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Abstract

Agents in a network want to learn the true state of the world from their own signals

and reports from their neighbors. Each agent only knows her local network, consisting

of her immediate neighbors and any connections among them. In each period, every

agent updates her own estimates about the state distribution based on perceived new

information. She also forms estimates about each neighbor’s estimates given the new

information she thinks the neighbor has received. Whenever a neighbor’s report differs

from what the agent thinks he should report, the agent attributes the difference to new

information. Agents learn correctly in any network if their information structures are

partitional. They can also do so for more general information structures if the network

is a social quilt, a tree-like union of fully connected subnetworks. Otherwise, agents

may fail to learn despite an arbitrarily large number of correct signals.
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1 Introduction

We often learn from those we interact with, who in turn talk to and learn from their neigh-

bors, and so on.1 To use information learned from networks, we need to account for possible

repetitions and distortions. Learning errors may contribute to entrenched poverty, political

polarization, and other financial and personal failures. Consider, for instance, the plight of

those who live in a poor, isolated neighborhood. Lack of good information of the wider net-

work means that a poor kid may not bother to try, because he believes that the underlying

true state is so unfavorable—“the system is against us”—that the chance of success is neg-

ligible.2 He learned this from his neighbors, who in turn reached such a conclusion because

they may have failed themselves, or they know a neighbor who has a neighbor who tried and

failed. A few instances of failures, however, may reach the poor kid through multiple neigh-

bors via different paths. Because he only knows his immediate neighbors, he fails to account

for the repetition in information. Consequently he believes erroneously—and increasingly so

if the same information travels back to him again—that the underlying true state is far less

favorable than it actually is.

Systematic learning errors are not uncommon. In recent years, mounting evidence from

the lab and field has shown that people often struggle with distinguishing new informa-

tion from old, existing ones when they learn from their neighbors. Subjects often err by

treating correlated information as independent (see Chandrasekhar, Larreguy and Xandri

2012, Grimm and Mengel 2014, Enke and Zimmermann 2015, Golosov, Qian and Kai 2015,

among others). For instance, they may double-count information when they fail to realize

that their neighbors have learned from the same sources farther away in the network. Along

with evidence from psychology and sociology, failure to fully account for correlation in in-

formation from one’s network is a robust feature of social learning. But it is worth noting

that this body of research also finds that people are not oblivious to the problem. Some of

them, especially those who perform well in the experiments, try to reduce the severity of

1There is a vast empirical literature showing that we learn from our social networks. In technology
adoption, Conley and Udry (2001) show that pineapple farmers in Ghana will begin to use more fertilizer
after a neighbor uses high amounts of fertilizer and achieves surprisingly high profits. In personal finance,
Duflo and Saez (2002) show that participation in retirement savings plans by employees in a university is
strongly influenced by their peer groups (along gender, service, status, age lines). In financial market, Hong,
Kubik and Stein (2005) show that a mutual fund manager is more likely to buy (or sell) a particular stock
in any quarter if other managers in the same city are buying (or selling) that same stock.

2Wilson, Quane and Rankin (1998) show that, using data from Chicago inner-city residents, low social-
economic status residents of ghetto neighborhoods know almost two fewer employed people, one fewer college
educated person, and nearly three more welfare recipients in their social network than those in the low-poverty
neighborhoods. More ominously, “only 61% of the youth in ghetto neighborhoods reported the most of their
friends attended school regularly, compared to 89% in low-poverty neighborhoods.” See also Mobius and
Rosenblat (2001) and Ioannides and Loury (2004) for more discussions.
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this problem in rudimentary ways (see Celen and Kariv 2004, Grimm and Mengel 2014).

In this paper, we develop a tractable learning procedure incorporating several realistic

features of how people actually learn. First, agents do not need to know the structure of the

entire network they are in. Specifically, we do not assume agents have common knowledge

of their network; nor do we assume they have common prior over the network. Instead, each

agent only needs to know her local network, consisting of her immediate neighbors and the

links among them.3 Second, each agent does not need to know any neighbor’s information

structure, which is that neighbor’s private information.

Specifically, there are finitely many states, and agents want to learn the true state. Each

agent learns by forming and updating her estimates—what she thinks is the most up-to-

date distribution of the states given available information.4 Time is discrete. In the initial

period, each agent receives a signal. In every ensuing period, each agent first forms her

current estimates, and then simultaneously reports them to all her neighbors.5 Each agent

infers the new information contained in her neighbors’ reports, and then receives a signal

from the nature. Using all the inferred information, each agent updates her estimates in the

next period. The innovation of our model lies in how each agent infers the new information

using second (and higher)-order estimates. That is, she forms estimates of a neighbor’s

estimates of the state distribution based on the reports they both have observed, which

she thinks is all the information that neighbor has learned so far. Similarly, she forms

estimates of one neighbor’s estimates of another’s estimates based on the reports all three

have observed, and so on. Because the agent thinks she has accounted for all sources of

a neighbor’s information, if any neighbor’s reported estimates in a period differ from her

estimates of that neighbor’s estimates, she attributes the difference to a “new” signal. This

inferred signal is a composite of the neighbor’s new signal last period and any information he

has received from his local network unbeknownst to her. This procedure continues iteratively

until no one learns anything new.

An important feature of the above procedure is that agents avoid repetition within their

local networks , but they behave as if all the information from outside their local networks

is new and independent. This reflects the lab findings that people may be able to reduce

repetition when it is easy to detect, but they neglect the correlation of information otherwise.

3This is consistent with evidence from surveys on subjects’ knowledge of the network. For instance,
Krackhardt (1990) finds that the accuracy of knowing other people’s connections is between 15% and 48%
in a small startup with 36 people, Casciaro (1998) finds that the accuracy is around 45% in a research center
of only 25 people, and Chandrasekhar, Breza and Tahbaz-Salehi (2016) find similar patterns.

4Because our agents do not form and update their beliefs about the network beyond their local networks,
we use estimates to differentiate them from the standard Bayesian beliefs. They are identical for an agent
whose local network is the entire network, or who believes so (see Section 4.4 for further details).

5We refer to the generic agent as “she” and each of her neighbors as “he.”
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To fix ideas, suppose agent 1, 2 and 3 are connected in a triangle. If agent 1 infers a new

signal from agent 2’s report, she expects agent 3 to infer the same signal, and she knows

that agent 3 expects her to do the same. Therefore neither agent 1 or 3 double counts agent

2’s information. Similarly when she infers a new signal from agent 3. If the triangle is

the entire network, then agent 2 and 3’s new information can only come from the nature,

and are thus truly independent. If instead, agent 2 and 3 are linked to another agent not

observable to agent 1, then agent 1 still treats the inferred signals from agent 2 and agent 3

as independent. But they are actually correlated if 2 and 3 learn the information from their

common neighbor. Our way of modeling reflects the heavy burden agents face to properly

account for correlations in the information they receive when they don’t know the network.

To do so, an agent has to first form beliefs about the total number of agents in the network

and consider every possible network for each given number.6 For each given network, she

then assigns probabilities to all the possible signals and travel paths through which each

signal may have traveled to reach her. Moreover, she needs to update all these beliefs as she

receives more information. In contrast, agents can follow our procedure easily when they

do not have the computational or cognitive ability to undertake these calculations, or when

they find such endeavors too costly.7 Viewed in this light, we provide a lower bound on how

well agents can learn given such limited information.

Our first contribution is to show this procedure has several useful properties, making it

a potentially portable component for other network models. First, each agent only needs

to form estimates up to the order of the number of agents in the largest fully connected

subset of her local network, which can be far lower than the number of her neighbors. In

fact, in many commonly studied networks such as trees, circles and cliques, second-order

estimates suffice.8 Thus our procedure is far simpler than it appears. Second, signals can

be decomposed. That is, fix the sequence of realized signals a network receives, the agents’

learning outcomes are the same if we analyze their estimates under each signal separately

and then combine them by Bayes’ rule. This implies that if the agents can learn each signal

correctly, they can learn correctly for all of them.

Our second contribution contains two positive results characterizing when the agents

can learn correctly—their estimates agree with the correct Bayesian posterior given all the

signals the network receives—under this procedure despite limited knowledge of the network.

First, agents can do so in any network when their information structures are partitional as

6For example, in a L-agent undirected network, there are L(L− 1)/2 number of possible links. Because
each link may or may not exist for a given network, the number of total possible networks is 2L(L−1)/2.

7In fact, subjects in the lab are unable to make inferences correctly even when the network is small and
commonly known. We further discuss and generalize this feature in Section 2.2 and Section 5.3.

8A clique is a fully connected network in which every pair of agents are connected.
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in Aumann (1976). Since each agent’s signal informs her the element of the partition the

true state is in, treating correlated information as independent does not lead to learning

errors. Suppose an agent infers the same new signals from her neighbors who have learned

the information from a common source. The agent’s estimates are unaffected in that she

eliminates the same set of states as she would have with one such signal. Not only the agents

cannot disagree forever, they agree as soon as every agent has learned all the signals. They

believe all the states in the intersection of every agent’s elements of partition are equally

likely to be the true state, and assign zero probability to the rest.

For more general information structures, our second positive result is that agents learn

correctly if the network is a social quilt, a tree-like union of cliques.9 Because each clique

is fully connected, when information arrives at one member (say agent i) of the clique, all

other members can identify this as new information. More importantly, all members correctly

expect that all the others in the clique have learned this information from i. Thus they avoid

learning the same information repeatedly. Moreover, the overall tree structure of a social

quilt ensures that each signal travels through the network once and only once. Thus agents

form the correct estimates after learning all the signals.

Next, we show what may be viewed as a negative result: the agents fail to learn correctly

for some sequence of realized signals if the network is not a social quilt. Since many networks

in reality are not social quilts, our third contribution is to identify two network features

leading to correlated inferred signals. First, a simple circle contains at least four agents,

each of whom has exactly two links, one to the neighbor on each side. Consider one with

four agents 1, 2, 3 and 4. Agent 1 receives the only signal. Agent 2 and 4 learn it first, and

then agent 3, not knowing the existence of agent 1, must think that there are two copies of the

signal. More importantly, she passes her estimates on to agent 2 and 4, who know 3 learned

one copy from themselves and infer the other copy as new signal. In the end, everyone thinks

they have learned an infinite number of the signal. The problem is exacerbated with multiple

simple circles—the number of repeated inferred signals grows at an exponential rate—and

the arrival time of each signal matters. In fact, the Law of Large Numbers may fail in that

all agents believe in a wrong initial signal even if they receive an arbitrarily large number of

correct signals later.

In a diamond with a link , one pair of non-adjacent agents in a four-agent simple circle is

connected, say agent 2 and 4 in the example above. Then, agent 3’s inferred signal may be

9Empirical analysis found cliques and clustering—a measure of the likelihood that one agent’s neighbors
are connected with one another—to be much higher than that predicted in a random network (see for example
MacRae (1960), Adamic (1999), and Goyal, van der Leij and Moraga-Gonzlez (2006)). In this context, our
paper joins the recent attempts to provide micro foundations for locally tightly connected subgroups such
as Jackson, Rodriguez-Barraquer and Tan (2012) and Ali and Miller (2013).
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negatively correlated with agent 1’s original signal. Because agent 2 and 4 know each other

has learned the signal from agent 1, they do not attribute each other’s changed estimates to

new information. But in addition to inferring two copies of this signal, agent 3 also expects

2 and 4 to infer a copy from each other. Since 2 and 4 do not change their estimates, agent

3 infers that each has received an opposite, offsetting signal. She incorporates these two

“new” offsetting signals and her estimates return to her prior beliefs. Her estimates oscillate

forever between her prior and the posterior given two copies of 1’s signal. We show that

some agent’s learning outcomes can not be Bayesian for some sequence of realized signals.

We extend our model in several directions. First, we expand each agent’s local network

to all her neighbors within a certain distance (and the links among them). Surprisingly,

knowing more about one’s indirect neighbors may not help because an agent may infer more

copies of the same signal, not knowing all these direct and indirect neighbors have learned

from one common source. Second, agents may weigh their neighbors’ reports differently. In

this case, agents may disagree when they stop learning, and polarization of opinions can

appear among agents further apart. In a third extension, we let agents account for some

correlated information from outside their local networks in a simple way. Namely, each agent

maintains a list of signals already inferred. Whenever she infers any signal that is identical

to one of her stored signals, she thinks that the signal has been duplicated somewhere in

the network and treats it as old information. Following this procedure, agents can learn

correctly in any network if all signals reach the same agent initially. But doing so cannot

completely remove information repetition in general.

A vast theoretical literature has studied the question of learning in social networks. One

strand of the existing literature shows that agents can form the correct Bayesian beliefs

(asymptotically) if everyone knows the structure of their social network (see Gale and Kariv

(2003), Mueller-Frank (2013), Mossel, Sly and Tamuz (2015), among many others), or if the

agents can communicate in complex ways.10 Indeed, in our model, if the agents have common

knowledge of the network, then they form the correct Bayesian beliefs within a finite number

of periods because they can account for any correlation in their information eventually. The

other strand of the literature does not assume common knowledge of the network. It eschews

the complexity of Bayesian learning by assuming that agents learn by following reasonable

rules of the thumb (see DeGroot (1974), DeMarzo, Vayanos and Zwiebel (2003), Golub

and Jackson (2010), Molavi, Tahbaz-Salehi and Jadbabaie (2016), among many others.) In

Ellison and Fudenberg (1993, 1995), agents use only currently available social information

10For instance, they can report the sources and travel paths of all information as in the tagged information
system of Acemoglu, Bimpikis and Ozdaglar (2014). But agents are unlikely to communicate in such a
complicated way in real life networks.
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and disregard historical data (including their own past experience) in making decisions. The

classic model of DeGroot (1974) assumes that agents treat their neighbors’ information in

each period as new and incorporate it into their beliefs. Often called myopic (or naive)

learning, this influential model may feature high levels of information repetition, because

the same information is repeated even within one’s local network.

More closely related, several papers consider semi-Bayesian learning in networks. In Bala

and Goyal (1998), each agent chooses an action not knowing the true payoffs of her action.

She observes an outcome every period and then updates her belief about the optimal action

rationally based on the outcomes in her local network, but she does not infer information

from the choices of her neighbors. They focus on the long-run convergence in the network,

while we explicitly model how agents infer new information from neighbors and characterize

how their learning depends on the network structure. In Alatas et al. (2016), agents report

their most recent signal to their neighbors, and everyone knows their social distance to others

in the network. Each agent treats all signals received as independent. Our agents know less

about the network and they account for correlations of signals within their local network.

Our paper is also related to the large literature on herding and observational learn-

ing (Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992), Lee (1993), Lones and

Sorensen (2000), Acemoglu et al. (2011), Harel et al. (2014), among many others). The

classical papers on herding and information cascades focus on a directed, linear chain, in

which every agent observes all predecessors’ actions and chooses her only action optimally

given her observations and her own private signal. If the agents communicate their posterior

distributions as in our model, it is easy to see that they learn correctly since the linear chain

is a special case of a social quilt. More closely related to our paper, Eyster and Rabin (2014)

consider both a rich message space and a non-linear network structure. Their agents can

directly observe the actions of some of their predecessors, who in turn observe the actions of

some of their predecessors. One of their results shows that, similar to our model, all rational

agents can learn correctly if the implied network structure for all agents are such that the

aforementioned information repetition problem does not arise.11

Many papers use experiments to study observational learning in networks (see Anderson

and Holt (1997), Celen and Kariv (2004), Alevy, Haigh and List (2007), Cai, Chen and Fang

(2009), Mobius, Phan and Szeidl (2015) among many others). More recently, Chandrasekhar,

Larreguy and Xandri (2012) compare Bayesian learning with myopic learning when the

11They address the information repetition problem by assuming a “shield” structure. That is, if agent k
observes actions of agent i and j, who share a common predecessor k′, then agent k must directly observe
the action of k′. Therefore agent k knows what agent i and j learn from k′, and will not double count it.
Applying their “shield” structure for directed communication to our two-way communication, i, j, k, k′ must
form a clique.
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network is common knowledge. They find that while the myopic learning model performs

better, it can only explain 76% of the actions taken. Grimm and Mengel (2014) show that

while myopic learning fits better in some information environment, their subjects do account

for correlated information by putting a lower weight on their neighbors’ information when

it is expected to be highly correlated.

We introduce our learning procedure in Section 2 and characterize its properties in Section

3. Section 4 shows when agents can learn correctly, and the types of learning errors when

they cannot. Section 5 extends our model and Section 6 concludes. All proofs are contained

in the Appendix.

2 Model

Consider a network (g,G): g = {1, 2, . . . , L} represents a finite set of agents, andG represents

the set of the links among them: ij ∈ G if i and j are linked. The network is undirected, so

information flows both ways. That is, ij ∈ G if and only if ji ∈ G. It is also path-connected

so that information can diffuse to everyone. That is, for any i, h ∈ g, there is a path

{i0i1 . . . ik} such that i0 = i, ik = h and ilil+1 ∈ G for all l < k. Denote Ni = {j : ij ∈ G}
as the set of agent i’s neighbors. Let (gi, Gi) ⊆ (g,G) be agent i’s local network , where

gi = Ni ∪ {i} and Gi = {jk : j, k ∈ gi and jk ∈ G}. That is, her local network consists

of herself, all her neighbors, and all the links among them in the original network. Also,

let (gij, Gij) be agent i and a neighbor j’s shared local network , where gij = gi ∩ gj and

Gij = Gi∩Gj. That is, their shared network consists of the agents, their common neighbors,

and all the links among them. Similarly, Let {i, i1, . . . , il}12 be a fully connected subset of gi

such that all the agents in the subset are distinct, and every pair of agents in {i, i1, . . . , il}
are linked. Let (gii1...il , Gii1...il) be the shared local network of agents {i, i1, . . . , il}, where

gii1...il = gi ∩ gi1 ∩ . . . ∩ gil , and Gii1...il = Gi ∩Gi1 ∩ . . . ∩Gil .

Agents in the network face a learning problem. There is a finite set of states: s ∈ S =

{s1, s2, s3, ..., sn, ..., sN}. All the states are a priori equally likely: Pr(s = sn) = 1/N for

all sn. The true state is realized before learning begins. Agents receive signals from nature

about the state of the world. The support of each agent i’s signals is also finite and includes

an uninformative signal. Specifically, xi ∈ X i = {xi∅, xi1, xi2, . . . , xim, ..., xiMi
}, where xi∅ is

uninformative. Let the conditional probability of receiving signal xim if the state is sn be

φimn = Pr (xim|sn). Time is discrete with an infinite horizon: t = 0, 1, 2, . . .. In each period

12To clarify, we use {ij . . . k} to denote a sequence of agents in which the order matters such as in a path,
and we use {i, j, . . . , k} to denote a set of agents in which the order does not matter.
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prior to T , which can be arbitrarily large, agent i observes a signal xit.
13 For simplicity, we

assume all agent i’s realized signals are generated according to the same signal distribution

defined above. The signals are independent across agents and time conditional on the state.

No informative signal arrives at or after period T .14

Let X i
T be the signals agent i receives up to T , and let XT =

⋃
i∈g
X i
T . An agent’s learning

outcomes are Bayesian if her posterior belief of the state distribution at the end of the

learning process is the Bayesian posterior given XT . This paper aims to show whether and

when agents can achieve the Bayesian learning outcomes when each agent only knows her

local network (gi, Gi), her information structure, and her realized signals.

2.1 An iterative learning procedure

We begin with a formal description of our learning procedure and defer discussions of this

procedure to Section 2.2. Every agent i ∈ g learns according to the following procedure.

At t = 0, agent i receives signal xi0.

At t = 1, agent i’s first-order estimates of the state distribution are pi1 = {pi1(1), . . . , pi1(N)},
where pit(n) = Pr (sn|xi0) for each sn.15 By assumption, her second-order estimates of

each neighbor j ∈ Ni’s estimates of the state distribution are pij1 = {pij1 (1), . . . , pij1 (N)} =

{1/N, . . . , 1/N}. Similarly, if {i, i1, i2} are fully connected, then i’s estimates of agent i1’s

estimates of agent i2’s estimates of the state distribution pii1i21 = {1/N, . . . , 1/N}, and so

on for all her higher-order estimates in each of the fully connected subsets of gi. Agent i

then reports her first-order estimates pi1 to all her neighbors and simultaneously hears all

her neighbors’ reports pj1. She then observes her signal from nature xi1. Period 1 ends.

For all t ≥ 1, agent i first forms all her (higher-order) estimates. She then reports her

first-order estimates pit and simultaneously hears all her neighbors’ reports pjt . Next, she

receives xit and period t ends. She updates all her estimates in t+ 1 in three steps:

Step 1: Identify new information . She first infers new information each neighbor

j has learned from outside her local network during period t − 1. Let yijt−1 be an inferred

13To ease exposition, we abuse the notation between possible and realized signals, which should be clear
from the context. More specifically, xim is agent i’s m-th informative signal only if the subscript is m,
otherwise xit is agent i’s realized signal at period t.

14We introduce T so that there are only a finite number of informative signals, and thus we can study
whether the agents’ learning stops and characterize the outcomes when it does. We assume agents don’t
know the existence of T for simplicity. Otherwise agents should increasingly believe that all information
learned at a time sufficiently later than T contains old signals only.

