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realized variances of interest rates, emerges as a strong predictor of Treasury bond

returns of maturities ranging between one and ten years for return horizons up to six

months. IRVRP is not subsumed by other predictors such as forward rate spread or

equity variance risk premium. These results are robust in a number of dimensions,

such as in various subsamples, with additional return predictors, and with alternative

data sets for Treasury bond returns. We rationalize our findings within a consumption-

based model with long-run risk, economic uncertainty, and inflation non-neutrality. In

the model interest rate variance risk premium is related to short-run risk only, while

standard forward-rate-based factors are associated with both short-run and long-run

risks in the economy. Our model qualitatively replicates the predictability patter of

IRVRP for bond returns.
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1 Introduction

The failure of the expectations hypothesis first documented by Fama and Bliss (1987) and Camp-

bell and Shiller (1991b) has attracted enormous attention in the asset pricing literature over the

past decades. Various plausible risk factors that appear to capture bond return predictability—

forward spread (Fama and Bliss, 1987), forward rates factor (Cochrane and Piazzesi, 2005), jump

risk measure (Wright and Zhou, 2009), hidden term structure factor (Duffee, 2011), and macroeco-

nomic factor(s) (Ludvigson and Ng, 2009; Huang and Shi, 2012), among many others—have been

proposed. Despite this impressive progress, the fundamental challenge for uncovering a particular

economic mechanism behind bond return variation still remains. Understanding such an economic

mechanism is equally important for market participants as well as for monetary policy makers.

Our paper focuses on (a) finding a robust empirical factor that would capture bond return vari-

ation across maturities and for different horizons and (b) rationalizing the this empirical factor

within a consumption-based long-run risk model.

Our main empirical findings exploit the informational content of the interest-rate variance risk

premium (IRVRP) constructed from the U.S. interest rate swaps and swaptions markets. The

interest-rate derivatives markets represent the largest segment of the U.S. fixed-income market

because interest-rate derivatives represent an important tool for corporate treasurers, asset man-

agers, and public institutions to hedge interest rate risk.1 According to the Bank of International

Settlements, as of June 2012, the outstanding notional value of interest rate swaps and swaptions

exceeded $379 and $50 trillion, respectively, on a net basis. This outstanding notional value com-

bined together is much larger than the $52 trillion of all exchange-traded interest rate futures and

options, such as Treasury futures and futures options traded on Chicago Mercantile Exchange. In

addition, a 2009 survey by the International Swaps and Derivatives Association reports that 88.3%

of the Fortune Global 500 companies use swaps and swaptions for hedging interest rate risk. Last

but not least, Dai and Singleton (2000) pointed to similarities between the U.S. Treasury yields,

1Interest rate swaps play a central role in the whole financial system as swap rates reflect term financing rates of
major financial institutions. In fact, the floating leg of a plain vanilla swap is usually tied to the 3-month LIBOR,
which serves as a benchmark rate for corporate treasurers, mortgage lenders, and credit card agencies.
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swap rates, and swaption prices. Thus, it appears likely that the interest-rate derivatives markets

can be informative for explaining variation in Treasury yields.

Our first empirical finding connects the variation in the relatively short-horizon (one- to six-

month) bond risk premiums to variation in the interest-rate variance risk premium, the factor

that we term IRVRP, which is the difference between the risk-neutral and objective expectations

of variation in interest rates. IRVRP always loads positively on Treasury excess returns in the data,

and high (low) values of IRVRP are associated with subsequent high (low) Treasury excess returns.

Depending on the return horizon and maturity of Treasury securities, IRVRP alone explains a

nontrivial share of the variation in bond returns. Thus, for one-month holding period return

and intermediate maturities (2 to 5 years) IRVRP explains from 75 to 56 percent of variation,

respectively, for three-month holding period return and and the same maturities it explains 62

to 28 percent of variation, and for six-month holding period return and the same maturities it

explains 38 to 10 percent of variation. For longer maturities (6 to 10 years), IRVRP still explains

a considerable, albeit smaller, amount of variation, than for intermediate maturities. For one-,

three-, and six-month returns for longer maturities, it explains 50 to 32, 23 to 13, and 8 to 5

percent of variation, respectively. IRVRP is also significant for longest maturities (15 and 20 year)

in our sample and for one- and three-month returns, but not for six-month returns. IRVRP is

not significant for any maturities at one-year horizons. So sum up, IRVPR appears to capture

relatively short-run variation in Treasury excess returns across entire term structure, that is, its

informational and predictive content is most important for relatively short holding periods of

Treasury securities.

Our second empirical result is that equity variance risk premium (EVRP), a robust predictor

for equity excess returns (Bollerslev, Tauchen, and Zhou, 2009) does not explain well variation

of Treasury excess returns, although its predictive content for Treasury excess returns increases

slightly with maturity of Treasury securities.

Our third empirical finding is that forward spread (FS), a classical predictor of Treasury excess

returns, also explains a nontrivial share of bond return variation. However, corresponding R2
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statistics are much lower than those implied by IRVRP regressions. In addition, FS-implied R2’s

increase with maturity with most explanatory power concentrated at maturities of 3 to 5 years.

Figure 2 is the main figure in our paper that illustrates these empirical findings. To summarize,

IRVRP tends to capture variation in bond returns at shorter horizons, thus we associate IRVRP

with the short-run risks, while EVRP and FS appear to capture variation of bond returns at longer

horizons, thus, we associate these factors with long-run risks. We also find that neither EVRP,

nor FS subsume significance and predictive power of the IRVRP. So, the informational content of

IRVRP appears to go beyond standard predictors for equity and bond returns.

We also run a number of robustness checks. First, we perform a subsample analysis to verify

that our results are not driven by short turbulent periods in the financial markets, such as financial

crisis of 2008-2009. Second, we control for additional bond return predictors, such as Cochrane and

Piazzesi (2005) factor as well as two macro factors including economic growth, expected inflation,

as well as Ludvigson and Ng (2009) macro principal component factors. Lastly, we also consider

an alternative data set of Treasury bond portfolios. None of these modifications of our empirical

analysis materially change our results.

To rationalize our empirical findings, we propose a stylized general equilibrium model as an

extension of long-run risk models in Bansal and Yaron (2004, BY) and short-run risk models in

Bollerslev, Tauchen, and Zhou (2009, BTZ). Bansal and Yaron (2004) emphasize importance of the

long-run risk in consumption growth for explaining the equity premium, while Bollerslev, Tauchen,

and Zhou (2009) show that richer volatility dynamics in consumption growth can be successful

in capturing short-horizon stock return predictability. Our model includes both long-run risk and

certain nontrivial volatility dynamics in consumption growth. It generates a two-factor volatility

structure for the endogenously determined bond risk premium, in which the factors are explicitly

related to the underlying volatility dynamics of consumption growth where different volatility

concepts load differently on the fundamental risk factors and capture separately short-run and

long-run risks of Treasury excess returns. In particular, IRVRP effectively isolates the short-run

risk factor associated with the volatility-of-volatility of consumption growth. The long-run risk
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factor associated with volatility of consumption growth appears to be captured by Fama and Bliss

(1987) forward spread.

Finally, our calibration exercise suggests that the model fits remarkably well the upward-sloping

nominal yield curve. The key two ingredients in fitting the nominal yield curve are the presence

of the long-run risk in the model and inflation non-neutrality. As such, the long-run risk state

variable from the real side of the model affects nominal prices via inflation channel. We reasonably

calibrate inflation process (Zhou, 2011), while leaving the real side model parameters similar to

the ones in BY and BTZ. The most important feature of the inflation process is the negative

correlation with consumption volatility shock, consistent with recent empirical findings (Piazzesi

and Shneider, 2007; Campbell, Sunderam, and Viceira, 2013; Bansal and Shaliastovich, 2013).

Without this feature, the nominal yield curve is downward-sloping.

