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Abstract

The dependence between assets tends to increase when the market declines. This paper

develops a correlation measure focusing on market declines using the expected shortfall (ES),

referred to as the ES-implied correlation, to improve the existing value at risk (VaR)-implied

correlation. Simulations which define period-by-period true correlations show that the ES-

implied correlation is much closer to true correlations than is the VaR-implied correlation with

respect to average bias, standard deviation and root-mean-squared error. More importantly,

this paper develops a series of test statistics to measure and test correlation asymmetries, as

well as to evaluate the impact of weights on the VaR-implied correlation and the ES-implied

correlation. The test statistics indicate that the linear correlation significantly underestimates

correlations between US and other G7 countries during market downturns, and the choice of

weights does not have significant impact on the VaR-implied correlation or the ES-implied

correlation.
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1 Introduction

It is a core principle of portfolio theory that diversification can reduce risk. Risk diversification
depends on assets being less correlated, so that a fall in one investment can be offset by a rise in
another investment. The correlation between assets is traditionally estimated by the linear correla-
tion. However, a number of empirical studies have found that assets tend to fall together when the
market falls. As a correlation measure not distinguishing among market situations, the linear cor-
relation tends to underestimate the dependence between assets when the market falls. As McNeil,
Frey, and Embrechts (2005) pointed out, the linear correlation is only natural in the context of
elliptical models1 since only elliptical models can be fully characterized by a mean vector and a
covariance matrix. On the other hand, it is exactly during market downturns that wealth decreases
and protection is most needed. Underestimating the dependence leads investors to overestimate
their risk diversification and can not protect their wealth when the market declines.

As a consequence, the literature proposes the value at risk (VaR)-implied correlation to esti-
mate asset dependence under different conditions. The VaR-implied correlation equals the linear
correlation when asset returns follow multivariate normal distribution, but captures the increased
correlation between assets during market downturns when asset returns are not from normal dis-
tribution. However, the VaR-implied correlation has a number of disadvantages. First, the risk
measure VaR, on which the VaR-implied correlation is based, does not consider losses beyond
VaR. VaR is a quantile of loss distribution. Although the probability for events in the tails to hap-
pen is very small, these events cause large losses once they happen. Disregarding losses beyond
VaR may cause tail risk, the risk that arises when the possibility of extreme losses is greater than
expected. Yamai and Yoshiba (2005) illustrated several cases where the tail risk of VaR causes
serious problems. Second, VaR is not coherent. Coherence requires the risk of a combination of
individual assets not exceeding the sum of the individual risks, i.e., risk can be reduced by diversi-
fication. According to Artzner, Delbaen, Eber, and Heath (1997, 1999), reasonable risk measures
should be coherent. Third, the VaR-implied correlation is untrustworthy, or even inaccessible
around the centre of asset distributions because the demeaned VaR, the denominator in the formula
of the VaR-implied correlation, is close to 0 around the centre.

Consequently, this paper suggests a development of this style of tail-based measure, the ex-
pected shortfall (ES)-implied correlation, which repairs the above shortcomings of the VaR-implied
correlation. The expected shortfall is the average of losses falling beyond VaR and thus avoids tail
risk. In addition, it is a coherent measure. See Artzner et al. (1999), Acerbi and Tasche (2002)
and Tasche (2002). Inui and Kijima (2005) even showed that expected shortfall is a basic coherent

1The multivariate normal and T distributions are special cases of elliptical distributions. More information about
elliptical distributions could be found in chapter 3 of McNeil et al. (2005).
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measure because it gives the minimum value among the class of plausible coherent risk measures,
and any coherent risk measure is a convex combination of expected shortfalls.

In order to study the possible gains and losses for using the ES-implied correlations, I design
four cases in the simulations. In cases 1 and 2, the linear correlation is appropriate and is used as a
benchmark to judge whether the ES-implied correlation, which allows extra generality, embodies
a large sacrifice when correlation is constant. Cases 3 and 4 illustrate what gains may be possible
to use the ES-implied correlations when the linear correlation is inappropriate. Simulation results
show that the ES-implied correlation does not cause significant sacrifice when the linear correlation
is appropriate, but produces substantial gains when the linear correlation is appropriate. Among all
the cases, the ES-implied correlation is much closer to the true correlation than is the VaR-implied
correlation.

In the empirical analysis, I investigate the relation between equity returns of G7 countries since
previous studies have discovered that correlations between international equity returns increase in
bear markets. See Campbell, Koedijk, and Kofman (2002), Longin and Solnik (2001), and Garcia
and Tsafack (2011). Using the ES-implied correlation, I also find that correlations between US
and other G7 countries are higher during market declines than during normal time.

To measure and test the amount that correlation deviates from the linear correlation during mar-
ket downturns and upturns, I develop a series of H-statistics based on the VaR- and ES-implied
correlations. The statistics from the ES-implied correlation clearly demonstrate that on aver-
age, dependence during market downturns increases significantly, while the test statistics from
the VaR-implied correlation do not point to a clear pattern. The empirical analysis also shows that
correlations tend to decrease during market upturns, but the amount decreased is generally less
economically and statistically significant than the amount increased during market downturns.

Notice that portfolio weights are given as exogenous when computing VaR-implied and ES-
implied correlations. I further develop test statistics to measure and test the impact of the choice of
weights on the implied correlations. Although Cotter and Longin (2011) found little difference in
the VaR-implied correlations from using different weights by eyes, they did not provide a method
to test the significance of the difference. In addition, their paper is limited to estimating correlations
using the pairwise method. According to whether to include a third asset in the portfolio or not,
estimation methods can be classified into pairwise estimation and joint estimation, where pairwise
estimation assigns weights only to the two assets between whom correlation is examined, yet joint
estimation also assigns weights to other assets. Using the test statistics, this paper finds that the
ES-implied correlation is less affected by the choice of weights than is the VaR-implied correlation
even when excluding the centre of distribution, where the VaR-implied correlation is known to be
unstable.

The ES-implied correlation is developed on the literature of the VaR-implied correlation. Campbell

2



et al. (2002) pioneered the VaR-implied correlation and used it to test whether real data follow the
normal distribution. Cotter and Longin (2011) investigated the impact of the portfolio weights,
the type of position, the frequency of data and the probability level on VaR-implied correlations
by using US and UK equity indices. Mittnik (2014) extended the pairwise method used in these
papers to joint estimation.

Besides the VaR-implied correlation, there also exist another two tail-based dependence mea-
sures: the exceedence correlation and the tail dependence coefficient. The exceedance correlation
was pioneered by Longin and Solnik (2001) and studied by Ang and Chen (2002) and Campbell,
Forbes, Koedijk, and Kofman (2008). The exceedance correlation estimates the correlation be-
tween assets conditional on asset returns falling above or below a pre-specified level.2 Although
the exceedance correlation is easy to understand and simple to calculate, Ang and Chen (2002),
Campbell et al. (2002), and Longin and Solnik (2001) noticed that the exceedance correlation has
a conditioning bias. For example, when asset returns follow a multivariate normal distribution
with a given linear correlation, the exceedence correlation does not equal the linear correlation. As
Artavanis (2014) explained, the measure of co-movement depends on the relative performance that
matches good and bad states of assets. Truncating data would leave only one state, thus inducing a
conditioning bias in the exceedance correlation. Figure 1 plots exceedance correlations conditional
on the quantiles across the distribution when returns are drawn from a bivariate normal distribution
with the actual correlation of 0.5. It appears that exceedance correlations deviate a lot from the
actual correlation. When moving into tails, the exceedance correlation converges to 0. Because of
the conditioning bias, the exceedance correlation needs to be adjusted before measuring correlation
asymmetries.

The tail dependence coefficient calculates the asymptotic probability that one asset provides
extremely small or large returns given another asset provides extreme returns.3 See Garcia and
Tsafack (2011), Patton (2006), and Fortin and Kuzmics (2002) for example. One advantage of
the tail dependence coefficient is that it does not need to choose a threshold as other conditional

2A general form of the exceedance correlation between two variables X and Y at thresholds δ1 and δ2 is

ρ(δ1, δ2) =

{
Corr(X,Y |X ≤ δ1,Y ≤ δ2), δ1 < 0, δ2 < 0
Corr(X,Y |X ≥ δ1,Y ≥ δ2), δ1 ≥ 0, δ2 ≥ 0

3The coefficient of upper tail dependence is

τU = lim
α→0

Pr[FX(x) ≥ α|FY (y) ≥ α]

and the coefficient of lower tail dependence is

τL = lim
α→0

Pr[FX(x) ≤ α|FY (y) ≤ α].
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correlations do. However, this also induces one drawback: as a measure of dependence under
very extreme circumstances, the tail dependence coefficient is realized infrequently. Similar to the
exceedence correlation, the tail dependence coefficient also deviates from the linear correlation
even when returns follow multivariate normal distribution.