15We use boldface letters to denote vectors throughout the paper.
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signal agent i thinks j has learned. Formally, from agent i’s perspective, for each state sn,

pjt(n) =
pijt (n)Pr

(
yijt−1|sn

)∑N
n′=1 p

ij
t (n′)Pr

(
yijt−1|sn′

) . (1)

That is, the numerator is the joint probability agent i believes agent j receives yijt−1 and the

state is sn; and the denominator is the total probability agent i believes agent j receives signal

yijt−1. Let αααijt = {αijt (1), . . . , αijt (N)} denote the (normalized) distribution of yijt−1 conditional

on the state, where αijt (n) = Pr
(
yijt−1|sn

)
/
∑

n′ Pr
(
yijt−1|s′n

)
. It is easy to see that

αijt (n) =
pjt(n)

pijt (n)

/∑
n′

pjt(n
′)

pijt (n′)
. (2)

Clearly,
∑

n′ α
ij
t (n′) = 1, and αijt (n) = 1/N for all sn if pjt = pijt (the equality holds compo-

nent wise).16 Similarly, the new information agent i believes that agent j infers from herself

and another agent k ∈ Ni ∩ Nj are respectively:

αijit (n) =
pit(n)

pijit (n)

/∑
n′

pit(n
′)

pijit (n′)
and αijkt (n) =

pkt (n)

pijkt (n)

/∑
n′

pit(n
′)

pijkt (n′)
. (3)

The higher-order new information is defined similarly. For each fully connected subset

{i, i1, . . . , il−1, il} of gi, agent i believes that agent i1 believes...that agent il−1 infers αααii1...ilt ≡
{αii1...ilt (1), . . . , αii1...ilt (N)} from agent il, where

α
ii1...il−1il
t (n) =

pilt (n)

p
ii1...il−1il
t (n)

/∑
n′

pilt (n′)

p
ii1...il−1il
t (n′)

. (4)

Finally, αααii1...ilkt , where k ∈ {i, i1, . . . , il} is similarly defined. Let the number of agents in the

largest fully connected subset of gi be L̂i. Then the highest-order new information agent i

infers is of order L̂i + 1.17

Step 2: Update first-order estimates. In period t, agent i may observe an infor-

mative new signal xit = xim. To simplify the notation, let αiit (n) = φimn/(
∑

n′ φ
i
mn′) be agent

i’s inferred signal from nature such that αααiit ≡ {αiit (1), ..., αiit (N)} for any t ≥ 0.18 Using

her inferred signals from each neighbor j and her own signal, agent i updates her first-order

16We show in Section 2.2 why αααijt is the part of the inferred signal that can be learned by agent i. Also,
if pijt (n) = 0 for some state sn, then pht−1(n) must be 0 for some h ∈ gij , which implies that pjτ (n) must be
0 for all τ ≥ t. In this case, we define the ratio pjτ (n)/pijτ (n) = 0.

17The only repetition allowed in agent i’s higher-order new information is the last agent.
18Observe that despite the same time index, αααiit for all t ≥ 0 reflects agent i’s realized signal at t, but αααijt

for all t ≥ 1 is the signal agent i thinks agent j has learned at t− 1.
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estimates such that for each sn:

pit+1(n) =
pit(n)

∏
h∈gi α

ih
t (n)∑N

n′=1 p
i
t(n
′)
∏

h∈gi α
ih
t (n′)

. (5)

Step 3: Update higher-order estimates . When updating her estimates of neighbor

j’s estimates, agent i starts with agent j’s latest report pjt . She then incorporates the new

information she thinks that j learned from their shared local network. Agent i’s second-order

estimates are formed by Bayes’ rule such that for each sn:

pijt+1(n) =
pjt(n)

∏
h∈(gij\{j}) α

ijh
t (n)∑N

n′=1 p
j
t(n
′)
∏

h∈(gij\{j}) α
ijh
t (n′)

. (6)

Agent i’s higher-order estimates are formed similarly:

pii1...ilt+1 (n) =
pilt (n)

∏
h∈(gii1...il\{il})

αii1...ilht (n)∑N
n′=1 p

il
t (n′)

∏
h∈(gii1...il\{il})

αii1...ilht (n′)
, (7)

for all sequences of fully connected and distinct agents {ii1 . . . il}. The highest order of

estimates agent i needs to form is thus L̂i.

Finally, let pii1...ilkt+1 = pii1...ilt+1 for all k ∈ {i, i1, . . . , il}.19 These are degenerate estimates

because they are set to be equal to the estimates one order lower. Agent i uses them to infer

her L̂i + 1-order new information in period t+ 2.

Learning stops if no agent in the network infers any (higher-order) new information from

the next period onward. ‖
To be concrete, we illustrate the above procedure with a simple example.

Example 1. The network (g,G) is a triangle: G = {12, 13, 23}. Suppose both the states and

the signals are binary: s ∈ S = {0, 1}, x1 ∈ X1 = {0, 1}, and Pr(x1 = 1|s = 1) = Pr(x1 =

0|s = 0) = φ1. Agent 1 receives the only informative signal x10 = 1.

At t = 0, agent 1 observes x10 = 1. We describe only agent 1’s learning in details first.

At t = 1, p11(1) = φ1 by Bayes’ rule.20 Agent 1’s higher-order estimates are the symmetric

prior by assumption. Agent 2 and 3 report p21(1) = p31(1) = 1
2
, and their higher-order

estimates are also the symmetric prior.

At the beginning of t = 2:

19We show in Appendix A.1 that there is no loss in generality to restrict attention to distinct agents only.
That is, for any sequence of fully connected and possibly repeated agents {ij . . . k} such that {i, i1, . . . , il}
is the set of all the distinct agents it contains, we can set pij...kt+1 = pii1...ilt+1 .

20Because the state is binary, we only keep track of pit(1).
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Step 1 : given the reports at t = 1, agent 1 notices that p21(1) = p121 (1) and p31(1) = p131 (1),

and thus α12
1 (1) = α13

1 (1) = 1
2
. That is, agent 1 does not learn any new information from

2 or 3. Next, agent 1 believes that 2 and 3 learn new information from herself: α121
1 (1) =

α131
1 (1) = φ1. But she believes agent 2 does not infer any new information from 3, or vice

versa: α132
1 (1) = α123

1 (1) = 1
2
. Finally, because the largest fully connected subset of g1

consists of {1, 2, 3}, agent 1 also infers α1231
1 (1) = α1321

1 (1) = φ1 and α1232
1 (1) = α1323

1 (1) = 1
2
.

Step 2 : by expression (5), p12(1) = p11(1) = φ1.

Step 3 : by expression (6), we have p122 (1) = p132 (1) = φ1. Using expression (7), agent 1’s

third-order estimates are p1231 (1) = p1321 (1) = φ1. The highest-order estimates agent 1 forms

are p12311 (1) = p12321 (1) = p13211 (1) = p13231 (1) = p1231 (1) = φ1.

Agent 2 and 3 are symmetric, and thus we only describe how agent 2 learns. Given the

reports at t = 1. agent 2 notices that p11(1) 6= p211 (1). By expression (3), α21
1 (1) = φ1. Agent

2 learns nothing from agent 3: α23
1 (1) = 1

2
. By expression (5), p22(1) = φ1. Next, it is easy

to see that α213
1 (1) = 1

2
, α212

1 (1) = 1
2
, and thus by expression (6), p212 (1) = φ1, p232 (1) = φ1.

Finally, it is easy to see that p2132 (1) = φ1 and p2312 (1) = φ1. The highest-order estimates

agent 2 forms is p21312 (1) = p2132 (1) = φ1, and so are all her other fourth-order estimates.

At t = 2, every agent’s first and higher-order estimates that the state is 1 are φ1. No

one learns anything or thinks that anyone else learns anything new from then on, and thus

learning stops. Their learning outcomes are Bayesian. �

2.2 Remarks on the model

Inferred signals. Each agent wants to learn the true state based on information available to

her. She can use our procedure when she does not know the outside network, her neighbors’

information structures or their realized signals. To do so, agent i infers and learns new

information from each neighbor j based on the reports from their shared local network.

To interpret expression (1), agent i uses her own estimates of j’s estimates of the state

distribution as her prior, and agent j’s actual report as her posterior in her inference of the

new signal. She then applies the Bayes’ rule as if agent j’s new information comes from

one new signal, whether it is from nature or from agents not connected to i. Because agent

i knows neither the distribution of j’s signals nor j’s local network, she cannot differentiate

the sources of j’s information. Therefore αααijt is the part of the inferred signal relevant to

agent i’s learning. She then updates her own estimates pit+1 using all these inferred signals.

The innovation of our procedure is that each agent uses higher-order estimates to keep

track of old and existing information in her local network. To see this, observe that pijt

contains all the information agent i believes that agent j has, namely, {phτ : τ ≤ t−1, h ∈ gij}.
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Therefore, she only updates her estimates about j’s estimates based on new reports at period

t. This is clearly true at t = 1. Suppose this is true at t. Then at t + 1, using expression

(1), we can rewrite expression (6) such that:

pijt+1(n) =
pijt (n)αijt (n)

∏
h∈(gij\{j}) α

ijh
t (n)∑N

n′=1 p
ij
t (n′)αijt (n′)

∏
h∈(gij\{j}) α

ijh
t (n′)

. (8)

Starting from pijt , agent i first incorporates her inferred signal from j, αααijt , which measures

what j learns from outside agent i’s local network since pjt−1. She then incorporates all the

new information agent j should have learned from her local network in period t.21 If she

believes there is no new information at all, pijt+1 = pijt = pjt , which is simply agent j’s report

at t. But if there is new information, she expects j to incorporate it and thus will not double

count this information from t + 1 onward. In a similar way, agent i keeps track of all the

information available to each of the fully connected subset of gi using pii1...ilt .

No learning about the network outside one’s local network. To follow our

learning procedure, agents neither need to know, nor do they update their beliefs about,

the network beyond their local networks. That is, they behave as if all their inferred signals

from outside their local networks are independent. To see this, observe from expression (5)

that agent i treats all her inferred signals from her neighbors and her signal from nature

in the same way: They enter her updating rules multiplicatively. In particular, she ignores

possible correlations in these inferred signals. If, for instance, her two neighbors have inferred

the same signal from an agent unobserved by agent i in period t − 1, agent i would have

double counted this signal according to our procedure.

Although we show in Section 4.4 that our learning procedure is consistent with fully

Bayesian learning when each agent believes that her local network is the entire network, and

such beliefs are common knowledge, this is not at all our motivation. Rather, our primary

motivation is to develop, based on the existing evidence, a tractable learning procedure in

which agents learn rationally within her local network, but ignore possible correlations in

her information from the wider network. Agents can simply follow our procedure when they

are unable to handle the computational and cognitive burden of Bayesian learning. We also

generate clear predictions of when agents can still learn correctly, and identify systematic

errors they make when they fail to learn. These predictions can potentially be taken to the

data and tested. In Section 5.3, we allow agents to account for some type of information

21We use pjt (n) as agent i’s prior in expression (6) because j’s report is observable and it makes the
expression simpler. But it is clear from the above discussion that we can use pijt (n) as her prior as well,
which is more standard. We can similarly rewrite any of the higher-order estimates pii1...ilt+1 (n) in expression

(7), using pii1...ilt (n) as the prior instead of pilt (n).
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correlation by a simple rule of the thumb to improve their learning outcomes.

Knowledge of the local network only. For agents to follow our procedure, we need

every agent to know her local network, and every agent knows every agent in her local network

knows his local network, and so on up to the order of the number of agents in each agent’s

local network. An agent does not need to know a neighbor’s information structure because

agent i, for example, only infers a posterior distribution
{

Pr
(
yijt−1|s1

)
, . . . ,Pr

(
yijt−1|sN

)}
from each neighbor j every period.

This local network knowledge assumption explains why agents need to form higher-order

estimates. Observe from Step 1 of the procedure that αααikt , which is based on i and k’s shared

information {phτ : τ ≤ t, h ∈ gik}, is generally different from αααjkt , the new information agent

j learns from k, which is based on j and k’s shared information {phτ : τ ≤ t, h ∈ gjk}.
Therefore, agent i can only estimate what she believes j learns from k, αααijkt . It also explains

why agent i’s higher-order estimates and inferred information are restricted to fully connected

subsets of gi. If an agent is not connected to some of the agents in {i, i1, . . . , il}, then they

don’t know his existence, and thus cannot form any estimates involving him. In Section 5.1,

we expand the agents’ local networks to include their indirect neighbors and the links among

them. Surprisingly, the agents’ learning outcomes may become worse.

Distribution of the state and signals. We illustrate our learning procedure with

a model of finitely many states and finitely many signals, but it is applicable to other

information structures. First, the influential information partition model is a special case

of our model. Recall that S is the state space and agent i’s information structure can be

represented by a mapping P i : S → 2S \ ∅. P i associates each state sn with a non-empty

element P i(sn) such that at sn, agent i considers P i(sn) to be the set of possible states.

Moreover, P i induces an information partition over the state space if (1) for any sn ∈ S,

sn ∈ P i(sn); and (2) for any sn, sn′ ∈ S, sn ∈ P i(sn′) implies P i(sn) = P i(sn′). In our

context, each signal xim informs agent i of an element P i(sn) of her partition. For all sn′ ∈
P i(sn), φimn′ = 1; and φimn′ = 0 otherwise. The number of possible signals agent i has, Mi,

corresponds to the number of elements in her partition. Second, our learning procedure can

be easily adapted to the widely-used model with uniformly distributed states and normally

distributed signals. That model is simpler because each agent’s estimates contain only the

expected value of the true state and the precision of the associated distribution.

Communication protocols. Our agents report their most up-to-date estimates of the

state distribution similar to Lee (1993) and Eyster and Rabin (2014). Although these reports

contain more information than those in the observational learning literature, which typically

involve agents’ actions or payoffs (see for example Bala and Goyal (1998) and Mossel, Sly

and Tamuz (2015)), they are not without loss of generality. Each agent can in principle
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report the history through which she receives her information. That is, agent i reports, in

addition to her estimates, “I have heard this report from agent j who has heard it from

agent k,” and so on. We use the posterior distributions because the messages above are too

complex for agents to remember and to use in reality.

3 Main properties

We now characterize several useful properties of our learning procedure. To begin with,

separate gi into (overlapping) subsets within which all agents are fully connected, our learning

procedure restricts agent i’s higher-order estimates to those within each such subset. For

example, in the network depicted in Figure 1 below, referred to as diamond with a link,

agent i has three neighbors, and the fully connected subsets in gi are {i, j, k}, {i, j, k′} and

{i, j}, {i, k′}, {i, k}. Since L̂i = 3, agent i forms up to third-order estimates.

j

k

i

k’

Figure 1: Diamond with a link

We first show that the order of agents in higher-order estimates does not matter.

Lemma 1. Consider any fully connected subset {i1, . . . , il} of gi. Let {β(1), . . . , β(l)} be a

permutation of {1, . . . , l}. Then p
iβ(1)...iβ(l)

t is the same for all t ≥ 1.

Intuitively, agent i1 can only form her higher-order estimates using reports from the

relevant shared local network. Since the set of distinct agents is the same, gi1...il = gi1 ∩
. . . ∩ gil = giβ(1)

∩ . . . ∩ giβ(l)
= giβ(1)...iβ(l)

. That is, agent i1 and iβ(1)’s estimates are based

on the same information {phτ : τ < t, h ∈ gi1...il}, and thus must be identical. The fact

that order does not matter allows us to compare two neighbors’ estimates about each other

easily. By Lemma 1, even if agent i and j have different estimates in a period, pit 6= pjt , agent

i’s estimates of j’s estimates always agree with agent j’s estimates of i’s: pijt = pjit . This
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pairwise agreement shows that our learning procedure is internally consistent: Each agent

always knows the signal a neighbor infers from herself. That is, what i thinks j infers from

her is exactly what j infers, αααijit = αααjit for all t, because pijit = pjit .22 Similarly, agent i and

j also agree with what each other infers from a common neighbor.

Our learning procedure may still seem to impose a heavy computational burden on the

agents because it requires them to form higher-order estimates. But agent i’s higher-order

estimates can be further simplified in certain type of local networks. We say (gi, Gi) satisfies

local connection symmetry (LCS from now on) if gij is fully connected for every j ∈ Ni.

Intuitively, this is the case if either Ni ∩ Nj = ∅, or for every k ∈ Ni ∩ Nj, there does not

exist another agent k′ such that k′ ∈ Ni ∩ Nj, but kk′ /∈ G. For instance, in Figure 1, agent

k’s local network clearly satisfies this property since gik = gjk = {i, j, k}, and similarly for

agent k′. But the local networks for agent i and j fail this property because kk′ /∈ G. When

i’s local network satisfies LCS, agent i only needs to form second-order estimates.

Lemma 2. For every agent j ∈ Ni and every period t,

(1) Individual agreement: if (gi, Gi) satisfies LCS, then pijt = pikt and pijt = pijkt = pij...kt

for distinct agents ij . . . k ∈ gij.

(2) Local-network agreement: if (gl, Gl) satisfies LCS for every agent l ∈ gi, then pijt =

pikt = pjkt for any k ∈ Ni ∩ Nj.

Intuitively, for agent i, if agents in gij are fully connected for every j, then gij = gik if her

neighbors j and k are connected. From agent i’s perspective, information agents in gij share

is the same as information agents in gik share, implying pijt = pikt . Moreover, in forming

higher-order estimates, agent i thinks everyone in gij also thinks each other has access to

the same set of information, and thus her second-order estimates suffice. The second part of

Lemma 2 shows that if the local network of every agent in gi has this property, the learning

procedure can be simplified as agent i directly use i’s inferred signal from k to replace j’s

inferred signal from k since pikt = pjkt . In step 3 of our learning procedure, there is no need

to evaluate equation (7), and equation (6) becomes:

αjit (n) =
pit(n)

pijt (n)

/∑
n′

pit(n
′)

pijt (n′)
, and pijt+1(n) =

pjt(n)αjit (n)
∏

k∈Ni∩Nj α
ik
t (n)∑N

n′=1 p
j
t(n
′)αjit (n′)

∏
k∈Ni∩Nj α

ik
t (n′)

. (9)

Similarly, we say that a network (g,G) satisfies global connection symmetry (GCS from now

22One implication is that when agents only know their neighbors, but not the links among them, they can
still learn correctly in some networks such as a tree. See Section 5.1 for more details.
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on) if property LCS holds for every agent i ∈ g. In these networks, every agent forms only

her own estimates and her second-order estimates for each neighbor.

So far we focus on learning from agent i’s perspective. Since each agent learns from

her neighbors who in turn learns from their neighbors, the agents’ inferred signals can be

rewritten using expression (5) and (6) as follows.

Lemma 3. For every agent i ∈ g, t ≥ 1,

αijt+1(n) =
∏

l∈(gj\gi)∪{j}

αjlt (n)
∏

h∈gij\{j}

αjht (n)

αijht (n)

/∑
n′

∏
l∈(gj\gi)∪{j}

αjlt (n′)
∏

h∈gij\{j}

αjht (n′)

αijht (n′)

(10)

Focusing only on the numerator in expression (10), we can see that what agent i learns

from j consists of two parts. The first part is, as expected, what agent j learned in the

previous period from nature or his neighbors unobserved by agent i. That is, all the infor-

mation from outside agent i’s local network. The second part is more subtle: It reflects the

difference between what j actually learned from his neighbor h and what i thinks that j

learned from h. We begin with the case of networks that satisfy GCS. In this case, only the

first part matters because αααjht = αααijht for all h ∈ gij \ {j}, and thus the second part becomes

1. Note that Lemma 3 does not mean that agent i is able to learn all the other agents’ signals

correctly. If a signal reaches multiple neighbors of agent i, she may infer there are multiple

copies of that very signal according to equation (10). For instance, remove the link between

agent i and j in Figure 1, so that the network becomes a diamond {k′ijk}, in which agent

k′ receives the only initial signal at t = 0. Then at t = 2, agent i and j each infers the same

signal. At t = 3, agent k infers a product of these two signals, namely his inferred signal

contains two copies of the original signal received by agent k′, and is thus incorrect. But if

each agent in a network does learn each true signal only once, she will be able to form the

correct Bayesian posterior despite not knowing the entire network.

An agent’s inferred signals can also be wrong due to the second part in the numerator

of expression (10). Even if there is no new information from outside agent i’s local network

previously (the first part αjlt (n) = 1/N for all l ∈ (gj \ gi) ∪ {j}), she may nonetheless infer

“new” signals because i and j have different local networks. We will illustrate in Example

2 at the end of this section that in Figure 1, agent k may infer new signals from i because

what k thinks i learns from j, αααkijt , is different from what i truly learns from j, αααijt .

Although informative signals may travel through network (g,G) via many different paths,

a very convenient property of our learning procedure is that for any given sequence of realized

signals, signals travel independently. Therefore we can analyze learning under each signal
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separately. Divide the full sequence of observed signals in the network XT into any two

disjoint sets of signals Xa
T and Xb

T such that XT = Xa
T ∪Xb

T and Xa
T ∩Xb

T = ∅. Recall that

pit is agent i’s estimates of the true state under XT , and let (pa,it , pb,it ) be her estimates under

Xa
T and Xb

T respectively. We say signals can be decomposed if the agent’s estimates under

XT is equal to the combination of her estimates under Xa
T and Xb

T using Bayes’ rule. That

is, for all t ≥ 1, i and sn,

pit(n) =
pa,it (n)pb,it (n)∑N

n′=1 p
a,i
t (n′)pb,it (n′)

; (11)

pijt (n) =
pa,ijt (n)pb,ijt (n)∑N

n′=1 p
a,ij
t (n′)pb,ijt (n′)

. (12)

Moreover, for any fully connected subset {ii1 . . . il} of gi,

pii1...ilt (n) =
pa,ii1...ilt (n)pb,ii1...ilt (n)∑N

n′=1 p
a,ii1...il
t (n′)pb,ii1...ilt (n′)

. (13)

Lemma 4. Signals can be decomposed under the proposed learning procedure. If XT =

Xa
T ∪Xb

T , Xa
T ∩Xb

T = ∅, then equations (11), (12) and (13) hold for all i, sn and t ≥ 1.

