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Abstract

We investigate the relationship between uncertainty about monetary policy and its

transmission mechanism, and economic fluctuations. We propose a new term structure

model where the second moments of macroeconomic variables and yields can have a

first-order effect on their dynamics. The data favors a model with two unspanned

volatility factors that capture uncertainty about monetary policy and the term pre-

mium. Uncertainty contributes negatively to economic activity. Two dimensions of

uncertainty react in opposite directions to a shock to the real economy, and the re-

sponse of inflation to uncertainty shocks vary across different historical episodes.
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1 Introduction

We investigate the relationship between uncertainty about monetary policy and its transmis-

sion mechanism, and economic fluctuations. The core question of interest is: does uncertainty

about monetary policy have a real effect? An equally important question is: how do macroe-

conomic shocks influence interest rate uncertainty? While numerous studies have focused on

monetary policy and its transmission mechanism, less attention has been placed on under-

standing uncertainty surrounding this transmission mechanism and their relation with the

real economy. We study these questions by introducing a new term structure model with

two novel features. First, we jointly model the first and second moments of macroeconomic

variables and yields: uncertainty is extracted from their volatility, and it has a direct impact

on the conditional means of these variables in a vector autoregression (VAR).1

Second, we decompose uncertainty of interest rates into two economic dimensions: the

policy component, and the market transmission component captured by the term premium.

Public commentary by policy-makers at central banks worldwide indicates that the term

premium is one of the most important pieces of information extracted from the term structure

of interest rates. Understanding the term premium and its uncertainty is crucial in making

policy decisions and evaluating how successful monetary policy is in achieving its goals.

We contribute to the term structure literature by devising a no-arbitrage model with

multiple unspanned stochastic volatility factors, i.e., the factors driving volatility are distinct

from the factors driving yields. We show that our model can successfully fit the data for

both the cross section of yields and their volatility, and the data suggests two volatility

factors. We introduce a new rotation to the literature to capture the factor structure in an

economically meaningful way. We decompose the long term interest rate into the expectation

component and the term premium component. The former is agents’ expectation about the

future path of monetary policy, which the central bank can influence through policies like

forward guidance. The latter relies on the market, and captures how monetary policy gets

1We define uncertainty as log volatility.
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propagated from the short term interest rate to long term interest rates. The new rotation

utilizes this decomposition and sets the three yield factors to be the short term interest

rate, the expectation component of the long rate, and the term premium component. The

two volatility factors are for the short rate and term premium, which can be conveniently

interpreted as uncertainty about monetary policy and its transmission mechanism.

We document the relationship between interest rate uncertainty and economic fluctua-

tions through impulse responses. Uncertainty is countercyclical, and precedes worse economic

conditions and higher unemployment rates. This finding is consistent with the existing lit-

erature on uncertainty. What sets this paper apart from the literature is that our focus is

on two aspects of interest rate uncertainty. The distinction between the two dimension lies

in how they react to news about the real economy. A higher unemployment rate leads to

higher uncertainty about term premia, which reflects the market’s reaction to bad economic

news. In contrast, uncertainty about monetary policy decreases in response to the same

news. This is consistent with the Fed’s proactive response to combat crisis historically.

One benefit of jointly modeling the first and second moments simultaneously is to allow

the impulse responses to vary through time depending on the state of the economy. This is

not possible for the models in the literature, unless they have time-varying autoregressive

coefficients. Empirically, the response of inflation to uncertainty shocks varies through time.

For example, in response to a positive shock to monetary policy uncertainty, inflation kept

going up during the Great Inflation, when high inflation was considered bad for the economy.

In contrast, inflation decreased in response to the same shock during Volcker’s tenure. This

is consistent with Volcker’s reputation as an inflation hawk. It also barely responded during

the Great Recession, when the concern is centered around deflation. These demonstrate

the non-cyclical feature of inflation. A positive shock to term premia uncertainty leads to

a positive reaction of inflation during Greenspan’s Conundrum, and a negative reaction for

the Volcker period. The former adds additional evidence of the importance of the term

premium during that period. All of these economically meaningful distinctions can only be
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observed through time-varying impulse responses. Standard impulse responses are close to

zero, insignificant and potentially misleading, because they are averages of the positive and

negative time-varying impulse responses.

Our historical decomposition further quantifies the two-way link between the real econ-

omy and interest rate uncertainty. Historically monetary policy uncertainty has contributed

negatively to the inflation rate, which heightened at -0.7% after the Great Recession, plac-

ing further deflationary pressure during that period. Both monetary policy uncertainty and

term premium uncertainty added positively to the unemployment rate historically. The con-

tribution of monetary policy uncertainty peaked in the early 1980s at about 0.55%, while

that of term premium uncertainty had peaks in the early 70s, early 80s and mid 2000s at

the highest of 0.7%. The peak in the 2000’s is associated with Greenspan’s Conundrum,

where our empirical evidence is consistent with the popular view that the term premium

and its uncertainty increased. How monetary policy uncertainty and term premium uncer-

tainty factor into unemployment differs since the Great Recession, with the former becoming

negative potentially due to less uncertainty surrounding monetary policy, and the latter re-

maining positive with still significant uncertainty in the market. Consistent with our impulse

responses, inflation contributed positively to both uncertainty measures in the 1980s, and

negatively at the beginning and end of our sample period. The contributions of unem-

ployment rate shocks to monetary policy uncertainty and term premium uncertainty take

opposite signs. This is further evidence of the two dimensions of uncertainty.

Our paper contributes to the econometrics literature on estimation of vector autoregres-

sions with stochastic volatility. When volatility enters the conditional mean of a vector

autoregression, the popular Markov chain Monte Carlo (MCMC) algorithms for stochastic

volatility models of Kim, Shephard, and Chib(1998) cannot be used. We develop a MCMC

algorithm based on the particle Gibbs sampler which are efficient and can handle a wide range

of models. We are the first to introduce this algorithm into the macro-finance literature.

The remainder of the paper is organized as follows. We describe our relationship to the
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literatures in Subsection 1.1. Section 2 presents the new term structure model together with

the new rotation. Section 3 describes the MCMC and particle filtering algorithms used for

estimation. In Section 4, we study the economic implications of interest rate uncertainty.

Section 5 demonstrates how a collection of models with different specifications fit the yield

curve. Section 6 concludes.

1.1 Related Literature

Our paper is closely related to recent advances in the literatures on uncertainty and the

term structure of interest rates. First, our paper contributes to the fast growing literature

on the role that uncertainty shocks play in macroeconomic fluctuations, asset prices and

monetary policy; see, e.g. Bloom(2014) for a survey; Baker, Bloom, and Davis(2015), Jurado,

Ludvigson, and Ng(2015), Bekaert, Hoerova, and Lo Duca(2013), and Aastveit, Natvik, and

Sola(2013) for empirical evidence; and Ulrich(2012), Pástor and Veronesi(2012) and Pástor

and Veronesi(2013) for theoretical models.

We differ from the empirical papers in the uncertainty literature in the following ways: (i)

We internalize the uncertainty: in our model, uncertainty serves both as the second moment

of macroeconomic variables and yields (the factors driving the volatility of inflation, un-

employment, and interest rates) and it directly impacts the first moment of macroeconomic

variables. In contrast, the uncertainty literature typically extracts an estimate of uncertainty

in a data pre-processing step, often as the second moment of observed macroeconomic or

financial time series. Researchers then use this estimate in a second step as an observable

variable in a homoskedastic vector autoregression. (ii) This literature has so far focused on

one dimension of uncertainty, whether it’s policy uncertainty or macroeconomic uncertainty.

We discuss two dimensions of interest rate uncertainty, and their distinct economic implica-

tions. (iii) Different from the rest of the literature, we focus on uncertainty about monetary

policy and its transmission mechanism.

Our paper is also related to the VAR literature with stochastic volatility; see Cogley and
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Sargent(2001), Cogley and Sargent(2005), and Primiceri(2005) for examples. We adopt a

similar approach to modeling the time-varying covariance matrix as Primiceri(2005). Al-

though they use a different modeling approach, Fernández-Villaverde, Guerrón-Quintana,

Rubio-Ramı́rez, and Uribe(2011) also study the real effect of volatility on the (real) interest

rate, in an open emerging economy setting. A recent paper by Mumtaz and Zanetti(2013)

is closely related to ours in terms of how we specify the factor dynamics. Both papers allow

the volatility factors to enter the conditional mean and have a first order impact on key

macroeconomic aggregates. This is absent from most of the existing models in this litera-

ture, and we show its importance through impulse responses. The main difference between

our paper and Mumtaz and Zanetti(2013) is that our paper introduces a factor structure for

the volatilities, and ties these factors into a no-arbitrage term structure model. Our paper

also introduces a new and more efficient Markov chain Monte Carlo algorithm known as a

particle Gibbs sampler, Andrieu, Doucet, and Holenstein(2010), that can be used for a wide

variety of multivariate time series models.

Finally, we contribute to the term structure literature by introducing a flexible way to

simultaneously fit yields and their volatilities at different maturities. In the earlier literature,

e.g. Dai and Singleton(2000) and Duffee(2002), volatility factors must simultaneously fit

both the level of yields and their volatility. The factors from estimated models end up

fitting the conditional mean of yields, and consequently they do not accurately estimate the

conditional volatility. To break the tension, Collin-Dufresne and Goldstein(2002) proposed

the class of unspanned stochastic volatility (USV) models which separate the dynamics of

volatility from yield factors.2 Creal and Wu(2015b) showed that USV models do improve

the fit of volatility, but restrict the cross-sectional fit of yields at the same time. More

importantly, the existing literature on USV models typically stops at one volatility factor.

Collin-Dufresne, Goldstein, and Jones(2009) point to the necessity of multiple unspanned

2Prior empirical work that studies whether volatility is priced using interest rate derivatives or high
frequency data includes Bikbov and Chernov(2009), Andersen and Benzoni(2010), Joslin(2010), Mueller,
Vedolin, and Yen(2011), and Christensen, Lopez, and Rudebusch(2014).
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volatility factors, and Joslin(2015) implemented a version with two volatility factors where

only one is unspanned. Our model falls into the USV classification. The difference from the

existing USV models is that we do not restrict the cross sectional fit of the model, and we

are the first to implement models with more than one unspanned volatility factor. In related

work, Cieslak and Povala(2015) estimate a model with multiple spanned volatilities, where

they use additional information from realized volatility to effectively place more weight in

the objective function (such as the likelihood function) for the factors to fit the volatility.

Our dynamic setup is related to the GARCH-M (GARCH-in-mean) literature within a

VAR; see, e.g. Engle, Lilien, and Robins(1987) and Elder(2004). The difference is that

we use stochastic volatility instead of GARCH to model time-varying variances, meaning

that volatility has its own innovations and is not a deterministic function of past data.

This is important because with our framework, we can use tools from the VAR literature

such as impulse responses to study the influence of an uncertainty shock. This is not directly

available in GARCH-M type models because there is no separate shock to volatility. Jo(2014)

is similar to our paper in this spirit: while her focus is the uncertainty of oil prices shocks,

we focus on uncertainty shocks from the term structure of interest rates.

2 Models

This section proposes a new macro finance term structure model to capture the dynamic

relationship between interest rate uncertainty and the macroeconomy. Our model has the

following unique features. First, uncertainty – originating from the volatility of the yield

curve and macroeconomic variables – has a first order impact on the macroeconomy. Second,

our model captures multiple dimensions of yield volatility in a novel way. In our setting,

fitting the yield volatility does not constrain bond prices. Besides the flexibility of fitting

the volatility, our pricing formula remains simple and straightforward.
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2.1 Dynamics

The model has a M × 1 vector of macroeconomic variables mt, and a G × 1 vector of

conditionally Gaussian yield factors gt that drive bond prices. The H × 1 vector of factors

ht determine the volatility of macroeconomic variables and yields, and we refer to them as

uncertainty factors. The total number of factors is F = M +G+H.

