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Abstract

We analyze the processing of information from social media and news media, using
a unique dataset on financial markets. We find patterns consistent with a theory of
social media as an “echo chamber”: Social networks repeat information, but bound-
edly rational investors interpret repeated signals as new information. This is based
on the empirical finding that stocks with high social media coverage experience high
subsequent volatility and trading activity, while high news media coverage predicts
low volatility and trading activity. Alternative mechanisms based on private informa-
tion, investor disagreement, uncertainty shocks, and other behavioral biases are not
consistent with the data.
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1 Introduction

In a recent survey by the Reuters Institute (2016), 51% of respondents use social media to
access news every week, and 12% cite it as their main source of news.1 A growing economic
literature compares online and offline news (e.g. Gentzkow and Shapiro, 2011), but open
questions remain regarding social media: How is social media content processed? Is it
processed differently from traditional online and offline news? Which models best describe
the role of information from different sources? In this paper, we address these questions by
analyzing how financial markets respond to social and news media, using a unique dataset
of stock-level news coverage from a wide range of sources.

Financial markets offer a natural testing ground for competing theories of signal process-
ing. Our strategy is to extend standard models of optimal investment to obtain empirical
predictions about the relationship between social and news media, market prices and trading
activity. As a benchmark, consider a Bayesian model where social and news media deliver
(similarly) informative signals and agents correctly update their beliefs. This model predicts
that social media and news media coverage, as measured by the number of signals from
each source, have qualitatively similar effects on subsequent prices and trading because both
convey genuine information.

As an alternative, we develop a model which captures the fact that a large proportion of
social media content is repeated via “sharing” or “re-tweeting”. In this model, social media is
an “echo chamber” which replicates existing signals. Rational agents ignore repetitions, but
some boundedly rational agents treat repeated signals as if they were new information. This
form of bounded rationality is motivated by theories of social networks based on persuasion
bias (DeMarzo et al., 2003),2 empirical evidence showing that financial markets react to
repeated signals (Huberman and Regev, 2001; Tetlock, 2011), and by psychological evidence
on repetition-induced learning (Hawkins and Hoch, 1992). We show that social media and
news media coverage have opposite effects on market activity in this model. News media,
containing genuine information, dampens disagreement between rational and boundedly ra-
tional agents and therefore decreases subsequent return volatility and trading activity. Social
media, by contrast, increases disagreement and boosts the confidence of boundedly rational
agents, thus increasing subsequent return volatility and trading volumes.

In the data, we find striking differences between how social and news media relate to
market activity. We quantify coverage on social and news media using measures of “buzz”
for approximately 3000 stocks from the Thomson Reuters MarketPsych Indices (TRMI)
database. Buzz is defined as the number of stock-specific phrases or words in news articles

1A significant share of social media content relates to economics and finance, as witnessed by an
emerging industry that extracts and sells market-relevant indicators from social media. See, for example:
http://www.wsj.com/articles/tweets-give-birds-eye-view-of-stocks-1436128047

2In DeMarzo et al. (2003), persuasion bias denotes a similar deviation from rationality to our echo
chamber: Agents communicate with each other and fail to correctly account for repetitions of information.
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or social media posts, relative to aggregate coverage of all stocks. These measures are
constructed from a broad spectrum of news media sources, as well as the most popular
social media content. We merge these data with stock prices, trading activity as measured
by turnover, and stock characteristics at the monthly frequency. Our key empirical finding
is that high social media buzz around a given stock predicts statistically significant increases
in idiosyncratic return volatility and trading activity over the following month, while high
news media buzz predicts the opposite, i.e. significant decreases in volatility and trading
activity. Neither result is driven by unobserved stock characteristics or time trends. These
patterns are inconsistent with the Bayesian model, but consistent with the echo chamber
hypothesis.

We then estimate a vector autoregression model and find that an increase in news media
buzz leads to an increase in subsequent social media buzz in the sense of Granger causality.
The converse is not true; increases in social media have no significant impact on subsequent
news. These findings lend further support to the echo chamber hypothesis, where social
media primarily responds to and repeats existing news.

We also consider several alternative mechanisms, none of which can match our finding
that social media buzz predicts increased volatility of returns. First, we analyze a model
where news media produces public signals, but social media produces private signals which
are only observed by a subset of “well-connected” investors. Second, we consider models
where social media is informative, but where its interpretation deviates from Bayesian up-
dating. A key advantage of our approach is that we can derive the testable predictions of
many biases which are recognized by behavioral economics: Namely, we consider overcon-
fident investors who overestimate the precision of their information as in Scheinkman and
Xiong (2003); conservative investors who are wedded to their prior beliefs as in Barberis et
al. (1998); investors who cannot process all available information due to rational inattention
as in Sims (2003); and investors whose perception of information is distorted by confirmation
bias as in Rabin and Schrag (1999). A common feature in these models, and in the model
with private information, is that social media conveys genuine information in principle. As a
result, an increase in the number of social media signals tends to reduce subsequent volatility,
which is at odds with our empirical findings.3

Finally, we consider whether our findings can be explained by the endogeneity of media
coverage. For instance, an exogenous increase in underlying volatility might increase the
demand for information, thus making investors more willing to participate in social media.

3We emphasize that this argument is not at odds with the common intuition that information increases
volatility because prices are sensitive to information, especially in models with higher order uncertainty
Kondor (2012). This intuition describes the volatility of current prices, while we focus on the volatility of
subsequent returns. While prices become more more variable when information arrives, subsequent returns
tend to become less variable because prices become more closely aligned with future fundamentals. We
discuss these effects in detail in Section 3.2.
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Alternatively, investors might post their opinions on social media if they disagree with one
another, or after placing orders so as to “talk their own book”. These are important caveats,
but we present evidence to the contrary, based on the predictions of formal models with
endogenous buzz: First, if buzz were driven by shocks to disagreement, then one would
expect the predictive power of social media buzz for volatility to diminish once we control
for measures of disagreement such as the dispersion of analyst opinions. We do not find
empirical support for this prediction. Second, if buzz were driven by underlying uncertainty
and the demand for information, then one would expect heightened activity in both social
media and news media to reflect this demand. This is inconsistent with our finding that
news and social media predict opposite movements in volatility and trading activity.

In summary, our results strongly suggest that social media content is processed in a
fundamentally different way from news media, and that the data are consistent with a
theory of social media as an “echo chamber”. The crucial fact in our model is that the
repetition of information on social media leads to more volatile beliefs about the state of the
world, and to larger deviations of these beliefs from fundamental values. This mechanism has
implications beyond financial markets: Echo chambers can potentially create more volatile
political cycles, if electoral contests are covered extensively on social media, or larger business
cycle fluctuations, if households and businesses use social media to inform consumption and
investment decisions. Thus, our results suggest scope for future research into the volatility
of agents’ beliefs and decisions as a function of social media coverage.

The remainder of the paper is structured as follows. Section 2 reviews the relevant
literature. Section 3 contains our theoretical framework. In Section 4, we describe our data
on news media, social media and financial variables, and present summary statistics. In
Section 5, we show our main empirical results and check their robustness. In Section 6, we
interpret these results in the context of our theoretical framework. Section 7 concludes.

2 Literature

Our findings relate to an existing literature on news, information processing, and financial
markets. Many papers suggest that market reactions to news can deviate from Bayesian pre-
scriptions. For instance, Cutler et al. (1989) show that macroeconomic and political news
do not explain a large portion of stock market movements. Moreover, investors are prone to
overreact to new information (De Bondt and Thaler, 1985), to react to “stale news” which
merely repeat previous revelations (Tetlock, 2011), and to focus on “attention-grabbing”
stocks rather than considering all available information (Barber and Odean, 2008). More
generally, sentiments in news and online searches predict stock returns and trading volumes
(Tetlock, 2007), stocks with low coverage have higher returns (Fang and Peress, 2009), and
press coverage reduces information asymmetries (Bushee et al., 2010). Beyond traditional
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news media, noise levels in trading pits predict high volatility (Coval and Shumway, 2001),
activity in specialist chat rooms (e.g. RagingBull) predicts high volatility and trading vol-
ume (Antweiler and Frank, 2004), and sentiment indicators extracted from online forums and
searches can predict returns (Chen et al., 2014; Da et al., 2015). Our contribution in this
context is twofold: First, we directly contrast the effects of social and news media and point
out the stark differences between the two. Second, we relate our empirical results to theo-
retical predictions, and demonstrate which models of information processing are consistent
with the evidence.

Our findings further relate to the literature on media information processing in social
networks. DeMarzo et al. (2003) show that “persuasion bias”, i.e. the failure to account
for repetitions in available information, provides disproportionate social influence for well-
connected players in social networks. Bayesian theories of social networks, on the other
hand, predict convergence of beliefs to the truth under relatively mild conditions (Acemoglu
et al., 2011). These papers focus on the diffusion of information on networks. In this paper,
we abstract from network graphs and focus on testing the implications of Bayesian and non-
Bayesian information processing for aggregate asset prices. Our contribution is to show that
a non-Bayesian model, particularly one in which social media content is processed subject
to persuasion bias, matches the data more easily than the Bayesian alternative.

Recent research on the economics of the media has addressed the relationship between
online and offline news media content. For example, online and offline news tend to be
substitutes (Gentzkow, 2007) and there is evidence of moderate segregation of online news
consumption along ideological lines (Gentzkow and Shapiro, 2011; Falck et al., 2014). We
contribute to this literature by offering a direct comparison between news and social media.
Our results suggest that the substitutability of social media and news media is limited,
because they appear to be processed in fundamentally different ways.

Finally, we contribute to the behavioral asset pricing literature, which Hirshleifer (2001)
and Barberis and Thaler (2003) review in detail. Existing theoretical papers analyze the
behavior of markets where investors are overconfident (Kyle and Wang, 1997; Odean, 1998;
Daniel et al., 1998; Gervais and Odean, 2001; Scheinkman and Xiong, 2003), conservative
(Barberis et al., 1998) and subject to confirmation bias (Rabin and Schrag, 1999; Pouget et
al., 2014). Our model of information processing offers a parsimonious way of determining
the empirical predictions of several behavioral biases. Moreover, we place more emphasis on
investor heterogeneity than the existing literature, which allows us to derive new predictions
about trading activity and return volatility.
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3 Theoretical framework

We consider an asset market at two dates, t ∈ {1, 2}. At date 1, a unit mass of investors
trade a risk-free asset with return r and a risky asset (say, a stock) with market price p. The
stock is in zero net supply and yields a random payoff θ ∼ N

(
θ0, ρ

−1
0

)
per unit at date 2.

All investors have constant absolute risk aversion (CARA) utility with parameter γ.
Our goal is to develop empirical predictions about the relationship between news media

coverage, social media coverage, and financial market activity. We begin with a theory of
social media as an “echo chamber” which repeats existing information. Below, we consider
a range of alternative mechanisms, including the Bayesian benchmark which we discussed in
the introduction.

