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Abstract

A consensus has recently emerged that variables beyond the level, slope, and curvature of

the yield curve can help predict bond returns. This paper shows that the statistical tests

underlying this evidence are subject to serious small-sample distortions. We propose

more robust tests, including a novel bootstrap procedure specifically designed to test

the spanning hypothesis. We revisit the evidence in six published studies, find most

rejections of the spanning hypothesis to be spurious, and conclude that the current

consensus is wrong. The evidence against the spanning hypothesis is much weaker than

appears from the statistical evidence in these studies.
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1 Introduction

Identifying the contribution of risk premia to long-term interest rates is crucial for monetary

policy, investment strategy, and interpreting historical episodes such as the unprecedented low

interest rates since 2008. Since the risk premium is just the difference between the current

long rate and the expected average value of future short rates, the core question for estimating

risk premia is how to construct short-rate expectations. Is it sufficient to consider the current

yield curve, or should estimates incorporate additional information such as macroeconomic

variables? This is the question we address in this paper.

A powerful argument can be made that the current yield curve itself should contain most

(if not all) information useful for forecasting future interest rates and bond returns. Investors

use information at time t—which we can summarize by a state vector zt—to forecast future

short-term interest rates and determine bond risk premia. Hence current yields are a function

of zt. Most modern macro-finance models have the implication that we would be able to

back out the state vector zt from the yield curve, in which case current yields themselves

would be the only variables necessary to forecast interest rates and calculate risk premia.1

Furthermore, it has long been recognized that the first three principal components (PCs) of

yields, commonly labeled level, slope, and curvature, provide an excellent empirical summary

of the entire yield curve (Litterman and Scheinkman, 1991), as they explain almost all of

the cross-sectional variance of observed yields. This motivates what we term the “spanning

hypothesis,” a very practical and empirically focused interpretation of the question posed

above: Do these three observed variables alone capture all the information that is useful for

forecasting future yields and estimating bond risk premia? This question has been the focus

of a number of influential studies,2 and recent literature reviews by Gürkaynak and Wright

(2012) and Duffee (2013a) identify it as a central issue in macro-finance. If the spanning

hypothesis holds, this greatly simplifies estimation of monetary policy expectations and bond

risk premia, as this estimation does not require any data or models involving macroeconomic

series, other asset prices or quantities, volatilities, or survey expectations. Instead, all the

necessary information is the shape of the current yield curve, summarized by its level, slope,

and curvature.

Essentially all asset pricing models naturally imply some version of spanning of zt by yields,

but the spanning hypothesis as we define it here could still be violated for a number of reasons.

1For a detailed argument, see Duffee (2013b).
2As noted below, some of these studies have posed the question using a one- or two-variable summary of

the information in the current yield curve rather than the first three principal components.
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First, yields may of course depend on more than three state variables.3 Second, even if three

linear combinations of model-implied yields span zt, this might be difficult to exploit in practice

due to measurement error. In particular, Duffee (2011b) demonstrated that if the effects of

some elements of zt on yields nearly offset each other, those components will be very difficult to

infer from current observed yields alone.4 Third, the presence of non-linearities or structural

breaks in the mapping from zt into yields would naturally lead to a violation of our spanning

hypothesis. Our paper does not address these theoretical possibilities, and instead focuses

squarely on the empirical question whether additional variables like inflation are necessary to

include for forecasting bond returns, or whether their implications for forecasting are already

incorporated in the first three principal components of the yield curve.

It is also worth emphasizing under our spanning hypothesis macroeconomic variables can

still be important determinants of interest rates and risk premia. Both theoretical models

and empirical studies suggest important links between macroeconomic variables and the yield

curve, and the literature has made much progress since the influential studies of Fama and

Bliss (1987) and Campbell and Shiller (1991) that focused exclusively on the links between

yields and risk premia.5 Although macroeconomic variables are undoubtedly important drivers

of yields and risk premia, our question here is what variables should be used for the estimation

of these risk premia.

There is a growing consensus in the literature that the spanning hypothesis as we have de-

fined it can be rejected by the observed data. This evidence comes from predictive regressions

for bond returns on various predictors, controlling for information in the current yield curve.

The variables that have been found to contain additional predictive power in such regressions

include measures of economic growth and inflation (Joslin et al., 2014), factors inferred from

a large set of macro variables (Ludvigson and Ng, 2009, 2010), long-term trends in inflation

or inflation expectations (Cieslak and Povala, 2015), higher-order (fourth and fifth) PCs of

bond yields (Cochrane and Piazzesi, 2005), the output gap (Cooper and Priestley, 2008), and

measures of Treasury bond supply (Greenwood and Vayanos, 2014). These results suggest

that there might be unspanned or hidden information that is not captured by the current

yield curve but that is useful for forecasting.

But these predictive regressions have a number of problematic features. The true predic-

tive variables under the null hypothesis are necessarily correlated with lagged forecast errors

3For example, in Bansal and Shaliastovich (2013) yields are functions of four state variables.
4Furthermore, Cieslak and Povala (2015) and Bauer and Rudebusch (2016) noted that in conventional

affine yield-curve models, even small measurement errors can make it impossible to recover zt from observed
yields alone.

5Some important examples include Campbell and Cochrane (1999), Diebold et al. (2006), Bikbov and
Chernov (2010), Rudebusch and Swanson (2012), and Bansal and Shaliastovich (2013).
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because they summarize the information in the current yield curve. As a consequence they

violate the condition of strict econometric exogeneity. In addition, the predictive variables

are typically highly persistent. We show that this leads to substantial “standard error bias”

in samples of the size commonly studied: estimated standard errors are too small, leading to

spurious rejection of the spanning hypothesis even though it is true. This problem inherent

in all tests of the spanning hypothesis has to our knowledge not previously been recognized.

Mankiw and Shapiro (1986) and Stambaugh (1999) documented small-sample coefficient bias

in predictive regressions with a persistent regressor that is not strictly exogenous.6 By con-

trast, in our setting there is no coefficient bias pertaining to the additional predictors, and

instead a downward bias of the estimated standard errors distorts the results of conventional

inference. An additional problem is that the common predictive regressions are estimated

in monthly data but with an annual excess bond return as the dependent variable, and the

presence of overlapping observations introduces substantial serial correlation in the prediction

errors. As a result, standard errors are even less reliable, and regression R2 are harder to

interpret. We demonstrate that the procedures commonly used for inference about the span-

ning hypothesis do not adequately address these issues and are subject to serious small-sample

distortions.

We propose three procedures that researchers can use to obtain more robust inference in

these predictive regressions. The first is a novel parametric bootstrap that generates data

samples under the spanning hypothesis. We calculate the first three PCs of the observed set

of yields and summarize their dynamics with a VAR fit to the observed PCs. Then we use a

residual bootstrap to resample the PCs, and construct bootstrapped yields by multiplying the

simulated PCs by the historical loadings of yields on the PCs and adding a small Gaussian

measurement error. Thus by construction no variables other than the PCs are useful for

predicting yields or returns in our generated data. We then fit a separate VAR to the proposed

additional explanatory variables alone, and generate bootstrap samples for the predictors

from this VAR. Using our novel bootstrap procedure, we can calculate the properties of any

regression statistic under the spanning hypothesis.7 This calculation demonstrates that the

conventional tests reject the true null much too often. We show that the tests employed in

published studies, which are intended to have a nominal size of five percent, have a true size

between 8 and 61%. We then ask whether under the null it would be possible to observe similar

6Cavanagh et al. (1995) and Campbell and Yogo (2006) considered this problem using local-to-unity asymp-
totic theory.

7Our procedure notably differs from the bootstrap approach commonly employed in this literature, which
generates artificial data under the expectations hypothesis, such as Bekaert et al. (1997), Cochrane and Piazzesi
(2005), Ludvigson and Ng (2009, 2010), and Greenwood and Vayanos (2014).
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patterns of predictability as researchers have found in the data. We find that in most of the

studies this is indeed the case, meaning that much of the above-cited evidence against the

spanning hypothesis might be spurious. These results provide a strong caution against using

conventional tests for inference about bond risk premia, and we recommend that researchers

instead use the bootstrap procedure proposed in this paper.

A second procedure that we propose for inference in this context is the Ibragimov and

Müller (2010) approach to robust testing. This splits the sample into subsamples, estimates

coefficients separately in each of these, and then performs a simple t-test on the coefficients

across subsamples. We show that this approach has excellent size and power properties for

tests of the spanning hypothesis. Applying it to the predictive regressions for excess bond

returns studied in the literature, we find little to no evidence that variables other than the

current yield curve are helpful for forecasting returns.

Finally, we take advantage of the data that have arrived since publication of these studies.

This allows us to re-estimate the proposed models in new data, and to evaluate whether they

improve true out-of-sample forecasts. We find that the proposed additional predictors are

rarely helpful in the new data, reinforcing the case that the apparent strength of the in-sample

evidence may be an artifact of the small-sample problems we highlight.

After revisiting the evidence in the six influential papers cited above we draw two main

conclusions: First, conventional methods of inference are extremely unreliable in these predic-

tive regressions, because they often suggest that variables are relevant for bond risk premia

which in truth are irrelevant. New approaches for robust inference are needed, and we propose

three in this paper. Second, when reconsidered with more robust methods for inference, the

evidence against the spanning hypothesis appears weaker and much less robust than would

appear from the published results.

Our paper is related to other studies that criticize return predictability in finance. Ferson

et al. (2003) raised the possibility of finding spurious predictability if a persistent component

of stock returns is unobserved. Welch and Goyal (2008) questioned the predictability of stock

returns based on the observation that it largely disappears in out-of-sample analysis. Ang

and Bekaert (2007) showed that the commonly employed Newey-West standard errors are

not reliable for inference about stock return predictability at long horizons. Lewellen et al.

(2010) showed that estimating factor models for equity risk premia can lead to spuriously high

R2 for truly irrelevant risk factors. Our paper parallels these studies by also documenting

that published evidence on predictability and risk premia is fraught with serious econometric

problems and appears to be partially spurious. But our work is distinct in that we describe

a new, different econometric issue and focus on evidence on unspanned risks in bond returns
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instead of predictability of stock returns. Bekaert et al. (1997) and Bekaert and Hodrick (2001)

documented Stambaugh bias in predictive regressions for bond returns. Our paper shows that

this bias matters not only for tests of the expectations hypothesis but more generally, and

demonstrates exactly the effects on coefficient bias and standard error bias in the case of tests

of the spanning hypothesis.

The paper is structured as follows: In Section 2 we describe the econometric problems of

predictive regressions for bond returns, and propose practical solutions. In Sections 3 through

7 we revisit each of the prominent published studies that appear to show evidence against the

spanning hypothesis. Section 8 concludes. An appendix includes theoretical derivations and

additional empirical results.

2 Inference about the spanning hypothesis

Evidence against the spanning hypothesis typically comes from regressions of the form

yt+h = β′1x1t + β′2x2t + ut+h, (1)

where the dependent variable yt+h is the return or excess return on a long-term bond (or

portfolio of bonds), x1t and x2t are vectors containing K1 and K2 predictors, respectively, and

ut+h is a forecast error. The predictors x1t contain a constant and the information in the

yield curve, typically captured by the first three PCs of observed yields, i.e., level, slope, and

curvature. The null hypothesis of interest is

H0 : β2 = 0,

which says that the relevant predictive information is spanned by the information in the yield

curve and that x2t has no additional predictive power. A key feature of these regressions

is that because the regressors in x1t capture information in the current yield curve they are

necessarily strongly correlated with the surprise returns, ut, and hence not strictly exogenous.

The predictors are also typically very persistent. We show in Sections 2.1-2.3 that this gives

rise to a previously unrecognized problem, “standard error bias,” that causes tests to reject

the null hypothesis much too often. In addition, empirical work typically tries to predict

returns over h = 12 months. Section 2.4 discusses how such use of overlapping returns, and

the resulting serial correlation in ut+h, leads to additional econometric problems. We provide

solutions to these problems in Section 2.5.
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2.1 The source of standard error bias

Here we explain the intuition for standard error bias in the case when h = 1 and ut+1 is white

noise. According to the Frisch-Waugh Theorem, the OLS estimate of β2 in (1) can always be

viewed as having been obtained in two steps. First we regress x2t on x1t and calculate the

residuals x̃2t = x2t − ÂTx1t for ÂT =
(∑T

t=1 x2tx
′
1t

)(∑T
t=1 x1tx

′
1t

)−1
. Second we regress yt+1

on x̃2t. The coefficient on x̃2t in this regression will be numerically identical to the coefficient

on x2t in the original regression (1).8 The standard Wald statistic for a test about β2 can be

expressed as

WT =
(∑T

t=1
ut+1x̃

′
2t

)(
s2
∑T

t=1
x̃2tx̃

′
2t

)−1 (∑T

t=1
x̃2tut+1

)
(2)

for s2 = (T − K1 − K2)
−1∑T

t=1(yt+1 − b′1x1t − b′2x2t)
2 and b1 and b2 the OLS estimates

from (1). The validity of this test depends on whether WT is approximately χ2(K2). If

x1t and x2t are stationary and ergodic, the estimate ÂT will converge to the true value

A = E(x2tx
′
1t) [E(x1tx

′
1t)]
−1. In that case the sampling uncertainty from the first step is

asymptotically irrelevant and W would have the same asymptotic distribution as if we re-

placed x̃2t with x2t − Ax1t, which gives rise to the standard result for stationary regressors

that WT
d→ χ2(K2).

If, however, the regressors are highly persistent, a regression of x2t on x1t behaves like a

spurious regression. For example, if x1t and x2t are unit-root processes, the value of ÂT is

not tending to some constant but instead to a random variable Ã that is different in every

sample, even as the sample size T approaches infinity. If x1t was strictly exogenous, this would

not affect the asymptotic distribution of WT . But in tests of the spanning hypothesis x1t is

necessarily correlated with ut, and due to this lack of strict exogeneity
∑T

t=1 x̃2tut+1 has a

nonstandard limiting distribution with variance that is larger9 than that of
∑T

t=1 x2tut+1. By

contrast, OLS hypothesis tests act as if the variance of
∑T

t=1 x̃2tut+1 is smaller than than that

of
∑T

t=1 x2tut+1, since
∑T

t=1 x̃2tx̃
′
2t is smaller by construction in every sample than

∑T
t=1 x2tx

′
2t.

Therefore OLS standard errors are necessarily too small, WT does not converge to a χ2(K2)

distribution, and conventional t- or F -tests about the value of β2 in (1) will reject more often

than they should.10

8We provide a proof of this and other statements in this section in Appendix A.1.
9More formally, the difference between the two matrices is a positive definite matrix.

10In Appendix A.1 we go through this argument in more detail, and provide additional proofs. Note also
that we have focused on conventional OLS standard errors that assume conditional homoskedasticity, but very
similar reasoning applies when White’s heteroskedasticity-robust standard errors are used.
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2.2 A canonical example

In this section we explore the size of these effects in a canonical example, using first local-to-

unity asymptotics and then small-sample simulations based on the model

yt+1 = β0 + β1x1t + β2x2t + ut+1 (3)

where x1t and x2t are scalar AR(1) processes

x1,t+1 = µ1 + ρ1x1t + ε1t (4)

x2,t+1 = µ2 + ρ2x2t + ε2t (5)

with εit martingale-difference sequences and xi0 = 0. Our interest is in what happens when

the persistence parameters ρi are close to unity. We first focus on the case without drift in

these processes (µ1 = µ2 = 0). We assume that x1t has correlation δ with the lagged value of

ut+1, whereas x2t is uncorrelated with both x1t and ut:

E

 ε1t

ε2t

ut

[ ε1s ε2s us

]
=

 σ2
1 0 δσ1σu

0 σ2
2 0

δσ1σu 0 σ2
u

 if t = s

= 0 otherwise.

Thus in this example when β2 = 0, the variable x2t has nothing to do with either x1s or ys for

any t or s.