The factors jointly follow a vector autoregression with stochastic volatility. Specifically,

the macroeconomic variables follow

mt+1 = µm + Φmmt + Φmggt + Φmhht + ΣmDm,tεm,t+1. (1)

The dynamics for the yield factors are

gt+1 = µg + Φgmmt + Φggt + Φghht + ΣgmDm,tεm,t+1 + ΣgDg,tεg,t+1. (2)

The diagonal time-varying volatility is a function of the uncertainty factors ht diag(Dm,t)

diag(Dg,t)

 = exp

(
Γ0 + Γ1ht

2

)
. (3)

The factors ht have dynamics

ht+1 = µh + Φhht + Σhmεm,t+1 + Σhgεg,t+1 + Σhεh,t+1. (4)

The shocks are jointly i.i.d. normal (ε′m,t+1, ε
′
g,t+1, ε

′
h,t+1)′ ∼ N(0, I), with the contempora-

neous correlations captured through the matrices Σgm,Σhm and Σhg.

We collect the state variables into the vector ft = (m′t, g
′
t, h
′
t)
′ and write the system (1) -

(4) as a vector autoregression

ft+1 = µf + Φfft + Σtεt+1. (5)
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We define µ̄f ≡ (I − Φf )
−1 µf as the unconditional mean.

We use a recursive scheme for identification. The identifying assumptions between the

macroeconomic and yield factors are similar to standard assumptions made in the VAR lit-

erature; i.e. macroeconomic variables are slow moving and do not react to contemporaneous

monetary policy shocks; but monetary policy does respond to contemporaneous macroeco-

nomic shocks; see, e.g. Christiano, Eichenbaum, and Evans(1999), Stock and Watson(2001),

Bernanke, Boivin, and Eliasz(2005), and Wu and Xia(2015). We order the volatility factors

after the macroeconomic and yield factors, so that uncertainty shocks are not contaminated

by the first moment shocks. We also order interest rate uncertainty after macroeconomic

uncertainty, so that our interest rate uncertainty shocks do not simply reflect macroeco-

nomic uncertainty; i.e. they capture additional variation above and beyond what can be

explained by macroeconomic uncertainty. Note that there are alternative approaches to iden-

tifying monetary policy shocks including long run restrictions (Blanchard and Quah(1989)),

external instruments (Gertler and Karadi(2015)), narrative-based/green book (Romer and

Romer(2004)), and conditional heteroskedasticity (Wright(2012)).

Of critical importance for our analysis, the uncertainty factors ht impact the macroecon-

omy through the conditional mean term Φmhht in (1), and are identified from the conditional

variance of observed macroeconomic data and yields through Dmt and Dgt. This unique

combination unifies two literatures; the literature on VARs with stochastic volatility (e.g.

Cogley and Sargent(2001), Cogley and Sargent(2005), and Primiceri(2005)) and the more

recent uncertainty literature that uses VARs to study uncertainty and the macroeconomy

and/or asset-prices (e.g. Baker, Bloom, and Davis(2015), Jurado, Ludvigson, and Ng(2015),

Bekaert, Hoerova, and Lo Duca(2013), and Aastveit, Natvik, and Sola(2013)).

To ensure stability, the conditional mean of ht+1 does not depend on the levels of gt or mt.

Otherwise, the system will be explosive even if the modulus of the eigenvalues of Φf in (5)

are all less than one. To compensate for this restriction, we allow contemporaneous shocks of

macroeconomic variables εm,t+1 and yields εg,t+1 to drive ht+1. The timing assumption that

9



today’s shocks to the macroeconomy or yields determine their volatility next period makes

intuitive sense.3

We follow the macroeconomics literature and use a log-normal process for the volatility

in (1) - (4). The matrices Γ0 and Γ1 permit a factor structure within the covariance matrix

and allow us to estimate models where the number of volatility factors and yield factors may

differ with M +G 6= H.

2.2 Bond prices

Zero coupon bonds are priced to permit no arbitrage opportunities. The literature on affine

term structure models demonstrates that to have ht realistically capture yield volatility, it

cannot price bonds; see, e.g. Collin-Dufresne, Goldstein, and Jones(2009) and Creal and

Wu(2015b). We also follow Joslin, Priebsch, and Singleton(2014) and assume the macro

factors mt are unspanned. In our model, this means that the yield factors gt summarize all

the information for the cross section of the yield curve.

The short rate is an affine function of gt:

rt = δ0 + δ′1,ggt. (6)

The risk neutral Q measure adjusts the probability distribution in (2) to incorporate in-

vestors’ risk premium, and is defined such that the price of an asset is equal to the present

value of its expected payoff. For an n-period zero coupon bond,

P
(n)
t = E

Q
t

[
exp (−rt)P n−1

t+1

]
, (7)

3In standard models where Σhm, Σhg, Φmh, Φgh are zero, different timing conventions for the condi-
tional volatility are observationally equivalent. In models with a leverage effect when Σhm, Σhg are not
zero, different timing leads to different models. Our timing is consistent with Omori, Chib, Shephard, and
Nakajima(2007) and the discrete-time stochastic volatility models in the term structure literature; see, e.g.
Bansal and Shaliastovich(2013) and Creal and Wu(2015b).
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where the risk-neutral expectation is taken under the autonomous VAR(1) process for gt:

gt+1 = µQg + ΦQg gt + ΣQg ε
Q
g,t+1, εQg,t+1 ∼ N (0, I) . (8)

As a result, zero-coupon bonds are an exponential affine function of the Gaussian state

variables

P
(n)
t = exp

(
ān + b̄′ngt

)
. (9)

The bond loadings ān and b̄n can be expressed recursively as

ān = −δ0 + ān−1 + µQ′g b̄n−1 +
1

2
b̄′n−1ΣQg ΣQ′g b̄n−1, (10)

b̄n = −δ1,g + ΦQ′g b̄n−1, (11)

with initial conditions ā1 = −δ0 and b̄1 = −δ1,g. Bond yields y
(n)
t ≡ − 1

n
log
(
P

(n)
t

)
are linear

in the factors

y
(n)
t = an + b′ngt (12)

with an = − 1
n
ān and bn = − 1

n
b̄n.

Our model introduces a novel approach to incorporating volatility factors flexibly in no-

arbitrage term structure models while keeping bond prices simple through the assumptions

(6) - (8). In most non-Gaussian term structure models, volatility factors enter the variance

of gt under Q and hence bond prices in general. To cancel the volatility factors out of the

pricing equation, unspanned stochastic volatility (USV) models impose restrictions on the Q

parameters that subsequently constrain the cross-sectional fit of the model. In our model, ht

is not priced by construction. Consequently, our model does not impose any restrictions on

the cross section of the yield curve like the restrictions that are imposed in the USV models
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in Collin-Dufresne, Goldstein, and Jones(2009) and Creal and Wu(2015b). An advantage

of working with discrete time models is that it allows different variance-covariance matrices

under P and Q, while still preserving no arbitrage.4 We will show the no arbitrage condition –

the equivalence of the two probability measures – by deriving the Radon-Nikodym derivative

in Subsection 2.4.

The benefits of our specification are twofold. First, our dynamics for gt under Q and hence

the bond pricing formula are the same as in a Gaussian ATSM. Second, the separation of

the covariance matrices under the two measures allows a more flexible P dynamics, since we

are not limited by the functional forms that achieve analytical bond prices.

2.3 Rotation and identification

In order for the model specified in Sections 2.1 and 2.2 to be identified, we need to impose

restrictions to prevent the latent factors gt and ht from shifting and rotating. The term pre-

mium has been a fundamental part in the literature on the term structure of interest rates,

from both the view of policy makers and academic researchers; see, e.g. Wright(2011), Bauer,

Rudebusch, and Wu(2012), Bauer, Rudebusch, and Wu(2014), and Creal and Wu(2015a).

For a better economic interpretation of uncertainty, we propose a rotation new to the liter-

ature and let gt =
(
rt er

(n∗)
t tp

(n∗)
t

)′
where rt = y

(1)
t is the short rate, er

(n∗)
t is the average

expected future short rate

er
(n∗)
t ≡ 1

n∗
Et [rt + . . .+ rt+n∗−1] ,

and tp
(n∗)
t is the term premium tp

(n∗)
t ≡ y

(n∗)
t − er(n∗)

t for a pre-specified maturity n∗. The

corresponding volatilities can be interpreted as uncertainty about current monetary policy,

the future path of monetary policy, and the term premium. Proposition 1 provides conditions

4 In concurrent and independent work, Ghysels, Le, Park, and Zhu(2014) propose a term structure model
where the pricing factors gt have Gaussian VAR dynamics and whose covariance matrices under the P and
Q measures are different. Their covariance matrix under P uses GARCH instead of stochastic volatility.
Stochastic volatility allows us to study the impact of uncertainty shocks, which is the focus of this paper.
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that guarantee this rotation.5

Proposition 1. Eigen decompose Φf = QΛQ−1, ΦQg = QQg ΛQg
(
QQg
)−1

, where Λ and ΛQg are

matrices of eigenvalues. Define Λ̃ ≡ 1
n∗

(
I − Λn∗)

(I − Λ)−1, Λ̃Q ≡ 1
n∗

(
I −

(
ΛQ
)n∗) (

I − ΛQ
)−1

,

The following conditions guarantee that the yield factors are gt =
(
rt er

(n∗)
t tp

(n∗)
t

)′
.

1. b1,g = δ1,g = e1

2. a1 = δ0 = 0

3.

(
0

1×M
e′2

1×G
0

1×H

)
Q =

(
0

1×M
e′1

1×G
0

1×H

)
QΛ̃

4. µ̄g,1 = µ̄g,2

5. (e′2 + e′3)QQg = e′1Q
Q
g Λ̃Qg

6. µ̄Qg,1 = µ̄Qg,2 + µ̄Qg,3 + Jensen′s inequality

where ei is the i-th column of the identity matrix IG, µ̄g,i is the i-th element of the uncondi-

tional mean under P, and µ̄Qg,i is the i-th element of the unconditional mean under Q.

Proof: See Appendix A.1.

The first and second conditions guarantee that the first element of the state vector is rt

due to (6). Conditions three and four ensure that the second element of the state vector is

the expected future short rate er
(n∗)
t . Condition four says that rt and er

(n∗)
t have the same

unconditional mean while condition three guarantees that the forecast function at horizon

n∗ is internally consistent so that er
(n∗)
t is the average of the expected future path of rt. The

last two restrictions are for tp
(n∗)
t . They ensure that the yield y

(n∗)
t is the sum of er

(n∗)
t and

tp
(n∗)
t by guaranteeing that the bond loadings at horizon n∗ are an∗ = 0 and bn∗ = (0, 1, 1)′.

Condition 6 says the unconditional mean of rt and y
(n∗)
t under Q are the same up to a Jensen’s

inequality term. This fits the definition of Q as the risk neutral measure. In Appendix A, we

5Other rotations to take different linear combinations of yields as factors have been proposed in the
literature, see Proposition 1 of Hamilton and Wu(2014) for example.
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prove the proposition and discuss further how we implement this rotation for our benchmark

model in Section 4.

This general proposition can be implemented for different cases, whether the eigenvalues

are all distinct and real, some eigenvalues are complex, or there exist repeated eigenvalues.

The following Corollary details these cases respectively. In the corollary, for a matrix A, we

use Ai,j to denote the (i, j) element.

Corollary 1. • Unique real eigenvalues:

For distinct real eigenvalues with diagonal matrices Λ and ΛQg , conditions 3 and 5 are

equivalent to

– QM+2,k = QM+1,kΛ̃k, for k = 1, ..., N .