3.1 Social media as an echo chamber

News media conveys information, summarized by N informative signals (s1, ..., si, ..., sN).
Each of these signals is of the form si = θ + εi and the errors are normally distributed
εi ∼ N (0, ρ−1

ε ), independently of each other and of θ. The parameter ρε measures the
precision of these signals. We think of these informative signals as being broadcast by
traditional news media, so N will capture “news media buzz”.

Social media repeats news, for example through re-tweets or through the sharing of news
articles and videos. We assume that each informative signal is repeated K − 1 times within
the fold of social media, for a total of NK signals. The repetitions create a vector of N(K−1)
signals (sN+1, sN+2, ..., sNK), where sN+ik ≡ si for all i = 1, ..., N and all k = 1, ..., K−1. The
effective precision of these repeated signals is zero. Thus, “social media buzz” is captured
by the number of repetitions K.4

Investors have a common prior belief that the stock’s payoff θ is normally distributed
according to the true distribution N (θ0, ρ

−1
0 ). At date 1, all investors observe the vector of

NK public signals s = (s1, ..., si, ..., sNK).
A mass 1 − λ of investors are rational. After observing the public signals s, rational

investors believe that θ|s ∼ N (θR, ρ−1
R ), where

θR =
NK∑
i=1

wisi +
(

1−
NK∑
i=1

wi

)
θ0, (1)

ρR = ρ0 +Nρε. (2)

The rational weights for updating in equation 1 are wi = ρε/(ρ0 + Nρε) when i ≤ N , and
wi = 0 when i > N . Rational investors recognize that social media signals are repetitions

4In this model, the total number of social media signals is (K − 1) N , so an increase in news buzz N also
increases activity on social media. Our predictions are unchanged in a model where each informative signal
is observed K/N times, so that news and social media buzz move independently.
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and ignore them.
A mass λ of investor are behavioral. Behavioral investors treat social media signals as if

they were new information, and thus believe that θ|s ∼ N (θB, ρ−1
R ), where

θB =
NK∑
i=1

ŵisi +
(

1−
NK∑
i=1

ŵi

)
θ0, (3)

ρB = ρ0 +NKρε. (4)

Behavioral investors interpret all signals, including their repetitions on social media, as
informative signals with precision ρε.5 Consequently, they attach weight ŵi = ρε/(ρ0+NKρε)
to all signals.

If stocks trade at price p at date 0, rational investors will demand xR(p) = ρRγ
−1(θR−rp)

units, and behavioral investors will demand xB(p) = ρBγ
−1(θB − rp) units. The equilibrium

price p? solves xB + xR = 0, or equivalently,

rp? = qθB + (1− q)θR, (5)

where the parameter q = λρB/(λρB + (1− λ)ρR) is a confidence-weighted measure of behav-
ioral investors.

3.2 Empirical predictions

We now derive predictions about the impact of news and social media “buzz” on the subse-
quent volatility of risky asset returns and trading activity. The volatility of returns between
dates 1 and 2 is the variance V[R] = V [θ/p?]. The return R is the ratio of two Gaussian
random variables θ and p?, and there is no closed-form solution for its variance (Hinkley,
1969). In this section, we use an analytical approximation for return volatility to derive
testable predictions. Moreover, we confirm that our predictions match the outcomes of nu-
merically simulated markets where V[R] is computed exactly. To approximate V [R], note
that the beliefs of behavioral investors satisfy the law of iterated expectations: E[θB] = θ0:
Behavioral investors over-react to social media, but this reaction is equally strong for posi-
tive and negative signals, so that their average mistake is zero. Then, the equilibrium price
matches the prior on average: E[rp?] = θ0. Using a first-order approximation around the
unconditional mean, we obtain

θ2
0
r2V[R] ' V[θ − rp?]. (6)

5We emphasize that this structure allows us to preserve a number of desirable properties common in
CARA-Gaussian models. First, the posterior Gaussian, and its mean is a weighted average of the prior mean
and average signals. Second, the posterior precision increases linearly with the aggregate precision of signals.
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Turning to trading activity, the volume of stocks traded in equilibrium is T = ‖xB(p?)‖. Since
we may normalize the number of outstanding shares to one without loss of generality, T also
captures the stock’s “turnover” which we will measure in the data.6 Note that equilibrium
prices depend on the realization of signals s, so that turnover itself is a random variable. We
obtain predictions about the average turnover E[T ].

Our key predictions about return volatility and turnover are as follows:

Proposition 1. The volatility of returns and average turnover between dates 1 and 2 satisfy

θ2
0
r2V[R] ' 1

ρR
+ q2V [θB − θR] , (7)

E[T ] = 1
γ

[
1
λρB

+ 1
(1− λ)ρR

]−1

E [‖θB − θR‖] . (8)

Social media buzz K increases subsequent return volatility and turnover.
News media buzz decreases subsequent volatility and turnover, as long as the signal-to-noise
ratio of news media, Nρε/ρ0, is sufficiently large.

Equations (7) and (8) decompose return volatility and average turnover in equilibrium.
The first term in (7) measures the volatility of returns in a fully rational market. This
term is equal to the posterior variance which rational investors attach to asset values after
observing signals, and therefore captures the informativeness of signals. The second term
captures the additional volatility due to behavioral biases. The key statistics to determine
this second effect are the variance of the disagreement between rational and behavioral
investors, V [θB − θR], and the confidence of behavioral investors, as captured by q.

Turnover is also driven by confidence and disagreement effects. The first factor in (8)
captures confidence; when posterior beliefs are tighter (high ρB and ρR) or investors are
risk-tolerant (low γ), they trade more aggressively. The second factor is the expected dis-
agreement between rational and behavioral investors, E [‖θB − θR‖]. As in Harris and Raviv
(1993), “differences of opinion make a horse race”, and markets are more active when in-
vestors disagree about the average quality of assets.

Our central predictions in Proposition 1 are that (i) social media buzz increases future
volatility and trading activity, and that (ii) news media buzz decreases future volatility and
trading activity as long as news media are sufficiently informative. The intuition for the
impact of social media is simple: Social media buzz does not contribute genuine informa-
tion. It does, however, boost the confidence of behavioral investors, and also the extent to
which they disagree with rational investors. Therefore, social media buzz increases volatility
and turnover. The intuition for the impact of news media buzz is more nuanced: On one
hand, more information from news media increases investor confidence, thus raising volatil-

6Lo and Wang (2000) provide more general formal definitions of volume and turnover.
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ity and trading activity. On the other hand, traders become better-informed, and extreme
realizations of their beliefs – which lead to disagreement – become less likely. These effects
– informativeness and reduced disagreement – dampen volatility and turnover, and they
dominate the confidence effect as long as news media are sufficiently informative.

It is important to note that our model is not at odds with the common intuition that
news signals increase volatility because prices are sensitive to information. The difference
between this argument and our predictions lies in the timing of events: Consider a dynamic
version of our model where the stock is also traded at a previous date 0, before investors
observe any signals, implying a constant initial market price p0. If more informative signals
arrive at date 1, then the volatility of past returns, between date 0 and date 1, is V [p?/p0],
and therefore proportional to the variance of market prices V [p?]. It is easy to verify that
this backward-looking measure of volatility is increasing in the number of informative signals,
precisely because prices react strongly to information. However, the volatility of subsequent
returns, between dates 1 and 2, is V [θ/p?]. This forward-looking measure is characterized
in Proposition 1, and it is decreasing in the number of informative signals under the stated
conditions. In this paper, we focus on the latter (forward-looking) prediction.

To verify the robustness of our predictions about volatility, Figure 2 presents the results
of several simulations of the model, where V [R] is computed exactly. We note that our ana-
lytical approximation in 7 fits very well. Confirming the analytical predictions of Proposition
1, social media buzz always increases volatility, while news media buzz decreases volatility,
except in the case where news media is uninformative (low ρε and low N).

3.3 Discussion of mechanisms

Our baseline setup models news media as informative signals, and social media as repeated
information which is mistaken for news by behavioral traders. We now consider three al-
ternative mechanisms, and note that they produce distinct empirical predictions from the
baseline case in Proposition 1. The analytical details are in the online Appendix.

Social media posts as private information

Another alternative is that social media conveys genuine information, but that its signals
are only privately accessible to investors who are informed or “well-connected”. To see the
empirical implications of this setting, we analyze a model where news media is represented
by public signals and social media by private ones (see Appendix B.1). In this model, there
are no behavioral biases. Following Grossman and Stiglitz (1980), we assume that there is a
population of “noise traders”, so that the content of private social media signals is not fully
revealed by market prices.
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Proposition 2. If social media signals are private information, then the effects of buzz are
as follows, as long as there is a sufficient mass of noise traders:

• Social and news media buzz both decrease subsequent subsequent return volatility;

• When there are many informed traders, news media buzz decreases average turnover
and social media buzz increases it;

• When there are many uninformed traders, news media buzz increases average turnover
and social media buzz decreases it.

These predictions are intuitive. In a model with private information, volatility is again
driven by the informativeness of signals (both private and public), the confidence of both in-
formed and uninformed traders, and the variance of their disagreement. When noise traders
are prominent, an increase in the number of signals (private or public) reduces volatility:7

Confident investors exploit more aggressively the arbitrage opportunities created by noise
orders, which prevents large deviations of prices from fundamental values. In terms of trad-
ing activity, informed traders place larger orders when their informational advantage over
uninformed traders is significant. This occurs when social media buzz is high or when news
media buzz is low. When informed traders are prevalent, social media buzz therefore in-
creases turnover while news media buzz decreases it. These predictions are reversed when
uninformed traders are prevalent, because they shy away from large orders when find them-
selves at a significant informational disadvantage.

A limiting case is the Bayesian benchmark discussed in the introduction: When social
media conveys information and all agents are informed, it is straightforward to show that
both social and news media buzz decrease subsequent volatility and increase turnover. In
this case, there is no disagreement among investors. When more signals arrive, everybody’s
confidence increases, which leads to more trading with noise traders and smaller deviations
of prices from fundamental values. Thus in the limiting case, increases in social and news
media buzz yield the same qualitative predictions for market activity.

A catalog of behavioral biases

The interpretation of social media may be subject to behavioral biases other than the “echo
chamber” effect. We analyze a suite of models where social media produces informative
signals, but where its interpretation by some traders deviates from rational behavior.