Different with the exceedance correlation and tail dependence coefficient, the VaR-implied cor-
relation does not have a conditioning bias. Although the VaR-implied correlation is also defined on
only downside state, it is conditional not only on individual assets’ returns falling beyond a given
threshold, but also on returns of a portfolio composed of the assets falling beyond the threshold.
The condition on the portfolio counteracts the conditioning bias from truncating individual asset
returns and thus makes the VaR-implied correlation free of conditioning bias. This paper will focus
on comparing the performance of the ES-implied correlation with the VaR-implied correlation.

The paper is organized as follows. Section 2 presents the estimation of the ES-implied corre-
lation in two-asset and multi-asset environments, as well as the construction of H-statistics. Sec-
tion 3 reports the results of simulations, which are designed to evaluate the performance of the
ES-implied correlation in comparison with the linear correlation and the VaR-implied correlation.
Section 4 analyzes the dependence between US and other G7 countries conditional on different
market situations and illustrates how to apply the ES-implied correlation in risk management and
asset allocation. Section 5 concludes.

2 Method

2.1 Pairwise method of the VaR-implied and ES-implied correlations

This section presents a pairwise method of the ES-implied correlation, where I only consider two
individual assets and their correlation. As a background to the discussion, I first introduce the
VaR-implied correlation.

VaR is a function of losses. The loss L is usually given as the negative of returns. The VaR at
confidence level α is defined as the minimum value such that the probability of not exceeding this
value at least equals α. Formally,

VaR(L)α = inf{l|P(L ≤ l) ≥ α}, (1)

In other words, VaR is the α-quantile of the loss distribution. To simplify the notation, qα is used
to denote VaRα in the following.

Let r1 and r2 be the returns of two assets and rp be the return of a portfolio which is composed
of the two assets with weights w1 and w2, where w1 + w2 = 1. Assume that the loss distribution of
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asset i belongs to a location-scale family and is characterized by a location parameter µi, a scale
parameterσi and a zero-location, unit-scale distribution FZi , referred to as the standard distribution,
then

Li = µi +σiZi, (2)

where Zi follows the standard distribution FZi .
The VaR of asset i is

VaRi,α = µi +σiVaR(Zi)α (3)

where VaR(Zi)αis the VaR of the noise variable Zi at α confidence level.
Substituting (3) into

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρσ1σ2, (4)

leads to the standardized VaR-implied correlation

ρVaR,α =
(qp,α−µp

q(Zp)α
)2−w2

1(q1,α−µ1
q(Z1)α

)2−w2
2(q2,α−µ2

q(Z2)α
)2

2w1w2
(q1,α−µ1)(q2,α−µ2)

q(Z1)αq(Z2)α

. (5)

Campbell et al. (2002) removed the standard distributions in equation (5) and pioneered the
VaR-implied correlation:

ρVaR,α =
(qp,α−µp)2−w2

1(q1,α−µ1)2−w2
2(q2,α−µ2)2

2w1w2(q1,α−µ1)(q2,α−µ2)
. (6)

Campbell et al. (2002) used the VaR-implied correlation to examine whether returns are from
normal distribution or not. Mittnik (2014) demonstrated that the VaR-implied correlation is also
able to capture the change in the correlation in the tails.

Since the VaR is well known for not considering losses beyond it and not being coherent, while
the ES remedies these problems, it is natural to develop a correlation measure using the ES. The
ES at confidence level α is defined as the average of losses beyond the VaR, i.e.,

ES (L)α = E(L|L ≥ VaR(L)α) (7)

when the distribution of L is continuous.4

4When the distribution is discontinuous, ES (L)α =
E(L;L≥VaR(L)α)+VaR(L)α(1−α−Pr(L≥VaR(L)α))

1−α . See Acerbi and Tasche
(2002) and McNeil et al. (2005).
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Similarly, given the loss Li = µi +σiZi,

ES i,α = µi +σiES (Zi)α, (8)

where ES (Zi)α is the ES of the noise variable Zi at α confidence level.
Substituting (8) into equation (4) leads to the standardized ES-implied correlation,

ρES ,α =
( ES p,α−µp

ES (Zp)α
)2−w2

1( ES 1,α−µ1
ES (Z1)α

)2−w2
2( ES 2,α−µ2

ES (Z2)α
)2

2w1w2
(ES 1,α−µ1)(ES 2,α−µ2)

ES (Z1)αES (Z2)α

, (9)

The standardized ES-implied correlation only reflects the relation between assets in the second
moment and is equivalent to the linear correlation.

Following Campbell et al. (2002), Cotter and Longin (2011), and Mittnik (2014), this paper
defines the ES-implied correlation as the correlation that removes ES (Zi)α, i = 1,2, p in equation
(9), i.e., the ES-implied correlation is

ρES ,α =
(ES p,α−µp)2−w2

1(ES 1,α−µ1)2−w2
2(ES 2,α−µ2)2

2w1w2(ES 1,α−µ1)(ES 2,α−µ2)
. (10)

Under the assumption of individual assets and the portfolio having the same standard distribu-
tion, equation (10) is equivalent to equation (9). For example, when returns follow normal distribu-
tion, the standardized ES-implied correlation and the ES-implied correlation both equal the linear
correlation. When this assumption does not hold, contrary to the standardized ES-implied corre-
lation, the ES-implied correlation defined in equation (10) reflects the information in the standard
distribution and thereby is referred to as non-standardized.

2.2 Modification of the ES-implied correlation

The traditional definition of the ES is the average of losses falling beyond the corresponding VaR.
However, first, ES 0 = µ, implying that the denominator is close to 0 in equations (9) and (10) when
α is very small, and second, ES only considers the returns beyond the given quantile level, thus
making ES not consider the extreme values of positive returns. Analyzing the dependence between
positive returns is also useful. Thus, this paper defines the ES in two parts. When α < 0.5, the ES
is defined the same as ES , dented by ES −. When α ≥ 0.5, the ES, denoted by ES +, is modified to
be

ES +
α = E(L|L < VaR(L)α). (11)
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The standardized ES-implied correlation is therefore modified to be

ρES ,α =



(
ES +

p,α−µp
ES (Zp)+α

)2−w2
1(

ES +
1,α−µ1

ES (Z1)+α
)2−w2

2(
ES +

2,α−µ2
ES (Z2)+α

)2

2w1w2
(ES +

1,α−µ1)(ES +
2,α−µ2)

ES (Z1)+αES (Z2)+α

,α ≥ 0.5,

(
ES−p,α−µp
ES (Zp)−α

)2−w2
1(

ES−1,α−µ1
ES (Z1)−α

)2−w2
2(

ES−2,α−µ2
ES (Z2)−α

)2

2w1w2
(ES−1,α−µ1)(ES−2,α−µ2)

ES (Z1)−αES (Z2)−α

,α < 0.5.

(12)

The non-standardized ES-implied correlation is modified to be

ρES ,α =


(ES +

p,α−µp)2−w2
1(ES +

1,α−µ1)2−w2
2(ES +

2,α−µ2)2

2w1w2(ES +
1,α−µ1)(ES +

2,α−µ2) ,α ≥ 0.5,

(ES −p,α−µp)2−w2
1(ES −1,α−µ1)2−w2

2(ES −2,α−µ2)2

2w1w2(ES −1,α−µ1)(ES −2,α−µ2) ,α < 0.5.

(13)

The following proves that the modified ES-implied correlations calculated from the left and the
right are the same at α = 0.5.

Proposition 1. The standardized and non-standardized ES-implied correlations are continuous at

α = 0.5.

Proof. From Corollary 3.3 in Acerbi and Tasche (2002), we know that ES is continuous. Thus

lim
α→0.5−

ES + = ES +
0.5. Since ES −0.5 + ES +

0.5 =

∫ 1
0 VaRudu

0.5 = 2µ,

ES −0.5−µ = −(ES +
0.5−µ). (14)

Substituting equation (14) into equations (12) and (13), we can see that lim
α→0.5+

ρES ,α = lim
α→0.5+

ρES ,α =

ρES ,0.5 for both the standardized and non-standardized correlations. �

In the empirical analysis, the VaR-implied correlation violates the [-1,1] correlation interval
frequently. However, due to the fact that the ES is coherent, the ES-implied correlation has the
following good property:

Proposition 2. The ES-implied correlation does not exceed 1 when short selling is not allowed.

Proof. Recall that a risk measure ζ is coherent if it is: 1) subadditive, meaning ζ(L1 + L2) ≤ ζ(L1)+

ζ(L2); 2) positive homogeneous, meaning ζ(wL) = wζ(L) for every w > 0; 3) monotonic, meaning
ζ(L1) ≤ ζ(L2) for L1 ≤ L2; and 4) translation invariant, meaning ζ(L + l) = ζ(L) + l for every l ∈ R.
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When short selling is not allowed,

ES p,α = ES (w1L1 + w2L2)α

≤ ES (w1L1)α+ ES (w2L2)α

= w1ES (L1)α+ w2ES (L2)α

= w1ES 1,α+ w2ES 2,α,

where the inequality holds because of subadditivity and the second equality holds due to positive
homogeneity. Not allowing short selling is for applying positive homogeneity.