One device for seeing how the results in a finite sample of some particular size T differ from

those predicted by conventional first-order asymptotics is to use a local-to-unity specification

as in Phillips (1988) and Cavanagh et al. (1995):

xi,t+1 = (1 + ci/T )xit + εi,t+1 i = 1, 2. (6)

For example, if our data come from a sample of size T = 100 when ρi = 0.99, the idea

is to approximate the small-sample distribution of regression statistics by the asymptotic

distribution obtained by taking ci = −1 in (6) and letting T → ∞.11 The local-to-unity

11It is well known that approximations from such local-to-unity asymptotics are substantially better than
those based on conventional first-order asymptotics which take T →∞ and treat ρi = 0.99 as a constant; see
for example Chan (1988) and Nabeya and Sørensen (1994).
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asymptotics turn out to be described by Ornstein-Uhlenbeck processes. For example

T−2
∑T

t=1(xit − x̄i)
2 ⇒ σ2

i

∫ 1

0

[Jµci(λ)]2dλ

where ⇒ denotes weak convergence as T →∞ and

Jµci(λ) = Jci(λ)−
∫ 1

0

Jci(s)ds Jci(λ) = ci

∫ λ

0

eci(λ−s)Wi(s)ds+Wi(λ) i = 1, 2

with W1(λ) and W2(λ) denoting independent standard Brownian motion.12

We show in Appendix A.2 that under local-to-unity asymptotics the coefficient from a

regression of x2t on x1t has the following limiting distribution:

AT =

∑
(x1t − x̄1)(x2t − x̄2)∑

(x1t − x̄1)2
⇒

σ2
∫ 1

0
Jµc1(λ)Jµc2(λ)dλ

σ1
∫ 1

0
[Jµc1(λ)]2dλ

≡ (σ2/σ1)A, (7)

where the last equality defines the random variable A. Under first-order asymptotics the

influence of AT would vanish as the sample size grows. But using local-to-unity asymptotics

we see that AT behaves similarly to the coefficient in a spurious regression and does not

converge to zero—the true correlation between x1t and x2t in this setting—but to a random

variable that differs across samples. The implication is that the t-statistic for b2 can have

a small-sample distribution that is very poorly approximated using first-order asymptotics.

Appendix A.2 demonstrates that this t-statistic has a local-to-unity asymptotic distribution

under the null hypothesis that is given by

b2 − β2
{s2/

∑
x̃22t}

1/2
⇒ δZ1 +

√
1− δ2Z0 (8)

Z1 =

∫ 1

0
Kc1,c2(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
Z0 =

∫ 1

0
Kc1,c2(λ)dW0(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
Kc1,c2(λ) = Jµc2(λ)− AJµc1(λ)

for s2 = (T − 3)−1
∑

(yt+1 − b0 − b1x1t − b2x2t)2 and Wi(λ) independent standard Brownian

processes for i = 0, 1, 2. Conditional on the realizations of W1(.) and W2(.), the term Z0 will

be recognized as a standard Normal variable, and therefore Z0 has an unconditional N(0, 1)

distribution as well.13 In other words, if x1t is strictly exogenous (δ = 0) then the OLS t-test

12When ci = 0, (6) becomes a random walk and the local-to-unity asymptotics simplify to the standard
unit-root asymptotics involving functionals of Brownian motion as a special case: J0(λ) = W (λ).

13The intuition is that for v0,t+1 ∼ i.i.d. N(0, 1) and K = {Kt}Tt=1 any sequence of random variables

8



of β2 = 0 will be valid in small samples even with highly persistent regressors. By contrast, if

δ 6= 0 the random variable Z1 comes into play, which has a nonstandard distribution because

the term dW1(λ) in the numerator is not independent of the denominator. In particular,

Appendix A.2 establishes that Var(Z1) > 1. Moreover Z1 and Z0 are uncorrelated with each

other.14 Therefore the t-statistic in (8) in general has a non-standard distribution with variance

δ2Var(Z1) + (1− δ2)1 > 1 which is monotonically increasing in |δ|. This shows that whenever

x1t is correlated with ut (δ 6= 0) and x1t and x2t are highly persistent, in small samples the

t-test of β2 = 0 will reject too often when H0 is true.15

We can quantify the magnitude of these effects using a simulation study. We generate

values for x1t and x2t by drawing ε1t and ε2t as i.i.d. Gaussian random variables with σ1 =

σ2 = 1, using µ1 = µ2 = 0 and different values of ρ1 = ρ2 = ρ, starting from x10 = x20 = 0. We

generate yt = ut = δε1t +
√

1− δ2vt where vt is a standard normal random variable. Hence, in

our data-generating process (DGP) we have β0 = β1 = β2 = 0, σu = 1, and Corr(ut, ε1t) = δ.

We simulate 1,000,000 samples, estimate regression (3) in each sample, and study the small-

sample behavior of the t-statistic for the test of H0 : β2 = 0, using OLS standard errors and

critical values from the Student-t distribution with 97 degrees of freedom.16 In addition, we

also draw from the local-to-unity asymptotic distribution of the t-statistic given in equation

(8) using well-known Monte Carlo methods.17

The first panel of Table 1 shows the results of this exercise for different values of ρ and δ. If

the regressors are either strictly exogneous (δ = 0) or not serially correlated (ρ = 0), the true

that is independent of v0,
∑T
t=1Ktv0,t+1 has a distribution conditional on K that is N(0,

∑T
t=1K

2
t ) and∑T

t=1Ktv0,t+1/
√∑T

t=1K
2
t ∼ N(0, 1). Multiplying by the density of K and integrating over K gives the

identical unconditional distribution, namely N(0, 1). For a more formal discussion in the current setting, see
Hamilton (1994, pp. 602-607).

14The easiest way to see this is to note that conditional on W1(.) and W2(.) the product has expectation
zero, so the unconditional expected product is zero as well.

15Expression (8) can be viewed as a straightforward generalization of result (2.1) in Cavanagh et al. (1995)
and expression (11) in Campbell and Yogo (2006). In their case the explanatory variable is x1,t−1− x̄1 which
behaves asymptotically like Jµc1(λ). The component of ut that is correlated with ε1t leads to a contribution
to the t-statistic given by the expression that Cavanagh et al. (1995) refer to as τ1c, which is labeled as τc/κc
by Campbell and Yogo (2006). This variable is a local-to-unity version of the Dickey-Fuller distribution with
well-known negative bias. By contrast, in our case the explanatory variable is x̃2.t−1 = x2,t−1 − ATx1,t−1
which behaves asymptotically like Kc1,c2(λ). Here the component of ut that is correlated with ε1t leads to a
contribution to the t-statistic given by Z1 in our expression (8). Unlike the Dickey-Fuller distribution, Z1 has
mean zero, so that there is no bias in b2.

16Regular OLS standard errors are the correct choice in this simulation setup as the errors are not serially
correlated (h = 1) and there is no heteroskedasticity.

17We simulate samples of size T̃ from near-integrated processes with c1 = c2 = T (ρ − 1) and approximate
the integrals in (8) using Rieman sums—see, for example, Chan (1988), Stock (1991), and Stock (1994).
We use T̃ = 1000, since even moderate sample sizes generally yield accurate approximations to the limiting
distribution (Stock, 1991, uses T̃ = 500).
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size of the t-test of β2 = 0 is equal to the nominal size of five percent. If, however, both ρ 6= 0

and δ 6= 0, the true size exceeds the nominal size, and this size distortion increases in ρ and

δ.18 In the presence of high persistence the true size of this t-test can be quite substantially

above the nominal size: For ρ = 0.99 and δ = 1, the true size is around 15 percent, meaning

that we would reject the true null hypothesis more than three times as often as we should.

The size calculations are, not surprisingly, very similar for the small-sample simulations and

the local-to-unity asymptotic approximations.

Figure 1 plots the size of the t-test for the case with δ = 1 for sample sizes from T = 50 to

1000, based on the local-to-unity approximation.19 When ρ < 1, the size distortion decreases

with the sample size. For example for ρ = 0.99 the size decreases from 15 percent to about 9

percent. In contrast, when ρ = 1 the size distortions are not affected by the sample size, as

indeed in this case the non-Normal distribution corresponding to (8) with ci = 0 governs the

distribution for arbitrarily large T .

The reason for the size distortions when testing β2 = 0 is not coefficient bias. Table 1

shows that b1 is downward biased but b2 is unbiased. Instead, the reason that the t-test

rejects too often is standard error bias, as the asymptotic standard errors underestimate the

true sampling variability of the OLS estimates. As reported in the first panel of Table 1, the

average OLS standard errors across simulations are up to about 30% too low relative to the

true standard errors, calculated as the standard deviation of the coefficient estimates across

simulations.

2.3 The role of trends

Up to now we have been considering the case when the true values of the constant terms µi

in equations (4)-(5) are zero. As seen in the second and third panels of Table 1, the size

distortions on tests about β2 can nearly double when µi 6= 0, and the bias in the estimate of

β1 increases as well.

We can understand what is going on most easily by considering the case when the roots ρi

are exactly unity.20 In that case, if µ1 is zero and µ2 is not, x2t will exhibit a deterministic time

trend and this ends up stochastically dominating the random walk component of x2t. The

regression (3) would then be asymptotically equivalent to a regression of yt+1 on (1, x1t, µ2t)
′.

When the correlation δ = 1, the asymptotic distribution of a t-test of a true null hypothesis

18While in bond return regressions δ is typically negative (as we discuss below in Section 3), we can focus
here on 0 ≤ δ ≤ 1, since only |δ| matters for the distribution of the t-statistic.

19The lines in Figure 1 are based on Monte Carlo simulations with 100,000 replications.
20The following results are proved formally in Appendix A.3.
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about β1 in regression (3) would be identical to that if we were to perform a Dickey-Fuller

test of the true null hypothesis η = 0 in the regression

∆x1,t+1 = µ1 + ηx1t + ξt+ ε1,t+1, (9)

which is the well-known Dickey-Fuller Case 4 distribution described in Hamilton (1994, eq

[17.4.55]). We know that the coefficient bias and size distortions are bigger when a time trend

is included in regression (9) compared to the case when it is not (see Case 2 versus Case

4 in Hamilton (1994, Tables B.5 and B.6))). For the same reason we would find that the

Stambaugh bias of b1 in regression (3) becomes worse when a variable x2t with a deterministic

trend is added to the regression. The standard error bias for b2 is also exacerbated when the

true µ2 is nonzero.

In the case when ρ2 is close to but strictly less than unity, this problem would vanish

asymptotically but is still a factor in small samples. An apparent trend shows up in a finite

sample because when a stationary variable with mean µ2/(1 − ρ2) is started from x20 = 0,

it will tend to rise over a sample of size T = 100 toward its unconditional mean. As ρ2

approaches unity, this trend within a finite sample becomes arbitrarily close to that seen in a

true random walk with drift µ2.

In most of the applications we study in this paper, the trend in explanatory variables like

inflation is down over the sample rather than up. The distribution of b1 is identical if x2

begins at x20 = 2µ2/(1 − ρ2) and then drifts down to its unconditional mean µ2/(1 − ρ2) as

when x2 begins at x20 = 0 and drifts up to µ2/(1 − ρ2), so the issue raised here applies in

those settings in exactly the same way.

Note that the values we have used for simulation in Table 1 are representative of those

that may be encountered in practice. For example, an AR(1) process fit to the trend inflation

variable used by Cieslak and Povala (2015) over the sample 1985-2013 has ρ2 = 0.99 and

µ2/σ2 = 1.5, an even stronger drift relative to innovation than the value µ2/σ2 = 1.0 used

in Table 1. And their variable has a value in 1985:1 that is 5 times the size of µ2/(1 − ρ2),
implying a downward drift over 1985-2013 that is 4 times as fast as in the Table 1 simulation.

It’s interesting finally to consider the case when both x1t and x2t have trends (see panel

3 of Table 1). This turns out to be almost the same asymptotic distribution just discussed

with a reinterpretation of the variables. Consider for example the case when both trends are

the same (µ1 = µ2). Note that a regression of yt+1 on (1, x1t, x2t)
′ has the identical fitted

values as a regression of yt+1 on (1, x1t− x2t, x2t)′, which again is asymptotically equivalent to

a regression in which the second variable is a driftless unit-root process correlated with the

lagged residual and the third variable is dominated by a deterministic time trend. Now the
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Stambaugh bias will show up in the coefficient on x1t − x2t. Translating back in terms of the

original regression of yt+1 on (1, x1t, x2t)
′ we would now find Stambaugh biases in both b1 and

b2 that are mirror images of each other.

Note the implications of this example. When µ1 and µ2 are both nonzero, if we were to

regress yt+1 on x1t alone, there would be no Stambaugh bias and no problem with t-tests about

β1, because x1t is dominated by the time trend. The same is true if we were to regress yt+1

on x2t alone. But when both x1t and x2t are included in the regression, spurious conclusions

about both coefficients would emerge.

The relevance of this result for tests of the spanning hypothesis is that there is a common

perception that adding auxiliary trending variables x2t may help to clean up the low frequency

variation in x1t. Certainly this is a possibility, and certainly we do find empirically that t-

statistics on x1t often increase tremendously when trending variables x2t are added to the

regression. But the above results suggest that we need to exercise great care in interpreting

evidence of this form, since the presence of trends in the predictors can lead to more poorly

sized tests and spurious rejections of the spanning hypothesis.

2.4 Overlapping returns

A separate econometric problem arises in predictive regressions for bond returns with holding

periods that are longer than the sampling interval, i.e., h > 1. Most studies in this literature,

and all those that we revisit in this paper, focus on predictive regressions for annual excess

bond returns in monthly data, that is regression (1) with h = 12 and

yt+h = pn−h,t+h − pnt − hiht, (10)

for pnt the log of the price of a pure discount n-period bond purchased at date t and int =

−pnt/n the corresponding zero-coupon yield. In that case, E(utut−v) 6= 0 for v = 0, . . . , h− 1,

as the overlapping observations induce a MA(h − 1) structure for the error terms. This

raises additional problems in the presence of persistent regressors that can be seen even using

conventional first-order asymptotics, as we briefly note in this section.

If x1t and x2t are uncorrelated and the true value of β2 = 0, we show in Appendix A.4 that

under conventional first-order asymptotics

√
Tb2

d→ N(0, Q−1SQ−1), (11)

Q = E(x2tx
′
2t)
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S =
∑∞

v=−∞
E(ut+hut+h−vx2tx

′
2,t−v). (12)

Note that even if x2t is completely independent of ut at all leads and lags, the product ut+hx2t

would be highly serially correlated when x2t is persistent, since E(ut+hut+h−vx2tx
′
2,t−v) =

E(utut−v)E(x2tx
′
2,t−v) 6= 0. Overlapping observations, in combination with persistent regres-

sors, substantially increase the sampling variability of the OLS estimate b2, because the long-

run covariance matrix S will exceed the value S0 = E(u2t+hx2tx
′
2t) that would be appropriate

for serially uncorrelated residuals.

The standard approach is to use heteroskedasticity- and autocorrelation-consistent (HAC)

standard errors to try to correct for this, for example, the estimators proposed by Newey and

West (1987) or Andrews (1991). However, long-run variance estimation is notoriously difficult,

particularly in small samples, and different HAC estimators of S can lead to substantially

different empirical conclusions (Müller, 2014). That Newey-West standard errors are unreliable

for inference with overlapping returns was demonstrated convincingly by Ang and Bekaert

(2007). We emphasize that the higher the persistence of the predictors, the less reliable is

HAC inference, since the effective sample size becomes very small. The reverse-regression

approach of Hodrick (1992) and Wei and Wright (2013) can largely overcome the problem

arising from overlapping returns. However, as we will see in the examples below, the small-

sample problems highlighted in Sections 2.1-2.3 also plague reverse-regression inference.

There is another consequence of basing inference on overlapping observations that appears

not to be widely recognized– it substantially reduces the reliability of R2 as a measure of

goodness of fit. Let R2
1 denote the coefficient of determination in a regression that includes

only x1t, compared to R2
2 for the regression that includes both x1t and x2t. We show in

Appendix A.4 that again for the case when x1t and x2t are uncorrelated and β2 = 0

T (R2
2 −R2

1)
d→ r′Q−1r/γ (13)

γ = E[yt − E(yt)]
2, r ∼ N(0, S).

The difference R2
2−R2

1 converges in probability to zero, but in a given finite sample it is positive

by construction. If x2tut+h is positively serially correlated, then S exceeds S0 by a positive-

definite matrix, and r exhibits more variability across samples. This means R2
2−R2

1, being a

quadratic form in a vector with a higher variance, would have both a higher expected value as

well as a higher variance when x2tut+h is serially correlated compared to situations when it is

not. This serial correlation in x2tut+h would contribute to larger values for R2
2−R2

1 on average

as well as to increased variability in R2
2 − R2

1 across samples. In other words, including x2t

could substantially increase the R2 even if H0 is true. We will use bootstrap approximations to
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the small-sample distribution of R2
2−R2

1, and demonstrate that the dramatic values sometimes

reported in the literature are often entirely plausible even under the spanning hypothesis.

2.5 Three solutions for more robust inference

We now propose three approaches for more robust inference about the spanning hypothesis.