An advantage of our linear-Gaussian setup is that we can adapt it to allow for most
biases which are common in the behavioral finance literature (Hirshleifer, 2001; Barberis

7Away from the “noisy” case, the model is not tractable enough to yield clear testable predictions. The
analysis in the appendix shows, however, that similar predictions hold true in the “noise-free” case where
the mass of noise traders is small, and in the case where the mass of informed traders is sufficiently large.
Therefore, the predictions are not an artefact of the “noisy” case.
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and Thaler, 2003). Here, we present results from four models of bias which we develop in
Appendix B.2. Namely, we consider overconfident investors who overstate the precision of
their signals as in Scheinkman and Xiong (2003);8 conservative investors who overstate the
precision of their prior beliefs as in Barberis et al. (1998);9 investors who process only a subset
of signals due to rational inattention as in Sims (2003);10 and investors with confirmation
bias, who ignore signals that do not conform with their prior sentiment as in Rabin and
Schrag (1999). Proposition 3 summarizes our assumptions and testable predictions in each
case.

Proposition 3. Suppose that there are K informative social media signals with precision
ρε. The effect of social media buzz with alternative behavioral biases is as follows:

• Overconfidence: Behavioral investors perceive the precision to be (1 + a) ρε.
Prediction: If the bias a is small, then social media buzz decreases return volatility and
increases turnover. If the bias is large, then social media buzz decreases both volatility
and turnover as long as the informativeness of social media Kρε/ρ0 is sufficiently large.

• Conservatism: Behavioral investors attach precision (1 + b) ρ0 to their prior.
Prediction: Social media buzz decreases return volatility and increases turnover.

• Rational inattention: Behavioral investors observe signals with cognitive noise,
which must satisfy a constraint on entropy reduction.
Prediction: Social media buzz decreases return volatility and increases turnover.

• Confirmation bias: Behavioral traders with an optimistic predisposition process
negative signals si < θ0 as if they were equal to the prior mean θ0.
Prediction: Social media buzz increases turnover, and decreases return volatility as long
as the number of signals K is sufficiently large.

We note that in each of these models, our decompositions of return volatility and trading
activity in (7) and (8) remain valid: Volatility and turnover are determined by the competing
effects of informativeness, confidence and disagreement.

Proposition 3 shows that, for most biases, an increase in the number of social media
signals tends to reduce volatility and increase turnover. Volatility is reduced because social

8Overconfidence is also related to base rate under-weighting, where individuals pay too little attention
to prior probabilities when updating beliefs (Kahneman and Tversky, 1973). Early experimental evidence
was presented by Fischhoff et al. (1977) and Alpert and Raiffa (1982), for example. Odean (1998) reviews
the large empirical literature demonstrating overconfidence. Related formal models of overconfidence are in
Kyle and Wang (1997), Odean (1998), Daniel et al. (1998) and Gervais and Odean (2001).

9Early evidence of conservatism is provided by Edwards (1968). Conservatism is common when individuals
have information from large samples, but continue to place higher weight on their prior beliefs than Bayes’
rule would suggest (Griffin and Tversky, 1992).

10Peng and Xiong (2006) and Kacperczyk et al. (2016), among other papers, also apply rational inattention
to the CARA-Gaussian framework to obtain predictions about asset prices and mutual fund returns. By
contrast, we focus on predictions about return volatility and trading activity.
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media buzz is truly informative in this class of models – unlike in the baseline model of
“echo chambers” – and its informativeness leads to reduced volatility. Turnover, however,
is increased in most cases because social media signals increases the confidence of investors
who bet on perceived disagreements.

Endogenous buzz

Finally, the direction of causation between buzz and market activity could be reversed.
Casual empiricism suggests that people become most active on social networks when they
disagree with each other.11 Moreover, recent evidence links the demand for (online and
offline) news to uncertainty and market volatility.12 We analyze these mechanisms formally
in Appendix B.3. Proposition 4 summarizes our assumptions and testable predictions in two
cases.

Proposition 4. Suppose that news media buzz and social media buzz are endogenously de-
termined. We consider two models:

• Disagreement shocks: News media are processed rationally, but the posterior mean
of behavioral traders is shifted by a random amount with standard deviation δ. Social
media buzz is assumed to be an increasing function of disagreement (among other fac-
tors).
Prediction: An exogenous increase in δ increases social media buzz and subsequent
volatility and turnover. However, conditional on disagreement δ, subsequent volatility
and turnover are independent of buzz.

• Uncertainty shocks: The demand for information is increasing in prior uncertainty
ρ−1

0 (among other factors), and both social and news media buzz respond are produced
according to a downward-sloping supply curve.
Prediction: An exogenous increase in uncertainty ρ−1

0 increases both news and social
media buzz, and it increases volatility as long as the equilibrium response of information
is not too strong (i.e. its supply is elastic and its demand is inelastic).

Proposition 4 shows that increased disagreement can drive up social media activity, return
volatility and turnover. However, the predictive power of social media buzz for subsequent
market activity should be diminished once we condition on measures of disagreement. If
uncertainty shocks raise the demand for information, then we would expect both social
media and news media buzz to increase in response. Thus, the correlations between buzz on

11See, for example, https://xkcd.com/386/
12Kacperczyk et al. (2014; 2016) find support for a model where investors rationally allocate attention to

the most uncertain risk factors. Andrei and Hasler (2014) show that investors’ attention, as measured by
Google searches, is higher in times of high volatility.
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social media and subsequent market activity should have the same sign as the correlation
between news media buzz and market activity. We now turn to our empirical analysis.

4 Data

This section describes the data we use to measure stock coverage in social and news media,
as well as financial data we use to measure stock prices, volatility, trading activity and stock
characteristics.

4.1 Measuring ‘buzz’ in social and news media

We use the Thompson Reuters MarketPsych Index (TRMI) database, which extracts mea-
sures of buzz (defined below) and sentiment from English-language news and social media
content using a machine learning lexical analysis algorithm. The social and news media
sources covered by the index have evolved over time. For consistency, we focus on the period
between January 2009 and December 2014.

During this time, the main sources of traditional news media content are (i) Reuters
News, (ii) a host of mainstream news sources collected by MarketPsych Data, and (iii)
online content collected by Moreover Technologies from about 50,000 internet news sites
that include top international and business news sources, top regional new sources, and
leading industry sources. The online news content includes many finance-specific sites such
as Forbes and SeekingAlpha.

The main source of social media content are (i) content collected by MarketPsych Data
from internet forums and finance-specific tweets, and (ii) a social media feed constructed by
Moreover Technologies, which captures the top 30% of social media content, as ranked by
popularity using incoming links, collected from around 4 million social media sources such as
chat rooms (including stock-market specific chats), Facebook posts, blogs, micro-blogs and
tweets.

From these sources, the TRMI algorithm extracts high-frequency measures of media
coverage, sentiment, and events surrounding each of about 3000 US stocks. The TRMI
indicators update every minute. We use a dataset which reports them at the daily frequency.

The total buzz of a stock on a given day counts the number of words and phrases referring
to the stock in the above sources. This number is obtained by first identifying articles and
social media posts about a specific stock, and then counting the total number of phrases and
words referring to sentiments (for instance, fear, joy or trust) and/or events (for instance,
litigation, mergers or layoffs) related to this stock. Therefore, total buzz captures not only
which stocks are being mentioned, but also the intensity of discussion of a particular stock,
as captured by the quantity of sentiment/event phrases and words. This measure is more
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informative than the length of the article, since meaningless words (for instance, ‘the’, ‘are’,
‘in’, etc.) are not included. For our main analysis, we use a monthly measure of total buzz,
which is obtained by summing across days.

The relative buzz of a stock is then defined as the total buzz of a stock on a given
month, divided by the total buzz of all stocks mentioned in that month. This calculation is
done separately for social and news media content, yielding our key measures of coverage:
Social media relative buzz (BuzzS) and news media relative buzz (BuzzN), both of which
are continuous variables between zero and one.13

We focus on stocks which are traded on NYSE, AMEX and NASDAQ. We follow the
literature in excluding regulated utilities (SIC codes 4910-4949), depository institutions (SIC
6000-6099) and holding and investment companies (SIC 6700-6799). This yields a panel of
2613 stocks observed between January 2009 and December 2014, with 162,268 stock-month
observations in total.14

4.2 Financial data

We merge our measures of buzz with monthly financial data from the Center for Research
in Securities Prices (CRSP) and the Compustat database. The main variables of interest
are trading activity and the realized idiosyncratic volatility of each stock. Our measure of
trading activity is turnover (“Turn”), which is taken directly from the CRSP data.

Our parametric measure of realized idiosyncratic volatility (“iVolp”) is constructed in
two steps. First, for every month m in the sample, we estimate a three-factor model of daily
returns on each stock by fitting the following regression equation:

(Rit −Rft) = β
(m)
0 + β

(m)
1 (Rmt −Rft) + β

(m)
2 SMBt + β

(m)
3 HMLt + ε

(m)
t .

Rit is the return to stock i on day t; Rft is the one-month treasury bill rate; Rmt is the
return to the value-weighted market portfolio; SMBt is the average return on the three
Fama and French (1993) small-cap portfolios minus the average return on the three big-
cap portfolios; and HMLt is the average return on the two value stock portfolios minus
the average return on the two growth stock portfolios. Second, we define the idiosyncratic
volatility of stock i in month m as the sum of squared errors from this monthly regression.
We will check the robustness of our results by considering an alternative, non-parametric,

13In our empirical analysis, we focus on relative buzz. In the models of Section 3, we interpret increased
buzz as an increase in the total number of signals about the stock in question. However, the predictions
of this model are relevant for our empirical measure because, holding constant the amount of buzz around
other assets, an increase in the number of signals about an individual stock corresponds to an increase in
relative buzz also. Moreover, we show in Section 5.4 that the predictions of the echo chamber model for
volatility also hold true at the market level when total buzz is considered.

14The panel is unbalanced due to the entry and exit of stocks. We show that our main results are preserved
when we restrict attention to a balanced panel.
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measure of idiosyncratic volatility (“iVoln”), which is obtained by taking the variance of
returns of each stock at the monthly frequency.

Our analysis also includes a set of financial variables which have predictive power for
volatility and trading activity. We obtain measures of firm size (Size), monthly stock price
returns (Ret), and the standard deviation of the last 60 monthly returns (TotalSD) from
CRSP. Using the Compustat data, we calculate each firm’s leverage (Leverage), and its
degree of focus as measured by the Herfindahl-Hirschman index of segment revenue (HHI).
We include the share of institutional ownership (InstOwn) from the Thomson Reuters Stock
Ownership Summary.15 We further obtain the dispersion of analyst opinions (AnalystDisp)
from the I/B/E/S summary files.16

4.3 Summary statistics

Table 1 shows sample means and standard deviations for buzz, volatility and turnover, both
for the total stocks and disaggregated by industry. Buzz is measured in percentage points.
We winsorize all financial data and the buzz measures at 1% to ensure that our estimates
are not driven by outliers.

The average of relative buzz is about 0.02%. Values of buzz range from zero, for stocks
which are not mentioned in a given month, to 0.5% for the most talked-about stocks.17

The standard deviation of buzz is slightly higher for news media than for social media.
There is evidence of heterogeneity across industries: Buzz is relatively high in the trade,
services, manufacturing and finance industries, and relatively low in agriculture and min-
ing/construction.