Since expected shortfall is a monotonic risk measure, ES α ≥ ES 0, where the latter equals∫ 1
0 VaRudu = µ. Hence,

0 ≤ ES p,α−µ ≤ w1(ES 1,α−µ) + w2(ES 2,α−µ). (15)

Thus under the assumption of no short selling, ρES ,α ≤ 1 when α < 0.5.
To prove ρES ,α ≤ 1 when α ≥ 0.5, I express ES +

α as the traditional expected shortfall ES α:

ES +
α −µ =

∫ 1
0 VaRudu−

∫ 1
α

VaRudu

α
−µ = −

1−α
α

(ES α−µ). (16)

The following holds after substituting equation (16) into equation (15):

0 ≥ ES +
p,α−µ ≥ w1(ES +

1,α−µ) + w2(ES +
2,α−µ). (17)

Thus ρES ,α ≤ 1 also holds when α ≥ 0.5. �

Equation (16) also implies that the ES-implied correlation is symmetric around α = 0.5 when
the return distribution is symmetric.

2.3 Estimation and consistency

To estimate the risk measure-implied correlations, I need to compute the VaR and ES of the in-
dividual assets and the portfolio. There are three main methods to estimate the VaR and ES: the
Gaussian approach, the extreme value theory (EVT) approach and the empirical approach.

The Gaussian approach assumes that returns follow normal distributions. The VaR and ES
are then functions of the mean and the standard deviation. See Castellacci and Siclari (2003)
for an application of this approach. VaR and ES are very easy to compute using this approach.
However, the assumption of normality has been proved unrealistic by many empirical studies. The
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estimated VaR and ES are thus inaccurate. More importantly, it is easy to observe that the implied
correlations estimated by the Gaussian approach actually equal the Pearson linear correlation. So it
is unnecessary to use this approach to estimate the implied correlations since they can be obtained
easily by calculating the linear correlation.

Extreme value theory focuses on the study of the tail behaviour and is used widely to estimate
VaR and ES. See for example Fernandez (2010). However, it is accurate only in the tails. Thus
Danielsson and De Vries (2000) used it along with the empirical method. Under the assumption
that returns follow extreme value distributions, VaR and ES are functions of the parameters of
the extreme value distributions. Generally, there are two methods to estimate the extreme value
distribution, block maxima method (BMM) and peak over threshold (POT). Fitting the extreme
value distribution requires specifying either the size of the block or the threshold. An inappropriate
choice of block size or threshold will cause inaccurate estimation. Thus this paper does not employ
this approach to estimate VaR or ES.

The empirical approach uses the empirical distribution of the data to approximate the actual
distribution. Fernandez (2010) and Danielsson and De Vries (2000) found that this approach gen-
erates smaller errors than the Gaussian approach. More importantly, the empirical approach is
parameter free and easy to implement. If even the VaR- and ES-implied correlations computed
by using this simple approach can capture the change in the dependence, the implied correlations
computed by using sophisticated approach would perform better. Thus, this paper chooses the
empirical approach to estimate VaR and ES.

The rest of this section presents the estimation and convergence of the implied correlations. I
start from the estimation of the VaR-implied correlation. Let L j:T be the jth largest value in the
historical losses Lt, t = 1,2, ...,T , F be the cumulative distribution function of losses and FT be the
empirical distribution function. The empirical estimation of VaR at confidence level α is L[αT ]:T ,
where [αT ] is the integer part of αT .

Therefore, the empirical estimate of the VaR-implied correlation

ρ̂VaR,α =
(q̂p,α− µ̂p)2−w2

1(q̂1,α− µ̂1)2−w2
2(q̂2,α− µ̂2)2

2w1w2(q̂1,α− µ̂1)(q̂2,α− µ̂2)

where q̂i,α = Li
[αT ]:T , i = 1,2, p approximates the α-quantiles and the sample mean µ̂i, i = 1,2, p

approximates population means of assets 1, 2, and the portfolio. Shorack and Wellner (2009)
have proved that L[αT ]:T converges to F−1(α) almost surely. Thus ρ̂VaR,α converges to ρVaR,α in
probability when weak law of large number holds and almost surely when strong law holds. When
returns are multivariate normally distributed or they have the same standard distribution FZ , the
VaR-implied correlation is the linear correlation.

For the estimation of the ES-implied correlation, the ES at confidence level less than 0.5 can
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be estimated by
∑T

j=[αT ]+1 L j:T

T−[αT ] and the ES at confidence level exceeding 0.5 can be estimated by∑[αT ]
j=1 L j:T

[αT ] . Acerbi and Tasche (2002) proved that the estimate of the traditional ES converges to the
actual expected shortfall almost surely. Similarly, the estimate of the modified ES also converges
to the actual value of the modified expected shortfall. Therefore, the empirical estimate of the
ES-implied correlation converges to the ES-implied correlation in probability when weak law of
large number holds and almost surely when strong law holds. When standard distributions of the
individual assets and the portfolio are the same, the empirical estimate converges to the linear
correlation.

2.4 Joint estimation of the ES-implied correlation

The above sections have presented the pairwise method of estimating the correlation between two
assets. For n ≥ 1 assets, there exist C(n,2) =

n(n−1)
2 correlations, where C(n,k) denotes the num-

ber of k combinations from n elements. The C(n,2) correlations could either be estimated one
by one, using the pairwise method, or be estimated together. Estimating correlations one by one
may result in a loss of information since other assets in the portfolio may have an impact on the
correlation. Mittnik (2014) found that assigning weights to other assets could improve efficiency
and reduce the frequency with which the VaR-implied correlation violates the [-1,1] interval. Fol-
lowing Mittnik (2014), this section introduces a closed-form solution for estimating the C(n,2)
ES-implied correlations jointly.

Given a portfolio composed of n assets with weights wi, i = 1,2, ...,n,
∑n

i=1 wi = 1,

(ES α,p)2 =

n∑
i=1

n∑
j=1

wiw j(ES α,i)(ES α, j)ρES ,α,i j (18)

holds for demeaned ES.
Denoting the correlation matrix by R, equation (18) can be rewritten as

ES 2
p = (ES �w)′R(ES �w),

where α is dropped in order to simplify notations, ES is a n× 1 vector composed of expected
shortfalls of all assets, w is a n× 1 vector of weights and � is the Schur product, i.e., ES �w =∑n

i=1 wiES i. Bring all the known ρii = 1, i = 1,2, ...,n to the left, then

ẼS 2
p = ES 2

p−

n∑
j=1

w2
j ES 2

j = (ES �w)′(R− I)(ES �w),
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where I is the identity matrix and ẼS 2
p represents excess squared quantiles.

Employing the formula vec(ABC) = (C′⊗A)vec(B), where ⊗ is the Kronecker product and vec

is the conventional vectorization operator, the above equation equals

ẼS 2
p = (ES �w)′⊗ (ES �w)′vec(R− I).

There exists a unique n2×
n(n−1)

2 matrix D composed of zeros and ones such that the vectorization
of R− I equals

vec(R− I) = (0 ρ12 ... ρ1n ρ12 0 ... ρ2n ... ρn−1,n 0)′

= D (ρ12 ... ρ1n ρ23 ... ρ2n ... ρn−1,n)′.

The n(n−1)
2 × 1 vector ρ = (ρ12 ... ρ1n ρ23 ... ρ2n ... ρn−1,n)′ includes all the correla-

tions that need to be estimated.
Therefore, given a weight vector w,

ẼS 2
p = (ES �w)′⊗ (ES �w)′Dρ. (19)

To exactly estimate correlations, n(n− 1)/2 equations are needed. When there are m =
n(n−1)

2

vectors of weights (w1, ...wm),
ẼS 2

p1

...

ẼS 2
pm

 =


(ES �w1)′⊗ (ES �w1)′

...

(ES �wm)′⊗ (ES �wm)′

Dρ.

Denote Q̃ = (ẼS 2
p1
...ẼS 2

pn
)′ and X =


(ES �w1)′⊗ (ES �w1)′

...

(ES �wm)′⊗ (ES �wm)′

D, then the correlation vector is

obtained by

ρ = X−1Q̃. (20)

Equation (20) is referred to as exact identification since every equation in the formula is satisfied
exactly. When assigning weights only to every two assets, correlations calculated from the exact
identification equal correlations calculated from the pairwise method in section 2.1.

When adding the number of weight vectors more than unknown correlations, X would not be a
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square matrix any more. The estimator can be obtained by least squares:

ρ = (X′X)−1X′Q̃. (21)

Equation (21) is referred to as overidentification, where an error term exists so that Q̃ = Xρ+ u

instead of Q̃ = Xρ in the case of exact identification.

2.5 Quantitative measures of correlation asymmetries

Since correlations are found to be asymmetric rather than constant, this section develops a series
of H statistics for measuring and testing the amount that correlation deviates from the linear corre-
lation during market downturns and upturns. The following session presents the downside H, the
upside H, the downside AH, and the upside AH statistics. The downside and upside H statistics
measure the maximum degree to which implied correlations deviate from the linear correlation,
while the downside and upside AH statistics evaluate the average of correlation deviations. Be-
cause the VaR-implied correlation is very unsteady when the probability level is around 0.5 and
the linear correlation is only inappropriate in the tails, the downside and upside statistics are con-
structed to assess correlation asymmetries in intervals of (0, 0.3) and (0.7, 1), respectively.

