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Abstract

The 2010 Department of Justice and Federal Trade Commission Horizontal Merger
Guidelines lay out a new standard for assessing proposed mergers in markets with
differentiated products. This new standard is based on a measure of upward pric-
ing pressure (UPP), which relies on a diversion ratio that measures the fraction of
consumers of one product that switch to another product when the price of the first
product increases. Typically the diversion ratio is computed by estimating own- and
cross-price elasticities from a demand system. We show that it is possible to reinterpret
the diversion ratio as the treatment effect of removing a product from the consumer’s
choice set. We derive conditions on economic primitives under which one can obtain ac-
curate estimates of the treatment effect in the presence of unobserved demand shocks,
and conditions under which this treatment effect accurately represents the diversion
ratio. We demonstrate our approach in a field experiment on snack foods.
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1 Introduction

Since 1982, one of the primary tools in evaluating the potential anticompetitive effects of

horizontal mergers has been an index of market concentration known as the Herfindahl-

Hirschman Index (HHI). The HHI relates market shares to markups when firms are engaged

in Cournot competition. A practical challenge of using the HHI to evaluate merger effects

has been defining the relevant market, which is necessary for measuring market shares.

The proposed 2007 merger between Whole Foods and Wild Oats highlighted this challenge:

the FTC argued that the merger would create a monopoly in the market for “premium

natural organic supermarkets,” while Whole Foods argued that the relevant market included

traditional grocery stores, and that the merger would induce only a minimal change in market

concentration.1

In 2010, the Department of Justice (DOJ) and the Federal Trade Commission (FTC)

released a major update to the Horizontal Merger Guidelines, which shifts the focus away

from traditional concentration measures like HHI, and towards methods that better ac-

count for product differentiation and the closeness of competition, utilizing intuition from

the differentiated-products Bertrand framework. The new guidelines ignore competitive re-

sponses and consider the ‘unilateral effects’ of a proposed merger on the opportunity cost of

increasing the price of the merged entity’s products. The approach relies on two key mea-

sures: Upward Pricing Pressure (UPP) and a Generalized Upward Pricing Pressure Index

(GUPPI), both of which depend on the prices and costs of the merged firms’ products, and a

‘diversion ratio,’ which measures substitution between the products of the merged firms. The

diversion ratio thus serves as a sufficient statistic to determine whether or not a proposed

merger is likely to increase prices (and be contested by the antitrust authorities).

This sentiment is captured in the Guidelines’ definition of the diversion ratio:

In some cases, the Agencies may seek to quantify the extent of direct compe-

tition between a product sold by one merging firm and a second product sold by

the other merging firm by estimating the diversion ratio from the first product to

the second product. The diversion ratio is the fraction of unit sales lost by the

first product due to an increase in its price that would be diverted to the second

product. Diversion ratios between products sold by one merging firm and products

sold by the other merging firm can be very informative for assessing unilateral

price effects, with higher diversion ratios indicating a greater likelihood of such

1The merger initially was permitted on the basis of the latter market definition, but then dissolved on
the basis of the former.
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effects. Diversion ratios between products sold by merging firms and those sold

by non-merging firms have at most secondary predictive value.

Thus, the unilateral effects approach outlined by the 2010 Horizontal Merger Guidelines

implies that the diversion ratio functions as a sufficient statistic (holding competitive re-

sponses fixed); and we should be more suspicious of mergers among products with higher

diversion ratios. Accordingly, we focus on measuring substitution away from product j (from

second-choice data or stock-outs) and ask, ‘Is there a credible (quasi)-experimental way to

measure the diversion ratio, and if so, what assumptions does it require?’ To answer this

question, we show that the diversion ratio can be interpreted as a treatment effect of an

experiment in which the treatment is “not purchasing product j.” The diversion ratio mea-

sures the outcome of the experiment: the fraction of consumers who switch from j to a

substitute product k. The treated group consists of consumers who would have purchased j

at pre-existing prices, but no longer purchase j at a higher price. We are often interested in

measuring the effect when the treated group consists of only those consumers who are most

likely to substitute away from j after a very small price increase. This effect represents a

marginal treatment effect (MTE) or a local average treatment effect (LATE). A challenge

with directly implementing such an experiment is that treating a small number of the most

price-sensitive individuals lacks statistical power.

An alternative is to treat all individuals who would have purchased j at pre-existing

prices, and thus estimate an average treatment effect (ATE) when all individuals receive

the treatment. This can be accomplished by surveying consumers about their second-choice

products, or by exogenously removing product j from the choice set. When the diversion

ratio is constant, the ATE approximates the MTE. However, we show that constant diversion

is a feature of only the linear demand model and a “plain vanilla” logit model. Other

commonly-used models of demand, such as a random-coefficients logit or log-linear models

, do not feature constant diversion, and the ATE and MTE may diverge in important ways

in these models.

We construct an empirical estimator for the ATE measure of the diversion ratio by

exogenously removing individual products from a local market; specifically, a set of vending

machines. Even when product removals are appropriately randomized, it can be difficult to

control for variability in the overall level of demand. This is true in our setting, and is likely

to be true in many retail contexts in which we wish to measure diversion. Thus, one must

separate the effect of the exogenous removal from unobserved demand shocks. In order to

control for unobserved demand shocks, we provide three conditions on economic primitives
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and examine how they help to estimate experimental measures of the diversion ratio. The

conditions are: (1) product removals cannot increase total sales, nor decrease total sales by

more than the sales of the product removed, (2) the diversion ratio from j to any substitute

k lives within the unit interval (i.e., that diversion to any single product is between 0 and

100 percent), and (3) the diversion ratio to all alternatives lives within the unit simplex

(i.e., that total diversion to all alternatives is between 0 and 100 percent). We construct a

non-parametric Empirical Bayes shrinkage estimator for the diversion ratio, which allows us

to nest both parametric structural estimates of diversion and (quasi)-experimental measures

in a single framework.

Our empirical example demonstrates how to design and conduct experiments to mea-

sure the diversion ratio, and considers several hypothetical mergers within the single-serving

snack foods industry. We measure diversion by exogenously removing one or two top-selling

products from each of three leading manufacturers of snack food products, and observing

subsequent substitution patterns. We use a set of sixty vending machine in secure office

sites as our experimental ‘laboratory’ for the product removals. While removing products

from consumers’ choice sets (or changing prices) may be difficult to do on a national scale,

one might be able to measure diversion accurately using smaller, more targeted experiments.

In fact, many large retailers such as Target and Wal-Mart frequently engage in experimen-

tation, and online retailers such as Amazon.com and Ebay have automated platforms in

place for “A/B-testing.” As information technology continues to improve in retail markets,

and as firms become more comfortable with experimentation, one could imagine antitrust

authorities asking parties to a proposed merger to submit to an experiment executed by an

independent third party.

1.1 Related Literature

There has been a recent debate on the use of experimental or quasi-experimental techniques

vis-a-vis structural methods within industrial organization (IO) broadly, and within merger

evaluation specifically. Angrist and Pischke (2010) complain about the general lack of exper-

imental or quasi-experimental variation in many IO papers, and advocate viewing a merger

itself as the treatment effect of interest. Hastings (2004) is cited as an example, which ex-

amines the effect of a merger between Thrifty and ARCO gasoline stations on the prices

of competitors near and far away from affected stations. Nevo and Whinston (2010)’s re-

sponse points out that while retrospective merger analysis is valuable, the policy question is

generally one of prospective merger analysis, and that merely comparing proposed mergers
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to similar previously consummated mergers is unlikely to be informative, especially when

both the proposal and approval of mergers is endogenous. They point out that while labor

economics is often concerned with a single treatment effect, many of the key issues in IO

are concerned with testing the equilibrium implications of economic theory, and that the

complex competitive responses that arise in market settings often do not map well into the

treatment effects framework.2

A deeper question, posed by the applied theory literature in IO, focuses on whether or

not the diversion ratio is likely to be informative about the price effect of a merger in the

first place. This literature goes back as far as Shapiro (1995) and Werden (1996), and is

well summarized in reviews by Farrell and Shapiro (2010) and Werden and Froeb (2006).

A growing debate has developed out of the expanded role of unilateral effects in the 2010

Horizontal Merger Guidelines including: Carlton (2010), Schmalensee (2009), Willig (2011),

and Hausman (2010). The UPP approach measures the change in the opportunity cost of

selling good j that is induced by a merger.3 There have also been a few recent attempts to

validate the predictions of the unilateral effects approach in simulation (Miller, Remer, Ryan,

and Sheu 2012) and empirically (Cheung 2011). Those papers find that the UPP/GUPPI

need not always correctly predict the sign of the price effect, and that the degree to which it

over- or underpredicts price effects depends on the nature of competition among non-merging

firms, and whether prices are strategic substitutes or strategic complements.

In spirit, our approach is most similar to Angrist, Graddy, and Imbens (2000), which

shows how a cost shock can identify a particular local average treatment effect (LATE) for

the price elasticity in a single product setting. However, that approach does not extend

to the differentiated products setting because the requisite monotonicity condition may no

longer be satisfied. While the diversion ratio is often constructed from the ratio of own- and

cross price elasticities, our approach estimates the (diversion) ratio directly. Though own-

and cross- price elasticities are not identified from second-choice data alone, the average

diversion ratio is. This highlights the economic content of (even partial) second-choice data,

which has been found to be valuable in the structural literature on demand estimation (Berry,

Levinsohn, and Pakes 2004).

Finally, by asking the question ‘What assumptions does a credible (quasi-experimental)

2This is actually a reexamination of a much older debate going back to Leamer (1983), and discussed
recently by Heckman (2010), Leamer (2010), Keane (2010), Sims (2010), Stock (2010), and Einav and Levin
(2010).

3Jaffe and Weyl (2013) extend these results by incorporating the estimated pass-through rate to map
anticipated opportunity cost effects into price effects.
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method of measure diversion require,’ we connect directly to the nascent theoretical literature

discussing the use and measurement of the diversion ratio.4 Farrell and Shapiro (2010)

suggest that firms themselves track diversion in their ‘normal course of business’,’ or that

the diversion ratio is essentially another piece of data likely to be uncovered in a Hart-Scott-

Rodino filing. Hausman (2010) argues that the only acceptable way to measure a diversion

ratio is as the output from a structural demand system. Reynolds and Walters (2008)

examine the use of stated-preference consumer surveys in the UK for measuring diversion.

The paper proceeds as follows. Section 2 lays out a theoretical framework, section 3

describes the snack foods industry, our data, and our experimental design and the calculation

of the treatment effects. We present the results of our field experiment in section 4, and

section 5 concludes.

2 Theoretical Framework

The first part of this section establishes results presented in Farrell and Shapiro (2010), using

slightly different notation to define the key constructs of the 2010 merger guidelines. The

alternative notation aids in our treatment-effects interpretation.

For simplicity, consider a single market composed of J single-product firms, where firm

j sets the price of product j to maximize profits:

πj = (pj − cj(qj))qj(pj, p−j)

Under an assumption of constant marginal costs, the FOC for product j becomes

qj(pj, p−j) + (pj − cj)
∂qj(pj, p−j)

∂pj
= 0

Let the superscripts (0) and (1) denote pre- and post-merger quantities respectively. The

merger guidelines also consider the potential for a merger to induce efficiency gains by low-

ering the cost of producing product j. This efficiency gain, denoted ej, is defined as:

ej =
c

(1)
j − c

(0)
j

c
(0)
j

.

4The focus on measuring substitution away from product j (using second-choice data or stock-outs),
rather than on the direct effect of a proposed merger, is more in line with the public finance literature on
sufficient statistics (Chetty 2009).
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Henceforth, we denote pre-merger costs as cj and post-merger costs as (1− ej) · cj. We are

interested in how a merger affects the price of j : p
(1)
j − p

(0)
j . The idea is to examine how

the merger modifies the FOC of a single-product firm which owns j and acquires product k,

when prices of all other goods p−j are held fixed at the pre-merger values:

qj(p
(0)
j , p−j) + (p

(0)
j − cj)

∂qj(p
(0)
j , p−j)

∂pj
= 0 (Pre-merger)

qj(p
(1)
j , p−j) + (p

(1)
j − (1− ej) · cj)

∂qj(p
(1)
j , p−j)

∂pj
+ (pk − ck) ·

∂qk(p
(1)
j ,p−j)

∂pj
= 0 (Post-merger)

Upward Pricing Pressure (UPP) for good j measures how the merger changes the FOC

for good j holding p−j fixed. The intuition is that a merger changes the opportunity cost of

selling j, because some lost sales are now recaptured by product k. We compare the change

in the opportunity cost of selling product j to the proposed efficiency gain ej in order to

determine whether a merger is likely to increase or decrease the price of j.

UPPj = (pk − ck) ·

(
∂qj(p

(0)
j , p−j)

∂pj

)−1

·
∂qk(p

(0)
j , p−j)

∂pj︸ ︷︷ ︸
Djk(p

(0)
j ,p−j)

−ej · cj (1)

The key input into merger analysis is the diversion ratio, Djk(pj, p−j). The diversion

ratio measures the fraction of consumers who switch from j to k when faced with a small

increase in the price of j from the pre-merger prices (p
(0)
j , p−j). The 2010 merger guidelines

also define a measure of pricing pressure called the Gross Upward Pricing Pressure Index

(GUPPI), which (i) assumes no marginal cost efficiency ej and (ii) indexes the change in

price to the pre-merger price level. Thus, GUPPI takes the form:

GUPPIj =
pk − ck
p

(0)
j

·Djk(p
(0)
j , p−j) (2)

If the owner of j acquires multiple products k and l, and those products have the same

margins pk−ck = pl−cl, then the impact of the three-product merger on UPPj and GUPPIj

is identical to that in equations (1) and (2), with the exception that it depends on the sum

of the diversion ratios (Djk +Djl). This allows one to incorporate the acquisition of multiple

flavors or similar brands. It also provides a template for considering how various divestitures

6



might impact a proposed merger.