The idea of economic uncertainty as a potential risk factor has gained attention recently,

both for explaining variation in stock returns (Bollerslev, Tauchen, and Zhou, 2009; Bloom, 2009;

Drechsler, 2013) and in bond returns (Wright, 2011; Bansal and Shaliastovich, 2013; Giacoletti,

Laursen, and Singleton, 2015). The last two papers are especially relevant to our study. Bansal

and Shaliastovich (2013) link bond excess return variation to variation in volatility of real activity

and inflation—variables they interpret as uncertainty, although they do not explicitly model the

uncertainty process. Giacoletti, Laursen, and Singleton (2015) find that dispersion of beliefs about

future interest rates — interpreted as investors’ uncertainty about interest rates—is distinct from

information about the macroeconomy and can be useful in explaining variation in bond returns.

While bond pricing empirical literature (see, Fama and Bliss, 1987; Campbell and Shiller,

1991b, among numerous studies) has documented predictability of long-horizon bond returns,

bond predictability in the short run did not receive much attention until very recently (Fama,

1984; Stambaugh, 1988; Zhou, 2009). A growing literature argues for the existence of the short-

run and long-run risk components of the aggregate volatility to study the variation of stock returns

(see, Adrian and Rosenberg, 2008; Christoffersen, Jacobs, Ornthanalai, and Wang, 2008; Branger,

Rodrigues, and Schlag, 2011; Zhou and Zhu, 2012, 2013, among others). A recent paper by

4



Ghysels, Le, Park, and Zhu (2014) emphasizes a short-run volatility component of bond yields as

a useful predictor for future excess returns, as opposed to a long-run volatility component that

has no predictive power.

To the best of our knowledge, our paper is the first one that explores short-horizon bond

return predictability and explains the empirical findings within a consumption-based structural

framework of two-factor volatility dynamics. While the volatility-of-volatility of consumption

growth (short-run risk factor) seems to drive the variation in the short-horizon Treasury excess

returns, the variation in long-horizon returns appears to be mainly driven by a different kind,

possibly a longer-run risk factor of consumption growth. The long-run risk factor iwith money-

non-neutrality is also important for matching the term structure of nominal interest rates.

The rest of the paper is organized as follows. Section 2 describes all relevant data to our empir-

ical exercise and methodology of constructing IRVRP, Section 3 presents our empirical results and

robustness checks, Section 4 presents our long-run risk model with two different volatility factors

and inflation non-neutrality, and derives asset pricing implications of the model, Section 5 discusses

calibration of the U.S. Treasury yield curve implied by our model, and Section 6 concludes.

2 Data and Our Measures

2.1 Measure of Interest Rate Variance Risk Premium

2.1.1 Methodology

We measure the interest rate variance risk premium as the difference between the market’s expec-

tation of the interest rate variation under the risk-neutral measure and that under the physical

measure. To capture the risk-neutral expectation, we employ a model-free approach and construct

an implied variance measure of swap rates using interest rate swaptions, similar to Bollerslev,

Tauchen, and Zhou (2009) and Carr and Wu (2009) in measuring equity variance risk premium

using equity options. Specifically, let D (t, Tm) be the time–t price of a zero-coupon bond maturing
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at time Tm, and Sm,n (t) be the time-t forward swap rate, i.e., the rate for a fixed versus floating

interest rate swap contract with a start date Tm and maturity date Tn. The forward swap rate

becomes the spot swap rate Sm,n (Tm) at time t = Tm.

A swaption gives its holder the right but not the obligation to enter into an interest rate swap

either as a fixed leg (payer swaption) or as a floating leg (receiver swaption) with a pre-specified

fixed coupon rate. In particular, let Tm be the expiration date of the swaption, K be the coupon

rate on the swap, and Tn be the final maturity date of the swap. The payer swaption allows the

holder to enter into a swap at time Tm with a remaining term of Tn − Tm and to pay the fixed

annuity of K. At time t, this swaption is usually called a (Tm − t) into (Tn − Tm) payer swaption,

also known as a (Tm − t) by (Tn − Tm) payer swaption, where (Tm − t) is the option maturity

and (Tn − Tm) is the tenor of the underlying swap. Equivalently, the payer (receiver) swaption

allows the holder to receive (pay) periodic coupon payments according to the floating influential

interest rates. Hence, the payer (receive) swaption is effectively a call (put) option on the interest

rate. By analogy to equity options, payer swaptions contain valuable information on the upside

movements of interest rates, whereas receiver swaptions are about downside. The difference from

equity options is that the underlying security of a swaption is a forward interest rate swap contract

that has a maturity (Tn − Tm), but the underlying of equity index option – the S&P 500 index –

has an infinite maturity.

Let Pm,n(t;K) and Rm,n(t;K) denote the time-t value of a European payer and receiver swap-

tion, respectively, expiring at Tm with strike K on a forward start swap for the time period

between Tm and Tn. As shown by Li and Song (2014) and Mele and Obayashi (2012) extending

the algorithm used by CBOE in constructing VIX to interest rate swaps, the markets risk-neutral

expectation of the interest rate variation over [t, Tm] can be computed as the following “model-free”

portfolio of swaptoins:

IVm,n (t) ≡ 2

Am,n (t)

{∫
K>Sm,n(t)

1

K2
Pm,n(t;K)dK +

∫
K<Sm,n(t)

1

K2
Rm,n(t;K)dK

}
, (1)
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where Am,n (t) ≡
∑n

j=m+1 D (t, Tj) is the present value of an annuity associated with the fixed leg

of the forward swap contract.2

In order to quantify the variation of interest rates under the physical measure, we follow

Bollerslev, Tauchen, and Zhou (2009) to use the realized variance measure. Specifically, let sm,n(t)

be the logarithm of the forward swap rate Sm,n (t). The realized variation over the comparable to

the IVm,n (t) discrete-time interval [t − (Tm − t), t] can then be measured in a “model-free” way

as follows:

RVm,n(t) =
1

Tm − t

M∑
i=1

[
sm,n

(
t− (Tm − t) +

i

M
(Tm − t)

)
− sm,n

(
t− (Tm − t) +

i− 1

M
(Tm − t)

)]2

,

(2)

which will converge to the quadratic variation of sm,n over the interval [t− (Tm − t), t] as M →∞,

that is, on an increasing number of within-the-period observations (see Carr and Madan (2001),

Barndorff-Nielsen and Shephard (2004), Hansen and Lunde (2006), and so on).

The interest rate variance risk premium measure is then computed as the difference between

the market’s risk-neutral and physical expectations of the swap rate variation over [t, Tm], proxied

by IVm,n (t) and RVm,n (t), respectively:

IRVRPm,n(t) ≡ IVm,n (t)− RVm,n (t) . (3)

2.1.2 Swaptions Data and Estimates

To construct the implied variance measure IVm,n (t), we combine monthly (end-of-month) obser-

vations of (European) swaption prices from J.P. Morgan and Barclays Capital, two of the largest

inter-dealer brokers in interest rate derivatives markets.3 The swaption prices from J.P. Morgan

are available from March 1993 with five strikes, namely, at-the-money-forward (ATMF), ATMF ±
2To be precise, this calculates the market’s expectation of the swap rate variation over [t, Tm] under the so-called

annuity measure Am,n, which is an equivalent probability measure to the risk-neutral measure Q such that dAm,n
dQ =

e−
∫ Tm
t

r(s)ds Am,n(Tm)
Am,n(t)

.
3Market participants quote the swaption prices using both the log-normal implied volatility of Black (1976) and

the normalized (absolute or basis point) implied volatility of a pricing formula based on normal distribution.
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100, and ATMF ± 50 basis points. The swaption prices from Barclays are available from January

2005 with thirteen strikes, namely, ATMF, ATMF ± 200, ATMF ± 150, ATMF ± 100, ATMF

± 75, ATMF ± 50, and ATMF ± 25 basis points. In our empirical analysis, we use swaption

prices from J.P. Morgan from March 1993 through December 2004 and those from Barclays from

January 2005 to February 2013. to obtain the maximum sample coverage.4 Moreover, we use

12-month swaptions on multiple tenors, including 1, 2, 5, 10, and 20 years, which are likely to

eliminate idiosyncratic movements associated with one single tenor and help capture the common

dynamics of the market volatility risk.