– QQg,2,k +QQg,3,k = QQg,1,kΛ̃
Q
g,k, for k = 1, ..., G.

• Complex eigenvalues: For matrices with pair(s) of complex eigenvalues, the corre-

sponding block of Λ or ΛQg becomes

 Λc1 λc2

−λc2 Λc1

, and the corresponding part of Λ̃

or Λ̃Qg is

 Λ̃c1 λ̃c2

−λ̃c2 Λ̃c1

, the corresponding block for the right hand side for conditions

3 and 5 becomes Q.,c1Λ̃c1 −Q.,c1+1λ̃c2 and Q.,c1+1Λ̃c1 +Q.,c1λ̃c2.

• Repeated eigenvalues: For matrices with pair(s) of repeated eigenvalues, the corre-

sponding block of Λ or ΛQg becomes

 Λr1 1

0 Λr1

 , and the corresponding part of Λ̃ or

Λ̃Qg is

 Λ̃r1 λ̃r2

0 Λ̃r1

 , the corresponding block for the right hand side for conditions 3

and 5 becomes Q.,r1Λ̃r1 and Q.,r1+1Λ̃r1 +Q.,r1λ̃r2.

14



2.4 Stochastic discount factor

The pricing equation in (7) can be equivalently written as

P
(n)
t = Et

[
Mt+1P

(n−1)
t+1

]
. (13)

The stochastic discount factor (SDF)Mt+1 incorporates the risk premium and time discount-

ing. In a micro-founded model, this depends on the ratio of marginal utility. For structural

models whose reduced form is an affine term structure model, like the one specified in this

paper; see, e.g. Piazzesi and Schneider(2007) and Creal and Wu(2015a). To complete the

model, we can write down general Q dynamics for the volatility factors pQ (ht+1|It; θ). The

SDF is defined as

Mt+1 =
exp (−rt) pQ (gt+1|It; θ) pQ (ht+1|It; θ)

p (gt+1|It; θ) p (ht+1|It; θ)

which makes (7) and (13) consistent. It denotes the information set up to and including

time t, and θ is a vector of parameters. Although we can specify a process for ht+1 under

Q, the parameters are not identified using bond prices alone. For example, if we specify

pQ (ht+1|It; θ) = p (ht+1|It; θ), then the pricing kernel does not depend on the Q dynamics

of ht+1:

Mt+1 =
exp (−rt) pQ (gt+1|It; θ)

p (gt+1|It; θ)
.

3 Bayesian estimation

The ATSM with stochastic volatility is a non-linear, non-Gaussian state space model whose

log-likelihood is not known in closed-form. We estimate the model by Bayesian methods
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using a particle Markov chain Monte Carlo (MCMC) algorithm known as the particle Gibbs

sampler, see Andrieu, Doucet, and Holenstein(2010) and, for a survey on particle filters, see

Creal(2012). We are the first to introduce this algorithm into the macro-finance literature.

The particle Gibbs sampler uses a particle filter within a standard Gibbs sampling algorithm

to act as a proposal distribution for the latent variables whose full conditional distributions

are intractable. We outline the basic ideas of the MCMC algorithm in this section and

provide full details in Appendix B. Our paper contributes to the econometrics literature

on Bayesian estimation of term structure models and vector autoregressions with stochastic

volatility; see, e.g. Cogley and Sargent(2005), and Primiceri(2005) for VARs and Chib and

Ergashev(2009) and Bauer(2015) for Gaussian affine term structure models. The MCMC

algorithms developed in this paper are efficient and can handle a wide range of VARMA

models with stochastic volatility.

3.1 State space forms

Stack the yields y
(n)
t from (12) in order of increasing maturity for n = n1, n2, ..., nN , and

assume that all yields are observed with Gaussian measurement errors:

yt = A+Bgt + ηt, ηt ∼ N (0,Ω) , (14)

where A = (an1 , . . . , anN
)′ and B = (bn1 , ..., bnN

)′. Under the assumption that all yields

are measured with error, both the yield factors g1:T = (g1, . . . , gT ) and the volatility fac-

tors h0:T = (h0, . . . , hT ) are latent state variables. Let y1:T = (y1, . . . , yT ) and m1:T =

(m1, . . . ,mT ). Using data augmentation and the particle Gibbs sampler, we draw from the

joint posterior distribution p (g1:T , h0:T , θ|y1:T ,m1:T ). The Gibbs sampler iterates between

drawing from the full conditional distributions of the yield factors p (g1:T |y1:T ,m1:T , h0:T , θ),

the volatility factors p (h0:T |y1:T ,m1:T , g1:T , θ), and the parameters θ. In practice, we use two

different state space representations that either condition on the most recent draw of the

16



yield factors g1:T or the volatility factors h0:T .

State space form I conditional on h0:T Conditional on the most recent draw of h0:T ,

the model has a linear Gaussian state space form: the state variable gt has a transition

equation in (2), and the observation equations for this state space model combine yields yt

in (14), the macroeconomic variables mt in (1), and the volatility factors ht in (4). Using

this representation, we draw the latent yield factors g1:T in a large block using the Kalman

filter and forward-filtering backward sampling algorithms; see, Durbin and Koopman(2002).

Importantly, most of the parameters that enter the dynamics of gt can be drawn without

conditioning on the state variables g1:T .

State space form II conditional on g1:T Conditional on the most recent draw of g1:T ,

we have a state space model with observation equations consisting of the macroeconomic

variables and yield factors in (1) and (2) and transition equation for ht in (4). The observation

equations for mt+1 and gt+1 are non-linear in ht. Given that ht enters the conditional mean

of mt+1 and gt+1, the MCMC algorithms for stochastic volatility models developed by Kim,

Shephard, and Chib(1998) that are widely used in macroeconometrics are not applicable. A

contribution of this paper is developing efficient MCMC algorithms to handle models where

volatility enters the conditional mean. Importantly, the volatility factors h0:T can still be

drawn from their full conditional distribution p (h0:T |y1:T ,m1:T , g1:T , θ) in large blocks using

a particle Gibbs sampler, see Appendix B.2.

3.2 MCMC and particle filter

Our MCMC algorithm alternates between the two state space forms. We split the parameters

into blocks θ = (θ′g, θ
′
r)
′, where we draw θg from the first state space form. We draw the

parameters θr conditional on g1:T and h0:T . Here we sketch the rough steps and leave the

details to Appendix B.
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1. Conditional on h0:T , write the model as a conditionally, linear Gaussian state space

model.

(a) Draw θg using the Kalman filter without conditioning on g1:T .

(b) Draw g1:T jointly using forward filtering and backward sampling; see, e.g. de Jong

and Shephard(1995), Durbin and Koopman(2002).

2. Conditional on g1:T , the model is a non-linear state space model.

(a) Draw h0:T using the particle filter, see Appendix B for details.

3. Draw any remaining parameters θr conditional on both g1:T and h0:T .

Iterating on these steps produces a Markov chain whose stationary distribution is the pos-

terior distribution p (g1:T , h0:T , θ|y1:T ,m1:T ).

Another object of interest are the filtered estimates of the state variables and the value of

the log-likelihood function. We calculate these using a particle filter known as the mixture

Kalman filter; see Chen and Liu(2000).6 Similar to our MCMC algorithm, it utilizes the

conditionally linear, Gaussian state space form for statistical efficiency. Intuitively, if the

volatilities h0:T were known, then the Kalman filter would calculate the filtered estimates

of g1:T and the likelihood of the model exactly. In practice, the value of the volatilities

are not known. The mixture Kalman filter calculates a weighted average of Kalman filter

estimates of g1:T where each Kalman filter is run with a different value of the volatilities.

This integrates out the uncertainty associated with the volatilities. The statistical efficiency

gains come from the fact that the Kalman filter integrates out the Gaussian state variables

exactly once we condition on any one path of the volatilities. See Appendix B.3 for details.

6The MKF has recently been applied in economics by Creal, Koopman, and Zivot(2010), Creal(2012),
and Shephard(2013).
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4 Economic implications

Key questions of interest are: does uncertainty, specifically uncertainty about monetary pol-

icy and its transmission mechanism, have a real effect? And, how do macroeconomic shocks

influence uncertainty? This section investigates these questions using the modeling and es-

timation tools described in the previous sections. Consistent with the existing literature on

uncertainty, we also find that uncertainty contributes negatively to economic activity and is

associated with higher unemployment. The novelty of our model is that we focus on two as-

pects of interest rate uncertainty: uncertainty about monetary policy itself, and uncertainty

about the risk premium. This distinction allows us to explore different dimensions of uncer-

tainty of economic interest: (1) monetary policy uncertainty and risk premium uncertainty

react in opposite directions as a consequence of a positive shock to the unemployment rate.

(2) The response of inflation to uncertainty shocks vary across different historical episodes.

To answer these questions, impulse responses to a one time shock are reported in Sub-

section 4.1. We then aggregate the overall effect with a historical decompositions in Sub-

section 4.2. The usefulness of two factors in capturing yield volatility is documented in

Section 5.

Data, model and estimates We use the Fama-Bliss zero-coupon yields available from the

Center for Research in Securities Prices (CRSP) with maturities n = (1, 3, 12, 24, 36, 48, 60)

months. We use consumer price index inflation and the unemployment rate as our macroe-

conomic variables, which were downloaded from the FRED database at the Federal Reserve

Bank of St. Louis. Inflation is measured as the annual percentage change. The data are

available at a monthly frequency from June 1953 to December 2013.

Our model has G = 3 yield factors which are rotated to be gt =
(
rt er

(60)
t tp

(60)
t

)′
as

explained in Section 2.3. In the benchmark model, we use H = 4 volatility factors, and

this choice is warranted by the specification analysis in Section 5. The volatility factors

capture the volatility of inflation, unemployment, the short rate rt and the term premium
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tp
(60)
t . We interpret the last two factors as monetary policy uncertainty and term premium

uncertainty. The details for implementation are in Appendix A.2. Posterior means and

standard deviations for the model’s parameters are reported in Table D1.

4.1 Impulse responses

Responses of macroeconomic variables to uncertainty shocks We first study the

real effect of uncertainty shocks by plotting the impulse responses of macroeconomic variables

to one standard deviation uncertainty shocks in Figure 1. We plot the median impulse

responses in solid lines, with the [10%, 90%] highest posterior density intervals calculated

from our MCMC draws in the shaded areas.

First, let us set intuition for how large a one standard deviation uncertainty shock is:

a one standard deviation shock to short rate uncertainty is about 1/11 of the change in

uncertainty leading up to the Great Recession. For term premium uncertainty, the relative

magnitude is 1/12 . For further discussion on scale, time dynamics and the cyclical pattern

of uncertainties, see Subsection 4.3.

Both the uncertainty of monetary policy and term premia have a negative impact on

the real economy: higher uncertainty is associated with higher future unemployment rates.

Both of them are statistically significant given by the [10%, 90%] highest posterior density

intervals, and the sizes are similar as well. The impact of the monetary policy uncertainty

shock peaks at 0.08%, and the effect dies out slowly. This is consistent with findings by

Mumtaz and Zanetti(2013), for example. A higher uncertainty about the term premium, the

component in the long term interest rate that is determined by the market rather than by

the central bank, also leads to an increase of unemployment by as much as 0.08%.

The median impulse response of inflation to uncertainty shocks are close to zero, and

neither of them are statistically significant. This is related to the fact that this relationship

changes over time, including signs. We will explore the time dependence of this relationship

below.
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Figure 1: Responses of macroeconomic variables to uncertainty shocks
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Constant impulse responses to a one standard deviation shock to interest rate uncertainty. Left: monetary

policy uncertainty (h3,t); right: term premium uncertainty (h4,t). top: inflation; bottom: unemployment

rate. Units in y-axis: percentage points; Units in x-axis: months. The [10%, 90%] highest posterior density

intervals are shaded. Sample: June 1953 - December 2013.