2.1 Diversion as a Treatment Effect

The key to the diversion ratio is that it holds the prices (and competitive responses) of all

other goods fixed at p0
−j and considers what happens when one perturbs pj by ∆pj:

Djk(pj, p
0
−j) =

∣∣∣∣∆qk∆qj

∣∣∣∣ =

∣∣∣∣qk(p0
j + ∆pj, p

0
−j)− qk(p0

j , p
0
−j)

qj(p0
j + ∆pj, p0

−j)− qj(p0
j , p

0
−j)

∣∣∣∣ =

∫ p0j+∆pj

p0j

∂qk(pj ,p
0
−j)

∂pj
dpj∫ p0j+∆pj

p0j

∂qj(pj ,p0−j)

∂pj
dpj

(3)

This has the interpretation as a treatment effect with a binary treatment (i.e., not purchasing

product j) and a binary outcome (i.e., purchasing product k or not). The treated group

corresponds to individuals who would have purchased product j at price pj but do not

purchase j at price pj + ∆pj. The “potential outcome” Yi(1) ∈ {0, 1} indicates whether or

not a treated individual purchases product k. The lower an individual’s reservation price

for j, the more likely an individual is to receive the treatment. Thus ∆pj functions as the

“instrument” in this context.

By focusing on the numerator in equation (3), we can re-write the diversion ratio using

the marginal treatment effects (MTE) framework of Heckman and Vytlacil (2005), in which

Djk(pj, p
0
−j) is a marginal treatment effect that depends on pj.

5

D̂LATE
jk =

1

∆qj

∫ p0j+∆pj

p0j

∂qk(pj, p
0
−j)

∂qj︸ ︷︷ ︸
≡Djk(pj ,p0−j)

∣∣∣∣∂qj(pj, p0
−j)

∂pj

∣∣∣∣ dpj (4)

As we vary pj, we measure the weighted average of diversion ratios where the weights w(pj) =
1

∆qj

∂qj(pj ,p
0
−j)

∂pj
correspond to the lost sales of j at a particular pj as a fraction of all lost sales.

This directly corresponds to Heckman and Vytlacil (2005)’s expression for the local average

treatment effect (LATE); we average the diversion ratio over the set of consumers of product

j who are most price sensitive. Our LATE estimator varies because the set of treated

individuals varies with the size of the price increase. The expression for UPP in equation

(1) evaluates Djk(p
0
j , p

0
−j) at pre-merger prices. This is consistent with a MTE for which ∆p

5The MTE is a non-parametric object which can be integrated over different weights to obtain all of
the familiar treatment effects estimators: treatment on the treated, average treatment effects, local average
treatment effects, average treatment on the control, etc.
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is infinitessimally small.6 As we choose larger values for ∆pj our LATE estimate may differ

from the MTE.

We can relate the divergence in the treatment effect measures of Djk to the underlying

economic primitives of demand. Consider what happens when we examine a “larger than

infinitesimal” increase in price ∆pj � 0. We derive an expression for the second-order

expansion of demand at (pj, p−j):

qk(pj + ∆pj, p−j) ≈ qk(pj, p−j) +
∂qk(pj, p−j)

∂pj
∆pj +

∂2qk(pj, p−j)

∂p2
j

(∆pj)
2 +O((∆pj)

3)

qk(pj + ∆pj, p−j)− qk(pj, p−j)
∆pj

≈ ∂qk(pj, p−j)

∂pj
+
∂2qk(pj, p−j)

∂p2
j

∆pj +O(∆pj)
2 (5)

This allows us to compute an expression for the bias compared to the true diversion ratio

Djk(pj, p−j)

Bias(DLATE
jk ) ≈ −

Djk
∂2qj
∂p2j

+ ∂2qk
∂p2j

∂qj
∂pj

+
∂2qj
∂p2j

∆pj
∆pj (6)

The expression in (6) shows that the bias depends on two things: one is the magnitude of

the price increase ∆pj, the second is the curvature of demand (the terms
∂2qj
∂p2j

and ∂2qk
∂p2j

). This

suggests that bias is minimized by experimental designs that consider small price changes.

The disadvantage of considering a small price change ∆pj is that it implies that the size

of the treated group ∆qj is also small, and thus the variance of our diversion measure is large.

We can construct an expression for the variance of the diversion ratio under the assumption

of (locally) constant diversion, for which ∆qk ≈ Djk∆qj:

V ar(D̂jk) ≈ V ar

(
∆qk
|∆qj|

)
≈ 1

∆q2
j

(
D2
jkσ

2
∆qj

+ σ2
∆qk
− 2Djkρσ∆qjσ∆qk

)
(7)

This expression establishes a bias-variance tradeoff when estimating diversion. A small

change in pj induces a small change in qj and reduces the bias, but increases the potential

variance. A larger ∆pj (and by construction ∆qj) may yield a less noisy LATE, but may

deviate from the MTE of interest.

Because the underlying objects are essentially demand curves, economic theory provides

6Anti-trust authorities also sometime sfocus on the notion of a ‘small but significant non-transitory
increase in price (SSNIP).’ The practice of antitrust often employs an SSNIP test of 5-10%.
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some guidance. A key question is: What are the economic implications of assuming a

constant treatment effect, such that Djk(pj, p−j) = Djk? We can see the answer by examining

the case where (6) is equal to zero. Two functional forms for demand exhibit constant

diversion and are always unbiased: the first is linear demand, for which ∂2qk
∂p2j

= 0, ∀j, k.

The second is the IIA logit model, for which Djk = −∂2qk
∂p2j

/
∂2qj
∂p2j

. Implicitly when we assume

that the diversion ratio does not vary with price, we assume that the true demand system

is well approximated by either a linear demand curve or the IIA logit model. We derive

these relationships, as well as expressions for diversion under other demand models in the

Appendix A.1, and show that random coefficients logit demand, and CES demands (including

log-linear demand) do not generally exhibit constant diversion.

If our primary concern is that the curvature of demand is steep, so that assuming a con-

stant diversion ratio is unreasonable, it suggests considering a small price increase. However,

if our primary concern is that sales are highly variable, we may need to consider a larger

price increase. Information about the elasticity (and super-elasticity) of demand for j can

be very informative. A LATE estimate is expected to perform best if demand for j is highly

elastic around (pj, p−j), or if demand becomes increasingly inelastic as we increase the price

beyond pj.

In our empirical example, it might seem reasonable that customers who substitute away

from a Snickers bar after a five cent price increase switch to Reese’s Peanut Butter Cup at

the same rate as after a 25 cent price increase, where the only difference is the number of

overall consumers leaving Snickers. However in a different industry, this may no longer seem

as reasonable. In Figure 2, we might expect buyers of a Toyota Prius to substitute primarily

to other cheap, fuel-efficient cars when faced with a small price increase (from the market

price of $25,000 to $25,500), but we might expect some substitution to luxury cars when

facing a larger price increase (to $50,000). If demand (in units) for the Prius falls rapidly

with a small price increase, so that residual demand (and the potential impact of further

price increases) is small after the first few thousand dollars of price increases, then assuming

constant diversion may be reasonable (because the implicit weight on faraway diversion

measures is small). If demand for the Prius is relatively inelastic or does not become more

inelastic as the price rises (the dashed green line), then assuming a constant treatment effect

may lead to bias.7

7Mathematically, the average diversion ratio represents the integral of the diversion curve (red line) from
market price upwards, where the diversion curve is weighted by the density given by the demand for the
Prius (either green line).
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2.2 Second-Choice Data

Often researchers have access to one form or another of second-choice data. For example,

Berry, Levinsohn, and Pakes (2004) observed not only marketshares of cars but also survey

answers to the question: “If you did not purchase this vehicle, which vehicle would you

purchase?” Consumer surveys provide a stated-preference method of recovering second-

choice data. The UK Competition Commission makes use of consumer surveys as part of

the merger review process both for market definition, and for second-choice data ((Reynolds

and Walters 2008)).

Exploiting variation in consumer choice sets provides a revealed-preference mechanism for

recovering second-choice data. A problem with using observational variation in choice sets is

that the variation is often non-random. If one simply compares stores that stock product j

to stores that do not stock product j, one might expect the stocking decision to be correlated

with demand for both j and other products. In previous work, Conlon and Mortimer (2013)

establish conditions under which a temporary stock-out event provides random variation in

the choice set. The main intuition is that given inventory decisions and consumer demand,

the timing of a stock-out is randomly distributed, paired with the assumption that consumer

arrival patterns do not respond to anticipated stock-out events; this provides random choice

set variation.

A more direct approach is to construct second-choice data experimentally by removing

product j from a consumer’s choice set for a period of time. One way to interpret second-

choice data or an experimental product removal is as an increase in price to the choke price

pcj, where qj(p
c
j, p−j) = 0. The precise location of the choke price varies with the nature of

demand. For linear demand qj = a + bpj the choke price is p = −a
b

. For random utility

demand models with full-support errors, the choke price is pj =∞. In practice, the quantity

estimated by a random product removal (or by second-choice data generally) is the average

treatment effect on the treated (ATT) for the entire population with reservation prices

between p
(0)
j and pcj.

8 One advantage of the product removal experiment is that it treats as

many individuals as possible, and thus minimizes the variance expression in (7).

The ATE provides a good approximation for the MTE when the expression in (6) is

small: (a) when the curvature of demand is small (∂
2qk
∂p2j
≈ 0), (b) when the true diversion

ratio is constant (or nearly constant) Djk(pj, p−j) = Djk, or (c) when demand for j is

8One could take this to correspond to the entire population of individuals who might substitute away
from j when faced with a price increase. It does not include those individuals who might substitute towards
j given a price decrease. Given valid randomization, we would expect that ATE ≈ ATT because the entire
demand curve is treated.
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steepest near the market price
∣∣∣∂qj(pj ,p−j)

∂pj

∣∣∣ � ∣∣∣∂qj(pj+∆pj ,p−j)

∂pj

∣∣∣. A limitation is that unless

we know the true functional form of demand, we cannot derive an explicit form for the

discrepancy between the ATE we measure and the MTE of interest. In Appendix A.2 we

conduct some simulations with commonly used parametric demand models, and report the

maximum discrepancy between the MTE and the ATE estimates.

2.3 Empirical Approach

In many retail settings, variability in the overall level of demand may overwhelm any

experimentally-induced variation from a small price change. Thus, our empirical approach

focuses on estimating the ATE using experimentally-generated second-choice data. Our ob-

jective is to obtain an accurate estimate of the ATE under a minimal set of parametric

assumptions, while still controlling for overall variability in the level of demand.

There are a discrete number of treated individuals ∆qj who would have purchased j

had it been available in the control but cannot in the treatment, and a discrete number of

individuals ∆qk, who purchase k in the treatment but would not during the control. Because

both outcome and treatment are the sum of discrete events, we can express the diversion

ratio using the binomial distribution with ∆qk ∼ Bin(n = ∆qj, p = Djk). Estimating

the diversion ratio merely requires estimating the binomial parameter p̂ = ∆qk
∆qj

which is

straightforward.

The challenge arises because both ∆qj,∆qk require assumptions on potential outcomes.

∆qj = E[qj|T = 1, X = x, k available]︸ ︷︷ ︸
=0

− E[qj|T = 0, X = x, k available]

∆qk = E[qk|T = 1, X = x, k available]− E[qk|T = 0, X = x, k available]

One advantage of using product removal experiments is that E[qj|T = 1, X = x] = 0 by

construction (consumers cannot purchase products that are unavailable). This also helps

rule out one set of potential defiers. The second set of defiers, those that purchase k only

when j is available are ruled out if j, k are substitutes rather than complements.

Even when we have random assignment of the treatment T , we still need to ensure that

the distribution of covariates f(x) is the same for treatment and control periods. Because

we are interested in the ratio of treatment effects, we also need to ensure that f(x) is the

same for both ∆qj and ∆qk. This suggests a matching or balancing approach given random

assignment of T . The most obvious covariate is that product k (the substitute) is actually
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available to consumers. The second covariate we should worry about is the overall level of

demand. The overall level of demand may be higher (or lower) during the treatment period

than the corresponding period from the control. This presents two additional challenges: the

first is that there may not be a single scalar x for overall demand that affects all products

in the same way, instead we might have product specific shocks (xj, xk); the second is that

we don’t expect to directly observe x even if it is scalar.

The approach we propose is to derive weaker conditions that help to balance the treatment

and control periods without observing x directly. Our first assumption is a weak implication

of all products being substitutes for one another.9

Assumption 1. “Substitutes”: Removing product j can never increase the overall level of

sales during a period, and cannot decrease sales by more than the sales of j.

We let qjt denote the sales of product j during period t, and Qt denote the sales of all

products during period t (not just products (j, k)). Given a treatment period t, we look for

the corresponding set of control periods which satisfy Assumption 1:

{s : s 6= t, T = 0, k avail , Qs −Qt ∈ [0, qjs]} (8)

The problem with a direct implementation of (8) is that periods with higher sales of the

focal product q0
js are more likely to be included in the control, which would understate the

diversion ratio. We propose a slight modification of (8) which is unbiased. We replace qjs

with q̂js = E[qjs|Qs, T = 0]. An easy way to obtain the expectation is to run an OLS

regression of qjs on Qs using data only from control periods for which j is available.

St = {s : s 6= t, Q0
s −Q1

t ∈ [0, b̂0 + b̂1Q
0
s]} (9)

Thus (9) defines the set of control periods St which correspond to treatment period t under

our assumption. The economic implication of Assumption 1 is that the sum of the diversion

ratios from j to all other products is between zero and one (for each t):
∑

k 6=j Djk,t ∈
[0, 100%].

We might be willing to make the additional assumption that each individual diversion

ratio is between zero and one: ∀k,Djk ∈ [0, 100%]. In fact, the interpretation of the diversion

9There are stronger assumptions we could make in order to implement a more traditional matching or
balancing estimator in the spirit of Abadie and Imbens (2006). Suppose a third product k′ was similarly
affected by the demand shock x but we knew ex-ante that Djk′ = 0, we could match on similar sales levels of
qk′ . For our vending example this might be using sales at a nearby soft drink machine to control for overall
demand at the snack machine, or it might be using sales of chips to control for sales of candy bars.
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ratio as the binomial parameter implicitly requires Djk ∈ [0, 1]. We may also be interested in

comparing diversion ratios across substitutes k, k′. One challenge may be that for some k and

t the corresponding set St may be small (or even empty), while for some k′ the corresponding

set may be large. In one case, we have very little information about Djk and the other we

have fairly precise information about Djk′ . We might erroneously conclude that Djk is large

and suggest the merging parties divest k when in fact it is not an issue. One way to address

both the precision of the diversion estimates, and constrain them to ∈ [0, 1], is to impose a

prior distribution on Djk.