The downside H statistic is defined as the supremum of deviations of the linear correlation from
tail-based correlations, i.e.,

H−VaR = sup
α∈(0,0.3)

(ρ̂VaR,α− ρ̂) (22)

for the VaR-implied correlation and the downside H statistic for the ES-implied correlation is

H−ES = sup
α∈(0,0.3)

(ρ̂ES ,α− ρ̂), (23)

where ρ̂ denotes the empirical linear correlation, ρ̂VaR,α denotes the empirical VaR-implied corre-
lation, and ρ̂ES ,α denotes the empirical ES-implied correlation.

The upside H statistic evaluates the highest degree to which correlation is overestimated by the
linear correlation in the right tail of return distribution, i.e.,

H+
VaR = sup

α∈(0.7,1)
(ρ̂− ρ̂VaR,α) (24)

for the VaR-implied correlation and

H+
ES = sup

α∈(0.7,1)
(ρ̂− ρ̂ES ,α) (25)
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for the ES-implied correlation.
The downside AH statistic measures the average of correlation asymmetries in the left tail. The

downside AH statistic using the VaR-implied correlation is

AH−VaR =
1

0.3T

∫ 0.3

0
(ρ̂VaR,α− ρ̂)dα, (26)

where 0.3T is the sample size locating in the α ∈ [0,0.3] interval. The downside AH statistic using
the ES-implied correlation is

AH−ES =
1

0.3T

∫ 0.3

0
(ρ̂ES ,α− ρ̂)dα. (27)

The upside AH statistic measures average upside correlation asymmetries. The upside AH statistic
using the VaR-implied correlation is

AH+
VaR =

1
0.3T

∫ 1

0.7
(ρ̂− ρ̂VaR,α)dα (28)

and the upside AH statistic using the ES-implied correlation is

AH+
ES =

1
0.3T

∫ 1

0.7
(ρ̂− ρ̂ES ,α)dα. (29)

The probability level α is assumed to be uniformly distributed between 0 and 1. When α follows
other distributions, the difference between implied correlations and linear correlations is assigned
different weights at different probability levels. For example, Ang and Chen (2002) chose weights
proportional to the number of observations.

Besides evaluating correlation asymmetries numerically and comparing the degree of correla-
tion asymmetries across assets, the largest advantage of the H-statistics is to test the significance
of the difference between correlations under extreme circumstances and normal time. The null hy-
pothesis of the test is that returns follow multivariate normal distribution, under which condition,
there is no difference between linear correlation and tail-based correlations. The alternative hypoth-
esis is that linear correlation underestimates (overestimates) correlations during market downturns
(upturns). Thus when the test statistic is too large, the null hypothesis is rejected.

I employ the Monte-Carlo (MC) method to test the significance of the H statistic and the AH

statistic. The MC method provides a simple way to test statistics whose finite distribution is un-
known, but can be simulated. The idea of the MC method is to obtain the empirical distribution
of the test statistic from simulation and uses it to estimate the cumulative distribution function of
the test statistic. Since originated by Dwass (1957), the MC method has been widely studied. See

13



Dufour (2006), Hastings (1970), and Gilks (2005) for example. Dufour and Kurz-Kim (2010) and
Beaulieu, Dufour, and Khalaf (2014) used it to test parameters in the stable distribution.

Given two assets with sample size n, the following procedures are designed to test the signifi-
cance of correlation asymmetries:

Step A: Estimate test statistics Ĥ, ˆAH, and ρ̂ from the empirical data.
Step B: Draw n pairs of data from the bivariate normal distribution with correlation ρ̂.
Step C: Compute the test statistic, named H(1) for H statistic and AH(1) for AH, from the

simulated data.
Step D: Repeat step B and step C M times and get a sequence of test statistics, H(1), ...,H(M)

and AH(1), ...,AH(M).
Step E: Calculate the p-values, p̂H = 1

M+1
∑M

m=1(I(H(m) ≥ Ĥ)+1) for H, and p̂AH = 1
M+1

∑M
m=1(I(AH(m) ≥

ˆAH) + 1) for AH, where I(·) is known as the indicator function. The hypothesis is rejected at level
α if the MC p-value is less than or equal to α.

Notice that the H statistics in this paper differ from the statistic in Ang and Chen (2002) in sev-
eral ways. First, the thresholds considered in the paper are continuous, while the thresholds in the
paper of Ang and Chen (2002) are a number of discrete points and are given as a priori. Second,
while Ang and Chen (2002) used the quadratic deviation and the sum of deviation between the
linear correlation and the exceedance correlation, this paper measures the maximum and the aver-
age of the deviation of the linear correlation from implied correlations. It is common to construct
statistics using maximum. See Hansen (1996), Davies (1977) and Davies (1987). Third, this paper
uses the risk measure-implied correlations, which are free of conditioning bias, to measure corre-
lation asymmetries, while Ang and Chen (2002) have to adjust conditioning bias of the exceedance
correlation. Fourth, the significance of the test statistic is examined by Monte-Carlo in this paper,
while Ang and Chen (2002) used GMM and the delta method to get the standard deviation of test
statistic first and then calculate the p-value. Compared to the estimation of GMM, the Monte-Carlo
method is parameter-free and is easier to implement.

The H and AH statistics also can evaluate the impact of weights on risk measure-implied corre-
lations. The sign of the difference is not important any more since the interest here is to test whether
using different weights could lead to different implied correlations. Thus I use the absolute value
of the difference to construct statistics. The new H statistics do not distinguish between downside
and upside, and take the supremum across all probability levels except the interval (0.3,0.7) to
avoid the unstable VaR-implied correlations. That is,

HVaR =

 sup
α∈(0,0.3)∪(0.7,1)

|ρ̂(1)
VaR,α− ρ̂

(2)
VaR,α|

 (30)
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and

HES =

 sup
α∈(0,0.3)∪(0.7,1)

|ρ̂(1)
ES ,α− ρ̂

(2)
ES ,α|

 , (31)

where ρ̂(1)
VaR,α and ρ̂(1)

ES ,α are implied correlations using a choice of weights, while ρ̂(2)
VaR,α and ρ̂(2)

ES ,α

are implied correlations using a different choice of weights. The corresponding AH are

AHVaR =
1

0.6

(∫ 0.3

0
|ρ̂(1)

VaR,α− ρ̂
(2)
VaR,α|dα+

∫ 1

0.7
|ρ̂(1)

VaR,α− ρ̂
(2)
VaR,α|dα

)
(32)

and

AHES =
1

0.6

(∫ 0.3

0
|ρ̂(1)

ES ,α− ρ̂
(2)
ES ,α|dα+

∫ 1

0.7
|ρ̂(1)

ES ,α− ρ̂
(2)
ES ,α|dα

)
. (33)

Since the VaR- and ES-implied correlations are invariant with respect to weights for elliptical
distributions,5 the difference in implied correlations from choosing different weights should be
insignificant when data are from the multivariate normal distribution. Thus this paper simulates
data from the multivariate normal distribution and calculates the statistics using simulated data to
test the significance of the statistics from the empirical data. The process is similar to the test of
correlation asymmetries and thus is not repeated.

3 Simulation

In order to study the possible sacrifice and gains for using the ES-implied correlation, I design four
cases in the simulation. In the first two cases, correlation is constant and the linear correlation is
appropriate in order to judge whether allowing extra generality embodies a large sacrifice; in the
other two cases, correlation changes in the tails and the linear correlation is inappropriate in order
to judge what gains may be possible by using the expected shortfall-based measure.

Case 1: correlation is constant ρ = 0.5 and the data are from a multivariate normal distribu-

tion with mean 0 and covariance matrix Σ =

 1.0 0.5
0.5 1.0

 . The estimated linear correlation is the

maximum-likelihood estimation (MLE), and therefore has the desirable asymptotic properties of
maximum likelihood, including consistency and efficiency. Fisher (1915) and Gayen (1951) have
discussed the distribution of the estimated linear correlation.

Case 2: correlation is still constant and the data follow a multivariate T distribution with de-
grees of freedom 3 and covariance matrix T−2

T Σ, where T is the sample size. The estimated linear

5See Mittnik (2014) and Campbell et al. (2002)
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correlation is no longer the MLE.
Case 3: correlation is non-constant and changes at some designed probability levels. Since the

correlation is non-constant, better performance from methods which allow for the change in the
correlation is expected.

Only non-standardized implied correlations are reported in the above cases since standardized
implied correlations are actually linear correlation and are thus unnecessary to compute, especially
when data follow multivariate normal distribution. Besides, the results of non-standardized and
standardized implied correlations are very similar when data are from multivariate normal and
multivariate T distribution.