Lemma 4 does not mean that agents can learn each signal correctly. Rather, it means that

given a sequence of realized signals, one signal travels, with all its possible repetitions and

distortions, independently from another signal. Consider two informative signals observed

by different agents at different times, xl0 and xhτ , which are inferred by i from her neighbors

in Ni at time t + 1 in the form of yijt−1 and yikt−1 respectively. Then agent i’s estimates at

t+ 1 are just the combination of yijt−1 and yikt−1 by Bayes’ rule. They are the same if we study

agent i’s estimates when xl0 or xhτ was the only signal, and then combine these estimates at

time t+ 1 by Bayes’ rule.

Lemma 4 holds because agent i’s inferred signal from j is independent from her other

inferred signals, and agent j knows it. Therefore even though j does not know all the sources

of agent i’s information, j can identify the part of i’s updated estimates that is due to his

information (and the information from their common neighbors). Agent j considers the rest

as new information.23 An important implication of Lemma 4 is that if agents can learn each

separate signal correctly, they can do so for many signals. Therefore it is possible to provide

general results for all sequences of realized signals.

We end this section with an example to illustrate the properties of our learning procedure.

23If this were not the case, for example, if agent i incorporates information from gij differently depending
on her other inferred signals, agent j may not be able to form his estimates of i’s estimates (and any
higher-order estimates) in a consistent way. See Section 5.3 for more details.
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Example 2. In the diamond with a link depicted in Figure 1, agent i and her neighbors have

three shared local networks: gij = gi ∩ gj = {i, j, k′, k}, gik′ = {i, j, k′} and gik = {i, j, k}.
We continue to use the binary state and signal case described in Example 1. There are two

informative signals xk
′

0 = 1 and xj1 = 1.

At t = 0, agent k′ learns xk
′

0 = 1. At t = 1, the agents’ estimates are pk
′

1 (1) = φk
′

and

pi1(1) = pj1(1) = pk1(1) = 1
2
. All their higher-order estimates are the symmetric prior.

At t = 2, agent i observes that pk
′

1 (1) 6= pik
′

1 (1) = 1
2
, and so is j. They each infer a signal

αik
′

1 (1) = αjk
′

1 (1) = φk
′
from k′, and nothing from agent k. Agent i needs to form up to third-

order estimates: pi2(1) = pij2 (1) = pijk
′

2 (1) = φk
′

and pijk2 (1) = 1
2
. Agent j updates using both

his inferred signal from k′ and his signal xj1: p
j
2(1) = Pr(s = 1|xk′0 , x

j
1) = φk

′
φj

φk′φj+(1−φk′ )(1−φj) .

By Lemma 1, the order of the agents in the estimates does not matter, and thus pji2 (1) =

pij2 (1) = φk
′
, pijk

′

2 (1) = pjik
′

2 (1) = φk
′

and pijk2 (1) = pjik2 (1) = 1
2
.

Agent k′ learns nothing from his neighbors: αk
′i

1 (1) = αk
′j

1 (1) = 1
2
, and thus pk

′
2 (1) = φk

′
.

Moreover, it is easy to see that pk
′i

2 (1) = pk
′j

2 (1) = pk
′ij

2 (1) = pk
′ji

2 (1) = φk
′
. Because the

local network of agent k′ satisfies LCS, by Lemma 2, the second-order estimates suffice. As

to agent k, he still learns nothing and thus all his estimates remain the symmetric prior.

At t = 3, agent i and k′ observes that pj2(1) 6= φk
′

and infers that αij2 (1) = αk
′j

2 (1) = φj,

while agent j learns nothing from k′, i and k. It is easy to see that in the shared local network

of i, j, k′, their estimates agree: pk
′

3 (1) = pi3(1) = pj3(1) = pk
′i

3 (1) = pij3 (1) = pjk
′

3 (1) = pj2(1).

From now on, we focus on the shared local network of i, j, k.

Agent k infers αki2 (1) = φk
′
and αkj2 (1) = pj2(1). Agent k’s local network satisfies LCS, and

by first part of expression (10) in Lemma 3, αki2 (1) = αik
′

1 (1) and αkj2 (1) =
αjk
′

1 (1)αjj1 (1)∑
s∈{0,1} α

jk′
1 (s)αjj1 (s)

.

Also, αkij2 (1) = pj2(1) and αkji2 (1) = φk
′

because he thinks that i and j should infer new

signals from each other. By Bayes’ rule, pk3(1) = (φk
′
)2φj

(φk′ )2φj+(1−φk′ )2(1−φj) . Agent i and j know

what k learns from them: αiki2 (1) = αjki2 (1) = φk
′

and αikj2 (1) = αjkj2 (1) = pj2(1).

At t = 4, agent i, j and k′ do not learn anything new, and thus their estimates remain

unchanged: pi4(1) = pj4(1) = pk
′

4 (1) = pj2(1). But agent k again infers new signals: αkj3 (1) =

αki3 (1) = 1 − φk
′
. That is, he infers two signals offsetting xk

′
0 because he does not know

i and j have a common neighbor k′. This can be seen from Lemma 3. The first part of

expression (10) is 1, and the second part is αkj4 (1) =
αji3 (1)

αkji3 (1)

/∑
n′

αji3 (n′)

αkji3 (n′)
= 1 − φk

′
, and

similarly αki4 (1) = 1−φk′ . The difference in his third-order inferred information αααkij3 and the

actual inferred signal αααij3 causes his inferred signal to be wrong. Thus pk4(1) = φj.

From now on, agent k′, i, j’s estimates remain at pj2(1). But for all the odd periods t ≥ 3,

agent k’s estimates are the same as pk3(1); and for all the even periods t ≥ 4, his estimates

are pk4(1). His estimates oscillate and never converge.
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Finally, under Lemma 4, the agents’ estimates are the same if they have received the

signals separately, and we combine their estimates via Bayes’ rule. It is easy to see that

since everyone observes j, if xj1 is the only signal, then at t = 3, everyone’s estimates are φj

and do not change. Next, if xk
′

0 is the only informative signal, from t = 2 onward, k′, i, j’s

estimates remain constant at φk
′
. But from t ≥ 3, agent k’s estimates keep oscillating

between (φk
′
)2

(φk′ )2+(1−φk′ )2 in odd periods and 1
2

in even periods. The combination by Bayes’ rule

is exactly the same as above. �

4 Bayesian learning outcomes

We now provide sufficient conditions for the agents to learn correctly in two benchmark

cases. We also characterize two network features that lead to systematic learning errors.

Recall that the agents’ learning outcomes are Bayesian if there exists some period t

in which all agents’ first-order estimates agree with the Bayesian posterior given XT , and

remain constant afterwards.24 We sometimes also use a stronger notion of correct learning,

in which the agents’ estimates agree with the Bayesian posterior in every period given the

travel paths of signals.25 Let d(il) be the distance, or the length of the shortest path between

i and l; and let d(ii) = 0 for convenience. The diameter of network (g,G) is then

D = max
i,l∈g

d(il).

A signal (or information contained in this signal) then takes at most D periods to reach every

agent {1, . . . , L} in (g,G). Recall that X i
t = {xiτ : ∀τ ≤ t} if t ≥ 0 and X i

t = ∅ otherwise.

Because it takes d(il) periods for a signal to travel from l to i, agent i’s posterior based on

the signals agent l received up to period t− d(il) for all l ∈ g is:

qit+1(n) = Pr

(
sn

∣∣∣∣X1
t−d(i1), . . . , X

L
t−d(iL)

)
. (14)

We call the agents’ learning outcomes strongly Bayesian if pit = qit for all i and t.

24Note that this implies that agents infer no new information since t, and thus each agent’s higher-order
estimates also agree with her first-order estimates pit.

25Agents may still make mistakes even when their learning outcomes are Bayesian. For instance, in
Example 2. Suppose the informative signals are xk

′

0 = 1 and xk
′

2 = 0. It is easy to show that every agent
agrees at t = 4: ph4 (1) = 1

2 , h ∈ {k′, i, j, k}, which are the correct posterior given that agent k′’s signals
cancel out each other.

19



4.1 Bayesian learning under information partition model

For the rest of this section, let s1 be the true state. Recall from Section 2.2 that the

information partition model is a special case of our setup, in which each agent’s initial signal

xi0 informs her of the element P i(s1), which contains the set of states she cannot distinguish

from the true state. For simplicity only, assume the agents receive no further signals.

Suppose every agent has information partitions (P ii∈g, S) as defined in Section 2.2. We

now turn to the question of whether they can all agree by following our learning proce-

dure and if so, what they can agree on. This question has been studied in the literature

on knowledge and consensus (see Aumann (1976), Geanakoplos and Polemarchakis (1982),

Parikh and Krasucki (1990), Mueller-Frank (2013), among many others). It analyzes under

which conditions and what reporting protocols, repeated communication among a finite set

of individuals leads to consensus. Our procedure generalizes the reporting protocol to more

than pairwise communication, and the message space to the posterior distribution of the

states. Consider the following example from Geanakoplos and Polemarchakis (1982).

Example 3. There are two agents 1 and 2. The state space is S = {s1, s2, ..., s9}. The

states are equally likely. Agent 1’s partition is P1 = {(s1, s2, s3), (s4, s5, s6), (s7, s8, s9)}; and

agent 2’s partition is P2 = {(s1, s2, s3, s4), (s5, s6, s7, s8), s9}. Thus their initial signals are

P1(s1) = {s1, s2, s3} and P2(s1) = {s1, s2, s3, s4}. Let event A = {s3, s4}.

Geanakoplos and Polemarchakis (1982) allow the agents to know each other’s information

partitions and to announce and revise their posteriors of how likely event A is true.26 At

t = 1, agent 1 knows A can only be true at s = s3, while agent 2 thinks both s = s3 and

s = s4 can be true. So they announce 1/3 and 1/2 respectively. But this is also consistent

with the true state being s4 and P1(s4) = {s4, s5, s6} and P2(s4) = {s1, s2, s3, s4}. At t = 2,

agent 1 announces 1/3 again because she has learned nothing. Next, noticing that agent 1

does not change her posterior to 1, agent 2 realizes that the true state cannot be s4, and

thus changes his posterior to 1/3.27 From t = 3 onwards, they agree and the learning is over.

In our model, we do not need the partitions to be common knowledge. Instead, agents

directly learn their neighbors’ element containing the true state from their reports. At t = 1

agent 1 announces her estimates of the state distribution as p1
1 = {1/3, 1/3, 1/3, 0, 0, 0, 0, 0, 0}.

Agent 2 announces p2
1 = {1/4, 1/4, 1/4, 1/4, 0, 0, 0, 0, 0}. By our Step 1, agent 2 infers

the signal ααα21
1 = {1/3, 1/3, 1/3, 0, 0, 0, 0, 0, 0}. Using updating rule (5), we can see that

26The posterior of an event A given agent i’s information Pi(s1) is simply Pr(A∩Pi(s1))
Pr(Pi(s1))

.
27To see this, note that agent 2’s report makes P2(s1) common knowledge. Knowing agent 2’s element of

partition, agent 1 should have changed her posterior to 1 if s4 is the true state.
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p2
2 = p1

2 = {1/3, 1/3, 1/3, 0, 0, 0, 0, 0, 0}. Learning stops because no one has any new infor-

mation. The correct learning takes one, instead of two periods of communication. �

Under our learning procedure, not only agents in any network with information partition

will agree, they agree as soon as the signals finish traveling.

Proposition 1. If all agents in (g,G) have information partitions
(
P ii∈g, S

)
, then their

learning outcomes are strongly Bayesian and they reach consensus at t = D + 1.

Proposition 1 holds for all networks because of a special feature of the information par-

tition model: Agents do not make mistakes even if they treat correlated information as

independent. To see this, note that upon the first time each signal reaches agent i, she

eliminates the states from her current set of possible states according to the signal. Even

if agent i has inferred the same signal from multiple neighbors unknowingly, her estimates

are unaffected in that she removes the same set of states as she would given one such signal,

and then assigns equal probabilities to the remaining states. At t = D + 1, the agents have

received all signals. Therefore their estimates are simply pit(n) = 1/|Pg(s1)| if sn ∈ Pg(s1),
where Pg(s1) ≡ ∩{P i(s1)}i∈g is the intersection of all agents’ elements of partition contain-

ing state s1, and 0 otherwise. More generally, the same logic shows that if any agent believes

that a state is the true state with probability 0 given a signal, all agents in the network can

learn this within D + 1 periods after the arrival of this signal. In comparison, Geanakoplos

and Polemarchakis (1982) show that using their communication protocol, agents may never

form the posterior they would have if they pool their information. That is, their learning

outcomes may not be Bayesian eventually.

Proposition 1 no longer holds when the information partition model is perturbed.28 There

is a discontinuity in that if agents have any doubt about the mapping from the signals to

their elements of partition, their estimates may depend on the network structure. Let us

revisit the diamond-with-a-link network in Figure 1.

Example 4. The state space S = {s1, s2, s3, s4}. Partition of agent k′ is Pk′ = {(s1, s2), (s3, s4)}.
All the other agents’ partitions are simply S. Only agent k′ sees an informative signal, which

indicates the correct element with probability 1 − ε, and the wrong element with probability

ε. That is, when xk
′

0 = (s1, s2), pk
′

1 = (1−ε
2
, 1−ε

2
, ε
2
, ε
2
).

At t = 1, the estimates are pi1 = pj1 = pk1 =
(
1
4
, 1
4
, 1
4
, 1
4

)
and pk

′
1 =

(
1−ε
2
, 1−ε

2
, ε
2
, ε
2

)
. At

t = 2, i and j infer the signal from agent k′, and thus pi2 = pj2 = pk
′

2 =
(
1−ε
2
, 1−ε

2
, ε
2
, ε
2

)
and

28One way to perturb the information partition model is to introduce the possibility of errors. For instance,
each signal informs an agent of her true element of partition with probability close to 1, but inform her of
some other element(s) with the complementary probability.
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pk2 =
(
1
4
, 1
4
, 1
4
, 1
4

)
. For all t ≥ 3, pi3, pj3 and pk

′
3 remain unchanged. But agent k learns two

copies of xk
′

0 , so pk3 =
(

(1−ε)2
2((1−ε)2+ε2) ,

(1−ε)2
2((1−ε)2+ε2) ,

ε2

2((1−ε)2+ε2) ,
ε2

2((1−ε)2+ε2)

)
. At t = 4, k infers

two opposite signals, so pk4 =
(
1
4
, 1
4
, 1
4
, 1
4

)
. Hereafter agent k oscillates between pk3 and pk4.

At ε = 0, all agents estimates are Bayesian. But for any ε > 0, the agents never agree. �

4.2 Bayesian learning in social quilts

Given the result in Section 4.1, from now on, we restrict attention to the case of non-

partitional signals, where φimn ∈ (0, 1) for all the agents. That is, every signal can be

observed with a positive probability in every state. Since signals can be decomposed by

Lemma 4, we often start with the case of one signal only.

It is easy to see that in fully connected networks (cliques) such as the triangle in Example

1, agents are able to learn any signal correctly. Whenever a signal reaches agent i in a clique,

all her neighbors learn this signal from her report in one period. Moreover, every agent thinks

that everyone else has learned the signal from agent i, and thus they will not double count

this information. In the next period, everyone believes that there is one and only one copy

of this signal and forms the correct estimates. We now generalize this intuition.

To begin with, a tree is a graph in which any two agents i, h ∈ g are connected by a

unique path. A circle is a path from an agent i0 to herself through distinct agents. That is,

c = {i0, ..., ik}, ilil+1 ∈ G for any l < k, i0ik ∈ G, and il 6= ih for any l, h ≤ k. By definition,

a tree contains no circles. Because there are at least two paths for any pair of agents in a

circle to reach each other: one clockwise and one counterclockwise.

Definition 1. Network (g,G) is a social quilt if ij ∈ G for any agent i and j in the same

circle.

Intuitively, a social quilt is a tree-like union of cliques, such that any circle within a

social quilt must be embedded in a clique. Let c be a simple circle if it contains more

than three agents, and Nil ∩ c = {il−1, il+1} for any 1 ≤ l ≤ k − 1, Ni0 ∩ c = {i1, ik},
and Nik ∩ c = {i0, ik−1}. That is, other than the two adjacent neighbors, agent il has no

connections to any other agent in a simple circle. Then a social quilt can be characterized

by the following property.

Lemma 5. Network (g,G) is a social quilt if and only if it satisfies GCS and does not contain

a simple circle.

Agents reach consensus if their first-order estimates agree in some period and remain

constant afterwards. Recall that no informative signal arrives at or after T . Then we have:
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Proposition 2. If (g,G) is a social quilt, then the agents’ learning outcomes are strongly

Bayesian and they reach consensus at period T +D.

Intuitively, two important features of social quilts enable agents to learn correctly: local

cliques and a global tree. In each of the local cliques, every agent is able to infer a new signal

correctly, and to infer that everyone else in the clique also infers the same signal as she does.

In this way, they agree that there is one and only one copy of each signal. Cliques are then

connected in a tree, and thus there is a unique path to go from one clique to another. This

implies that every signal arrives at each clique only once, and when each signal reaches the

“terminal” cliques of the tree, the signal stops traveling.

More precisely, suppose there is only one signal, xi0. We show that the learning is strongly

Bayesian by proving that each agent h learns this signal at, and only at, period d(ih) + 1.

First, there exists a unique shortest path between any two agents i and h in a social quilt,

which is the path the signal travels from i to h. Intuitively, the path can be constructed by

taking a direct cross of any clique and then taking the unique shortest path along the tree.

Second, once agent h learns the signal, he will not see this signal again. More specifically,

suppose the shortest path between i and h is {i, . . . , k, h}, and agent l is a neighbor of agent

h who learns the signal from h one period later. Then, l must be further away from i,

d(il) = d(ih) + 1. In other words, the unique shortest path from agent i to agent l must go

through h.29 As the signal is learned by agents further away from i, it cannot reach agent h

again. Similarly, with multiple signals, agent i’s estimates at t + 1 include signals observed

by each agent h from period 0 to period t− d(ih), and thus the learning outcome is strongly

Bayesian. Moreover, because the last signal arrives at period T − 1 and it takes at most

D + 1 periods to reach all agents, all learning stops by the end of period T +D.

Next, if T becomes sufficiently large, even though the agents may receive uninformative

signals in each period, the network receives a large number of signals, a positive fraction of

which is informative.30 One immediate implication of Proposition 2 is that if for any sn′ 6= sn,

there exist agent i and signal xim such that φimn 6= φimn′ , then as T →∞, plT (s1)→ 1 for all

l ∈ g. Intuitively, since the agents’ estimates agree with the Bayesian posterior in a social

quilt, they learn the true state eventually.

29If to the contrary, there are two paths from i to l, then there must be a circle involving (but not limited
to) agent k, h and l while kl /∈ G, which is impossible in a social quilt.

30More precisely, we assume that at least one agent receives an informative signal with a probability
strictly between 0 and 1.
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4.3 When Bayesian learning is impossible

If a network is not a social quilt, then by Lemma 5, it must feature simple circles or networks

that do not satisfy GCS (or both). Both features impede correct learning. First, in simple

circles, because each agent only knows her local network, she may keep inferring “new”

signals from her neighbors when it is the same signal reaches her repeatedly. Second, when

GCS does not hold, agents have asymmetric knowledge of their local networks, and thus

even neighbors may never form consensus as in Example 2.

We first isolate the problems caused by simple circles by assuming that the network

satisfies GCS. The following result provides a lower bound on how often a signal is repeatedly

learned in such a network as a function of time. In particular, it shows that when there is

only one simple circle, the repetition increases linearly in time; but if there are multiple

simple circles, the repetition grows exponentially.

Proposition 3. Suppose a network satisfies GCS and contains ksc ≥ 1 simple circles. Let

k be the number of agents in the largest simple circle and xi0 be an informative signal. Then

at any t ∈
[
τ(D + dk/2e) + 1, (τ + 1)(D + dk/2e)

]
,31 any agent l in a simple circle believes

there are at least two copies of xi0 if τ = 1; and at least

2τ + 2
τ−1∑
τ ′=1

(2(ksc − 1))τ
′

copies of signal xi0 if τ is an integer larger than 1.

Begin with only one simple circle. Once the signal reaches any agent in the simple circle,

it travels around in both directions. After k periods, every agent infers two new copies of

this signal, one from each neighbor. This continues every k periods, and thus the repetition

of the signal grows linearly. With multiple simple circles, each agent also learns the new

information from all the other simple circles, and thus the repetition grows faster. Moreover,

since all the agents are path-connected, all “new” information will reach all the agents, even

those outside any simple circle within D periods. In particular, the number of copies of

xi0 that any agent has learned at period t + D must be (weakly) higher than the maximal

number of copies any agent has learned at period t. Therefore we can easily give a lower

bound for all agents using Proposition 3.32

31For any x ∈ R, dxe is the smallest integer that is greater or equal to x.
32This result provides only a lower bound because it takes at most D period for any signal to reach every

agent in the network, and at most another dk/2e periods for this signal to reach every agent in a simple circle
again and becomes double counted. Therefore even though we only double the number of the signals agents
in a simple circle learn every D + dk/2e periods, signals may travel through some simple circles multiple
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Using Proposition 3, we can see right away that if a network contains any simple circle,

repeated learning of each signal is inevitable. This immediately implies that if there is only

one informative signal, then all the agents form the wrong estimates in the long run. Let

S(XT ) be the set of states that are most likely to be the true state given the sequence of sig-

nals XT a network received. More precisely, s̃(XT ) ∈ S(XT ) if s̃(XT ) ∈ arg maxs∈S Pr(s|XT ),

and |S(XT )| is the number of states in the set. If XT = {xi0}, the agents believe they have

received an infinite number of copies of this signal. That is: pht→∞(s̃(XT )) = 1
|S(XT )|

; and

pht→∞(sn′) = 0 if sn′ /∈ S(XT ). Another implication is as follows.