Assumption 2. “Unit Interval”: Djk ∈ [0, 1]. ∆qk|∆qj, Djk ∼ Bin(n = ∆qj, p = Djk) and

Djk|β1, β2 ∼ Beta(β1, β2).

This assumption implies that the posterior distribution is given by Djk|β1, β2,∆qj,∆qk ∼
Beta(β1 +∆qk, β2 +∆qj−∆qk), and has posterior mean E[Djk|β1, β2,∆qj,∆qk] = β1+∆qk

β1+β2+∆qj
.

An alternate interpretation of the beta-binomial conjugacy is that we observe ∆qj treated

individuals and ∆qk “successes” but wish to incorporate prior information about the prob-

ability of the success from similar trials observed outside our dataset. The mean of the

prior is given by µjk = β1
β1+β2

, and the weight we put on the prior is equivalent to having

mjk = β1+β2 “pseudo-observations” in the data, that were observed before any experimental

data. We can also write our estimate for the mean of Djk as a shrinkage estimator:

Djk = λ · µjk + (1− λ)
∆qk
∆qj

, λ =
mjk

mjk + ∆qj

Thus λ tells us how much weight to put on our prior mean versus our experimental obser-

vations, or how many “pseudo-observations” we observed of our prior before we saw our

experimental outcomes. One reason this estimator is referred to as a “shrinkage” estimator,

is because as ∆qj becomes smaller (and our experimental outcomes are less informative),

D̂jk is shrunken towards µjk. Thus, when our experiments provide lots of information about

diversion from j to k we use rely on the experimental outcomes, but when our experiments

are less informative we rely more on our prior information.

The challenge in any Bayesian analysis is how to choose the prior mean µjk. Here we have

strong guidance both from economic theory and the practice of antitrust. One possible choice

for µjk might be the predicted diversion ratio from some demand system such as a logit or

random coefficients logit model. Among practitioners the most common assumption is that

the diversion ratio is proportional to marketshare (which would be equivalent to demand

following the plain IIA logit without covariates). An advantage of the shrinkage estimator is
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that it allows us to nest the plain IIA logit estimates of diversion currently used in practice

and the experimental outcomes, depending on our choice of λ. When µjt is chosen as a

function of the same observed dataset (including from estimated demand parameters) this is

a form of an Empirical Bayes estimator. The development of Empirical Bayes shrinkage is

attributed to Morris (1983) and has been widely used in applied microeconomics to shrink

outliers from a distribution of fixed effects in teacher value added10 or hospital quality.11

An estimator based on Assn 1 and 2 would be considered a Bayesian non-parametric

estimator for the ATT because there is a corresponding parameter for each ∆qk observa-

tion in the dataset. We might want to incorporate the further assumption that the sum

of estimated diversion ratios is equal to one (including diversion to “no purchase”), or that

diversion is described by a (nonparametric) multinomial discrete-choice model. The straight-

forward multinomial generalization of Assn 2 would be the Dirichlet-Multinomial conjugacy.

However, while the Dirichlet prior allows for each alternative to have a separate mean µjk,

it only allows for a single precision parameter (or number of pseudo-observations) λ. To

circumvent this we suggest a more flexible Bayesian non-parametric estimator for the ATT

based on the over-parametrized normal, which allows for a separate mean and precision

parameter for each alternative k and is a common technique in the statistics literature.12

Assumption 3. “Unit Simplex”:
∑
∀kDjk = 1

ηjk|µjk, σjk ∼ N(µjk, σjk), ηj0 = 0, Djk =
exp[ηjk]∑
k′ exp[ηjk′ ]

and [∆q0 . . .∆qK ]|∆qj, Dj0 . . . DjK ∼Mult(∆qj, Dj0, . . . , DjK)

Assn 3 implies that consumers who switch away from j now make a multinomial choice

among a set of alternatives k including a “no purchase” or “outside option” denoted by

k = 0. In some cases, this may be a stronger assumption than we are willing to make,

because it requires data not just from the two merging parties, but from all of the parties in

the industry. The advantage is that now we can use information on diversion from j → k′

in order to learn about diversion from j → k. This estimator also exhibits the same type of

shrinkage as the beta-binomial model above. Many pseudo-observations imply a small σjk

while fewer observations imply a larger σjk (and more shrinkage towards the prior mean). The

“adding-up” constraint of multinomial choice may further shrink all probabilities towards

zero or inflate them towards one in order to enforce the constraint implied by Assn 3. If

there is no non-experimental variation in the choice set (the set of alternatives remains fixed)

10Chetty, Friedman, and Rockoff (2014) and Kane and Staiger (2008)
11Chandra, Finkelstein, Sacarny, and Syverson (2013)
12Gelman, Bois, and Jiang (1996) and Blei and Lafferty (2007).
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then Assn 3 may not be so objectionable. However if options k and k′ are similar to one

another (red buses and blue buses) but never available at the same time, the multinomial

assumption may not be reasonable, especially if we are interested in Djk +Djk′ .

2.4 Identification Discussion

Despite the fact that Djk =
exp[ηjk]∑
k′ exp[ηjk′ ]

superficially resembles a multinomial logit model,

the estimator is in fact non-parametric. The rationale is that the data are only ∆qk, the

difference in sales between the treatment and control. For each of the K observations in

our data, we have two parameters (µjk, σjk), which leads statisticians to describe this as an

over-parametrized distribution.

Though a multinomial logit model (or some more flexible variant) may look similar, iden-

tification is quite different. In those models, identification usually arises from observational

variation in the set of alternatives, or observational variation in prices (through an instru-

ment). We often use information such as how the price (or presence) of an alternative k′

differentially affects demand for j and k in order to identify the parameters of the model.

However, the goal in that case is the identification of a fully-specified model of demand that

can be used to compute diversion (or conduct structural merger simulation) on any number

of alternatives. For example, a logit model could be used to compute the diversion ratio of

Dj′k instead of Djk, but with the caveat that it does not usually have enough parameters to

exactly fit every possible Dj′k that might be observed in the data.

While the product rotations are crucial to the identification of the parametric models,

they are somewhat of a nuisance to the identification of the treatment effects model. Product

rotations introduce additional heterogeneity for which we must control, or we risk introducing

bias into the estimated treatment effect. The ideal identification setting for the treatment

effect would be a case with no non-experimental variation in either prices or the set of

available products. Thus the treatment effect estimator should perform well precisely when

the parametric demand model may be poorly identified, and vice versa. This creates an

inherent problem in any setting where we want to evaluate the relative performance of the

two approaches. In contrast, both the treatment effects approach and the discrete choice

models benefit from experimental variation in the choice set.
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3 Description of Data and Industry

Globally, the snack foods industry is a $300 billion a year business, composed of a number

of large, well-known firms and some of the most heavily-advertised global brands. Mars

Incorporated reported over $50 billion in revenue in 2010, and represents the third-largest

privately-held firm in the US. Other substantial players include Hershey, Nestle, Kraft, Kel-

logg, and the Frito-Lay division of PepsiCo. While the snack-food industry as a whole might

not appear highly concentrated, sales within product categories can be very concentrated.

For example, Frito-Lay comprises around 40% of all savory snack sales in the United States,

and reported over $13 billion in US revenues last year, but its sales outside the salty-snack

category are minimal, coming mostly through parent PepsiCo’s Quaker Oats brand and the

sales of Quaker Chewy Granola Bars.13 We report HHI’s at both the category level and

for all vending products in Table 1 from the region of the U.S. that includes our vending

operator. If the relevant market is defined at the category level, all categories are considered

highly concentrated, with HHIs in the range of roughly 4500-6300. If the relevant market is

defined as all products sold in a snack-food vending machine, the HHI is below the critical

threshold of 2500. Any evaluation of a merger in this industry would hinge on the closeness

of competition, and thus require measuring diversion.

Over the last 25 years, the industry has been characterized by a large amount of merger

and acquisition activity, both on the level of individual brands and entire firms. For example,

the Famous Amos cookie brand was owned by at least seven firms between 1985 and 2001,

including the Keebler Cookie Company (acquired by Kellogg in 2001), and the Presidential

Baking Company (acquired by Keebler in 1998). Zoo Animal Crackers have a similarly com-

plicated history, having been owned by Austin Quality Foods before they too were acquired

by the Keebler Cookie Co. (which in turn was acquired by Kellogg).14

Our study measures diversion through the lens of a single medium-sized retail vending

operator in the Chicago metropolitan area, Mark Vend Company. Each of Mark Vend’s

machines internally records price and quantity information. The data track total vends and

13Most analysts believe Pepsi’s acquisition of Quaker Oats in 2001 was unrelated to its namesake business
but rather for Quaker Oats’ ownership of Gatorade, a close competitor in the soft drink business.

14Snack foods have an important historic role in market definition. A landmark case was brought by
Tastykake in 1987 in an attempt to block the acquisition of Drake (the maker of Ring-Dings) by Ralston-
Purina’s Hostess brand (the maker of Twinkies). That case established the importance of geographically
significant markets, as Drake’s had only a 2% marketshare nationwide, but a much larger share in the
Northeast (including 50% of the New York market). Tastykake successfully argued that the relevant market
was single-serving snack cakes rather than a broad category of snack foods involving cookies and candy bars.
[Tasty Baking Co. v. Ralston Purina, Inc., 653 F. Supp. 1250 - Dist. Court, ED Pennsylvania 1987.]
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revenues since the last service visit on an item-level basis, but do not include time-stamps

for each sale. Any given machine can carry roughly 35 products at one time, depending on

configuration.

We observe retail and wholesale prices for each product at each service visit during a

38-month panel that runs from January 2006 to February 2009. There is relatively little

price variation within a site, and almost no price variation within a category (e.g., chocolate

candy) at a site. This is helpful from an experimental design perspective, but can pose

a challenge to structural demand estimation. Very few “natural” stock-outs occur at our

set of machines.15 Most changes to the set of products available to consumers are a result

of product rotations, new product introductions, and product retirements. Over all sites

and months, we observe 185 unique products. Some products have very low levels of sales

and we consolidate them with similar products within a category produced by the same

manufacturer, until we are left with 73 ‘products’ that form the basis of the rest of our

exercise.16

In addition to the data from Mark Vend, we also collect data on the characteristics of

each product online and through industry trade sources.17 For each product, we note its

manufacturer, as well as the following set of product characteristics: package size, number

of servings, and nutritional information.18

3.1 Experimental Design

We ran four exogenous product removals with the help of Mark Vend Company. These

represent a subset of a larger group of eight exogenous product removals that we have

analyzed in two other projects, Conlon and Mortimer (2010) and Conlon and Mortimer

(2015). Our experiment uses 66 snack machines located in professional office buildings and

serviced by Mark Vend. Most of the customers at these sites are ‘white-collar’ employees

of law firms and insurance companies. Our goal in selecting the machines was to choose

machines that could be analyzed together, in order to be able to run each product removal

15Mark Vend commits to a low level of stock-out events in its service contracts.
16For example, we combine Milky Way Midnight with Milky Way, and Ruffles Original with Ruffles Sour

Cream and Cheddar.
17For consolidated products, we collect data on product characteristics at the disaggregated level. The

characteristics of the consolidated product are computed as the weighted average of the characteristics of
the component products, using vends to weight. In many cases, the observable characteristics are identical.

18Nutritional information includes weight, calories, fat calories, sodium, fiber, sugars, protein, carbohy-
drates, and cholesterol.
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over a shorter period of time across more machines.19 These machines were also located on

routes that were staffed by experienced drivers, which maximized the chance that the product

removal would be successfully implemented. The 66 machines used for each treatment are

distributed across five of Mark Vend’s clients, which had between 3 and 21 machines each.

The largest client had two sets of floors serviced on different days, and we divided this client

into two sites. Generally, each site is spread across multiple floors in a single high-rise office

building, with machines located on each floor.

For each treatment, we remove a product from all machines at a client site for a period

of 2.5 to 3 weeks. The four products that we remove are the two best-selling products from

either (a) chocolate maker Mars Incorporated (Snickers and Peanut M&Ms) or (b) cookie

maker Kellogg’s (Famous Amos Chocolate Chip Cookies and Zoo Animal Crackers). We

refer to exogenously-removed products as the focal products throughout our analysis.20

The dates of the interventions range from June 2007 to September 2008, with all removals

run during the months of May - October. We collected data for all machines for just over

three years, from January of 2006 until February of 2009. During each 2-3 week experi-

mental period, most machines receive service visits about three times. However, the length

of service visits varies across machines, with some machines visited more frequently than

others. Whenever a product was exogenously removed, poster-card announcements were

placed at the front of the empty product column. The announcements read “This product

is temporarily unavailable. We apologize for any inconvenience.” The purpose of the card

was two-fold: first, we wanted to avoid dynamic effects on sales as much as possible, and

second, Mark Vend wanted to minimize the number of phone calls received in response to

the stock-out events.

The cost of the experiment consisted primarily of driver costs. Drivers had to spend

extra time removing and reintroducing products to machines, and the driver dispatcher had

to spend time instructing the drivers, tracking the dates of each experiment, and reviewing

the data as they were collected. Drivers are generally paid a small commission on the

19Many high-volume machines are located in public areas (e.g., museums or hospitals), and feature demand
patterns (and populations) that vary enormously from one day to the next, so we did not use machines of
this nature. In contrast, the work-force populations at our experimental sites have relatively stable demand
patterns.