To compute Am,n (t) that is needed to compute the implied variance measure (see equation

(1)), we obtain LIBOR rates with maturities of 3, 6, 9, and 12 months, as well as 2-, 3-, 4-, 5-,

7-, 10-, 15-, 20-, 25-, and 30-year spot swap rates over our sample period, from J.P. Morgan and

Barclays. We use a standard bootstrap procedure to obtain zero-coupon curves from the swap

rates, and then compute Am,n (t).5 We also compute the forward swap rates Sm,n (t) based on

these bootstrapped zero-coupon curves.

We approximate the integral involved in equation (1) by a discrete sum, a standard practice in

the literature (Carr and Wu (2009); Bollerslev, Tauchen, and Zhou (2009); Gao, Gao, and Song

(2015)). To obtain prices of payer swaption Pm,n(t;K) and receiver swaption Rm,n(t;K) on a

dense set of strikes for the accuracy of the approximation, we follow the literature to interpolate

implied volatilities across the range of observed strikes and use implied volatility of the lowest

(highest) available strike to replace those of the strikes below (above). Specifically, we generate

200 implied volatility points that are equally spaced over a strike range with moneyness between

0.9× Sm,n(t) and 1.1× Sm,n(t), where Sm,n(t) is the current forward swap rate on each day. This

implied volatility/strike grid together with Am,n (t) and forward swap rates allows us to compute

the empirical counterpart of the implied variance IVm,n (t) in equation (1).

We then construct the realized variance RVm,n (t) in (2) using daily series of 12-month forward

4All our empirical results remain little changed should we only use the J.P. Morgan swaption data.
5We first use a standard cubic spline algorithm to interpolate the swap rates at semiannual intervals from one

year to 30 years. We then solve for the zero curve by bootstrapping the interpolated par curve with swap rates as
par bond yields. The day count convention is 30/360 for the fixed leg, and Actual/360 for the floating leg.
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swap rates on 1-, 2-, 5-, 10-, and 20-year tenors, with M = 22 (We use high-frequency intraday

series of swap rates for robustness checks in subsection 3.4). We take the difference between

the implied and realized variance measures to compute the interest rate variance risk premium

measure IRVRPm,n(t), according to equation (3), for each of the five tenors n=1, 2, 5, 10, and 20

years.6 To obtain the market-level measure of interest rate variance risk premium, we then use

the simple average of the five individual measures:

IRVRPt =
∑

n=1,2,5,10,20

IRVRPm,n(t)/5, (4)

where m=12 months.

Panel A of Table 1 reports summary statistics of IRVRP. We observe that IRVRP seems to be

quite persistent with an AR(1) coefficient of 0.97. The top panel of Figure 1 plots monthly series

of the interest-rate variance risk premium measure IRVRPt. We observe that IRVRP increased

dramatically around 2002 and during the recent financial crisis. In addition, IRVRP also increased

notably amid the European financial crisis in the second half of 2011.

2.2 Asset Returns

To compute Treasury bond returns, we use the zero-coupon Treasury yield data of Gürkaynak,

Sack, and Wright (2007) with 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, and 20-year maturities from

March 1993 to February 2013. Specifically, let p
(τ)
t be the log price of a τ−year zero-coupon

Treasury security at time t. Its h−period log return is

r
(τ)
t+h = p

(τ−h)
t+h − p

(τ)
t , (5)

6Note that such estimates essentially use the lagged time-t realized variance to proxy for the physical expectation
of the future realized variance over [t, Tm]. Alternatively, we follow the literature to use the forecasting model
heterogeneous autoregressive volatility model of realized volatility (HAR-RV) of Andersen, Bollerslev, and Diebold
(2007) and Corsi (2009) in computing the physical expectation of the future realized variance (see Andersen,
Bollerslev, Christoffersen, and Diebold (2006)) and Bollerslev, Tauchen, and Zhou (2009) for more discussions).
Results using these alternative estimates are similar.
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where h = 1, 3, 6, and 12 months. The corresponding excess returns are

rx
(τ)
t+h = r

(τ)
t+h − y

(h)
t , (6)

where y
(h)
t is the h−period zero-coupon rate at time t. Furthermore, we use the continuously

compounded returns on the S&P 500 index at the monthly frequency, including dividends, from

Center for Research in Security Press (CRSP), as equity market returns.

Summary statistics of annualized excess returns (in percentage points) of the Treasury securities

and equity market are presented in Panel B of Table 1. We observe that (time-series) average

excess returns increase with the tenor of the underlying security for all four different holding

horizons. Holding the tenor fixed, the average excess returns also increase monotonically with

the holding horizon. In particular, average excess returns of Treasuries are mostly negative up to

the 6-month holding horizon, and turn positive for the 12-month holding horizon. Moreover, the

autocorrelation of the excess returns series is higher for shorter tenors and longer holding horizons,

though being low for long-tenor assets including the Treasuries of longer than 10 years and equity

market at the 1-month holding horizon.

2.3 Additional Return Predictors

In our empirical analysis, we compare our interest rate variance risk premium mainly with two

established return predictors in the literature, the equity variance risk premium of Bollerslev,

Tauchen, and Zhou (2009) and the forward spread of Fama and Bliss (1987). The equity variance

risk premium is also constructed as the difference between option-implied variance and realized

variance, and hence may capture a similar fashion of volatility risk as our interest rate variance risk

premium. It is thus important to investigate if the IRVRP is associated with a distinctive channel

of volatility risk and possess different return predictive power. The forward spread is considered

because our interest rate variance risk premium is constructed using derivative prices on interest

rates, and hence it is important to study whether the IRVRP only captures information that is
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already in the yield curve.

The bottom panel of Figure 1 plots monthly series of the equity variance risk premium measure,

and panel A of Table 1 reports its summary statistics. We observe that the equity variance risk

premium spikes around 1998, and reaches a deeply negative value in 2008. Moreover, it is much

less persistent, with the AR(1) coefficient about 0.23. In sum, the interest rate and equity variance

risk premium seems to exhibit distinctive dynamics.

Panel A of Table 1 also reports the summary statistics of the forward spreads, defined as the

difference between one-year forward rate τ (2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20) years ahead and

the one-year zero coupon yield, using the Treasury yield data of Gürkaynak, Sack, and Wright

(2007). We observe that the forward spread increases with the tenor τ , and is mostly as persistent

as the interest rate variance risk premium, with AR(1) coefficients between 0.92 and 0.97.

In addition to the interest rate and equity variance risk premium as well as the forward spreads,

we also consider two sets of bond and equity return predictors, respectively, as additional controls.

For bond returns, we include the economic growth measured by the three-month moving average

of the Chicago Fed National Activity Index and the expected inflation measured by the forecast

consensus of future inflation from Blue Chip Financial Forecasts. These two macro variables have

been shown to drive the term structure dynamics significantly (Jostlin, Priebsch, and Singleton

(2014); Ludvigson and Ng (2009)). For the equity market return, we include traditional predictors

including the log dividend price ratio, the log earnings price ratio, the net equity expansion factor

of Goyal and Welch (2008) (obtained from Amit Goyal’s webpage), and the default spread equal

to the difference between Moodys BAA and AAA corporate bond spreads.