Table 2 reports sample averages and standard deviations for our financial control vari-
ables, and Table 3 shows contemporaneous correlations, with standard errors in parentheses.
Social and news media buzz are strongly correlated. Buzz correlates with firm size, and this
correlation is stronger for news than for social media. There is also a strong correlation
between buzz and turnover, especially for social media. The contemporaneous correlation
between volatility and buzz is positive for social media, and negative (but close to zero)
for news media. Table 4 decomposes variation in our panel data into between and within
stock variation. For both news and social media, the majority of variation occurs is between
stocks.

15The literature on stock market volatility demonstrates the predictive power of size (Cheung and Ng,
1992), returns (Duffee, 1995), institutional ownership (Dennis and Strickland, 2002) and trading volume
(Schwert, 1989). Trading activity is commonly associated with the absolute value of returns (Karpoff, 1987;
Schwert, 1989), institutional ownership (Tkac, 1999) and size (Tkac, 1999; Lo and Wang, 2000).

16Dispersion is calculated monthly as the natural log of one plus the standard deviation of analyst forecasts,
normalized by the absolute value of mean forecast in a given month.

17Before we winsorize the top 1%, we observe stocks which have relative buzz of about 10% on individual
days.
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To further illustrate the dynamics of news and social media buzz variables in our sample,
Figure 1 shows 30-day moving averages of the total news and social media buzz of all stocks
in our sample. At the market level, both types of buzz go through noticeable swings, and
they are positively but not perfectly correlated. Figure 3 illustrates our measure of buzz at
the industry level. Panel A plots 30-day moving averages of buzz for each industry, and Panel
B shows a comparison of the total quantities of news and social buzz for each industry over
the whole sample. This reveals considerable variation in buzz across time and industries.
This further translates to variation at the stock level, which we exploit in our analysis of
volatility and turnover below.

5 Empirical results

In Section 3, we developed predictions about the relationship between buzz in news and
social media, and subsequent return volatility and trading activity.

from several models on the relationship between buzz in social and news media, and
subsequent volatility and trading activity. We now take these implications to the data by
examining whether buzz indeed predicts volatility and turnover. We begin by reporting our
estimates, and Section 6 below relates these findings to our theoretical predictions.

5.1 Main results: Predicting volatility and trading activity

Let i index stocks and t index months. We run a panel regression of each stock i’s volatility
next month (t+ 1) on this month’s buzz in social and news media, BuzzSi,t and BuzzNi,t,
stock-level control variables Xi,t, and this month’s volatility iV olpi,t. We control for stock
and time fixed effects αi and µt:

iV olpi,t+1 = αi + µt + βS ×BuzzSi,t + βN ×BuzzNi,t + γ ·Xi,t + δ × iV olpi,t + εi,t+1. (9)

Table 5 reports the results from estimating Equation (9). Standard errors are clustered at
the stock level and the corresponding t-statistics are in parentheses.

We find that high news media buzz predicts lower future volatility and this is statistically
significant at the 1% level. Social media buzz predicts higher future volatility, and this rela-
tionship is also statistically significant once we control for stock characteristics in column (3).
The sign of the coefficient on social media buzz changes once we add the controls, suggesting
that the estimates in columns (1) and (2) were biased by omitted variables. Including time
fixed effects in column (4) makes little difference, suggesting that the estimated effects of
buzz are not driven by unobserved time trends.

A potential concern is that our estimated coefficients, with opposite signs on news and
social media, are driven by the strong positive contemporaneous correlation between news
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and social media buzz. To check whether this is the case, we introduce the two measures
separately in columns (5) and (6). The coefficients have the same sign, magnitude and
significance as in columns (3) and (4), which suggests that contemporaneous correlation is
not driving our results.

To interpret the economic significance of buzz, suppose that a stock goes from having no
buzz in social media to being one of the most talked-about stocks, with a relative buzz of
0.5%. Then, according to the most general specification (column (4)), our measure of the
stock’s subsequent idiosyncratic volatility rises by about 0.0055 on average. This increase
corresponds to about half the average volatility, or just under a third of a standard deviation.
For an equivalent change in news media buzz, the stock’s subsequent volatility falls by 0.008,
about a three quarters of the average volatility, or 40% of a standard deviation.

For trading activity, as measured by turnover, we run the analogous panel regression:

Turni,t+1 = αi + µt + βS ×BuzzSi,t + βN ×BuzzNi,t + γ ·Xi,t + δ × Turni,t + εi,t+1. (10)

Table 6 reports our estimates. Again, standard errors are clustered at the stock level and
we include stock fixed effects throughout.

We find that high social media buzz predicts high turnover, and that high news media
buzz predicts low turnover. This effect is statistically significant at the 1% level, and does
not change much when we include control variables in column (3), or time fixed effects in
columns (2) and (4). Introducing social and news media buzz separately in columns (5) and
(6) affects our estimates only marginally, suggesting that they are not driven by correlation
between social and news media.

To interpret the effects, suppose again that relative social media buzz around a stock
rises from zero to the level of the most talked-about stocks at 0.5%. Then according to the
most general specification in column (4), turnover increases by about 1

2 , which corresponds
to 24% of average turnover, or about a quarter of a standard deviation. For an equivalent
rise in news media buzz, turnover falls by about 0.88, which is 43% of average turnover, or
47% of a standard deviation.

Our main results are robust in a variety of alternative specifications. Table 7 reports
our baseline panel regressions (9) and (10), controlling for a measure of “sentiment” in news
and social media (SentN and SentS) from the TRMI database.18 Absolute sentiments and
negative sentiments (SentN_Neg and SentS_Neg) serve as a proxy for potential unobserved
stock-specific events. Only news media sentiments appear to have a significant effect on
turnover. Moreover, the estimated effects of news and social buzz change very little from

18Sentiment on news and social media (SentN and SentS) is calculated as the difference between the
number of “positive” and “negative” references to a stock, as identified by a proprietary machine learning
algorithm, and taking into account all words and phrases which count towards the stock’s total buzz. To
account for asymmetric effects, we also include the number of negative references in isolation (SentN_neg
and SentS_neg).
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our baseline specification.
Tables 8 and 9 show the results of estimating Equations (9) and (10) on a balanced

panel, and Table 10 shows the results of running the regression (9) using the non-parametric
measure of volatility. Again, the estimated effects of buzz are quantitatively similar to the
baseline model, and significant at the 1% level.

5.2 The role of disagreement

Tables 11 and 12 repeat our panel regressions while controlling for the dispersion of analyst
opinions, a common measure of disagreement among investors. The effects of BuzzN and
BuzzS are much the same as in the baseline regressions.

Moreover, we check whether the dispersion of analyst opinion has predictive power for
future news or social media buzz, as one would expect if disagreement were a major driver of
media activity. Table 13 shows the results of panel regressions with news and social media
buzz (“BuzzN” and “BuzzS”) of month t+1 as the dependent variable, analyst dispersion in
month t as the independent variable, and a set of control variables. The sign on AnalystDisp
is positive in news buzz regressions, but negative in social buzz regressions. These coefficients
become insignificant once month fixed effects are included.

5.3 Vector autoregression

To allow for richer dynamic interactions, we run a panel vector autoregression (VAR) includ-
ing news and social media buzz, return volatility and turnover as endogenous variables. We
include two lags of endogenous variables, a set of exogenous control variables, and month
and time fixed effects.19 Table 14 shows the results and Figure 4 illustrates the estimated
effects with impulse response functions.

The estimated effects are similar to our baseline panel regressions: An increase in social
media buzz leads to a significant increase in volatility and turnover which declines over time.
An increase in news media buzz leads to a significant decrease in volatility. We were unable
to estimate the impact of news media buzz on turnover with a great deal of precision, as
witnessed by the unusually wide confidence intervals. The point estimate of this effect is
initially negative but not significant at the 5% level.

19To control for fixed effects in a computationally feasible manner, we time-demean the endogenous vari-
ables to account for time fixed effects, and apply a Helmert transformations to create forward mean differ-
enced forms which remove stock fixed effects. For a vector of endogenous variables ẑi,t, in a panel of time
periods t = 1, ..., T , the Helmert-transformed endogenous variables are

zi,t =
√

T − t

T − t + 1(ẑit −
1

T − t

T∑
n=t+1

ẑin).
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Based on our estimates, we test for Granger causality among the endogenous variables.
The null hypothesis is that for two endogenous variables i and j, a contemporaneous increase
in i does not predict a significant subsequent change in j. We find significant effects for all
pairs (i, j) at the 1% level, with two exceptions: A shock to social media buzz does not
predict a significant change in news media buzz (p-value 0.054), and the impact of turnover
on social media buzz is only significant at the 5% level (p-value 0.039).

5.4 Market-level effects

Our analysis so far has focused on stock-level news and social media buzz, stock-level trading
activity and idiosyncratic volatility. We now examine whether the same effects are present
at the market level, i.e. whether the total buzz surrounding all stocks, in either social or
news media, has predictive power for aggregate volatility and trading activity.

To study the effect of buzz on market return volatility, we obtain a daily time series
of market return volatility from a generalized autoregressive conditional heteroskedasticity
(ARCH) models. We use the GJR-GARCH model to capture the potential leverage effect,
i.e. the asymmetry in the effect of positive and negative return on volatility (see, for example,
Duffee, 1995).

We use two alternative series for market return: the value-weighted return from CRSP
(VWRet), and the return on the S&P 500 (SPRet). We construct market-level measures of
buzz in news media (Mkt_BuzzN) and social media (Mkt_BuzzS) by summing up the total
buzz for all individual stocks on each day. For Mkt_BuzzN and Mkt_BuzzS, we sum up
buzz for stocks in our whole sample. For analyzing S&P500 returns, we generate measures
of buzz (SP_BuzzN and SP_BuzzS) which aggregate total buzz only for S&P500 stocks.

We report the results in Table 15. The negative effect of news buzz and the positive effect
of social buzz on volatility can also be found at the market level, using both all stocks or
only S&P 500 stocks. Our analysis of turnover, by contrast, did not yield significant results
at the market level.

6 Discussion

We have found that “buzz” in social media consistently predicts high idiosyncratic volatil-
ity and high trading activity, as measured by turnover. Moreover, “buzz” in news media
consistently predicts low volatility and low trading activity. Since both effect go in opposite
directions, we can reject the hypothesis that the processing of information from social and
news media is described by the same underlying model. We can further interpret our results
by comparing them to the predictions in Section 3.

Our model of social media as an “echo chamber” is able to rationalize our findings: We
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fail to reject any of the predictions of Proposition 1. Thus, the evidence is consistent with
a model in which information on social media is frequently repeated, but some boundedly
rational investors treat repeated information as if it were new. In this model, social media
activity increases volatility and trading activity by boosting disagreement and confidence
among traders. News media can have the opposite effect because it reduces disagreement,
which dampens volatility and turnover as long as news are sufficiently informative.