20Not reported here are two experiments on best-selling products from Pepsi’s Frito Lay Division, which
we omit for space considerations, and because Pepsi’s products already dominate the salty snack category
(which makes merger analysis less relevant). We also ran two additional experiments in which we removed
two products at once; again we omit those for space considerations and because they don’t speak to our
diversion ratio example. These are analyzed in Conlon and Mortimer (2010) and Conlon and Mortimer
(2015).
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sales on their routes, so if sales levels fell dramatically as a result of the experiments, their

commissions could be affected. Tracking commissions and extra minutes on each route for

each driver would have been prohibitively expensive to do, and so drivers were provided with

$25 gift cards for gasoline during each week in which a product was removed on their route

to compensate them for the extra time and the potential for lower commissions.

Our experiment differs somewhat from an ideal experiment. Ideally, we would be able to

randomize the choice set on an individual level. Technologically, of course, that is difficult

in both vending and traditional brick and mortar contexts. In contrast, online retailers are

capable of showing consumers different sets of products and prices simultaneously. This

leaves our design susceptible to contamination if for example, Kraft runs a large advertising

campaign for Planters Peanuts that corresponds to the timing of one of our experiments.

Additionally, because we remove all of the products at an entire client site for a period of

2.5 to 3 weeks, we lack a contemporaneous “same-side” group of untreated machines. We

chose this design, rather than randomly staggering the product removals, because we (and

the participating clients) were afraid consumers might travel from floor to floor searching for

stocked-out products. This design consideration prevents us from using control machines in

the same building, and makes it more difficult to capture weekly variation in sales due to

unrelated factors, such as a client location hitting a busy period that temporarily induces

long work hours and higher vending sales. Conversely, the design has the benefit that we

can aggregate over all machines at a client site, and treat the entire site as if it were a single

machine. Despite the imperfections of field experiments in general, these are often the kinds

of tests run by firms in their regular course of business, and may most closely approximate

the type of experimental information that a firm may already have available at the time

when a proposed merger is initially screened.

4 Analyses of the Experimental Outcomes

There are two challenges in implementing the experiment and interpreting the data generated

by it. The first challenge is that there is a large amount of variation in overall sales at the

weekly level, independent of our product removals. This weekly variation in overall sales is

common in many retail environments. We often observe week-over-week sales that vary by

over 20%, with no single product having more than 4.5% market share. This can be seen in

Figure 1, which plots the overall sales of all machines from one of the sites in our sample on

a weekly basis. In our particular setting, many of the product removals were implemented

during the summer of 2007, which was a high-point in demand at several sites, most likely due
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to macroeconomic conditions. In this case, using a simple control like previous weeks’ sales,

or overall average sales, can result in unreasonable treatment outcomes, such as overall sales

increasing due to a product removal, or decreasing by more than the sales of the removed

product.

The second challenge is that the data are recorded at the level of a service visit to a

vending machine. It is more convenient to organize observations by week, rather than by

visit, because different visits occur on different days of the week. In order to do this, we

assume that sales are distributed uniformly among the business days in a service interval,

and assign sales to weeks. We allow our definition of when weeks start and end to depend on

the client site and experiment, because different experimental treatments start on different

days of the week.21

After converting all observations to a machine-week, we summarize the data in Table 2.

Across our four treatments and 66 machines, we observe between 161-223 treated machine-

weeks. In the untreated group, we observe 8,525 machine-weeks and more than 700,000

units sold. Each treatment week exposes around 2,700-3500 individuals, of which around

134-274 would have purchased the focal product in an average week. Each treatment lasts

2.5-3 weeks, which exposes roughly 400-1,600 individuals over the course of each treatment.

This highlights one of the main challenges of measuring diversion experimentally: for the

purposes of measuring the treatment effect, only individuals who would have purchased the

focal product, had it been available, are considered “treated,” yet we must expose many

more individuals to the product removal, knowing that many of them were not interested in

the focal product in the first place.

Throughout the analysis, our fundamental unit is a machine-week. For each machine-

week in the treatment group we directly observe the sales of each product, and compare that

to the average sales during the corresponding machine-weeks from the control group. As

discussed in Section 2.3, we only include machine-weeks in the control group that come from

the same machine, when the substitute product k was also available. This leads to a slightly

different set of potential controls for each treatment. It also means that not every machine-

week in the treatment group is included in the analysis for each substitute. The first four

columns of Table 4 report, for each treatment and substitute product, the number of machine-

weeks, the average number of controls, the change in substitute sales ∆qk, and the change in

focal sales ∆qj. In columns (6)-(9), we restrict the set of machine-weeks in the control group

to those that satisfy Assumption 1, and report the same quantities. For the Snickers removal,

21At some site-experiment pairs, weeks run Tuesday to Monday, while others run Thursday to Wednesday.
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if we examine substitution to Twix Caramel, we can see that there were 143 machine-weeks

in our treated group, and on average there were 120.3 machine-weeks in the control group

for each treated machine-week. Once we restrict to these control weeks (i.e. those for which

sales did not increase and did not decrease by more than the expected Snickers sales), we

are left with an average of 9.8 control machine-weeks per treatment machine-week. There

are now 134 treatment machine-weeks instead of 143 treatment machine-weeks, because 9

treatment machine-weeks have no corresponding feasible control weeks. This is similar to the

k-nearest neighbor matching approach of Abadie and Imbens (2006), except that we allow

for a variable number of matches per treatment observation, and choose matches based on

an economic feasibility criterion rather than a statistical distance criterion.

In an ideal experimental setting, the only variation in choice sets across machine-weeks

would come from our experimental treatments. In that case, we would expect to see very little

variation in the number of machine-weeks or feasible control observations across potential

substitutes. For the Snickers experiment, the “outside good” option, reported in the last

row, is always available. This indicates a maximum of 180 machine-weeks for our Snickers

treatment, for which at least one control week satisfies Assumption 1. Only two products are

available in all 180 machine-weeks (Dorito Nacho and Chocolate Chip Famous Amos), and

several are available in nearly all of the machine-weeks (M&M Peanut, Rold Gold Pretzels,

Zoo Animal Crackers, and Cheetos); but most products are available in fewer than half of

the machine-week observations (and consequently in fewer than half of the 970 “treated”

focal sales).

We begin with a non-parametric analysis of the experimental outcomes. For each treat-

ment, we compute the average sales of each substitute product. We compare these average

sales during treated periods to the distribution of control-week sales, and report the corre-

sponding quantile of that distribution in Table 3. For example, when Snickers are removed,

the average weekly sales of Twix exceed any weeks observed during the control period, and

sales of Planters Peanuts correspond to the 96th percentile of the distribution of control

week sales. Overall sales across machines during the treatment corresponds to the 74.4th

percentile of overall control week sales. This provides some evidence in favor of restricting

control observations on the basis of Assumption 1 in order to control for variation in overall

demand.
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4.1 Estimates of Diversion

The obvious estimator of the diversion ratio for each substitute product k and each focal

(treated) product j is Djk = ∆qk
∆qj

, which we can also interpret as the MLE from observing ∆qk

successes in ∆qj binomial trials. The first panel of Table 5 reports this “raw” diversion ratio

for the Snickers removal. For Twix, in the second row, ∆qk = 289.6 and ∆qj = −702.4 based

on the 134 machine-weeks in which Twix was available. This implies a raw diversion ratio

Djk = 41.2%. In the same table, we observe substitution from Snickers to Non-Chocolate

Nestle products with only 3 machine-weeks in our sample.22 This leads to ∆qj = −10.5 and

∆qk = 9.4 for an implied diversion ratio of Djk = 89.5%. Examining these raw diversion

numbers may lead one to conclude that Non-Chocolate Nestle products are a closer substitute

for Snickers than Twix. However, we observe more than 70 times as much information about

substitution to Twix as we do to Non-Chocolate Nestle products.

Our best estimate of the diversion ratio for Snickers to Non-Chocolate Nestle products

may actually be smaller than the diversion ratio of Snickers to Twix once we incorporate

uncertainty into our estimates. Assumption 2 shrinks the diversion ratio towards the prior

mean; when we have more treated individuals (and hence more information) we employ less

shrinkage, and when we have fewer treated individuals, we employ more shrinkage. The beta

prior requires Djk ∈ [0, 1]. While the unadjusted estimates allow for ∆qk < 0 and Djk < 0,

under Assumption 2 we treat these values as if ∆qk = 0.

When we implement Assumption 2, we follow an Empirical Bayes procedure in choosing

the prior. We assume that the prior mean of the diversion ratio for µjk is centered around the

marketshare for product k, sk. This is of some practical significance, because the assumption

of logit demand, or diversion proportional to marketshare, is commonly used in practice by

antitrust authorities.23 Recall from Section 2.3 that λ tells us how much weight to put on

our prior mean versus our experimental observations. The choice of λ allows us to nest

the logit model and our experimental diversion measures in a single framework. When the

experiment is less informative, we “shrink” our diversion estimates towards the logit.

We take the approach of choosing different numbers of pseudo-observations from the

Beta prior distribution and examining robustness to the strength of the prior. Under the

strong prior in Table 5 we assume that N = 300 pseudo-observations were observed before

22Non-Chocolate Nestle products include Willy Wonka candies such as Tart-N-Tinys, Chewy Tart-N-Tinys,
Mix-ups, Mini Shockers, and Chewy Runts.

23Another alternative would be to use a more sophisticated and realistic model of consumer demand that
relaxes the IIA property of the logit, such as the random coefficients logit model, and use the predicted
diversion ratio from that model as our prior mean.
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our experimental data. Under the weak prior we assume there is one pseudo-observation

for each product in the choice set. Even with the relatively diffuse prior, we see that the

estimate of diversion for Non-chocolate Nestle products shrinks from 89.5% to 12.4%, while

the diversion estimate for Twix Caramel only shrinks from 41.2% to 37.9%. As expected,

we see much more shrinkage when the number of treated individuals (∆qj or change in

focal sales) is small. We explore how estimated diversion ratios vary with alternative prior

strengths in Table 6.

Assumption (3) adds the requirement that the diversion ratio of all substitute products

(including substitution to the “outside good” option) sum to one. This embeds the idea

that every individual not buying j must buy some other k or nothing at all. It eliminates

some possibilities like substituting from j to the pair of products (k, k′), or that k and k′

are substitutes. It also implicitly assumes that all substitute products are simultaneously

available in the treatment and control. In order to construct a prior distribution, we now

assume that Djk =
exp ηjk∑
k′ exp ηjk′

where ηjk ∼ N(µjk, σ
2
jk). We follow the Empirical Bayes

procedure, and use observed data from the control period to estimate µjk = µk as the

parameters of the plain IIA multinomial logit. Rather than fix the strength of the prior, we

experiment with different values of σ2
k = σ2. In Table 7 we document how our estimates

of diversion vary with σ2 from σ2 = 0.25 to σ2 = 100.24 We find that the strength of the

prior has very little effect on the estimated diversion ratio, even when the prior is extremely

diffuse (σ2 = 100). This is different from the product-by-product binomial case in Table 6,

where diversion estimates are relatively sensitive to the strength of the prior distribution.

We observe shrinkage of the experimental estimates when there are fewer treated individuals

(e.g., Non-Chocolate Nestle products have an estimated diversion ratio from Snickers of less

than 1%) independent of the weight placed on the prior distribution. We observe relatively

less shrinkage for products with more treated individuals (e.g., the estimated diversion from

Snickers to Twix is 15.9%).

In Table 8, we report the posterior distribution of our diversion estimates under As-

sumption 3 and the very diffuse prior σ2 = 100. We find that in most cases the posterior

distribution defines a relatively tight 95% confidence interval, even when we have relatively

few experimentally-treated individuals. On one hand this indicates our estimates are rela-

tively precise and insensitive to the prior distribution. On the other, it demonstrates the

power of Assumption 3 (the requirement that the sum of diversion ratios across all substi-

tutes is equal to one). Essentially, this assumption alone, even with a very small effective

24A typical value of µk ≈ −4.
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λ, pins down the posterior estimates of the diversion ratio. While the assumption appears

relatively innocuous (most researchers are likely willing to assume a multinomial discrete

choice framework) because it is so powerful in pinning down the diversion ratio estimates,

we should be a little cautious. The important empirical content of Assumption 3 is deter-

mining what the appropriate set of products K is, such that
∑

k∈KDjk = 1. If, for example,

we were interested in a merger where product j acquired both (k, k′) but (k, k′) were always

rotated for one another and never available at the same time, we might want to vary the set

of products over which we sum Djk′ for each alternative: Kk.25

Our finding that estimates of diversion that use Assumptions 1 and 2 can be sensitive

to the prior, while those that use Assumptions 1 and 3 precisely pin down the diversion

ratio, is of practical significance as well. One of the stated benefits of the unilateral effects

approach is that it requires data only from the merging parties, and not from firms outside

the merger.26 The power of Assumption 3 indicates that measuring diversion to all substitute

goods (rather than just k) can substantially improve our estimates of Djk.
27 This suggests

that although we need only (quasi)-experimental removals (or second-choice data) for the

focal products involved in the merger, we should attempt to measure substitution to all

available substitutes if possible.

4.2 Merger Evaluation

The goal behind estimating the diversion ratio is to allow regulators to perform prospective

merger analysis. Within the unilateral-effects framework, the diversion ratio is the key input

for calculating UPP or the GUPPI. These two measures also rely on estimates of price-cost

margins. Under a typical structural approach to merger analysis, price cost margins are

typically treated as unobserved, and researchers estimate them via a demand system and

an assumption about firm conduct (such as static Bertrand-Nash pricing) [RE-WRITE]. In

contrast, when the FTC or DOJ evaluate a merger, firms are compelled to provide measures

of price-cost margins as part of the Hart-Scott-Rodino filings.

25Conlon and Mortimer (2013) show that assuming all products are always available introduces bias in
structural parametric estimates of demand.

26The 2010 Horizontal Merger Guidelines include the phrase: Diversion ratios between products sold by
merging firms and those sold by non-merging firms have at most secondary predictive value. We disagree
with this statement in terms of statistical properties, rather than economic theory.

