

2

)
(ui(1)− ui(0))−ui(1−ηj)+ui (ωi) <

(
σ − 1

2

)
(ui(1)− ui(0))

since 1− ηj > ωi. If ηi = 0 then

Ωi ≡
1

2
(ui(1)− ui(0))− ui(1− ηj) + ui (ωi)− φi <

1

2
(ui(1)− ui(0))− φi

≤ (σ − 1

2
) (ui(1)− ui(0))

where the first inequality is due to 1 − ηj > ωi.and the second to φi ≥
(1− σ) (ui(1)− ui(0)) . Thus, it is always true that

Ωi < (σ − 1

2
) (ui(1)− ui(0)) ≤ 0.

To simplify the exposition, for the remainder of this section we will return
to the case where the players are ex ante symmetric. This implies ηA = ηB =
η, ΩA = ΩB = Ω (as defined by (19)) and

σA = σB = σ ≡ u(1)− u(1/2)− φ
u(1)− u(0)

(25)
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from (2). As was shown above, σ < 1/2. The game has strategic substitutes
if Ω < 0 and strategic complements if Ω > 0.
The payoff matrix (12) becomes

Hawk Dove
Hawk 1

2
u(0) + 1

2
u(1)− φ− ci u(1− η)− ci

Dove u(η) u(1/2)
(26)

Totally differentiating Ω yields

dΩ

dσ
= − (u′(η)− u′(1− η))

dη

dσ
≥ 0 (27)

with strict inequality when η > 0, in view of (20) and concavity. Also,

dΩ

dφ
= − (u′(η)− u′(1− η))

dη

dφ
− 1

= (u′(η)− u′(1− η))
1

u′(η)
− 1 = −u

′(1− η)

u′(η)
< 0.

by concavity. Thus, actions are more likely to be strategic complements the
bigger is σ and the smaller is φ. We confirm this intuition in various results
below.
It is clear that if φ is large, then the most important consideration is

to avoid a conflict, as in the classic chicken game. For example, if playing
Hawk against an opponent who is playing Hawk brings a risk of nuclear war,
there is a strong incentive to back off. But if an opponent is playing Dove,
there is a strong incentive to play Hawk as the opponent will likely concede
everything to avoid nuclear war. Thus, we have the following result.

Proposition 6 Suppose the players are symmetric ex ante. If φ > u(1/2)−
1
2
u(0)− 1

2
u(1) then actions are strategic substitutes.

Proof. By concavity,

u(η) + u(1− η) ≥ u(0) + u(1).

Therefore,

Ω = (u(0) + u(1)− u(η)− u(1− η)) +

(
u

(
1

2

)
− 1

2
u(0)− 1

2
u(1)

)
− φ < 0.
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If φ is small, however, then avoiding a conflict is less important, and
actions become strategic complements if the first-mover advantage is large
enough. A large σ has two effects: it becomes more costly to be caught out
and play Dove against Hawk, but it becomes more profitable to play Hawk
against Dove. The first effect tends to make actions strategic complements,
while the second effect does the opposite. The first effect dominates because
of strict concavity: it is more important to preserve your own territory than
to acquire the opponent’s territory. Overall, our result is:

Proposition 7 Suppose the players are symmetric ex ante. There exists
σ̄ ∈ (1/2, 1) such that, for any φ < u(1/2)− 1

2
u(0)− 1

2
u(1), there is σ∗(φ) ∈

(1/2, σ̄) such that actions are strategic substitutes if σ < σ∗(φ) and strategic
complements if σ > σ∗(φ). Moreover, such that σ∗(φ) < σ̄ for all φ <
u(1/2)− 1

2
u(0)− 1

2
u(1).

Proof. Fix φ such that φ < u(1/2) − 1
2

(u(0) + u(1)). From Proposition 5,
we have Ω < 0 if σ ≤ 1/2. Now let σ̄ ∈ (1/2, 1) be implicitly defined by

φ = (1− σ̄)(u(1)− u(0)).