2.5.1 A bootstrap design to test the spanning hypothesis

Obviously the main question is whether the above considerations make a material difference

for tests of the spanning hypothesis. We propose a parametric bootstrap that generates

data under the spanning hypothesis to assess how serious these econometric problems are in

practice.21 With this bootstrap approach we can calculate the size of conventional tests to

assess their robustness. In addition, we can use it to test the spanning hypothesis with better

size and power than for conventional tests.22

Our bootstrap design is as follows: First, we calculate the first three PCs of observed yields

which we denote

x1t = (PC1t, PC2t, PC3t)
′,

along with the weighting vector ŵn for the bond yield with maturity n:

int = ŵ′nx1t + v̂nt.

That is, x1t = Ŵ it, where it = (in1t, . . . , inJ t)
′ is a J-vector with observed yields at t, and

Ŵ = (ŵn1 , . . . , ŵnJ
)′ is the 3× J matrix with rows equal to the first three eigenvectors of the

variance matrix of it. We use normalized eigenvectors so that ŴŴ ′ = I3.
23 Fitted yields are

obtained as ı̂t = Ŵ ′x1t. Three factors generally fit the cross section of yields very well, with

fitting errors v̂nt (pooled across maturities) that have a standard deviation of only a few basis

21An alternative approach would be a nonparametric bootstrap under the null hypothesis, using for example a
moving-block bootstrap to re-sample x1t and x2t. However, Berkowitz and Kilian (2000) found that parametric
bootstrap methods such as ours typically perform better than nonparametric methods.

22Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009, 2010) also used the bootstrap to test β2 = 0.
They did so with bootstrap confidence intervals generated under the alternative hypothesis. But it is well
known that bootstrapping under the null hypothesis generally leads to better numerical accuracy and more
powerful tests (Hall and Wilson, 1991; Horowitz, 2001), and of course this is the only way to obtain bootstrap
estimates of the size of conventional tests.

23We sign the eigenvectors so that the elements in the last column of Ŵ are positive, i.e., the loadings of
the yield with the longest maturity are positive. Hence the signs of PC1 and PC2 correspond to the usual
definition of level and slope of the yield curve.
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points.24 Then we estimate by OLS a VAR(1) for x1t:

x1t = φ̂0 + φ̂1x1,t−1 + e1t t = 1, . . . , T. (14)

This time-series specification for x1t completes our simple factor model for the yield curve.

Though this model does not impose absence of arbitrage, it captures both the dynamic evolu-

tion and the cross-sectional dependence of yields. A no-arbitrage model is a special case of this

structure with additional restrictions on Ŵ , but these restrictions typically do not improve

forecasts of yields; see for example Duffee (2011a) and Hamilton and Wu (2014). Next we

generate 5000 artificial yield data samples from this model, each with length T equal to the

original sample length. We first iterate on

x∗1τ = φ̂0 + φ̂1x
∗
1,τ−1 + e∗1τ

where e∗1τ denotes bootstrap residuals. We start every bootstrap sample at x∗10 = x10, the

starting value for the observed sample, to allow for a possible contribution of trends resulting

from initial conditions as discussed in Section 2.3. Then we obtain the bootstrap yields using

i∗nτ = ŵ′nx
∗
1τ + v∗nτ (15)

for v∗nτ
iid∼ N(0, σ2

v). The standard deviation of the measurement errors, σv, is set to the sample

standard deviation of the fitting errors v̂nt.
25 We thus have generated an artificial sample of

yields i∗nτ which by construction only the three factors in x∗1τ have any power to predict, but

whose covariance and dynamics are similar to those of the observed data int.

We likewise fit a VAR(1) to the observed data for the proposed predictors x2t,

x2t = α̂0 + α̂1x2,t−1 + e2t, (16)

from which we then bootstrap 5000 artificial samples x∗2τ in a similar fashion as for x∗1τ . The

bootstrap residuals (e′∗1τ , e
′∗
2τ ) are drawn from the joint empirical distribution of (e′1t, e

′
2t).

Using the bootstrapped samples of predictors and yields, we can then investigate the

properties of any proposed test statistic involving y∗τ+h, x
∗
1τ , and x∗2τ in a sample for which

the dynamic serial correlation of yields and explanatory variables are similar to those in the

24For example, in the data of Joslin et al. (2014) this standard deviation is 6.5 basis points.
25Some evidence in the literature suggests that yield fitting errors are serially correlated (Adrian et al., 2013;

Hamilton and Wu, 2014). We have also investigated a setting with serial correlation in v∗nτ and found that
this does not change any of our findings.
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actual data but in which by construction the null hypothesis is true that x∗2τ has no predictive

power for future yields and bond returns.26 Consider for example a t-test for significance of

a parameter in β2. Denote the t-statistic in the data by t and the corresponding t-statistic

in bootstrap sample i as t∗i . To obtain a bootstrap estimate of the size of this test we simply

calculate the fraction of samples in which |t∗i | exceeds the usual asymptotic critical value. And

to use the bootstrap to carry out the hypothesis test, we calculate the bootstrap p-value as the

fraction of samples in which |t∗i | > |t|, and reject the null if this is less than, say, five percent.

Equivalently, we can calculate the bootstrap critical value as the 97.5th percentile of |t∗i | and

reject the null if |t| exceeds it.

Note that this bootstrap procedure does not generate a test with an exact size of 5%.

First, under local-to-unity asymptotics the bootstrap is not a consistent test because the test

statistics are not asymptotically pivotal—their distribution depends on the nuisance param-

eters c1 and c2, which cannot be consistently estimated.27 Second, least squares typically

underestimates the autocorrelation of highly persistent processes due to small-sample bias

(Kendall, 1954; Pope, 1990), so that the VAR underlying our bootstrap would typically be

less persistent than the true DGP. We can address the second issue by using bias-corrected

VAR parameter estimates for generating bootstrap samples. We will use the bias correction

proposed by Kilian (1998) and refer to this as the “bias-corrected bootstrap.”28 We have found

that even the bias-corrected bootstrap tends to be slightly oversized. This means that if our

bootstrap test fails to reject the spanning hypothesis, the reason is not that the test is too

conservative, but that there simply is not sufficient evidence for rejecting the null.

In fact we can use the Monte Carlo simulations in Section 2.2 to calculate the size of our

bootstrap test. In each sample i simulated from a known parametric model, we can: (i)

calculate the t-statistic (denoted t̃i) for testing the null hypothesis that β2 = 0; (ii) estimate

the autoregressive models for the predictors by using OLS on that sample; (iii) generate a

26For example, if yt+h is an h-period excess return as in equation (10) then in our bootstrap

y∗τ+h = ni∗nτ − hi∗hτ − (n− h)i∗n−h,τ+h

= n(ŵ′nx
∗
1τ + v∗nτ )− h(ŵ′hx

∗
1τ + v∗hτ )− (n− h)(ŵ′n−hx

∗
1,τ+h + v∗n−h,τ+h)

= n(ŵ′nx
∗
1τ + v∗nτ )− h(ŵ′hx

∗
1τ + v∗hτ )− (n− h)[ŵ′n−h(k̂h + e∗1,τ+h + φ̂1e

∗
1,τ+h−1 + · · ·

+ φ̂h−11 e∗1,τ+1 + φ̂h1x
∗
1τ ) + v∗n−h,τ+h]

which replicates the date t predictable component and the MA(h−1) serial correlation structure of the holding
returns that is both seen in the data and predicted under the spanning hypothesis.

27This result goes back to Basawa et al. (1991). See also Hansen (1999) as well as Horowitz (2001) and the
references therein.

28We have found in Monte Carlo experiments that the size of the bias-corrected bootstrap is closer to five
percent than for the simple bootstrap.
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single bootstrap sample using these estimated autoregressive coefficients; (iv) estimate the

predictive regression on the bootstrap sample;29 and (v) calculate the t-statistic in this re-

gression, denoted t∗i . We generate many samples from the maintained model, repeating steps

(i)-(v), and then calculate the value c such that |t∗i | > c in 5% of the samples. Our bootstrap

procedure amounts to the recommendation of rejecting H0 if |t̃i| > c, and we can calculate

from the above simulation the fraction of samples in which this occurs. This number tells

us the true size if we were to apply our bootstrap procedure to the chosen parametric model.

This number is reported in the second-to-last column of Table 1. We find in these settings

that our bootstrap has a size above but fairly close to five percent.

We will repeat the above procedure to estimate the size of our bootstrap test in each

of our empirical applications, taking a model whose true coefficients are those of the VAR

estimated in the sample as if it were the known parametric model, and estimating VAR’s from

data generated using those coefficients. To foreshadow those results, we will find that the

size is typically quite close to or slightly above five percent. In addition, we will show that

our bootstrap procedure has good power properties. The implication is that if our bootstrap

procedure fails to reject the spanning hypothesis, we should conclude that the evidence against

the spanning hypothesis in the original data is not persuasive.

2.5.2 An alternative robust test for predictability

HAC inference is concerned with accurately estimating the matrix S in (12), but does not

address the issue of standard error bias. However, we have found one existing approach

for robust inference that does address this issue, based on the Ibragimov and Müller (2010)

method for testing a hypothesis about a scalar coefficient. The original dataset is divided

into q subsamples and the statistic is estimated separately over each subsample. If these

estimates across subsamples are approximately independent and Gaussian (which is not a

bad approximation to (8)), then a standard t-test with q degrees of freedom can be carried

out to test hypotheses about the parameter. Müller (2014) provided evidence that this test

has excellent size and power properties in regression settings where standard HAC inference

is seriously distorted. Our simulation results, to be discussed below, show that this test

also performs very well when testing the spanning hypothesis. We will report results for the

Ibragimov-Müller (IM) test with the number of subsamples q equal to either 8 and 16 (as in

29In this simple Monte Carlo setting, we bootstrap the dependent variable as y∗τ = φ̂1x
∗
1,τ−1 +u∗τ where u∗τ is

resampled from the residuals in a regression of yt on x1,t−1, and is jointly drawn with ε∗1τ and ε∗2τ to maintain
the same correlation as in the data. By contrast, in our empirical analysis the bootstrapped dependent
variable is calculated from the bootstrapped bond yields, obtained using (15), and the definition of yt+h (for
example, as an annual excess return).
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Müller, 2014). A notable feature of the IM test is that by its nature it captures “robustness”

of the empirical findings not only with respect to serial correlation but also with respect to

parameter instability across subsamples, as we will see in several of the empirical applications.

We can use the same Monte Carlo simulation as before to estimate the size of the IM test

in the simple setting with two scalar predictors. The results are shown in the last column of

Table 1. When coefficient bias is absent in estimates of β2, the size of the IM test is quite

close to five percent. The reason is that the IM test estimates the sampling variability of

the test statistic by using variation across subsamples. In this way, it solves the problem of

standard error bias that conventional t-tests are faced with. Note, however, that the IM test

is unreliable in the presence of coefficient bias, because it splits the sample into smaller sub-

samples, which magnifies small-sample coefficient bias. For this reason, it is likely unreliable

for testing hypotheses about β1. We will calculate the small-sample size and power of the IM

test in each of our empirical applications below, and will show that for tests of the spanning

hypothesis H0 : β2 = 0, the IM test generally has very good size and power.

2.5.3 New data: subsample stability and out-of-sample forecasting

Our third approach to assess claims of return predictability is to confront published results

with new data. To circumvent econometric problems of predictability regressions a common

practice is to perform pseudo out-of-sample (OOS) analysis, splitting the sample into an initial

estimation and an OOS period. We are skeptical of this approach because the researcher

has access to the full sample when formulating the model, and the sample-split is arbitrary.

However, for each of the studies that we revisit a significant amount of new data have come

in since the original research. This gives us an opportunity both to reestimate the models

over a sample period that includes new data, and further to evaluate the true out-of-sample

forecasting performance of each proposed model.

3 Economic growth and inflation

In this section we examine the evidence reported by Joslin et al. (2014) (henceforth JPS) that

macro variables may help predict bond returns. We will follow JPS and focus on predictive

regressions as in equation (1) where yt+h is an excess bond return for a one-year holding period

(h = 12), x1t is a vector consisting of a constant and the first three PCs of yields, and x2t

consists of a measure of economic growth (the three-month moving average of the Chicago Fed

National Activity Index, GRO) and of inflation (one-year CPI inflation expectations from the

Blue Chip Financial Forecasts, INF ). While JPS also presented model-based evidence in favor
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of unspanned macro risks, all of those results stem from the substantial in-sample predictive

power of x2t in these excess return regressions. The sample contains monthly observations

over the period 1985:1-2007:12.30

3.1 Predictive power according to R̄2

JPS found that for the ten-year bond, the (adjusted) R̄2 of regression (1) increased from 0.20

to 0.37 when x2t is included. For the two-year bond, the change is even more striking, with

R̄2 increasing from 0.14 to 0.48. JPS interpreted this as strong evidence that macroeconomic

variables have predictive power for excess bond returns beyond the information in the yield

curve, and concluded that “macroeconomic risks are unspanned by bond yields” (p. 1203).

We report the R̄2 for an average excess-return on 2- to 10-year bonds in the first row of Table

2, where the first three entries are based on the same data set that was used by JPS.31 The

entry R̄2
1 gives the R̄2 for the regression with only x1t as predictors, and R̄2

2 corresponds to

the case when x2t is added to the regression. For this specification, R̄2 also increases quite

substantially, by 19 percentage points.

However, there are some warning flags for these predictive regressions. First, the predictors

are very persistent; the first-order sample autocorrelations of PC1 and PC2 are 0.98 and 0.97,

respectively, while that of INF is 0.99. Second, the sample is relatively small, with 276

observations. Third, the dependent variable is an annual overlapping return, i.e., h = 12. In

the presence of these three warning flags even large increases in R̄2 may be plausible under

the null hypothesis, as suggested by the arguments in Section 2.4.

The second row of Table 2 reports the mean R̄2 across 5000 replications of the bootstrap

described in Section 2.5.1, that is, the average value we would expect to see for these statistics

in a sample of the size used by JPS in which x2t in fact has no true ability to predict yt+h

but whose serial correlation properties are similar to those of the observed data. The third

row gives 95% bootstrap intervals, that is, the 2.5th and 97.5th percentiles of the bootstrap

distributions which impose the null hypothesis. The variability of the R̄2 is very high. Values

for R̄2
2 as high as 60% would not be uncommon, as indicated by the bootstrap intervals. Most

notably, adding the regressors x2t often substantially increases the R̄2—even increases of 20

30The last observation corresponds to the annual excess returns from December 2007 to December 2008.
31In Table 2 we have attempted to summarize results for R2 or R̄2 across different studies on a comparable

basis that is as close as possible to that in the original study. In the case of JPS, they reported results for
only the 2-year and 10-year bonds and not an average. In Table B.1 in Appendix B.1 we present analogous
results for each individual bond from two through ten years maturity. The increase in R̄2 when adding macro
variables is particularly pronounced for short-term bonds, but most of our conclusions apply to these short
maturities as well.
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percentage points are not uncommon—although x2t has no predictive power in population by

construction. According to the bootstrap small-sample distribution of R̄2, the increase in the

data of 19 percentage points is not inconsistent with the spanning hypothesis.

Since the persistence of x2t is high, it may be important to adjust for small-sample bias

in the VAR estimates. For this reason we also carried out the bias-corrected (BC) bootstrap.

The expected values and 95% confidence intervals are reported in the bottom two rows of the

top panel in Table 2. As expected, more serial correlation in the generated data (due to the

bias correction) increases the mean and the variability of the R̄2 and of their difference, so

that R̄2
2 − R̄2

1, our statistic of main interest, is even more comfortably within the bootstrap

interval.

3.2 Testing the spanning hypothesis

Is the predictive power of macro variables statistically significant? JPS only reported R̄2 for

their excess return regression, but one is naturally interested in formal tests of the spanning

hypothesis in JPS’ excess return regressions. We report coefficient estimates and test statistics

in Table 3. The common approach to address the serial correlation in the residuals due to

overlapping observations is to use the standard errors and test statistics proposed by Newey

and West (1987), and in regressions for annual returns using monthly data researchers typically

use 18 lags (see among many others Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009).

In the second row of Table 3 we report the resulting t-statistic for each coefficient along with

the Wald test of the hypothesis β2 = 0, calculated using Newey-West standard errors with

18 lags. The third row reports the p-values for these statistics if they were interpreted using

the conventional asymptotic approximation. According to this popular test, GRO and INF

appear strongly significant, both individually and jointly. In particular, the Wald statistic has

a p-value below 0.1%.

However, the small-sample problems described in Section 2 likely distort these test results.