27In broad strokes, this phenomenon is well understood by statisticians. This is related to Stein’s Paradox
which shows that pooling information improves the parameter estimates for the mean of the multivariate
normal, or the broader class of James-Stein shrinkage estimators. See Efron and Morris (1975) and James
and Stein (1961).
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The GUPPI for a merger in which the seller of product j acquired product k is GUPPIj =
pk−ck
pj
·Djk (all evaluated at pre-merger values). An estimate of UPP would further require

some information (or an assumption) about the potential size of the variable cost reduction

from the proposed merger. When considering a merger between two manufacturers, the

relevant margins are likely at the manufacturer level, rather than at the retail level, even

though our measure of diversion is at the retail level. In our empirical example, we observe

both the retail prices and prices paid by retailers to the manufacturers; what we do not

observe are the marginal costs of the manufacturers. Thus, we would require additional

assumptions in order to report UPP or the GUPPI. However, the vending machine context

contains very little price variation at the retail level within a product category (all chocolate

candy bars sell for 75 cents in our sample). Although there is some variation in wholesale

prices, most are between 35 and 50 cents. Therefore, we don’t expect margins to provide any

additional information beyond the diversion ratio. This is probably true for many consumer

products (e.g., the margin differences between blueberry and strawberry yogurt are likely

insignificant); but in other contexts (such as automobiles or airlines) margin differences are

likely an important part of the story.

Given our experimental estimates of Djk, what precisely can we say about the likely

effects of a merger? The first limitation is that if we have an estimate of Djk we do not

necessarily have an estimate of Dkj. Thus, while one may be able to make statements about

how the acquisition of k is likely to affect the incentives to raise prices for j, one may not

necessarily be able to make statements about how “being acquired by j” is likely to increase

the price of k (unless we experimentally remove k as well). Assuming that diversion ratios are

symmetric does not seem like a good idea, and places strong restrictions on the parametric

form of demand.28 A second issue is understanding what the relevant product or products

are. If price-cost margins are the same, then if the owner of j acquires both k and k′, we

are interested in the sum of the diversion ratios: Djk + Djk′ . Often mergers involve large

numbers of brands.

An important remedy available to the antitrust agencies is to approve a merger condi-

tional on some divestiture.29 Define the diversion ratio from j to all products owned by a

28Consider the IIA logit model. In that model, diversion is proportional to market share. Thus the
acquisition of a small brand by a large brand is unlikely to have much effect on the large brand, because
the diversion ratio is small. It is more likely to have an effect on the small brand, because many consumers
would be predicted to divert to the large brand.

29Some recent examples include gate slots at specific airports for the American/USAirways merger, or
requiring that the entire Modelo business within the US be spun-off and divested during its acquisition by
Anheuser-Busch InBev.
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target firm F as: Dj,F =
∑

k∈F Dj,k, and then consider removing one or more products from

the set of products involved in the merger. The idea is to divest a few closely-competing

products from a proposed merger, so that the aggregated diversion ratio Dj,F is below some

critical threshold (often 5% or 10%).

[RE-ORDER THIS AND PREVIOUS PARAGRAPHS] Our empirical example in Table

9 follows exactly this pattern. We consider the potential price effects of a merger only on

the products that we experimentally removed by examining the sum of diversion ratios from

these products to all of the products of potential targets F . We then propose a divestiture

of a key substitute product controlled by the target F , and recompute the diversion ratio to

all of the target’s products absent the divested product. In some circumstances, divestiture

of one or two key products might alleviate price concerns around a particular merger.

When we examine a potential acquisition where Kellogg’s (Pop-Tarts, Zoo Animal Crack-

ers, Famous Amos Cookies, Cheez-it, Rice Krispie Treats) acquires Kraft’s snack food divi-

sion (Oreos, Lorna Doone, Planters Peanuts, Cheese Nips, and other Nabisco products). We

can look at the effects on both of Kellogg’s major products (Zoo Animal Crackers and Famous

Amos) of the Kraft acquisition. We find that the diversion ratio from Zoo Animal Crackers

to all Kraft products is 5.80%, and the diversion of Chocolate Chip Famous Amos is 11.85%.

Both of these are above the 5% threshold, and thus would need to demonstrate substantial

cost synergies to justify the merger. However, if Kraft were to divest its Planter’s Peanut

line, the diversion ratios drop to 3.36% and 3.09% respectively. This suggests a potential

remedy that might allow the antitrust authorities to drop opposition to the merger.

Likewise one could consider an acquisition by Mars (Snickers, M&M’s, Milky Way, Three

Musketeers, Skittles) of Nestle’s US confections business (Butterfinger, Raisinets, assorted

Willy Wonka fruit flavored candies). If one is worried about the price effects that the

acquisition might have on Snickers or M&M Peanut (the two largest brands in the chocolate

category) we find that diversion from those products to Nestle products is 5.71% and 6.30%

respectively, but that if Nestle were to divest Butterfinger, the diversion ratios would drop

to 1.26% and 4.51% respectively. Again, this might be enough to convince the antitrust

authorities not to block a proposed acquisition.30

Our hope is that these examples highlight both the advantages of our approach (that it is

easy to detect which mergers require further investigation and which divestitures to consider),

but also some of the limitations. For example, we can look at the effect on Snickers or M&M

30While this kind of divestiture may sound less realistic than Kraft divesting the Planters Peanuts line,
these kinds of agreements are actually commonplace in the confections industry. For example in the United
States, Kit-Kat is a Hershey product, but outside the United States Kit-Kat is a Nestle product.
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Peanut that the acquisition of Butterfinger might have, but we cannot say anything about

the likely effect on the prices of Butterfinger of a Mars acquisition without conducting that

experiment as well. This suggests that we either need observational/quasi-experimental data

on many different stockout events, or we need some ex ante idea of which products are likely

to have larger price impacts of the merger in order to tailor our experiments. The second

limitation, which is not a limitation of our approach but of the unilateral effects approach

more generally, is that it ignores diversion to existing brands. In the Snickers experiment,

more than half of consumers already substitute to another Mars product, yet this has no

bearing on the analysis of a proposed merger with Nestle (though it might if we considered

the price effects on Butterfinger). This highlights what is likely to be a more general pattern

in the unilateral effects approach: when large brands acquire smaller brands, the likely

concern is the price of the smaller brand.

5 Conclusion

The 2010 revision to the Horizontal Merger Guidelines de-emphasized market definition and

traditional concentration measures such as HHI in favor of a unilateral effects approach based

on UPP or GUPPI. This unilateral effects approach holds prices, costs, and competitive

responses fixed, and the key input is the diversion ratio, which measures how closely two

products substitute for one another.

We show that the diversion ratio can be interpreted as the marginal treatment effect of an

experiment in which the price of one product is increased by a small amount. An important

characteristic of many retail settings is that category-level sales can be more variable than

product-level market shares. In practice, this makes most experiments that consider small

price changes under-powered. We also show that second-choice data arising from randomized

experiments, quasi-experiments (such as stockouts), or second-choice survey data, can be

used to estimate an average diversion ratio, where the average is taken over all possible

prices from the pre-merger price to the choke price. We derive conditions based on economic

primitives such as the curvature of demand, whereby the average diversion ratio from second-

choice data (ATE) is a good approximation for the MTE.

We conduct randomized field experiments, where we exogenously remove products from

consumers’ choice sets and measure the ATE directly. We provide a set of three relatively

minimal assumptions, derived from consumer theory, which allow for relatively precise esti-

mates of the diversion ratio even in noisy environments: (1) that a product removal cannot

increase sales, nor decrease sales by more than the expected sales of the removed product
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(2) that the diversion ratio is defined on the unit interval and has some prior distribution

and (3) that the diversion ratio for all possible substitutes is defined on the unit simplex.

We find benefits from measuring diversion not only between products involved in a proposed

merger, but also from merging products to non-merging products.

We develop a simple method to recover the diversion ratio from data, which enables us

to combine both experimental and quasi-experimental measures with structural estimates as

prior information. An Empirical Bayes shrinkage approach enables us to use prior informa-

tion (or potentially structural estimates) when experimental measures are not available, or

when they are imprecisely measured, and to rely on experimental measures when they are

readily available. This facilitates the combination of both first- and second-choice consumer

data. We show that these approaches are complements rather than substitutes. Structural

demand estimates rely either on variation in the prices of choices across contexts or markets,

or on the set of choices that are available to consumers in order to identify parameters.

These estimators struggle when there is little variation in the data. In contrast, randomized

controlled trials work best when there is little to no variation in the availability or prices of

products, except for the variation induced by the treatment.

Our hope is that this makes a well-developed set of quasi-experimental and treatment

effects tools available both to researchers in industrial organization and also to antitrust prac-

titioners. While the diversion ratio can be obtained experimentally, doing so is not trivial,

and researchers should think carefully about (1) which treatment effect their experiment (or

quasi-experiment) is actually identifying; and (2) what the identifying assumptions required

for estimating a diversion ratio implicitly assume about the structure of demand.
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Manufacturer: Category:
Salty Snack Cookie Confection Total

PepsiCo 78.82 9.00 0.00 37.81
Mars 0.00 0.00 58.79 25.07
Hershey 0.00 0.00 30.40 12.96
Nestle 0.00 0.00 10.81 4.61
Kellogg’s 7.75 76.94 0.00 11.78
Nabisco 0.00 14.06 0.00 1.49
General Mills 5.29 0.00 0.00 2.47
Snyder’s 1.47 0.00 0.00 0.69
ConAgra 1.42 0.00 0.00 0.67
TGIFriday 5.25 0.00 0.00 2.46
Total 100.00 100.00 100.00 100.00
HHI 6332.02 6198.67 4497.54 2401.41

Table 1: Manufacturer Market Shares and HHI’s by Category and Total

Source: IRM Brandshare FY 2006 and Frito-Lay Direct Sales For
Vending Machines Data, Heartland Region, 50 best-selling products.
(http://www.vending.com/Vending Affiliates/Pepsico/Heartland Sales Data)

Period†
Control

Snickers Crackers
Zoo Animal

Amos
Famous

Peanut
M&M

# Machines 66 62 62 62 56
# Weeks 160 6 5 4 6
# Machine-Weeks 8,525 190 161 167 223
# Products 76 67 65 67 66
Total Sales 700,404.0 16,232.5 14,394.0 13,910.5 19,005.2
—Per Week 4,377.5 2,705.4 2,878.8 3,477.6 3,167.5
—Per Mach-Week 82.2 85.4 89.4 83.3 85.2
Total Focal Sales∗ 42,047.8 26,113.2 21,578.4 44,026.3
—Per Week 262.8 163.2 134.0 273.5
—Per Mach-Week 4.9 3.1 2.5 5.2

Table 2: Summary Statistics
† Numbers for Snickers removal. Summary statistics for other removals differ minimally

because of different definition of the starting day of the week.
∗ Focal sales during the control period. Focal sales during the treatment are close to zero.

Any deviation from zero occurs because of the apportionment of service visit level sales
to weekly sales.
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Manufacturer Product Control
Mean

Treatment
Mean

Treatment
Quantile

Snickers Removal
Mars M&M Peanut 309.8 472.5 100.0
Pepsi Rold Gold (Con) 158.9 331.9 91.2
Mars Twix Caramel 169.0 294.1 100.0
Pepsi Cheeto LSS 248.6 260.7 61.6
Snyders Snyders (Con) 210.2 241.6 52.8
Kellogg Zoo Animal Cracker Austin 183.1 233.7 96.8
Kraft Planters (Con) 161.1 218.8 96.0

Total 4892.1 5357.9 74.4
Zoo Animal Crackers Removal

Mars M&M Peanut 309.7 420.3 99.2
Mars Snickers 301.3 385.1 94.4
Pepsi Rold Gold (Con) 158.9 342.4 92.0
Snyders Snyders (Con) 210.3 263.0 67.2
Pepsi Cheeto LSS 248.6 263.0 66.4
Mars Twix Caramel 169.1 235.0 99.2
Pepsi Baked Chips (Con) 169.6 219.7 89.6

Total 4892.2 5608.6 89.6
Famous Amos Cookie Removal

Mars M&M Peanut 309.7 319.5 46.4
Mars Snickers 301.2 316.6 52.0
Pepsi Rold Gold (Con) 158.9 285.3 80.0
Pepsi Cheeto LSS 248.7 260.7 64.8
Snyders Snyders (Con) 210.1 236.4 52.8
Pepsi Sun Chip LSS 150.2 225.5 100.0
Pepsi Ruffles (Con) 206.9 218.3 62.4

Total 4890.2 5262.4 64.0
M&M Peanut Removal

Mars Snickers 300.9 411.8 99.2
Snyders Snyders (Con) 209.7 279.0 76.8
Pepsi Rold Gold (Con) 158.9 276.9 80.8
Pepsi Cheeto LSS 248.6 251.0 47.2
Mars Twix Caramel 167.9 213.8 90.4
Kellogg Zoo Animal Cracker Austin 182.6 198.0 65.6
Pepsi Baked Chips (Con) 169.4 194.7 68.0

Total 4886.1 5315.5 65.6

Table 3: Quantile of Average Treatment Period Sales in the Empirical
Distribution of Control Period Sales.