Then η = 0 if and only if σ ≥ σ̄. When η = 0 we have

Ω = u

(
1

2

)
− 1

2
u(0)− 1

2
u(1)− φ > 0

so that Ω > 0 when σ ≥ σ̄. Thus, there exists σ∗(φ) ∈ (1/2, σ̄) such that
Ω = 0. At σ = σ∗(φ) we have η > 0. It follows from (27) that Ω < 0 if
σ < σ∗(φ) and Ω > 0 if σ > σ∗(φ).

From the mid-seventeenth century to the eighteenth, wars between great
powers were long and bloody (see Levy [13] and Fearon [8]). Hence, they
were costly both in terms of resources and men. Also, the trace italienne
(fort walls reinforced with soft, absorbent earth and protected by a wide
ditch) provided a defense against artillery (see Duffy [5]). Hence, we identify
this period with low σ (i.e. defense dominance), high φ and a conflict game
with strategic substitutes. By contrast in the nineteenth century and until

20



WorldWar 1, wars are shorter and involve fewer battle deaths in absolute and
relative terms. Moreover, the development of large, patriotic armies, railways
and new weapons conferred first-mover advantage. Hence, we identify this
period with high σ (i.e. offensive advantage), low φ and a conflict game with
strategic complements.
Finally, it is easy to check that the function σ∗(φ) is decreasing in φ.15

This observation and Propositions 7 and 6 are summarized in Figure 1.

15Since η depends on φ and σ, we can write η = η(φ, σ). The function σ∗(φ) identified
in Proposition 7 is such that Ω = 0 when η = η(φ, σ∗). Substitute η = η(φ, σ∗(φ)) in (16)
to get

1

2
u(0) +

1

2
u(1)− u(η(φ, σ∗(φ))))− u(1− η(φ, σ∗(φ))) + u

(
1

2

)
− φ ≡ 0 (28)

for all φ < u(1/2)− 1
2u(0)− 1

2u(1). The proof of Proposition 7 implies that

σ∗ < σ̄ ≡ 1− φ

u(1)− u(0)
,

so η(φ, σ∗(φ)) > 0 satisfies (7). Using this fact, totally differentiating (28) yields

dσ∗(φ)

dφ
=

−u′(1− η)

(u(1)− u(0)) (u′(η)− u′(1− η))
< 0.
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5 Power Imbalance and Aggression

Discussions of conflict often focus on the case where an incumbent “great
power”faces a “rising power”. For example, in his classic discussion of the
war between Sparta and Athens, the Greek historian Thucydides [21] argued
that “It was the rise of Athens and the fear that this inspired in Sparta that
made war inevitable.”Similarly, as China grows more rapidly that the Unites
States, some ask whether war is inevitable. In fact, a war between a rising
power and a incumbent great power has been called the “Thucydides trap”
(Allison [1]). The key question is whether the overall probability of conflict
increases as inequality falls, perhaps because one country grows faster than
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another. We discuss by explicitly introducing asymmetric endowments and
studying the probability of conflict as inequality declines.

Suppose the two players are symmetric except that the status quo al-
location favors player A. That is, ωA = 1

2
+ ε and ωB = 1

2
− ε, where

0 ≤ ε < 1/2. Player B’s power is “rising” in the sense that equality is
decreasing, i.e. ∆ε < 0. This might happen because goods and services pro-
duced by player A are now produced by player B. Or it could be the case that
player A and player B’s economies are growing at different rates. If player
i’s endowment grows at rate gi, players are risk neutral and costs scale by
gAωA + gBωB (so, for example, the cost of fighting is φ (gAωA + gBωB) and a
fraction φ of total wealth is destroyed by conflict), we can set ω′i = giωi

gAωA+gBωB
and∆ε = ωA−ω′A. Hence, we will refer to player A as the “status quo power”
and player B as the “rising power”who has attained military but not eco-
nomic parity. There is a Thucydides trap at ε iff

F (xA)f(xB)
dxB
dε

+ F (xB)f(xA)
dxA
dε

< 0.

Recall that player i’s best response to player j’s cutoff xj is the cutoff
xi = Γi(xj), where

Γi(x) ≡ F (x)

(
1

2
u(0) +

1

2
u(1)− φ− u(η)

)
+ (1− F (x)) (u(1− η)− u(ωi)) .