Corollary 1. Suppose a network satisfies GCS and contains exactly one simple circle,

then if s̃(XT ) is unique, all agents’ estimates converge: pht→∞(s̃(XT )) = 1.

Corollary 1 shows the order of signal’s arrival does not matter because with only one

simple circle, all signals are repeated at the same linear rate by Proposition 3. After period

T + D, all the informative signals have reached all agents. No matter how many copies

of each signal the agents have at this point, the number would increase by two after every

k periods. Because the signals grow at the same rate, the first-order effect is the ratio of

how likely an agent receives these signals given two different states: Pr(XT |sn′)/Pr(XT |sn).

When s̃(XT ) is unique, Pr(XT |sn′)/Pr(XT |s̃(XT )) < 1 for all sn′ 6= s̃(XT ). As t increases,

these terms all go to zero, and thus all agents think that s̃(XT ) is the true state.

By Lemma 4 and Proposition 3, an agent’s estimates at any given time are determined by

the number of copies of each signal she has inferred so far. Because the signals are repeated

at different rates in any given period depending on their arrival times and locations, in

general, the agents’ estimates may not converge if the network has multiple simple circles.

Furthermore, if the network has multiple simple circles, agents may unknowingly put higher

and higher weights on earlier signals at the expense of later ones. The next example shows

that the earlier signals may grow so fast that agents cannot be persuaded by an arbitrarily

large number of later signals. Therefore they may be led astray by a false signal in the

beginning and fail to learn the true state, as in the inner city neighborhood example in the

introduction.

Example 5. Failure of the Law of Large Numbers. Consider eight agents connected in a

cube, as in Figure 2. Continue with the binary state and signal setting, with two symmetric

signals satisfying Pr(xit = 1|s = 1) = Pr(xit = 0|s = 0) = φ > 1
2

for all i. The true state

is s = 1. Suppose that each agent observes a signal of xi0 = 0 at t = 0; and a signal of

times and generate more copies of this signal in the meantime. The bound in proposition 3 is tight if and
only if the network itself is a simple circle.
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Figure 2: A cube with 8 agents

xit = 1 for t ∈ {1, ..., T − 1}. Then the agents believe the state is 0 as T approaches infinity:

limT→∞ p
i
T (0) = 1.

Why do agents believe the state is 0 even when they receive so many opposing (and

correct) signals from t = 1 onward? Observe that at t = 1, each agent reports pi1(0) = φ.

At t = 2, each agent infers three signals of 0 from their neighbors (plus her own signal of 1

received by the end of t = 1), so her own estimates are pi2(0) = φ3

φ3+(1−φ)3 . Her estimates of

her neighbors’ estimates are pij2 (0) = φ2

φ2+(1−φ)2 , because she thinks that each of her neighbors

learns a signal of 0 from herself plus his own signal of 0. Therefore at t = 3, each agent again

infers three new signals of 0, plus one signal of 1 from the nature. The agents’ learning in

all later periods up to T is identical to that in period 2. Therefore, all agents think they are

learning more and more signals of 0 in net and believe the state is 0 in the limit.33 �
We now consider the problems caused by networks that fail GCS, by assuming the network

contains no simple circles. Let g̃ be the set of agents whose neighbors fail property LCS due

to their presence. More specifically, agent l ∈ g̃ if there exist some agents i, j and k such

that l ∈ gij, k ∈ gij, but lk /∈ G. We show that some agent must fail to learn correctly.

Proposition 4. Suppose (g,G) contains no simple circles but property GCS does not hold.

If any agent l ∈ g̃ receives xl0, the only informative signal, then plt = Pr(sn|xl0) for all t ≥ 1,

but there exists an agent whose learning outcomes are never Bayesian.

Classify the agents by their distance to agent l, Nd
l = {h ∈ g : d(hl) = d}. Because

simple circles are the channel for signals to travel back to its source, we can show that

without simple circles, no agent in Nd
l infers any new signals from her successors in Nd+1

l .

Suppose to the contrary, agent i in Nd
l infers a new signal from j in Nd+1

l , which is the first

33It is unlikely that all signals from period 1 to period T − 1 are 1 for all agents i = 1, . . . , 8 even if the
true state is 1. But since the agents put a probability arbitrarily close to 1 on state 0 in this case, they
would put a even higher probability on state 0 in all other cases.
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time someone learns from a successor. Then information travels to i through two different

paths, one from l through the shortest path to i, and another from l to j to i. As i treats it

as new information, she cannot be connected to her peer, the agent in Nd
l who passed this

information to j. Otherwise she would have learned the new information from this agent

directly. But then there is a simple circle involving these agents, which is impossible.

Since no signal travels back to the source, agent l’s estimates are Bayesian. Similarly,

learning outcomes from agents in Nl are also Bayesian since they only learn from agent l.34

But some agent in N2
l must form the wrong estimates like agent k in Example 2. This is

because the only possibility for an agent in N2
l , say agent k, to stop her oscillation is to learn

a specific type of information from a peer in N2
l . But for her to infer any new information,

this peer must have more connections to those in Nl than agent k does. Then we can show

this peer’s estimates must oscillate unless he in turn learns from another peer. There are a

finite number of agents in N2
l , and thus there must be some agent in N2

l who are connected

to multiple agents in Nl, but does not learn from any peer. This agent’s estimates keep

oscillating and cannot be Bayesian.

Even for a network that is not a social quilt, it is easy to find some sequence of realized

signals such that the learning outcomes are Bayesian.35 Given Proposition 3 and 4, however,

we show that social quilts are also necessary for correct learning in the following sense.

Corollary 2. If a network is not a social quilt, then there exists some sequence of realized

signals such that the agents’ learning outcomes are not strongly Bayesian.

Since simple circles result in repetition of signals while networks without GCS may lead

to estimates oscillations, agents must make one or the other type of errors for some sequence

of realized signals. Thus their learning outcomes are not strongly Bayesian as long as the

network is not a social quilt. It is more difficult to characterize the agents’ eventual learning

outcomes in a network that both contains simple circles and fails to satisfy GCS. Consider

the case with one informative signal only. If this signal reaches a simple circle, then the

repeatedly learned signals are positively correlated, which will reach agents in the other

simple circles and non-GCS networks. If the initial signal reaches a non-GCS local network,

then agents may infer offsetting copies of the initial signal, just like agent k in Example 2.

These inferred signals are negatively correlated with the original signal and can be repeatedly

34They cannot learn from each other because if they are connected, they know each other has inferred the
same signal from l.

35For instance, consider network (g,G) in which agent 1, 2 and 3 are connected in a triangle, and agent 3
is connected to a set of agents in a subnetwork which is not a social quilt. In the symmetric binary setting,
suppose the only informative signals are x10 = 1 for agent 1 and x20 = 0 for agent 2. At t = 2, the signals
offset each other and agents 1, 2 and 3 believe the state is 1 with probability 1/2, which is both the prior
and the correct posterior given the signals. All other agents maintain their prior, which are also correct.
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learned by those in the other subnetworks. In an arbitrary network, the numbers of positively

and negatively correlated copies vary and evolve in each period. Thus we are unable to show

there always exists some sequence of realized signals such that the agents’ estimates are not

Bayesian in networks with both features.36

4.4 When is our procedure consistent with Bayesian learning?

Under our learning procedure, agents behave as if all the newly inferred signals from outside

their local networks are independent. We now show that, although this procedure is not mo-

tivated by agents holding any particular prior beliefs, it is consistent with Bayesian learning

if the agents hold certain priors over the network. That is, the estimates defined in Section

2 are the correct Bayesian posterior from each agent’s perspective given these priors.37

Proposition 5. If every agent i believes her local network (gi, Gi) is the entire network with

probability 1, and this belief is common knowledge, then every agent learns according to our

learning procedure.

Intuitively, under these (heterogeneous) priors, each agent i believes that pit, her estimates

at period t, is based on all the available signals the network received up to period t− 2, plus

her own signal at t − 1. Moreover, for each of her neighbor j, she thinks she knows all

the neighbors of j, and thus her estimates of j’s estimates include all the information j has

inferred so far except for his most recent signal xjt−1. Similarly, because agent i believes

she knows the connections among all her neighbors, she can form estimates the same way

as they do, and thus her third (and higher)-order beliefs are all correct. In particular, each

agent i believes that she can account for any mistakes a neighbor makes.38 Therefore she can

learn all the informative signals while the neighbor may form the wrong estimates. In fact,

Proposition 5 can be generalized: If every agent believes that the network outside her local

network consists of several unconnected components, each of which is a tree-like union of

36With more structures on the network, we may be able to show agents’ learning outcomes are not
Bayesian without fully characterizing the agent’s learning outcomes. For instance, consider a network with
two components, one of which contains simple circles only, and the other contains non-GCS subnetworks
only. There is only one link between these two components, say between agent i in the first component and
j in the second. Then if an agent in a simple circle receives an informative signal, the repeated signals will
reach agents in the non-GCS component through the link. But information travels away from agent j by
Proposition 4. Therefore the negatively correlated copies don’t reach those in the simple circles. Clearly,
the agents in the simple circle cannot form Bayesian estimates.

37For a given sequence of realized signals, these beliefs may not be the correct Bayesian posterior from the
network’s perspective.

38For instance, agent i in Example 2 knows that agent k does not know agent k′, and thus agent k’s belief
that her own local network ijk is the entire network is wrong. Agent i accordingly expects agent k to make
mistakes and accounts for it.
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cliques with the root being one of her neighbors j ∈ Ni, and this belief is common knowledge,

then the agents also learn according to our learning procedure.39

One interesting implication of this result, however, is that if agent i is truly connected to

everyone else such that her local network is the entire network, then her learning under our

procedure must be strongly Bayesian regardless of the links among other agents. Further-

more, if all informative signals reach the network only through this agent, then everyone’s

learning is strongly Bayesian. To see this, note that because everyone is connected to i, they

will infer agent i’s signal xit simultaneously at t+2. Next, if two of her neighbors j and k are

connected, they expect each other to learn from i, and thus will not double count i’s signal.

This suggests that if one wants to promote a program such as fertilizer use or microfinancing

in a local community, it is better to send all the relevant information through one agent

connected to all others. This helps the community to learn correctly, without being unduly

influenced by a few early failures.

5 Extensions

In this section, we first consider how varying the agents’ local networks may affect their

learning. Next, we allow agents to treat information differently depending on its sources.

Then we turn to a natural rule-of-thumb agents may use to account for some correlation of

information arriving from outside their local networks.

5.1 Expanding local networks

So far, every agent is assumed to know only her immediate neighbors and the links among

them. In reality, they may know less or more about their neighbors. We now accommodate

this possibility by shrinking or expanding an agent’s local network accordingly. We also show

simple circles and non-GCS networks remain the key impediments to agents’ learning.

We first shrink the local network. Abusing notation slightly, we use (g0i , G
0
i ) to denote

the case when agents only know their neighbors, but not the links among them. This is the

minimum information agents need about their local networks to learn from their neighbors.

39Consider, for instance, one such component, which is linked to agent j ∈ Ni via some agent k /∈ Ni. By
Proposition 2, agent j can learn all the signals received by agents in this component via agent k without
repetition or distortions. Also any signal k infers from j must travel to every agent of this component and
never comes back to j. Therefore there is no loss to treat signals received by the component as exogenous
signals agent j receives from nature. So Proposition 5 holds in this case as well. This types of beliefs are
supported by Fainmesser and Goldberg (2016) who show that when the population is large and the number
of each agent’s neighbors is bounded, each agent believes asymptotically the network is a random tree where
she is the root agent.
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That is, g0i = Ni ∪ {i} as before, and G0
i = {ij : ij ∈ G}. Moreover, the shared local

0-network (g0ij, G
0
ij) is defined as g0ij = g0i ∩ g0j , G0

ij = G0
i ∩G0

j = {ij}. To see the difference,

recall the triangle in Example 1: g = {1, 2, 3} and G = {12, 23, 13}. Here g01 = g02 = g012 = g.

But G0
1 = {12, 13} because agent 1 does not know agent 2 and 3 are linked. Similarly,

G0
2 = {12, 23}, and thus G0

12 = {12}.
When the agents use our procedure to learn, the main difference is that in forming agent

i’s second-order estimates about agent j, she only uses reports from i and j since G0
ij = {ij}.

It is straightforward to see the agents don’t form any third-order (or higher-order) estimates

since G0
ijk = G0

i ∩G0
j ∩G0

k = ∅ for any fully connected agents i, j and k. The counterpart of

Proposition 2 and Corollary 2 is as follows.

Proposition 6. Suppose that every agent i knows (g0i , G
0
i ) only. Their learning outcomes

are Bayesian for all sequences of realized signals if and only if the network is a tree.

For sufficiency, note that in a tree, there is a unique path—not just a unique shortest path

as in social quilts—between any pair of agents, and each signal reaches an agent through

this path. Each agent can infer a signal correctly from her neighbor. Once an agent infers

a signal, it cannot travel back and reach her again because a tree contains no circles of any

kind. Thus the agents’ learning outcomes are strongly Bayesian and they finish learning at

T +D. For necessity, first observe that if a network is not a tree, then it must contain some

simple circles or triangles, which make agents’ learning outcomes not Bayesian. Consider

a triangle ijk. Agent i receives the only initial signal xi0. Agent j and k both infer the

signal at t = 2. But agent j does not know k and i are connected. He thinks that k has

received an independent signal, and vice versa for k. Their estimates are not Bayesian from

t = 3 onward. Moreover, when agents only know (g0i , G
0
i ), all networks satisfy GCS because

each agent i’s shared local 0-network contains only one link.40 This implies that there is no

negative correlation among the inferred signals, and thus no agent forms oscillating estimates

as in Example 4. Since the network is path-connected, as time goes on, all agents in this

network believe there are infinitely many copies of xi0, which is clearly not Bayesian.

We now expand the agents’ local networks to any d ≥ 2. Because signals travel faster,

we modify the definition of strongly Bayesian learning outcomes accordingly:

qit+1(n, d) = Pr

(
sn

∣∣∣∣X1
t−dd(i1)/de, . . . , X

L
t−dd(iL)/de

)
.

That is, for all l with d(il) ∈ (0, d], agent i learns their signals one period after these signals

are incorporated into l’s report. If d(il) ∈ (d+ 1, 2d], agent i learns their signals two periods

40In particular, (g0i , G
0
i ) satisfies LCS, because agents with links in G0

ij are fully connected for all j ∈ Ni.
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afterwards, and so on. We call the learning outcomes d-strongly Bayesian if pit = qit(d) for

all i and t, where qit(d) = {qit(1, d), . . . , qit(n, d)}.
We assume as before that agent i can observe all the agents within distance d of her,

and the links in the original network among them. We proceed to define each agent’s local

d-network : (gdi ,G
d
i ). Recall that d(ii) = 0, let gdi = {l : d(il) ≤ d}. Then gdi \ {i} are

the agents with whom agent i exchanges reports and learns from. Agent i’s observational

d-network, Gd
i , consists of two parts. The first part includes all the links among agents in

gdi : if j, k ∈ gdi and jk ∈ G, the link jk ∈ Gd
i . Next, it also includes each pseudo link l̂h

for any two agents l, h ∈ gdi such that lh /∈ G, but there exists a path of distinct agents

{l0 . . . lz} ∈ gdi such that l0 = l, lz = h and z ≤ d. That is, if such a path exists between

agent l and h,

Gd
i =

{
jk ∈ G : j, k ∈ gdi

}
∪
{
l̂h : lh /∈ G and {l, l1, . . . , lz−1, h} ∈ gdi

}
.

Intuitively, l̂h ∈ Gd
i means that agent i knows that agent l and h can observe and learn from

each other, and she includes this information when she updates her estimates. We assume

that every agent i knows (gdi , G
d
i ). Next, the shared local d-network between i and j ∈ gdi \{i}

is (gdij, G
d
ij), where gdij = gdi ∩ gdj , and Gd

ij = Gd
i ∩Gd

j . Similarly for all the higher-order shared

local d-network. To illustrate, consider a diamond: g = {1, 2, 3, 4}, and G = {12, 23, 34, 14}.
Agent 1’s local 2-network consists of g21 = {1, 2, 3, 4} andG2

1 = {12, 23, 34, 14, 1̂3, 2̂4}, because

agent 1 knows agent 1 and 3, and 2 and 4 can learn from each other. That is, agent i’s

observational 2-network is a four-agent clique. Similarly, agent 2’s local 2-network consists

of g22 = {1, 2, 3, 4} and G2
2 = G2

1. Their shared local 2-network is: g212 = {1, 2, 3, 4}, and

G2
12 = G2

1 = G2
2. They both know each other can observe all four agents’ reports.

As in the main model, each agent observes all the reports from others in her local d-

network. Similarly, each agent forms estimates and higher-order estimates of her neighbors

in the local d-network, and she updates using their reports as well. Our procedure is modified

accordingly. Clearly, at t = 0 and t = 1, each agent i’s learning remains unchanged. For

all t ≥ 1, she first identifies new information from each neighbor in gdi as before. But when

she forms her second-order estimates pijt , she uses reports from i, j, and the agents who are

common neighbors of i and j based on Gd
ij. That is, if both ik (or îk) and jk (or ĵk) are in Gd

ij,

then k is a common neighbor of i and j. Similarly, her higher-order estimates pii1...ilt are well-

defined if the distinct agents {i, i1, . . . , il} ⊂ gdi are fully connected based on Gd
ii1...il

.41 She

41This is different from the d = 1 case, where Gi as defined before is agent i’s observational 1-network. To
see this, note that if i’s two neighbors ikih are connected, agent i knows it when d = 1. But when d ≥ 2, it
is possible that ik and ih can see each other, but i does not know they can. For example, consider a simple
circle {123456}, agent 1 does not know 3 and 5 know each other even though they do.
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updates pii1...ilt using reports from {i, i1, . . . , il} and the agents who are common neighbors

of all {i, i1, . . . , il} based on Gd
ii1...il

. Clearly most properties of our learning procedure still

hold. For example, as in Lemma 1, the order of agents in the higher-order estimates still does

not matter. In particular, any pair of agents would agree, pijt = pjit for all i ∈ g, j ∈ gdi \ {i}
and t ≥ 1. Also, signals can still be decomposed.

Because social quilts include trees as a special case, agents are able to learn correctly in

more networks when their knowledge expands from (g0i , G
0
i ) to (gi, Gi). A natural hypothesis

is that as each agent’s local network continues to expand, for instance, to (g2i , G
2
i ), the agents’

learning becomes Bayesian in a larger set of networks. This turns out to be false.

Proposition 7. If all agents know their local d-networks (d ≥ 2), the agents’ learning

outcomes are d-strongly Bayesian for all sequences of realized signals if and only if D ≤ d.

If D ≤ d, then from each agent’s perspective (gdi , G
d
i ) is a clique, and thus the learning

outcomes are strongly Bayesian by Proposition 2. If D > d, the network does not satisfy

GCS, and thus some agents must make mistakes. Consider a linear chain of four agents

1234 and d = 2. Then g21 = {1, 2, 3} and G2
1 = {12, 23, 1̂3}; g22 = g23 = g and G2

2 = G2
3 =

{12, 23, 34, 1̂3, 2̂4}; g24 = {2, 3, 4} and G2
4 = {23, 34, 2̂4}. For each agent, it is observationally

equivalent to a diamond with a link between 2 and 3. Therefore, similar to Example 2, if

agent 1 receives the only signal x10, agent 4’s estimates oscillate forever from t = 3 onwards.

Proposition 7 thus shows there is a non-monotonicity when agents can observe more reports

from their local d-network. If D ≤ d, all agents’ learning outcomes are strongly Bayesian,

which cannot happen if D > d at least for some sequence of realized signals.

In addition, characterizing learning outcomes whenD > d becomes more involved because

a network may contain both simple circles and non-GCS subnetworks even though it only

has one feature previously.42 But in networks that have only one feature, we can show some

agents’ learning outcomes are not Bayesian for some sequence of realized signals similar to

Proposition 4. This is the case in a linear chain with D > d > 1, which is a network of

non-GCS subnetworks only. Observing more agents, however, may help locally: if D > d2 >

d1 > 1, fewer agents make mistakes in learning when they observe the local d2-network than

the local d1-network.

Intuitively, an agent’s learning may deteriorate if she observes more reports from those

who have received the signal from the same source because she cannot differentiate correlated

42For instance, consider a simple circle {123456}. With d = 2, the network features both simple circles
and non-GCS subnetworks. First, this network contains a simple circle with k = 3, and thus if agent 1 has
the only informative signal x10, it is easy to see that at t = 4, agent 2 and 3 respectively learn two and one
new copy of the signal from 4, which came indirectly from agent 1. Therefore agents still repeatedly infer
the same signals due to the simple circle. In addition, agent 1 and 4 both can observe 2 and 3, but they do
not know each other. Similar to the linear chain example above, their local d-networks do not satisfy LCS.
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information. But we can view this problem through a different lens: The agents’ local

networks expand and become more complex if D > d without any corresponding expansion in

their communication possibilities. One possible solution is to allow agents to tag information

locally, that is, sharing when a signal comes from the same source within their local networks.