Our panel VAR estimation provides further support for the “echo chamber” hypothesis:
An increase in news media activity has a significant positive effect on subsequent social
media activity, but conversely, the effect of an increase in social media buzz on news media
is not significant. These effects are consistent with the hypothesis that social media repeats
existing information.

In Section 3, we considered alternative mechanisms, none of which is fully consistent
with the evidence. First, in a model where social media signals are private information,
more social media activity dampens volatility by improving the informativeness of markets
and reducing the impact of noise traders (Proposition 2). Second, we considered a class of
models where social media is informative but processed subject to a variety of behavioral
biases. In these models, social media activity also tends to reduce volatility due to its impact
on informativeness (Proposition 3). These predictions are contrary to our finding that social
media buzz is positively correlated with subsequent volatility.

Finally, since our empirical analysis is not based on exogenous variation in news or
social media activity, we must consider the possible endogenous determination of news and
social media buzz. Our empirical findings on social media are matched by a model where
disagreement shocks drive both buzz and market activity (Proposition 4, part 1). However,
this model predicts that the effect should be diminished by controlling for measures of
disagreement. We fail to find support for this prediction, since our estimated effects are
virtually unchanged when we control for disagreement, as measured by the dispersion of
analyst forecasts.

Finally, we consider the possibility that movements in uncertainty determine both the
demand for information and stock market activity (Proposition 4, part 2). This model
predicts that social and news media are either both positively correlated with subsequent
volatility – if the production of news is insufficient to offset a surge in uncertainty – or
both negatively correlated with subsequent volatility. By contrast, the empirical results
consistently show that the correlation of news and social media with subsequent volatility
have opposite signs.
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7 Conclusions

In this paper, we have studied whether information from social media is processed in a
different way from information from (online or offline) news media. Using a new dataset on
news and social media coverage in financial markets, we have established we have established
two robust facts about the relationship between such coverage and market activity. First,
intense social media coverage predicts high volatility of returns and high trading activity
over the next month. Second, intense news media coverage predicts low volatility and low
trading activity. These effects are statistically and economically significant. The difference
between the impact of social and news media is striking, and new to the literature.

We have related these results to the predictions of a theory of social media as an “echo
chamber” which repeats existing information. Our empirical results are consistent with this
model. Moreover, we have used formal models to establish that our empirical results are
not consistent with models where social media provides private information to a subset of
investors, or where social media is informative but misinterpreted according to common
behavioral biases. We have also developed tests and models which suggest that our results
are not entirely driven by endogenously determined buzz. Nonetheless, our analysis suggests
scope for further research on the different roles of news and social media, and it will be
valuable in future work to exploit exogenous variation in social or news media activity.
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Tables and figures

Table 1: Summary statistics for buzz, volatility and turnover

Industries BuzzN BuzzS iVolp Turn
Agriculture Mean 0.0118 0.0074 0.0108 1.4236

SD 0.0197 0.0102 0.0179 1.8153
Max 0.2315 0.0687 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 520 520 520 520

Mining&Constr Mean 0.0174 0.0264 0.0131 3.0775
SD 0.0314 0.0688 0.0198 2.5168
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 11106 11106 11106 11106

Manufacturing Mean 0.0288 0.0314 0.0111 1.9947
SD 0.0657 0.0897 0.0197 1.8134
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 71569 71569 71569 71569

Utilities Mean 0.0330 0.0240 0.0107 1.9643
SD 0.0793 0.0667 0.0202 1.7116
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 9705 9705 9705 9705

Trade Mean 0.0323 0.0225 0.0093 2.1809
SD 0.0657 0.0647 0.0164 1.7985
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 17709 17709 17709 17709

Finance Mean 0.0311 0.0229 0.0073 1.5866
SD 0.0685 0.0781 0.0156 1.5239
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 13376 13376 13376 13376

Services Mean 0.0327 0.0304 0.0111 1.9164
SD 0.0803 0.0965 0.0190 1.7618
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 30908 30908 30908 30908

Other Mean 0.0239 0.0270 0.0144 1.8484
SD 0.0664 0.0834 0.0205 1.9401
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 7375 7375 7375 7375

Total Mean 0.0293 0.0285 0.0109 2.0303
SD 0.0682 0.0849 0.0191 1.8644
Max 0.5323 0.6500 0.1310 11.0055
Min 0.0000 0.0000 0.0003 0.1062
N 162268 162268 162268 162268
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Table 2: Summary statistics for control variables

Size InstOwn Ret HHI Leverage TotalSD
Mean 13.8058 0.6972 0.0196 0.7389 0.0258 0.1430
SD 1.7366 0.2438 0.1274 0.2923 0.0546 0.0632
Max 18.3953 1.0000 0.4822 1.0000 0.3417 0.3791
Min 10.1016 0.0597 -0.3136 0.0000 0.0000 0.0489
N 159358 162268 161526 141532 151185 162220

Table 3: Contemporaneous correlations

Variables BuzzN BuzzS iVolp Turn Size InstOwn Ret HHI Leverage TotalSD
BuzzN 1.000

BuzzS 0.554 1.000
(0.000)

iVolp -0.032 0.100 1.000
(0.000) (0.000)

Turn 0.133 0.307 0.258 1.000
(0.000) (0.000) (0.000)

Size 0.409 0.230 -0.386 0.176 1.000
(0.000) (0.000) (0.000) (0.000)

InstOwn 0.012 -0.085 -0.174 0.235 0.339 1.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Ret -0.001 -0.010 0.120 0.023 -0.042 -0.010 1.000
(0.691) (0.000) (0.000) (0.000) (0.000) (0.000)

HHI -0.076 -0.008 0.076 0.049 -0.173 -0.052 0.003 1.000
(0.000) (0.005) (0.000) (0.000) (0.000) (0.000) (0.242)

Leverage 0.059 0.051 0.065 -0.008 -0.027 -0.044 0.007 -0.026 1.000
(0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.006) (0.000)

TotalSD -0.132 0.077 0.331 0.185 -0.470 -0.166 0.020 0.109 0.077 1.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 4: Summary statistics between and within stocks

Variable Mean Std. Dev. Min Max Observations
BuzzN overall 0.030 0.069 0 0.532 N = 133056

between 0.063 0 0.532 n = 1848
within 0.028 -0.258 0.517 T = 72

BuzzS overall 0.030 0.087 0 0.650 N = 133056
between 0.075 0 0.650 n = 1848
within 0.043 -0.452 0.667 T = 72

iVolp overall 0.010 0.018 0.000 0.131 N = 133056
between 0.009 0.001 0.066 n = 1848
within 0.015 -0.052 0.138 T = 72

Turn overall 2.035 1.832 0.106 11.006 N = 133056
between 1.397 0.113 10.616 n = 1848
within 1.186 -4.206 12.273 T = 72
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Table 5: Volatility Regressions

(1) (2) (3) (4) (5) (6)
iVolp(t+1) iVolp(t+1) iVolp(t+1) iVolp(t+1) iVolp(t+1) iVolp(t+1)

iVolp 0.302∗∗∗ 0.225∗∗∗ 0.213∗∗∗ 0.185∗∗∗ 0.187∗∗∗ 0.183∗∗∗
(34.70) (27.52) (24.20) (21.21) (21.48) (20.98)

BuzzN -0.0199∗∗∗ -0.0187∗∗∗ -0.0193∗∗∗ -0.0167∗∗∗ -0.0138∗∗∗
(-7.86) (-8.19) (-7.44) (-6.85) (-5.51)

BuzzS -0.00524∗∗ 0.000559 0.00991∗∗∗ 0.0113∗∗∗ 0.00934∗∗∗
(-2.23) (0.24) (4.15) (4.85) (4.06)

Size -0.00791∗∗∗ -0.00618∗∗∗ -0.00610∗∗∗ -0.00620∗∗∗
(-34.30) (-21.70) (-21.28) (-21.82)

InstOwn 0.00462∗∗∗ 0.00298∗∗∗ 0.00278∗∗ 0.00305∗∗∗
(4.31) (2.70) (2.49) (2.76)

HHI 0.000211 -0.0000732 -0.0000593 -0.0000969
(0.31) (-0.11) (-0.09) (-0.15)

Leverage 0.00282 0.00354 0.00354 0.00353
(1.24) (1.52) (1.51) (1.51)

Turn -0.000235∗∗∗ -0.000317∗∗∗ -0.000206∗∗ -0.000356∗∗∗
(-2.88) (-3.59) (-2.29) (-4.02)

Ret -0.0108∗∗∗ -0.00952∗∗∗ -0.00964∗∗∗ -0.00947∗∗∗
(-19.29) (-14.77) (-14.91) (-14.66)

TotalSD -0.0769∗∗∗ -0.0627∗∗∗ -0.0620∗∗∗ -0.0623∗∗∗
(-13.43) (-9.98) (-9.80) (-9.90)

Stock FE Yes Yes Yes Yes Yes Yes
Month FE No Yes No Yes Yes Yes
N 159549 159549 131878 131878 131878 131878
R2 0.092 0.159 0.142 0.178 0.177 0.177
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Turnover Regressions

(1) (2) (3) (4) (5) (6)
Turn(t+1) Turn(t+1) Turn(t+1) Turn(t+1) Turn(t+1) Turn(t+1)

Turn 0.584∗∗∗ 0.590∗∗∗ 0.589∗∗∗ 0.595∗∗∗ 0.604∗∗∗ 0.591∗∗∗
(89.66) (88.03) (75.51) (74.12) (72.34) (72.78)

BuzzN -1.841∗∗∗ -1.974∗∗∗ -1.670∗∗∗ -1.765∗∗∗ -1.519∗∗∗
(-7.21) (-7.71) (-6.03) (-6.38) (-5.25)

BuzzS 0.865∗∗∗ 0.852∗∗∗ 1.014∗∗∗ 0.961∗∗∗ 0.748∗∗∗
(5.23) (5.21) (5.21) (4.96) (3.84)

Size -0.0259 0.0628∗∗∗ 0.0704∗∗∗ 0.0605∗∗∗
(-1.64) (3.22) (3.57) (3.13)

InstOwn 0.431∗∗∗ 0.304∗∗∗ 0.288∗∗∗ 0.312∗∗∗
(6.34) (4.44) (4.18) (4.53)

HHI 0.0384 0.00204 0.00327 -0.000525
(0.82) (0.04) (0.07) (-0.01)

Leverage 0.123 0.0559 0.0560 0.0551
(0.98) (0.45) (0.45) (0.44)

iVolp -5.655∗∗∗ -6.107∗∗∗ -5.932∗∗∗ -6.281∗∗∗
(-14.37) (-15.46) (-15.08) (-15.80)

AbsRet 0.498∗∗∗ 0.395∗∗∗ 0.391∗∗∗ 0.385∗∗∗
(9.78) (7.78) (7.70) (7.56)