As player B has a smaller endowment than player A, he is always more
aggressive in equilibrium: xB > xA. Also, in the terminology of Fudenberg
and Tirole [9], an increase in the initial endowment ωi makes player i soft
(shifts his best-response curve down), because he now has more to lose from
a conflict. A decrease in ωi would instead make him tough (shift his best-
response curve up), because he now has less to lose. So, the direct effect of
decreasing inequality is that player B becomes less aggressive and player A
becomes more aggressive. There are also strategic effects that depend on
whether actions are strategic complements or substitutes and may reinforce
or counterbalance the direct effects. For example, if actions are strategic
substitutes for player A, the direct effect of reducing inequality on player A
is clear: the softening of player B makes player A more aggressive. When
actions are strategic complements, the strategic effect of reducing inequality
will be a softening on the part of player A to meet the softening on the part
of player B so the net effect on player A’s aggressiveness is ambiguous. This
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implies that in general the impact of reducing inequality on player A and
hence on the probability of conflict is ambiguous.
But we can say that player B becomes unambiguously less aggressive

as inequality declines. Player B’s incentive to turn dovish comes from the
direct effect of retaining a larger endowment when player A is dovish, an
event which occurs with probability 1− F (xA). Player B’s incentive to turn
hawkish comes from the strategic effect triggered by the incentive of player A
to turn hawkish as he has a smaller endowment to lose from a surprise attack
on a dovish player B, an event which occurs with probability 1−F (xB). But
as xB > xA, 1 − F (xA) > 1 − F (xB) and for player B the direct effect of
reduced inequality is greater than the strategic effect so he becomes more
dovish. We now formalize these ideas and study if and when the Thucydides
trap might arise.

In equilibrium, xA and xB will satisfy

xA = ΩAF (xB) + u(1− η)− u(ωA) (29)

and
xB = ΩBF (xA) + u(1− η)− u(ωB). (30)

where
Ωi ≡

1

2
u(0) +

1

2
u(1)− u(η)− u(1− η) + u (ωi)− φ. (31)

Notice ΩA > ΩB as ωA > ωB. Totally differentiating (29) and (30) with
respect to ε yields

dxA = ΩAF
′(xB)dxB − (1− F (xB))u′(1/2 + ε)dε

and
dxB = ΩBF

′(xA)dxA + (1− F (xA))u′(1/2− ε)dε
We solve to obtain

dxA
dε

=
ΩAF

′(xB) (1− F (xA))u′(1/2− ε)− (1− F (xB))u′(1/2 + ε)

1− ΩAΩBF ′(xA)F ′(xB)
(32)

and

dxB
dε

=
(1− F (xA))u′(1/2− ε)− ΩBF

′(xA) (1− F (xB))u′(1/2 + ε)

1− ΩAΩBF ′(xA)F ′(xB)
. (33)
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We have

dxB
dε
− dxA

dε
(34)

=
(1− F (xA)) [1− ΩAF

′(xB)]u′(1/2− ε) + (1− F (xB)) [1− ΩBF
′(xA)]u′(1/2 + ε)

1− ΩAΩBF ′(xA)F ′(xB)
> 0

as |ΩAF
′(xA)| < 1 and |ΩBF

′(xB)| < 1 by Assumption 2(ii). Because xA =
xB when ε = 0, (34) implies than xB > xA for any ε > 0. That is, the ris-
ing power is always the more aggressive player, whether actions are strategic
complements or substitutes. Moreover, as F (xA) < F (xB), |ΩBF

′(xB)| < 1
and u′(1/2 − ε) ≥ u′(1/2 + ε) by concavity (33) is always strictly positive:
The rising power becomes less aggressive as it becomes wealthier. This im-
plies that, if there is a Thucydides trap, it must arise from the increased
aggressiveness of player A.