Control Mean is the average number of sales of a given product (or all products) over
all control weeks. Treatment Mean is the average number of sales of a given product
(or all products) over all treatment weeks. A treatment week is any week in which
at least one machine was treated. For client sites that were not treated during these
weeks (because treatment occurs at slightly different dates at different sites), we use
the average weekly sales for the client site when it was under treatment (otherwise
we would be comparing treatment weeks with different number of treated machines
in them). Treatment Quantile indicates in which quantile of the distribution of
control-week sales the treatment mean places.
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Unrestricted Control Machine-Weeks Restricted Control Machine-Weeks
Manufacturer Product Trt’d

Mach-
Weeks

Avg #
Controls
Per Trt

∆
Subst
Sales

∆
Focal
Sales

Raw
Diversion

Trt’d
Mach-
Weeks

Avg #
Controls
Per Trt

∆
Subst
Sales

∆
Focal
Sales

Raw
Diversion

Nestle Nonchoc Nestle (Con) 6 80.3 14.1 -19.8 71.1 3 8.7 9.4 -10.5 89.5
Mars M&M Peanut 186 120.3 482.4 -915.9 52.7 176 10.0 375.5 -954.3 39.4
Mars Twix Caramel 143 120.3 339.6 -682.6 49.7 134 9.8 289.6 -702.4 41.2
Misc Farleys (Con) 22 40.9 41.0 -121.2 33.8 18 4.6 14.9 -114.2 13.0
Hershey Choc Herhsey (Con) 51 51.9 62.1 -210.0 29.6 41 8.8 29.8 -179.6 16.6
Mars M&M Milk Chocolate 104 116.1 114.7 -454.6 25.2 97 10.6 71.8 -457.4 15.7
Pepsi Rold Gold (Con) 186 82.8 215.5 -874.6 24.6 174 7.6 161.4 -900.1 17.9
Nestle Butterfinger 63 95.5 78.8 -355.7 22.1 61 7.9 72.9 -362.8 20.1
Kraft Planters (Con) 143 94.8 154.8 -708.0 21.9 136 7.9 78.0 -759.9 10.3
Kellogg Rice Krispies Treats 20 93.8 15.9 -72.9 21.8 17 6.5 17.7 -66.5 26.7
Mars Choc Mars (Con) 12 67.5 5.2 -34.7 14.9 11 16.2 6.4 -32.7 19.7
Hershey Payday 2 84.0 1.4 -9.7 14.4 2 8.5 1.1 -9.8 10.9
Kellogg Zoo Animal Cracker Austin 187 120.3 132.0 -923.6 14.3 177 9.5 65.7 -970.2 6.8
Kellogg Choc SandFamous Amos 74 113.4 52.7 -369.9 14.2 69 10.0 33.9 -404.2 8.4
Hershey Sour Patch Kids 34 124.9 17.0 -134.3 12.6 33 12.7 10.8 -152.9 7.1
Kellogg Brown Sug Pop-Tarts 6 74.7 3.6 -30.4 11.8 6 8.2 2.3 -33.1 7.0
Pepsi Sun Chip LSS 166 117.8 91.7 -814.5 11.3 159 9.1 45.3 -866.1 5.2
Sherwood Ruger Wafer (Con) 162 82.7 80.9 -734.5 11.0 151 7.6 24.5 -778.0 3.1
Nestle Choc Nestle (Con) 1 21.0 0.9 -9.3 9.2 0
Kar’s Nuts Kar Sweet&Salty Mix 2oz 113 116.6 50.1 -565.7 8.8 104 8.9 27.6 -597.1 4.6
Kellogg Choc Chip Famous Amos 190 119.0 81.8 -932.9 8.8 180 10.0 44.8 -971.8 4.6
Kraft Fig Newton 6 77.0 2.1 -29.6 7.2 6 5.8 0.6 -31.3 2.0
Nestle Raisinets 143 121.7 47.6 -678.8 7.0 133 10.0 11.6 -697.3 1.7
Pepsi FritoLay (Con) 113 94.9 32.7 -507.0 6.4 104 9.7 16.8 -515.7 3.3
Pepsi Baked Chips (Con) 176 113.5 49.5 -883.5 5.6 166 10.1 33.5 -911.7 3.7
Misc Farleys Mixed Fruit Snacks 137 93.3 34.9 -666.8 5.2 129 7.2 13.0 -686.5 1.9
Pepsi Dorito Blazin Buffalo Ranch LSS 95 57.6 20.0 -494.0 4.0 87 5.2 -27.6 -503.1 -5.5
Mars Combos (Con) 132 78.2 27.5 -682.6 4.0 119 6.6 7.6 -663.6 1.2
Kellogg Cheez-It Original SS 159 119.6 25.3 -794.1 3.2 150 10.4 2.1 -819.9 0.3
Mars Starburst Original 31 108.5 4.2 -138.7 3.0 29 11.6 -1.7 -137.6 -1.2
Pepsi Cheeto LSS 187 120.3 27.0 -918.7 2.9 177 10.0 -46.2 -957.4 -4.8
Mars Marathon Chewy Peanut 7 83.0 0.9 -42.0 2.1 6 6.5 -5.0 -50.4 -9.9
Misc BroKan (Con) 3 43.0 0.0 -0.2 1.5 3 42.0 0.0 0.0
Kraft Cherry Fruit Snacks 71 123.1 5.3 -398.1 1.3 68 9.3 -5.3 -419.3 -1.3
Misc Popcorn (Con) 77 113.9 1.5 -387.1 0.4 76 9.8 -19.8 -425.2 -4.6
Snyders Snyders (Con) 145 104.7 0.6 -630.6 0.1 137 9.2 -76.6 -668.6 -11.5
Misc Rasbry Knotts 147 109.4 -1.8 -736.1 -0.2 136 9.3 -4.5 -727.7 -0.6
Pepsi Ruffles (Con) 156 124.4 -2.9 -774.1 -0.4 148 10.4 -42.2 -794.9 -5.3
Kraft Lorna Doone Shortbread Cookies 43 123.6 -0.8 -197.8 -0.4 41 11.3 -4.6 -202.3 -2.3
Misc Other Pastry (Con) 4 91.0 -0.1 -17.0 -0.5 3 8.7 -0.1 -12.8 -0.6
Pepsi Quaker Strwbry Oat Bar 44 78.2 -1.3 -186.6 -0.7 39 9.6 -7.3 -174.0 -4.2
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Unrestricted Control Machine-Weeks Restricted Control Machine-Weeks
Manufacturer Product Trt’d

Mach-
Weeks

Avg #
Controls
Per Trt

∆
Subst
Sales

∆
Focal
Sales

Raw
Diversion

Trt’d
Mach-
Weeks

Avg #
Controls
Per Trt

∆
Subst
Sales

∆
Focal
Sales

Raw
Diversion

Kellogg Strwbry Pop-Tarts 162 118.1 -6.0 -792.7 -0.8 154 9.9 -40.5 -819.4 -4.9
General Mills Nature Valley Swt&Salty Alm 49 107.0 -2.3 -214.8 -1.1 43 9.6 -42.4 -195.3 -21.7
Pepsi Chs PB Frito Cracker 48 95.0 -2.7 -220.5 -1.2 45 9.0 -6.4 -227.9 -2.8
Kraft Ritz Bits Chs Vend 74 127.4 -5.3 -404.9 -1.3 71 9.4 0.2 -424.0 0.0
Mars Nonchoc Mars (Con) 35 108.1 -2.1 -154.3 -1.3 31 13.1 1.0 -134.8 0.7
Kar’s Nuts KarNuts (Con) 40 99.3 -2.6 -183.8 -1.4 35 8.0 -27.7 -188.4 -14.7
Kraft 100 Cal Chse Nips Crisps 20 93.8 -1.1 -72.9 -1.5 17 6.5 -6.3 -66.5 -9.4
Pepsi Smartfood LSS 67 125.5 -7.8 -365.3 -2.1 65 9.2 -25.0 -388.2 -6.4
Kellogg Cherry Pop-Tarts 28 87.9 -3.0 -125.4 -2.4 28 7.5 2.4 -155.4 1.6
Mars Milky Way 11 94.8 -1.4 -42.4 -3.3 9 4.6 -0.5 -37.9 -1.4
Pepsi Dorito Nacho LSS 190 119.7 -37.2 -928.3 -4.0 180 10.0 -57.9 -969.1 -6.0
Misc Hostess Pastry 16 114.4 -3.2 -76.6 -4.1 15 15.9 -11.7 -78.7 -14.8
Pepsi Cheetos Flaming Hot LSS 69 124.8 -15.4 -371.5 -4.1 66 9.1 -22.3 -372.9 -6.0
Pepsi Grandmas Choc Chip 119 114.6 -29.9 -589.7 -5.1 111 9.8 -36.3 -580.7 -6.3
Kraft 100 Cal Oreo Thin Crisps 23 94.0 -4.2 -75.3 -5.6 20 11.9 1.2 -66.5 1.7
Mars Skittles Original 132 122.9 -37.8 -650.9 -5.8 125 9.7 -49.0 -672.5 -7.3
Misc Cliff (Con) 4 32.0 -1.6 -22.9 -6.9 4 3.0 -1.6 -24.7 -6.6
Snyders Jays (Con) 161 98.0 -58.3 -775.8 -7.5 150 8.6 -87.8 -809.4 -10.8
Pepsi Frito LSS 154 106.0 -69.5 -749.8 -9.3 144 9.4 -84.4 -798.1 -10.6
General Mills Oat n Honey Granola Bar 37 118.2 -24.9 -204.4 -12.2 36 9.0 -29.7 -197.1 -15.1
Misc Salty Other (Con) 31 115.3 -18.8 -147.3 -12.8 30 12.5 -11.9 -163.8 -7.3
Pepsi Lays Potato Chips 1oz SS 155 64.9 -96.2 -713.7 -13.5 143 5.5 -112.5 -744.1 -15.1
Misc Salty United (Con) 11 76.5 -6.0 -30.1 -20.0 9 16.7 -9.6 -26.1 -36.8
Mars 3-Musketeers 3 52.0 -2.9 -8.3 -35.4 2 11.0 0.0 0.0
Hershey Twizzlers 55 53.9 -83.4 -216.4 -38.5 46 7.8 -75.6 -192.8 -39.2

Outside Good 190 120.5 -982.6 -929.3 -105.7 180 10.0 460.9 -970.2 47.5
Table 4: Removal 1 (Snickers Removal) Raw Diversion Ratios - Unre-
stricted and Restricted Control Machine-Weeks

Assumption 1 (removing a product cannot increase total sales during a period, and cannot decrease
total sales by more than the expected sales of the removed product) is imposed when selecting
Restricted Control Machine-Weeks, but is not imposed when selecting Unrestricted Control Ma-
chine Weeks. Both restricted and unrestricted machine-weeks require that the focal product and
the substitute of interest are available in the control machine-week, and the substitute is available
in the treatment machine-week.
Trt’d Mach-Weeks shows the number of treated machine-weeks for which there was at least one
control machine-week. Avg # Controls Per Trt is the average number of control machine-weeks
per treatment machine-week over all treatment machine-weeks. ∆ Subst Sales shows the change in
substitute product sales from the control to the treatment period, while ∆ Focal Sales shows the
analogous change for focal product sales. Raw Diversion is the ratio of the change in substitute
product sales to the absolute value of the change in focal product sales.
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Manufacturer Product Treated
Machine
Weeks

∆
Subst
Sales

∆
Focal
Sales

Raw
Diversion

Beta-Binomial
(Weak Prior)

Diversion

Beta-Binomial
(Strong Prior)

Diversion

Multinomial
Diversion

Snickers Removal
Nestle Nonchoc Nestle (Con) 3 9.4 -10.5 89.5 12.4 3.1 0.7
Mars Twix Caramel 134 289.6 -702.4 41.2 37.9 29.5 15.9
Mars M&M Peanut 176 375.5 -954.3 39.4 37.0 30.8 18.4
Kellogg Rice Krispies Treats 17 17.7 -66.5 26.7 13.5 5.0 1.3
Nestle Butterfinger 61 72.9 -362.8 20.1 17.1 11.2 4.5
Mars Choc Mars (Con) 11 6.4 -32.7 19.7 6.5 2.0 0.4
Pepsi Rold Gold (Con) 174 161.4 -900.1 17.9 16.8 13.9 7.5
Hershey Choc Herhsey (Con) 41 29.8 -179.6 16.6 12.2 6.3 2.0
Mars M&M Milk Chocolate 97 71.8 -457.4 15.7 13.8 9.8 4.1
Misc Farleys (Con) 18 14.9 -114.2 13.0 8.3 3.7 1.0
Hershey Payday 2 1.1 -9.8 10.9 1.4 0.4 0.1
Kraft Planters (Con) 136 78.0 -759.9 10.3 9.6 7.8 3.8

Outside Good 180 460.9 -970.2 47.5 23.1
Zoo Animal Crackers Removal

Hershey Payday 2 0.4 -0.4 84.7 0.6 0.1
Kellogg Rice Krispies Treats 13 23.5 -37.8 62.2 23.2 7.2 3.0
Misc Salty United (Con) 6 10.4 -18.9 55.1 12.6 3.4 1.2
Kraft 100 Cal Oreo Thin Crisps 13 14.9 -37.8 39.4 14.7 4.5 1.8
Pepsi Rold Gold (Con) 132 114.4 -440.8 25.9 22.9 16.2 9.9
Hershey Choc Herhsey (Con) 30 33.6 -132.6 25.3 17.1 7.9 3.8
Misc Hostess Pastry 11 14.7 -62.2 23.7 11.8 4.4 1.8
Kraft 100 Cal Chse Nips Crisps 13 8.7 -37.8 23.1 8.6 2.6 1.1
Mars Milky Way 9 7.0 -30.8 22.6 7.5 2.2 0.9
Mars Snickers 145 92.4 -483.6 19.1 17.3 13.0 7.6
Mars M&M Peanut 142 77.7 -469.4 16.6 15.0 11.4 6.5
Mars Twix Caramel 110 50.2 -339.0 14.8 12.7 8.7 4.6

Outside Good 145 240.5 -482.9 49.8 22.0
Famous Amos Cookie Removal

Nestle Choc Nestle (Con) 1 0.8 -0.2 300.0 1.2 0.3
Hershey Choc Herhsey (Con) 38 48.6 -66.8 72.7 36.9 13.4 7.2
Kraft 100 Cal Oreo Thin Crisps 29 20.7 -43.3 47.9 19.2 6.1 3.1
Pepsi Sun Chip LSS 139 143.6 -355.7 40.4 34.4 22.7 15.8
Hershey Payday 2 2.6 6.8 38.9
Misc Salty United (Con) 18 9.9 -28.7 34.6 10.7 3.1 1.5
Pepsi Chs PB Frito Cracker 34 26.9 -83.6 32.1 18.2 7.1 3.7
Kraft Planters (Con) 121 82.1 -332.6 24.7 20.9 13.7 8.8
Kellogg Choc SandFamous Amos 57 28.0 -122.0 22.9 15.1 6.8 3.7
Mars Milky Way 26 13.9 -71.6 19.5 10.3 3.9 1.9
Pepsi Dorito Blazin Buffalo Ranch LSS 72 38.1 -224.2 17.0 13.3 7.5 4.4
Pepsi Frito LSS 119 49.9 -313.2 15.9 13.4 8.9 5.3

Outside Good 156 192.9 -399.1 48.3 20.9
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Manufacturer Product Treated
Machine
Weeks

∆
Subst
Sales

∆
Focal
Sales

Raw
Diversion

Beta-Binomial
(Weak Prior)

Diversion

Beta-Binomial
(Strong Prior)

Diversion

Multinomial
Diversion

M&M Peanut Removal
Misc Hostess Pastry 11 12.5 -38.6 32.5 12.3 4.0 1.8
Mars Snickers 218 296.6 -1239.3 23.9 22.9 19.9 16.5
Kellogg Brown Sug Pop-Tarts 10 10.0 -43.5 22.9 9.2 2.9 1.4
Misc Cliff (Con) 1 0.4 -1.8 22.2 0.6 0.1 0.0
Nestle Nonchoc Nestle (Con) 1 0.9 -4.6 19.5 1.3 0.3 0.1
Mars M&M Milk Chocolate 99 73.5 -529.6 13.9 12.5 9.2 6.3
Mars Twix Caramel 176 110.9 -1014.3 10.9 10.4 8.9 6.8
Kellogg Rice Krispies Treats 46 22.4 -220.2 10.2 7.9 4.4 2.5
Hershey Twizzlers 62 33.0 -333.0 9.9 8.3 5.3 3.3
Hershey Choc Herhsey (Con) 32 15.7 -160.0 9.8 7.0 3.5 1.9
Kellogg Cherry Pop-Tarts 25 12.5 -160.3 7.8 5.6 2.8 1.6
Mars Nonchoc Mars (Con) 45 14.6 -201.3 7.3 5.5 3.0 1.7

Outside Good 218 606.2 -1238.5 48.9 36.4
Table 5: Raw and Bayesian Diversion Ratios.