The canonical correlation between innovations in one-month excess returns and innovations in

the three yield PCs (the generalization of the parameter δ in Section 2.2) is 0.99. Such a high

correlation will be present by construction in all tests of the spanning hypothesis, because

x1t includes yield PCs that explain current yields very well, and so innovations to x1t are

necessarily highly correlated with surprise returns realized at t. Furthermore, we noted above

that in this empirical application the autocorrelations of the predictors are high, and the

sample size is relatively small. Our theory predicts that standard error bias will be severe in

this application. In addition, the well-known small-sample problems of Newey-West standard

errors are also likely to be particularly pronounced in this setting.
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We therefore employ our bootstrap to carry out tests of the spanning hypothesis that

account for these small-sample issues. Again, we use both simple (OLS) and BC bootstrap.

For each, we report five-percent critical values for the t- and Wald statistics, calculated as the

95th percentiles of the bootstrap distribution, as well as bootstrap p-values, i.e., the frequency

of bootstrap replications in which the bootstrapped test statistics are at least as large as in

the data. Using either the simple or BC bootstrap, the coefficient on GRO is insignificant

even at the 10% level, and the coefficient on INF is marginally significant at the 5% level.

The bootstrap p-value for the Wald test of the spanning hypothesis is slightly below 5%

for the simple bootstrap and slightly above 5% for the BC bootstrap. These tests result in

much weaker evidence against the spanning hypothesis than one would have thought based

on conventional asymptotic interpretation of the test statistics.

We also report in Table 3 the p-values for the IM test of the individual significance of the

coefficients. The coefficients on GRO and INF are not significant at conventional levels based

on this test.

Using the bootstrap we can easily calculate the true size of the conventional HAC, boot-

strap, and IM tests, which all have a nominal size of five percent. These are reported in the

Size section of the top panel of Table 3. For the conventional HAC tests, this is calculated as

the frequency of bootstrap replications in which the t- and Wald statistics exceed the usual

asymptotic critical values. The results reveal that the true size of these conventional tests

is 20-37% instead of the presumed five percent. These substantial size distortions are also

reflected in the bootstrap critical values, which far exceed the conventional critical values.

The bootstrap and the IM tests, in contrast, have a size that is estimated to be very close to

five percent, eliminating almost all of the size distortions of the more conventional tests.

We can also use our bootstrap to evaluate the power of our proposed tests. To do so, we

simply add β̂2x
∗
2τ to the value generated by our bootstrap for y∗τ+h, where β̂2 is the coefficient

on x2t in the original data sample. We now have a generated sample in which x2t in fact does

predict yt+h, and with a magnitude that is exactly that claimed in the original study. We

repeat this to obtain 5000 samples in which the spanning hypothesis does not hold, and in

each sample calculate all our tests. We find that in 92% of these samples, the HAC t-statistic

exceeds 3.8, the value that our simple bootstrap suggests we need to see before rejecting the

spanning hypothesis. In other words, our bootstrap test has high power, and should reject

the hypothesis if it were indeed false. The IM test also has good power to reject the null

hypothes. This suggests that the reason that neither the IM nor the bootstrap test reject the

spanning hypothesis is not a lack of power, but the fact that empirical spanning is a reasonable

description of the observed sample.
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3.3 New data

What happens when we augment the sample with the eight years of new data that have arrived

since the original analysis by JPS?32 The last three columns of the top panel of Table 2 show

that the in-sample improvement in R̄2 when x2t is included in the regression is substantially

smaller over the 1985-2015 data set than was found on the original JPS data set, and the

improvement is far from statistically significant.33 And as seen in the second panel of Table

3, the values of the conventional HAC t- and F -tests are substantially smaller on the longer

data set than was found in the original data, and in fact the coefficient on GRO is now no

longer statistically significant even if the t-statistic was interpreted in the usual way. The

t-statistic on inflation would still appear to be significant if interpreted using the conventional

asymptotic distribution, but based on the bootstrap small-sample distribution it is clearly

insignificant.

Row 1 of Table 4 reports the pure OOS forecast comparison for yt+h the average 12-month

excess return across 2- to 10-year bonds.34 Whereas in the original JPS in-sample regression,

the addition of x2t improved the mean squared prediction error by 24%, the addition of x2t

leads to a deterioration in the OOS prediction error by 140%. Moreover, the OOS performance

of the predictive model that imposes the spanning hypothesis and leaves out x2t is significantly

better than the unrestricted model according to the Diebold and Mariano (1995) test.35

Adding new observations to the JPS data set substantially weakens the evidence against

the spanning hypothesis. But if the null hypothesis were truly false, we would expect to find

the evidence against it become stronger, not weaker, when we use a bigger data set. We

conclude on the basis of the bootstrap, the IM test, and newly available data that the JPS

evidence on unspanned macro risks is far from convincing.

4 Factors of large macro data sets

Ludvigson and Ng (2009, 2010) found that factors extracted from a large macroeconomic

32We update the yield data using unsmoothed Fama-Bliss yields provided to us by Anh Le.
33This also turns out to be the case for every individual bond, including the 2-year bond; see Table B.1 in

Appendix B.1.
34We used a recursive scheme where we re-estimate the predictive regressions by extending the estimation

window each month of the newly available data.
35In related work, Giacoletti et al. (2016) evaluate the real-time OOS forecasting performance of a model

similar to that used in JPS. They find that including macro variables only helps for predicting very short-term
yields and only over a specific subsample, but that overall “’macro rules’ add little to the forecast accuracy of
the basic yields-only rule” (p. 29). While this supports the spanning hypothesis, they find some incremental
predictive power when including survey forecast disagreement.
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data set are helpful in predicting excess bond returns, above and beyond the information

contained in the yield curve. Here we revisit this evidence, focusing on the results in Ludvigson

and Ng (2010) (henceforth LN). They started with a panel data set of 131 macro variables

observed over 1964:1-2007:12 and extracted eight macro factors using the method of principal

components. These factors, which we will denote by F1 through F8, were then related to

future one-year excess returns on two- through five-year Treasury bonds. They also included

the return-forecasting factor that was proposed by Cochrane and Piazzesi (2005), denoted as

CP , which is the linear combination of forward rates that best predicts the average excess

return across maturities. Based on comparisons of R̄2 of regressions with and without macro

factors, as well as HAC inference using Newey-West standard errors, LN concluded that macro

factors help predict excess returns, even when controlling for information in the yield curve

using the CP factor.

We focus on regressions that are very similar to those estimated by LN, with two differences:

First, we capture the information in the yield curve using the first three PCs of yields, while

LN use the CP factor. Second, we do not carry out LN’s preliminary specification search—

they considered many different combinations of the factors along with squared and cubic

terms—in order to focus squarely on hypothesis testing for a given regression specification.36

Our regressions take the same form as (1), where now yt+h is the average one-year excess

bond return for maturities of two through five years, x1t contains a constant and three yield

PCs, and x2t contains eight macro PCs. As before, our interest is in testing the hypothesis

H0 : β2 = 0.

Table 2 shows that in LN’s data set the R̄2 increases by 10 percentage points when the

macro factors are included, consistent with LN’s findings. The first three rows of Table 5 show

the coefficient estimates, HAC t- and Wald statistics (using Newey-West standard errors with

18 lags as in LN), and p-values based on the conventional asymptotic distributions of these test

statistics. There are five macro factors that appear to be statistically significant at the ten-

percent level, among which three are significant at the five-percent level. The Wald statistic

for H0 far exceeds the critical values for conventional significant levels (the five-percent critical

value for a χ2(8) distribution is 15.5). Taken at face value, this evidence suggests that macro

factors have strong predictive power, above and beyond the information contained in the yield

curve.

How robust are these econometric results? We first check the warning flags. As usual,

the first two yield PCs are very persistent, with autocorrelations of 0.98 and 0.94. The most

36We were able to closely replicate the results in LN’s tables 4 through 7, and have also applied our techniques
to those regressions, which led to qualitatively similar results.

23



persistent macro variables have first-order autocorrelations of around 0.75, so the persistence of

x2t is lower than in the data of JPS but still considerable. As always, the yield PCs strongly

violate strict exogeneity by construction, for the reasons explained in the previous section.

Based on these indicators, it appears that small-sample problems may well distort the results

of conventional inference methods.

To address the potential small-sample problems in this context, we bootstrapped 5000 data

sets of artificial yields and macro data in which H0 is true in population. The samples each

contain 516 observations, which corresponds to the length of the original data sample. We

report results only for the simple bootstrap without bias correction, because the bias in the

VAR for x2t is estimated to be small. Note that LN also considered bootstrap inference, but

their main bootstrap design imposed the expectations hypothesis, in order to test whether

excess returns are predictable by macro factors and the CP factor. Using this setting, LN

produced convincing evidence that excess returns are predictable, which is fully consistent with

our results. Our null hypothesis of interest, however, is that excess returns are predictable

only by current yields. While LN also reported results for a bootstrap under the alternative

hypothesis, our bootstrap generates samples under the spanning hypothesis, and therefore

allows us to provide a more accurate assessment of the spanning hypothesis, and to estimate

the size of conventional tests under the null.

Table 2 shows that the observed increase in predictive power from adding macro factors

to the regression, measured by R̄2, would not be implausible if the null hypothesis were true,

as the increase in R̄2 is within the 95% bootstrap interval. And as seen in Table 5, our

bootstrap finds that only three coefficients are significant at the ten-percent level (instead of

five using conventional critical values), and one at the five-percent level (instead of three).

While the Wald statistic is significant even compared to the critical value from the bootstrap

distribution, the evidence is weaker than when using the asymptotic distribution.

Table 5 also reports p-values for the IM test using q = 8 and 16 subsamples. Only the

coefficient on F7 is significant at the 5% level using this test, and then only for q = 16. The

failure to reject the null based on the IM tests is a reflection of the fact that the parameter

estimates are often unstable across subsamples. Duffee (2013b, Section 7) has also noted

problems with the stability of the results in Cochrane and Piazzesi (2005) and Ludvigson and

Ng (2010) across different sample periods.

We again use the bootstrap to estimate the size and power of the different tests with a

nominal size of five percent. The results, reported in Table 5, reveal that the conventional t-

tests have modest size distortions, with true size of 9-14% instead of the nominal five percent.

But the Wald test is seriously distorted, with a true size of 32 percent. The Wald test
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compounds the problems resulting from the non-standard small-sample distribution of each of

the eight coefficient estimates for x2t, and therefore ends up with a large size distortion. By

contrast, our proposed bootstrap and IM tests have close to correct size, and also have good

power.

Again there are several years of data that have arrived since the original LN analysis was

conducted.37 We repeated our analysis using the same 1985-2015 sample period that we used

to reassess the results of JPS. There it was a strictly larger sample than the original, but

here, in the case of LN, our second sample adds data at the end but leaves some out at the

beginning. Reasons for interest in this sample period include the significant break in monetary

policy in the early 1980s, the advantages of having a uniform sample period for comparison

across all the different studies considered in our paper, and investigating robustness of the

original claims in describing data since the papers were originally published. The results,

shown in the right panel of Table 2 and the bottom panel of Table 5, show that over the

later sample period, the evidence for the predictive power of macro factors is quite weak. The

increases in R̄2 in Table 2 are not statistically significant, being squarely within the bootstrap

intervals under the spanning hypothesis. The Wald test rejects H0 when using asymptotic

critical values, but is very far from significant when using bootstrap critical values. And the

IM tests find no evidence of predictive power of the macro factors.

We also repeated the pure OOS exercise and report the results in the second row of Table

4, using relations estimated over data from 1964 through T to predict the value of T + 1 for

all the dates T since LN’s original analysis. In contrast to the results for JPS (in the first

row), we find that the unrestricted model which includes macro variables does better both

in-sample and OOS than the model that only includes yield PCs. Adding the eight macro

factors reduces the MSE for predicted returns over the 2009-2015 period by 25%. However,

this improvement is not large enough to be statistically significant based on the DM test.

Overall, these results again show that conventional measures of fit and hypothesis tests

are not reliable for assessing the spanning hypothesis. Furthermore, the evidence that macro

factors have predictive power beyond the information already contained in yields is weaker than

the results in LN would initially have suggested. Both small-sample econometric problems as

well as subsample stability raise concerns about the robustness of the results.38

37To construct the macro factors for the 1985-2015 sample period, we used the macro data set of McCracken
and Ng (2014) and transformed the data and extracted the PCs in the same way as LN did. Using the data
constructed in this way, we also obtained results similar to LN’s over their original sample period.

38Appendix B.2 reports additional results for predictive regressions with return-forecasting factors, using an
empirical approach that was also advocated by LN. These results reinforce our conclusions.
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5 Trend inflation

Cieslak and Povala (2015) (henceforth CPO) presented evidence that measures of the trend in

inflation can help to estimate risk premia in bond returns. They established this result using

a variety of measures of trend inflation, and found that these measures generally contained

substantial predictive power for annual excess bond returns beyond the predictive informa-

tion contained in yields. Their strongest results (and the specification we investigate here)

calculates the trend in inflation using a very slowly adjusting weighted average of observed

inflation rates,

τt = (1− ν)
∑t−i

i=0ν
iπt−i, (17)

for πt the month t year-over-year inflation rate as measured by the CPI and ν = 0.987. This

measure is plotted in Figure 2 along with the yield on a 10-year bond. Both τt and nominal

interest rates exhibited an upward trend until the early 1980s and a distinct downward trend

since then. The variable τt is also extremely persistent, with an autocorrelation of 0.9985. To

reproduce CPO’s key results in a similar structure to those used in discussing the previous

two studies, let yt+h denote a weighted average39 of the annual excess returns on 2- to 10-year

bonds, x1t a constant and the first three PCs of yields, and x2t = τt. Table 2 confirms CPO’s

conclusion that adding the inflation trend results in an enormous increase in the R̄2, in this

case from 0.12 to 0.46.

To address small-sample problems we again generate bootstrap samples using the same

setup as before, with a VAR(1) for yield PCs and an AR(1) for the inflation trend.40 We

use bias-corrected coefficient estimates due to the high persistence of the yield PCs and the

inflation trend. Table 2 shows that although our bootstrap suggests that a large increase in

R̄2 would be expected in this setting, the observed increase is substantially larger than could

be explained under the spanning hypothesis.

Table 6 reports coefficient estimates and hypothesis tests for these regressions. The first

three rows report estimates of the predictive regression using only x1t, reproducing CPO’s

finding that information in yields has only moderate predictive power. The next three rows

show that once the inflation trend is added, not only does the trend appear to be highly signif-

icant, but the predictive power of PC1 and PC2 also increases substantially. CPO calculated

standard errors using the Wei and Wright (2013) reverse regression (RR) approach as a way to

39We use the same type of weighted average of excess returns as CPO, where returns are divided by the
bond’s duration before being averaged.

40While more sophisticated bootstrap designs for inflation and the inflation trend are possible—e.g., calcu-
lating the bootstrapped inflation trend as a moving average of inflation simulated from an ARIMA model—we
have found that our key results remain essentially unaffected by this choice.
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mitigate the problems identified in Section 2.4. The RR approach uses the insight of Hodrick

(1992)—that it is beneficial to base inference in predictions for overlapping returns on estimates

of predictions for one-period, non-overlapping returns which use cumulated predictors—and

extends Hodrick’s approach to perform inference about other hypotheses than the absence of

predictability. But this does not eliminate the small-sample problems we raise in this paper,

as seen in the Size section of Table 6. Our bootstrap estimates suggest that in this setting the

RR t-test would reject a true null hypothesis 45% of the time instead of the intended 5%.41 As

indicated by the bootstrap critical value, we would need to see a t-statistic above 3.6 to reject

the null at the 5% level. The actual observed t-statistic, however, is 6.2, providing strong

evidence against the null even taking into account small-sample inference problems.

The bootstrap allows us to drill down further and try to understand the role of each of the

econometric problems described in Sections 2.2, 2.3 and 2.4 for these large size distortions.