3 Empirical Results

In this section, we report empirical results of (both bond and equity) return predictive regressions

for 1-, 3-, 6-, and 12-month holding horizons. We start with simple univariate regressions to

document the role of our main explanatory variable, i.e., interest rate variance risk premium. We
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then include the equity variance risk premium and forward spread in the predictive regressions

to document the differential predictive power of these three factors for different tenors of the

underlying assets. Finally, we control for other well-known predictors of bond and equity risk

premia for robustness.

The start date for all regressions is March 1993. All regressions are standardized, in the sense

that each variable is first demeaned and then divided by its standard deviation. Such standardized

regressions make slope coefficients comparable across different regressors, allowing a comparison

of both statistical and economic significance. We report t-statistics adjusted for Newey and West

(1987) standard errors, with the optimal lag length determined according to Newey and West

(1994) for each estimated coefficient.

3.1 Return Predictability with Interest Rate Variance Risk Premium

We first assess the predictive power of the interest rate variance risk premium for Treasury and

equity excess returns by the following univariate regressions:

rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h) · IRVRPt + ε

(τ)
t+h, (7)

where rx
(τ)
t+h is the h−period excess return for a Treasury security with tenors of τ (=2, 3, 4, 5, 6,

7, 8, 9, 10, 15, and 20) years, and the equity market portfolio with τ = ∞ tenor, and IRVRPt is

the interest rate variance risk premium measure.

The regression results are reported in Table 2. We observe that IRVRP significantly predicts

short-horizon bond excess returns positively with solid t-statistics based on Newey-West robust

standard errors, up to 6-month holding horizons. For example, one standard deviation increase in

IRVRP leads to a 201 (=0.568 3.53%), 181 (=0.364 4.96%), and 146 (=0.221 6.60%) basis point

increase (slope coefficient times the standard deviation of the 10-year bond excess return) increase

in expected 10-year bond excess returns, at the 1-, 3-, and 6-month holding horizons, respectively.

Adjusted R2s range from 5% for the 6-month holding horizon to 32% for the 1-month holding
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horizon.

Furthermore, both the economic and statistical significance of IRVRP monotonically decrease

with the tenor of the asset. For example, the regression coefficient, t-statistics, and adjusted R2s

all decreasing functions of the asset tenor, and IRVRP loses the significance for equity market

returns that has a tenor of∞. Top panels of Figure 2 plot the univariate regression results for the

3-month holding horizon, with the estimated coefficient βτ1 (3) of IRVRP in the top left panel, and

the associated adjusted R2 in the top right panel, against the tenor τ . The regression coefficients

monotonically decrease from about 0.8 to 0.2 for Treasuries when the maturity increases from 2

years to 20 years and to about 0.1 for the equity market return. Correspondingly, the adjusted

R2 decreases from about 60% to 3% and to less than 2% for Treasuries and equities, respectively.

To summarize, IRVRP is a strong predictor of short-horizon asset excess returns, and its

predictive power has a sharp monotonically decreasing pattern with the tenor of the asset.

3.2 Interest Rate vs Equity Variance Risk Premium

Our interest rate variance risk premium is constructed in a similar way to the equity variance

risk premium – both are the difference between option-implied variance and realized variance.

Moreover, as shown in the last subsection, the predictive power of IRVRP remains the strongest

at short-holding horizons, the same pattern as the EVRP’s predictive power for the equity market

return as first established by Bollerslev, Tauchen, and Zhou (2009). Hence, it is natural to expect

that IRVRP and EVRP both capture a similar fashion of “short-horizon” volatility risk. But do

they capture the same type of volatility risk? If not, what is the channel in distinguishing them?

In this subsection, we study the predictive power of the equity variance risk premium for

both the bond and equity market excess returns. Most importantly, we document distinguishing

patterns of return predictive power of IRVRP and EVRP, which shed light on different potential

channels of volatility risk in driving asset prices. In particular, we first consider the univariate

regressions:
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rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h) · EVRPt + ε

(τ)
t+h, (8)

where rx
(τ)
t+h is the h−period excess return for a Treasury security with tenors of τ (=2, 3, 4, 5, 6,

7, 8, 9, 10, 15, and 20) years, and the equity market portfolio with τ = ∞ tenor, and EVRPt is

the equity variance risk premium measure constructed by Bollerslev, Tauchen, and Zhou (2009)

using S&P 500 index options.

The regression results are reported in Table 3. We observe that EVRP significantly predicts

short-horizon excess returns of the long-term Treasury securities and equity market return. The

regression coefficient for the equity market return is positive, and remains the most significant at

the 3-month holding horizon with t-statistics about 8.67 and adjusted R2 about 12%, consistent

with Bollerslev, Tauchen, and Zhou (2009). For bond returns, the regression coefficient is negative,

consistent with the negative correlation between the equity and Treasury in the recent decades,

as documented in Campbell, Pflueger, and Viceira (2015).

To compare with the return predictive power of IRVRP, we report the univariate regression

results for 3-month holding horizon in middle panels of Figure 2, with the estimated coefficient

βτ1 (3) of EVRP in the middle left panel, and the associated adjusted R2 in the middle right panel,

against the tenor τ . For the convenience of comparing the economic significance, we report the

absolute values of the regression coefficients on EVRP for bonds. We find that the regression

coefficients and adjusted R2s of EVRP all monotonically increase with the tenor of the asset,

in sharp contrast to the decreasing predictive power of IRVRP. This sharp contrast suggests

distinguishing economic effects of interest rate and equity variance risk premium: IRVRP seems

to capture the volatility risk of short tenor, while EVRP seems capture the volatility risk of long

tenor.

Given the distinctive pattern of return predictive power of the interest rate and equity variance

risk premium, we expect the return predictability of IRVRP is robust to the inclusion of EVRP.
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To verify this conjecture, we run the following multivariate return predictive regressions:

rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h) · IRVRPt + β

(τ)
2 (h) · EVRPt + ε

(τ)
t+h. (9)

Results are reported in Table 4. Controlling for the equity variance risk premium, the predictability

of the interest rate variance risk premium is almost unchanged. Its monotonically decreasing

significance as a function of the asset tenor remains the same.

3.3 Interest Rate Variance Risk Premium vs Forward Spread

It has been well established in the literature that yield-based factors are strong predictors of bond

returns (Fama and Bliss (1987), Campbell and Shiller (1991a), and Cochrane and Piazzesi (2005)).

As our interest rate variance risk premium measure is constructed using prices of swaptions that

are derivatives on yields in principal, it is natural to ask whether IRVRP is a mere reflection of

information already contained in the yield curve.

Most term structure models use the first three principal components of the yield curve as factors

because they capture most of the variation in yields. Among the three principal components, the

slope factor or the spread between long-term and short-term yields has been shown to possess

significant predictive power for bond risk premia (Fama and Bliss (1987) and Campbell and Shiller

(1991a)). In this subsection, we study the predictive power of the forward spread, as proposed

in Fama and Bliss (1987), for both the bond and equity market excess returns, and compare its

return predictive power with that of the interest rate variance risk premium. Importantly, we

document that the pattern of return predictive power of IRVRP is distinct from and robust to

that of the FS (We also differentiate the return predictive power of interest rate variance risk

premium from that of the ten-shape yield factor of Cochrane and Piazzesi (2005) as a robustness

check in subsection 3.4).

15



In particular, we first consider the following univariate regressions:

rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h) · FS

(τ)
t + ε

(τ)
t+h, (10)

where rx
(τ)
t+h is the h−period excess return for a Treasury security with tenors of τ (=2, 3, 4, 5,

6, 7, 8, 9, 10, 15, and 20) years, and the equity market portfolio with τ = ∞ tenor, and FS
(τ)
t is

the forward spread between the one-year forward rate τ -year ahead and the on-year zero coupon

yield.