Time-varying (state dependent) impulse response A unique feature of our hybrid

model – jointly capturing the first and second moment effects of uncertainty – is the existence

of time varying or state-dependent impulse responses where both the scale and shape vary

across time.

In a VAR with homoskedastic shocks – where uncertainty only has a first moment effect

and does not enter the conditional volatility, the impulse response to either a one standard

deviation shock or a one unit shock is a constant function through time. In a VAR with

heteroskedastic shocks – where uncertainty only effects the second moment, the impulse

responses to a one unit shock have a different scale that varies through time because of the

stochastic volatility. In either of these cases, the shape of the impulse response remains the

same.

Our model can distinguish important historical episodes like the Great Recession (2007 -
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2009) from the Great Inflation (1965 - 1982). Neither a standard VAR with homoskedasticity

or with heteroskedasticity has this property. This feature usually only exists in VARs with

time-varying autoregressive coefficients. Our model gets the same benefit without introduc-

ing many more state variables as time-varying parameters.

We plot the median impulse response to a one standard deviation shock in Figure 2 for the

following economically significant time periods: the Great Recession in red from December

2007, the Great Inflation in black from 1965, Volcker’s tenure in blue from August 1979, the

Great Moderation in turquoise from 1985, and Greenspan’s conundrum in pink from June

2004. The basic intuition of the time varying impulse response is equivalent to the following

counterfactual analysis: in the moving average representation of the vector autoregression,

(i.e., representing the state of the economy in terms of an accumulation of past shocks),

keep all the shocks the same except for the addition of a one standard deviation shock to a

variable of interest at the beginning of the period we are investigating. See Appendix C for

the calculations.

The responses of the unemployment rate to uncertainty, especially to term premium

uncertainty across different periods in Figure 2, are close to each other and all clearly positive.

This echoes the significant responses in the bottom panels of Figure 1.

In contrast, the variation across different periods for inflation (top row in Figure 2) is

bigger, and the signs also differ across colors. This explains the small magnitude and in-

significance in the top row of Figure 1. For example, a shock to monetary policy uncertainty

kept pushing up inflation during the Great Inflation, when inflation was high and associated

with a bad state of the economy. In contrast, the blue line for the Volcker period demon-

strated a downward pressure in the medium term. A plausible explanation is that Volcker

is known to combat inflation aggressively. He acted to lower inflation in response to higher

uncertainty in the market. Similarly, the red line also indicates a smaller upward pressure

on inflation during the recent Great Recession, during which inflation was low and agents

worry about deflation rather than hyper inflation. The Great Moderation is consistent with
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Figure 2: Time-varying impulse response functions
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Impulse responses to a one standard deviation shock to interest rate uncertainty. Left: monetary policy

uncertainty (h3,t); right: term premium uncertainty (h4,t). Top: inflation; bottom: unemployment rate.

Units in y-axis: percentage points; Units in x-axis: months. Sample periods: the Great Recession in red from

December 2007, the Great Inflation in black from 1965, the start of Volcker’s tenure in blue from August

1979, the Great Moderation in turquoise from 1985, and Greenspan’s conundrum in pink from June 2004.

its reputation and the responses are not extreme. The variability of inflation’s response to

shocks can be explained by its non-cyclical nature; i.e., uncertainty is associated with worse

economic condition but this can mean higher inflation for some periods and lower inflation

for others.

The variation on the top right panel covers both positive and negative regions. The most

positive reaction happened during the period known as Greenspan’s Conundrum, when the

then-chairman raised the benchmark overnight rate but failed to increase the rate with longer

maturities. Researchers attributed this conundrum to variation in the term premium. Relat-

edly, we find term premium uncertainty had a bigger positive impact on inflation compared

to other periods. The most negative response is during Volcker’s tenure, again consistent

with his reputation as an inflation hawk.
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Figure 3: Time-varying impulse response functions
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Impulse responses to a one standard deviation shock to interest rate uncertainty. Left: monetary policy

uncertainty (h3,t); right: term premium uncertainty (h4,t). Units in y-axis: inflation in percentage points;

Units in x-axis: months. Sample periods: the Great Inflation in black from 1965, the start of Volcker’s tenure

in blue from August 1979, and Greenspan’s conundrum in pink from June 2004. The [16%, 84%] highest

posterior density intervals are shaded.

The economic difference also has statistical support. Figure 3 demonstrates the statistical

difference with two examples. On the left side, we plot the response of inflation to a monetary

policy uncertainty shock for the Great Inflation (black) and Volcker regime (blue). Although

the blue line is economically close to and statistically indistinguishable from zero, the black

line is statistically significant. The fact that the credible bands do not overlap one another

for the impulse responses demonstrates a statistical difference across different periods. In the

right panel, we show similar findings with the impulse response of inflation to a term premium

uncertainty shock for the Great Inflation (black) and Greenspan’s conundrum (pink). The

shock during Greenspan’s conundrum (pink) is economically larger than the Great Inflation

shock (black) and is statistically significantly different from zero for part of the response.

The black line itself is not covered by the pink credible band for both the medium term

and the long term. The wide credible bands partially reflect the fact that the time-varying

impulse responses do not average across all the time periods.
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Figure 4: Responses of uncertainty to macroeconomic shocks
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Constant impulse responses to a one standard deviation shock to macroeconomic variables. The standard

deviation is averaged across time. Left: monetary policy uncertainty (h3,t); right: term premium uncertainty

(h4,t). Top: inflation; bottom: unemployment rate. Units in y-axis: standard deviation; Units in x-axis:

months. The [10%, 90%] highest posterior density intervals are shaded. Sample: June 1953 - December

2013.

Responses of uncertainty to macroeconomic shocks An equally important question

is how do macroeconomic shocks drive uncertainty? The constant impulse responses of

uncertainty to macroeconomic shocks are captured in Figure 4. In response to a standard

deviation shock to inflation, both monetary policy uncertainty and term premium uncertainty

increase. The contemporaneous response is 0.26 standard deviations for the former, and

almost 0.4 for the latter. Then, they die out through time.

Conversely, the two dimensions of uncertainty respond differently to shocks to the un-

employment rate: monetary policy uncertainty responds negatively, whereas term premium

uncertainty reacts positively. A higher unemployment rate injects more uncertainty to the

market, hence term premium, the market determined component of interest rates. In con-

trast, the Fed has historically eased monetary policy when economic conditions worsen. That

explains why we see a lower uncertainty about monetary policy following higher unemploy-
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Figure 5: Responses of macroeconomic variables to components of interest rates
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Constant impulse responses to a one standard deviation shock to term premium. Left: inflation; right:

unemployment rate. Units in y-axis: percentage points; Units in x-axis: months. The [16%, 84%] highest

posterior density intervals are shaded. Sample: June 1953 - December 2013.

ment rate.

Discussion What drives the difference between the two dimensions of interest rate un-

certainty in Figure 2 and Figure 4? The macroeconomic reactions to monetary policy

uncertainty shocks in the left panels of Figure 1 behave similar to those in Mumtaz and

Zanetti(2013). What is the economic interpretation for the term premium shock? Figure 5

shows that price and quantity move in opposite directions after a shock to the term pre-

mium. This behaves as if it was a supply shock. The credible bands are at the [16%, 84%]

level rather than [10%, 90%] as in most of our analyses. This reflects the uncertainty of the

decomposition of interest rates into the latent expectation and term premium components.

4.2 Historical decomposition

To better quantify the economic magnitude of the empirical link between macroeconomic

variables and interest rate uncertainty, we resort to an alternative strategy through a histor-
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Figure 6: Historical decomposition
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Top: monetary policy uncertainty shocks’ (blue) and term premium uncertainty shocks’ (red) contributions

to inflation (left) and unemployment rate (right). Bottom: inflation shocks’ (blue) and unemployment rate

shocks’ (red) contributions to monetary policy uncertainty (left) and term premium uncertainty (right).

ical decomposition, a strategy used, for example, by Wu and Xia(2015) to study unconven-

tional monetary policy. A historical decomposition decomposes the historical dynamics of a

variable into contributions of various shocks in the system. In our system, we have shocks

to macroeconomic variables, shocks to yield factors, and shocks to uncertainty.

First, we study the relationship between shocks to monetary policy and term premium

uncertainty on inflation and unemployment. We show them in the top panels of Figure 6.

Throughout the six decades in our sample, the contribution of monetary policy uncertainty to

inflation is overall negative. The biggest impact happened recently since the Great Recession.

Without monetary policy uncertainty, inflation would have been about 0.7% higher at the

end of the sample. The size is substantial, as during this period, the economy is battling

deflationary pressure. On the other hand, the impact of term premium uncertainty on

inflation switched between positive and negative, and the size is small overall.

The upper right panel captures the relationship between an uncertainty shock and the
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unemployment rate. Overall, uncertainty shocks contributed positively to the unemployment

rate historically, or negatively to the economy, although the importance of monetary policy

uncertainty and term premium uncertainty alternates. For example, the contribution of

monetary policy uncertainty peaked in the early 1980s at about 0.55%. Its contribution

became negative towards the end of the sample, this might imply a lower uncertainty about

monetary policy from better implementation and understanding of unconventional monetary

policy. Or it could come from the mere fact that the short term interest rate is stuck at

zero. In contrast, the contribution of term premium uncertainty was still positive and about

0.2 - 0.3% for the same period. The unemployment rate would have been lower if there

were no uncertainty shocks to the term premium. The average contribution term premium

uncertainty has on the unemployment rate across time is about 0.17%, with three peaks

up to 0.7% in the early 70s, early 80s and mid 2000s. The last one is associated with

Greenspan’s Conundrum. This was often attributed to an increase in term premia, which is

consistent with our empirical evidence that higher term premium uncertainty drove higher

unemployment rate.

Second, we now focus on how macroeconomic variables drive uncertainty. Inflation im-

poses a positive contribution to both uncertainty measures, especially during the early 1980s,

when inflation was at its peak. During lower inflation periods early and late in the sample,

its contribution became negative. These findings are consistent with the impulse responses in

the top panels of Figure 4. Shocks to the unemployment rate contribute mostly negatively to

monetary policy uncertainty, especially for the prolonged periods in the 1990s to mid 2000s

and after the Great Recession. In contrast, its contribution to term premium uncertainty

was more positive than negative. The two red lines in the bottom panels often move in

opposite directions, with a correlation as high as -0.88. This contrast again is consistent

with Figure 4, and is a further evidence supporting two dimensions of uncertainty.
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Figure 7: Volatility factors

Left: short rate and 5 yr term premia volatility factors. Right: inflation and unemployment volatility factors.

The factors ht have been multiplied by 1200 and demeaned.

4.3 Estimates of uncertainty

We plot the monetary policy and term premium uncertainty factors in the left panel of

Figure 7, together with the uncertainty factors of macroeconomic variables on the right.

Both interest rate uncertainties increased in the first half of the sample, and peaked during

the two recessions in the early 1980s. The short rate uncertainty displayed a decreasing

trend since, although it increased again right before the two recessions in the 2000s. It finally

settled down at its lowest at the end of the sample. Whereas the term premium uncertainty

remained relatively stable for the second half of the sample. Inflation uncertainty was around

average at the beginning of the sample, then it peaked twice at the second recession in the

1970s and two recessions in early 1980s. Then it kept going down until late 1990s. Since

then, it went up, and peaked in the Great Recession at historical high before dropping to

average.

Magnitude of uncertainty The left panel of Figure 7 provides a visual inspection of the

magnitude of a one standard deviation shock as discussed in Subsection 4.1. One standard
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deviation of the short rate uncertainty shock is about 0.3. The change in uncertainty leading

up to the Great Recession is about 3.4 (11 times the shock size), and the change is about

4.5 before the 1980 recession (15 standard deviations). One standard deviation for the term

premium uncertainty shock is about 0.14. Its hike before the Great Recession is about 12

times this magnitude, comparable to the movement for the short rate uncertainty relative

to its respective standard deviation.