As the denominator is positive, the sign of (32) is determined by the sign
of the numerator, which is certainly negative if ΩA < 0. Even if ΩA > 0,
(32) is negative if ε is small enough, since the numerator evaluated at ε = 0
is [ΩF ′(x)− 1] (1− F (x))u′(1/2) < 0 where x = xA = xB and ΩA = ΩB =
Ω = 1

2
u(0) + 1

2
u(1) − u(η) − u(1 − η) + u

(
1
2

)
− φ. Thus, whether actions

are strategic substitutes or complements, for small ε, the status quo power
does becomes more aggressive as inequality declines. In aggregate though,
for small ε, the increased hostility of the status quo power is met exactly
by increased accommodation by the rising power so small asymmetries have
no effect of the probability of conflict. Hence, if countries at the same level
of development grow at slightly different rates, this has little effect on the
probability of conflict.

Proposition 8 A small amount of asymmetry in the status quo does not
change the probability of a conflict so there is no Thucydides trap.

Proof. Setting ε = 0 in (32) and (33) reveals that dxA/dε = −dxB/dε. The
probability of a conflict is F (xA)F (xB), and dxA/dε = −dxB/dε implies that
F (xA)F (xB) is independent of ε, for a small change in ε evaluated at ε = 0.

Even if there is a large asymmetry and the status quo power considers
actions to be strategic complements, there is no Thucydides trap because
decreasing inequality causes both powers to become less aggressive which
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would be unambiguously good for peace. Indeed, the sign (32) is positive if
and only if

u′(1/2 + ε)

u′(1/2− ε) <
1− F (xA)

1− F (xB)
ΩAF

′(xB) (35)

The left-hand side is decreasing in ε by concavity of u. If u satisfies the usual
boundary condition u′(x)→∞ when x→ 0 then (35) is guaranteed to hold
for ε close to 1/2 if actions are strategic complements for player A.Moreover,
when ε is close to 1/2,

ΩA = σ(u(1)− u(0)) + u(1)− u(1− η) > 0

if there is a first-mover advantage (σ > 1
2
). Hence, actions are in fact strategic

complements for the status quo power when inequality is extreme. We have
the following result:

Proposition 9 When inequality is large, there is a first-mover advantage
and u′(x) → ∞ when x → 0, there is no Thucydides trap. In fact, the
probability of conflict declines with reduced inequality.

When inequality is large, the status quo power has nothing to gain by
being aggressive when the rising power is dovish because its endowment is
already large. Hence, the status quo power’s incentives to be aggressive must
be larger when the rising power is aggressive and actions are strategic com-
plements for the status quo power. When its endowment is small and utility
is concave, the rising power’s incentives to be dovish increase dramatically
with falling inequality as it greatly values any increase in endowment when it
is very poor. As actions are strategic complements for the status quo power
and the rising power is becoming much more dovish, the status quo power’s
incentive to be dovish outweighs any incentive to become hawkish because
of a decreasing endowment. Therefore, the probability of conflict must fall.
So, for example, if inequality between a status quo power and a poor rising
power declines with trade, so will the chance of conflict.

So far, we have identified two opposite situations - when there is no
inequality or there is large inequality - where conflict does not decrease with
inequality. We will now show that in between these extremes there can be
a Thucydides trap. Suppose types are uniformly distributed on [0, 1] and
players are risk neutral. We begin with the case where η = 0 which requires
that φ > 1 − σ. Also, for Assumption 2(i) to be satisfied, we must have
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1 − σ < φ < 1
2
and 0 ≤ ε < 1

2
. We have ΩA = ε − φ and ΩB = −ε − φ so

actions are always strategic substitutes for player B and are substitutes for
player A if and only if ε < φ. When players are risk neutral and types are
uniformly distributed, the change in the probability of conflict is given by

F (xB)
dxA
dε

+ F (xA)
dxB
dε

. (36)

There is more likelihood of a Thucydides trap if actions are strategic sub-
stitutes for player A and his hawkishness declines with inequality: dxA

dε
< 0.