We found in this setting that an HAC test using Newey-West standard errors with the usual

18 lags has an even larger size, 56%. That is, the RR approach partially alleviates the small-

sample problem arising from overlapping observations. To assess how much of the problem

still remains even with the RR test, we can compare the results to a setting with h = 1, where

yt+1 contains monthly excess returns42 and conventional hypothesis tests are carried out using

White’s heteroskedasticity robust standard errors (an example of this common approach is

Duffee, 2013b, Section 7). In that case the t-test has a true size of 34%. The fact that this is

noticeably below 45% suggests that RR does not completely solve the problem of overlapping

observations. The last question is about the role of trends. Our theory in Section 2.3 suggests

that conventional tests should be severely distorted in CPO’s setting because both x1t and x2t

are trending—despite the increase in the 1970s and early 1980s, both the level of yields and

τt trend down substantially over the whole sample. We can verify this theoretical prediction

by bootstrapping the test statistics in a setting where trends are absent by construction. We

do so by initializing the bootstrap simulations at the population mean, and not at the first

observation in the sample as we normally do, with the result that there is no drift in the

predictors. The size of the RR t-test in that case is 16%, compared to the 45% we reported in

Table 6 for the case when the bootstrap captures the trends in the predictors.43 This confirms

that the presence of trends substantially magnifies the size distortions that arise from standard

41It is well-known that reverse-regression standard errors, just like Hodrick’s standard errors, do not eliminate
the problem of Stambaugh bias; note for example the size distortions in Table 1 of Wei and Wright (2013).
Therefore it is unsurprising that this approach does not eliminate standard error bias.

42We calculate monthly excess returns using the approximation yn−1t+1 ≈ ynt+1 and the one-month Treasury
yield from Anh Le’s unsmoothed Fama-Bliss yield data.

43In the setting with monthly excess returns we found that in the absence of trends the t-test has a size of
14%, compared to the size of 34% in the presence of trends which we reported in the text.
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error bias, i.e., from the correlation of x1t and realized excess returns.44

In contrast to the size-adjusted (bootstrap) RR tests, the IM tests do not reject the span-

ning hypothesis. These tests seem to be somewhat oversized, with the true size estimated

around 14% instead of the nominal 5%, meaning that the failure to reject using this test is

not the result of having relied on an undersized test. Figure 3 provides some insight into why

IM fails to reject. The figure plots the coefficients on each predictor across the q = 8 subsam-

ples. The coefficients are standardized by dividing them by the sample standard deviation

across the eight estimated coefficients for each predictor. Thus, the IM t-statistics, which are

reported in the legend of Figure 3, are equal to the means of the standardized coefficients

across subsamples, multiplied by
√

8. The figure shows that PC1 and PC2 have more con-

sistent predictive power across subsamples than does the trend, whose coefficient appears to

be strongly positive in the second subsample but negative in the first, seventh, and eighth

subsamples.

Again we reestimate the predictive regressions over the 1985-2015 period that we have used

as a common comparison with the other studies. The increase in R̄2 is smaller and no longer

statistically significant on this dataset, as seen in the last three columns of Table 2. Compared

to the bootstrap small-sample distribution, the reverse-regression t-statistic is only marginally

statistically significant at the 5% level, as seen in the second panel of Table 6. And the IM

test again fails to reject H0 over this sample period. Note that in the post-1985 sample the

downward drift in the level of yields and the inflation trend is even more pronounced, adding

to the econometric problems caused by trends in explanatory variables.

We also evaluated the true OOS usefulness of τt using new data after the end of CPO’s

sample period, which we report in line 3 of Table 4. Whereas within CPO’s original sample

the trend reduces the MSE by 40%, for the data that have come in since 2011 including the

inflation trend actually increases the MSE by a factor of 12. However, due to the short OOS

period, even this dramatic deterioration in forecast accuracy is not statistically significant,

based on the DM statistic.

Our results in this case study again lead to the conclusion that conventional tests are very

unreliable for inference about the spanning hypothesis. The small-sample issues are most

severe in CPO’s case because of the extreme persistence of the predictor x2t = τt and the

presence of pronounced trends. It is certainly noteworthy that CPO’s key result survives even

accounting for the very serious small-sample problems, at least in their original data set. On

44By contrast, in the JPS data we found that the biggest single source of the size distortions is the use
of overlapping returns and Newey-West standard errors. And in the LN data it is a combination of the
overlapping returns and the presence of a relatively large number of predictors in x2t, which magnifies the size
distortions.
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the other hand, the IM test and the addition of new data suggest that the result may not be

quite as robust as it initially seemed.

6 Higher-order PCs of yields

Cochrane and Piazzesi (2005) (henceforth CP) documented several striking new facts about

excess bond returns. They showed that a tent-shaped combination of forward rates predicts

annual excess returns on different long-term bonds with an R2 of up to 37% (and even up to

44% when lags are included). Importantly for our context, CP found that the first three PCs

of yields—level, slope, and curvature—did not fully capture this predictability, but that the

fourth and fifth PC were also very helpful. As usual, the first three PCs explain a large share

of the cross-section variation in yields (99.97% in their data), but CP found that the other

two PCs, which explain only 0.03% of the cross-section variation in yields, are statistically

important for predicting excess bond returns. In particular, the fourth PC appeared “very

important for explaining expected returns” (p. 147). Here we assess the robustness of this

finding, by revisiting the null hypothesis that only the first three PCs, but not higher-order

PCs, predict excess returns.

The last panel of Table 2 shows (unadjusted) R2 for predictive regressions for the average

excess bond return using three and five PCs as predictors, and the first entries replicate the

results of CP. In Table 7 we report the results of HAC inference for the regressions with 5

PCs using Newey-West standard errors with 18 lags, and the Wald statistic is identical to that

reported by CP in their Table 4. The p-values indicate that PC4 is very strongly statistically

significant, and that the spanning hypothesis would be rejected.

We then use our bootstrap procedure to obtain robust inference about the relevance of the

predictors PC4 and PC5. We find that the CP results cannot be accounted for by small-sample

size distortions. One reason is that the persistence of higher-order PCs is quite low, so that

the size distortions of conventional tests are small. The other reason is that the Newey-West

t-statistic on PC4 is far too large to be accounted for by the kinds of factors identified in

Section 2. Likewise the increase in R2 reported by CP would be quite implausible under the

null hypothesis, as it falls far outside the 95% bootstrap interval under the null.

Interestingly, however, Table 7 shows that the IM tests fail to reject the null hypothesis

that β2 = 0. These tests conclude that the coefficients on PC4 and PC5 are not statistically

significant, and find only the level and slope to be robust predictors of excess bond returns.

Using the bootstrap we find that in this case the IM tests have the correct size, close to
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five percent. The power of the IM tests is very high for finding significance of PC4.45 The

excellent size and power of the IM tests for PC4 should give us pause in concluding that this

variable really helps to predict bond returns. Figure 4 again conveys why the IM test for

q = 8 fails to reject. The figure shows that PC1 and PC2 have consistent predictive power

across subsamples, whereas the coefficient on PC4 switches signs several times. The strong

association between PC4 and excess returns is mostly driven by the fifth subsample, which

starts in September 1983 and ends in July 1988.46

It is worth emphasizing the similarities and differences between the tests of interest to CP

and in our own paper. Their central claim, with which we concur, is that the factor they have

identified is a useful and stable predictor of bond returns. However, this factor is a function of

all 5 PC’s, and the first 3 of these account for 76% of the variation of the CP factor. Our claim

is that it is the role of PC1-PC3 in the CP factor, and not the addition of PC4 and PC5,

that makes this factor a robust predictor of bond returns. Our test for structural stability

differs from those performed in CP and their accompanying online appendix. CP conducted

tests of the usefulness of their return-forecasting factor for predicting returns across different

subsamples, a result that we have been able to reproduce and confirm. Our tests, by contrast,

look at stability of the role of each individual PC. While we agree with CP that the first

three PC’s indeed have a stable predictive relation, the predictive power of the 4th and 5th

PC is much more tenuous, and is insignificant in most of the subsample periods that CP

considered.47

In the last three columns of Table 2 and the bottom panel of Table 7 we report results for

the 1985–2015 sample period. In this case, the increase in R2 due to inclusion of higher-order

PCs is comfortably inside the 95% bootstrap intervals, and the coefficients on PC4 and PC5

are not significant for any method of inference.

CP’s sample period ended more than ten years prior to the time of this writing, giving us the

longest true OOS period among the studies considered. The last row of Table 4 shows that in

contrast to the in-sample estimates, where including PC4 and PC5 reduces the MSE by 11%,

OOS predictive power deteriorates by 20% when the null hypothesis is not imposed. While

the DM test does not reject the hypothesis that both models have equal predictive accuracy in

population, restricting the predictive model to use only the level, slope and curvature leads to

45The power is low for PC5. The reason is that our alternative hypothesis uses the coefficient estimate of
β2 from the actual data, where PC5 is a very weak predictor.

46Consistent with this finding, an influence analysis of the predictive power of PC4 indicates that the
observations with the largest leverage and influence are almost all clustered in the early and mid 1980s.

47Duffee (2013b, Section 7) also documented that extending CP’s sample period to 1952–2010 alters some
of their key results, and we have found that over Duffee’s sample period the predictive power of higher-order
PCs disappears.
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more stable and more accurate return predictions in this particular sample. We conclude from

both our in-sample and OOS results that the evidence for predictive power of higher-order

factors is tenuous and sample-dependent, and that there is no compelling evidence that the

first three PCs of yields are insufficient to estimate bond risk premia.48

7 Other studies

Several other studies have also reported evidence that might appear to be inconsistent with

the spanning hypothesis. Cooper and Priestley (2008) concluded that the output gap contains

useful information for forecasting interest rates, while Greenwood and Vayanos (2014) found

the same for measures of Treasury bond supply. We have repeated our analysis using the

datasets in these studies and found that evidence against the spanning hypothesis in these

two cases is even weaker than for any of the studies discussed in Sections 3 to 6. Details of

our investigations are reported in Appendices B.3 and B.4.

8 Conclusion

Conventional tests of whether variables other than the level, slope and curvature can help

predict bond returns have significant size distortions, and the R2 of the regression can in-

crease dramatically when other variables are added to the regression even if they have no true

explanatory power.

We proposed three strategies for dealing with this problem: First, a simple bootstrap

based on PCs; second, a robust t-test based on subsample estimates proposed by Ibragimov

and Müller (2010); and third, examining the proposed variables’ usefulness in new data,

preferably in a true out-of-sample forecasting exercise. We used these methods to revisit six

different widely cited studies, and found in each case that the evidence that variables other

than the current level, slope and curvature predict excess bond returns is substantially less

convincing than the original research would have led us to believe.

We emphasize that these results do not mean that fundamentals such as inflation, output,

and bond supplies do not matter for interest rates. Instead, our conclusion is that any effects

of these variables can be summarized in terms of the level, slope, and curvature. Once these

three factors are included in predictive regressions, no other variables appear to have robust

48Cattaneo and Crump (2014) also investigated the robustness of the results of Cochrane and Piazzesi
(2005) and obtained even more negative results: Using a new HAC test proposed by Müller (2014) they did
not reject the null hypothesis that the CP factor had no predictive power in a variety of in-sample and OOS
specifications.
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forecasting power for future yields or returns. Our results cast doubt on the claims for the

existence of unspanned macro risks and suggest that it may not be necessary to look beyond

the information in the yield curve to estimate risk premia in bond markets.
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Table 1: Simulation study of standard error bias

ρ δ
Coefficient bias SE bias Size

β1 β2 (%) simulated asymptotic bootstrap IM

µ1 = µ2 = 0
0.99 0.0 0.000 0.000 -4.7 0.050 0.047 0.048 0.044
0.00 1.0 -0.010 0.000 -0.6 0.050 0.051 0.050 0.048
0.90 1.0 -0.052 0.000 -15.4 0.085 0.086 0.057 0.050
0.99 0.8 -0.055 0.000 -23.2 0.113 0.112 0.072 0.046
0.99 1.0 -0.068 0.000 -29.8 0.151 0.151 0.082 0.048

µ1 = 0, µ2 = 1
0.99 0.0 0.000 0.000 -5.1 0.050 0.049 0.039
0.00 1.0 -0.010 0.000 -0.5 0.050 0.050 0.048
0.90 1.0 -0.053 0.000 -17.1 0.089 0.057 0.048
0.99 0.8 -0.071 0.000 -42.4 0.183 0.077 0.031
0.99 1.0 -0.088 0.000 -50.8 0.268 0.085 0.029

µ1 = 1, µ2 = 1
0.99 0.0 0.000 0.000 -4.0 0.050 0.047 0.043
0.00 1.0 -0.010 0.000 -0.5 0.050 0.050 0.047
0.90 1.0 -0.037 0.017 -12.0 0.081 0.054 0.051
0.99 0.8 -0.036 0.035 -12.1 0.168 0.056 0.345
0.99 1.0 -0.045 0.044 -16.0 0.241 0.058 0.488

Coefficient bias, standard error bias, and size distortions in simulation study with sample size
T = 100 and DGP with β0 = β1 = β2 = 0, σ1 = σ2 = σu = 1 for different values of ρ1 = ρ2 = ρ and
δ. The coefficient bias is reported as E(β̂i)− βi. The standard error bias is reported as
E[(σ̂β̂2)− σβ̂2 ]/σβ̂2 . The last four columns report the size (i.e., frequency of rejections) of tests of
H0 : β2 = 0 with a nominal size of five percent, for a conventional t-test—according to both
regressions in simulated small samples and the local-to-unity asymptotic distribution—for the
bootstrap test, and the Ibragimov-Mueller (IM) test. For details on the simulation study refer to
main text.
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Table 2: In-sample predictive power in excess-return regressions

R̄2
1 R̄2

2 R̄2
2 − R̄2

1 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

JPS Original sample: 1985–2008 Later sample: 1985–2015

Data 0.19 0.38 0.19 0.17 0.23 0.06
Bootstrap 0.32 0.38 0.06 0.28 0.33 0.05

(0.11, 0.54) (0.16, 0.60) (-0.00, 0.20) (0.08, 0.49) (0.11, 0.54) (-0.00, 0.17)
BC bootstrap 0.36 0.42 0.06 0.29 0.34 0.06

(0.09, 0.61) (0.15, 0.66) (-0.00, 0.22) (0.07, 0.53) (0.11, 0.57) (-0.00, 0.21)

Ludvigson-Ng Original sample: 1964–2007 Later sample: 1985–2015

Data 0.25 0.35 0.10 0.14 0.24 0.10
Bootstrap 0.21 0.24 0.03 0.29 0.35 0.06

(0.05, 0.38) (0.08, 0.42) (-0.00, 0.11) (0.08, 0.51) (0.13, 0.56) (-0.00, 0.19)

Cieslak-Povala Original sample: 1971–2011 Later sample: 1985–2015

Data 0.12 0.46 0.34 0.17 0.38 0.22
BC bootstrap 0.15 0.22 0.07 0.28 0.34 0.07

(0.02, 0.34) (0.06, 0.40) (-0.00, 0.21) (0.04, 0.53) (0.11, 0.58) (-0.00, 0.23)

Cochrane-Piazzesi Original sample: 1964–2003 Later sample: 1985–2015

Data 0.26 0.35 0.09 0.15 0.18 0.03
Bootstrap 0.21 0.22 0.01 0.29 0.31 0.01

(0.05, 0.41) (0.06, 0.41) (0.00, 0.02) (0.09, 0.52) (0.10, 0.53) (0.00, 0.05)

Adjusted R̄2 for regressions of annual excess bond returns on three PCs of the yield curve (R̄2
1) and

on three yield PCs together with the additional proposed predictors x2t, well as the difference in

adjusted R̄2. The additional predictors, which are described in more detail in the text, are: for

JPS, measures of growth and inflation; for Ludvigson-Ng, eight PCs of a large set of macro

variables; for Cieslak-Povala, a moving-average estimate of the inflation trend; and for

Cochrane-Piazzesi, the fourth and fifth PC of yields. The results in the left half of the table are for

the original sample period in each paper; the right half of the table is for the 1985–20015 sample

period. The excess bond return is an average across bond maturities: for JPS, from two to ten

years; for Ludvigson-Ng, from two to five years; for Cieslak-Povala, from two to ten years (a

weighted average); and for Cochrane-Piazzesi, from two to five years. The first row of each panel

reports the values of the statistics in the original data. The following rows report bootstrap mean

and 95%-confidence intervals (in parentheses). The bootstrap, which is described in the text,

imposes the null hypothesis that x2t has no incremental predictive power. For Cochrane-Piazzesi,

the results are for the unadjusted R2.
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Table 3: Joslin-Priebsch-Singleton: statistical inference in excess-return regressions

PC1 PC2 PC3 GRO INF Wald
Original sample: 1985–2008
Coefficient 1.038 1.922 3.145 -0.022 -6.187
HAC statistic 5.423 4.466 0.797 -2.537 -4.121 24.844
HAC p-value 0.000 0.000 0.426 0.012 0.000 0.000
Bootstrap 5% c.v. 3.157 3.848 22.634
Bootstrap p-value 0.108 0.038 0.040
BC bootstrap 5% c.v. 3.282 4.068 25.486
BC bootstrap p-value 0.116 0.047 0.052
IM q = 8 0.004 0.064 0.011 0.600 0.647
IM q = 16 0.001 0.009 0.061 0.066 0.785
Size

HAC 0.204 0.283 0.369
Bootstrap 0.064 0.066 0.062
IM q = 8 0.052 0.051
IM q = 16 0.046 0.050

Power
Bootstrap 0.198 0.917 0.895
IM q = 8 0.404 0.732
IM q = 16 0.643 0.877

Later sample: 1985–2015
Coefficient 0.432 1.820 3.141 -0.002 -2.979
HAC statistic 2.532 3.559 1.101 -0.269 -2.107 4.441
HAC p-value 0.012 0.000 0.272 0.788 0.036 0.109
Bootstrap 5% c.v. 3.100 3.545 18.894
Bootstrap p-value 0.847 0.231 0.432
BC bootstrap 5% c.v. 3.173 3.825 21.812
BC bootstrap p-value 0.858 0.255 0.473
IM q = 8 0.001 0.175 0.054 0.784 0.843
IM q = 16 0.957 0.010 0.574 0.363 0.281

Predictive regressions for annual excess bond returns, averaged over two- through ten-year bond

maturities, using yield PCs and two macro variables that are described in the text. Results in the

top panel are for the same sample period used in Joslin et al. (2014); the data used for the bottom

panel is extended to December 2015. HAC statistics and p-values are calculated using Newey-West

standard errors with 18 lags. The column “Wald” reports results for the χ2 test that GRO and

INF have no predictive power; the other columns report results for individual t-tests. We obtain

bootstrap distributions of the test statistics under the null hypothesis that GRO and INF have no

predictive power—the main text describes the design of the simple and bias-corrected (BC)

bootstraps. Critical values (c.v.’s) are the 95th percentile of the bootstrap distribution of the test

statistics, and p-values are the frequency of bootstrap replications in which the test statistics are at

least as large as in the data. We also report p-values for t-tests using the methodology of Ibragimov

and Müller (2010) (IM), splitting the sample into either 8 or 16 blocks. Under Size we report

estimates of the size of the tests, based on simulations from the simple bootstrap under the null

hypothesis. Under Power we report power estimates using a bootstrap under the alternative

hypothesis, as described in the text. p-values below 5% are emphasized with bold face.