The empirical analysis has found that the distribution of returns is asymmetric. Therefore,
case 4 simulates the data from a skewed T distribution. The results of both non-standardized and
standardized implied correlations are reported. While the standardized implied correlations always
converge to the linear correlation because the effect from the standard distributions of individual
assets and the portfolio is eliminated, the non-standardized implied correlations do not necessarily
converge to the linear correlation.

Case 4: correlation is again constant, but data are drawn from a skewed bivariate T distribution
with degrees of freedom 3 and a skewness parameter 5. See Fernández and Steel (1998) and von
Rohr, Hoeschele, et al. (2002) for details of this distribution.

The average bias, standard deviation and root-mean-square error (RMSE) are calculated to
evaluate the performance of different correlations. The squared RMSE is equal to the sum of
the squared standard deviation and the squared average bias.

The average bias is the average of the bias through m simulations, i.e.,

1
m

m∑
j=1

(ρ̂ j−ρ),

the standard deviation is √√√
1
m

m∑
j=1

(ρ̂ j−
1
m

m∑
j=1

ρ̂ j)2,

and the RMSE is √√√
1
m

m∑
j=1

(ρ̂ j−ρ)2.

The estimator which makes these values close to 0 is regarded as a good indicator.
Throughout the simulation, I use the pairwise method and the weight vector (0.5,0.5) to estimate

the correlations. The effect of the choice of weight vectors on estimated implied correlations will
be studied in the empirical analysis.
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Figure 2 plots the average bias and standard deviation of the estimated correlations from the
multivariate normal distribution with sample size T = 103,104 and 105 through m = 104 replica-
tions. The RMSE is very close to standard deviation since average bias is very small in this case
and thus is not reported. Throughout the paper, the black, red and green points correspond to the
estimated linear correlation, VaR-implied correlation and ES-implied correlation, respectively.

Consistent with the theory that the estimated linear correlation is best unbiased when the data
are from multivariate normal distribution, the estimated linear correlation coefficient is consistent
and efficient in case 1.

The estimated ES-implied correlation is as good as the estimated linear correlation almost ev-
erywhere. When the vertical axis is set to be (-0.010,0.010) in the plot of average bias and (0,1)
in the plot of standard deviation, it is easy to notice that the implied correlations deviate from the
actual correlation in the tails when sample size is small. However, the deviation is very small com-
pared to the value of the actual correlation and this problem decreases as sample size increases.
The problem may be due to few observations in the tails when sample size is small.

The estimated VaR-implied correlation has two symmetric U shapes. The deviation in the
center of the distribution is because the denominator in the formula of VaR-implied correlation
is close to 0 around the center. The deviation in the tails is probably also due to not enough
observations. The estimated VaR-implied correlation deviates a lot when sample size is small.
As sample size increases, its performance gets closer to the actual correlation and the estimated
ES-implied correlation. When T reaches 105, there is little difference between the estimated VaR-
implied correlation and the other two estimated correlations.

Figure 3 plots the result of data simulated from the multivariate T distribution with the actual
correlation ρ= 0.5. Again, three sample sizes are considered, T = 103,104 and 105, and the process
is repeated m = 104 times. In this case, the estimated linear correlation is not MLE any more. The
estimated ES-implied correlation has both the smallest bias and the smallest standard deviation
among the three correlation estimates. The standard deviations of implied correlations show a U
shape when sample size is small. For both the estimated VaR-implied correlation and the estimated
ES-implied correlation, their performances in the tails improve as sample size increases. Again,
the poor performances in the tails may be due to few observations.

Case 3 mimics the correlation between US and Canada and assumes two breaks, which divide
the whole space (−∞,∞) into 3 regions. The first region (−∞,−1]× (−∞,−1] mimics the bear mar-
ket, where the actual correlation is 0.77. The second region (−1,1]× (−1,1] mimics the moderate
market situation, where the actual correlation is 0.74. The third region (1,∞)× (1,∞) mimics the
bull market, where the actual correlation is 0.66.

The data following such a distribution are generated by truncation. Ang and Bekaert (2002) and
Campbell et al. (2008) documented that truncation changes the correlation between assets. Given
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the correlation after truncation, one needs to decide the correlation before truncation. Employing
the MC technique in a wide search, I find that the data for regions 1, 2, and 3 can be generated
by truncating a bivariate normal distribution with marginal distributions N(0,1) and correlation
coefficients ρ1

be f ore = 0.94, ρ2
be f ore = 0.9 and ρ3

be f ore = 0.88, respectively.
To be exact, the following steps are used to determine the correlations that are used before

truncation.
Step A: Choose a possible value for the correlation before truncation, and generate 105 random

variables from a bivariate normal distribution with marginal distribution N(0,1) and this correla-
tion.

Step B: Truncate the simulated data to the region that we concern and calculate the correlation
in that region.

Step C: Repeat this process 104 times and record the correlation every time.
Step D: Calculate the average of the 104 truncated correlations. If the average correlation equals

the targeted correlation, the correlation chosen in step A is the right correlation before truncation. If
the average is greater than the targeted correlation, reduce the correlation and repeat step A, B and
C till it makes the average of the correlations across 104 replications equal the targeted correlation.
If the average is smaller than the targeted correlation, increase the correlation and repeat step A, B
and C till the average of the correlations and the targeted correlation are the same.

Generate a proportion of p1 = 12% of random variables truncating from a bivariate normal
distribution with correlation ρ1

be f ore in region 1, p3 = 6% of random variables truncating from a
bivariate normal distribution with correlation ρ3

be f ore in region 3, and p2 = 1− p1 − p3 = 82% of
random variables truncating from a bivariate normal distribution with correlation ρ2

be f ore in region
2, then the actual correlation is

ρα =


0.77, α ≤ 12%,
0.74, 12% < α ≤ 94%,
0.66, α > 94%.

Figure 4 plots the average estimated correlations across m = 103 simulations with sample size
T = 104. In comparison with the large deviation of the estimated linear correlation from the actual
linear correlation, the estimated implied correlations are more trustworthy. The estimated VaR-
implied correlation is still unstable around the center of each region.

We are naturally interested in how far a deviation needs to be from constancy in order that the
estimated ES-implied correlation provides an improvement. Table 1 reports the summary statistics
of the RMSEs in four situations: p1 = 0, p2 = 1, p3 = 0; p1 = 2%, p2 = 96%, p3 = 2%; p1 = 12%, p2 =

82%, p3 = 6%; and p1 = 12%, p2 = 76%, p3 = 12%. Situation 1 assumes no break point, in which
case the estimated linear correlation is the best unbiased estimator. Situation 2 assumes that 2% of
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the data are from another multivariate normal distributions in the left tail and right tails. Situation
3 increases this proportion and makes the proportion different in the left and right tails in order to
evaluate the impact of asymmetry. Situation 4 then increases the proportion in the right tail to the
same level of the proportion in the left tail.

The estimated linear correlation generates the least RMSE in situation 1. However, even when
only 2% data from other distributions are included in the tails, the RMSE of the estimated linear
correlation increases sharply. The RMSE keeps growing when the proportion increases in the tails,
but not that much from situation 3 to situation 4.

Compared to the estimated linear correlation, the estimated risk measure-implied correlation
is less affected by the change of the proportion in the tails. The RMSE of estimated ES-implied
correlations is less than the RMSE of estimated linear correlations almost at every probability level
in the last three situations, where data in the tails are assumed to follow a different distribution.
The estimated VaR-implied correlation is still untrustworthy around the center, leading to the mean
and standard deviation of its RMSE very large at some probability levels.

Case 4 simulates a bivariate skewed T distribution. Besides non-standardized implied correla-
tions, standardized implied correlations are also measured in this case for examining the difference
between standardized and non-standardized correlations. The two-stage MC is employed to calcu-
late the standardized implied correlations. See Beaulieu et al. (2014) about this technique. In the
first stage, I use the Monte-Carlo to calculate the VaR and ES of the standard distribution of the
individual asset and the portfolio. The sample size is 105 and replicate 104 times. In the second
stage, I draw m = 103 times of the data from the bivariate skewed T distribution with sample size
T = 104 and then calculate the standardized and non-standardized implied correlations.

The non-standardized correlations are expected to be very different from the linear correlation,
but the standardized correlations should be close to the linear correlation since the effect from
skewness is eliminated. Two figures are plotted in case 4. The left panel shows the subtle difference
between the estimated standardized correlations and the estimated linear correlation. The right
panel plots non-standardized correlations.

Panel (a) of figure 5 plots the average bias of the estimated linear correlation and the estimated
standardized implied correlations during m = 103 repetitions. The estimated standardized implied
correlation is closer to the actual linear correlation than the estimated linear correlation almost at
every probability level. Panel (b) of figure 5 plots the estimated linear correlation, standardized
implied correlations and non-standardized implied correlations. The estimated VaR-implied cor-
relation is very unstable around α = 0.62, at which probability level, the quantile is very close to
the mean, leading to the numerator in the formula of the VaR-implied correlation being close to 0.
The estimated non-standardized correlation is greater than the estimated linear correlation and the
estimated standardized implied correlations when the probability level is high and less than the es-
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timated linear correlation and the estimated standardized implied correlations when the probability
level is small.