The following is one way to tag their signals. In addition to exchange reports about their

first-order estimates, each agent may also report a message mi
t = {i, j, k, . . . ;x}, meaning

that the reports from agent i, j, k and others at period t contain a signal x learned from

the same source. This message is local: It can only be observed and understood by agents

in the issuing agents’ local d-network. That is, if agent l only know agent j and k, she

can understand j and k learned the signal from one source, but not agent i also learned it

because the part involving i does not mean anything to her. With locally tagged signals,

we can show that, similar to Proposition 2, agents’s learning outcomes in a d-social quilt,

which is a tree with each node being a subnetwork with a diameter less than or equal to d,

are strongly Bayesian.43

To illustrate, consider a simple network of five agents on a line: {12345}, where d = 2

and x10 is the only signal. At t = 1, agent 1 reports as before. At t = 2, agent 2 and 3

respectively report p2
2 = {p2(1), . . . , p2(n)} where p2(n) = Pr(sn|x10) for all sn. Each agent

also reports m1
2 = m2

2 = m3
2 = {1, 2, 3;x10}. At t = 3, agent 4, who are within g223, can

observe both agent 2 and 3’s reports and messages. Therefore he treats only one inferred

signal as new and his estimates p4
3 are correct: p43(n) = Pr(sn|x10) and m4

3 = {2, 3, 4, 5;x10}
because 4 knows 5 learns from 3. Agent 5, however, does not know the existence of agent

2, and thus 3’s message has no meaning to her. She observes agent 3’s report and updates

as before to p53(n) = Pr(sn|x10) and m5
3 = {3, 4, 5;x10}. At t = 4, all agents report the same

estimates and their higher-order estimate also agree. Learning stops and all agents’ estimates

are Bayesian.

5.2 When all information is not equal

So far, the agents treat all information equally regardless of the sources and the arrival

times. Yet for various reasons, agents may weigh their inferred signals differently. For

instance, agents may trust some of their neighbors more than others; they may also discount

new information as time goes on.44 We now extend our model by letting the agents put

43Another possible solution is to allow agents to reduce the number of neighbors they communicate with.
Though counterintuitive, this is consistent with the recent findings from Harel et al. (2014) and Alatas et al.
(2016). Alatas et al. (2016) show that, controlling for other network characteristics, having a higher average
number of connections has a negative effect on information aggregation.

44Doing so may improve their learning outcomes. Grimm and Mengel (2014) found, for instance, that
subjects who earned above median payoffs reduce how much weight they put on their neighbors’ information
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different weights on their inferred signals.

Let wijt ≥ 0 be the weight agent i puts on her inferred signal αααijt at time t+1. Previously,

wijt = wjit = 1 for all the connected pairs ij and t. We continue to assume each agent i

attaches a weight of wiit = 1 to her own signals. In terms of her neighbors, if wijt > 1 (resp.

wijt < 1), then agent i thinks inferred signals from agent j is more (resp. less) important than

her own signals. If wijt = 0, we assume that while agent i can still observe j’s report, she

thinks his information is useless.45 More importantly, we assume that every agent not only

knows her local network, she also knows the weights each neighbor j uses on their common

neighbors in gij. Namely, for any agent j, k ∈ Ni, i knows the weights her neighbors put on

her information (wjit and wkit ); and the weights they put on each other if they are connected

(wjkt and wkjt ). This makes it possible for agents in a shared local network to infer the same

set of signals even when they attach different importance to these inferred signals.

Our learning procedure is accordingly modified. For every agent i, there is no change in

each agent i’s learning at t = 0 and t = 1. For all t ≥ 1, agent i forms her (higher-order)

estimates and exchanges reports with her neighbors as before. In Step 1, agent i continues

to identify all her inferred signals by using expression (3) and (4).

In Step 2, agent i updates her own estimates using her private signal with a weight

wiit = 1, and the inferred signals from her neighbors with weights wijt for each j ∈ Ni. The

counterpart of expression (5) becomes:

pit+1(n) =
pit(n)

∏
h∈gi(α

ih
t (n))w

ih
t∑N

n′=1 p
i
t(n
′)
∏

h∈gi(α
ih
t (n′))w

ih
t

. (15)

Intuitively, agent i behaves as if she learns wiht independent copies of αααiht . It is a natural

formulation because all the inferred signals enter multiplicatively into agent i’s estimates via

Bayes’ rule.46

In Step 3, when forming estimates of neighbor j’s estimates, agent i starts with agent

j’s latest estimates pjt and incorporates the new information i thinks j has learned, αijht (n)

over time.
45The alternative formulation is that a weight of 0 means agent i does not observe j’s report. Doing so

complicates our model without adding much insight because agent i cannot just ignore j. She still needs to
form higher-order estimates involving j to keep track of the existing information, for instance information
from one of their common neighbors inferred by j and then passed on to another common neighbor.

46Interestingly, this way of introducing weights is similar to that in the widely-used machine learning
literature in computer science. The goal there is to classify test documents into categories, where the words
are assumed to occur independently and the weights are the number of times a word occur. Although the
independence assumption can be too strong when certain words often appear together in a given context, this
method works very well empirically. For instance, see the survey “Naive (Bayes) at Forty: The Independence
Assumption in Information Retrieval” in Lewis (1998) for more details.
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with a weight wjht . The counterpart of expression (6) thus becomes:

pijt+1(n) =
pjt(n)

∏
h∈(gij\{j})(α

ijh
t (n))w

jh
t∑N

n′=1 p
j
t(n
′)
∏

h∈(gij\{j})(α
ijh
t (n′))w

jh
t

. (16)

For each subset of gi Agent i’s higher-order estimates are formed in a similar way:

pii1...ilt+1 (n) =
pilt (n)

∏
h∈(gii1...il\{il})

(αii1...ilht (n))w
ilh
t∑N

n′=1 p
il
t (n′)

∏
h∈(gii1...ilh\{il})

(αii1...ilht (n′))w
ilh
t

. (17)

As before, for all sequences of fully connected and distinct agents {i, i1, . . . , il}, we allow

the last agent to be repeated in agent i’s estimates. Specifically, let pi...ilkt+1 = p
i...ik−1ik+1...ilk
t+1

for any k ∈ {i1, . . . , il}, where i = i0 if k = i1. Finally, for each agent i,

pii1...ilit+1 (n) =
pit(n)

∏
h∈(gii1...il\{i})

(αii1...ilht (n))w
ih
t∑N

n′=1 p
i
t(n
′)
∏

h∈(gii1...ilh\{i})
(αii1...ilht (n′))w

ih
t

. (18)

Thus the highest order of estimates each agent i forms is L̂i + 1.

Most of the properties in Section 3 hold. the next result is the counterpart of Lemma 1

and Lemma 2. Recall that {β(1), . . . , β(l − 1)} is a permutation of {1, . . . , l − 1}.

Corollary 3. For every agent j ∈ Ni, agent k ∈ Ni ∩ Nj, and every t ≥ 1,

(1) Consider any fully connected subset {i1, . . . , il} of gi. Then p
iβ(1)...iβ(l−1)il
t is the same

for all t ≥ 1.

(2) If (gi, Gi) satisfies LCS, then pikt = pijkt = pij...kt for all distinct agents i, j, . . . , k ∈ gij.

(3) If (gl, Gl) satisfies LCS for every agent l ∈ gi, then pikt = pjkt .

First, notice that from each agent i’s perspective, the order of agents does not matter

except for the last agent. This is because the agents’ higher-order estimates about agent il’s

estimates are all based on the weights agent il attaches to his inferred signals. Moreover,

two neighbors still know what signal one infers from the other: αααijit = αααjit , even though

pijt 6= pjit because agent i and j attach different weights on each other’s information. This

is important for one agent to know what each neighbor infers from herself and from their

common neighbors. Next, if (gi, Gi) satisfies LCS, agent i’s higher-order estimates on the

same agent k must be the same. This is because from agent i’s perspective, each shared

local network is a clique, and agents within each clique must see the same set of reports.
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Since agents in a clique also know exactly the weights each other attaches to new signals,

if k ∈ Ni ∩ Nj, i thinks j must agree with her estimates of k’s estimates, pikt = pijkt . Also,

if (gl, Gl) satisfies LCS for every l ∈ gi, each of agent i’s shared local networks is indeed a

clique, therefore i and j must agree: pikt = pjkt . In addition, because the weights are part of

the known local network information, signals can be decomposed similar to Lemma 4.

We first consider how social influence, measured by the weights agents attach to each

other’s opinion, affect the agents’ learning outcomes when the network is a social quilt.47

The following result extends Proposition 2.

Corollary 4. If the network is a social quilt, learning stops at time T + D. Agent i’s

estimates from period T +D onward are, for all t ≤ T − 1:

piT+D(n) =

∏
t α

ii
t (n)

∏
l 6=i
∏

t(α
ll
t (n))w

il
t+1∑

n′
∏

t α
ii
t (n′)

∏
l 6=i
∏

t(α
ll
t (n′))w

il
t+1

, (19)

where wilt+1 = wk
′l
t+1w

kk′
t+2 . . . w

ij
t+h−1, and l, k′, k, ...j, i is the unique shortest path from l to i.

Similar to the main model, the agents learn all the signals once and only once if all the

weights are positive. But here the agents may not reach consensus. Observe that if all the

weights are 1, expression (19) is exactly the Bayesian posterior given all the signals XT .

Using Corollary 4, we can see how an agent’s social influence affects the learning outcomes

in a social quilt. First, suppose agent l is a local opinion leader and agent j her follower if

agent l’s neighbors put a high weight on her information while agent l puts a low weight on

theirs. That is, for any j ∈ Nl, w
jl
t = 1

ε
and wljt = ε for some small ε > 0. For simplicity,

suppose agents use weights of 1 in all other links except for those between l and j ∈ Nl.

A local opinion leader can unduly influence the opinions of the entire network: all agents

but l believes in the state(s) most likely given agent l’s signals. This is because all agents

overweight their inferred signals from l, directly or indirectly through her followers. Next,

agent l is stubborn if she does not listen to anyone: wljt = ε for all j ∈ Nl. A stubborn

agent cannot bias the network’s learning outcomes toward her opinion, but she may cause

fragmentation by blocking the efficient aggregation of information.48

The weights may also capture the idea of imperfect information diffusion. Suppose w < 1

for everyone because information may not reach another agent with some probability. From

expression (19), we can see that in a social quilt, agent i’s weight on agent l’s signal, which

47In the information partition model, clearly the weights do not matter.
48In comparison, under myopic learning, all agents are mislead by the stubborn agent. In our model, agents

know their information is undervalued by the stubborn agent, so they do not infer much new information
from the stubborn agent’s unchanging estimates.
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is wd(il), depends on their distance only. As a result, opinions may become polarized: Agents

close to each other are similar in their opinions, but disagreement grows in their distance.

In networks that are not social quilts, Section 4.3 shows that agents may never stop

learning because they keep inferring ”new” signals due to the network structure. The next

result shows that agents may want to discount later signals as a rudimentary way to reduce

the correlations in their neighbors’ estimates, which is supported by experimental evidence.49

Recall that Li is the number of agent i’s neighbors, then we have:

Proposition 8. Suppose that each agent i’s weights wijt are below a cutoff value wi < 1
2Li

for all agents i ∈ g, j ∈ Ni from some time τ onward. Then the agents’ estimates must

converge: limt→∞ pit = pit→∞. Moreover, pit→∞(n) ∈ (0, 1) for all sn.

One important consequence of adding weights is that if agents attach a sufficiently small

weight to their inferred signals, then convergence can be restored in any network. Propo-

sition 8 is clearly true if all the weights are zero, in which case every agent is isolated and

her estimates are simply the Bayesian posterior given her own signals. But this intuition

is incomplete because we have shown that as long as all the weights are positive, signals

may travel through a network repeatedly, possibly at an exponential rate. To rule out the

possibility that signals inferred later are sufficiently influential and cause oscillation in the

agents’ estimates, we need to show their influence is bounded and decreasing regardless of

the network structure. Recall that we consider the case of non-partitional signals, the agents’

estimates and their higher-order estimates at time T are bounded because they only receive

a finite number of signals. So are the agents’ (higher-order) inferred signals at time T . In

each ensuing period, each inferred signal exerts a smaller influence on agent i’s estimates.

We can thus find some period t sufficiently larger than T such that after t, the inferred

signals have negligible influence. Consequently, every agent’s estimates converge, and the

limit estimates are strictly between 0 and 1.

Several remarks are in order. First, Proposition 8 shows that adding weights may mod-

erate the opinions of the agents. Otherwise, they may believe in some wrong state almost

surely as time goes on as in the case of Corollary 1. Second, agents with more connections

may need to discount her neighbor’s information more than those with fewer connections,

because the former has more chances of being misled by repetition of the same information.

Third, if agents attach a sufficiently small weight on information from their neighbors, then

they can learn when they receive an arbitrarily large number of signals as T →∞.

49Celen and Kariv (2004) and Grimm and Mengel (2014), among others, found subjects weigh their own
information more than their neighbors’ information.
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5.3 Correlations in inferred signals

While the inferred signals are indeed independent in social quilts, they are clearly corre-

lated in other networks such as those with simple circles. One often suggested solution to

information repetition problem is to consider an information environment where all signals

are generic. That is, if no agents observe identical signals due to individual idiosyncrasies,

and the agents know that, they would dismiss identical copies of a previously learned signal

as old information, and thus avoid double-counting the same signal. We now examine this

environment and show the potential pitfalls of using simple rule-of-thumbs like these.

We assume every agent learns her initial information structure before any signal is re-

alized. In each period t = 0, 1 . . . , T − 1, her information structure evolves such that the

probability of agent i observing signal xim given state sn in period t is φitmn = φimn+ eit, where

eit ∈ U [−εit, εit] for a sufficiently small εit > 0.50 All the noises are independent. Consequently,

even if all agents have identical initial information structures, the probability that two signals

have identical conditional distributions is zero. Furthermore, every agent knows this.51

Each agent accounts for repeated information by keeping track of a set of signals that

she has already learned, denoted as Ai
t, which evolves as i learns new information in period

t. Agents use the simplest rule to avoid repetition: Each time agent i infers a new signal

αααijt−1 /∈ Ai
t in period t, she updates her estimates using αααijt−1 and then stores it inside Ai

t.

But if the inferred signal αααijt−1 ∈ Ai
t, she dismisses it as uninformative. She also puts her

own signal αααiit into Ai
t after incorporating it into her estimates. We assume that every agent

uses this simple rule.

To implement this, our learning procedure is modified accordingly. At t = 1, all the

reports reflect new and independent signals, so the initial estimates remain the same. Then

at each period, agent i first infers all the new signals as in Step 1. Next, she reviews them

one by one by the above rule, only keeping those inferred signals not already in her set Ai
t.

After reviewing all the inferred signals, she updates her estimates as in Step 2 of our learning

procedure, using only the inferred signals she thinks are new. More importantly, she does

the same for her higher-order estimates by keeping track of the new signals she thinks agent

j infers, Aij
t . She also reviews all the signals she thinks j infers and dismisses those she

thinks j would dismiss. She then updates pijt using only the new signals she thinks j infers

from their common neighbors, and so on.

This simple rule can reduce some errors in the agents’ learning such as those in Example

50This is well defined since we focus on nonpartitional information structures in which all φimn ∈ (0, 1).
51The signal generating process of each agent is still the agent’s private information. The additional

common knowledge is that every agent knows the realized signals are subject to small amount of noises and
thus cannot be identical. This rules out, for instance, the familiar symmetric binary signal case.
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2 when agent k′ receives an informative signal. Clearly, agent k infers the same signal from

both agent i and j at t = 2, and treats only one of them as new. Therefore everyone in that

network learns correctly. The following result generalizes this intuition.

Proposition 9. If only one agent receives all informative signals, the agents’ learning

outcomes are strongly Bayesian in any network.

If all signals reach the same agent, they diffuse sequentially throughout the network.

Each agent infers (possibly multiple copies of) a signal at one time, therefore they can use

the simple rule to identify correlated signals. More precisely, suppose agent i receives one

initial signal xi0. Classify her neighbors according to d(ij), the distance to her. Her immediate

neighbors learn the signal correctly at t = 2. Next, for her indirect neighbors, when the signal

first travels to a neighbor l at time t = d(il) + 1, either agent l learns it from one neighbor,

in which case he infers the signal and passes it on to others; or he learns it from multiple

neighbors. This can happen either because the signal travels through a circle and reaches

him from different directions; or in the diamond-with-a-link case the signal reaches him from

an unknown common source. Either way, he incorporates only one copy. Because each

agent at any moment incorporates at most one copy of the signal which reaches him through

the shortest path between him and the source of the information, everyone’s estimates are

strongly Bayesian. This logic holds when the same agent receives multiple signals over time

because each informative signal reaches other agents sequentially and thus can be identified

individually. For the same reason, we can show that in a simple circle of k agents with initial

signals only, all agents’ learning outcomes are strongly Bayesian.

In general, however, problems such as internal inconsistency arise when agents use simple

rules like the above. This is because each agent’s set of stored signals for a neighbor can

differ from the actual set of stored signals of that neighbor. Consider the following example.

Example 6. Consider a simple circle with four agents {1, 2, 3, 4}. There are two informative

signals: Agent 1 receives signal x10 at t = 0 and agent 2 receives x21 at t = 1.

To ease exposition, define three new signals x, y, z such that given the symmetric prior,

Pr(sn|x) = Pr(sn|x10), Pr(sn|y) = Pr(sn|x21) and Pr(sn|z) = Pr(sn|x10, x21) for all sn. Further,

let −x be a signal such that Pr(sn|x,−x) = 1/N .52 The correct Bayesian posterior given the

signals is just Pr(sn|x, y).

To begin with, at t = 1, only agent 1 has an informative signal, therefore A1
1 = {x} and

A2
1 = A3

1 = A4
1 = ∅. At t = 2, agent 2 learns from 1 and also learns her private signal.

Agent 4 only learns from 1. Thus A2
2 = {x, y}. A1

2 = {x},A4
2 = {x} and A3

2 = ∅.
52Because even though the agent’s inferred signals are not identical to the original signals as discussed in

Section 2, the ensuing estimates are the same. So we use these three signals to avoid referring to each agent’s
inferred signals when they lead to the same estimates.
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At t = 3, agent 3 infers z, the combination of (x10, x
2
1), from 2 because she does not know

the two separate signals. She also infers x from 4. As they are different, both are treated as

new information. Therefore A3
3 = {z, x}. Observe, however, A32

3 = {z} 6= A2
3 = {x, y}. In

addition, A1
3 = {x, y}, A2

3 = {x, y} and A4
3 = {x}. At t = 4, agent 4 infers y from 1 and z

from 3. As they are both different from 4’s old information x, A4
4 = {x, y, z}. Other agents’

sets of stored signals do not change.

At t = 5, agent 1 infers z from 4, and agent 3 infers y from 4. Notice that agent 3 expects

agent 2 to learn x from himself, A32
5 = {z, x}, but agent 2 already knows x and thus does

not change. This makes agent 3 believe agent 2 received an offsetting signal −x from agent

2, so A3
5 = {z, x, y,−x}. Agent 2, however, expects 3 to learn −x because she knows that 3

does not know she learned x before. That is, A23
5 = {z, x,−x}. At the end of this period,

A1
5 = {x, y, z}, A2

5 = {x, y} and A4
5 = {x, y, z}.

At t = 6, agent 2 infers z from 1. Since she only knows x and y as two separate

signals, her new list becomes A2
6 = {x, y, z}. Also, A1

6 = {x, y, z}, A3
6 = {z, x,−x, y} and

A4
6 = {x, y, z,−x}. At t = 7, agent 3 infers x from 2, because she expects 2 to learn y from

her while agent 2 learned z instead. Since x ∈ A3
6, 3 treats it as old information, so she does

not update. Also, A1
7 = {x, y, z,−x}, A2

7 = {x, y, z} and A4
7 = {x, y, z,−x}.

Finally, at t = 8, only agent 2 learns the signal −x from agent 1. All agents’ sets of

inferred signals agree: Ai
8 = {x, y, z,−x} and the learning stops. They have consensus, but

they are wrong. pit(n) = Pr(sn|y, z) for all i = 1, 2, 3, 4, all sn and all t > 8. �

This example first illustrates that Lemma 4 no longer holds. Clearly, agents can use the

simple rule to learn each signal correctly if x or y is the only informative signal. But when

both are present, their consensus is wrong. But Lemma 4 is central to obtain results for

any sequence of realized signals. Moreover, the pairwise agreement in Lemma 1 also fails

because agents may no longer infer the same set of signals after observing the same reports.

In the above example, A23
5 6= A32

5 . Therefore even neighbors 2 and 3, whose only shared

information are each other’s reports, disagree. This will lead to internal inconsistency. Agent

3, for instance, notices that at t = 7, agent 2 seems to learn another copy of x, which agent

2 already learned at t = 4 from agent 3’s perspective. Therefore agent 3 is confused and

does not know if agent 2 truly follows the simple rule.