This is favored by low inequality and high costs of conflict so ΩA is highly
negative. Also when player B is poorer than player A, the probability that
player B is hawkish, F (xB), must be much higher than the probability player
A is hawkish, F (xA). This means that in (36) the fact that player A becomes
more aggressive outweighs the fact that player B is becoming less aggressive
and a Thucydides trap arises.
When inequality is high, the logic resembles the argument behind Propo-

sition 9. We have the following result (the proof is in the Appendix):

Proposition 10 Suppose players are risk neutral, types are uniformly dis-
tributed on [0, 1] and 1 − σ < φ < 1

2
. Then, there is a Thucydides trap iff

ε > 0 and

ε2 ≤ 6φ− φ2(3 + 2φ))− 1

(5− 2φ)
.

Now suppose φ < 1 − σ so η > 0. For Assumption 2(i) to be satisfied,
we must have σ > 1

2
and σ + φ − ε > 1

2
. We still have ΩA = ε − φ and

ΩB = −ε − φ. So, we have a similar result where low inequality and high
costs of conflict favor a Thucydides trap (the proof is in the Appendix):

Proposition 11 Suppose players are risk neutral, types are uniformly dis-
tributed on [0, 1], φ < 1 − σ, σ > 1

2
and σ + φ − ε > 1

2
. Then, there is a

Thucydides trap iff ε > 0 and

ε2 ≤ (1− φ) (5− 6σ + φ(−3 + 4φ+ 2σ))

(7− 4φ− 2σ)
. (37)

The result reflects the now familiar intuition that a Thucydides trap is
more likely when actions are strategic substitutes for player A. This occurs
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when inequality ε is low, costs of conflict φ are high and first-mover advantage
is low. For instance, (37) is impossible to satisfy for ε > 0 when σ is high.16

To return to our main question, declining inequality perhaps caused by
differential growth does increase the chance of conflict if inequality is inter-
mediate and costs of conflict are high. China and the United States have
nuclear arms and inequality is now intermediate given China’s fast growth
rates. These countries might very well be subject to a Thucydides trap. Iron-
ically, we have shown that a trap arises not because China becomes more
aggressive with declining inequality but because the United States does so.
To avoid this paradox, players might make an effort to alter the magnitude
of first-mover advantage or the costs of conflict. This is the topic to which
we now turn.

6 Strategic Investments

Player A might invest in “Star Wars” defensive technology to destroy in-
coming nuclear missiles and thereby reduce φA. He might publicly announce
that his endowment is sacred; losing part of it then becomes more costly
as it implies a loss of face.17 Or he may invest on his portion of the endow-
ment, for example by building settlements on his land. We can think of these
moves as changing player A’s payoff function directly by affecting the value
of his endowment. What are the consequences of such an announcement? To
study this kind of question, we suppose the parameters of the game depend
on ex ante decisions. Our analysis closely follows Fudenberg and Tirole’s [9]
analysis of strategic ex ante investments in Industrial Organization theory.
For convenience, we also refer to the ex ante decision as an investment.
To be specific, suppose player A makes an ex ante investment which

influences his utility function and/or cost of conflict. This is the direct effect
of his investment. To avoid having to deal with issues of signaling, we assume
the investment is made before player A learns how costly it would be to
challenge the status quo. Thus, player A ’s investment is independent of
his type. The investment is observed by player B. Therefore, even if A’s
investment does not change B’s utility function or cost of conflict, it will

16If σ > σ∗, where 5− 6σ∗ + (1− σ∗)(−3 + 4(1− σ∗) + 2σ∗) = 0 and σ∗ < 1, the right
hand side of (37) is negative and so there cannot be a Thucydides trap.
17Alternatively, if player A is a political leader who makes the key decisions in interna-

tional affairs, he might be replaced by someone who assigns higher value to the endowment.
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influence what player B thinks A will choose in the bargaining game (H or
D). This strategic effect may change B’s behavior in the bargaining game.
Fudenberg and Tirole [9] considered whether the strategic effect will lead
to over-investment or under-investment, as compared to the situation where
no strategic effect exists. For example, if a monopolist acquires additional
production capacity for the sole purpose of deterring entry, this would be
classified as over-investment caused by a strategic effect.
Of course, player A’s investment might also have a direct effect on player