Treated Machine Weeks shows the number of treated machine-weeks for which there was at least
one control machine-week. ∆ Subst Sales shows the change in substitute product sales from the
control to the treatment period, while ∆ Focal Sales shows the analogous change for focal product
sales. Raw Diversion is the ratio of the change in substitute product sales to the absolute value of
the change in focal product sales.
Beta-Binomial (Weak Prior) Diversion and Beta-Binomial (Strong Prior) Diversion are diversion
ratios calculated under Assumptions 1 (Substitutes) and Assumption 2 (Unit Interval). The weak
prior uses the number of products in the choice set during the treatment period, which varies from
64 [56 if include the double removal] to 66, as the number of pseudo-observations. The strong
prior uses 300 pseudo-observations. Multinomial Diversion is the diversion ratio calculated under
Assumptions 1 (Substitutes) and Assumption 3 (Unit Simplex).
The products included in this table are the 12 products with highest raw diversion ratio.
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Manuf Product ∆
Focal
Sales

No
Prior

Beta-Bin
Diversion
n = J†

Beta-Bin
Diversion
n = 150

Beta-Bin
Diversion
n = 300

Beta-Bin
Diversion
n = 600

Snickers Removal
Nestle Nonchoc Nestle (Con) -10.5 89.5 12.4 5.9 3.1 1.6
Mars Twix Caramel -702.4 41.2 37.9 34.3 29.5 23.2
Mars M&M Peanut -954.3 39.4 37.0 34.5 30.8 25.5
Kellogg Rice Krispies Treats -66.5 26.7 13.5 8.4 5.0 2.9
Nestle Butterfinger -362.8 20.1 17.1 14.3 11.2 7.8
Mars Choc Mars (Con) -32.7 19.7 6.5 3.5 2.0 1.0
Pepsi Rold Gold (Con) -900.1 17.9 16.8 15.7 13.9 11.6
Hershey Choc Herhsey (Con) -179.6 16.6 12.2 9.1 6.3 3.9

Zoo Animal Crackers Removal
Hershey Payday -0.4 84.7 0.6 0.3 0.1 0.1
Kellogg Rice Krispies Treats -37.8 62.2 23.2 12.7 7.2 3.9
Misc Salty United (Con) -18.9 55.1 12.6 6.3 3.4 1.8
Kraft 100 Cal Oreo Thin Crisps -37.8 39.4 14.7 8.0 4.5 2.4
Pepsi Rold Gold (Con) -440.8 25.9 22.9 19.8 16.2 12.1
Hershey Choc Herhsey (Con) -132.6 25.3 17.1 12.0 7.9 4.7
Misc Hostess Pastry -62.2 23.7 11.8 7.2 4.4 2.5
Kraft 100 Cal Chse Nips Crisps -37.8 23.1 8.6 4.7 2.6 1.4

Famous Amos Cookie Removal
Nestle Choc Nestle (Con) -0.2 300.0 1.2 0.6 0.3 0.2
Hershey Choc Herhsey (Con) -66.8 72.7 36.9 22.5 13.4 7.4
Kraft 100 Cal Oreo Thin Crisps -43.3 47.9 19.2 10.8 6.1 3.3
Pepsi Sun Chip LSS -355.7 40.4 34.4 28.9 22.7 16.1
Hershey Payday 6.8 38.9
Misc Salty United (Con) -28.7 34.6 10.7 5.6 3.1 1.7
Pepsi Chs PB Frito Cracker -83.6 32.1 18.2 11.6 7.1 4.1
Kraft Planters (Con) -332.6 24.7 20.9 17.5 13.7 9.8

M&M Peanut Removal
Misc Hostess Pastry -38.6 32.5 12.3 6.9 4.0 2.3
Mars Snickers -1239.3 23.9 22.9 21.7 19.9 17.2
Kellogg Brown Sug Pop-Tarts -43.5 22.9 9.2 5.2 2.9 1.6
Misc Cliff (Con) -1.8 22.2 0.6 0.3 0.1 0.1
Nestle Nonchoc Nestle (Con) -4.6 19.5 1.3 0.6 0.3 0.2
Mars M&M Milk Chocolate -529.6 13.9 12.5 11.0 9.2 7.0
Mars Twix Caramel -1014.3 10.9 10.4 9.8 8.9 7.6
Kellogg Rice Krispies Treats -220.2 10.2 7.9 6.1 4.4 2.9

Table 6: Sensitivity of Beta-Binomial Diversion to Number of Pseudo Observations
† Number of pseudo observations is the number of products in the choice set during treatment period - 66, 64,

65, and 65, respectively.
∆ Focal Sales shows the change in focal product sales from the control to the treatment period. No Prior is
the raw diversion calculated as the ratio of the change in substitute product sales to the absolute value of
the change in focal product sales.
Beta-Bin Diversion is the diversion ratio calculated under Assumptions 1 (Substitutes) and Assumption 2
(Unit Interval), using different number of pseudo-observations.
The products included in this table are the 8 products with highest raw diversion ratio.
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Manuf Product ∆
Focal
Sales

No
Prior

Multinom
Diversion
σ2 = 0.25

Multinom
Diversion
σ2 = 1

Multinom
Diversion
σ2 = 10

Multinom
Diversion
σ2 = 100

Snickers Removal
Nestle Nonchoc Nestle (Con) -10.54 89.45 0.59 0.61 0.66 0.67
Mars Twix Caramel -702.39 41.23 15.00 15.63 15.87 15.90
Mars M&M Peanut -954.30 39.35 17.58 18.16 18.39 18.41
Kellogg Rice Krispies Treats -66.45 26.68 1.05 1.18 1.28 1.30
Nestle Butterfinger -362.82 20.11 3.89 4.27 4.43 4.45
Mars Choc Mars (Con) -32.73 19.70 0.45 0.40 0.43 0.44
Pepsi Rold Gold (Con) -900.11 17.93 6.98 7.37 7.52 7.54

Outside Good -970.22 47.50 22.17 22.82 23.07 23.10
Zoo Animal Crackers Removal

Kellogg Rice Krispies Treats -37.80 62.22 2.38 2.75 2.95 2.98
Misc Salty United (Con) -18.91 55.09 1.07 1.13 1.23 1.25
Kraft 100 Cal Oreo Thin Crisps -37.80 39.40 1.49 1.68 1.81 1.84
Pepsi Rold Gold (Con) -440.80 25.95 8.95 9.61 9.87 9.90
Hershey Choc Herhsey (Con) -132.57 25.34 3.13 3.56 3.77 3.80
Misc Hostess Pastry -62.15 23.66 1.45 1.63 1.77 1.79
Kraft 100 Cal Chse Nips Crisps -37.80 23.12 0.97 1.00 1.07 1.09

Outside Good -482.91 49.81 20.59 21.56 21.91 21.97
Famous Amos Cookie Removal

Hershey Choc Herhsey (Con) -66.84 72.72 5.90 6.76 7.14 7.19
Kraft 100 Cal Oreo Thin Crisps -43.29 47.89 2.33 2.77 3.02 3.06
Pepsi Sun Chip LSS -355.68 40.37 14.45 15.36 15.72 15.78
Misc Salty United (Con) -28.69 34.57 1.15 1.28 1.43 1.46
Pepsi Chs PB Frito Cracker -83.65 32.13 2.92 3.43 3.70 3.73
Kraft Planters (Con) -332.61 24.69 7.72 8.43 8.71 8.76
Kellogg Choc SandFamous Amos -122.04 22.91 2.91 3.39 3.63 3.68

Outside Good -399.12 48.33 19.53 20.53 20.89 20.94
M&M Peanut Removal

Misc Hostess Pastry -38.58 32.52 1.26 1.58 1.80 1.85
Mars Snickers -1239.29 23.93 15.63 16.23 16.46 16.47
Kellogg Brown Sug Pop-Tarts -43.53 22.91 0.98 1.19 1.36 1.40
Misc Cliff (Con) -1.80 22.22 0.30 0.13 0.03 0.01
Nestle Nonchoc Nestle (Con) -4.56 19.51 0.35 0.20 0.14 0.14
Mars M&M Milk Chocolate -529.58 13.87 5.37 5.99 6.25 6.28
Mars Twix Caramel -1014.32 10.94 6.08 6.55 6.73 6.76

Outside Good -1238.49 48.95 35.25 36.05 36.32 36.37

Table 7: Sensitivity of Multinomial Posterior Mean to Variance of Prior

∆ Focal Sales shows the change in focal product sales from the control to the treatment period. No Prior is
the raw diversion calculated as the ratio of the change in substitute product sales to the absolute value of the
change in focal product sales.
Multinom Diversion is the diversion ratio calculated under Assumptions 1 (Substitutes) and Assumption 3
(Unit Simplex), using priors of different strength.
The products included in this table are the 7 products with highest raw diversion ratio.
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Manuf Product Mean 2.5th

Quantile
25th

Quantile
50th

Quantile
75th

Quantile
97.5th

Quantile
Snickers Removal

Nestle Nonchoc Nestle (Con) 0.67 0.30 0.51 0.65 0.81 1.17
Mars Twix Caramel 15.90 14.31 15.33 15.89 16.46 17.55
Mars M&M Peanut 18.41 16.82 17.85 18.40 18.96 20.05
Kellogg Rice Krispies Treats 1.30 0.78 1.09 1.27 1.48 1.94
Nestle Butterfinger 4.45 3.51 4.10 4.44 4.78 5.49
Mars Choc Mars (Con) 0.44 0.16 0.31 0.41 0.54 0.85
Pepsi Rold Gold (Con) 7.54 6.46 7.16 7.54 7.92 8.67

Outside Good 23.10 21.34 22.48 23.09 23.72 24.91
Zoo Animal Crackers Removal

Kellogg Rice Krispies Treats 2.98 1.92 2.56 2.94 3.37 4.27
Misc Salty United (Con) 1.25 0.59 0.97 1.20 1.48 2.14
Kraft 100 Cal Oreo Thin Crisps 1.84 1.04 1.51 1.80 2.13 2.88
Pepsi Rold Gold (Con) 9.90 8.25 9.30 9.88 10.48 11.67
Hershey Choc Herhsey (Con) 3.80 2.63 3.36 3.76 4.22 5.14
Misc Hostess Pastry 1.79 1.00 1.46 1.74 2.07 2.80
Kraft 100 Cal Chse Nips Crisps 1.09 0.50 0.83 1.05 1.31 1.91

Outside Good 21.97 19.61 21.13 21.96 22.79 24.41
Famous Amos Cookie Removal

Hershey Choc Herhsey (Con) 7.19 5.38 6.51 7.15 7.82 9.22
Kraft 100 Cal Oreo Thin Crisps 3.06 1.93 2.59 3.02 3.48 4.49
Pepsi Sun Chip LSS 15.78 13.51 14.96 15.75 16.56 18.19
Misc Salty United (Con) 1.46 0.71 1.13 1.42 1.73 2.48
Pepsi Chs PB Frito Cracker 3.73 2.46 3.24 3.69 4.18 5.21
Kraft Planters (Con) 8.76 7.04 8.12 8.73 9.36 10.64
Kellogg Choc SandFamous Amos 3.68 2.48 3.21 3.64 4.11 5.10

Outside Good 20.94 18.45 20.04 20.92 21.79 23.56
M&M Peanut Removal

Misc Hostess Pastry 1.85 0.99 1.49 1.80 2.16 2.93
Mars Snickers 16.47 14.84 15.89 16.46 17.05 18.17
Kellogg Brown Sug Pop-Tarts 1.40 0.67 1.08 1.36 1.67 2.36
Misc Cliff (Con) 0.01 0.00 0.00 0.00 0.00 0.08
Nestle Nonchoc Nestle (Con) 0.14 0.00 0.04 0.10 0.20 0.51
Mars M&M Milk Chocolate 6.28 4.99 5.80 6.26 6.74 7.71
Mars Twix Caramel 6.76 5.61 6.34 6.75 7.16 7.99

Outside Good 36.37 34.20 35.63 36.37 37.12 38.56

Table 8: Posterior Distribution of Multinomial Diversion with σ2 = 100

The products included in this table are the 7 products with highest raw diversion ratio.
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Proposed Merger Diversion Direction Diversion
Ratio

Proposed
Divestiture

Diversion Ratio
Under Divestiture

Mars & Hershey Snickers to Hershey 2.83
Butter Cups

Reese’s Peanut 2.83∗

M&M Peanut to Hershey 7.14
Butter Cups

Reese’s Peanut 5.30

Mars & Kraft Snickers to Kraft 3.97 Planters Peanuts 0.16

M&M Peanut to Kraft 4.21 Planters Peanuts 0.62

Mars & Nestle Snickers to Nestle 5.71 Butterfinger 1.26

M&M Peanut to Nestle 6.30 Butterfinger 4.51

Mars & Kellogg’s Snickers to Kellogg’s 8.53
Cookies†

Famous Amos 4.58

M&M Peanut to Kellogg’s 5.64
Cookies†

Famous Amos 5.48

Mars
Zoo Animal Crackers to 21.80

Cookies†
Famous Amos 21.80

Kellogg’s & Kraft
Kraft
Zoo Animal Crackers to 5.80 Planters Peanuts 3.36

Amos to Kraft
Choc Chip Famous 11.85 Planters Peanuts 3.09

Table 9: Hypothetical Mergers with Forced Divestitures
∗ Reese’s Peanut Butter Cups are unavailable in all treatment weeks for this experiment.
† Divestiture of both “Choc Chip Famous Amos” and “Choc SandFamous Amos”.
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A Appendix:

A.1 Diversion Under Parametric Demands

This section derives explicit formulas for the diversion ratio under common parametric forms
for demand. The focus is whether or not a demand model implies that the diversion ratio is
constant with respect to the magnitude of the price increase. It turns out that the IIA Logit
and the Linear demand model exhibit this property, while the log-linear model, and mixed
logit model do not necessarily exhibit this property.