Despite the intuitive appeal of using simple rules to account for correlations in infor-

mation, they may lead to learning problems in even very simple networks. Once an agent

realizes an inconsistency as illustrated above, further learning becomes difficult. Although it

is possible to ask agents to ignore such inconsistency as a further simple rule, or to develop

more sophisticated rules, this type of internal consistency problems would still arise. How

to construct an internally consistent model using simple rules is a topic for further research.
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6 Conclusion

We propose a simple and tractable learning procedure when agents only know their local

networks. Although the agents do not form sophisticated beliefs about the entire network,

they can still form the Bayesian posterior in two benchmark cases. Our procedure cuts

down the heavy computational burden the agents face when the network is unknown. It lies

between the fully Bayesian learning model and the myopic learning model. In appendix B.1,

we show that if the network is common knowledge, our agents can learn correctly; and in

appendix B.2, we show that our agents make fewer mistakes than under myopic learning.

The tractability of our learning procedure makes it a suitable building block for more

complicated network models. For instance, agents may believe that their local networks are

the entire network with a high probability, and that her neighbors are connected indirectly

with small probabilities. Initially, agents learn using our procedure. But they also update

their beliefs about the network, especially if they accumulate enough evidence suggesting that

their neighbors may be connected indirectly and there is repeated information. One challenge

in updating both one’s estimates about the state and one’s beliefs about the network is that

signals may no longer be decomposable. That is, even for a fixed sequence of realized

signals, an agent’s estimates given all the signals may be different from the combination of

her estimates if she has received the signals individually. Stronger conditions are needed to

obtain general results in more complex network models.

In terms of applications, our results suggest that to improve learning in networks, how

and where to inject information is an important question. For example, when the network

is tightly connected such as a rural village, some agent may be connected to everyone else in

the network. Then sending all the informative signals to this central agent can guarantee the

whole village learn correctly. For another example, suppose that the agents try to reduce

information repetition by incorporating each new signal only once as in section 5.3, then

Proposition 9 suggests that injecting all signals through one agent can guarantee strongly

Bayesian learning.

Our model also suggests that to help the isolated communities in our introduction, policy

responses should not be limited to information campaigns and awareness-raising. As shown

in Example 5, if a neighborhood is connected through a sequence of interlinked simple circles,

an early piece of wrong information is not offset by the many pieces of correct information

later—wrong beliefs persist despite the new information. Rather, changes to the network

structures such as building links with the outside world become necessary.
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A Appendix: An extension and proofs

A.1 A model with agents forming more higher-order estimates

In Section 2, agents form their estimates up to order L̂i. Then the estimates involving a

repeated agent (as the last agent) are set to be equal to the estimates without her. We now

show that doing so is without loss. Suppose each agent i forms estimates up to order L,

L > L̂i. We require L, which can be arbitrarily large, to be finite so that each agent can

finish her updating in each period.

In the following procedure, we only describe how agents form their estimates with at least

one repeated agent. All their estimates involving only distinct agents in any fully connected
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subset of gi remain as before. Let distinct{ij . . . k} = {i0, i1, . . . , il} be the set of distinct

agents in this sequence, such that ih 6= ih′ for any ih, ih′ ∈ {i0, i1, . . . , il}. By definition, the

length of distinct{ij . . . k} is at most L̂i.

At t = 0 and t = 1, agent i learns as before. All her higher-order estimates pij...k1 =

{1/N, . . . , 1/N}. For all t ≥ 1, each agent follows steps similar to those in Section 2 to

update their estimates at period t+ 1, with the following additions.

Step 1: Identify new information . For each sequence of fully connected agents

{ij . . . k} with distinct{ij . . . k} ⊆ gi, agent i believes that agent j believes...that agent k

infers αααij...kht ≡ {αij...kht (1), . . . , αij...kht (N)} from agent h ∈ gij...k such that

αij...kht (n) =
pht (n)

pij...kht (n)

/∑
n′

pht (n
′)

pij...kht (n′)
. (20)

Step 2: Update own estimates. This is exactly the same as before.

Step 3: Update estimates of neighbors’ estimates . Agent i’s higher-order esti-

mates up to order L are formed similarly:

pij...kt+1 (n) =
pkt (n)

∏
h∈(gij...k\{k}) α

ij...kh
t (n)∑N

n′=1 p
k
t (n
′)
∏

h∈(gij...k\{k}) α
ij...kh
t (n′)

. (21)

Finally, let pij...kht+1 = pij...kt+1 for all h ∈ distinct{ij . . . k}. The agent’s L+1-order estimates are

degenerate as before. Each agent only uses her L+ 1-order estimate to infer her L+ 1-order

new information in period t+ 2. ‖
We now show that it is without loss of generality to let agents form estimates only for

sequences of distinct agents.

Lemma 6. For any two sequences of fully connected agents {i . . . j} and {k′ . . . k}, if

distinct{i . . . j} = distinct{k′ . . . k} ⊆ gi, then pi...jt = pk
′...k
t for all t ≥ 1.

Proof of Lemma 6: We prove this lemma by induction on time t. At t = 1, by assumption,

pi...j1 = pk
′...k

1 = {1/N, . . . , 1/N}. Next, suppose this is true at period t. Then at t + 1, for

some agent l connected to all the distinct agents, agent i and k′’s higher-order inferred signals

from agent l are respectively:

αi...jlt (n) =
plt(n)

pi...jlt (n)

/∑
n′

plt(n
′)

pi...jlt (n′)
, and αk

′...kl
t (n) =

plt(n)

pk
′...kl
t (n)

/∑
n′

plt(n
′)

pk
′...kl
t (n′)

.

These inferred signals are identical because {i . . . jl} and {k′ . . . kl} contain the same set

of distinct agents, and thus pi...jlt = pk
′...kl
t by our induction hypothesis. Similarly, since
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{i . . . jk} and {k′ . . . kj} contain the same set of distinct agents, we have

pjt(n)
pkt (n)

pi...jkt (n)
= pkt (n)

pjt(n)

pk
′...kj
t (n)

.

By Step 3 of our learning procedure, the agents’ estimates about others become:

pi...jt+1(n) =
pjt(n)αi...jkt (n)

∏
l∈gi...j/{j,k} α

i...jl
t (n)∑

n′ p
j
t(n
′)αi...jkt (n′)

∏
l∈gi...j/{j,k} α

i...jl
t (n′)

=
pkt (n)αk

′...kj
t (n)

∏
l∈gi...j/{j,k} α

k′...kl
t (n)∑

n′ p
k
t (n
′)αk

′...kj
t (n′)

∏
l∈gi...j/{j,k} α

k′...kl
t (n′)

= pk
′...k
t+1 (n). (22)

The second equality holds because the denominators of αi...jkt (n) and αk
′...kj
t (n) cancel out in

the updating formula. Thus the induction hypothesis is true at t+ 1.

Lemma 6 shows that forming any order of estimates higher than L̂i does not change

agent’s learning outcomes. Therefore even though our results apply for any finite-order

estimates, we restrict attention to estimates involving distinct agents in fully connected

subsets of gi for each agent i as in the text.

A.2 Proofs

Proof of Lemma 1: A direct corollary of Lemma 6.

Proof of Lemma 2: For part (1), if (gi, Gi) satisfies LCS, gij is fully connected for any

j ∈ Ni. If gij = {i, j}, then the claim does not apply. Otherwise, for any k ∈ gij \ {i},
gij = gik = gijk. We now show by induction that pijt = pikt = pijkt = pij...kt for all t ≥ 1.

First, by assumption at t = 1, pij1 = pik1 = pijk1 = pij...k1 = {1/N, . . . , 1/N}. Next,

suppose this is true at period t. At period t + 1, agent i observe the reports from all her

neighbors in gij. Then by the updating rules given in (6) and (7), we can see that the

numerator of agent i’s estimates pijt+1(n) is the same as that of her estimates pikt+1(n): For

l ∈ gij \ {j, k},

αijlt (n) =
plt(n)

pijlt (n)

/∑
n′

plt(n
′)

pijlt (n′)
, which is equal to αiklt (n) =

plt(n)

piklt (n)

/∑
n′

plt(n
′)

piklt (n′)
,

because pijlt = piklt by the induction hypothesis. Similar to the proof of Lemma 6, since

agent i thinks j and k infer the same signals, the counterpart of equation (22) shows that
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pijt+1 = pikt+1. Moreover, pijkt+1 and all the higher-order estimates pij...kt+1 are calculated using

the same set of reports from gij, and thus they must all be the same.

(2) From part (1), we can see that if (gl, Gl) satisfies LCS for every l ∈ gi, then gij = gik

and gji = gjk. By definition, gij = gji. Therefore pijt = pikt = pjkt . Moreover, all the

higher-order estimates are also equal to pijt .

Proof of Lemma 3: By definition,

αijt+1(n) =
pjt+1(n)

pijt+1(n)

/∑
n′

pjt+1(n
′)

pijt+1(n
′)

=

pjt (n)
∏
h∈gj

αjht (n)

pjt (n)
∏
h∈gij\{j}

αijht (n)
·
∑
n′ p

j
t (n
′)
∏
h∈gij\{j}

αijht (n′)∑
n′ p

j
t (n
′)
∏
h∈gj

αjht (n′)∑
n′

(
pjt (n

′)
∏
h∈gj

αjht (n′)

pjt (n
′)
∏
h∈gij\{j}

αijht (n′)
·
∑
n′ p

j
t (n
′)
∏
h∈gij\{j}

αijht (n′)∑
n′ p

j
t (n
′)
∏
h∈gj

αjht (n′)

)

=
∏

l∈((gj\gi)∪j)

αjlt (n)
∏

h∈gij\{j}

αjht (n)

αijht (n)

/∑
n′

∏
l∈((gj\gi)∪j)

αjlt (n′)
∏

h∈gij\{j}

αjht (n′)

αijht (n′)

 . (23)

The third equality holds because the second term of the numerator and that of the denomi-

nator cancel out.

Proof of Lemma 4: We prove the lemma by induction. Recall that xi∅ is agent i’s un-

informative signal. The initial signals {xa,i0 , x
b,i
0 } are simply {xi0, xi∅}. That is, agent i

is uninformed in one of {Xa
0 , X

b
0}, and learns xi0 in the other. Therefore, {pa,i1 ,p

b,i
1 } ={

pi1, (
1
N
, . . . , 1

N
)
}

. Moreover, pij1 = pa,ij1 = pb,ij1 = { 1
N
, . . . , 1

N
}, and the same for all the

higher-order estimates. Thus expression (11), (12), and (13) all hold at t = 1.

Suppose the result holds at time t. We now show it also holds at time t + 1. In Step 1,

recall that the inferred signals under Xa
t and Xb

t are respectively

αa,ijt (n) =
pa,jt (n)

pa,ijt (n)

/∑
n′

pa,jt (n′)

pa,ijt (n′)
, and αb,ijt (n) =

pb,jt (n)

pb,ijt (n)

/∑
n′

pb,jt (n′)

pb,ijt (n′)
.

Further, using (11) and (12), we have:

αijt (n) =
pjt(n)

pijt (n)

/∑
n′

pjt(n
′)

pijt (n′)

=
pa,jt (n)pb,jt (n)∑
n′ p

a,j
t (n′)pb,jt (n′)

·
∑

n′ p
a,ij
t (n′)pb,ijt (n′)

pa,ijt (n)pb,ijt (n)

/∑
n′

pjt(n
′)

pijt (n′)

= αa,ijt (n)αb,ijt (n)
∑
n′

pa,jt (n′)

pa,ijt (n′)

∑
n′

pb,jt (n′)

pb,ijt (n′)

∑
n′ p

a,ij
t (n′)pb,ijt (n′)∑

n′ p
a,j
t (n′)pb,jt (n′)

/∑
n′

pjt(n
′)

pijt (n′)
. (24)
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In Step 2, since {xa,it , x
b,i
t } = {xit, xi∅}, then {αa,iit (n), αb,iit (n)} = {αiit (n), 1

N
}.

pit+1(n) =
pit(n)

∏
h∈gi α

ih
t (n)∑N

n′=1 p
i
t(n
′)
∏

h∈gi α
ih
t (n′)

=
pa,it (n)pb,it (n)

∏
h∈gi α

a,ih
t (n)αb,iht (n)∑N

n′=1 p
a,i
t (n′)pb,it (n′)

∏
h∈gi α

a,ih
t (n′)αb,iht (n′)

=
pa,it+1(n)pb,it+1(n)∑N

n′=1 p
a,i
t+1(n

′)pb,it+1(n
′)
.

The second equality holds by (11) and (24), and the last equality holds because it is the Step

2 of the learning procedure under Xa
t and Xb

t respectively. Thus (11) holds at time t + 1.

Similarly, the higher-order inferred signals follow the same pattern as that in equation (24),

and in Step 3,

pijt+1(n) =
pjt(n)

∏
h∈gij\{j} α

ijh
t (n)∑N

n′=1 p
j
t(n
′)
∏

h∈gij\{j} α
ijh
t (n′)

=
pa,jt (n)pb,jt (n)

∏
h∈gij\{j} α

a,ijh
t (n)αb,ijht (n)∑N

n′=1 p
a,j
t (n′)pb,jt (n′)

∏
h∈gij\{j} α

a,ijh
t (n′)αb,ijht (n′)

=
pa,ijt+1(n)pb,ijt+1(n)∑N

n′=1 p
a,ij
t+1(n

′)pb,ijt+1(n
′)
.

Thus (12) also holds at time t + 1. Lastly, for any sequence of all fully connected agents

{ij . . . k},

pij...kt+1 (n) =
pkt (n)

∏
h∈gij...k\k α

ij...kh
t (n)∑N

n′=1 p
k
t (n
′)
∏

h∈gij...k\k α
ij...kh
t (n′)

=
pa,kt (n)pb,kt (n)

∏
h∈gij...k\k α

a,ij...kh
t (n)αb,ij...kht (n)∑N

n′=1 p
a,k
t (n′)pb,kt (n′)

∏
h∈gij...k\k α

a,ij...kh
t (n′)αb,ij...kht (n′)

=
pa,ij...kt+1 (n)pb,ij...kt+1 (n)∑N

n′=1 p
a,ij...k
t+1 (n′)pb,ij...kt+1 (n′)

.

Thus (13) also holds at time t+ 1.

Proof of Proposition 1: Consider agent i and her local network (gi, Gi). Let | · | represent

the number of states in any subset of S, for instance |S| = N and |∅| = 0. At t = 1,

pi1(n) = 1/|P i(s1)| if sn ∈ P i(s1), and 0 otherwise. By definition (14), this is the correct

Bayesian posterior for i at t = 1.
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At t = 2, by Step 1 of our learning procedure,

αij1 (n) =
pj1(n)

pij1 (n)

/∑
n′

pj1(n
′)

pij1 (n′)
.

Clearly, for all sn ∈ P j(s1), α
ij
1 (n) = 1/|P j(s1)| and 0 otherwise. Thus the inferred sig-

nal has the same distribution as j’s estimates: αααij1 = pj1. Similarly, αααkj1 = pj1. Let

be intersection of the partitional elements containing true state s1 of all agents in gi be

P gi
1 (s1) ≡ ∩{P h(s1)}h∈gi . Then, by Step 2 of our learning procedure, agent i’s estimates are

pi2(n) =
pi1(n)

∏
h∈gi α

ih
1 (n)∑

n′ p
i
1(n
′)
∏

h∈gi α
ih
1 (n′)

=
1

|P gi
1 (s1)|

if sn ∈ P gi
1 (s1), and pi2(n) = 0 otherwise. Similarly, let P

gij
1 (s1) ≡ ∩{P h(s1)}h∈gij , then

agent i’s second-order estimates are pij2 (n) = 1/|P gij
1 (s1)|, for sn ∈ P

gij
1 (s1), and pij2 (n) = 0

otherwise. Clearly, P gi
1 (s1) ⊆ P

gij
1 (s1) since gij ⊆ gi. And so on for all higher-order estimates.

At t = 3, if pj2 6= pij2 , there must be some states in P
gij
1 (s1) that have zero probability

under pj2. As at t = 2, the inferred signal has the same distribution as j’s estimates, αααij2 = pj2.

Let P gi
2 (s1) be the set of states agent i thinks are still possible given her inferred signals,

then P gi
2 (s1) ⊂ P gi

1 (s1). It is important to notice that, because P
gj
1 (s1) = ∩{P h(s1)}h∈gj ,

P gi
2 (s1) ≡ ∩{P gh

1 (s1)}h∈gi = ∩{P l(s1)}l∈g2
i
,

where gdi ≡ {l ∈ g : d(il) ≤ d}. That is, P gi
2 (s1) is the intersection of the partitional

elements containing s1 of all the d ≤ 2 neighbors of agent i. Therefore pi3(n) = 1/|P gi
2 (s1)| if

sn ∈ P gi
2 (s1), and 0 otherwise.

Iteratively, we can show that pit(n) = 1/|P gi
t−1(s1)| if sn ∈ P gi

t−1(s1) ≡ ∩{P h(s1)}h∈gt−1
i

,

and 0 otherwise. By at most t = D + 1, all the initial signals have reached agent i through

her neighbors according to the travel path of the signals. Let P g(s1) ≡ ∩{P l(s1)}l∈g be the

intersection of all agents’ partitional elements containing state s1. Then agent i’s estimates

are simply 1/|P g(s1)| if sn ∈ P g(s1), and 0 otherwise. This is the case for all the agents in

the network, therefore their learning outcomes are strongly Bayesian.

Proof of Lemma 5: For necessity, if a network is a social quilt, it does not contain a simple

circle by definition. Moreover, it satisfies GCS because for any agent i and any j ∈ Ni, if

there exist agents k and k′ such that k, k′ ∈ Ni ∩ Nj, then {kik′j} must be a circle. By the

definition of social quilts, kk′ ∈ G. Thus LCS holds for any agent i, and the network satisfies

GCS.
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For sufficiency, we prove the claim by induction that any circle of more than three agents

that satisfies GCS and does not contain a simple circle must be a clique. First, any four

agent circle must be part of a clique. No simple circle means that there must be at least one

link between two nonadjacent agents. Then by GCS, these four agents must be connected in

a clique. Next, suppose any circle of l (or fewer) agents, l ≥ 5 is part of a clique. Consider a

circle of l+ 1 agents. Because it is not a simple circle, there exists at least one link between

two nonadjacent agents ij. The original circle is now divided into two smaller circles of fewer

than l agents, and thus each must be a clique by the induction hypothesis. In addition, any

pair of agents, one from each smaller circle, are common neighbors of i and j, and by GCS,

they are connected. Therefore this circle of l+1 agent must be a clique, which is the definition

of a social quilt.

Proof of Proposition 2: We begin with two properties of social quilts. First, if d(ij) = d,

then there must be a unique path of length d from j to i. Suppose instead, there are two

distinct paths with length d between i and j. Let these two paths be {ii1i2 . . . id−1j} and

{ij1j2 . . . jd−1j}, with i = i0 = j0 and j = id = jd. Then there must exist two numbers k and

h, 0 ≤ k < h ≤ d and h− k ≥ 2 such that:
ik = jk;

il 6= jl, if k < l < h;

ih = jh.

Clearly, {ikik+1 . . . ihjh−1 . . . jk+1} must be a circle, going from ik to herself through distinct

agents. They are distinct because il 6= jl for any l ∈ (k, h), and since d(iil) = l and d(ijl′) = l′,

il 6= jl′ whenever l 6= l′. In a social quilt, any two agents in a circle are connected. Thus

agent ik and ih must be connected and ikih is a unique shortest path between them, which

is a contradiction to {ii1i2 . . . id−1j} being a shortest path.

The second property of social quilts is that if agent i’s signal travels from agent l to k,

and then inferred by k’s neighbor j who is not connected to l, then j must be further away

from i, Specifically, if l is the agent next to k on the shortest path from i to k, such that

d(ik) = d(il) + 1 and kl ∈ G, then for any j with jk ∈ G and jl /∈ G, the shortest path from

i to j must go through l and k: d(ij) = d(ik) + 1. To see this, note that since jk ∈ G, the

maximum possible distance between i and j is d(ij) = d(ik) + 1. Next, if d(ij) ≤ d(ik)− 1,

then the path through l cannot be the unique shortest path between i and k. If d(ij) = d(ik),

then the shortest path between i and j must not involve k, or agent l since jl /∈ G. Thus we

have a circle involving {j, k, l} and i’s shortest path to agent j and l, which is a contradiction

to the definition of social quilts. Therefore d(ij) = d(ik) + 1. This implies that once a signal
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reaches an agent, it cannot travel back and reach her again.

We now proceed to prove the claim. By Proposition 4, if we can show that agents’ learning

outcomes are strongly Bayesian for each signal, then it is also true for multiple signals.

Without loss of generality, let agent i receive an initial signal xi0 = xim. Let µinm = Pr(sn|xim)

for agent i. We want to show that each agent j infers this signal at t = d(ij) + 1 from some

neighbor k (who can be agent i), and this is the only signal j infers from her neighbors at

any time. Specifically, αjkt (n) = µinm if and only if t = d(ik) + 1 = d(ij), and αjkt (n) = 1/N

otherwise (as well as all the higher-order estimates). Notice that this implies agent j learns

the signal and changes his estimates once at t = d(ij) + 1.

We prove this by induction on time t. First, this holds at t = 1. If d(ij) = 1, or j ∈ Ni,

then agent j infers the signal from agent i’s report pi1 such that αji1 (n) = µinm. No other

agents (including agent i) infer any new signal from their neighbors. Next, if αjk1 (n) = µinm,

then by Lemma 3, αkh0 (n) = µinm for some h not connected to j. Clearly, h = k = i and

d(ik) = 0, d(ij) = 1.