Uncertainty and recession Although the four uncertainty measures have their own dy-

namics, Figure 7 shows that all of them are counter-cyclical: they increase drastically before

almost every recession and remain high throughout recessions; when the economy recovers,

they all drop.

To illustrate this statistically, we use the following simple regression:

hjt = α + β1recession,t + ujt, (15)

where 1recession,t is a recession dummy, and takes a value of 1 if time t is dated within a

recession by the NBER. The coefficients are 2.0 for monetary policy uncertainty meaning

that uncertainty is 2.0 units higher during recessions as opposed to expansions, and the

difference is 0.4 for term premium uncertainty, 0.7 for both inflation and unemployment

uncertainty. All coefficients are statistically significant with p-values numerically at zero.

5 Model comparison

5.1 Model specifications

Identification and other model restrictions In addition to the rotation restrictions

imposed in Proposition 1, we impose further restrictions to achieve identification: (i) Σm,

Σg, Σh are lower triangular; (ii) Γ1 is a (G+M)×H matrix with H rows corresponding to
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ht having a scaled identity matrix 1200 ∗ IH .7 (iii) when H > 0, the diagonal elements of

Σm and Σg are fixed at 1; (iv) We set H elements corresponding to ht in Γ0 to zero.

We restrict the covariance matrix under Q to be equal to the long-run mean under P;

i.e. ΣQg = Σgdiag
(
exp

[
Γ0+Γ1µ̄h

2

])
. This restriction implies that our model nests Gaussian

ATSMs as Σh → 0. Finally, we estimate Ω in (14) to be a diagonal matrix. A demonstration

of implementing the benchmark model is in Appendix A.2.

Models To understand the factor structure in volatility, on top of the macro model studied

in Section 4, we compare yield only models with M = 0 and H = 0, 1, 2, 3 volatility factors.

We label these models HH . Yields in the H1 model share one common volatility factor. Our

choice of Γ1 implies that the volatility factors in the H2 model capture the short rate and

term premium volatilities. The H3 model adds another degree of freedom for the expected

future short rate volatility.

Estimates Estimates of the posterior mean and standard deviation for the parameters of

all four yields only models as well as the log-likelihood and BIC (evaluated at the posterior

mean) are reported in Table D2. Priors for all parameters of the model are discussed in

Appendix B.4. The parameter estimates for the H0 model are typical of those found in

the literature on Gaussian ATSMs, see Hamilton and Wu(2012). We also note that with

the introduction of stochastic volatility the estimated values of the autoregressive matrix Φg

become more persistent. The modulus of the eigenvalues of this matrix are larger for all the

stochastic volatility models. Due to the increased persistence, the long-run mean parameters

µ̄g of the yield factors are larger than for theH0 model and closer to the unconditional sample

mean of yields.

7With one yield volatility factor, we normalize it to be the volatility of rt. With two yield volatility

factors, we normalize them to be the volatility of rt and tp
(n∗)
t . With three yield volatility factors, Γ1 is the

scaled identity matrix.
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Figure 8: Estimated (filtered) conditional volatility of yields from six models
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Estimated conditional volatility of 3, 12, 60 month yields from six different models. Top left: univariate

generalized autoregressive score model; Top middle: H0 model; Top right: H1 model; Bottom left: H2 model;

Bottom middle: H3 model; Bottom right: main macro model.

5.2 Yield volatilities

Yield only models We first compare yield only models HH in terms of fitting the yield

volatility, and select the number of volatility factors needed to describe the data. Table D2

shows that the introduction of the first stochastic volatility factor causes an enormous in-

crease in the log-likelihood from 37425.4 for the H0 model to 37993.9 for the H1 model.

The addition of a second volatility factor that captures movements in the 5 yr term pre-

mium adds another 100 points to the likelihood of the H2 model to 38095.9. Adding a third

volatility factor increases the likelihood by less than 20 points to 38104.7. As the number of

volatility factors increases, the number of parameters also increases. The BIC penalizes the

log-likelihood for these added parameters. It selects the H2 model with two volatility factors

as the best model for its overall fit.
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In Figure 8, we compare the estimated volatilities from the three yields only models with

a reduced form description of the data. The top left panel plots the conditional volatility

of the 3, 12, and 60 month yields from the generalized autoregressive score volatility model

from Creal, Koopman, and Lucas(2011) and Creal, Koopman, and Lucas(2013) to capture

this feature of the data.8 This graph illustrates a factor structure for yield volatilities of

different maturities. At the same time, they have distinct behavior across time. In the first

half of the sample, the term structure of yield volatilities sloped downward as the volatility

of short-term interest rates was higher than long-term rates. Short term rates became less

volatile than long-term rates after the early 1980’s and the term structure of volatility sloped

upward on average. This may reflect efforts by the monetary authorities to make policy more

transparent and better anchor agents’ expectations. In the mid-2000s, the volatility of long

and short rates moved in opposite directions with long-term volatility increasing at the same

time that short-term volatility is declining.

The remaining panels in Figure 8 plot the (filtered) conditional volatility from the

ATSM’s. In the H1 model, movements in yield volatility are nearly perfectly correlated.

With only one factor, the model is not flexible enough to capture the idiosyncratic move-

ments across different maturities that are observed in the data. This is consistent with the

findings in Creal and Wu(2015b). The H2 model adds flexibility through a second factor

that drives the difference in volatility between the short-term and long-term yields. This

model captures all the key features in the data we describe above. Although adding a third

volatility factor provides more flexibility, the key economically meaningful movements are

already captured by the first and second factors. In the H2 model, the correlation between

the two volatility factors is only 0.082. The H3 model adds a third volatility factor which

is highly correlated with the short rate volatility factor at 0.90. Overall, both economic and

statistical evidence points to two volatility factors.

8 For each maturity n, we estimate an AR(1) model for the conditional mean of yields and the Student’s
t generalized autoregressive score (GAS) model of Creal, Koopman, and Lucas(2011) and Creal, Koopman,
and Lucas(2013) for the conditional volatility.
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Table 1: Pricing errors relative to the Gaussian model

H0 H1 H2 H3 macro

1m 0.3235 1.0893 1.0980 1.0983 1.0980
3m 0.1074 0.5531 0.4873 0.4991 0.4879
12m 0.1213 0.9616 0.9732 0.9923 0.9632
24m 0.0716 0.9788 1.0246 1.0168 1.0193
36m 0.0689 1.0001 1.0019 0.9966 1.0001
48m 0.0693 0.9325 0.9854 0.9893 0.9743
60m 0.0852 1.0549 0.9858 0.9721 1.0068

First column: Posterior mean estimates of the pricing errors
√

diag (Ω)× 1200 for Gaussian the H0 model.
Column 2-5: ratios of pricing errors of other models relative to the H0 model.

Macro model Our benchmark macro model studied in Section 4 adds two macro variables

– inflation and the unemployment rate – and their volatilities into the H2 model selected

above. The conditional volatilities from this model are plotted in the bottom right panel of

Figure 8. The estimated conditional volatilities from the macro model are nearly identical

to the estimates from the yields-only H2 model and capture all the characteristics of yield

volatility discussed above. Overall, our benchmark macro model fits the yield volatility

similarly to the preferred yield only model.

5.3 Cross-sectional fit of the yield curve

Our term structure models are designed to capture the volatility of yields while not sacrificing

their ability to fit the cross section of the yield curve. In fact, we find that by introducing

stochastic volatility it improves their ability to fit the yield curve at the same time. In

Table 1, we report the average pricing errors across the seven maturities for the Gaussian

H0 model in the first column. The next four columns report the ratios of pricing errors for

the yields-only models with H = 1, 2, 3 and the macroeconomic model relative to the H0

model for the same maturity. Relative to the Gaussian H0 model, the biggest improvement

happens for the 3 month yield, with measurement error dropping about half across models.

For other maturities, the fit improves more often than not. Unlike the standard USV model
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Figure 9: Term premia comparison

Estimated 5 yr term premia. Red solid line: estimates from our benchmark model. Blue dashed line: term

premium of Adrian, Crump, and Moench(2013).

which imposes restrictions on the cross-section of yields, our new models actually improve

it.

5.4 Term premium

The estimated term premium is one of the key aspects of our paper. It is fundamentally

latent and unobservable. This section compares our estimate with what is studied in the

literature as external validation. Many estimates of the term premium take a much shorter

sample, see Wright(2011), Bauer, Rudebusch, and Wu(2012) and Bauer, Rudebusch, and

Wu(2014) for examples. To compare across a long time horizon like ours, we take Adrian,

Crump, and Moench(2013)’s estimate, which is publicly available from the Federal Reserve

Bank of New York. We plot the estimate from our benchmark model (red solid line) with the

term premium of Adrian, Crump, and Moench(2013) (blue dashed line) in Figure 9. They

mimic each other sharing the same qualitative and quantitative features. Both estimates
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of the term premium have a common business cycle pattern. The correlation between the

two series is surprisingly high at 0.9, given the considerable uncertainty associated with the

decomposition. The term premium is a sizable component of interest rates, and it peaks at

4% in the 1980s.

6 Conclusion

We developed a new macro finance affine term structure model with stochastic volatilities

to study the empirical importance of interest rate uncertainty. In our model, the volatility

factor serves two roles: it is the volatility of the yield curve and macroeconomic variables,

and it also measures uncertainty which directly interacts with macroeconomic variables in

a VAR. Our model allows multiple volatility factors, which are determined separately from

the yield factors. With two volatility factors and three traditional yield factors, our model

can capture both aspects of the data.

We find that uncertainty contributes negatively to the real economy, which is consistent

with what researchers find in the uncertainty literature. Unique conclusions drawn from our

two dimensions of uncertainty (monetary policy uncertainty and term premium uncertainty)

include: (1) they react in opposite directions as a consequence of a positive shock to the

unemployment rate. (2) The response of inflation to uncertainty shocks vary across different

historical episodes.
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Fernández-Villaverde, Jesús, Pable Guerrón-Quintana, Juan F. Rubio-Ramı́rez, and

Martin Uribe (2011) “Risk matters: the real effects of volatility shocks.” American

Economic Review 101, 2530–2561.

Gertler, Mark, and Peter Karadi (2015) “Diagnostics for time series analysis” American

Economic Journal: Macroeconomics 7, 44–76.

Ghysels, Eric, Ahn Le, Sunjin Park, and Haoxiang Zhu (2014) “Risk and return trade-off

in the US treasury market.” Working paper, University of North Carolina, Depart-

ment of Economics.

Hamilton, James D., and Jing Cynthia Wu (2012) “Identification and estimation of

Gaussian affine term structure models.” Journal of Econometrics 168, 315–331.

40



Hamilton, James D., and Jing Cynthia Wu (2014) “Testable implications of affine term

structure models.” Journal of Econometrics 178, 231–242.

Jo, Soojin (2014) “The effect of oil price uncertainty on global real economic activity.”

Journal of Money, Credit, and Banking 46, 1113–1135.

Joslin, Scott (2010) “Pricing and hedging volatility risk in fixed income markets.” Work-

ing paper, MIT Sloan School of Management.

Joslin, Scott (2015) “Can unspanned stochastic volatility models explain the cross sec-

tion of bond volatilities?” Management Science forthcoming.

Joslin, Scott, Marcel Priebsch, and Kenneth J. Singleton (2014) “Risk premiums in

dynamic term structure models with unspanned macro risks” The Journal of Finance

69, 1197–1233.

Jurado, Kyle, Sydney C. Ludvigson, and Serena Ng (2015) “Measuring uncertainty.”