B. For example, it might increase player B’s cost of conflict. In our bargain-
ing game there is also a more subtle effect: if player A’s investment makes
him less willing to concede, it will reduce the amount 1 − ηA that player
B can extract by challenging. This has no direct analogy in the Fudenberg
and Tirole [9] model. Thus, the consequences of ex ante strategic moves are
somewhat more complicated here than in traditional Industrial Organization
models.
Recall player A’s investment makes player i ∈ {A,B} tough if the best

response curve Γi(x) defined by (15) shifts up, making player i more likely
to choose Hawk in the bargaining game. The investment makes player
i ∈ {A,B} soft if the best response curve Γi(x) defined by (15) shifts down,
making player i more likely to choose Dove in the bargaining game. Fuden-
berg and Tirole [9] showed that over or under investment will occur depending
on whether player A’s investment makes A soft or tough, and whether ac-
tions are strategic substitutes or complements. Here we must also account
for whether player A’s investment makes player B soft or tough.

Consider first the scenario where player A invests in a defensive technol-
ogy that reduces his cost of conflict φA. We must distinguish several cases.
Case 1: φi > ui(1/2) − 1

2
ui(0) − 1

2
ui(1) for i ∈ {A,B}. In this case,

actions are strategic substitutes. There are two sub-cases; both lead to the
conclusion that A will over-invest (but for different reasons).
The first sub-case occurs when φA > (1 − σ) (uA(1)− uA(0)) so ηA = 0

and dηA
dφA

= 0. From (15), player A’s investment causes his best response
curve ΓA to shift up. Intuitively, the fall in player A’s cost of conflict makes
it less costly for him to choose H, so player A becomes tough. It has no
effect on ΓB. As actions are strategic substitutes, player A will over-invest
to persuade player B to choose D, corresponding to Fudenberg and Tirole’s
[9] “top dog” strategy. This is the traditional interpretation of Schelling’s
commitment tactic —become tough in order to deter aggression.
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The second sub-case occurs when φA < (1−σ) (uA(1)− uA(0)), so ηA > 0
and, from (6),

dηA
dφA

= − 1

u′A(ηA)
< 0. (38)

Now there are two effects on ΓA. On the one hand, the fall in φA makes
it less costly to choose H, as before. But on the other hand, (38) implies
that player A will concede less when challenged, so choosing D becomes
less costly as well. Equation (15) reveals that those two effects cancel out,
so ΓA is unaffected by the change in φA. Thus, player A neither becomes
soft nor tough. However, player B’s best response curve shifts down when
φA falls, because 1 − ηA falls (as player A will concede less). Therefore,
player A’s investment makes player B soft. This is always beneficial for
A. Hence, player A will again over-invest when φi > ui(1/2) − 1

2
ui(0) −

1
2
ui(1). PlayerA achieves deterrence by overinvesting not because he becomes
tougher but because player B becomes softer. This is the kind of external
effect of investment that arises naturally in our model but is not studied in
industrial organization.

Case 2: φi < ui(1/2) − 1
2
ui(0) − 1

2
ui(1) for i ∈ {A,B}. There are two

sub-cases to consider, and they lead to different conclusions.
The first sub-case occurs when φi > (1−σ) (ui(1)− ui(0)) for i ∈ {A,B},

so actions are strategic complements. Also, as ηA = 0 in this case, the invest-
ment makes player A tough. By strategic complements, player B becomes
more likely to choose H, which is disadvantageous for player A. Therefore,
player A will under-invest, to make B feel less threatened and more likely
to choose D. This corresponds to Fudenberg and Tirole’s [9] “puppy dog”
strategy.
The second sub-case occurs when φi < (1 − σ) (ui(1)− ui(0)) for i ∈

{A,B}, in which case actions may be complements or substitutes. As ηA > 0
in this case, as discussed above player A’s investment has no effect of ΓA but
makes player B soft. Player A necessarily benefits from this, and hence will
over-invest. This is independent of whether actions are strategic substitutes
or complements, since in both scenarios player A wants the opponent to
choose D. Hence, again, we have the same strategic effect operating via the
impact of player A’s investment on player B.