TotalSD -0.953∗∗∗ -0.435 -0.376 -0.392
(-3.18) (-1.30) (-1.10) (-1.17)

Stock FE Yes Yes Yes Yes Yes Yes
Month FE No Yes No Yes Yes Yes
N 159613 159613 131891 131891 131891 131891
R2 0.346 0.384 0.340 0.380 0.379 0.379
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Regressions with Sentiment Controls

(1) (2) (3) (4)
iVolp(t+1) iVolp(t+1) Turn(t+1) Turn(t+1)

iVolp 0.179∗∗∗ 0.155∗∗∗ -6.304∗∗∗ -6.624∗∗∗
(17.84) (15.66) (-12.94) (-13.44)

Turn -0.0000971 -0.000197∗∗ 0.579∗∗∗ 0.583∗∗∗
(-1.26) (-2.37) (72.05) (69.20)

BuzzN -0.0176∗∗∗ -0.0141∗∗∗ -1.636∗∗∗ -1.688∗∗∗
(-7.11) (-6.35) (-5.97) (-6.29)

BuzzS 0.00794∗∗∗ 0.00924∗∗∗ 1.099∗∗∗ 1.057∗∗∗
(3.67) (4.29) (5.38) (5.13)

SentN 0.00161∗∗∗ 0.00116∗∗∗ 0.190∗∗∗ 0.161∗∗∗
(3.88) (2.84) (7.01) (6.14)

SentN_neg -0.00140∗ 0.000338 -0.238∗∗∗ -0.0709
(-1.66) (0.41) (-4.47) (-1.39)

SentS 0.0000597 0.000106 -0.0290 0.00290
(0.20) (0.36) (-1.41) (0.14)

SentS_neg 0.000184 0.000463 0.0347 -0.0118
(0.32) (0.82) (0.89) (-0.31)

Controls Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes
Month FE No Yes No Yes
N 116491 116491 116504 116504
R2 0.120 0.157 0.331 0.378
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Volatility Regressions with Balanced Panel

(1) (2) (3) (4)
iVolp(t+1) iVolp(t+1) iVolp(t+1) iVolp(t+1)

iVolp 0.338∗∗∗ 0.256∗∗∗ 0.241∗∗∗ 0.212∗∗∗
(33.73) (26.53) (24.19) (21.36)

BuzzN -0.0180∗∗∗ -0.0175∗∗∗ -0.0182∗∗∗ -0.0158∗∗∗
(-7.08) (-7.55) (-7.46) (-6.75)

BuzzS -0.00445∗∗ 0.00125 0.00898∗∗∗ 0.0104∗∗∗
(-2.01) (0.58) (3.72) (4.34)

Controls Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes
Month FE No Yes No Yes
N 131208 131208 112515 112515
R2 0.117 0.184 0.163 0.197
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Volatility Regressions with Balanced Panel

(1) (2) (3) (4)
Turn1 Turn1 Turn1 Turn1

Turn 0.609∗∗∗ 0.614∗∗∗ 0.613∗∗∗ 0.619∗∗∗
(86.29) (83.46) (75.35) (73.07)

BuzzN -1.791∗∗∗ -1.956∗∗∗ -1.655∗∗∗ -1.755∗∗∗
(-7.67) (-8.45) (-6.38) (-6.71)

BuzzS 0.720∗∗∗ 0.717∗∗∗ 0.920∗∗∗ 0.852∗∗∗
(4.25) (4.28) (4.71) (4.36)

Controls Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes
Month FE No Yes No Yes
N 131208 131208 112515 112515
R2 0.373 0.416 0.371 0.415
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Non-Parametric Volatility Regressions

(1) (2) (3) (4)
iVoln1 iVoln1 iVoln1 iVoln1

iVoln 0.407∗∗∗ 0.282∗∗∗ 0.321∗∗∗ 0.247∗∗∗
(52.81) (35.83) (41.23) (29.70)

BuzzN -0.0327∗∗∗ -0.0281∗∗∗ -0.0337∗∗∗ -0.0268∗∗∗
(-8.07) (-8.37) (-7.81) (-7.28)

BuzzS -0.0119∗∗∗ 0.00179 0.0103∗∗∗ 0.0154∗∗∗
(-3.64) (0.55) (2.90) (4.52)

Controls Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes
Month FE No Yes No Yes
N 159655 159655 131922 131922
R2 0.171 0.312 0.213 0.326
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Volatility Regressions

(1) (2) (3) (4)
iVolp(t+1) iVolp(t+1) iVolp(t+1) iVolp(t+1)

iVolp 0.302∗∗∗ 0.225∗∗∗ 0.178∗∗∗ 0.154∗∗∗
(34.70) (27.52) (17.79) (15.59)

BuzzN -0.0199∗∗∗ -0.0187∗∗∗ -0.0179∗∗∗ -0.0148∗∗∗
(-7.86) (-8.19) (-7.19) (-6.58)

BuzzS -0.00524∗∗ 0.000559 0.00790∗∗∗ 0.00913∗∗∗
(-2.23) (0.24) (3.65) (4.24)

AnalystDisp -0.00144∗∗ -0.00128∗
(-2.11) (-1.91)

N 159549 159549 116491 116491
R2 0.092 0.159 0.120 0.157
Stock FE Yes Yes Yes Yes
Month FE No Yes No Yes
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 12: Turnover Regressions

(1) (2) (3) (4)
Turn(t+1) Turn(t+1) Turn(t+1) Turn(t+1)

Turn 0.584∗∗∗ 0.590∗∗∗ 0.578∗∗∗ 0.581∗∗∗
(89.66) (88.03) (72.13) (69.03)

BuzzN -1.841∗∗∗ -1.974∗∗∗ -1.631∗∗∗ -1.735∗∗∗
(-7.21) (-7.71) (-6.01) (-6.45)

BuzzS 0.865∗∗∗ 0.852∗∗∗ 1.098∗∗∗ 1.053∗∗∗
(5.23) (5.21) (5.37) (5.10)

AnalystDisp 0.0336 0.0179
(0.84) (0.48)

Stock FE Yes Yes Yes Yes
Month FE No Yes No Yes
N 159613 159613 116504 116504
R2 0.346 0.384 0.330 0.378
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 13: Buzz Regressions

(1) (2) (3) (4)
BuzzN(t+1) BuzzN(t+1) BuzzS(t+1) BuzzS(t+1)

BuzzN 0.250∗∗∗ 0.246∗∗∗ -0.0854∗∗∗ -0.0865∗∗∗
(5.31) (5.20) (-5.99) (-6.01)

BuzzS 0.0264∗∗∗ 0.0277∗∗∗ 0.678∗∗∗ 0.680∗∗∗
(2.58) (2.71) (34.00) (33.89)

AnalystDisp 0.00312∗∗∗ 0.00151 -0.00141 -0.00195
(2.67) (1.31) (-1.10) (-1.54)

Size -0.00112∗∗ 0.00153∗∗∗ 0.00238∗∗∗ 0.00377∗∗∗
(-2.57) (2.69) (4.45) (4.75)

InstOwn 0.00245 0.0000383 -0.00203 -0.00320
(1.49) (0.02) (-0.92) (-1.33)

HHI 0.00284 0.00178 0.000205 -0.000158
(1.48) (0.93) (0.09) (-0.07)

Leverage 0.00873∗ 0.00618 0.00140 0.000473
(1.89) (1.36) (0.33) (0.11)

Turn -0.0000575 -0.000279 -0.0000735 -0.000201
(-0.30) (-1.37) (-0.27) (-0.70)

AbsRet -0.00114 -0.00243∗ -0.00159 -0.00286∗
(-0.82) (-1.66) (-0.98) (-1.69)

Stock FE Yes Yes Yes Yes
Month FE No Yes No Yes
N 116531 116531 116531 116531
R2 0.070 0.077 0.445 0.446
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 14: Panel VAR by Size Quartiles

(1) (2) (3) (4) (5)
All Q1 Q2 Q3 Q4

iVolp
BuzzN(t-1) -0.0132*** -0.0537*** -0.0374*** 0.00258 -0.00445**

(-7.18) (-5.33) (-6.02) (0.59) (-2.28)

BuzzN(t-2) -0.00588*** -0.0444*** -0.00896 0.00926** -0.00237
(-3.43) (-4.76) (-1.25) (2.17) (-1.39)

BuzzS(t) 0.0111*** 0.00695 0.0198*** 0.0143*** 0.00505**
(4.23) (1.09) (2.62) (2.62) (1.96)

BuzzS(t-2) 0.00130 0.00185 -0.00999* 0.00787 0.00299
(0.56) (0.31) (-1.67) (1.45) (1.24)

Turn
BuzzN(t-1) -0.219 0.0302 -1.028** -0.672 0.135

(-1.29) (0.06) (-2.37) (-1.53) (0.61)

BuzzN(t-2) 0.583*** 0.735 0.484 -0.0758 0.382*
(3.67) (1.54) (0.95) (-0.18) (1.94)

BuzzS(t-1) 1.303*** 1.405*** 1.655*** 1.133** 1.027***
(6.47) (3.20) (3.09) (2.23) (4.15)

BuzzS(t-2) -0.0834 -0.830** -1.144** 0.637 0.754***
(-0.47) (-2.19) (-2.56) (1.33) (3.37)

Controls Yes Yes Yes Yes Yes
N 127511 31877 31878 31878 31878
t statistics in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 15: Market-Level GJR-GARCH

(1) (2) (3) (4) (5)
VWRet VWRet SPRet SPRet SPRet

Main
Constant 0.000687∗∗∗ 0.000885∗∗∗ 0.000573∗∗ 0.000780∗∗∗ 0.000728∗∗

(2.84) (3.00) (2.41) (2.71) (2.50)
ARCH
ARCH(-1) 0.206∗∗∗ 0.271∗∗∗ 0.211∗∗∗ 0.309∗∗∗ 0.310∗∗∗

(6.03) (5.01) (5.80) (4.95) (5.06)

TARCH(-1) -0.0611∗∗ -0.146∗∗∗ -0.0756∗∗ -0.179∗∗∗ -0.207∗∗∗
(-1.98) (-2.59) (-2.32) (-2.82) (-3.36)

GARCH(-1) 1.163∗∗∗ 0.540∗∗∗ 1.165∗∗∗ 0.544∗∗∗ 0.572∗∗∗
(12.49) (8.52) (11.90) (8.48) (11.33)

Constant -0.0000462∗∗∗ -0.0000435∗∗∗
(-4.77) (-4.41)

HET
MktBuzzN(-1) -0.0000185∗∗∗ -0.0000179∗∗∗

(-4.31) (-4.16)

MktBuzzS(-1) 0.00000921∗∗∗ 0.00000876∗∗∗
(3.23) (3.08)

SPBuzzN(-1) -0.0000305∗∗∗
(-5.20)

SPBuzzS(-1) 0.0000270∗∗∗
(4.61)