39



Table 4: In-sample vs. out-of-sample predictive power

In-sample Out-of-sample

R2
1 R2

2 MSE-ratio Start N MSE-ratio DM p-value

Joslin-Priebsch-Singleton 0.191 0.380 0.760 2009:1 72 2.392 0.045
Ludvigson-Ng 0.259 0.360 0.850 2008:1 84 0.751 0.365
Cieslak-Povala 0.149 0.489 0.599 2012:1 36 12.073 0.253
Cochrane-Piazzesi 0.267 0.344 0.891 2004:1 132 1.202 0.127

In-sample vs. out-of-sample (OOS) predictive power for excess bond returns (averaged across
maturities) of a restricted model with three PCs and an unrestricted model with additional
predictors as suggested in each of four published studies. The in-sample period is the original
sample period used in each study. The OOS period starts 13 months after the end of the in-sample
period and ends in December 2015. N indicates the number of OOS observations. The columns
also show in-sample R2 for the restricted and unrestricted model, the in-sample ratio of
mean-squared-errors (MSE) for the unrestricted relative to the restricted model, and the OOS MSE
ratio, as well as the p-value of the Diebold-Mariano (DM) test for equal forecast accuracy.
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Table 6: Cieslak-Povala: statistical inference in excess-return regressions

PC1 PC2 PC3 τ

Original sample: 1971–2011
Only yield PCs
Coefficient 0.003 0.293 -0.028
RR t-statistic 0.505 2.266 -0.338
RR p-value 0.614 0.024 0.735
Yield PCs plus inflation trend
Coefficient 0.191 0.604 0.341 -1.019
RR t-statistic 5.429 5.367 1.240 -6.173
RR p-value 0.000 0.000 0.215 0.000
BC bootstrap RR 5% c.v. 3.572
BC bootstrap RR p-value 0.001
IM q = 8 0.001 0.026 0.046 0.240
IM q = 16 0.000 0.033 0.523 0.823
Size

RR 0.445
IM q = 8 0.138
IM q = 16 0.136

Power
IM q = 8 0.406
IM q = 16 0.478

Later sample: 1985–2015
Only yield PCs
Coefficient 0.023 0.221 0.321
RR t-statistic 1.985 1.194 0.814
RR p-value 0.048 0.233 0.416
Yield PCs plus inflation trend
Coefficient 0.136 0.430 0.645 -0.693
RR t-statistic 4.520 3.449 2.299 -3.694
RR p-value 0.000 0.001 0.022 0.000
BC bootstrap RR 5% c.v. 3.619
BC bootstrap RR p-value 0.043
IM q = 8 0.003 0.896 0.156 0.649
IM q = 16 0.001 0.103 0.964 0.584

Predictive regressions for annual excess bond returns (weighted average over two- through ten-year

bond maturities) using yield PCs and a moving-average estimate of inflation trend. The data used

for the top panel covers the same sample period as in Cieslak and Povala (2015); the data used for

the bottom panel starts in 1985 and ends in 2015. Reverse regression (RR) statistics and p-values

are calculated using the reverse regression delta method of Wei and Wright (2013). We obtain

bootstrap distributions of the test statistics under the null hypothesis that only PCs have

predictive power, in order to calculate bootstrap critical values and p-values, and to estimate the

size of tests. We also report p-values for t-tests using the methodology of Ibragimov and Müller

(2010) (IM), splitting the sample into either 8 or 16 blocks. The last two rows of the top panel

report the power of the IM test using a bootstrap under the alternative hypothesis. See the text for

a description of the bootstrap designs. p-values below 5% are emphasized with bold face.
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Table 7: Cochrane-Piazzesi: statistical inference in excess-return regressions

PC1 PC2 PC3 PC4 PC5 Wald

Original sample: 1964–2003
Data 0.127 2.740 -6.307 -16.128 -2.038
HAC statistic 1.724 5.205 2.950 5.626 0.748 31.919
HAC p-value 0.085 0.000 0.003 0.000 0.455 0.000
Bootstrap 5% c.v. 2.263 2.198 8.183
Bootstrap p-value 0.000 0.491 0.000
IM q = 8 0.003 0.013 0.988 0.063 0.161
IM q = 16 0.000 0.020 0.605 0.876 0.126
Size

HAC 0.085 0.075 0.106
Bootstrap 0.051 0.052 0.055
IM q = 8 0.048 0.045
IM q = 16 0.051 0.041

Power
Bootstrap 0.996 0.151 0.992
IM q = 8 0.992 0.109
IM q = 16 0.995 0.123

Later sample: 1985–2015
Data 0.105 1.595 3.512 -9.049 -9.537
HAC statistic 1.862 2.248 0.990 -1.328 -1.291 4.020
HAC p-value 0.063 0.025 0.323 0.185 0.198 0.134
Bootstrap 5% c.v. 2.435 2.396 9.639
Bootstrap p-value 0.276 0.282 0.264
IM q = 8 0.001 0.245 0.116 0.675 0.201
IM q = 16 0.001 0.077 0.301 0.150 0.865

Predicting annual excess bond returns, averaged over two- through five-year bonds, using principal
components (PCs) of yields. The null hypothesis is that the first three PCs contain all the relevant
predictive information. The data used in the top panel is the same as in Cochrane and Piazzesi
(2005)—see in particular their table 4. HAC statistics and p-values are calculated using
Newey-West standard errors with 18 lags. Bootstrap distributions are obtained under the null
hypothesis, using the bootstrap procedure described in the main text. We also report p-values for
t-tests using the methodology of Ibragimov and Müller (2010) (IM), splitting the sample into either
8 or 16 blocks. Under Size we report estimates of the size of the tests based on the bootstrap
samples. Under Power we report power estimates using a bootstrap under the alternative
hypothesis, as described in the text. p-values below 5% are emphasized with bold face.
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Figure 1: Size distortions and sample size in simulation study
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Figure 2: Cieslak-Povala: ten-year yield and inflation trend
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Bold line: yield on 10-year bond. Thin line: trend inflation as estimated by equation 17.

45



Figure 3: Cieslak-Povala: predictive power across subsamples
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Figure 4: Cochrane-Piazzesi: predictive power across subsamples
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Appendix

A Derivations of theoretical results

A.1 Derivations for Section 2.1

Let y = (y1+h, y2+h, ..., yT+h)
′ and stack x′1t and x′2t into (T × K1) and (T × K2) matrices

denoted X1 and X2. Note that the OLS estimates of equation (1) satisfy[
X ′1X1 X ′1X2

X ′2X1 X ′2X2

] [
b1
b2

]
=

[
X ′1y
X ′2y

]
.

Premultiply the first row by X ′2X1(X
′
1X1)

−1 and subtract the result from the second,

(X ′2M1X2)b2 = X ′2M1y,

for M1 = IT −X1(X
′
1X1)

−1X ′1. Using the fact that M1 is symmetric and idempotent we have

X ′2M1X2 = (M1X2)
′M1X2 =

∑
x̃2tx̃

′
2t (18)

b2 =
(∑

x̃2tx̃
′
2t

)−1 (∑
x̃2tyt+h

)
. (19)

Substituting equation (1) into (19) and using the facts that
∑
x̃2tx

′
1t = 0 (by the orthogonality

property of residuals) and that
∑
x̃2tx

′
2t =

∑
x̃2tx̃

′
2t (again by idempotence of M1) gives

b2 = β2 +
(∑

x̃2tx̃
′
2t

)−1 (∑
x̃2tut+h

)
(20)

from which the Wald test is

(b2 − β2)′s−2
∑T

t=1x̃2tx̃
′
2t(b2 − β2)

=
(∑T

t=1
ut+1x̃

′
2t

)(
s2
∑T

t=1
x̃2tx̃

′
2t

)−1 (∑T

t=1
x̃2tut+1

)
as claimed in (2)

Note that if u|X1, X2 ∼ N(0, σ2
uIT ), then K−12 times expression (2) would have an ex-

act F (K2, T − K1 − K2) distribution for every sample size T and any stationary or nonsta-
tionary process for x2t. Under the weaker assumption that E(ut+1|xt, xt−1, ..., x1) = 0 but
E(ut|xt, xt−1, ..., x1) 6= 0, the Wald statistic (2) will still be asymptotically χ2(K2) under stan-
dard first-order stationary asymptotics, as can be seen from equation (35) below for the special
case h = 1 and S = σ2

uQ. The problems arise when x1t is correlated with ut and furthermore xt
is highly persistent. In the case of unit-root processes these problems give (2) an asymptotic
distribution that is not χ2(K2), and for near-unit-root processes they cause the small-sample
distribution to be quite different from a χ2(K2).
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The unit-root derivations this next paragraph assume a functional central limit theorem
T−1/2xi,[Tλ] ⇒ Bi(λ) for i = 1, 2 with 0 ≤ λ ≤ 1, [Tλ] the largest integer less than or equal to
Tλ, Bi(λ) Ki-dimensional Brownian motion, and⇒ denoting weak convergence in probability
measure. From the FCLT and the Continuous Mapping Theorem,

ÂT =

[
T−1

∫ 1

0

x2,[Tλ]x
′
1,[Tλ]dλ

] [
T−1

∫ 1

0

x1,[Tλ]x
′
1,[Tλ]dλ

]−1
⇒
[∫ 1

0

B2(λ)B1(λ)′dλ

] [∫ 1

0

B1(λ)B1(λ)′dλ

]−1
≡ Ã.

Notice that ∑T

t=1
x̃2tut+1 =

∑T

t=1
x2tut+1 − ÂT

∑T

t=1
x1tut+1

=
∑T

t=1
x2tut+1 −

∑T

t=1
x2tx

′
1tZT (21)

for ZT =
(∑T

t=1 x1tx
′
1t

)−1 (∑T
t=1 x1tut+1

)
If x1t is a unit-root process that is correlated with

the lag of ut+1, ZT will have a nonstandard distribution. For example, if x1t is a scalar
random walk with x1,t+1 = x1t + ut+1, then ZT has the same distribution as ρ̂T − 1 where
ρ̂T is the OLS coefficient from a regression of x1,t+1 on x1t, a distribution with a negative
bias that is well-known from unit root regressions.49 If x2t is uncorrelated with x1t, then
unlike the Dicky-Fuller distribution, the second term in (21) is symmetric around zero and is
uncorrelated with the first term, so that the variance of

∑T
t=1 x̃2tut+1 is strictly greater than

that of
∑T

t=1 x2tut+1.

A.2 Derivations for Section 2.2

For our local-to-unity results we assume as in Stock (1994, eq (2.17)) that T−1/2xi,[Tλ] ⇒
σiJci(λ). We first note from Phillips (1988, Lemma 3.1(d)) that

T−2
∑

(x1t − x̄1)2 ⇒ σ2
1

{∫ 1

0

[Jc1(λ)]2dλ−
[∫ 1

0

[Jc1(λ)]dλ

]2}
= σ2

1

∫
[Jµc1 ]

2

where in the sequel our notation suppresses the dependence on λ and lets
∫

denote integration
over λ from 0 to 1. The analogous operation applied to the numerator of (7) yields

AT =
T−2

∑
(x1t − x̄1)(x2t − x̄2)

T−2
∑

(x1t − x̄1)2
⇒

σ1σ2
∫
Jµc1J

µ
c2

σ2
1

∫
[Jµc1 ]2

49See for example Hamilton (1994, eq [17.4.7])
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as claimed in (7). Also

T−1/2x̄2 = T−3/2
∑
x2t =

∫ 1

0

T−1/2x2,[Tλ]dλ⇒ σ2

∫ 1

0

Jc2(λ)dλ.

Since x̃2t = x2t − x̄2 − AT (x1t − x̄1),

T−1/2x̃2,[Tλ] ⇒ σ2

{
Jc2(λ)−

∫ 1

0

Jc2(s)ds− A
[
Jc1(λ)−

∫ 1

0

Jc1(s)ds

]}
= σ2

{
Jµc2(λ)− AJµc1(λ)

}
= σ2Kc1,c2(λ)

T−2
∑
x̃22t =

∫ 1

0

{T−1/2x̃2,[Tλ]}2dλ⇒ σ2
2

∫ 1

0

{Kc1,c2(λ)}2 dλ. (22)

Note we can write  ε1t
ε2t
ut

 =

 σ1 0 0
0 σ2 0

δσu 0
√

1− δ2σu

 v1t
v2t
v0t


where (v1t, v2t, v0t)

′ is a martingale-difference sequence with unit variance matrix. From
Lemma 3.1(e) in Phillips (1988) we see

T−1
∑
x̃2tut+1 = T−1

∑
[x2t − x̄2 − AT (x1t − x̄1)](δσuv1,t+1 +

√
1− δ2σuv0,t+1)

⇒ δσ2σu

∫
Kc1,c2dW1 +

√
1− δ2σ2σu

∫
Kc1,c2dW0. (23)

Recalling (2), the t-test of a true null hypothesis about β2 can be written as

τ =

∑
x̃2tut+1

{s2
∑
x̃22t}

1/2
=

T−1
∑
x̃2tut+1

{s2T−2
∑
x̃22t}

1/2
(24)

where
s2

p→ σ2
u. (25)

Substituting (25), (23), and (22) into (24) produces

τ ⇒
σ2σu

{
δ
∫
Kc1,c2dW1 +

√
1− δ2

∫
Kc1,c2dW0

}{
σ2
uσ

2
2

∫
(Kc1,c2)

2
}1/2

as claimed in (8).
Last we demonstrate that the variance of Z1 exceeds unity. We can write

Z1 =

∫ 1

0
Jµc2(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
−

A
∫ 1

0
Jµc1(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2
(26)
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Consider the denominator in these expressions, and note that∫ 1

0

[Jµc2(λ)]2dλ =

∫ 1

0

[Jµc2(λ)− AJµc1(λ) + AJµc1(λ)]2dλ

=

∫ 1

0

[Kc1,c2(λ)]2dλ+

∫ 1

0

[AJµc1(λ)]2dλ

>

∫ 1

0

[Kc1,c2(λ)]2dλ

where the cross-product term dropped out in the second equation by the definition of A in
(7). This means that the following inequality holds for all realizations:∣∣∣∣∣∣∣

∫ 1

0
Jµc2(λ)dW1(λ){∫ 1

0
[Kc1,c2(λ)]2dλ

}1/2

∣∣∣∣∣∣∣ >
∣∣∣∣∣∣∣
∫ 1

0
Jµc2(λ)dW1(λ){∫ 1

0
[Jµc2(λ)]2dλ

}1/2

∣∣∣∣∣∣∣ . (27)

Adapting the argument made in footnote 13, the magnitude inside the absolute-value operator
on the right side of (27) can be seen to have a N(0, 1) distribution. Inequality (27) thus
establishes that the first term in (26) has a variance that is greater than unity. The second
term in (26) turns out to be uncorrelated with the first, and hence contributes additional
variance to Z1, although we have found that the first term appears to be the most important
factor.50 In sum, these arguments show that Var(Z1) > 1.