The regression results are reported in Table 5. We observe that the forward spread significantly

predicts short-horizon Treasury excess returns, similar to both the interest rate and equity variance

risk premium. The regression coefficient is positive with solid t-statistics based on Newey-West

robust standard errors, consistent with Fama and Bliss (1987). Different from the interest rate

and equity variance risk premium, however, neither the economic nor statistical significance of the

forward spread is a monotonic function of the asset tenor; instead, its predictive power seems to

peak at the medium tenor, around five years.

To have a sharp comparison, we report the univariate regression results of the forward spread

for the 3-month holding horizon in bottom panels of Figure 2, with the estimated coefficient βτ1 (3)

of FS in the bottom left panel, and the associated adjusted R2 in the bottom right panel, against

the tenor τ . We observe that both the regression coefficients and adjusted R2s of the forward

spread increase from short tenor to medium tenor, and hence decrease moving to long tenor.

This distinctive pattern of return predictive power suggests that our interest rate variance

risk premium captures a distinctive economic channel of risk premia than the forward spread, a

well-established yield-based factor in the literature. To formally substantiate this conclusion, we

run the following multivariate return predictive regressions:

rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h) · IRVRPt + β

(τ)
2 (h) · FS

(τ)
t + ε

(τ)
t+h. (11)

Results are reported in Table 6. We find that controlling for the forward spread, the predictability
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of the interest rate variance risk premium weakens somewhat, especially at the 6-month holding

horizon. However, the strong return predictive power remains strongly at the very short holding

horizons, especially at the 1-month horizon. Moreover, the pattern of monotonically decreasing

significance as a function of the asset tenor remains the same.7 This empirical result is rationalized

within our long-run-risk type model presented in Section 4, where we show that the IRVRP is

driven by only one state variable, namely, vol-of-vol factor qt (see eq. (A.44) in the Appendix A.6)

that reflects the nature of short-run risks, whereas the forward spread is the function of all state

variables (see eq. (A.33) in the Appendix A.5), and thus captures both short- and long-run risks.

3.4 Robustness Checks

3.4.1 Subsample Analysis

One may be concerned that the recent financial crisis could be the single important driver of

our empirical results. To address this concern, we run the return predictive regressions for two

subsamples, from March 1993 to December 2003 and from January 2004 to February 2013. Table 7

reports the subsample regression results. We find that the interest rate variance risk premium

has similar significant return predictive power in the two subsample periods, and is in fact even

stronger, if anything, in the first subsample excluding the recent financial crisis. The monotonically

decreasing significance of the interest rate variance risk premium as a function of the asset tenor

remains little changed.

3.4.2 Realized Variance based on High-Frequency Swap Rates

Our baseline measure of interest rate variance risk premium has the realized variance measure

constructed using daily series of swap rates. In this section, we check the robustness of our results

using high-frequency data of swap rates to construct the measure of realized variance. In particular,

7We also run multivariate regressions of asset excess returns on the interest rate variance risk premium, control-
ling for both the forward spreads and the equity variance risk premium, as reported in Table B1. Results further
confirm the differential return predictive power of our interest rate variance risk premium factor from the other
two.
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we obtain the intraday 10-year swap rates from February 11, 2002 to January 31, 2013, provided

by Barclays. We follow the literature to use the 5-minute series to strike a balance between

the accuracy that increases with frequency in econometric theory and the microstructure issues

such as price discreteness, bid-ask spreads, and non-synchronous trading effects that increase with

frequency in practice (Andersen, Bollerslev, Diebold, and Labys (2000), Hansen and Lunde (2006),

Bollerslev, Tauchen, and Zhou (2009)). In consequence, we use about 80 five-minute observations

each day from 8:20 am to 3:00 pm US EST to estimate the realized variance according to (2).

We then take the difference between the implied variance using swaptions on 10-year swap rate

and this realized variance to get the alternative measure of interest rate variance risk premium,

denoted as IRVRP5−min
t .

Table 8 repeats our baseline regression (7) using the alternative measure IRVRP5−min
t of interest

rate variance risk premium. The return predictive power becomes weaker than the baseline results

in Table 2, probably because IRVRP5−min
t only captures information in the 10-year tenor while

our baseline measure of interest rate variance risk premium combines information from multiple

tenors. Yet, we still observe pretty significant predictive power of IRVRP5−min
t at the 1-month

horizon. Most importantly, the sharp monotonically decreasing significance with the asset tenor

remains the same as the baseline regressions.

3.4.3 Alternative Treasury Datasets

We check the robustness of the return predictive power of the interest rate variance risk premium

using two alternative Treasury datasets in this section. First, we use the Fama-Bliss discount

bond database from CRSP, which contains Treasury notes with maturities of 1, 2, 3, 4, and 5

years, to compute the Treasury excess returns. The Fama-Bliss database is also used in Fama and

Bliss (1987), Cochrane and Piazzesi (2005), and so on. Panel A of Table 9 repeats our baseline

regression (7) using the Treasury excess returns based on the Fama-Baliss database. We find that

both the significant predictive power and the monotonically decreasing significance with the asset

tenor, of the interest rate variance risk premium, remain the same.
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Second, we use actual traded bonds from the Fama dataset in CRSP, different from the inter-

polated bond yields in both the Gürkaynak, Sack, and Wright (2007) and Fama-Bliss datasets,

to compute the Treasury excess returns. This dataset combines actually traded Treasury bonds

into portfolios of different maturity buckets, and computes an equal weighted average of 1-month

holding period returns of all bonds in the portfolio. We obtain monthly return series and compute

returns in excess of the 3-month T-bill rate. Panel B of Table 9 repeats our baseline regression

(7) using the Treasury excess returns based on this Fama bond portfolios. We observe that the

interest rate variance risk premium still possess strong and significant return predictive power,

with t-statistics above 11 and adjusted R2s above 37%. The monotonically decreasing significance

with the asset tenor remains the same.

3.4.4 Control for Additional Return Predictors

We now control for additional predictors of Treasury and equity returns. For Treasuries, we

control for the tent-shape yield factor of Cochrane and Piazzesi (2005) (CP) as well as two macro

factors including the economic growth (GRO) and the expected inflation (INF) (Table B2 in the

Appendix reports the results controlling for the macro principal component factors of Ludvigson

and Ng (2009)). For the equity market return, we control for traditional predictors including the

log dividend price ratio (d/p), the log earnings price ratio (e/p), the net equity expansion (NTIS)

factor of Goyal and Welch (2008), and the default spread (DS).

Table 10 reports the regression of the Treasury and equity excess returns on the interest

rate variance risk premium, controlling for these additional return predictors. We find that the

interest rate variance risk premium still possess strong and significant return predictive power

for Treasuries, controlling for the CP, GRO, and INF factors. Its return predictive power for the

equity market excess returns becomes more significant, with t-statistics around two at the 1- and 3-

month holding horizons, controlling for the traditional equity return predictors. The monotonically

decreasing significance with the asset tenor remains the same as the baseline results.
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4 Model and Asset Pricing

We have shown in Section 3 that the interest rate variance risk premium robustly predicts nominal

Treasury bond returns especially at short maturities. We have also shown that its predictive power

declines with the maturity of the Treasury security and the holding period horizon. In addition, we

have shown that other predictors, such as forward spread, drive longer-maturity Treasury bond

returns and at longer holding-period horizons. To reconcile these findings with the theory, we

propose a consumption-based asset pricing model, which explains these predictability patterns with

short-run and long-run risk factors. Specifically, we propose a long-run-risk-type consumption-

based asset pricing model with consumption (short-run growth) risk, expected consumption (long-

run growth) risk, consumption volatility (long-run volatility) risk, and consumption volatility-of-

volatility (short-run volatility) risk. Such a framework delivers a two-factor structure for the bond

risk premium, which is perfectly spanned by the bond variance risk premium (loaded only on

short-run volatility) and forward spread (loaded on both short-run and long-run volatilities).