Constant -8.596∗∗∗ -8.711∗∗∗ -9.056∗∗∗
(-34.40) (-35.35) (-34.61)

N 1510 1183 1510 1183 1183
ll 4665.3 3704.0 4693.1 3721.2 3727.4
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figures

Figure 1: News and social media buzz at the market level
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Figure 2: Simulated comparative statics. The panels above show the effect of increasing
news and social media buzz. The dashed line in each panel is the approximate volatility of
returns computed from Equation 7. The solid line is the exact volatility, computed by taking
J = 10000 draws of θ and s, computing equilibrium prices and returns for each draw, and
taking the sample variance of returns across all draws. The parameters are ρ0 = 2, θ0 = 20,
λ = 0.5, r = 0.1 and γ = 2. For comparative statics with respect to N (news media), we set
K = 5; for comparative statics with respect to K (social media), we set N = 5. The high
signal-noise ratio case has ρε = 0.5, the low signal-noise ratio case has ρε = 0.1.
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Figure 3: News and social media buzz by industry
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Figure 4: Impulse response functions
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Appendix for online publication

A Proof of Proposition 1

We begin by characterizing the difference in beliefs, θB − θR ≡ ∆. From (3), and using the
definition of repeated signals, we have

θB =
NK∑
i=1

ρε
ρB
si +

(
1−NK ρε

ρB

)
θ0

=
N∑
i=1

Kρε
ρB

si +
(

1−NKρε
ρB

)
θ0,

and subtracting (1) gives

∆ = θB − θR = N (wB − wR) (s̄− θ0) ,

where s̄ = N−1∑N
i=1 si is the average informative signal, and wB = Kρε/ρB and wR = ρε/ρR

denote the weights placed on each informative signal by behavioral and rational traders
respectively. Note that ∆ is normally distributed with mean zero and variance

V [∆] = N2 (wB − wR)2 V [s̄]

= N2 (wB − wR)2
(

1
ρ0

+ 1
Nρε

)
. (11)

The last line follows from s̄ = θ + N−1∑N
i=1 εi and the independence of εi from θ and each

other.

Properties of return volatility

Using the law of total variance in Equation (6), we have

θ2
0
r2V[R] ' V[θ − rp?] = E [V[θ − rp?|s]] + V [E[θ − rp?|s]] .

Since the price is known conditional on signals, we have V(θ − rp?|s) = V(θ|s) = ρ−1
R .

Moreover, rational beliefs satisfy E [θ|s] = θR, implying E[θ−rp?|s] = q(θR−θB). Combining,
we obtain Equation (7). Using (11) to evaluate V [∆], substituting for ρB and ρR from (2)
and (4), and simplifying, we have
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θ2
0
r2V[R] ' 1

ρR
+ q2V [∆]

= ρ0 +Nρε [1 + λ (K − 1)]2

[ρ0 + [1 + λ(K − 1)]Nρε]2
.

For comparative statics with respect to social media buzz K , consider the monotone trans-
formation ξ ≡ 1 + λ(K − 1). We have

θ2
0
r2
∂V [R]
∂ξ

= 2Nρερ0(ξ − 1)
[ρ0 + ξNρε]3

> 0,

so that volatility is increasing in K. For news media buzz N , we have

θ2
0
r2
∂V[R]
∂N

= [1 + λ(K − 1)] ρε
[ρ0 + (1 + λ(K − 1))Nρε]3

{
[λ(K − 1)− 1] ρ0 −Nρε [1 + λ(K − 1)]2

}
,

and it follows that ∂V[R]
∂N

< 0 if and only if

Nρε
ρ0

>
λ(K − 1)− 1

[λ(K − 1) + 1]2
,

which is satisfied as long as the signal-noise ratio is sufficiently large, as required.

Properties of turnover

The decomposition in Equation (8) follows directly by evaluating T = ‖xB(p)‖, inserting
the equilibrium price from (5) and taking expectations on both sides. The absolute value of
disagreement ‖∆‖ has a folded normal distribution, and therefore its expectation is

E [‖∆‖] =
√

2V [∆]
π

.

Using (11), substituting for ρB and ρR from (2) and (4), and simplifying, we have

γE [T ] = Ψ× (K − 1)
√
Nρ0 +N2ρε

ρ0 + (1 + λ(K − 1))Nρε
,

where the constant Ψ ≡
√

2ρ0ρε
π
λ(1 − λ) is independent of the number of signals N and K.

For comparative statics, consider the monotone transformation of E [T ],

τ ≡
(
γ

ΨE[T ]
)2

= (K − 1)2 [Nρ0 +N2ρε]
[ρ0 + (1 + λ(K − 1))Nρε]2

.
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Differentiating with respect to K,

∂τ

∂K
= 2N(K − 1) (ρ0 +Nρε)2

[ρ0 + (1 + λ(K − 1))Nρε]3
> 0,

which implies ∂E[T ]
∂K

> 0. Differentiating with respect to N ,

∂τ

∂N
= ρ0 (K − 1)2

[ρ0 + (1 + λ(K − 1))Nρε]3
× {ρ0 − [λ (K − 1)− 1]Nρε} .

Clearly ∂E[T ]
∂N

< 0 if and only if ∂τ
∂N

< 0, or equivalently:

Nρε
ρ0

>
1

λ (K − 1)− 1 .

This is again true as long as the signal-to-noise ratio is sufficiently large, which completes
the proof.

B Alternative models

We formally examine three alternative models of the relationship between social media, news
media and stock market activity. We consider social media as private information (Propo-
sition 2), alternative behavioral biases in the interpretation of social media (Proposition 3)
and the possibility of endogenous buzz (Proposition 4). Our predictions refer to the ap-
proximate formula for return volatility in Equation (7), but go through in exact numerical
computations of return volatility which are available from the authors on request.

B.1 Social media as private information

Assume that all investors are rational Bayesians, have a prior N
(
θ0, ρ

−1
0

)
and observe a

Gaussian news media signal sN = θ + εN with precision ρN . A mass λ of “informed” (or
“well-connected”) investors observe, in addition, a Gaussian social media signal sS = θ + εS

with precision ρS. Let s = (sN , sS). There is a mass of noise traders with stochastic demand
Q ∼ N

(
0, ρ−1

Q

)
which is independent of price. News and social media “buzz”, respectively,

are measured by the precision of signals ρN and ρS. This is analogous to our treatment in
Section 3, because increasing the precision of signals is equivalent to increasing the number
of signals in a rational Gaussian market. We normalize risk aversion to γ = 1.

Uninformed investors learn from prices. Using standard arguments (e.g. Chamley, 2004,
chapter 15), this is equivalent to observing the signal Y = S + Q

ρS
, which is Gaussian with

precision ρY = ρ2
SρQ/(1 + ρSρQ) < ρS. For informed investors, the posterior precision is
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ρI = ρ0 + ρN + ρS. For uninformed investors, the posterior precision is ρU = ρ0 + ρN + ρY .
The posterior means of beliefs are

θU = ρ0

ρU
θ0 + ρN

ρU
N + ρY

ρU
≡
(
1− wNU − wYU

)
θ0 + wNU (θ + εN) + wYU

(
θ + εS + Q

ρS

)

θI = ρ0

ρI
θ0 + ρN

ρI
N + ρS

ρI
≡
(
1− wNI − wYI

)
θ0 + wNI (θ + εN) + wSI (θ + εS)

If stocks trade at price p at date 0, informed investors will demand xI(p) = ρIγ
−1(θI − rp)

units, and behavioral investors will demand xU(p) = ρU(θU − rp) units. The equilibrium
price p? solves xI + xU +Q = 0, or equivalently,

rp? = qθU + (1− q)θI + zQ, (12)

where q = λρU/(λρU + (1− λ)ρI) and z = 1/ (λρU + (1− λ)ρI). The approximate volatility
of equilibrium returns, letting s = {sN , sS}, is

θ2
0
r2V[R] ' V[θ − rp] = E [V[θ − rp|s]] + V [E[θ − rp|s]] .

Since beliefs θU and θI are known conditional on signals s, the pricing equation (12) gives
V(θ−rp|s) = V(θ+zQ|s) = ρ−1

R +ρ−1
Q z2. Moreover, since E [θ|s] = θI , we have E[θ−rp|s] =

q(θI − θU). Therefore

θ2
0
r2V[R] ' 1

ρI
+ z2 1

ρQ
+ q2V [θU − θI ]

= 1
ρI

+ z2 1
ρQ

+ q2 ρS
ρIρu (1 + ρSρQ) .

Regarding the volatility of returns, it is possible to show that in the noiseless and noisy limits
both social and news media buzz reduce volatility:

lim
ρQ→0

∂V [R]
∂ρN

< 0, lim
ρQ→∞

∂V [R]
∂ρN

< 0,

lim
ρQ→0

∂V [R]
∂ρS

< 0, lim
ρQ→∞

∂V [R]
∂ρS

< 0.

Now we consider turnover. We begin by determining the equilibrium demand by each
group. Using the equilibrium condition (12), we obtain that the equilibrium demands
of uninformed and informed traders, respectively, are xU(p?) = ρu

γ
(q (θU − θI)− zQ) and

xU(p?) = ρI
γ

((1− q) (θI − θU)− zQ). Average turnover is
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E [T ] = λE [‖xU (p?)‖] + (1− λ)E [‖xI (p?)‖] + E [‖Q‖]
2 .

We are not able to sign the impact of buzz on E [T ] in general. Thus we consider its impact on
uninformed and informed trades separately (the volume of noise trades E [‖Q‖] is independent
of buzz). Note that trades are normally distributed, so that their expected absolute value
is proportional to their standard deviation. In the noisy limit, it is straightforward to show
that

lim
ρQ→0

∂st.dev. [‖xU (p?)‖]
∂ρN

= +∞ = lim
ρQ→0

∂st.dev. [‖xI (p?)‖]
∂ρS

,

lim
ρQ→0

∂st.dev. [‖xU (p?)‖]
∂ρS

= −∞ = lim
ρQ→0

∂st.dev. [‖xI (p?)‖]
∂ρN

.

Social media buzz increases the average trade of informed investors and decreases that of
uninformed traders. News media buzz has the opposite impact. The effect on uninformed
traders dominates whenever their mass λ is large enough, and vice versa, which yields the
result in Proposition 2.

B.2 Alternative behavioral biases

We present models in which social media is informative, but the interpretation of its content is
subject to behavioral biases. Our goal is to capture some of the most common biases studied
in behavioral finance. We restrict ourselves to models where “behavioral investors” have
Gaussian posteriors, so their demand is linear as in the standard CARA-Gaussian model.
We propose a catalog of such biases which yield the testable predictions of Proposition 3.
Unless otherwise specified, we continue to use the notation of Section 3.