A.3 Derivations for Section 2.3

First consider the case when ρ1 = ρ2 = 1, µ1 = 0, µ2 6= 0, and Corr(ε1t, ut) = 1. Then
T−1/2x1,[Tλ] ⇒ σ1W1(λ) for W1(λ) standard Brownian motion, T−1/2

∑T
t=1ut+1 ⇒ σ1W1(1),

while x2t = µ2t +
∑t

s=1ε2s gives T−1x2,[Tλ] ⇒ µ2λ as in Hamilton (1994, pp. 495-497). Let

xt = (1, x1t, x2t)
′ so b = β +

(∑T
t=1xtx

′
t

)−1∑T
t=1xtut+1. Define

ΥT =

 T 1/2 0 0
0 T 0
0 0 T 3/2

 .
50These claims are based on moments of the respective functionals as estimated from discrete approximations

to the Ornstein-Uhlenbeck processes.
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Then very similar algebra to that in Hamilton (1994, pp. 498-500) gives

ΥT (b− β) =
[
Υ−1T

∑
xtx
′
tΥ
−1
T

]−1 [
Υ−1T

∑
xtut+1

]
⇒

 1 σ1
∫
W1(λ) µ2/2

σ1
∫
W1(λ) σ2

1

∫
[W1(λ)]2 µ2σ1

∫
λW1(λ)

µ2/2 µ2σ1
∫
λW1(λ) µ2

2/3

−1  σ1W1(1)
(1/2)σ2

1[W 2(1)− 1]
µ2σ1[W1(1)−

∫
W1(λ)]


=

 σ1 0 0
0 1 0
0 0 σ1/µ2

 1
∫
W1(λ) 1/2∫

W1(λ)
∫

[W1(λ)]2
∫
λW1(λ)

1/2
∫
λW1(λ) 1/3

−1  W1(1)
(1/2)[W 2(1)− 1]
W1(1)−

∫
W1(λ)

 .
Observe that the middle element, T (b1−β1) is the identical distribution as that of T (ρ̂−1) in
the Case 4 unit root distribution in Hamilton (1994, p. 499), and the t-statistic (b1 − β1)/σ̂b1
is identical to the Case 4 Dickey-Fuller t statistic (Hamilton (1994, eq [17.4.55])).

Consider next the case when ρ1 = ρ2 = 1, µ1 6= 0, µ2 6= 0, Corr(ε1t, ut) = 1, and
Corr(ε1t, ε2s) = 0 for all s. Let’s evaluate first the characteristics of a transformed regression
of yt+1 on x̃t = Hxt for

H =

 1 0 0
0 1 −µ1/µ2

0 0 1


b̃ = (

∑
x̃tx̃
′
t)
−1∑x̃tyt+1 = (H ′)−1b

β̃ = (H ′)−1β.

Then

x̃1t = x1t − (µ1/µ2)x2t

= µ1t+
∑t

s=1ε1s − (µ1/µ2)
(
µ2t+

∑t
s=1ε2s

)
=
∑t

s=1ε1s − (µ1/µ2)
∑t

s=1ε2s

and

T−1/2x̃1,[Tλ] ⇒ σ1W1(λ)− (µ1/µ2)σ2W2(λ)

≡ κ(λ)

ΥT (b̃− β̃)⇒

 1
∫
κ(λ) µ2/2∫

κ(λ)
∫

[κ(λ)]2 µ2

∫
λκ(λ)

µ2/2 µ2

∫
λκ(λ) µ2

2/3

−1  σ1W1(1)
σ1
∫
κ(λ)dW1

µ2σ1[W1(λ)−
∫
W1(λ)]

 .
The middle element, T (b̃1 − β1), has a distribution that approaches the Dickey-Fuller Case 4
as σ2 → 0 and is a related unit-root distribution for general σ2 > 0.

Translating back in terms of the original regression, we have b = H ′b̃, b1 = b̃1,

b2 = b̃2 − (µ1/µ2)b̃1 = b̃2 − (µ1/µ2)b1
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T (b2 − β2) = T (b̃2 − β̃2)− (µ1/µ2)T (b1 − β1)
⇒ 0− (µ1/µ2)T (b1 − β1)

since T 3/2(b̃2−β̃2) ∼ Op(1). Thus b2−β2 has the same asymptotic distribution as−(µ1/µ2)(b1−
β1), with t-tests on either b1 or b2 having a distribution related to the Dickey-Fuller Case 4.
When x1t and x2t share the same trend (µ1 = µ2), the distribution of b2 will simply be the
negative of that of b1.

By contrast, if we were to regress yt+1 = β0 + β1x1t + ut+1 on x1t alone, or yt+1 = β0 +
β2x2t + ut+1 on x2t alone, t-tests on β1 or β2 would be asymptotically N(0, 1), from the same
algebra as in Hamilton (1994, pp. 495-497). Thus for example if the true β1 6= 0 and β2 = 0,
when we do the regression on x1t alone we would have perfectly appropriate tests about β1,
but if we add x2t to the regression, tests about both β1 and β2 become distorted and x2t could
spuriously appear to be helpful in improving the estimate of β1.

A.4 Derivations for Section 2.4

Note from (18) that∑
x̃2tx̃

′
2t =

∑
x2tx

′
2t − (

∑
x2tx

′
1t) (
∑
x1tx

′
1t)
−1

(
∑
x1tx

′
2t) .

If xt is covariance-stationary and ergodic for second moments,

T−1
∑
x̃2tx̃

′
2t = T−1

∑
x2tx

′
2t −

(
T−1

∑
x2tx

′
1t

) (
T−1

∑
x1tx

′
1t

)−1 (
T−1

∑
x1tx

′
2t

)
p→ E(x2tx

′
2t)− E(x2tx

′
1t) [E(x1tx

′
1t)]
−1
E(x1tx

′
2t)

= E(x2tx
′
2t) ≡ Q (28)

with the last line following from the assumption that x1t and x2t are uncorrelated. From (20)
we also know

T 1/2(b2 − β2) =
(
T−1

∑
x̃2tx̃

′
2t

)−1 (
T−1/2

∑
x̃2tut+h

)
(29)

where
T−1/2

∑
x̃2tut+h = T−1/2

∑
x2tut+h − ATT−1/2 (

∑
x1tut+h) .

But if E(x2tx
′
1t) = 0, then plim(AT ) = 0, meaning

T−1/2
∑
x̃2tut+h

d→ T−1/2
∑
x2tut+h.

This will be recognized as
√
T times the sample mean of a random vector with population

mean zero, for which the Central Limit Theorem would take the form

T−1/2
∑
x̃2tut+h

d→ r ∼ N(0, S) (30)

for S given in (12). Combining results (28), (29) and (30) gives (11).
To derive (13), let b = (b′1, b

′
2)
′ denote the OLS coefficients when the regression includes

both x1t and x2t and b∗1 the coefficients from an OLS regression that includes only x1t. The
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sum of squared residuals from the latter regression can be written

SSR1 =
∑

(yt+h − x′1tb∗1)2

=
∑

(yt+h − x′tb+ x′tb− x′1tb∗1)2

=
∑

(yt+h − x′tb)2 +
∑

(x′tb− x′1tb∗1)2

where all summations are over t = 1, ..., T and the last equality follows from the orthogonality
property of OLS. Thus the difference in SSR between the two regressions is

SSR1 − SSR2 =
∑

(x′tb− x′1tb∗1)2. (31)

It’s also not hard to show that the fitted values for the full regression could be calculated as51

x′tb = x′1tb
∗
1 + x̃′2tb2. (32)

Thus from (31) and (32),
SSR1 − SSR2 =

∑
(x̃′2tb2)

2.

If the true value of β2 is zero, then (20) becomes

b2 = (
∑
x̃2tx̃

′
2t)
−1

(
∑
x̃2tut+h) (33)

SSR1 − SSR2 = b′2 (
∑
x̃2tx̃

′
2t) b2

=
(
T−1/2

∑
ut+hx̃

′
2t

) (
T−1

∑
x̃2tx̃

′
2t

)−1 (
T−1/2

∑
x̃2tut+h

)
. (34)

Results (28) and (30) then establish

SSR1 − SSR2
d→ r′Q−1r. (35)

Recall that R2 is defined as

R2 = 1− SSR∑T
t=1(yt+h − ȳh)2

so the difference in R2 is

R2
2 −R2

1 =
(SSR1 − SSR2)∑T
t=1(yt+h − ȳh)2

.

51The easiest way to confirm the claim is to show that the residuals implied by (32) satisfy the orthogonality
conditions required of the original full regression, namely, that they are orthogonal to x1t and x2t. That the
residual yt+h − x′1tb∗1 − x̃′2tb2 is orthogonal to x1t follows from the fact that yt+h − x′1tb∗1 is orthogonal to x1t
by the definition of b∗1 while x̃2t is orthogonal to x1t by the construction of x̃2t. Likewise yt+h − x̃′2tb2 is
orthogonal to x̃2t by (19), and since x1t is again orthogonal to x̃2t by the construction of x̃2t, it follows that
yt+h−x′1tb∗1− x̃2tb2 is orthgonal to x̃2t. Since yt+h−x′1tb∗1− x̃′2tb2 is orthogonal to both x1t and x̃2t, it is also
orthogonal to x2t = x̃2t +ATx1t.
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Thus from (34),

T (R2
2 −R2

1) =
(SSR1 − SSR2)∑

(yt+h − ȳh)2/T
d→ r′Q−1r

γ

as claimed in (13).

B Additional empirical results

B.1 Additional results for Joslin-Priebsch-Singleton

In Table B.1 we show additional results for the R̄2 in predictive regressions with three yield
PCs and the macro variables GRO and INF proposed by Joslin et al. (2014). The dependent
variables are the annual excess returns for bonds with maturity from two to ten years. That
is, Table B.1 reports the same results for each individual bond which Table 2 reports in its
top panel for the average excess return across bond maturities. To economize on space we
only show the bootstrap results for the bias-corrected (BC) bootstrap.

The results in Table B.1 show that for all bond maturities, the increase in R̄2 when macro
variables are added is often large although the spanning hypothesis is true in population.
While for the two- to four-year bonds, the increase in R̄2 in the data is larger than the upper
bound of the 95%-bootstrap interval, for the remaining bonds this statistic is within this
interval, meaning that there is no statistical evidence against the spanning hypothesis.

B.2 Additional results for Ludvigson-Ng

LN also constructed a single return-forecasting factor using a similar approach as Cochrane and
Piazzesi (2005). They regressed the excess bond returns, averaged across the two- through
five-year maturities, on the macro factors plus a cubed term of F1 which they found to
be important. The fitted values of this regression produced their return-forecasting factor,
denoted by H8. Adding H8 to a predictive regression that includes the Cochrane-Piazessi
factor CP substantially increases the R̄2, and leads to a highly significant coefficient on H8.
LN emphasized this result and interpreted it as further evidence that macro variables have
predictive power beyond the information in the yield curve.

Tables B.2 and B.3 replicate LN’s results for these regressions on the macro- (H8) and
yield-based (CP ) return-forecasting factors.52 Table B.2 shows coefficient estimates and sta-
tistical significance, while Table B.3 reports R̄2. In LN’s data, both CP and H8 are strongly
significant with HAC p-values below 0.1%. Adding H8 to the regression increases the R̄2 by
9-11 percentage points.

One advantage of our bootstrap approach is that we can calculate the small-sample prop-
erties under the null hypothesis of complicated transformations of the original data such as
these. To this end, we simply add an additional step in the construction of our artificial data
by calculating CP and H8 in each bootstrap data set as the fitted values from preliminary
regressions in the exact same way that LN did in the actual data.

52These results correspond to those in column 9 in tables 4-7 in LN.
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Table B.2 shows that the observed increases in R̄2 when adding H8 to the regression
are generally within the 95% bootstrap confidence interval. That is, although LN find large
increases in R̄2 using these same regression specifications, this is not convincing evidence
against the spanning hypothesis, as such increases in goodness-of-fit are perfectly plausible
under the null hypothesis.

According to the bootstrap p-values for the coefficients on H8 in Table B.3, the macro
return-forecasting factor is no longer significant at the 1% level. Furthermore, the size dis-
tortions for conventional t-tests are very substantial: a test with nominal size of five percent
based on asymptotic HAC p-values has a true size of 58-61 percent. This evidence suggests
that conventional HAC inference can be particularly problematic when the predictors are
return-forecasting factors. Table B.3 also shows that the bootstrap test has good size and
power.

We also examined the same regressions over the 1985–2015 sample period with results
shown in the right half of Table B.2 and in the bottom panel of Table B.3. The observed
increases in R̄2 are squarely in line with what we would expect under the spanning hypothesis,
as indicated by the confidence intervals in Table B.2. The return-forecasting factors would
again appear to be highly significant based on HAC p-values, but the size distortions of these
tests are again very substantial and the coefficients onH8 are in fact not statistically significant
when using the bootstrap p-values.

This evidence suggests that conventional HAC inference can be particularly problematic
when the predictors are return-forecasting factors. One reason for the substantially distorted
inference is their high persistence; H8 and CP have autocorrelations that are around 0.8, and
decline only slowly with the lag length. Another reason is that the return-forecasting factors
are constructed in a preliminary estimation step, which introduces additional estimation un-
certainty not accounted for by conventional inference. In such a setting other econometric
methods—preferably a bootstrap exercise designed to assess the relevant null hypothesis—are
needed to accurately carry out inference. For the case at hand, we conclude that a return-
forecasting factor based on macro factors exhibits only very tenuous predictive power, much
weaker than indicated by LN’s original analysis and which disappears completely over a dif-
ferent sample period.

B.3 Bond supply: Greenwood-Vayanos

In addition to macro-finance linkages, a separate literature studies the effects of the supply
of bonds on prices and yields. The theoretical literature on the so-called portfolio balance
approach to interest rate determination includes classic contributions going back to Tobin
(1969) and Modigliani and Sutch (1966), as well as more recent work by Vayanos and Vila
(2009) and King (2013). A number of empirical studies document the relation between bond
supply and interest rates during both normal times and over the recent period of near-zero
interest and central bank asset purchases, including Hamilton and Wu (2012), D’Amico and
King (2013), and Greenwood and Vayanos (2014). Both theoretical and empirical work has
convincingly demonstrated that bond supply is related to bond yields and returns.

However, our question here is whether measures of Treasury bond supply contain informa-
tion that is not already reflected in the yield curve and that is useful for predicting future bond
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yields and returns. Is there evidence against the spanning hypothesis that involves measures
of time variation in bond supply? At first glance, the answer seems to be yes. Greenwood
and Vayanos (2014) (henceforth GV) found that their measure of bond supply, a maturity-
weighted debt-to-GDP ratio, predicts yields and bond returns, and that this holds true even
controlling for yield curve information such as the term spread. Here we investigate whether
this result holds up to closer scrutiny. The sample period used in Greenwood and Vayanos
(2014) is 1952 to 2008.53

To estimate the effects of bond supply on interest rates, GV estimate a broad variety of
different regression specifications with yields and returns of various maturities as dependent
variables. Here we are most interested in those regressions that control for the information
in the yield curve. In the top panel of Table B.4 we reproduce their baseline specification
in which the one-year return on a long-term bond is predicted using the one-year yield and
bond supply measure alone. The second panel includes the spread between the long-term and
one-year yield as an additional explanatory variable.54 Like GV we use Newey-West standard
errors with 36 lags.55

If we interpreted the HAC t-test using the conventional asymptotic critical values, the
coefficient on bond supply is significant in the baseline regression in the top panel but is no
longer significant at the conventional significance level of five percent when the yield spread
is included in the regression, as seen in the second panel. But once again there are some
warning flags that raise doubts about the validity of HAC inference. The bond supply variable
is extremely persistent—the first-order autocorrelation is 0.998—and the one-year yield and
yield spread are of course highly persistent as well. This leads us to suspect that the true
p-value likely exceeds the purported 5.8%.