We summarize the discussion so far:

Proposition 12 Suppose investment by player A reduces φA.
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(i) (High cost of conflict.) If

φi > ui(1/2)− 1

2
ui(0)− 1

2
ui(1)

then player A over-invests.
(ii) (Intermediate cost of conflict.) If

(1− σ) (ui(1)− ui(0)) < φi < ui(1/2)− 1

2
ui(0)− 1

2
ui(1)

then player A under-invests.
(iii) (Low cost of conflict.) If

φi < min{ui(1/2)− 1

2
ui(0)− 1

2
ui(1), (1− σ) (ui(1)− ui(0))}

then player A over-invests.

Consider now briefly the case where player A’s investment increases player
B’s cost of conflict φB. This has no effect on ΓB if ηB > 0. It does, however,
shift ΓA up, because B will concede more.18 That is, player A’s invest-
ment makes player A tough. Hence, the optimal strategy is either under or
over-investment depending on whether actions are strategic complements or
substitutes. If ηB = 0, however, then an increase in φB makes player B soft,
so A will overinvest.

A more complex situation occurs when player A’s investment changes
player A’s valuation of the resource. To make this tractable, suppose util-
ity functions are piecewise linear. Suppose the status quo is (ωA, ωB) =
(1/2, 1/2) and the value of the status quo endowment is normalized to zero.
Moreover, each unit of player i’s own endowment that he loses reduces his
payoff by vi, while each unit of player j’s endowment that player i acquires
increases player i’s payoff by wi < vi. Then,

ui(xi) =


vi (xi − 1/2) if xi − 1/2 ≤ 0

wi(xi − 1/2) if xi − 1/2 ≥ 0

18Making it easier for the opponent to concede is an old tactic. For example, Sun Tzu
[22], Chapter 7.36: “When you surround an army, leave an outlet free. Do not press a
desperate foe too hard.”
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and

ηi =

{
(1− σ) vi+wi

2vi
− φi

vi
if φi < (1− σ)vi+wi

2

0 if φi ≥ (1− σ)vi+wi
2

(39)

This example does not satisfy strict concavity. However, strict concavity
is only used to guarantee that a unit of a player’s own endowment is more
valuable to him than a unit of the opponent’s endowment, and this is satisfied
by this example as wi < vi.19 Suppose player A’s ex ante investment increases
vA (without affecting player B’s utility function). The easiest case is where
the cost of conflict is high, φA > (1 − σ)vA+wA

2
, so the first-mover has the

maximum advantage: ηA = 0. In this case, the investment makes player A
tough (and has no effect on player B’s best response function). Intuitively,
player A becomes tough because he values his endowment a lot and wants
to avoid giving the first-mover advantage to player B. Formally, player A’s
best response function is

ΓA(x) ≡ F (x)

(
1

2
uA(0) +

1

2
uA(1)− φA − uA(0)

)
+(1− F (x)) (uA(1)− uA(1/2)) .

Since uA(0) = −vA/2 this curve shifts up when vA increases. Since the
investment makes player A tough, he will under-invest if actions are strate-
gic complements, but over-invest if actions are strategic substitutes. From
Proposition 6, we know that actions tend to be strategic substitutes when
conflicts are very costly, so player A will over-invest. Intuitively, when the
cost of conflict is large, the first-mover advantage is very valuable, but both
players also want to avoid a simultaneous challenge. In this case, player A
gets a strategic advantage from valuing his own endowment highly, since it
makes him tougher and player B more cautious.
If the cost of conflict is low, φA < (1 − σ)vA+wA

2
, then the situation is

more complex. We have

ηA = (1− σ)
vA + wA

2vA
− φA
vA

> 0

and
∂ηA
∂vA

= −
(1−σ)
2
wA − φA
v2A

,

19That is, the results of the paper go through if Assumption 1 is replaced by the weaker
assumption: if 0 < x < ωi < y < 1 then u′i(x) > u′i(y).
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which is negative if φA is small enough. Thus, player A will concede more,
the more he values his endowment. The reason is that if he does not concede,
there will be a conflict, and he risks losing everything. Player A’s best
response function is affected via the term