4.1 Preferences

We consider a discrete-time endowment economy with recursive preferences introduced by Kreps

and Porteus (1978), Epstein and Zin (1989), and Weil (1989):

Ut =
[
(1− δ)C

1−γ
θ

t + δ
(
EtU

1−γ
t+1

) 1
θ

] θ
1−γ

, (12)

where δ is the time discount factor, γ ≥ 0 is the risk aversion parameter, ψ ≥ 0 is the intertemporal

elasticity of substitution (IES), and θ = 1−γ
1− 1

ψ

. Preference for early resolution of uncertainty implies

γ > 1
ψ

, which, in general, implies θ < 1. We will assume throughout the paper that γ > 1 and

ψ > 1, which implies θ < 0 and refer to preference for early resolution of uncertainty as consistent

with θ < 0.8 A special case of recursive preferences—expected utility—corresponds to the case of

8Bansal, Kiku, and Yaron (2012, BKY) discuss the wide range of regression-based estimates of the IES in
the literature and their sensitivity to the presence of measurement errors. They argue that a better approach is
undertaken in Bansal, Kiku, and Yaron (2007) and Hansen, Heaton, Lee, and Roussanov (2007) who use a large set
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γ = 1
ψ

(θ = 1).

Epstein and Zin (1989) show that the log-linearized form of the associated real stochastic

discount factor mt is given by:

mt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1)rc,t+1, (13)

where gt+1 = log
(
Ct+1

Ct

)
is the log growth of the aggregate consumption, rc,t+1 is the log return

on an aggregate wealth portfolio that delivers aggregate consumption as its dividend each time

period. Note that the return on wealth is different from the observed return on the market portfolio

because aggregate consumption is not equal to aggregate dividends. Consequently, the return on

wealth is not observable in the data. The nominal discount factor m$
t+1 is equal to the real discount

factor minus expected inflation πt+1:

m$
t+1 = mt+1 − πt+1. (14)

4.2 Economy Dynamics

To solve for the equilibrium asset prices we specify consumption and inflation dynamics. Con-

sumption dynamics features time-varying consumption growth rate gt and expected consumption

growth rate xt, time-varying volatility of consumption growth σ2
g,t and time-varying volatility-of-

of instruments to estimate conditional Euler equations for the real bond and find that the IES is larger than one.
Beeler and Campbell (2012) disagree in a sense that aggregate consumption growth does not appear to respond to
the real risk-free rate fluctuations in a manner consistent with IES being greater than one. They report, however,
that their instrumental variables estimation approach of the BKY model yields the median estimates above 1.3.
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volatility of consumption growth qt:

xt+1 = ρxxt + φeσg,tzx,t+1,

gt+1 = µg + xt + σg,tzg,t+1,

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1,

qt+1 = aq + ρqqt + φq
√
qtzq,t+1,

(15)

where the parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1 and φq > 0. The vector of shocks

(zx,t+1, zg,t+1, zσ,t+1, zq,t+1) follows i.i.d. normal distribution with zero mean and unit variance

and shocks are assumed to be uncorrelated among themselves. The second pair of equations in

(15) is new compared to Bansal and Yaron (2004) and Bansal and Shaliastovich (2013). Stochastic

volatility σ2
g,t+1 represents time-varying economic uncertainty in consumption growth with time-

varying volatility-of-volatility (vol-of-vol) measured by qt.
9 Since σ2

g,t directly affects variation in

xt, the predictable component in consumption growth, we will refer to σ2
g,t as the state variable

that captures the long-run risk. The volatility-of-volatility process qt can be thought of as the

volatility risk or, the short-run risk. As we saw earlier, this terminology was supported by our

empirical findings.

In order for the real economy model (15) to have realistic implications for nominal bond risk

premiums, we conjecture a fairly rich inflation process motivated by previous literature. Indeed,

Bansal and Shaliastovich (2013) allow for expected inflation shocks to be correlated (negatively)

with expected consumption growth, and Zhou (2011) allows for a vol-of-vol shock to affect inflation.

We incorporate both of these features into expected inflation dynamics πt+1:

πt+1 = aπ + ρππt + φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ
√
qtzσ,t+1, (16)

where ρπ is a persistence and aπ
1−ρπ is the long-run mean of the inflation process. There are three

9Recent studies provided empirical support in favor of time-varying consumption growth volatility, e.g., Bekaert
and Liu (2004), Bansal and Yaron (2005), Lettau, Ludvigson, and Wachter (2008), Bekaert, Engstrom, and Xing
(2009), among others.
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shocks that drive inflation process: (1) a constant volatility part φπ with an autonomous shock

zπ,t+1; (2) a stochastic volatility part φπσσg,t that works through consumption growth channel

zg,t+1; and (3) another stochastic volatility part φπσ
√
qt that works through the volatility channel

zσ,t+1. Exogenous inflation shock zπ,t+1 does not generate inflation risk premium even in the

presence of the time-varying volatility of this shock.10 In contrast, the second and the third shocks

generate inflation risk premium because real side shocks (stochastic volatility of consumption

growth and uncertainty) affect inflation. In addition, since φπg and φπσ control inflation exposures

to the growth and uncertainty risks, this process implicitly violates inflation neutrality in the short

run, but not in the long run.11

4.3 Pricing kernel

In equilibrium, the log wealth-consumption ratio zt is affine in expected consumption growth xt,

stochastic volatility of consumption growth σ2
t , and the vol-of-vol factor qt:

zt = A0 + Axxt + Aσσ
2
g,t + Aqqt. (17)

Campbell and Shiller (1988) show that the return on this asset can be approximated as follows:

rc,t+1 = κ0 + κ1zt+1 − zt + gt+1, (18)

where κ0 = ln(1 + exp(z̄))− κ1z̄, κ1 = exp(z̄))
1+exp(z̄)

, and z̄ is the average wealth-consumption ratio:

z̄ = A0(z̄) + Aσ(z̄)σ̄2 + Aq(z̄)q̄. (19)

10The inability of the expected inflation process with only one (autonomous) shock even with stochastic volatility
to generate inflation risk premium is examined in Zhou (2011).

11There is no violation of inflation neutrality in the long run because unconditional expectation of inflation
process (16) is Eπt = aπ

1−ρπ .
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The equilibrium loadings for (17) are derived in Appendix A.1:

Ax =
1− 1

ψ

1− κ1ρx
,

Aσ =
1

2θ(1− κ1ρσ)

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
,

Aq =
1− κ1ρq −

√
(1− κ1ρq)2 − θ2κ4

1φ
2
qA

2
σ

θ(κ1φq)2
.

(20)

As in Bansal and Yaron (2004), recursive preferences along with the early resolution of un-

certainty are crucial in determining the sign of the equilibrium loadings of the state variables in

our model. When the intertemporal elasticity of substitution ψ > 1, the intertemporal substi-

tution effect dominates the wealth effect. In response to higher expected consumption growth,

agents invest more and, consequently, wealth-consumption ratio increases. Therefore, the wealth-

consumption ratio loading on the expected consumption growth is positive (Ax > 0) whereas

loadings on the volatility and volatility-of-volatility of consumption growth are both negative

(Aσ < 0 and Aq < 0) as in times of high volatility and/or uncertainty agents sell off risky assets

driving the wealth-consumption ratio down.12

The persistence of expected growth shock ρx and time-varying volatility ρσ magnify the effect

of the changes in these state variables on the valuation ratio since investors perceive such macroe-

conomic changes as long-lasting. Contrary to that, persistence of the volatility-of-volatility, ρq,

roughly cancels out in the Aq loading. This provides further support for interpretation of qt as a

state variable that captures relatively short-run economic risks.13

Using the solution for the wealth-consumption ratio above, we show in Appendix A.3 that the

conditional mean of the stochastic discount factor mt+1 is linear in the fundamental state variables

and the innovation in mt+1 pins down the fundamental sources of (and compensations for) risks

12The solution for Aq represents one of a pair of roots of a quadratic equation, but we pick the one presented in
Eq. (20) as the more meaningful one. We elaborate on this choice in Section A.1.