Suppose this holds at period t, we want to show it also holds at t + 1. If αjkt (n) = µimn,

using expression (3) in Lemma 3, we have

αjkt (n) =

∏
h∈((gk\gj)∪k) α

kh
t−1(n)∑

n′
∏

h∈((gk\gj)∪k) α
kh
t−1(n

′)
.

That is, agent k must infer the signal from someone (say l) outside gj in the previous period,

so jl /∈ G. By induction, since αklt−1(n) = µinm, we have d(ik) = t−1 and d(il) = t−2. By the

second property above, it must be true that d(ij) = t. On the other hand, if d(ik) = t− 1,

by induction αklt−1(n) = µinm for some neighbor l. As d(il) = t − 2 and d(ij) = t, it is true

that l ∈ gk \ gj. Because agent j has not learned any new information so far, αjkt (n) = µimn.

Thus αjkt (n) = µinm if and only if d(ij) = t and d(ik) = t− 1.

Since signal xi0 arrives at each agent j ∈ g exactly once at period d(ij) + 1, pjt(n) = µinm

if t > d(ij) and pjt(n) = 1/N otherwise. Everyone learns xi0 at period D + 1 since D is the

diameter of the network. Thus the learning is strongly Bayesian with signal xi0. When there

are multiple signals, Lemma 4 ensures that the learning remains strongly Bayesian.

Proof of Proposition 3: Suppose that agent i receives the only informative signal xi0 = xim.

We first describe the repetition of this signal within a simple circle. For any k-agent simple

circle c = {i1 . . . ik}, there are two separate cases: agent i ∈ c or i /∈ c.
First, suppose i ∈ c. Without loss, assume i = ik. Then at t = 2, agent i1 and ik−1’s

inferred signals are αi1ik1 (n) = α
ik−1ik
1 (n) = µinm. Let µinm(η) be the Bayesian posterior of the

true state being sn if an agent infers η copies of identical xi0: µ
i
nm(η) = (µinm)η∑

n′ (µ
i
n′m)η

. By Lemma
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3, when GCS holds, all the inferred signals must have the distribution equal to µinm(η) for

some non-negative η. Let αjkt (n) = µinm(ηjkt ). Lemma 3 can be rewritten as

ηjkt+1 =
∑

l∈gk\gj

ηklt . (25)

At period t = k+ 1, the signal finishes traveling around the simple circle in both directions,

and thus η
iik−1

k ≥ 1 and ηii1k ≥ 1. Both may be higher than 1 because there may be more

than one simple circle. Thus agent i and all other agents in the simple circle infer at least

two copies of xi0 in every k periods.

Next, if i /∈ c, then without loss of generality, assume ik is the first one of the simple circle

(or one of the first ones) to learn the signal, such that ηikjt ≥ 1 for some j ∈ Ni0 . Because

i1 and ik−1 are not connected by definition of a simple circle, j cannot be connected with i1

and ik−1 at the same time because the network is assumed to satisfy GCS. Suppose ji1 /∈ G,

then ηi1i0t+1 ≥ 1, and it is passed on to i2, i3 and so on. Also, the signal travels through ik−1

to ik−2, because ik−1 learns from either j or ik. Similar to the first case, we can show agent

ik and all other agents in the simple circle infer at least two copies of xi0 in every k periods.

We now turn to how a signal travels in a network that satisfies GCS but contains multiple

simple circles. Recall that the largest simple circle in the network (g,G) has k agents. If

k is even, it takes k/2 periods for a signal to reach every agent in the simple circle and

another k/2 periods for everyone to infer the second copy of the signal. If k is odd, it takes

(k − 1)/2 periods for everyone to learn the first copy and (k + 1)/2 periods for the second.

For simplicity, we consider the case when k is even.

Since xi0 is the only informative signal, at t = 1 + D, everyone in the network learns at

least one copy of xi0, which travels along each simple circle in both directions. From now

on, we focus on agents belonging to at least one simple circle. At period t = 1 + D + k/2,

everyone in a simple circle infers at least two copies of xi0 and at least one agent in each

simple circle infers at least three copies. Treat this two “new” copies of the signal as new

information, which travels to all the other agents in D periods. Thus at t = 1 + 2D + k/2,

each agent learns at least 3 + 2(ksc − 1) copies. The first part comes from each agent infers

at least one new copy from her own simple circle. The second part comes from learning

two copies of the signal from each of the remaining (ksc − 1) simple circles. Similarly, at

t = 1 + 2(D + k/2), every agent in the network learns at least 4 + 4(ksc − 1) copies and

generates at least 4(ksc−1) “new” copies of the signal. This is clearly true if there is only one

agent (say agent h) connecting to the rest of the network from one simple circle. Because by

period t = 1 + 2D+ k/2, the 2(ksc− 1) copies have already traveled half of the simple circle,

and they come back to agent h in another k/2 periods in both directions. If there are two
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or more agents connecting to the outside, then each sends at least 2(ksc − 1) copies to the

outside as these copies travel around the simple circle in k/2 periods, so the total number of

new signals to the outside is at least 4(ksc−1). Then in another D+k/2 periods, each agent

infers at least two more copies of the signal because the initial information finishes another

trip in her own simple circle. In addition, she learns at least 2(ksc − 1) · 4(ksc − 1) copies

from other simple circles.

Counting the number of copies iteratively, for any t ∈
[
τ(D + dk/2e) + 1, (τ + 1)(D +

dk/2e)
]
, every agent believes there are at least 2τ + 2

∑τ−1
τ ′=1(2(ksc − 1))τ

′
copies of signal xi0

if τ is an integer larger than 1.

Proof of Corollary 1: Suppose the only simple circle is c = {i1 . . . ik} with distinct agents.

By assumption, the network outside of c must satisfy GCS and contain no simple circles.

First, consider the case with only one informative signal xi0. Then the first time this signal

arrives at the circle, it must reach either only one agent (say ik), or two connected agents

(say ik and i1 learn from their common neighbor). To see this, suppose to the contrary, ik

and il learn the signal at the same time, but either l 6= 1, k − 1; or il learns from a different

source from ik. Then there is another simple circle inside the path from i to ik, ik to il

through c, and il to i. It contradicts the assumption that c is the only simple circle. Further,

once the signal reaches the circle, agents in the simple circle do not learn any other new

information from outside, because there is no other simple circle through which information

can travel back to c.

Now consider the case with multiple informative signals. For ease of notation, suppose

each agent receives at most one signal (the other case is similar). Let signal xlt reach the

circle at agent ih(l) ∈ c (h(l) ∈ {1, . . . , k}) and at time τ(l) for the first time. Then for agent

ik, if h(l) = k, ik receives two more copies at each time τ(l) + ko for any integer o, otherwise

she receives one more copy at each time τ(l) + h(l) + ok and τ(l) + (o+ 1)k− h(l). At time

t = T +D, all signals must have reached the circle,

pikT+D(n) =

∏
l∈g(α

ll
t (n))η

ik
T+D(xlt)∑

n′
∏

l∈g(α
ll
t (n′))η

ik
T+D(xlt)

, (26)

where ηikT+D(xlt) is the number of copies of xlt agent ik learned at time T +D. As we argued

above, in every k periods, agent ik must receive two more copies of each signal, such that

pikT+D+ok(n) =

∏
l∈g(α

ll
t (n))η

ik
T+D(xlt)+2o∑

n′
∏

l∈g(α
ll
t (n′))η

ik
T+D(xlt)+2o

. (27)
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By assumption, there is a unique state s̃ such that Pr
(
s̃|{αllt }l∈g,0≤t<T

)
> Pr

(
s′|{αllt }l∈g,0≤t<T

)
for all s′ 6= s̃. As o → ∞, pikT+D+ok(s̃) → 1. For any other large time t, which is between

T +D + ok and T +D + (o+ 1)k, let ∆t = t− (T +D + ok), so ∆t ∈ {1, . . . , k − 1},

pikt (n) =

∏
l∈g(α

ll
t (n))η

ik
T+D+∆t(xlt)+2o∑

n′
∏

l∈g(α
ll
t (n′))η

ik
T+D+∆t(xlt)+2o

. (28)

Similarly, as t→∞, o→∞, and so pikt (s̃)→ 1. The same argument applies to all agents in

the circle, and information in the circle is learned by all others in the whole network.

Proof of Proposition 4: Suppose xl0 = xlm is the only signal. We can classify all agents

based on their distance to l, that is, Nd
l = {h ∈ g : d(lh) = d}, and N1

l = Nl. To begin

with, if agent a and b ∈ Nd
l are both connected to some agent h in Nd+1

l , then ab ∈ G.

Find a’s connection to some agent f in Nd−1
l , then agent f and h must not be connected,

because their distance must be 2. Similarly the agent who is connected to b in Nd−1
l , say f ′,

cannot be connected to h. If agent a and b are not connected, then there exists a simple

circle consisting of agent f , a, h and b (with possibly other agents like f ′ and l), which is a

contradiction.

We first show a general feature of learning in networks without simple circles: Agents

cannot learn new information from their successors in terms of distance from agent l. That

is, agents in Nd
l never infer new signals from their neighbors in Nd+1

l . Suppose to the contrary,

the first time some agent infers from her successor is agent a in Nd
l infers a new signal from h

in Nd+1
l . Notice that in the previous period, h does not infer new signal from her successors,

so the new signal a infers must come from h’s neighbors in either Nd
l or Nd+1

l . Suppose

that the new information a infers comes from some b in Nd
l to h then to a, then by the first

claim, a is connected to all h’s neighbors in Nd
l . Thus a knows all the information h learns

from agents in Nd
l , contradicting the fact that a infers new information from h. The other

possibility is that the new information a infers comes from agent h′ in Nd+1
l , which reaches

h and then to a. Then ah′ must not be connected, because otherwise a can learn directly

from h′, contradicting the assumption that a infers from h is the first time any agent learns

from a successor. There are again several cases. The first one is agent h′ has learned the new

information from b in Nd
l . To make sure no simple circle exists, bh must be connected, so h

would have learned it at the same time as h′ from b. So we are back to the first possibility

where the new information goes from b to h then to a, which is impossible. The other case

is that h′ has learned the new information from another peer h′′ in Nd+1
l , which can be ruled

out using a very similar argument. Since Nd+1
l contains finitely many agents, we can show a

cannot learn any new information from agents in Nd+1
l .
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The argument above shows that agent l never learns any new information and thus her

estimates remain at µlnm. Moreover, estimates of agents in Nl must remain at µlnm. This

is because first, they cannot infer new information from their successors. Second, for any

connected agents in Nl, they learn from agent l simultaneously and expect each other to

learn the signal. Therefore they cannot infer new information from each other.

Lastly, we claim that there must exist some agent l′ ∈ N2
l , who is connected to at least

two agents in Nl but does not infer new signals from his peers (those with the same distance

as him). Therefore the estimates of agent l′ oscillate and never agree with the Bayesian

posterior. Recall that l ∈ g̃ implies that there exist i, j ∈ Nl and k ∈ N2
l such that k ∈ gij.

We start with this agent k who is connected to i and j, and possibly more agents in Nl. If

k does not infer new signals from his peers in N2
l , then we can show k must keep oscillating.

This is because by the claim above agents in Nl who are connected to k must be connected

with each other. So k must keep inferring multiple copies of xlm in even periods, and multiple

copies of the signal that offsets xlm is odd periods for t ≥ 3.

Suppose instead agent k infers new information from one of his peers. The first case is

that he learns from agent h ∈ N2
l , whose new signal comes from some agent j′ ∈ Nl different

from i and j. Then j′h are connected, while j′k are not connected. Consider the circle

{ljkhj′}, in which lk, lh and j′k cannot be connected. Because there can be no simple

circles, jj′ and jh must be connected. Similarly, ij′ and ih must be connected, otherwise

there will be a simple circle {lj′hki}. This implies that h never infers new signals from k

because h is connected to all k’s neighbors in Nl. If h does not learn new information from

his peers in N2
l , then his estimates must oscillate.

In the second case, agent k learns new information indirectly from some peer h′ ∈ N2
l .

That is, he learns new information from h′ through agent h. Suppose agent h learns infor-

mation from h′, who learns the information from some agent j′ ∈ Nl. The arguments are

similar to the case above. We can show that i,j, and j′ are all connected to agent h′ while

kj′ and hj′ cannot be connected. Moreover, ih must also be connected here to avoid a simple

circle, so in this case ijhk is a clique. In fact, ijhh′ is also a clique. Therefore h′ is connected

to more agents in Nl than agent k and h. Agent h’ does not learn anything from agent h,

and her estimates keep oscillating if she does not learn anything from her peers. If instead, k

learns new information from h′′ through h and h′. and agent h
′′

learns the new information

from some agent in Nl, then we can show he does not learn anything from agent h′ and his

estimates must oscillate. This is because like before, we can show agents ijkh is a clique,

then ijhh′ has to be a clique, ijh′h
′′

has to be a clique, and so on. Since there are a finite

number of agents, there must be one last agent who learns new information from some agent

in Nl, but who has no peer to learn from. And this agent’s estimates must oscillate because
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he is connected to multiple agents (more than i, j) in Nl.

Proof of Corollary 2: If the network is not a social quilt, it must contain either at least

one simple circle, or some agent i such that LCS does not hold, or both. We prove the result

by showing that in either case, there exists some sequence of signals such that an agent’s

learning outcome is not strongly Bayesian.

First, suppose there is a simple circle {i1 . . . ik} and GCS holds. We focus on the case

when k is even, and the other case is analogous. Let j = ik/2 be the agent opposite of i = ik

in the circle. Then at t = j + 1, agent j’s estimates are

pjt(n) = Pr
(
sn
∣∣ηjt (xhτ )xhτ ,∀h ∈ g, τ ∈ {0, . . . , t− d(jh)− 1}

)
.

Here ηjt (x
h
τ ) is the number of copies of signal xhτ that agent j has learned by period t. Clearly,

ηjt (x
i
0) ≥ 2 due to the simple circle, and ηjt (x

h
τ ) ≥ 1 for ∀h ∈ g, τ ∈ {0, . . . , t− d(jh)− 1}. If

agent j’s learning outcome is strongly Bayesian, his estimates should equal to the Bayesian

posterior belief conditional on exactly one copy of each signal that has arrived. This implies

that for all ηjt (x
h
τ ) > 1, the extra copies of signals must cancel each other in terms of the

Bayesian posterior belief. That is,

Pr
(
sn
∣∣(ηjt (xhτ )− 1)xhτ ,∀h ∈ g, τ ∈ {0, ..., t− d(jh)− 1}

)
= 1/N.

Since ηjt (x
i
0)− 1 ≥ 1, this cannot hold if xi0 is the only informative signal.

Second, suppose there is some agent i such that LCS does not hold. Then there must

exist j ∈ Ni and k, k′ ∈ Ni ∩ Nj, such that kk′ /∈ G. Without loss of generality, assume xk
′

0

is the only informative signal. Then at t = 3, agent k’s estimates much include at least two

copies of xk
′

0 , which is not strongly Bayesian.

Proof of Proposition 5: We show that if all agents hold this belief, then pit, pijt , pij...kt

as defined in Section 2 and Section A.1 are the correct Bayesian posterior beliefs from every

agent i’s perspective, and thus we call them beliefs instead of estimates in this proof. More

precisely, let Bi(z) denote what agent i believes z is with probability 1, which may or may

not be equal to z. Then we have, for all t ≥ 2, all sn and all i ∈ g:

(i) pit(n) = Bi
(
Pr
(
sn|{xhτ}τ≤t−2, h∈g, xit−1

))
; and

(ii) pijt (n) = Bi

(
pjt(n)/αjjt−1(n)∑
n′ p

j
t(n
′)/αjjt−1(n

′)

)
; and

(iii) pij...kt = Bi
(
pj...kt

)
.
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That is, agent i believes that (i) her belief at period t is based on all the available signals

from the entire network up to period t− 2 plus her own signal at t− 1; and (ii) her belief of

j’s belief includes all the information j has inferred except for his most recent signal xjt−1;

and (iii) her third (and higher)-order beliefs are all correct.

We prove this result by induction. First, agent i gets xi0 and her Bayesian posterior belief

is pi1(n) = Pr(sn|xi0) by definition. All the higher-order beliefs pij...k1 = {1/N, . . . , 1/N},
which are their prior, are also correct because they have not learned anything from their

neighbors. At t = 2, the inferred signals αααij2 for all j ∈ Ni are the same as xj0. Note that

agent i believes gj ⊆ gi = g, and thus gij = Bi(gj). Similarly, agent i believes gj...k ⊆ gi, and

thus gij...k = Bi(gj...k). Using expression (5), we have

pi2(n) = Pr
(
sn|{xh0}h∈gi , xi1

)
= Bi

(
Pr
(
sn|{xh0}h∈g, xi1

))
.

Using expression (6), we have:

pij2 (n) = Pr
(
sn|{xh0}h∈gij

)
= Bi

(
Pr
(
sn|{xh0}h∈gj

))
,

and thus any difference from pjt(n) can only be attributed to xj1. Moreover,

pij...k2 (n) = Bi
(
Pr
(
sn|{xh0}h∈gj...k

))
= Bi(pj...k2 (n)).

Next, suppose the induction hypothesis is true at t. Then from agent i’s point of view,

if pjt 6= pijt , according to (ii) above, the only difference is caused by j’s private signal xjt−1.

That is, the inferred signal yijt−1 is the same as xjt−1. Recall from the discussion in Section

2.2, the inferred signal αααijt contains all the information in yijt−1 (and from i’s perspective,

xjt−1) she needs to update her beliefs. Clearly, αααijt must be new information to i, and

thus agent i will follow Step 2 to update her own beliefs. Therefore (i) holds: pit+1(n) =

Bi
(
Pr(sn|{xhτ}τ≤t−1,h∈g, xit)

)
, which is the correct posterior belief from agent i’s perspective.

Moreover, since agent i believes she observes all j’s neighbors, she must update her beliefs

pijt+1 according to Step 3 of our procedure. By the induction hypothesis, αααijkt = Bi
(
αααjkt

)
,

and thus i thinks she can infer all the signals j inferred from his neighbors. The only thing

missing is j’s own signal, which is exactly point (ii). To see this, note that

pijt+1(n) =
pjt(n)

∏
h∈gij\{j} α

ijh
t (n)∑N

n′=1 p
j
t(n
′)
∏

h∈gij\{j} α
ijh
t (n′)

= Bi

(
pjt(n)

∏
h∈gj\{j} α

jh
t (n)∑N

n′=1 p
j
t(n
′)
∏

h∈gj\{j} α
jh
t (n′)

)
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while

Bi
(
pjt+1(n)

)
= Bi

(
pjt(n)

∏
h∈gj α

jh
t (n)∑N

n′=1 p
j
t(n
′)
∏

h∈gj α
jh
t (n′)

)
.

Similarly, because αααij...klt = Bi
(
αααj...klt

)
, pij...kt+1 = Bi

(
pj...kt+1

)
and (iii) holds.

Proof of Proposition 6: The sufficiency closely follows the proof of Proposition 2. In

particular, if the network is a tree and xi0 is the only signal, then agent h ∈ g \ {i} infers the

signal at and only at period t = d(ih) + 1. So the learning is strongly Bayesian.

The necessity is due to the fact that if the network is not a tree, it must contain a triangle

or a simple circle. In both cases, agents infer positively correlated signals. Because every

agent’s local 0-network satisfies LCS, any network satisfies GCS, and thus agents do not

infer negatively correlated signals. Therefore even with one informative signal, the agents

infer infinite copies of the signal as t→∞, and their estimates are not Bayesian.

Proof of Proposition 7: First, if the diameter D ≤ d, gdi = g and Gd
i = {jk : jk ∈

G} ∪ {l̂h : lh /∈ G}. From each agent’s perspective, her local d-network is a clique. Their

learning outcomes are d-strongly Bayesian because once a signal reaches any agent, all other

agents in the network infer it two periods later, and they all know they have learned it from

the same agent. Thus each signal is learned once and only once. The learning stops at T +1,

and the agents’ estimates are the Bayesian posterior given the signals in XT .

Second, if D > d, there exists a pair of agents l and l′ such that d(ll′) = d + 1. Let

{ll1 . . . ldl′} be one shortest path between agent l and l′. While agent l and l′ do not observe

each other’s report, they both can observe agents l1, . . . , ld. Suppose the only signal is xl0.

At t = 1, pl1(n) = Pr(sn|xl0) for all sn. At t = 2, the signal is inferred by agents l1, . . . , ld,

and agent lk reports plk2 (n) = Pr(sn|xl0) for all k ∈ {1, . . . , d}. At t = 3, agent l′ infers one

copy of the signal from each agent lk, so his estimates must include at least d copies of xl0,

possibly more if there are multiple paths between l and l′. Clearly, agent l′’s estimates are

not d-strongly Bayesian.

Proof of Proposition 8: By assumption, no new signals arrive at or after time T . Without

loss, suppose that τ ≤ T . The other case can be proved by replacing T with τ from the

following expressions. For all sn, sn′ and any sequence of fully connected agents {ik . . . k′},
let

αT = max
n,n′

αik...k
′

T (n)

αik...k
′

T (n′)

be the highest ratio among all the elements of the distributions of inferred signals at time

T + 1, including all the higher-order inferred signals (αt for any t ≥ 1 is defined similarly).