We go through several derivations below:

Linear Demand
The diversion ratio under linear demand has the property that it does not depend on the
magnitude of the price increase. To see this consider that the linear demand is given by:

Qk = αk +
∑
j

βkjpj

Which implies a diversion ratio corresponding to a change in price pj of ∆pj:

Djk =
∆Qk

∆Qj

=
βkj∆pj
βjj∆pj

=
βkj
βjj

(10)

This means that for any change in pj from an infinitesimal price increase, up to the choke
price of j; the diversion ratio, Djk is constant. This also implies that under linear demands,
divergence is a global property, under any initial set of prices, quantities, or any magnitude
of price increase will result in the same diversion.

Log-Linear Demand
The log-linear demand model does not exhibit constant diversion with respect to the mag-
nitude of the price increase. The log-linear model is specified as:

ln(Qk) = αk +
∑
j

εkj ln(pj)

If we consider a small price increase ∆pj the diversion ratio becomes:

∆ log(Qk)

∆ log(Qj)
≈ ∆Qk

∆Qj︸ ︷︷ ︸
Djk

·Qj(p)

Qk(p)
=

εkj∆ log(pj)

εjj∆ log(pj)
=
εkj
εjj

Djk ≈
Qk(p)

Qj(p)
· εkj
εjj

(11)

This holds for small changes in pj. However for larger changes in pj we can no longer use
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the simplification that ∆ log(Qj) ≈ ∆Qj

Qj
. So for a large price increase (such as to the choke

price pj → ∞, log-linear demand can exhibit diversion that depends on the magnitude of
the price increase.

IIA Logit Demand
The plain logit model exhibits IIA and proportional substitution. This implies that the
diversion ratio does not depend on the magnitude of the price increase. Here we consider
two price increases, an infinitesimal one and an increase to the choke price pj →∞.

Consider the derivation of the diversion ratio Djk under simple IIA logit demands. We
have utilities and choice probabilities given by the well known equations, where at denotes
the set of products available in market t:

uijt = xjtβ − αpjt︸ ︷︷ ︸
ṽjt

+εijt

Sjt =
exp[ṽjt]

1 +
∑

k∈at exp[ṽkt]
=

Vjt
IV (at)

Under logit demands, an infinitesimal price change in p1 exhibits identical diversion to setting
p1 →∞ (the choke price):

D̂jk =

∂Sk

∂pj∣∣∣∂Sj

∂pj

∣∣∣ =
αSkSj

αSj(1− Sj)
=

Sk
(1− Sj)

Djk =

eVk

1+
∑

l∈a\j e
Vl
− eVk

1+
∑

l′∈a e
V ′
l

0− eVj

1+
∑

l∈a e
Vl

=
Sk

(1− Sj)

As an aside Sk

1−Sk
= Qk

M−Qk
, so we either need market shares or market size (back to market

definition!). In both cases diversion is merely the ratio of the marketshare of the substitute
good divided by the share not buying the focal good (under the initial set of prices and
product availability). It does not depend on any of the econometric parameters (α, β).

Also we can also show that the bias expression for the diversion ratio is set to zero that

is: Djk = ∂2qk
∂p2j

/
∂2qj
∂p2j

.

∂2qj
∂p2

j

= α2(1− 2Sj)(Sj − S2
j )

∂2qk
∂p2

j

= −α2(1− 2Sj)SjSk

∂2qk
∂p2j

∂2qj
∂p2j

=
Sk

1− Sj
= Djk
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Random Coefficients Logit Demand
Random Coefficients Logit demand relaxes the IIA property of the plain Logit model, which
can be undesirable empirically, but it also means that the diversion ratio varies with original
prices and quantities, as well as with the magnitude of the price increase. Intuitively a small
price increase might see diversion from the most price sensitive consumers, while a larger
price increase might see substitution from a larger set of consumers. If price sensitivity is
correlated with other tastes, then the diversion ratio could differ with the magnitude of the
price increase.

We can repeat the same exercise for the logit model with random coefficients, by dis-
cretizing a mixture density over i = 1, . . . , I representative consumers, with population
weight wi:

uijt = xjtβi − αipjt︸ ︷︷ ︸
ṽijt

+εijt

Even when consumers have a common price parameter ∂Vik
∂pj

= α,

D̂jk =

∂Sk

∂pj∣∣∣∂Sj

∂pj

∣∣∣ =

∫
sijsik

∂Vik
∂pj∫

sij(1− sij)∂Vij∂pj

→
∫
sijsik∫

sij(1− sij)

Djk =

∫
eVik

1+
∑

l∈a\j e
Vil
− eVik

1+
∑

l′∈a e
Vil′∫

− eVij

1+
∑

l∈a e
Vil

=
1

sj

∫
sijsik

(1− sij)

Now, each individual exhibits constant diversion, but weights on individuals vary with p, so
that diversion is only constant if sij = sj. Otherwise observations with larger sij are given
more weight in correlation of sijsik. The more correlated (sij, sik) are (and especially as they
are correlated with αi) the greater the discrepancy between marginal and average diversion.
We generate a single market with J products, and compute the J × J matrix of diversion
ratios two ways. The MTE method is by computing ∂qk

∂pj
/| ∂qj
∂pj
|

A.2 Discrepancy Between Average and Marginal Treatment Effects

We can perform a Monte Carlo study to analyze the extent to which the average treatment
effect deviates from the marginal treatment effect. We generate data by simulating from a
random coefficients logit model with a single random coefficient on price. Our simulations
follow the procedure in Armstrong (2013), Judd and Skrainka (2011) and Conlon (2011)
where prices are endogenously solved for via a Bertrand-Nash game given the other utility
parameters, rather than directly drawn from some distribution.

We generate the data in the following manner: uit = β0 + xjβ1 − αipj + ξj + εij and
mcj = γ0 + γ1xj + γ2zj + ηj where xj, zj ∼ N(0, 1), with ξj = ρωj1 + (1 − ρ)ωj2 − 1 and
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(1) (2) (3) (4) (5) (6) (7)
Mu 0.1 0.1 1 1 2 3 3
Sigma 0.5 1 0.5 1 1 1 2
Outside Good Share 0.97 0.85 0.91 0.77 0.94 0.99 0.90
Avg Own Elas -5.37 -3.50 -4.64 -3.12 -3.70 -4.41 -1.93
Avg Max Discrepancy 1.51 3.68 1.72 2.37 2.13 2.04 3.00
Std. Max Discrepancy 0.36 1.18 0.50 0.66 0.60 0.59 1.32
Worst Case Avg ATE 7.14 14.18 9.29 12.38 10.80 9.08 15.01
Worst Case Avg MTE 5.62 10.50 7.58 10.01 8.67 7.04 12.01

Table 10: Simulation comparing ATE and MTE for Random Coefficients Logit

α -0.500 -0.500 -0.500 -0.500 -1.000 -1.000 -1.000 -1.000
σp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
σx 0.500 1.000 2.000 3.000 0.500 1.000 2.000 3.000
s0 0.031 0.037 0.063 0.100 0.109 0.123 0.167 0.213

own elas -0.318 -0.318 -0.319 -0.310 -1.523 -1.520 -1.514 -1.511
avg max dev 0.028 0.107 0.340 0.636 0.038 0.130 0.386 0.630
std max dev 0.023 0.084 0.270 0.501 0.028 0.089 0.260 0.461

max dev ATE 15.287 15.863 16.684 18.942 13.102 13.646 15.307 17.444
max dev MTE 15.260 15.757 16.344 18.306 13.064 13.516 14.921 16.814

pct dev 0.167 0.630 1.924 3.207 0.273 0.915 2.486 3.522

Table 11: Monte Carlo Simulations

ηj = ρωj1 + (1 − ρ)ωj3 − 1 and (ω1, ω2, ω3) ∼i.i.d. U [0, 1]. Following Armstrong (2013) and
Conlon (2011), we use the values β = [−3, 6] and γ = [2, 1, 1] and ρ = 0.9. To mimic our
empirical example we let there be J = 30 products and assign each product at random to
one of 5 firms. We solve for prices in a Bertrand-Nash equilibrium.

For each of our sets of trials, we let αi ∼ −lognormal(µ, σ) and we vary the values of
price heterogeneity in the population by changing (µ, σ). We simulate 100 trials from each
(µ, σ) pair are report characteristics of that market (average outside good share, average own
price elasticity) as well as describe the discrepancy between the ATE and the MTE approach
to computing diversion. We report those results for the pair of products in each trial with
the largest discrepancy between the ATE and MTE calculations.

Though there are some simulations where the ATE < MTE, in the vast majority of
simulations the random coefficients model with a lognormally distributed price coefficient
implies that using the stock-out based ATE overstates the true MTE for the diversion ra-
tio by 1-3 points in the worst-case scenario (the maximum over the entire J × J matrix
of diversion ratios). The degree of overstatement appears to be decreasing in the lognor-
mal location parameter (as consumers become more price sensitive) and increasing in the
dispersion parameter (as consumers become more heterogeneous).
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α -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
σp 0.250 0.250 0.250 0.250 0.500 0.500 0.500 0.500
σx 0.500 1.000 2.000 3.000 0.500 1.000 2.000 3.000
s0 0.116 0.130 0.171 0.217 0.134 0.149 0.182 0.223

own elas -1.510 -1.514 -1.487 -1.479 -1.476 -1.459 -1.431 -1.399
avg max dev 0.624 0.670 0.842 1.033 2.538 2.578 2.398 2.447
std max dev 0.227 0.253 0.376 0.565 0.878 0.971 0.836 0.987

max dev ATE 12.479 12.821 14.785 16.757 13.019 13.328 13.572 16.109
max dev MTE 11.858 12.154 13.943 15.727 10.490 10.782 11.255 13.920

pct dev 5.594 5.778 6.179 6.617 26.241 25.913 23.570 19.643

Table 12: Monte Carlo Simulations

α -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000
σp 0.250 0.250 0.250 0.250 0.500 0.500 0.500 0.500
σx 0.500 1.000 2.000 3.000 0.500 1.000 2.000 3.000
s0 0.591 0.580 0.565 0.553 0.578 0.575 0.562 0.555

own elas -3.846 -3.836 -3.832 -3.834 -3.479 -3.487 -3.498 -3.523
avg max dev 0.351 0.443 0.771 1.245 1.164 1.177 1.373 1.807
std max dev 0.096 0.147 0.367 0.836 0.324 0.354 0.474 0.784

max dev ATE 8.349 8.950 11.787 15.819 9.522 10.096 12.414 15.775
max dev MTE 7.998 8.507 11.016 14.574 8.358 8.919 11.041 13.968

pct dev 4.640 5.463 7.097 8.395 14.941 14.131 13.127 13.416

Table 13: Monte Carlo Simulations

α -4.000 -4.000 -4.000 -4.000 -4.000 -4.000 -4.000 -4.000
σp 0.500 0.500 0.500 0.500 1.000 1.000 1.000 1.000
σx 0.500 1.000 2.000 3.000 0.500 1.000 2.000 3.000
s0 0.989 0.987 0.975 0.951 0.965 0.962 0.944 0.928

own elas -7.735 -7.718 -7.811 -7.895 -5.183 -5.253 -5.440 -5.548
avg max dev 0.151 0.236 0.859 1.010 2.001 1.961 1.576 4.352
std max dev 0.059 0.087 0.340 0.851 0.587 0.634 0.717 2.611

max dev ATE 1.185 2.090 6.923 10.958 6.968 7.354 8.882 22.866
max dev MTE 1.034 1.854 6.064 9.973 4.967 5.393 7.344 20.779

pct dev 15.557 13.608 15.475 12.682 44.081 40.072 25.468 25.107

Table 14: Monte Carlo Simulations
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A.3 Stan Code for MCMC Estimator

This is code for the R library stan (Team 2015) which recovers the MCMC estimator of the
diversion ratio under assumptions (1)-(3).

data {

int J; // number of products, including outside good

int N[J]; // number of trials

int y[J]; // number of successes for each product j

real mu_prior[J]; // mean of the distribution of alpha

real sigma_prior[J]; // standard deviation of the distribution of alpha

}

parameters {

row_vector[J] alpha; // probability of success = exp(alpha[j])/(sum(exp(alpha[j])))

}

transformed parameters {

row_vector[J] theta;

for (j in 1:J)

theta[j] <- exp(alpha[j])/(sum(exp(alpha))); // don’t normalize the outside good

}

model {

for (j in 1:J)

alpha[j] ~ normal(mu_prior[j], sigma_prior[j]);

for (j in 1:J) {

y[j] ~ binomial(N[j], theta[j]);

}

}
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