4 Empirical Analysis

In the empirical analysis, I investigate correlations between equity returns of G7 countries. Mea-
suring their correlations can help investors to make an investment decision in the global financial
market. The G7 countries are the United States (US), Canada (CA), the United Kingdom (UK),
Italy (IT), Germany (DE), France (FR) and Japan (JP).

4.1 Data

This paper uses the equity returns of G7 countries from January 1st, 1973 to December 31st,
2015. To avoid time difference, I use weekly returns when calculating the dependence between
G7 countries. The weekly frequency also avoids market microstructure at daily frequencies, yet
provides sufficient observations in the tails. The data is acquired from Datastream and includes
2313 observations. Panel A of table 2 presents the summary statistics of returns for the whole
period. The mean and standard deviation of returns are annualized by multiplying returns by 52.
The average returns of all the countries, except Japan, are around 10%. Japan has an average
return of only about 7%. Standard deviations of returns vary from 1.14 to 1.69. The row labelled
"Skewness" reports the results of the D’Agostino test of skewness [D’Agostino (1970)]. It implies
that the equity returns in all countries, except UK and Italy, are skewed to left at at least 5%
significance level, while the equity returns of UK are significantly skewed to right, and the returns
of Italy do not exhibit significant skewness. The row labelled "Kurtosis" reports the results of the
Anscombe-Glynn test [Anscombe and Glynn (1983)] and implies that all equity returns have acute
peaks and tend to be heavy-tailed. The results of the Anderson-Darling test [See Stephens (1986)
and Thode (2002)] and the Shapiro-Wilk test [See Shapiro and Wilk (1965) and Royston (1982)]
reported in rows labelled "AD test" and "Shapiro test" also indicate that the equity returns do not
follow normal distribution.

To see how the 2008 financial crisis affects returns, I divide the whole sample period into two
subperiods. The first period includes the first 30 years from January 1st, 1973 to December 31st,
2002. The second period includes the 2008 financial crisis and extends from January 1st, 2003 to
December 31st, 2015. Panel B and panel C in table 2 report the summary statistics for these two
subperiods. Except Germany and Japan, the average mean of all the return series decreases in the
second period. While in the first subperiod, returns of most countries, except UK, Italy, and Japan,
are skewed to left, the skewness of all countries in the second subperiod is negative, implying that
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large negative returns appeared. Results from the kurtosis, Anderson-Darling test and Shapiro-
Wilk test in both subperiods suggest that equity returns of all countries are not normal.

4.2 Empirical results

In total, there are C(7,2) = 7×6
2 = 21 correlation coefficients between the seven countries. To save

space, only correlations between US and other countries are reported. The weight vector used to
compose the portfolio is (0.5,0.5).

Figure 6 plots the performance of the estimated linear correlation, VaR-implied correlation and
ES-implied correlation in the whole sample period, where low probability levels correspond to bad
market situations and high probability levels correspond to good market situations.

The figure implies that the estimated VaR-implied correlation is very unstable around the center
and goes beyond 1 frequently. The estimated ES-implied correlation is higher than the estimated
linear correlation in the left tail and lower than the estimated linear correlation in the right tail
for all the countries, consistent with the empirical findings that dependence increases during mar-
ket downturns and decreases during market upturns. Among all countries, the tail dependences
between US and Canada and between US and Japan increase least. It is also noteworthy that
although US exhibits a higher linear correlation with Canada than with other countries, the de-
pendence between US and Canada does not increase as much as the dependence between US and
other countries when the market declines. For example, the tail dependence between US and UK
is even higher than the tail dependence between US and Canada, emphasizing the importance of
estimating tail dependence.

Table 3 reports the H-statistics and AH-statistics measuring correlation asymmetries quanti-
tatively. Panel A reports the results of the H-statistics. The H-statistics between US and other
countries are positive for both VaR-implied and ES-implied correlations, implying that the lin-
ear correlation underestimates the dependence in the left tail and overestimates the dependence
in the right tail. Row 1 and row 2 report the value and the significance of downside H statistics
using the VaR-implied correlation and the ES-implied correlation, respectively. The results show
that the VaR-implied correlation tends to produce higher correlation asymmetries than ES-implied
correlation, but statistics of the VaR-implied correlation are less significant than statistics of the
ES-implied correlation. In particular, the VaR-implied correlation indicates that relations between
US and Italy, France, and Japan in the left tail increase significantly at 5% level, and the ES-
implied correlation implies significant relations between US and UK, Italy, Germany, and France.
Compared to rows 1 and 2, rows 3 and 4 suggest that the amounts and significance of correlations
decreasing when the market rises are generally less than the amounts of correlations increasing
when the market falls. Only 2 out of 6 upside H-statistics based on the VaR-implied correlation
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and 3 based on the ES-implied correlation are significant at 5% level.
Panel B reports the results of the AH-statistics. The AH-statistics have positive and negative

signs, but the statistics with negative signs are all insignificant, implying that correlations are gen-
erally higher during market downturns and lower during market upturns than the linear correlation.
The downside AH-statistics using the VaR-implied correlation indicate that relations between US
and Canada and Japan are significant at 5% level. The downside AH-statistics using the ES-implied
correlation imply that correlations between US and other countries during market downturns are
significantly underestimated by the linear correlation at 10% level and higher. The upside AH-
statistics using the VaR-implied correlation suggests a positive significant relation between US and
Germany, and the upside AH-statistics using the ES-implied correlation imply that all correlations
decrease significantly at 10% and higher.

I then estimate the linear correlation and implied correlations for two subperiods, one including
the 2008 financial crisis and one not. Figure 7 plots the results. The black points, red points, and
green points represent the results of the estimated linear correlation, VaR-implied correlation, and
ES-implied correlation for the first subperiod from January 1973 to December 2002, respectively.
The grey points, pink points, and blue points correspond to the estimated linear correlation, VaR-
implied correlation, and ES-implied correlation for the second subperiod from January 2003 to
December 2015. It is obvious that correlations increase in the second period. Since market situa-
tions get worse in the second period and the result from the whole period suggests that dependence
increases when the market situation worsens, correlations in the second period are expected to be
higher in the second period than in the first period. Notice that the correlation between US and
Canada increases least among all correlations, consistent with results in Figure 6 and Table 3 that
the dependence between US and Canada does not increase much when the market declines.

4.3 Effect of weights

This section tests the impact of portfolio weights on risk measure-implied correlations by two
approaches. In the first approach, I use different values of weights and estimate the difference in the
implied correlations. In the second approach, I compare the difference in the estimated correlations
from exact identification and overidentification in order to check whether giving weight vectors
more than the number of correlations could improve efficiency since Mittnik (2014) documented
that assigning weights to other assets in the portfolio provides more information and reduces the
problem that the VaR-implied correlation locates outside the [−1,1] interval frequently.
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4.3.1 Result of changing the value of weights

Instead of using the weight vector (0.5,0.5), this section uses the weight vector (0.2,0.8), i.e.,
investing 20% in US and 80% in the other market. Figure 8 plots the difference in the correlations
from using the weight vectors (0.5,0.5) and (0.2,0.8). The difference in the estimated VaR-implied
correlations varies a little in the tails, but differs a lot around the center. The estimated ES-implied
correlation does not show discernible difference across probability levels. Panel A of table 4 reports
the statistics measuring the difference in correlations from using different weigths. Both H and AH

from ES-implied correlations are smaller than the ones from VaR-implied correlations. All the test
statistics are insignificant except the AH-statistic based on the VaR-implied correlation between
US and Japan. Therefore, despite the fact that the ES-implied correlation requires a pre-specified
vector of weights, the estimate is not affected by the value of the weights significantly, suggesting
the possibility of applying the ES-implied correlation in asset allocation.

4.3.2 Difference in estimated correlations from exact identification and overidentification

Figure 9 reports the difference in estimated correlations from exact identification and overidenti-
fication. The weights for exact identification are obtained by assigning every two assets an equal
weight (0.5,0.5). The weights for overidentification are received by drawing k assets respectively
and assigning them an equal weights 1/k, where k is an integer from 2 to n, and n is the number
of total assets. This finally generates C(n,2) + ...+ C(n,n) = 2n − n− 1 vectors of weights. Fig-
ure 9 indicates that overall, the difference in estimated correlations from exact identification and
overidentification is very small and is negligible compared to the values of estimated implied cor-
relations. The figure shows that VaR-implied correlations are more affected by estimation methods
than ES-implied correlations.