American Economic Review 105, 1177–1216.

Kim, Sangjoon, Neil Shephard, and Siddhartha Chib (1998) “Stochastic volatility: like-

lihood inference and comparison with ARCH models.” The Review of Economic

Studies 65, 361–393.

Liu, Jun S., and Rong Chen (1998) “Sequential Monte Carlo computation for dynamic

systems.” Journal of the American Statistical Association 93, 1032–1044.

Mueller, Phillipe, Andrea Vedolin, and Yu-min Yen (2011) “Bond variance risk premia”

Unpublished Manuscript, London School of Economics.

Mumtaz, Haroon, and Francesco Zanetti (2013) “The impact of the volatility of mone-

tary policy shocks.” Journal of Money, Credit, and Banking 45, 535–558.

Omori, Yasuhiro, Siddhartha Chib, Neil Shephard, and Jouchi Nakajima (2007)

“Stochastic volatility with leverage: fast and efficient likelihood inference.” Jour-

nal of Econometrics 140, 425–449.

41
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Appendix A Rotation of the state vector

Appendix A.1 Proof for Proposition 1

Proof. The short rate, expected future short rate, and term premium are defined as

rt = y
(1)
t = a1 + b′1,ggt = a1 + b′1ft

er
(n∗)
t ≡ 1

n∗
Et [rt + . . .+ rt+n∗−1]

= a1 +
b′1
n∗

[
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, while an∗ and bn∗ are defined in (10) and (11).

From the definition of the loadings, we find
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For the loading cn∗ on the expected future short rate, we start with

cn∗ = a1 +
b′1
n∗

[
(n∗ − 1)I + (n∗ − 2)Φf + . . .+ Φn

∗−2
f

]
(I − Φf ) µ̄f

Let K be the coefficient in front of µ̄f in the second term. Then, recognizing that this contains an arithmetico-

geometric sequence, we can derive
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First, we can write b′n,g for any n as
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where the Jensen’s inequality term referred to in the proposition is the expression in the first line.
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Collecting each of the terms, we find
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Appendix A.2 Implementation for our benchmark model

In this section, we discuss how we parameterize: (i) the vectors µ̄f and µ̄Qg ; (ii) the matrices Φf and ΦQg ;

(iii) the matrices Γ0 and Γ1 in (3). In our empirical work, we set n∗ = 60, and for our benchmark model in

Section 4, M = 2, G = 3 and H = 4. The state factor for yields is ordered by gt =
(
rt er

(n∗)
t tp

(n∗)
t

)′
.

The vector µ̄f =
(
µ̄′m, µ̄

′
g, µ̄
′
h

)′
and only µ̄g is restricted. The G × 1 vector µ̄g only has G − 1 free

parameters given by an unrestricted vector µ̄ug . We can therefore write µ̄g = M1µ̄
u
g , where for the main

model M1 is given by

M1 =


1 0

1 0

0 1


Similarly, the G× 1 vector µ̄Qg only has G− 1 free parameters given by an unrestricted vector µ̄Q,ug . We can

write their relationship as µ̄Qg = MQ
0 +MQ

1 µ̄
Q,u
g where, for the main model, the vector and matrix are given

by

MQ
0 =


J.I.

0

0

 MQ
1 =


1 1

1 0

0 1


The top element J.I. denotes the Jensen’s inequality term from Appendix A.1.

For estimation, we assume the eigenvalues are real and distinct. Following Proposition 1, the matrix Φf

has F 2 − F − (M +G)
2

free parameters and the matrix ΦQg has G2 −G free parameters. We impose these
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restrictions on the matrices of eigenvectors Q and QQg in the benchmark case as follows

Q =



1 q12 q13 q14 q15 q16 q17 q18 q19

q21 1 q23 q24 q25 q26 q27 q28 q29

q31 q32 1 1/λ̃4 q35 q36 q37 q38 q39

q31λ̃1 q32λ̃2 λ̃3 1 q35λ̃5 q36λ̃6 q37λ̃7 q38λ̃8 q39λ̃9

q51 q52 q53 q54 1 q56 q57 q58 q59

0 0 0 0 0 1 q67 q68 q69

0 0 0 0 0 q76 1 q78 q79

0 0 0 0 0 q86 q87 1 q89

0 0 0 0 0 q96 q97 q98 1



QQg =


1 1 1

λ̃Q1 − q
Q
31 λ̃Q2 − q

Q
32 λ̃Q3 − q

Q
33

qQ31 qQ32 qQ33

 (A.1)

where λ̃i and λ̃Qi are the diagonal elements of Λ̃ and Λ̃Qg . Given a matrix, its eigenvectors are identified up

to their scale. Therefore, each column of Q requires one restriction for identification. We set the diagonal

elements qii = 1. The normalization assumption for QQg is qQ1i = 1, which then facilitates us to impose

restrictions directly on ΦQg for actual implementation below. There are no free parameters in the 4th row of

Q and the second row of QQg due to Proposition 1. Finally, we note that the eigenvectors in the bottom left

H × (M +G) block of Q are all equal to zero due to the assumption that the level of mt and gt do not enter

the conditional mean of ht+1 in (4).

We allow for a factor structure in the volatility in (3) through the vector Γ0 and matrix Γ1. In our

benchmark model, we set

Γ0 =



0

0

0

γ0,4

0


, Γ1 =



1200 0 0 0

0 1200 0 0

0 0 1200 0

0 0 γ1,43 γ1,44

0 0 0 1200


where γ0,4, γ1,43, γ1,44 are estimated parameters. For estimation, we scale the elements of Γ1 by 1200 so that

ht has approximately the same scale as mt and gt.
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Restrictions on ΦQg As we have a better understanding of the autoregressive matrix ΦQg itself rather

than its eigenvector matrix QQg , we demonstrate here how to impose restrictions on ΦQg to achieve the

restrictions described in (A.1). We parameterize ΦQg in terms of 3 eigenvalues and 3 elements in the first row

of ΦQg . Then, we can solve the three elements of QQg in the third row as follows.

qQ3,i =
λQi − φ

Q
11 − φ

Q
12λ̃

Q
i

φQ13 − φ
Q
12

and the second row of QQg is

qQ2,i = λ̃Qi − q
Q
3,i

for i = 1, 2, 3, λQi is the ith eigenvalue in ΛQ, and φQi,j is the (i, j) component of ΦQg . Knowing QQg , we then

can solve for the remaining values of ΦQg = QQg ΛQg Q
Q,−1
g .

Appendix B MCMC and particle filtering algorithms

Appendix B.1 MCMC algorithm

In the appendix, we use the notation xt:t+k = (xt, . . . , xt+k) to denote a sequence of variables from time

t to time t + k. Our Gibbs sampling algorithm iterates between three basic steps: (i) drawing the latent

yield factors g1:T conditional on the volatilities h0:T and parameters θ; (ii) drawing the volatilities h0:T

conditional on g1:T and θ; (iii) and then drawing the parameters of the model θ. The MCMC algorithm is

designed to minimize the amount that we condition on the latent variables g1:T by using the Kalman filter

to marginalize over them. And, it draws the latent variables h0:T in large blocks using the particle Gibbs

sampler, see Andrieu, Doucet, and Holenstein(2010). We will use two different state space representations

as described in Subsection 3.1.

Appendix B.1.1 State space form conditional on h0:T

For linear, Gaussian models, we use the following state space form

Yt = Ztxt + dt + η∗t η∗t ∼ N (0, Ht) , (B.1)

xt+1 = Ttxt + ct +Rtε
∗
t+1 ε∗t+1 ∼ N (0, Ct) , (B.2)
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with x1 ∼ N (x1, P1). The intercept A in (14) is a linear function of µ̄Qg . We write it as A = A0 + A1 × µ̄Qg

where µ̄Qg = MQ
0 +MQ

1 µ̄
Q,u
g , and µ̄Q,ug is the vector of unrestricted parameters. The vector MQ

0 and matrix

MQ
1 are discussed in Appendix A.2. The vector A0 and matrix A1 are determined by the bond loading

recursions.

We place the unconditional means of the macro variables µ̄m, the unconditional means of the yield

factors µ̄ug , and the unconditional mean of the yield factors under Q given by µ̄Q,ug in the state vector.

Note that µ̄uf =
(
µ̄′m, µ̄

u,′
g

)′
. We draw them jointly with the yield factors ḡ1:T using simulation smoothing

algorithms (forward-filtering backward sampling). We also marginalize over these parameters when drawing

other parameters of the model. We fit the model into the state space form (B.1) and (B.2) by defining the

state space matrices as

Yt =


mt

yt

ht

 , Zt =


I 0 0 0 0 0

0 B 0 0 0 A1M
Q
1

0 0 I 0 0 0

 , dt =


0

A0 +A1M
Q
0

0

 Ht =


0 0 0

0 Ω 0

0 0 0



xt =



mt

gt

ht

µ̄m

µ̄ug

µ̄Q,ug


, Ct = I,

ct =



Φ̄mhµ̄h

Φ̄mgµ̄h

Φ̄hhµ̄h

0

0

0


, Tt =



Φm Φmg Φmh Φ̄mm Φ̄mg 0

Φgm Φg Φgh Φ̄mg Φ̄gg 0

0 0 Φh 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I


, Rt =



ΣmDm,t 0 0

ΣgmDm,t ΣgDg,t 0

Σhm Σhg Σh

0 0 0

0 0 0

0 0 0


,

where the matrices (Φ̄mm, Φ̄mg, Φ̄mg, Φ̄gg, Φ̄mh, Φ̄mg, Φ̄hh) are defined from the relation

µ̄f = L1µ̄
u
f ,


Φ̄mm Φ̄mg Φ̄mh

Φ̄gm Φ̄gg Φ̄gh

0 0 Φ̄hh

 = (I − Φf )L1.
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where L1 is a selection matrix of zeros and ones that imposes the restriction on µ̄g discussed in Appendix

A.2. The priors for the parameters are µ̄m ∼ N
(
µ̄m, Vµ̄m

)
, µ̄ug ∼ N

(
µ̄ug , Vµ̄u

g

)
, and µ̄Q,ug ∼ N

(
µ̄Q,ug , Vµ̄Q,ug

)
.

The initial conditions for x1 ∼ N (x1, P1) are

x1 =



Φmhh0

Φghh0

h0

µ̄
m

µ̄u
g

µ̄Q,u
g



C1 =



ΣmD
2
m,0Σ′m ΣmD

2
m,0Σ′gm ΣmDm,0Σ′hm 0 0 0

ΣgmD
2
m,0Σ′m ΣgmD

2
m,0Σ′gm + ΣgD

2
g,0Σ′g ΣgDg,0Dm,0Σ′hm + ΣgDg,0Σ′gh 0 0 0

ΣhmDm,0Σ′m ΣhmDm,0Dg,0Σ′g + ΣhgDg,0Σ′g ΣhmΣ′hm + ΣhgΣ
′
hg + ΣhΣ′h 0 0 0

0 0 0 Vµ̄m 0 0

0 0 0 0 Vµ̄u
g

0

0 0 0 0 0 Vµ̄Q,ug


.

with P1 = R1C1R
′
1 and R1 = I.