Investors have a common prior belief that θ ∼ N (θ0, ρ
−1
0 ). There are K social media

signals s = (s1, ..., sK), each with precision ρε. We assume that news media signals, if
present, are processed in line with Bayes’ law by all investors, and are therefore implicit in
the common prior. Rational investors form the Bayesian posterior θ ∼ N

(
θR, ρ

−1
R

)
, where

θR =
K∑
i=1

wisi +
(

1−
K∑
i=1

wi

)
θ0, (13)

ρR = ρ0 +Kρε. (14)

The Bayesian updating weights are wi = ρε/ρB. Generically, behavioral investors will have
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posterior beliefs θ|s ∼ N (θB, ρ−1
R ), where

θB =
∑
i

ŵi(si + ηi) +
(

1−
∑
i

ŵi

)
θ0, (15)

ρB = ρ̂0 +
∑
i

ρ̂i. (16)

The updating rules of behavioral investors shown above can exhibit three deviations from
Bayes’ rule. First, the weight attributed to signals by behavioral investors (ŵi) may differ
from the rational weights wi. Second, the precision attributed to priors (ρ̂0) and each signal
i (ρ̂i) when deriving the posterior precision can differ from the true ρ0 and ρε. Finally, the
perception of the levels of the signals can differ from the truth by a (potentially stochastic)
term ηi.

Note that Equations (5), (7) and (8) in the main text remain valid for equilibrium prices,
the (approximate) volatility of returns V [R], and turnover E [T ]. We now characterize these
quantities as a function of social media buzz K under various behavioral biases. If behavioral
biases are absent (λ = 0), trading activity is zero by the “no trade theorem” (Milgrom and
Stokey, 1982), and volatility is simply the posterior variance of rational traders ρ−1

R , which
is decreasing in buzz K.

Overconfidence

Overconfidence is commonly modeled by assuming that perceive the correct signals (xi = 0)
and prior variance (ρ̂0 = ρ0), but believe that social media signals have precision ρ̂i = (1 +
a)ρε, where a > 0 measures overconfidence. Thus they use the overconfident updating
weights ŵi = ρ̂i/ρB > wi.

The disagreement between behavioral and rational investors is θB − θR = K(ŵi −
wi) (θ0 − s̄), where s̄ = N−1∑

i si is the average signal. The disagreement is normally dis-
tributed with mean zero and variance V [θB − θR] = K2(ŵi − wi)2V [s̄] . The absolute value
of disagreement ‖θB − θR‖ has a folded normal distribution with mean E [‖θB − θR‖] =
(2V [θB − θR] /π)1/2. Substituting into (7) and (8) and differentiating yields

∂V[R]
∂K

sign= aλ− (1 + aλ)2Kρε
ρ0
− 1

∂E[T ]
∂K

sign= (1− aλ)Kρε
ρ0

+ 1.

This yields the predictions of Proposition 3.
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Conservatism

We capture conservatism by assuming that behavioral investors correctly perceive signals
(xi = 0) and their precision (ρ̂i = ρε), but believe the precision of their prior to be ρ̂0 =
(1 + b)ρ0 for b > 0. Now, behavioral investors use the conservative weights ŵi = ρε/ρB < wi.
The analysis is analogous to the case of overconfidence, and we find that buzz unambiguously
decreases volatility but increases turnover:

∂V[R]
∂K

< 0,

∂E[T ]
∂K

> 0.

Rational inattention

Behavioral (rationally inattentive) traders observe social media signal si with cognitive noise
ηi ∼ N

(
0, ρ−1

η,i

)
, but optimally choose the ρη,i subject to an upper bound on entropy re-

duction. Letting ci = ρε −
(
ρ−1
ε + ρ−1

η,i

)−1
be the decline in the precision of signal i due

to inattention, the entropy reduction achieved by behavioral traders is determined by and
increasing in the signal-to-noise ratio

(
Kρε −

∑K
i=1 ci

)
/ρ0, so the attention constraint is∑

i ci ≥ c for an appropriate c. To ensure that the attention constraint is meaningful, we
assume that behavioral investors cannot infer information from prices for free.

By Theorem 1 in Peng and Xiong (2006), behavioral traders wish to maximize the pos-
terior precision Kρε−

∑K
i=1 ci, and are therefore indifferent between all choices which satisfy

the binding attention constraint ∑i ci = c. For the simplest possible exposition, we assume
here that behavioral traders observe the first k < K signals perfectly, but do not pay atten-
tion to the remaining K − k signals (ρη,i = +∞ for i ≤ k, and ρη,i = 0 for i > k). This is
exactly optimal when c̄/ρε is an integer, and a convenient approximation otherwise. Rational
investors process all K signals.

Let s̄1 = k−1∑
i≤k si denote the average signal observed by behavioral investors, and

s̄2 = (K − k)−1∑
i>k si the average of the remaining signals. The weights placed on each

signal by behavioral and rational investors are, respectively, ŵi = ρε/(ρ0 + kρε) and wi =
ρε/(ρ0 +Kρε). Using these weights in (1) and (3) we obtain posterior means:

θR = wi (ks̄1 + (K − k) s̄2) + (1−Kwi)θ0

θB = ŵiks̄1 + (1− ŵik)θ0.

The disagreement θB − θR has mean zero and variance V [θB − θR] = ρ−1
B − ρ−1

R , implying
E [‖θB − θR‖] = (2V [θB − θR] /π)1/2. Substituting into (7) and (8) and differentiating, we
find that buzz decreases the variance of returns, but increases turnover:
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∂V[R]
∂K

< 0,

∂E[T ]
∂K

> 0.

Confirmation bias

Behavioral traders use the rational precisions (ρ̂i = ρε and ρ̂0 = ρ0) and rational weights wi =
ρε/ρR for updating, but have an optimistic predisposition (the pessimistic case is analogous).
Thus they interpret positive signals si > θ0 correctly, but take negative signals si < θ0 to be
equal to their prior. The perceived signal is therefore si + ηi where ηi = max{0, θ0− si} ≥ 0
is the misperception due to confirmation bias. The misperception has a censored Gaussian
distribution, and it is possible to show, extending the argument of Muthen (1990), that the
joint moments of any two misperceptions (ηi, ηj) satisfy

E [ηi] =
√

1
2πV [θ0 − si] =

√√√√ 1
2π

(
1
ρ0

+ 1
ρε

)
,

V[ηi] =
(

1
ρ0

+ 1
ρε

)(1
2 −

1
2π

)
,

Cov[ηi, ηj] =
(

1
ρ0

+ 1
ρε

) [
ζ(r)r − 1

2π
(
1−
√

1− r2
)]
,

where r = ρε/(ρ0 + ρε) is the correlation between two signals si and sj, and

ζ(r) = 1
4 + 1

2πArcSin(r)

denotes the probability that two signals both lie below the prior. The disagreement between
behavioral and rational traders is θB − θR = Nwiη̄, where η̄ = K−1∑

i ηi is the average
misperception, and has moments

E [θB − θR] = KwiE [ηi] = Kwi

√√√√ 1
2π

(
1
ρ0

+ 1
ρε

)
,

V [θB − θR] = K2w2
i

{ 1
K

V [ηi] +
(

1− 1
K

)
Cov [ηi, ηj]

}
.

Note further that E [θB − θR] = E [‖θB − θR‖] since behavioral traders are weakly more
optimistic than rational ones. Substituting into (7) and (8) and differentiating, we can sign
the effect of buzz on volatility turnover in general, and the effect of buzz on volatility in the
limiting case with a large number of signals:
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lim
K→∞

∂V[R]
∂K

sign= 2− r
r

[
ζ(r)r − 1

2π
(
1−
√

1− r2
)]
−
(1

2 −
1

2π

)
− (1− r). (17)

∂E[T ]
∂K

> 0.

To check the sign in (17), we note that the right-hand side is negative for all r ∈ (0, 1) as
long as

1− r ≥ 2− r
r

[
ζ(r)r − 1

2π
(
1−
√

1− r2
)]
−
(1

2 −
1

2π

)
≡ τ (r) .

We have τ (1) = 0 and limr→0 τ (r) = 1/2π < 1, so the above holds at both boundaries of
the set (0, 1). It is sufficient to show that τ ′ (r) ≥ −1, which rules out any crossings with
τ (r) = 1− r on the interior of the set. We have

τ ′ (r) = 1−
√

1− r2

πr2 − 1
4π (π + 2ArcSin (r))

≥ 1
2π −

1
2 > −1,

where the second line uses the facts that the term 1−
√

1−r2

πr2 is strictly increasing in r and
that ArcSin (r) ≤ π/2. Thus, for large enough K, social media buzz decreases volatility and
increases turnover.

B.3 Endogenous buzz

We analyze two models where buzz is endogenously determined. Unless otherwise stated,
we maintain the notation of Section 3.

First, we consider the effect of disagreement on social media buzz and market activity.
We assume that all traders have prior beliefs θ ∼ N

(
θ0, ρ

−1
0

)
. News media signals, if

present, are processed in line with Bayes’ law by all investors, and are therefore reflected in
the common prior. Then, there is a disagreement shock which changes the mean belief of
behavioral traders to θB = θ0 + δε, where ε ∼ N (0, 1) is noise (perfectly correlated across
traders) and δ > 0 measures the extent of disagreement. Social media buzz is determined
as an increasing function of disagreement and other factors u: K = k (δ, u). Social media
signals are therefore uninformative and reflect only prior beliefs. Applying Equations (7)
and (8) we find that return volatility and turnover between dates 1 and 2 in equilibrium
satisfy

θ2
0
r2V[R] ' 1

ρ0
+ (λδ)2 ,

E[T ] = ρ0δ
λ (1− λ)

γ

√
1

2π ,
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both of which are increasing in δ. An increase in δ increases both social media buzz and sub-
sequent volatility and turnover. However, holding the measure of disagreement δ constant,
volatility and turnover are independent of social media buzz.

Second, we consider the effect of prior uncertainty on the demand for news and market
activity. Social and news media both respond to the demand for information, which is a
function of the prior precision of beliefs ρ0. Assume that equilibrium in the market for
information is described by linear relationships determining the number of signals from news
media (N) and social media (K):

N = n0 + n1ρ0 + uN ,

K = k0 + k1ρ0 + uK ,

where uN and uK capture other drivers of information demand and supply (we ignore the
restriction that N and K are integers for simplicity). All traders follow Bayes’ law, and news
and social media signals have precision ρN and ρK respectively. The volatility of returns in
equilibrium satisfies

θ2
0
r2V[R] ' 1

ρ0 +NρN +KρK

= 1
ρ0 (1 + ρNn1 + ρKk1) + ρN (n0 + uN) + ρK (k0 + uK) .

Assuming that 1 + ρNn1 + ρKk1 > 0, an increase in prior uncertainty (that is, a decrease
in ρ0) increases the subsequent volatility of returns. It further increases news media buzz
if n1 > 0 and social media buzz if k1 > 0, both of which are true when the demand for
information is increasing in prior uncertainty.
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