The bond return that GV used as the dependent variable in these regressions is for a hy-
pothetical long-term bond with a 20-year maturity. We do not apply our bootstrap procedure
here because this bond return is not constructed from the observed yield curve.56 Instead we
rely on IM tests to carry out robust inference. Neither of the IM tests finds the coefficient on
bond supply to be statistically significant. In contrast, the coefficient on the term spread is
strongly significant for the HAC test and both IM tests.

We consider two additional regression specifications that are relevant in this context. The
first controls for information in the yield curve by including, instead of a single term spread,
the first three PCs of observed yields.57 It also subtracts the one-year yield from the bond
return in order to yield an excess return. Both of these changes make this specification more
closely comparable to those in the literature. The results are reported in the third panel of
Table B.4. Again, the coefficient on bond supply is only marginally significant for the HAC
t-test, and insignificant for the IM tests. In contrast, the coefficients on both PC1 and PC2
are strongly significant for the IM tests.

53As in JPS, the authors report a sample end date of 2007 but use yields up to 2008 to calculate one-year
bond returns up to the end of 2007.

54These estimates are in GV’s table 5, rows 1 and 6. Their baseline results are also in their table 2.
55There are small differences in our and their t-statistics that we cannot reconcile but which are unimportant

for the results.
56GV obtained this series from Ibbotson Associates.
57These PCs are calculated from the observed Fama-Bliss yields with one- through five-year maturities.
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Finally, we consider the most common specification where yt+h is the one-year excess
return, averaged across two- though five-year maturities. The last panel of Table B.4 shows
that in this case, the coefficient on bond supply is insignificant according to the conventional
Newey-West t-test. Using our bootstrap procedure we find that there is a significant size
distortion for this hypothesis test, and the bootstrap p-value is substantially higher than the
conventional p-value. The IM test suggests that PC1 and PC2 have significant predictive
power for bond returns but fails to reject the spanning hypothesis.

Overall, we find that the results in GV do not constitute evidence against the spanning hy-
pothesis. While bond supply exhibits a strong empirical link with interest rates, its predictive
power for future yields and returns seems to be fully captured by the current yield curve.

B.4 Output gap: Cooper-Priestley

Another widely cited study that appears to provide evidence of predictive power of macro
variables for asset prices is Cooper and Priestley (2008) (henceforth CPR). This paper focuses
on one particular macro variable as a predictor of stock and bond returns, namely the output
gap, which is a key indicator of the economic business cycle. The authors concluded that
“the output gap can predict next year’s excess returns on U.S. government bonds” (p. 2803).
Furthermore, they also claimed that some of this predictive power is independent of the
information in the yield curve, and implicitly rejected the spanning hypothesis (p. 2828).

We investigate the predictive regressions for excess bond returns yt+h using the output gap
at date t−1 (gapt−1), measured as the deviation of the Fed’s Industrial Production series from a
quadratic time trend.58 CPR lagged their measure by one month to account for the publication
lag of the Fed’s Industrial Production data. Table B.5 shows our results for predictions of
the excess return on the five-year bond; the results for other maturities closely parallel these.
The top two panels correspond to the regression specifications that CPR estimated.59 In the
first specification, the only predictor is gapt−1. The second specification also includes C̃P t,
which is the Cochrane-Piazzesi factor CPt after it is orthogonalized with respect to gapt.

60 We
obtain coefficients and R̄2 that are close to those published in CPR. We calculate both OLS
and HAC t-statistics, where in the latter case we use Newey-West with 22 lags as described
by CPR. Our OLS t-statistics are very close to the published numbers, and according to these
the coefficient on gapt−1 is highly significant. However, the HAC t-statistics are only about a
third of the OLS t-statistics, and indicate that the coefficient on gap is far from significant,
with p-values above 20%.61

Importantly, neither of the specifications in CPR can be used to test the spanning hy-
pothesis, because the CP factor is first orthogonalized with respect to the output gap. This
defeats the purpose of controlling for yield-curve information, since any predictive power that
is shared by the CP factor and gap will be exclusively attributed to the latter.62 One way to

58We thank Richard Priestley for sending us this real-time measure of the output gap.
59The relevant results in CPR are in the top panel of their table 9.
60Note that the predictors C̃P t and gapt−1 are therefore not completely orthogonal.
61This indicates that CPR may have mistakenly reported the OLS instead of the Newey-West t-statistics
62In particular, finding a significant coefficient on gap in a regression with C̃P cannot justify the conclusion

that “gap is capturing risk that is independent of the financial market-based variable CP” (p. 2828).
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test the spanning hypothesis is to include CP instead of C̃P , for which we report the results
in the third panel of Table B.5. In this case, the coefficient on gap switches to a positive
sign, and its Newey-West t-statistic remains insignificant. In contrast, both C̃P and CP are
strongly significant in these regressions.

Our preferred specification includes the first three PCs of the yield curve—see the last
panel of Table B.5. The predictor gap is highly persistent, with a first-order autocorrelation
coefficient of 0.975, so there are likely small-sample inference problems. Hence we also include
results for robust inference using the bootstrap and IM tests. The gap variable has a positive
coefficient with a HAC p-value of 19%, which rises to 36% when using our bootstrap procedure.
The conventional HAC t-test is substantially oversized, as evident by the bootstrap critical
value that substantially exceeds the conventional critical value. The IM tests do not reject the
null. Overall, we do not find any evidence that the output gap predicts excess bond returns.
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Table B.1: Joslin-Priebsch-Singleton: R̄2 for excess-return regressions

Original sample: 1985–2008 Later sample: 1985–2015

R̄2
1 R̄2

2 R̄2
2 − R̄2

1 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

Two-year Data 0.14 0.48 0.34 0.13 0.26 0.13
bond BC bootstrap 0.46 0.52 0.05 0.37 0.42 0.05

(0.12, 0.78) (0.17, 0.81) (-0.00, 0.19) (0.09, 0.65) (0.14, 0.68) (-0.00, 0.18)

Three-year Data 0.12 0.41 0.29 0.10 0.22 0.12
bond BC bootstrap 0.41 0.47 0.06 0.32 0.37 0.05

(0.11, 0.72) (0.17, 0.75) (-0.00, 0.22) (0.07, 0.60) (0.11, 0.64) (-0.00, 0.19)

Four-year Data 0.15 0.40 0.26 0.13 0.21 0.08
bond BC bootstrap 0.40 0.46 0.06 0.30 0.36 0.06

(0.10, 0.69) (0.16, 0.72) (-0.00, 0.21) (0.06, 0.57) (0.11, 0.62) (-0.00, 0.20)

Five-year Data 0.16 0.38 0.22 0.14 0.21 0.07
bond BC bootstrap 0.37 0.43 0.06 0.28 0.34 0.06

(0.10, 0.64) (0.15, 0.69) (-0.00, 0.22) (0.06, 0.55) (0.10, 0.59) (-0.00, 0.20)

Six-year Data 0.18 0.39 0.20 0.16 0.22 0.06
bond BC bootstrap 0.37 0.43 0.06 0.29 0.35 0.06

(0.10, 0.65) (0.16, 0.68) (-0.00, 0.22) (0.06, 0.55) (0.11, 0.59) (-0.00, 0.20)

Seven-year Data 0.18 0.37 0.18 0.17 0.23 0.06
bond BC bootstrap 0.34 0.40 0.06 0.27 0.33 0.06

(0.09, 0.60) (0.15, 0.65) (-0.00, 0.22) (0.06, 0.51) (0.10, 0.56) (-0.00, 0.21)

Eight-year Data 0.21 0.38 0.17 0.19 0.24 0.05
bond BC bootstrap 0.34 0.40 0.06 0.27 0.33 0.06

(0.09, 0.58) (0.15, 0.63) (-0.00, 0.22) (0.06, 0.50) (0.11, 0.55) (-0.00, 0.19)

Nine-year Data 0.23 0.39 0.16 0.20 0.25 0.05
bond BC bootstrap 0.34 0.40 0.06 0.28 0.33 0.05

(0.09, 0.58) (0.15, 0.63) (-0.00, 0.22) (0.07, 0.50) (0.12, 0.55) (-0.00, 0.20)

Ten-year Data 0.20 0.36 0.16 0.20 0.26 0.06
bond BC bootstrap 0.32 0.38 0.06 0.28 0.33 0.05

(0.08, 0.56) (0.13, 0.62) (-0.00, 0.24) (0.07, 0.51) (0.11, 0.56) (-0.00, 0.20)

Adjusted R̄2 for regressions of annual excess bond returns on three PCs of the yield curve (R̄2
1) and

on three yield PCs together with the macro variables GRO and INF (R̄2
2), as well as the difference

in adjusted R̄2. The macro data is described in the text. The results in the left half of the table are
for the original sample period of Joslin et al. (2014); the data used in the right half is extended to
December 2015. Each panel reports first the statistics in the data, and then the mean and the
95%-confidence intervals (in parentheses) of the bootstrap small-sample distribution. The
bootstrap, which is explained in the text, imposes the null hypothesis that the macro variables have
no predictive power.
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Table B.2: Ludvigson-Ng: R̄2 for regressions with return-forecasting factors

Original sample: 1964–2007 Preferred sample: 1985–2015

R̄2
1 R̄2

2 R̄2
2 − R̄2

1 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

Two-year bond
Data 0.31 0.42 0.11 0.16 0.23 0.07
Bootstrap 0.21 0.24 0.03 0.30 0.34 0.04

(0.06, 0.39) (0.09, 0.41) (0.00, 0.11) (0.08, 0.54) (0.14, 0.56) (-0.00, 0.14)
Three-year bond
Data 0.33 0.43 0.10 0.15 0.22 0.07
Bootstrap 0.20 0.24 0.04 0.29 0.33 0.05

(0.06, 0.38) (0.09, 0.41) (0.00, 0.11) (0.08, 0.51) (0.13, 0.54) (-0.00, 0.15)
Four-year bond
Data 0.36 0.45 0.09 0.19 0.26 0.06
Bootstrap 0.21 0.25 0.04 0.30 0.34 0.04

(0.07, 0.39) (0.10, 0.42) (0.00, 0.11) (0.09, 0.52) (0.15, 0.54) (-0.00, 0.15)
Five-year bond
Data 0.33 0.42 0.09 0.18 0.23 0.06
Bootstrap 0.21 0.24 0.04 0.28 0.32 0.04

(0.06, 0.39) (0.10, 0.41) (0.00, 0.11) (0.09, 0.50) (0.14, 0.53) (-0.00, 0.15)

R̄2 for regressions of annual excess bond returns on yield and macro factors, as in Ludvigson and

Ng (2010). R̄2
1 is for regressions with only the return-forecasting factor based on yield-curve

information (CP ), R̄2
2 is for regressions that also include the return-forecasting factor based on

macro information (H8). The left side of the table shows results for the original data set used by

Ludvigson and Ng (2010), and the right side shows results for a data sample that starts in 1985 and

ends in 2015. We report the values of the statistics in the data, and the means and 95%-confidence

intervals (in parentheses) for the bootstrap small-sample distributions, obtained under the null

hypothesis that the macro variables have no predictive power. The bootstrap procedure is

described in the main text.
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Table B.3: Ludvigson-Ng: statistical inference in regressions with return-forecasting factors

Two-year bond Three-year bond Four-year bond Five-year bond
CP H8 CP H8 CP H8 CP H8

Original sample: 1964–2007
Coefficient 0.335 0.331 0.645 0.588 0.955 0.776 1.115 0.937
HAC t-statistic 4.429 4.331 4.666 4.491 4.765 4.472 4.371 4.541
HAC p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bootstrap 5% c.v. 3.857 3.968 3.965 3.998
Bootstrap p-value 0.019 0.021 0.023 0.019
Size

HAC 0.579 0.612 0.610 0.594
Bootstrap 0.049 0.059 0.054 0.049

Power
Bootstrap 0.621 0.573 0.555 0.521

Later sample: 1985–2015
Coefficient 0.343 0.334 0.645 0.650 1.066 0.900 1.280 1.073
HAC statistic 2.566 2.698 2.403 2.983 2.805 3.218 2.734 3.256
HAC p-value 0.011 0.007 0.017 0.003 0.005 0.001 0.007 0.001
Bootstrap 5% c.v. 4.226 4.282 4.337 4.212
Bootstrap p-value 0.315 0.248 0.180 0.172

Predictive regressions for annual excess bond returns, using return-forecasting factors based on

yield-curve information (CP ) and macro information (H8), as in Ludvigson and Ng (2010). The

first panel shows the results for their original data and sample period; the second panel uses a data

sample that starts in 1985 and ends in 2015. HAC t-statistics and p-values are calculated using

Newey-West standard errors with 18 lags. We obtain bootstrap small-sample distributions of the

t-statistics under the null hypothesis that macro factors and hence H8 have no predictive power,

and report the bootstrap critical values (c.v.’s) and p-values, as well as estimates of the true size of

conventional HAC t-tests and the bootstrap tests with 5% nominal coverage (see notes to Table 3).

We also report estimates of the power of the bootstrap tests. The bootstrap procedures are

described in the main text. p-values below 5% are emphasized with bold face.

62



Table B.4: Greenwood-Vayanos: predictive power of Treasury bond supply

One-year Term Bond
yield spread PC1 PC2 PC3 supply

Dependent variable: return on long-term bond
Coefficient 1.212 0.026
HAC t-statistic 2.853 3.104
HAC p-value 0.004 0.002
IM q = 8 0.030 0.795
IM q = 16 0.001 0.925

Dependent variable: return on long-term bond
Coefficient 1.800 2.872 0.014
HAC t-statistic 5.208 4.596 1.898
HAC p-value 0.000 0.000 0.058
IM q = 8 0.006 0.013 0.972
IM q = 16 0.000 0.000 0.557

Dependent variable: excess return on long-term bond
Coefficient 0.168 5.842 -6.089 0.013
HAC t-statistic 1.457 4.853 1.303 1.862
HAC p-value 0.146 0.000 0.193 0.063
IM q = 8 0.000 0.003 0.045 0.968
IM q = 16 0.000 0.000 0.023 0.854

Dependent variable: avg. excess return for 2-5 year bonds
Coefficient 0.085 1.669 -4.632 0.004
HAC statistic 1.270 3.156 2.067 1.154
HAC p-value 0.204 0.002 0.039 0.249
Bootstrap 5% c.v. 3.105
Bootstrap p-value 0.448
IM q = 8 0.005 0.134 0.714 0.494
IM q = 16 0.008 0.011 0.611 0.980

Predictive regressions for annual bond returns using Treasury bond supply, as in Greenwood and
Vayanos (2014) (GV). The coefficients on bond supply in the first two panels are identical to those
reported in rows (1) and (6) of Table 5 in GV. HAC t-statistics and p-values are constructed using
Newey-West standard errors with 36 lags, as in GV. The last panel includes bootstrap critical
values and p-values using small-sample distributions generated under the null hypothesis that bond
supply does not contain additional predictive power—the bootstrap procedure is described in the
text. The last two rows in each panel report p-values for t-tests using the methodology of
Ibragimov and Müller (2010), splitting the sample into either 8 or 16 blocks. The sample period is
1952 to 2008. p-values below 5% are emphasized with bold face.
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Table B.5: Cooper-Priestley: predictive power of the output gap

gap C̃P CP PC1 PC2 PC3

Coefficient -0.126
OLS t-statistic 3.224
HAC t-statistic 1.077
HAC p-value 0.282

Coefficient -0.120 1.588
OLS t-statistic 3.479 13.541
HAC t-statistic 1.244 4.925
HAC p-value 0.214 0.000

Coefficient 0.113 1.612
OLS t-statistic 2.940 13.831
HAC t-statistic 1.099 5.059
HAC p-value 0.272 0.000

Coefficient 0.147 0.001 0.043 -0.067
OLS t-statistic 3.524 4.359 11.506 3.690
HAC t-statistic 1.306 1.354 4.362 2.507
HAC p-value 0.192 0.176 0.000 0.012
Bootstrap 5% c.v. 2.933
Bootstrap p-value 0.356
IM q = 8 0.612 0.002 0.011 0.234
IM q = 16 0.243 0.000 0.001 0.064

Predictive regressions for the one-year excess return on a five-year bond using the output gap, as in
Cooper and Priestley (2008) (CPR). C̃P is the Cochrane-Piazzesi factor after orthogonalizing it
with respect to gap, whereas CP is the usual Cochrane-Piazzesi factor. For the predictive
regression, gap is lagged one month, as in CPR. HAC standard errors are based on the Newey-West
estimator with 22 lags. The bootstrap procedure, which does not include bias correction, is
described in the main text. The sample period is 1952 to 2003. p-values below 5% are emphasized
with bold face.
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