Because φimn ∈ (0, 1) for all i ∈ g, all the agents’ estimates and higher-order estimates
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piT , p
ij
T , . . . are bounded away from 0 and 1. Since the inferred signals are the ratio of the

agents’ (higher-order) estimates, and there are a finite number of higher-order estimates, the

maximum αT exists, and αT ∈ [1,∞).

Let V ≡ maxi∈g(w
iLi). Clearly, V < 1

2
. By the definition of higher-order estimates, we

can rewrite the ratio of any higher-order inferred signals at T + 2 as:

αik...k
′

T+1 (n)

αik...k
′

T+1 (n′)
=

pk
′
T+1(n)

pik...k
′

T+1 (n)
·
pik...k

′
T+1 (n′)

pk
′
T+1(n

′)

=
pk
′
T (n)

∏
h∈gk′\{k′}

(αk
′h
T (n))w

k′h
T

pk
′
T (n)

∏
l∈gik...k′\{k′}

(αik...k
′l

T (n))w
k′l
T

·
pk
′
T (n′)

∏
l∈gik...k′\{k′}

(αik...k
′l

T (n′))w
k′l
T

pk
′
T (n′)

∏
h∈gk′\{k′}

(αk
′h
T (n′))w

k′h
T

=
∏

h∈gk′\{k′}

(
αk
′h
T (n)

αk
′h
T (n′)

)wk′hT
·

∏
l∈gik...k′\{k′}

(
αik...k

′l
T (n′)

αik...k
′l

T (n)

)wk′lT
≤ (αT )2V . (29)

Therefore the maximum of the above ratios αT+1 ≤ (αT )2V . Similarly, we can show that

αt+1 ≤ (αt)
2V for all t > T , and thus αt ≤ (αT )(2V )t−T .

Denote the aggregate new information i learns from all her neighbors at time t+ 1 as,

αit(n) =
∏

j∈gi\{i}

(αijt (n))w
ij
t∑

n′(α
ij
t (n′))w

ij
t

.

Then the ratio

αit(n)

αit(n
′)

=
∏

j∈gi\{i}

(
αijt (n)

αijt (n′)

)wijt

≤ (αt)
V .

This is because each new signal agent i learns from her neighbor is weighted by at most

wi and agent i has Li neighbors. Using the fact that αt ≤ (αT )(2V )t−T , we can show when

t = T + z, αit(n)/αit(n
′) ≤ (αT )2

zV z+1
.

We can then express agent i’s estimates at time t+ h as a function of her estimates and
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inferred signals from period t onward:

pit+h(n) =
pit+h−1(n)αit+h−1(n)∑
n′ p

i
t+h−1(n

′)αit+h−1(n
′)

=
pit+h−2(n)αit+h−2(n)αit+h−1(n)∑
n′ p

i
t+h−2(n

′)αit+h−2(n
′)αit+h−1(n

′)

=
pit(n)αit(n) . . . αit+h−2(n)αit+h−1(n)∑
n′ p

i
t(n
′)αit(n

′) . . . αit+h−2(n
′)αit+h−1(n

′)

=
pit(n)∑

n′ p
i
t(n
′)
αit(n

′)

αit(n)
. . .

αit+h−2(n
′)

αit+h−2(n)

αit+h−1(n
′)

αit+h−1(n
′)

. (30)

Using the results derived above, we can see that for any ε > 0, there exists some z such that

when t > T + z and 2V < 1,

pit+h(n) ≥ pit(n) ·
(

(αT )−2
zV z+1

) 1−(2V )h

1−2V ≥ pit(n)(1− ε), and

pit+h(n) ≤ pit(n) ·
(

(αT )2
zV z+1

) 1−(2V )h

1−2V ≤ pit(n)(1 + ε),

for any h > 0 and state sn. This shows that if V < 1
2
, then

∣∣pit+h(n)− pit(n)
∣∣ < ε for t

sufficiently large. Therefore the agents’ estimates converge as t→∞.

Finally, fix t and z and let h go to infinity, we have

pit(n) ·
(

(αT )−2
zV z+1

) 1
1−2V ≤ pit→∞(n) ≤ pit(n) ·

(
(αT )2

zV z+1
) 1

1−2V
.

Therefore the limit estimates are strictly between 0 and 1.

Proof of Proposition 9: Let agent i be the only agent who receives informative signals

from nature. We claim that for any agent h ∈ g, at period t, t ≥ d(ih) + 1, she infers

signal xit−d(ih)−1 for the first time from all her neighbors in N
d(ih)−1
i and puts it in her set

Ath. At period t, her estimates become pht (n) = Pr
(
sn
∣∣xi0, . . . , xit−d(ih)−1), which are strongly

Bayesian. Moreover, agent h’s estimates of any neighbor h′ who either is in N
d(ih)−1
i or shares

a common neighbor with h in N
d(ih)−1
i are the same as pht . Her estimates of any other neighbor

h
′′

must be phh
′′

t = pht−1 because h′′ should learn from h, and similarly for her higher-order

estimates. Agent h does not infer any (higher-order) new signal from her neighbors who are

not strictly closer to i. Let l ∈ Nh and d(il) ≥ d(ih), then either αhlt (n) = 1/N or αααhlt ∈ Aht−1
for all t ≥ 1.

First, the claim is clearly true at t = 2, that is, i’s immediate neighbors infer xi0 from
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agent i at t = 2. For anyone who is not connected to i, her estimates (and higher-order

estimates) remain unchanged. Now consider agent j who is connected to h and is strictly

closer to i, that is, j ∈ N
d(ih)−1
i . By the claim, pjt(n) = Pr

(
sn
∣∣xi0, . . . , xit−d(ih)) and agent h

has inferred xi0, . . . , x
i
t−d(ih)−1 over time. Then at period t+1, agent h must infer xit−d(ih) from

agent j, and by the same argument she must infer the same signal from all her neighbors in

N
d(ih)−1
i . Agent h uses the simple rule and treats only one copy of these inferred signals as

new information. Moreover, because agent h has already learned xi0, . . . , x
i
t−d(ih)−1, she does

not infer any new signal from her neighbors in N
d(il)
i such that d(il) ≥ d(ih). Therefore she

updates her estimates to pht+1(n) = Pr
(
sn
∣∣xi0, . . . , xit−d(ih)).

B Appendix: Further discussions

B.1 Common knowledge of the network

In our model, there is a limit to the agents’ learning because they don’t know the network.

We now show that if the network (g,G) and T , the period from which no new signals arrive,

are common knowledge, then agents reach the correct Bayesian posterior in finite time. For

simplicity, we consider the case with initial signals only.53 We follow our learning procedure

in which each agent continues to report her posterior distribution of the states and receives

reports from her local network. The main difference is that each agent may temporarily

treat some inferred signals as independent if she cannot tell some of the signals apart. But

she gradually revises her report until it is based only on the true signals. And she can do

that because she knows the network and how everyone reports.

More specifically, at time t, agent i’s information set consists of all the reports she observes

(her initial signal is included as her own report at period 1): I it = {phτ : h ∈ gi, τ ≤ t}.
Because there are only initial signals, to ease notations, we use xh for xh0 for all h ∈ g. At

t = 1, each report is simply the posterior distribution of the states based on each agent’s

initial signal as before. For t > 1, each agent begins with finding the inferred signals

αααijt ,ααα
ik
t , . . . , as in Step 1 of our learning procedure. Because every agent knows the network

and how all agents form their estimates, she knows when and how each signal reaches each

neighbor (possibly in combination with other signals). Therefore she knows whether any two

53It takes longer if T > 1 because each agent needs to learn up to TL signals. But their learning outcomes
are still Bayesian as long as the agents follow the learning procedure. Alternatively, we can imagine that the
agents report and learn each signal sequentially. Namely, they learn all signals arrived at t = 0 in the first
L2 periods (see Observation 1 for details), and then the signals arrived at t = 1 in the next L2 periods, and
so on. Yet another possibility is for agents to wait until period T to communicate their best estimates based
on all their individual signals.
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of her inferred signals are independent. If they are, then her estimates pit are based on the

set of true signals available to her: pit(n) = Pr(sn|xj, . . . , xl) for all j, l such that d(ij) < t

and d(il) < t. If some inferred signals are not independent, agent i forms her estimates based

on a particular combination of signals from her information set I it . For example,

Pr

(
sn

∣∣∣∣ui1t x1, (ui2,1t x2, ui3t x
3
)
,
(
ui2,2t x2, ui4t x

4
)
, . . . , uiLt x

L

)
,

where the parentheses denote signals agent i cannot tell apart. For example, the first paren-

theses means agent i only knows an inferred signal which contains ui2,1t copies of x2 and ui3t

copies of x3. If xj is contained in multiple inferred signals of agent i, let uijt =
∑

k u
ij,k
t be

the total number of copies of xj in agent i’s estimates at t.

We require that first, the estimates are complete such that agent i’s estimates contain all

the signals that she has learned. That is, each uijt must be a positive integer if t > d(ij), and

uijt = 0 otherwise. Second, the estimates must feature minimal repetition. We order vectors

uit = (ui1t , . . . , u
iL
t ) and vit = (vi1t , . . . , v

iL
t ) lexicographically such that uit < vit if ui1t < vi1t ;

or if ui1t = vi1t and ui2t < vi2t , and so on. Then uit must be the smallest vector such that

Pr(sn|ui1t x1, ..., uiLt xL) is known to agent i.54 It is easy to see that if agent i knows xj at

time t, uijt must be 1, but the reverse is not true. Also, if an agent learns all the individual

signals at t, then uit = (1, . . . , 1) and her estimates are the correct Bayesian posterior belief.

We say agent i changes her information set when she infers a new signal that she does not

know before. The above learning procedure has the following properties.

Lemma 7. (1) If no one changes their information set at time t, the agents stop learning.

(2) An agent’s estimates agree with the correct Bayesian posterior after at most L changes

of her information set.

(3) If uit 6= ujt and ij ∈ G, at least one of them changes her information set at t.

Proof of Lemma 7: We start with property (1). If no one changes their information set

at some time t, it means no one learns new information in the previous period. This also

means that their estimates remain the same, and thus no one learns new information in this

period. Therefore the agents stop learning. For property (2), each time an agent changes

her information set, she must have inferred a new signal containing a different combination

54Agents form estimates this way to facilitate the travel of signals to all agents. For instance, suppose
agent i’s estimates are based on (x1, 2x2, x3), while agent j’s estimates are based on (2x1, x2, 2x3) at t. Then
at t + 1, both report Pr(sn|(x1, 2x2, x3)) by the lexicographical order. This does not mean, however, they
discard information contained in agent j’s report. They both store it in their information set and use it later
to tell signals apart. Clearly, the agents can learn faster if the message space allows them to report both.
But we want the learning procedure to be as close to that in the main model as possible.
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of signals. Because there are L initial signals, an agent needs to know at most L different

combinations of signals to learn all the individual signals. Afterwards, uit = (1, . . . , 1) for

all t, and her estimates remain constant. Lastly for property (3), without loss of generality,

suppose uit < ujt and ij ∈ G. Then agent j must not know Pr(sn|ui1t x1, . . . , uiLt xL). If he

knew, then ujt is not the smallest vector he can use, which contradicts the learning procedure.

Therefore agent j must learn something new and change his information set.

Part (1) is true because if no one infers new signals at period t, they have no new

information to pass on to their neighbors, and thus no one learns anything new in the

next period. Next, because there are L initial signals, if an agent makes L changes to her

information set, she has a system of L non-degenerate equations involving these signals.55

Clearly, she can solve for each of these signals individually. Lastly, if two neighbors disagree,

one of their reports must be unknown to the other agent, as they report the estimates with

the minimal repetition given their information set. Therefore at least one of them must

learn new information. Using these properties, we can show next that agents always form

the correct consensus.56

Observation 1. There exists some period t ≤ L2 such that all agents’ estimates after t

agree with the Bayesian posterior belief given the signals.

Intuitively, agents are able to learn eventually because they know the network and they

know how information travels. By part (1) of Lemma 7, if learning has not stopped, then

there must be at least one agent changing her information set in each period. By part

(2), no agent would change more than L times. Therefore their learning must stop within

L2 periods. And part (3) suggests that first, once the learning stops, agents must have

consensus. Moreover, since each agent i knows xi, in her estimates uiit must be 1, and thus

in the consensus, all agents’ estimates contain exactly one copy of each agent’s signal.

The following example illustrates the above procedure and shows how agents may be

temporarily wrong, but they gradually revise their estimates until they are correct.

Example 7. An 8-agent network in Figure 3, which is common knowledge.

We focus on the learning of agent 1 using the above learning procedure. At t = 1, agent

1’s information set includes agent 2, 4 and 5’s reports p2
1, p4

1 and p5
1. At t = 2, agent 1 infers

the signals from her neighbors which reflect their signals. We use signals directly instead of

55By the lexicographical order, if she makes L changes, the dimension of this system of L equations must
be L. It is possible, however, for some agents to change their information sets fewer than L times and thus
they cannot distinguish all signals individually. Nevertheless, their estimates still contain one copy of each
signal, as shown in the next result.

56This result shares the same intuition with Theorem 3 in DeMarzo, Vayanos and Zwiebel (2003).
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Figure 3: A network of 8 agents.

reports in the following discussion if there is little room for confusion. At t = 2, agent 1

reports p12(n) = Pr(sn|x1, x2, x4, x5) and agent 2 reports p22(n) = Pr(sn|x1, x2, x3, x6).
At t = 3, agent 1 infers ααα12

2 from agent 2 which contains x3 and x6. She also in-

fers ααα14
2 from agent 4 which contains x3 and x8. Agent 1 knows the two inferred signals

are correlated through x3, but she cannot tell them apart for now. Similarly, agent 2

knows his inferred signals are correlated through x4. Agent 1’s estimates become p13(n) =

Pr(sn|x1, x2, x4, x5, (x3, x6), (x3, x8)) using the above learning procedure. Similarly, agent 2

report p23(n) = Pr(sn|x1, x2, x3, x6, (x4, x5), (x4, x7)). For agent 1, u1
3 = (1, 1, 2, 1, 1, 1, 0, 1).

She also knows that for agent 2, u2
3 = (1, 1, 1, 2, 1, 1, 1, 0).

At t = 4, since agent 1 knows x4, she can easily compute Pr(sn|x1, x2, x3, 2x4, x5, x6) and

learn x7 from agent 2. Her estimates become p14(n) = Pr(sn|x1, x2, x4, x5, (x3, x6), (x3, x8), x7).
Similarly, agent 2 can infer x8 and report p24(n) = Pr(sn|x1, x2, x3, x6, (x4, x5), (x4, x7), x8).

At t = 5, agent 1 infers x8 from agent 2, then she can infer x3 because she knows

Pr(sn|(x3, x8)). Similarly she can infer x6 from Pr(sn|(x3, x6)). She now knows all the signals

individually. So her updated estimates are correct: p15(n) = Pr(sn|x1, ..., x8). Similarly, agents

2-4 learn all the individual signals.

At t = 6, agents 5-8 form the correct Bayesian posterior beliefs, but they do not learn all

the individual signals. For instance, agent 5 cannot tell x2 and x4 apart. �
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B.2 Improvement over myopic learning

In this subsection, we compare our learning procedure with the myopic learning model in the

spirit of DeGroot (1974) and DeMarzo, Vayanos and Zwiebel (2003), among many others.

The essence of myopic learning is that agents update their beliefs by repeatedly treating

their neighbors’ reports as new information, without accounting for any possible correlations

in these reports. In particular, we consider a version of the myopic learning model which

shares the same information environment and message space with our main model. That is,

the state and signal distributions are finite and an agent reports her estimates of the state

distribution. But as in myopic learning models, each agent treats a neighbor’s report as a

new signal in each period.57

More specifically, in Step 1 of this myopic learning procedure, the inferred signal from j

is j’s estimates, αααijt = pjt . In Step 2, agents update their estimates using the inferred signals

as before.58 Their estimates are formed according to the counterpart of expression (5), where

we add m to the superscript to denote estimates in our version of the myopic learning model:

pi,mt+1(n) =
αiit (n)

∏
h∈gi p

h,m
t (n)∑

n′ α
ii
t (n′)

∏
h∈gi p

h,m
t (n′)

. (31)

Because myopic learning features local information repetition between any two connected

agents, it is not surprising that agents’ learning becomes worse. Suppose that in the aggre-

gate, the realized signals are informative: Pr(sn|XT ) 6= 1/N for some sn. Moreover to

compare these two learning procedure, let ηht (xiτ ) be the number of copies of xiτ (τ < T ) in

pht , and let ηh,mt (xiτ ) be the number of copies of xiτ in ph,mt .

Observation 2. Under myopic learning, the agents’ estimates never agree with the Bayesian

posterior beliefs in any network if the realized signals are informative. Furthermore, infor-

mation repetition becomes strictly worse: If a network satisfies GCS, limt→∞(ηh,mt (xiτ ) −
ηht (xiτ )) =∞ for all h ∈ g and xiτ ∈ XT .

Proof of Observation 2: For the first part, suppose that the signals are informative, but

the agents agree with the correct Bayesian posterior beliefs at some time t > T : pit(n) =

Pr(sn|XT ) 6= 1/N for some sn and for all i ∈ g. At t + 1, agents infer new signals from all

neighbors. Each of these inferred signals has a distribution of αijt = Pr(sn|XT ). Therefore

by our myopic learning procedure, pit+1(n) = Pr(sn|(Li + 1)XT ) where Li is the number of

57This implies that the agents don’t remember how they made use of their own signals or their neighbors’
reports in the past.

58Step 3 is unnecessary because the agents no longer differentiate the new information of each neighbor
from the old, which is why agents in our main model need to compute the higher-order estimates.
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agent i’s neighbors. They continue to do so in the following periods until they believe in the

state(s) most likely under XT with probability one.

For the second part, we start with the case where xi0 is the only signal. Under myopic

learning, agents behave as if their existing estimates are the prior, and treating every report

from every neighbor as a new signal. By induction, we can easily show ηh,mt (xi0) ≥ ηht (xi0).

Let 4ηht (xi0) = ηht+1(x
i
0) − ηht (xi0) be the number of copies of xi0 that agent h infers at time

t + 1, and similarly 4ηh,mt (xi0) = ηh,mt+1 (xi0) − ηh,mt (xi0). Then we claim that when t > D,

4ηh,mt (xi0) ≥ 4ηht (xi0) + 1 for all h ∈ g. When t > D, everyone must learn at least one

copy of xi0. In our learning procedure, everyone must also know that at least one of her

neighbors has learned the signal before (because she learns the signal from that neighbor).

Therefore the new copies of xi0 one infers must be strictly fewer than the total number of

copies reported by all neighbors, 4ηht (xi0) <
∑

j∈Nh η
j
t (x

i
0). But under myopic learning,∑

j∈Nh η
j,m
t (xi0) = 4ηh,mt (xi0). Thus we have:

4ηht (xi0) <
∑
j∈Nh

ηjt (x
i
0) ≤

∑
j∈Nh

ηj,mt (xi0) = 4ηh,mt (xi0),

which implies 4ηh,mt (xi0) ≥ 4ηht (xi0) + 1. It follows that

ηh,mt′+1(x
i
0)− ηht′+1(x

i
0) ≥

t′∑
t=D+1

(
4ηh,mt (xi0)−4ηht (xi0)

)
≥ t′ −D.

Hence the difference between the number of copies of xi0 included in the agents’ estimates

goes to infinity as t′ →∞.

To see why myopic learning cannot lead to the correct learning outcomes if the signals

are informative, consider the simplest network with just two connected agents, i and j. At

t = 1, agent i uses her initial signal and reports pi,m1 (n) = Pr(sn|xi0), while agent j does not

see a signal and reports the symmetric prior. Then at t = 2, agent j learns the signal from

agent i while agent i learns nothing from agent j, so pi,m2 (n) = pj,m2 (n) = Pr(sn|xi0). So far,

the estimates are the same as in our main model, which are correct given the signals. But

learning stops in the main model at t = 2, because agent i remembers that j learns the signal

from herself and agent j remembers that i has already learned the signal in the last period,

and thus there is no new information. In the myopic learning model, however, each agent

treats all reports from her neighbor as new and continues to combine her estimates with

her neighbor’s estimates. It is easy to see that at t ≥ 2, pi,mt (n) = pj,mt (n) = Pr(sn|2t−2xi0).
As t goes to infinity, agents’ estimates converge. They believe the true state is one of the

state(s) mostly likely given signal xi0. If two agents cannot learn one initial signal correctly,
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no network can guarantee Bayesian learning outcomes.59

Recall that when the network is a social quilt, learning is strongly Bayesian in our main

model, while it is generally not Bayesian under myopic learning. Furthermore, even when

our learning procedure cannot avoid information repetition, for instance in networks that

satisfy GCS but contain simple circles, the information repetition is far worse under myopic

learning. This shows that the ability to remove information repetition within one’s local

network can improve the learning outcomes significantly. Lastly, results in Observation 2

continue to hold even when agents have the minimal knowledge of the local network, that

is, when eacj agent i only knows (g0i , G
0
i ). This is because the repetition between any pair

of connected agents is the fastest and most severe repetition of information.

59This contrasts with the conclusions in DeMarzo, Vayanos and Zwiebel (2003) and Golub and Jackson
(2010) that when the network satisfies certain properties, agents can form the correct posterior beliefs
asymptotically. Roughly speaking, these models consider large networks where L → ∞. They show that if
no single agent’s information exerts a disproportionately large influence on others, then by the weak LLN,
there are enough agents who receive signals with independent noises such that all of them learn correctly in
the limit. Instead, our model focuses on finite networks and a finite number of realized signals.
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