13Bansal, Kiku, and Yaron (2012) check that their approximate solutions are very accurate when compared
against numerical solutions, used, e.g., in Binsbergen, Brandt, and Koijen (2012).
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in the economy:

mt+1 − Et[mt+1] = −λgσg,tzg,t+1 − λxσg,tzx,t+1 − λσ
√
qtzσ,t+1 − λq

√
qtzq,t+1, (21)

where the quantities of risks are time-varying volatility and volatility-of-volatility of consump-

tion growth, σg,t and
√
qt, respectively; and λg, λx, λσ, λq represent the market prices of risk of

consumption growth, expected consumption growth, volatility, and volatility-of-volatility:

λg = γ, λσ = (1− θ)κ1Aσ,

λx = (1− θ)κ1Axφe, λq = (1− θ)κ1Aqφq.
(22)

The market price of consumption risk λg is equal to the coefficient of relative risk aversion γ.

Other risk prices crucially depend on our preference assumptions.

When agents have preference for early resolution of uncertainty (θ < 0), the market price of

expected consumption risk is positive: λx > 0. In this case, positive shocks to consumption and

expected consumption cause risk premium to decrease as agents buy risky assets and drive wealth-

consumption ratio up. On the contrary, market prices of risk of volatility and volatility-of-volatility

are negative (λσ < 0 and λq < 0): Consistent with the so-called leverage effect, in response to

either type of volatility positive shock, agents sell risky assets and drive wealth-consumption ratio

down and volatility risk premiums up. It is worth noting that these effects are not based on

the statistical linkages between return and volatility, as the endowment and volatility shocks are

uncorrelated; but arise endogenously in the equilibrium. In the absence of recursive preference

for an early resolution of uncertainty (γ = 1
ψ

and θ = 1), there would be no compensations for

investors for baring risks in expected consumption, volatility, or volatility-of-volatility.
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4.4 Asset Prices

We focus in this paper on the nominal yield curve and nominal bond return predictability. Hence

in this section we provide the model solutions for the nominal quantities in our economy.14

Nominal risk-free rate. The nominal risk-free rate is the negative of the (log) price of the

nominal one-period bond. Thus, it is equal to the real risk-free rate plus inflation compensation.

The closed form expression for the nominal risk-free rate is derived in Appendix A.3:

r$
f,t = −θ ln δ + γµg + aπ − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]−

1

2
φ2
π

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
γ2 − 1

2
(θ − 1)2(κ1Axφe)

2 − 1

2
φ2
πg − γφπg

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)−

1

2
φ2
πσ + (θ − 1)κ1Aσφπσ

]
qt

+ ρππt.

(23)

Since inflation is not an autonomous process, it affects loadings on σ2
t and qt in (23) via additional

terms, related to φπg and φπσ coefficients, respectively, besides having a direct effect on the nominal

rates, ρππt. This results in inflation short-run non-neutrality, which means that inflation is affected

by future real growth in the economy.

Nominal n−period bond price. A general recursion for solving for the n−period nominal

bond price is as follows:

P $,n
t = Et

[
M$

t+1P
$,n−1
t+1

]
. (24)

We assume that the (log) price of the n−period nominal bond p$,n
t follows an affine representation

of the real state variables xt, σ
2
t , qt and inflation πt:

p$,n
t = B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt. (25)

14The corresponding real quantities are can be computed similarly and available upon request.
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We solve for the nominal bond state loadings B$,n
i , i = 0, . . . , 4 using initial conditions B$,0

i =

0, i = 0, . . . , 4 (since p$,0
t = 0) and the above recursion, see Appendix A.4.

Nominal bond risk premium. Nominal bond risk premium brp$,n
t is given by the negative

of covariance between the nominal pricing kernel m$,n−1
t+1 and the nominal bond price p$,n−1

t+1 (see

Appendix ?? for details):

brp$,n
t = −Covt

[
m$
t+1, p

$,n−1
t+1

]
=
[
(γ + φπg)B

$,n−1
4 φπg − (θ − 1)κ1AxB

$,n−1
1 φ2

e

]
σ2
g,t

−
[
((θ − 1)κ1Aσ − φπσ)(B$,n−1

2 +B$,n−1
4 φπσ) + (θ − 1)κ1AqB
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≡ β$,n−1
1 σ2

g,t + β$,n−1
2 qt +B$,n−1

4 φ2
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(26)

Bond risk premium (26) is driven by two volatility factors: consumption volatility factor σ2
g,t and

volatility-of-volatility factor qt.
15

The effect of expected growth risk captured byAx equilibrium loading on the wealth-consumption

ratio amplifies the overall contribution of the consumption risk, σg,t. This effect is absent in Zhou

(2011) and Mueller, Vedolin, and Zhou (2011), and thus, makes it more difficult to explain the

upward sloping term structure of the nominal yield curve. The two volatility factors σ2
g,t and qt are

inherently latent factors in bond risk premium. While consumption volatility risk σ2
g,t represents

the classic risk-return tradeoff and is the standard factor in consumption-based models, qt factor

did not receive a lot of attention with the exception of Bollerslev, Tauchen, and Zhou (2009) paper.

The next section demonstrates how qt factor can be empirically isolated from σ2
g,t factor.

Nominal bond variance risk premium. Bollerslev, Tauchen, and Zhou (2009) show that

the equity variance risk premium—the difference in expectations of the equity variance under

risk-neutral and physical measures—is driven entirely by the vol-of-vol factor qt and is a useful

predictor of time variation in aggregate stock returns. Motivated by this result, we derive the

15 The third constant term provides a correction for inflation risk through φπ, due to the autonomous inflation
shock πt.
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nominal bond variance risk premium (BVRP)—the difference in expectations of the bond return

variance under risk-neutral and actual measures. We show in this section that the BVRP also

loads entirely on the qt factor.

By definition, nominal bond variance risk premium is given by the covariance of the nominal

bond return variance σ2
r$,t+1

with the nominal stochastic discount factor m$
t+1:

EQ
t

[
σ2
r$,t+1

]
− Et

[
σ2
r$,t+1

]
= Covt

[
σ2
r$,t+1,m

$
t+1

]
. (27)

In terms of the model parameters, the nominal bond variance risk premium is given by:
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[
σ2
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3 φq
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]}

qt.

(28)

Appendix A.6 provides derivation details for (28).

A first and central observation here is that the time variation in the nominal BVRP is solely

due to the time variation in qt state variable. If volatility-of-volatility is constant, qt = q, eq. (28)

reduces to a constant (θ − 1)κ1

{
(Aσ − φπσ)

[(
B$,n−2

1 φe

)2

+
(
B$,n−2

4 φπg

)2
]}

q, contrary to em-

pirical evidence presented earier in the paper that the nominal bond variance risk premium is

time-varying. A second observation is that, although consumption growth risk σ2
g,t does not affect

the nominal bond variance risk premium directly, it still has an indirect effect through the pric-

ing solution. If consumption volatility σ2
g,t is not stochastic, then the wealth-consumption ratio

equilibrium loadings Aσ = 0 and Aq = 0 by construction, and bond variance risk premium is zero.

A third observation is that if there is no recursive preference (θ = 1), then bond variance risk

premium is zero by construction. Lastly, positivity of the nominal bond variance risk premium is

guaranteed by negative θ along with negative Aσ and Aq.
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5 Calibration

In this section we discuss calibration of the nominal yield curve implied by our model (15) and

inflation process (16). We consider two benchmark cases, Bansal and Yaron (2004, BY) and

Bollerslev, Tauchen, and Zhou (2009, BTZ). Compared to BY, BTZ incorporate the time-varying

vol-of-vol factor, but in the absence of the long-run risk channel. We differ from BTZ in two

aspects: (1) we have the long-run risk state variable in the real side model; and (2) we model

inflation process in order to derive implications for the nominal bond prices. We present all three

models’ parameters (BY, BTZ, and ours) in Table 11.