Appendix B.1.2 State space form conditional on g1:T

Conditional on the draw of g1:T , the observation equations are

mt+1 = µm + Φmmt + Φmggt + Φmhht + ΣmDm,tεm,t+1 (B.3)

gt+1 = µg + Φgmmt + Φggt + Φghht + ΣgmDm,tεm,t+1 + ΣgDg,tεg,t+1. (B.4)

The transition equation is

ht+1 = µh + Φhht + Σhmεm,t+1 + Σhgεg,t+1 + Σhεh,t+1. (B.5)

We use this state space representation to draw h0:T using the particle Gibbs sampler.
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Appendix B.2 Drawing the volatilities by particle Gibbs sampling

The full conditional distribution of the volatilities p (h0:T |g1:T ,m1:T ; θ) is a non-standard distribution. We

use a particle Gibbs sampler to draw paths of the state from this distribution in large blocks, which improves

the mixing of the Markov chain. The particle Gibbs sampler runs a particle filter at each iteration of the

MCMC algorithm to build a discrete approximation of the continuous distribution p (h0:T |g1:T ,m1:T ; θ). At

each date t, the marginal filtering distribution of the state variable is p (ht|g1:T ,m1:T ; θ). The particle filter

approximates this marginal through a collection of J particles
{
h

(j)
t , ŵ

(j)
t

}J
j=1

where h
(j)
t is a point on the

support of the distribution and ŵ
(j)
t is the probability mass at that point. Collecting the particles for all dates

t = 1, ..., T , the particle filter approximates the joint distribution
{
h

(j)
0:T , ŵ

(j)
0:T

}J
j=1
≈ p (h0:T |g1:T ,m1:T ; θ).

The PG sampler draws one path of the state variables from this discrete approximation. As the number of

particles M goes to infinity, the PG sampler draws from the exact full conditional distribution.

The particle Gibbs sampler requires a small modification of a standard particle filter. The particle Gibbs

sampler requires that the pre-existing path h
(∗)
0:T =

(
h

(∗)
0 , h

(∗)
1 , . . . , h

(∗)
T

)
that was sampled at the last iteration

have positive probability of being sampled again. This means that the path h
(∗)
0:T must survive the resampling

step of the particle filtering algorithm. Instead of implementing a standard resampling algorithm, Andrieu,

Doucet, and Holenstein(2010) describe a conditional resampling algorithm that needs to be implemented.

Other than this, the particle filter is standard and proceeds as follows.

At time t = 0.

• Set h
(1)
0 = h

(∗)
0 . For j = 2, . . . , J , draw h

(j)
0 ∼ p (h0; θ) and set ŵ

(j)
0 .

For t = 1, . . . , T do:

• Set h
(1)
t = h

(∗)
t . For j = 2, . . . , J , draw from a proposal distribution h

(j)
t ∼ q

(
ht|mt, gt, h

(j)
t−1; θ

)
• For j = 1, . . . , J calculate the importance weights

w
(j)
t ∝ w

(j)
t−1

p
(
gt,mt|mt−1, gt−1, h

(j)
t , h

(j)
t−1; θ

)
p
(
h

(j)
t |h

(j)
t−1; θ

)
q
(
h

(j)
t |mt, gt, h

(j)
t−1; θ

)

• For j = 1, . . . , J normalize the weights ŵ
(j)
t =

w
(j)
t∑J

k=1 w
(k)
t

• Conditionally resample the particles
{
h

(j)
t

}J
j=1

with probabilities
{
ŵ

(j)
t

}J
j=1

. In this step, the first

particle h
(1)
t always gets resampled and may be randomly duplicated.

At each time step of the algorithm, we store the particles and their weights
{
h

(j)
0:T , ŵ

(j)
0:T

}J
j=1

. We draw a path

of the state variables from this discrete distribution according to an algorithm proposed by Whiteley(2010).
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At time t = T , draw h
(∗)
T = h

(j)
T with probability ŵ

(j)
T . Then, for t = T − 1, . . . , 0, we draw recursively

backwards

• For j = 1, . . . , J , calculate the backwards weights wt|T ∝ ŵ
(j)
t p(h

(∗)
t+1|h

(j)
t ; θ).

• For j = 1, . . . , J normalize the weights ŵ
(j)
t|T =

w
(j)

t|T∑J
j=1 w

(j)

t|T
.

• Draw h
(∗)
t = h

(j)
t with probability ŵ

(j)
t|T .

The algorithm produces a draw h
(∗)
0:T =

(
h

(∗)
0 , . . . , h

(∗)
T

)
from the full conditional distribution.

In practice, when the dimension of H is large, we draw an individual path of the volatilities conditional

on the other paths. Let hi,t for i = 1, . . . ,H denote the set of stochastic volatility state variables. Specifically,

we draw path hi,0:T conditional on the remaining paths hk,0:T for all k 6= i. This remains a valid particle

Gibbs sampler. In the paper, we use J = 300 particles and choose the transition density p(ht|ht−1; θ) as the

proposal q (ht|mt, gt, ht−1; θ).

Appendix B.2.1 The IMH algorithm

In our MCMC algorithm, we draw as many parameters as possible without conditioning on the state vari-

ables and other parameters. In the algorithm in Appendix B.2.2, we will repeatedly apply the independence

Metropolis Hastings (IMH) algorithm along the lines of Chib and Greenberg(1994) and Chib and Erga-

shev(2009), in a combination with the Kalman filter. Here is how it works. Let Yt = (m′t y
′
t h
′
t)
′

. Suppose

we separate the parameter vector θ = (ψ,ψ−) and we want to draw a subset of the parameters ψ conditional

on the remaining parameters ψ−.

• Maximize the log-posterior p (ψ|Y1:T , ψ
−) ∝ p (Y1:T |ψ,ψ−) p (ψ), where the likelihood is computed

using the Kalman filter. Let ψ̂ be the posterior mode and H−1
ψ be the inverse Hessian at the mode.

• Draw a proposal ψ∗ ∼ t5

(
ψ̂,H−1

ψ

)
from a Student’s t distribution with mean ψ̂, scale matrix H−1

ψ ,

and 5 degrees of freedom.

• The proposal ψ∗ is accepted with probability α =
p(Y1:T |ψ∗,ψ−)p(ψ∗)q(ψ(j−1))

p(Y1:T |ψ(j−1),ψ−)p(ψ(j−1))q(ψ∗)
.

Appendix B.2.2 MCMC algorithm

We use the notation θ(−) to denote all the remaining parameters in θ other than the parameters being drawn

in that step. Let qf and φQg denote the free parameters in the matrix of eigenvectors Q and ΦQg , respectively.

Our MCMC algorithm proceeds as follows:
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1. Draw λf , qf , q
Q
g ,Σg: Conditional on h0:T and the remaining parameters of the model, write the model

in state space form as in Appendix B.1.1. Draw parameters listed below using the IMH algorithm as

explained in Appendix B.2.1.

• Draw the elements of Ω. For any diagonal elements in Ω, we use a proposal distribution that

draws them in logarithms.

• Draw the free parameters in Σg: note the diagonal elements of Σg are fixed.

• Draw λf , qf , φ
Q
g .9

• Draw the free parameters in µ̄h,Γ0,Γ1.

2. Draw
(
g1:T , µ̄m, µ̄

u
g , µ̄

Q,u
g , λQg

)
jointly in one block.

• Draw λQg from p
(
λQg |Y1:T , h0:T , θ

(−)
)
: Conditional on h0:T and the remaining parameters of

the model θ(−), write the model in state space form I. Draw the elements of λQg using the IMH

algorithm as explained above.

• Draw
(
g1:T , µ̄m, µ̄

u
g , µ̄

Q,u
g

)
jointly from p

(
g1:T , µ̄m, µ̄

u
g , µ̄

Q,u
g |Y1:T , h0:T , θ

(−), λQg
)
: Conditional

on λQg , draw (g1:T , µ̄m, µ̄
u
g , µ̄

Q,u
g ) using the simulation smoother of Durbin and Koopman(2002).

3. Draw h0:T : Draw the paths of the volatilities using the particle Gibbs sampler as explained in

Appendix B.2.

4. Draw (Σm,Σgm,Σhm,Σhg,Σh): Conditional on g1:T and h0:T , the full conditional distribution for

these parameters are known in closed form. The matrices Σgm,Σhm,Σhg can be drawn recursively

from the regression models (B.4) and (B.5) once we treat the errors εmt and εgt as observable. The

full conditional distribution of the matrix ΣhΣ′h is an inverse Wishart distribution.

Appendix B.3 Particle filter for the log-likelihood and filtered es-

timates of state variables

The particle filter of Appendix B.2 assumes we observe the yield factors g1:T . To calculate the likelihood of

the model, we must integrate over both g1:T and h0:T simultaneously. The particle filter we implement for

this purpose is the mixture Kalman filter of Chen and Liu(2000).

9Note that in a standard vector autoregression with stochastic volatility that does not require rotating
the yield state vector as gt = (rt ert tpt)

′
, the matrix of autoregressive parameters Φ can be drawn using

Gibbs sampling as in a standard Bayesian VAR; see, e.g. Del Negro and Schorfheide(2011).
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Appendix B.3.1 State space form

In order to implement the particle filter, it is easier to write the model in terms of the marginal dynamics

of ht and the dynamics of the conditionally Gaussian state variables xt = (m′t g′t)
′
. In this sub-section,

we write Yt = (m′t, y
′
t)
′
. Using properties of the multivariate normal distribution, the marginal distribution

p (ht+1|ht; θ) can be written as

ht+1 = µh + Φhht + ε∗h,t+1 ε∗h,t+1 ∼ N (0, Sh) (B.6)

Sh = ΣhΣ′h + ΣhmΣ′hm + ΣhgΣ
′
hg (B.7)

The conditional distribution of p (xt+1|ht+1, xt, ht, θ) is

xt+1 =

 µm

µg

+

 Φm Φmg

Φgm Φg

xt +

 Φmh

Φgh

ht +
(

ΣmDm,tΣ
′
hm ΣgDg,tΣ

′
hg

)
S−1
h ε∗h,t+1

+ε∗x,t+1 ε∗x,t+1 ∼ N (0, Sx,t)

Sx,t =

 ΣmD
2
m,tΣ

′
m ΣgmD

2
m,tΣ

′
m

ΣmD
2
m,tΣ

′
gm ΣgmD

2
m,tΣ

′
gm + ΣgD

2
g,tΣ

′
g


−
(

ΣmDm,tΣ
′
hm ΣgDg,tΣ

′
hg

)
S−1
h

(
ΣhgDg,tΣ

′
g ΣhmDm,tΣ

′
m

)

We define the parameters in the state space form (B.1) and (B.2) as follows

Yt =

 mt

yt

 , Zt =

 I 0

0 B

 , dt =

 0

A

 , Ht =

 0 0

0 Ω

 ,

xt =

 mt

gt

 , Tt =

 Φm Φmg

Φgm Φg

 , Ct = Sx,t,

ct =

 µm + Φmhht

µg + Φghht

+
(

ΣmDm,tΣ
′
hm ΣgDg,tΣ

′
hg

)
S−1
h ε∗h,t+1,

and where Rt = I. Note that ct is a function of ht+1.

Appendix B.3.2 Mixture Kalman filter

Let xt|t−1 denote the conditional mean and Pt|t−1 the conditional covariance matrix of the one-step ahead

predictive distribution p(xt|Y1:t−1, h0:t−1; θ) of a conditionally linear, Gaussian state space model. Similarly,
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let xt|t denote the conditional mean and Pt|t the conditional covariance matrix of the filtering distribution

p(xt|Y1:t, h0:t; θ). Conditional on the volatilities h0:T , these quantities can be calculated by the Kalman filter.

Let Nmn = M + N denote the dimension of the observation vector Yt and J the number of particles.

Within the particle filter, we use the residual resampling algorithm of Liu and Chen(1998). The particle

filter then proceeds as follows:

At t = 0, for i = 1, . . . , J , set w
(i)
0 = 1

J and

• Draw h
(i)
0 ∼ p (h0; θ).

• Set x
(i)
0|0 =

 µ̄m

µ̄g

, P
(i)
0|0 =

 Σm
(
D2
m,0

)(i)
Σ′m Σm (Dm,0Dg,0)

(i)
Σ′gm

Σgm (Dm,0Dg,0)
(i)

Σ′m Σgm
(
D2
m,0

)(i)
Σ′gm + Σg

(
D2
g,0

)(i)
Σ′g

,

• Set `0 = 0.