1

2
uA(0)− uA(ηA) =

1

2
uA(0)− (σuA(0) + (1− σ)uA(1)− φA)

= −
(

1

2
− σ

)
vA
2
− (1− σ)

wA
2

+ φA

The derivative with respect to vA is positive as long as σ ≥ 1/2. Thus, an
increase in vA makes player A tough. Intuitively, if σ is large, so there is
a large first-mover advantage, the situation is as in the previous paragraph:
player A becomes tougher as he becomes more averse to losing his endow-
ment. However, the reduction in ηA also shifts up ΓB, so B becomes tougher.
From the previous section, we know that σ large tends to make the actions
strategic complements. In this case, as vA increases player B becomes more
likely to choose H. Intuitively, when σ is large but conflicts are not very
costly, the competition over the territory becomes more intense as the terri-
tory becomes more valuable. Since this hurts player A, he will under-invest
to become soft, the “puppy dog”strategy. If instead σ is small, actions are
strategic substitutes. As both sides become tougher, the impact on player
A’s welfare is ambiguous.

We have studied just a few policies and their impact on conflict. Many
others might be analyzed using this framework.

7 Conclusion

In this paper, we identify the size of first-mover advantage and the cost
of conflict as key parameters determining the strategic nature of conflict.
The formalism has helped to identify the impact of the cost of conflict and
rising power on the probability of war. It has also helped to determine when
actions might be strategic complements or substitutes in a conflict game.
Much remains to be done. For example, key players often enter a conflict
with expectations that are falsified - some analysts thought the Iraq war was
going to be short and Germany entered World War I expecting it to be over
rapidly (see Jervis [12] on the role of misperception in international relations).
One way to capture this kind of phenomenon is to add an additional layer of
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uncertainty about the technology of war and to study dynamics. Also, there
is a historical record of the incidence of war (see Iyigun, Nunn and Qian [17]
for instance) and of the technology of war (see McNeil [14] for instance). Our
model and results provide a lens through which to examine this record.
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8 Appendix

We record proofs that are not in the main text in the Appendix.
Proof of Proposition 10
We can show

xA =
1 + (2ε− 1) ε− φ (1 + 2ε)

2(1 + ε2 − φ2)
and

xB =
1 + (2ε+ 1) ε− φ (1− 2ε)

2(1 + ε2 − φ2)
.

Then, the change in the probability of conflict with inequality ε is given by

ε (1 + 2φ)
(1 + ε2(5− 2φ)− 6φ+ φ2(3 + 2φ))

2(1 + ε2 − φ2)3
.

Hence, there is a Thucydides trap if and only if there is non-negligible in-
equality (i.e. ε > 0) and

ε2 ≤ 6φ− φ2(3 + 2φ))− 1

(5− 2φ)
.

The right hand side is increasing in φ. Thus, low inequality and high costs
of conflict favor the Thucydides trap. For example, when φ = 0.4, the prob-
ability of conflict changes with ε as depicted below:
Proof of Proposition 11
We can show:

xA =
2ε2 + ε (2σ − 3) + (1− φ) (2φ+ 2σ − 1)

2(1 + ε2 − φ2)
, and

xB =
−1 + ε (3 + 2ε) + (3− 2φ)φ+ 2σ − 2(ε+ φ)σ

2(1 + ε2 − φ2)
.

Then, the change in the probability of conflict with inequality ε is given by

ε
(2σ − 3) [5 + 2σ (ε2 − (−3 + φ) (−1 + φ))− 8φ+ (ε− φ) (ε+ φ) (−7 + 4φ)]

2(1 + ε2 − φ2)3
.

Hence, as σ < 1, φ < 1
2
and 0 < ε < 1

2
, there is a Thucydides trap if there

is non-negligible inequality and

ε2 ≤ (1− φ)(5− 6σ + φ(−3 + 4φ+ 2σ)

(7− 4φ− 2σ)
. (40)
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For example, when σ = 0.7 and φ = 0.2, the probability of conflict changes
with ε as depicted below:

37



38