Panel B of table 4 reports the H and AH statistics measuring the difference in implied correla-
tions from using exact identification and overidentification. All of the statistics are insignificant,
implying no significant impact of estimation methods on implied correlations. The statistics from
ES-implied correlations are still smaller than the statistics from VaR-implied correlations, im-
plying that ES-implied correlations are less affected by using different estimation methods than
VaR-implied correlations. The difference in estimated VaR-implied correlations from exact iden-
tification and overidentification is much closer to 0 than the difference in estimated VaR-implied
correlations from using different weights. Overall, the estimated risk measure-implied correlations
are autonomous from changing the value of weights and using different estimation methods.
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4.4 Simple illustrations for potential applications

Using the ES-implied correlation, we have seen that asset correlations increase during market
downturns. Thus, investors who diversify risk according to the linear correlation may underesti-
mate the risk in the tails. Considering that investors care more about losses than gains in the real
world, the ES-implied correlation has important applications in risk management and asset alloca-
tion. A direct application is using the ES-implied correlation to assess the risk of the portfolio. For
example, the volatility of a portfolio composed of 50% US equity index and 50% Canada equity
index is 1.22 using the linear correlation, but for investors who are concerned about volatility dur-
ing market downturns, e.g., the volatility at 5%-quantile, they could use the ES-implied correlation
instead and get a higher portfolio volatility of 1.26.

The ES-implied correlation also compensates the linear correlation in asset allocation. Since
correlation increases when the market falls, the protection from diversifying investment also erodes.
Thus for investors who care about risk diversification during market downturns, they could use the
ES-implied correlation to construct portfolios. Figure 10 plots the classic efficient frontier and
the efficient frontier using the ES-implied correlation at 5%-quantile in solid line and dashed line,
respectively, as the portfolio moves from the US equity index to the Canada equity index. We can
see that investors using the ES-implied correlation are more risk sensitive: they demand higher
expected returns for one percentage increase in volatility than their mean-variance counterparts.

One concern of applying the ES-implied correlation in asset allocation is that the ES-implied
correlation requires pre-knowledge of weights. Consider the efficient frontier generated by the
ES-implied correlation using equal weights 50% and 50% at 5%-quantile, under which condition
the ES-implied correlation is 0.7920. Given the annual risk-less rate of 5%, the tangency weights,
which provide the highest Sharpe ratio, are 55.81% in US equity index and 44.19% in Canada
equity index, corresponding to which the ES-implied correlation is 0.7924. The difference in the
ES-implied correlation, 0.0004, is trivial compared to the ES-implied correlation. Then I use
the newly updated tangency weights (55.81%, 44.19%) to calculate the ES-implied correlation,
construct a new efficient frontier, and find a new set of tangency weights. I repeat this process
until the difference in the ES-implied correlation is less than 10−7. It appears that the ES-implied
correlation converges after three iterations. The final tangency weight set is (55.28%,44.72%)
and the corresponding ES-implied correlation is 0.7923. In this case, I choose a starting weight
vector (50%, 50%) very close to the final optimal tangency weights. Even though I start from
(20%, 80%), I still get tangency weights (55.28%,44.72%) after three iterations. Thus, not using
the optimal weights to calculate the ES-implied correlation affects little of finding the optimal
weights. Similar to section 4.3, I employ the H and AH statistics to test the impact on the ES-
implied correlation when not using the optimal weights. Table 5 reports the difference in the
ES-implied correlation from using the optimal tangency weights and using equal weights and finds
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no significant difference.

5 Conclusion

Tail-based dependence measures play a central role in risk management and asset allocation. It is
well known that the linear correlation provides a poor indicator of co-movements of financial assets
under extreme circumstances, particularly during market crashes. Other dependence measures, the
exceedance correlation and the tail dependence coefficient, have conditioning biases and can not
be used in measuring correlation asymmetry directly. An alternative measure, the VaR-implied
correlation, does not have a conditioning bias; however, it has a number of disadvantages, including
the fact that the VaR is not coherent, disregards the data beyond it, and the VaR-implied correlation
does not work around the center of distributions.

A development of the VaR-implied correlation, the ES-implied correlation, using expected
shortfall instead, can eliminate all the shortcomings of the VaR-implied correlation. Simulations
indicate that the estimated ES-implied correlation is as accurate as the estimated linear correlation
when the estimated linear correlation is appropriate, but is much more accurate than the estimated
linear correlation when the estimated linear correlation is inappropriate with respect to average
bias, standard deviation and root-mean-square errors. VaR-implied correlations are much less sta-
ble than ES-implied correlations, especially around the center of the distribution and when the
sample size is small.

In the empirical analysis of international equity indices, VaR-implied correlations frequently vi-
olate the [−1,1] interval, especially around the center of return distribution. However, ES-implied
correlations are much more steady. More importantly, ES-implied correlations clearly show that
the linear correlation underestimates the correlation during market downturns and overestimates it
during market upturns. Thus using the linear correlation may underestimate risk and cause large
losses when the market declines.

A series of H statistics are developed for measuring and testing correlation asymmetries. The
H statistics involving ES-implied correlations clearly demonstrate that correlations between US
and other G7 countries are significantly underestimated by the linear correlation during market
downturns.

The H-statistics can also be used to measure and examine the impact of the choice of weights
on VaR-implied correlations and ES-implied correlations. The H-statistics imply that the implied
correlations are overall independent of the choice of weights, which suggests the possibility of
applying the risk measure-implied correlations in asset allocation.

Besides risk management and asset allocation, the ES-implied correlation has another two po-
tential applications. First, the standardized ES-implied correlation can be used to test or find the
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distribution of returns. If the assumption of the distribution is correct, the standardized ES-implied
correlation should be close to the linear correlation. Thus a statistic measuring the difference be-
tween the linear correlation and the standardized ES-implied correlation can evaluate the accuracy
of the hypothesis of asset distributions. By varying the hypothesis, one can find the true distribution
of returns.

Second, the ES-implied correlation can be applied to measure the dependence of distributions
whose second moment does not exist, for example, the stable distribution. The linear correlation
is no longer accessible in the situation. However, expected shortfall is accessible as long as the
first moment exists. Thus if we obtain a relation between the ES of the portfolio and the ES of
individual assets, we can have a formula to estimate the dependence between assets whose second
moments do not exist.
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Figure 1: Exceedance correlation under normal assumption
This figure plots the average of the exceedance correlation conditional on quantiles across the
distribution of returns. Returns are drawn from a standard bivariate normal distribution with cor-
relation of 0.5. The sample size is 103 and the exceedance correlation reported is the average over
104 repetitions. The black points plot the actual correlation of 0.5. The blue points plot exceedance
correlations between X and Y given by

ρ(α) =

{
Corr(X,Y |X ≤ qX(α),Y ≤ qY(α)),α < 0.5
Corr(X,Y |X ≥ qX(α),Y ≥ qY(α)),α > 0.5

where α is the probability level.
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(a) Average bias, T = 103
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(b) Standard deviation, T = 103
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(c) Average bias, T = 104
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(d) Standard deviation, T = 104
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(e) Average bias, T = 105
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(f) Standard deviation, T = 105

Figure 2: Average bias and standard deviation of estimated correlations over 104 repetitions in the
multivariate normal distribution, ρ = 0.5, T = 103,104 and 105.
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(a) Average bias, T = 103
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(b) Standard deviation, T = 103
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(c) Average bias, T = 104
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(d) Standard deviation, T = 104
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(e) Average bias, T = 105
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(f) Standard deviation, T = 105

Figure 3: Average bias and standard deviation of estimated correlations over 104 repetitions in the
multivariate T distribution, ρ = 0.5, T = 103,104 and 105.
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Figure 4: Estimated correlations in simulations of the non-constant model. The sample size is 104,
and the process is repeated 103 times, ρ = 0.77 when α ≤ 12%; ρ = 0.74, when 12% < α ≤ 94%
and ρ = 0.66, when α ≥ 94%.
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Table 1: Summary statistics of the RMSE in the simulation of case 3

This table presents the summary statistics of the RMSE of the estimated correlations in the simu-
lation of case 3. 100p1% of data falls into (−∞,−1]× (−∞,−1] with the correlation 0.77, 100p2%
of data falls into (−1,1]× (−1,1] with the correlation 0.74, and 100p3% of data falls into (1,∞)×
(1,∞) with the correlation 0.66. Four sets of p1, p2,andp3 are considered: p1 = 0, p2 = 1, p3 = 0;
p1 = 2%, p2 = 96%, p3 = 2%; p1 = 12%, p2 = 82%, p3 = 6%; and p1 = 12%, p2 = 76%, p3 = 12%.
The quantiles of RMSE at probability level α= 1%,5%,10%,90%,95% and 99% are also reported.