For t = 1, . . . , T do:

STEP 1: For i = 1, . . . , J :

• Draw from the transition density: h
(i)
t ∼ p(ht|h

(i)
t−1; θ) given by B.6.

• Calculate c
(i)
t−1 and C

(i)
t−1 using

(
h

(i)
t−1, h

(i)
t

)
.

• Run the Kalman filter:

x
(i)
t|t−1 = Tx

(i)
t−1|t−1 + c

(i)
t−1

P
(i)
t|t−1 = TP

(i)
t−1|t−1T

′ +RC
(i)
t−1R

′

v
(i)
t = Yt − Zx(i)

t|t−1 − d

F
(i)
t = ZP

(i)
t|t−1Z

′ +H

K
(i)
t = P

(i)
t|t−1Z

′
(
F

(i)
t

)−1

x
(i)
t|t = x

(i)
t|t−1 +K

(i)
t v

(i)
t

P
(i)
t|t = P

(i)
t|t−1 −K

(i)
t ZtP

(i)
t|t−1

• Calculate the weight: log
(
w

(i)
t

)
= log

(
ŵ

(i)
t−1

)
− 0.5Nnm log (2π)− 0.5 log |F (i)

t | − 1
2v

(i)′
t

(
F

(i)
t

)−1

v
(i)
t .

STEP 2: Calculate an estimate of the log-likelihood: `t = `t−1 + log
(∑J

i=1 w
(i)
t

)
.

STEP 3: For i = 1, . . . , J , calculate the normalized importance weights: ŵ
(i)
t =

w
(i)
t∑J

j=1 w
(j)
t

.

STEP 4: Calculate the effective sample size Et = 1∑J
j=1

(
ŵ

(j)
t

)2 .

STEP 5: If Et < 0.5J , resample
{
x

(i)
t|t , P

(i)
t|t , h

(i)
t

}J
i=1

with probabilities ŵ
(i)
t and set ŵ

(i)
t = 1

J .
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STEP 6: Increment time and return to STEP 1.

Appendix B.4 Prior distributions

We use proper priors for all parameters of the model. Throughout this discussion, a normal distribution

is defined as x ∼ N (µx, Vx), where µx is the mean and Vx is the covariance matrix. The inverse Wishart

distribution X ∼ InvWishart (ν, S) is defined for a random k× k matrix X such that E [X] = S
ν−k−1 . Recall

that we have divided all observed variables by 1200 and this is reflected in the scale of the hyperparameters.

Let ιk denote a k × 1 vector of ones.

• The matrix ΦQg has a total of 6 free parameters, see Appendix A.2

– We set the 3 ordered eigenvalues as λQg,1 ∼ N (0.99, 0.0001), λQg,2 ∼ N (0.95, 0.0010), λQg,3 ∼

N (0.7, 0.0025). We reject any draws that re-order these eigenvalues.

– The top row of ΦQg is: φQg,11 ∼ N (0.9, 0.02), φQg,12 ∼ N (0.1, 0.02),
∣∣∣φQg,13

∣∣∣ ∼ Gamma (2, 0.1)

• µ̄m ∼ N
(

(3.75, 6)
′
/1200, IM × (0.8485/1200)

2
)

.

• µ̄ug ∼ N
(

(4.2, 1.3)
′
/1200, IG × (0.8485/1200)

2
)

.

• The matrix Φf is decomposed into its eigenvalues and eigenvectors, see Appendix A.2.

– The matrix has 9 eigenvalues. The first M+G = 5 must be ordered and the second H = 4 must

be ordered. We use conditional beta distributions which guarantee an ordering. For the macro

and yield factors: λf,1 ∼ beta (600, 5), λf,2/λf,1 ∼ beta (600, 5), λf,3/λf,2 ∼ beta (300, 5),

λf,4/λf,3 ∼ beta (50, 4), λf,5/λf,4 ∼ beta (50, 4). And, for the volatility factors: λf,6 ∼

beta (500, 3.5), λf,7/λf,6 ∼ beta (500, 3.5), λf,8/λf,7 ∼ beta (500, 3.5), λf,9/λf,8 ∼ beta (500, 3.5)

– The free eigenvectors qij are qij ∼ N (0, 6000).

• We place a prior on the covariance matrix Σ∗fΣ∗,′f ∼ InvWish (ν, S∗) where

Σ∗f =


ΣmD̄m 0 0

ΣmgD̄m ΣgD̄g 0

Σhm Σhg Σh


 diag(D̄m)

diag(D̄g)

 = exp

(
Γ0 + Γ1µ̄h

2

)
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This is a prior over the free parameters in Σm,Σg,Σh,Σmg,Σhm,Σhg, µ̄h,Γ0 and is conditional on the

matrix Γ1. We set ν = G+H +M + 5 and, for our macro model, we set S∗ equal to

S∗ =


S∗m 0 0

0 S∗g 0

0 0 S∗h

 S∗m = IM ∗ 0.4e−6 S∗g = IG ∗ 0.1e−5 S∗h = IH ∗ 0.4e−7

• For the yield-only models with H = 1, 2 factors, we estimate parameters in the matrix Γ1. For

H = 1, Γ′1 =
(

1200 γ2,1 γ3,1

)
where γi,1 ∼ N (1200, 250) for i = 2, 3. For H = 2, Γ′1 = 1200 0 γ3,1

0 1200 γ3,2

 with γ3,i ∼ N (600, 250) for i = 2, 3. For H = 3, Γ1 = IH × 1200 with no free

parameters. The scale 1200 is chosen so that ht has the same scale as the yield factors gt.

• Diagonal elements of Ω are σ2
ω,i ∼ InvGamma (a, b) where a = Ny and b = 5.0000e−08 where Ny = 7

yields.

Appendix C Impulse response functions

We summarize (1) - (4) by

ft = µf + Φfft−1 + Σt−1εt.

where

ft =


mt

gt

ht

 µf =


µm

µg

µh

 , Φf =


Φm Φmg Φmh

Φgm Φg Φgh

0 0 Φh

 , Σt−1 =


ΣmDm,t−1 0 0

ΣgmDm,t−1 ΣgDg,t−1 0

Σhm Σhg Σh

 .

For each draw
{
θ(k), f

(k)
1:T

}
in the MCMC algorithm where f

(k)
t =

(
m′t, g

(k)′
t , h

(k)′
t

)′
, we calculate the implied

value of the shocks ε
(k)
t =

(
ε

(k)
mt , ε

(k)
gt , ε

(k)
ht

)
for t = 1, . . . , T . Note that mt is observable and does not change

from one draw to another.

Appendix C.1 Time-varying (state dependent) impulse responses

Let f̃
(k)
t =

(
m̃

(k)′
t , g̃

(k)′
t , h̃

(k)′
t

)′
denote the implied value of the state vector for the k-th draw assuming that

the j-th shock at the time of impact s is given by ε̃
(k)
js = ε

(k)
js + 1, and keeping all other shocks at their values
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implied by the data. Then, given an initial condition of the state vector f̃
(k)
s−1 = f

(k)
s−1, for a τ period impulse

response, we iterate forward on the dynamics of the vector autoregression

f̃
(k)
t = µ

(k)
f + Φ

(k)
f f̃

(k)
t−1 + Σ

(k)
t−1ε̃

(k)
t , t = s, . . . , s+ τ.

The impulse response at time s, for a horizon τ , variable i, shock j, and draw k is defined as

Υ
(k)
s,ij,τ = f̃

(k)
i,s+τ − f

(k)
i,s+τ .

We then calculate the median and quantiles of Υ
(k)
s,ij,τ across the draws k = 1, . . . ,M .

Appendix D Estimates

Table D1: Estimates for the benchmark macroeconomic plus yields model
µ̄Qg × 1200 Γ0 Γ1 × 1/1200

11.267 8.874 2.354 0 1 0 0 0
(0.629) (0.624) (0.442) — — — —

ΦQg 0 0 1 0 0
0.794 0.269 -0.003 — — — —

(0.022) (0.025) (0.022) 0 0 0 1 0
-0.002 0.985 0.076 — — — —

(0.010) (0.016) (0.009) 0.408 0 0 0.492 0.481
-0.017 0.031 0.948 1.546 — — (0.059) (0.072)

(0.010) (0.017) (0.009) 0 0 0 0 1
— — — — —

λQg λf
0.996 0.948 0.7829 0.995 0.989 0.977 0.950 0.900 0.998 0.995 0.990 0.984

(0.001) (0.003) (0.015) (0.002) (0.004) (0.006) (0.009) (0.016) (0.001) (0.002) (0.004) (0.005)
µ̄m × 1200 µ̄g × 1200

2.197 6.149 2.130 2.130 1.133 -17.337 -16.891 -16.386 -18.695
(1.176) (0.658) (0.353) (0.353) (0.295) (0.393) (0.369) (0.544) (0.269)

Φm Φmg Φmh Σ∗m × 1200
0.982 -0.011 -0.015 0.022 -0.009 0.032 -0.009 0.003 0.010 0.196

(0.009) (0.018) (0.020) (0.022) (0.017) (0.029) (0.061) (0.017) (0.029) (0.066)
0.006 0.949 -0.005 0.0002 0.007 0.027 0.098 -0.007 0.059 -0.004 0.245

(0.007) (0.011) (0.011) (0.012) (0.015) (0.016) (0.029) (0.011) (0.018) (0.004) (0.082)
Φgm Φg Φgh Σ∗mg × 1200 Σ∗g × 1200

0.001 -0.004 0.877 0.136 0.007 0.019 -0.0002 -0.005 0.001 0.005 -0.023 0.322 0 0
(0.005) (0.007) (0.015) (0.019) (0.010) (0.013) (0.020) (0.012) (0.010) (0.004) (0.015) (0.132)
-0.0001 0.0004 -0.020 1.018 -0.001 -0.002 0.0001 0.001 -0.0001 0.002 -0.057 0.152 0.273 0
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.006) (0.026) (0.066) (0.085)

0.001 -0.007 0.002 -0.001 0.984 0.007 0.018 -0.002 0.015 0.008 0.029 -0.038 -0.090 0.099
(0.003) (0.005) (0.004) (0.005) (0.007) (0.006) (0.013) (0.004) (0.009) (0.006) (0.017) (0.024) (0.035) (0.030)

Φh Σ∗mh × 1200 Σ∗gh × 1200 Σ∗h × 1200
0.990 -0.008 0.002 -0.003 0.008 -0.008 0.003 -0.002 -0.006 0.142

(0.005) (0.009) (0.003) (0.005) (0.020) (0.023) (0.015) (0.019) (0.012) (0.046)
-0.002 0.987 0.004 -0.004 0.012 0.012 0.001 -0.013 -0.006 0.033 0.102

(0.004) (0.010) (0.003) (0.005) (0.016) (0.022) (0.011) (0.015) (0.009) (0.032) (0.035)
-0.003 -0.009 0.997 -0.006 0.069 -0.049 0.045 0.0004 -0.012 0.012 0.009 0.268

(0.009) (0.019) (0.008) (0.010) (0.037) (0.037) (0.034) (0.033) (0.022) (0.027) (0.026) (0.087)
0.005 -0.004 0.000 0.992 0.038 0.035 0.001 -0.025 -0.004 0.007 0.007 0.060 0.098

(0.006) (0.006) (0.003) (0.005) (0.021) (0.026) (0.015) (0.019) (0.011) (0.013) (0.012) (0.040) (0.034)

Posterior mean and standard deviations for the benchmark macroeconomic plus yields model. The
parameters λQg and λf are the eigenvalues of ΦQg and Φf , respectively. We report the sub-components of

Σ∗f = Σfdiag
(

exp
(

Γ0+Γ1µ̄h

2

))
.
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