Statistics Linear VaR ES Statistics Linear VaR ES
Situation 1: p1=0, p2=1, p3=0 Situation 2: p1=2%, p2=96%,p3=2%

Mean 0.005 2.045 0.021 Mean 0.092 2.416 0.022
Std 0 19.100 0.013 Std 0.014 21.800 0.016
Min 0.005 0.022 0.008 Min 0.005 0.023 0.008
Max 0.005 190.200 0.094 Max 0.158 217 0.098
α = 1% 0.005 0.023 0.008 α = 1% 0.093 0.023 0.008
α = 5% 0.005 0.024 0.008 α = 5% 0.093 0.025 0.008
α = 10% 0.005 0.0273 0.009 α = 10% 0.093 0.030 0.009
α = 90% 0.005 0.225 0.032 α = 90% 0.093 0.283 0.033
α = 95% 0.005 0.353 0.033 α = 95% 0.093 0.551 0.042
α = 99% 0.005 4.926 0.093 α = 99% 0.093 12.300 0.093
Situation 3: p1=12%, p2=82%, p3=6% Situation 4: p1=12%, p2=76%, p3=12%

Mean 0.201 61.770 0.031 Mean 0.226 29.920 0.033
Std 0.034 59.49 0.029 Std 0.038 212.900 0.030
Min 0.119 0.021 0.009 Min 0.140 0.022 0.009
Max 0.274 5919 0.139 Max 0.295 2019 0.138
α = 1% 0.119 0.022 0.009 α = 1% 0.140 0.022 0.009
α = 5% 0.119 0.025 0.009 α = 5% 0.140 0.027 0.010
α = 10% 0.119 0.033 0.010 α = 10% 0.140 0.036 0.011
α = 90% 0.209 0.391 0.080 α = 90% 0.295 0.439 0.080
α = 95% 0.216 0.722 0.096 α = 95% 0.295 0.753 0.133
α = 99% 0.274 295.700 0.134 α = 99% 0.295 601.100 0.133
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Figure 5: Estimated standardized and non-standardized correlations in the skewness T distribution,
T = 104, ρ = 0.5.
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Table 2: Summary statistics of G7 countries

This table presents the summary statistics of annualized returns of G7 equity indices. Panel A
reports statistics of returns in the whole period from 1/1/1973 to 31/12/2015. Panel B reports
statistics of returns in the first subperiod from 1/1/1973 to 31/12/2002 and panel C reports statistics
of the second period from 1/1/2003 to 31/12/2015. The superscripts *, ** and *** represent
significance at 10%, 5%, and 1%, respectively.

Statistics US CA UK IT DE FR JP
Panel A: Summary Statistics in whole period

Mean 0.113 0.106 0.128 0.126 0.096 0.132 0.068
SD 1.230 1.139 1.325 1.689 1.264 1.433 1.363
Min -7.808 -8.425 -8.461 -8.693 -7.482 -9.368 -10.080
Max 7.628 7.111 12.546 10.388 6.511 7.727 8.666
Skewness -0.295∗∗∗ -0.602∗∗∗ 0.227∗∗∗ -0.020 -0.440∗∗∗ -0.371∗∗∗ -0.226∗∗∗

Kurtosis 7.315∗∗∗ 8.482∗∗∗ 11.141∗∗∗ 5.579∗∗∗ 6.102∗∗∗ 6.033∗∗∗ 7.441∗∗∗

AD test 14.640∗∗∗ 18.476∗∗∗ 19.608∗∗∗ 12.121∗∗∗ 15.201∗∗∗ 12.225∗∗∗ 17.574∗∗∗

Shapiro test 0.957∗∗∗ 0.945∗∗∗ 0.934∗∗∗ 0.974∗∗∗ 0.964∗∗∗ 0.969∗∗∗ 0.958∗∗∗

Panel B: Summary Statistics in period I
Mean 0.117 0.111 0.143 0.150 0.086 0.144 0.059
SD 1.223 1.102 1.365 1.762 1.217 1.449 1.258
Min -7.808 -6.725 -8.461 -8.693 -7.482 -9.368 -6.005
Max 6.627 5.293 12.546 10.388 6.317 6.718 8.305
Skewness -0.360∗∗∗ -0.495∗∗∗ 0.366∗∗∗ 0.054 -0.497∗∗∗ -0.423∗∗∗ 0.044
Kurtosis 6.776∗∗∗ 6.309∗∗∗ 11.997∗∗∗ 5.540∗∗∗ 6.395∗∗∗ 6.062∗∗∗ 5.926∗∗∗

AD test 7.732∗∗∗ 7.544∗∗∗ 12.916∗∗∗ 7.685∗∗∗ 9.135∗∗∗ 7.264∗∗∗ 12.928∗∗∗

Shapiro test 0.964∗∗∗ 0.968∗∗∗ 0.930∗∗∗ 0.975∗∗∗ 0.963∗∗∗ 0.970∗∗∗ 0.967∗∗∗

Panel C: Summary Statistics in period II
Mean 0.103 0.096 0.094 0.072 0.118 0.102 0.090
SD 1.245 1.222 1.226 1.509 1.367 1.397 1.580
Min -7.519 -8.425 -5.409 -6.590 -5.993 -5.999 -10.080
Max 7.628 7.111 8.090 6.957 6.511 7.727 8.666
Skewness -0.151 -0.773∗∗∗ -0.239∗∗ -0.333∗∗∗ -0.353∗∗∗ -0.241∗∗ -0.546∗∗∗

Kurtosis 8.475∗∗∗ 11.584∗∗∗ 7.587∗∗∗ 5.181∗∗∗ 5.496∗∗∗ 5.953∗∗∗ 8.185∗∗∗

AD test 8.009∗∗∗ 13.009∗∗∗ 7.231∗∗∗ 5.486∗∗∗ 6.140∗∗∗ 5.600∗∗∗ 4.596∗∗∗

Shapiro test 0.937∗∗∗ 0.892∗∗∗ 0.946∗∗∗ 0.969∗∗∗ 0.964∗∗∗ 0.962∗∗∗ 0.949∗∗∗
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Figure 6: Estimated correlations between US and other G7 countries in the whole period.
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Table 3: H statistics measuring correlation asymmetries

This table reports the H and AH statistics. Panel A reports downside and upside H statistics based
on the VaR-implied and the ES-implied correlations, respectively, where downside and upside H
statistics are the supremums of deviations of linear correlation from conditional correlations in
the left tail and right tail, respectively. Panel B reports downside and upside AH statistics, which
correspond to the average of deviations in the left tail and right tail, respectively. The superscripts
*, ** and *** represent significance at 10%, 5%, and 1%, respectively.

CA UK IT DE FR JP
Panel A: H statistics

H−VaR 0.167 0.134 0.335∗∗∗ 0.186∗ 0.295∗∗∗ 0.219∗∗

H−ES 0.054 0.212∗∗∗ 0.221∗∗∗ 0.143∗∗∗ 0.105∗∗ 0.048
H+

VaR 0.111 0.157 0.181∗∗ 0.119 0.111 0.185∗∗

H+
ES 0.106∗∗ 0.092∗ 0.215∗∗∗ 0.036 0.056 0.247∗∗∗

Panel B: AH statistics
AH−VaR 0.033∗∗ -0.084 -0.036 -0.092 -0.029 0.045∗∗

AH−ES 0.030∗∗∗ 0.050∗∗∗ 0.080∗∗∗ 0.022∗ 0.040∗∗∗ 0.027∗

AH+
VaR -0.025 0.027 -0.012 0.048∗∗∗ 0.021 -0.043

AH+
ES 0.057∗∗∗ 0.046∗∗∗ 0.080∗∗∗ 0.022∗ 0.030∗∗ 0.045∗∗∗

Table 4: H statistics measuring impact of weights

This table reports H and AH statistics measuring the impact of weights. H is the supremum of
absolute difference when changing values of weights or using different estimation methods across
the left and right tail. AH is the average of the absolute difference across the tails. Panel A reports
the difference in implied correlations from choosing different values for portfolio weights. Panel B
reports the difference in implied correlations from using exact identification and overidientification.
The superscripts *, ** and *** represent significance at 10%, 5%, and 1%, respectively.

CA UK IT DE FR JP
Panel A: Difference from different values of weights

HVaR 0.130 0.213 0.192 0.140 0.199 0.187
HES 0.026 0.080 0.056 0.061 0.037 0.077
AHVaR 0.046 0.063 0.058 0.057 0.049 0.080∗∗

AHES 0.012 0.009 0.010 0.009 0.007 0.020

Panel B: Difference from exact and overidentification
HVaR 0.098 0.063 0.100 0.064 0.090 0.083
HES 0.045 0.025 0.033 0.013 0.018 0.036
AHVaR 0.018 0.023 0.026 0.019 0.021 0.031
AHES 0.007 0.004 0.004 0.004 0.002 0.005
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Figure 7: Estimated correlations between US and other G7 countries in the subperiods.
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Figure 8: Difference in estimated correlations between US and other G7 countries from using
different values of weights.
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Figure 9: Difference in estimated correlations between US and other G7 countries from exact
identification and overidentification.
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Figure 10: The classic mean-variance efficient frontier and the efficient frontier adjusted by the
ES-implied correlation at 5%-quantile.

Table 5: H statistics measuring the impact of using optimal weights

This table reports H and AH statistics measuring the difference in implied correlations from using
equal weights and using the optimal tangency weights in the mean-variance framework with vari-
ance constructed by implied correlations. The superscripts *, ** and *** represent significance at
10%, 5%, and 1%, respectively.

CA UK IT DE FR JP
HVaR 0.045 0.108 0.253 0.346∗ 0.101 0.482∗

HES 0.002 0.027 0.040 0.042 0.033 0.060
AHVaR 0.009 0.031 0.083 0.104∗ 0.032 0.176∗

AHES 0.001 0.008 0.013 0.014 0.006 0.018
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