5.1 Calibration Parameters

Panel A provides calibration values for the real economy dynamics. We set preference parameters

δ = 0.997, γ = 8, and ψ = 1.5.16 Consumption growth parameters µg = 0.0015, ρx = 0.979,

φe = 0.001 are consistent with BY (and BTZ except for ρx = φe ≡ 0). Volatility persistence

ρσ = 0.978 is the same as in BY and BTZ, and aσ = (1− ρσ)Eσ is set so that the unconditional

expectation Eσ2
t = 0.02342, which is slightly higher than in BY and BTZ because we find that

this value matches better the nominal yield curve in the model. We set the expected volatility-of-

volatility level Eq = aq(1− ρq)−1 = 10−9 so that aq = 2−10 given ρq = 0.8. In addition, φq = 10−4.

Our choice of ρσ and ρq is broadly consistent with the estimates of Bollerslev, Xu, and Zhou

(2013), who find that the long-run risk (proxied by σ2
g,t) is more persistent than the short-run risk

(proxied by qt). Thus, the calibrated model is connected with the earlier empirical section where

we show that these two types of risks in the nominal bond premium are disentangled.

Panel B provides calibration parameters for the inflation dynamics. We set the average annu-

alized inflation rate Eπ = 2% and persistence parameter ρπ = 0.95 in accordance with the current

Fed’s inflation target and Great Moderation period overall.17 Implied aπ on a monthly basis is

16BY and BTZ use γ = 10, but in our model slightly lower value of γ works reasonably well.
17These numbers may be justified by the data after 1980s and especially after 2008, when Fed launched unprece-

dented measures of accommodative monetary policy, namely, quantitative easing. Our expected inflation rate is
lower than the one in Bansal and Shaliastovich (2013), who set it at 3.61% (see their Table 5).
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equal to Eπ(1−ρπ) = 0.02/12× 0.05 = 8× 10−5. The total unconditional variance of the inflation

process (16) is given by:

Var(π) =
1

1− ρ2
π

(
φ2
π + φ2

πgEσ
2 + φ2

πσEq
)
. (29)

We calibrate variance-related parameters of (29) so that the total annualized unconditional infla-

tion volatility is 2%. Since ρπ = 0.95, Eσ2 = 0.02342, Eq = 10−9, the term in parentheses in (29)

on a monthly basis is: φ2
π + φ2

πg × 0.02342 + φ2
πσ × 10−9 = 0.022/12 × (1 − 0.952) = 3.25 × 10−6.

Further, we assume that the first (autonomous) shock contributes one half to the total variance

while the other two shocks contribute equally to the remaining half of the total variance of the

inflation process.18 Thus, the contribution of the first shock to the total inflation variance is

0.5× 3.25× 10−6 = 1.625× 10−6, implying φπ = 0.0013. The contribution of the second and third

shocks are equal to each other and to 0.25 × 3.25 × 10−6 = 8.125 × 10−7. Therefore, the implied

φπg = (8.125× 10−7/0.02342)
1/2

= −0.0385. The negative sign of φπg is motivated by previous

empirical findings (Piazzesi and Shneider, 2007; Campbell, Sunderam, and Viceira, 2013; Bansal

and Shaliastovich, 2013). In particular, Bansal and Shaliastovich (2013) use SPF survey data

for one-year ahead consensus inflation forecast over 1969-2010 sample and a latent factor for the

expected consumption growth to estimate relationship between the two. They find that expected

inflation negatively affects future consumption growth thus suggesting non-neutrality of inflation.

Last, the implied φπσ = (8.125× 10−7/10−9)
1/2

= 28.5.

5.2 Calibration Results

Figure 3 reports our calibration results. Both panels show the average nominal yield curve out to

10 years (blue solid line) in sample period from January 1991 to December 2010 and the calibrated

nominal yield curve (red dashed line) implied by our model (Panel A) and by our modified model

in the absence of the long-run risk channel xt (Panel B). It is obvious from Panel A that our model

18Equal distribution of variance among the shocks results in slight overshooting of the model-implied interest
rates levels relative to those in the sample.
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matches very well the levels of the nominal yields and captures the slope of the yield curve too.

The 1-, 5-, and 10-year model-implied yields are 3.71%, 5.14% and 5.58% relative to observed

yields of 4%, 4.95%, and 5.65% at corresponding maturities. Panel B of Figure 3 shows that

without long-run risk the model is not successful in fitting the nominal upward-sloping yield curve

as it generates downward-sloping yield curve, even with the presence of time-varying economic

uncertainty.19

To understand the effect of the long-run risk factor better, it is useful to write down the nominal

yields as an affine combination of state variables:

y$,n
t = − 1

n

[
B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt

]
, (30)

whereB$,n
1 , B$,n

2 , B$,n
3 , B$,n

4 are model-implied nominal bond price loadings provided in Appendix A.4.

The equilibrium nominal yield loadings are plotted in Figure 4.20 In our model, nominal yields

hedge expected consumption and inflation risks. As the top left panel of Figure 4 shows, nominal

yields increase when expected consumption is high because −B$,n
1 > 0, and the effect is stronger

for higher n. Intuitively, a negative shock to expected consumption drives bond prices up and

yields down and a positive shock to expected consumption drives bond prices down and yields

up. The same effect is obvious for expected inflation as −B$,n
4 > 0 and this loading is also in-

creasing with maturity (bottom right panel). The top right panel shows the effect of consumption

volatility shock on nominal yields. Corresponding loading −B$,n
3 manifests negative correlation of

expected inflation and consumption growth that we discussed above. Initial effect of both positive

consumption volatility and volatility-of-volatility shocks on yields is negative although this effect

mean-reverts in the long-run. Given that the steady state values of consumption volatility and

volatility-of-volatility processes are relatively small, long-run risk has the largest effect on nom-

inal yields and helps to fit the upward-sloping nominal yields curve predominantly. Therefore,

19Bansal and Shaliastovich (2013) fit the term structure of interest rates for the short- and intermediate-term
yields (up to five years only), whereas our model quantitatively matches the level and slope of the nominal term
structure from one- to ten-year interest rates.

20Nominal yield loadings are nominal bond price loadings with a negative sign.
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the slope of the term structure of interest rates appears to be tightly linked to the slow-moving

predictable component in consumption growth.

5.3 Model-implied Predictability

In this section we discuss model-implied predictability results using the model-implied slope and

R2 coefficients of bond risk premiums on the bond variance risk premiums regressions provided in

the Appendix A.7. Figure 5 shows the model-implied slope coefficient b from regression (A.45).

Consistent with our empirical evidence, the model-implied slope coefficient is positive everywhere,

highest at the shortest maturities and declines rapidly with the horizon in a similar fashion to the

top panels of Figure 2.

6 Conclusion

We study the bond pricing implications in the context of the long-run risks asset-pricing model

with two types of volatility risks—long-run consumption volatility and short-run consumption

volatility-of-volatility risks—and inflation non-neutrality. The model is promising in explaining

important stylized facts of the Treasury market returns.

First, our reasonably calibrated version of the model with long-run and short-run volatility risks

matches well the upward-sloping yield curve out to ten years, and the long-run risk plus inflation

non-neutrality appear to be the main driving forces behind this result. Second, the interest-rate

variance risk premium (IRVRP) constructed from interest rate derivatives markets drives short-

horizon (one- and three-month) Treasury excess returns, while other popular predictive variables,

such as Fama-Bliss forward spread or Cochrane-Piazzessi forward-rate factor drive variation in

longer-horizon (one-year) Treasury excess returns.

Inside our model, time-varying bond risk premium is driven by two volatility factors—volatility

of consumption and volatility-of-volatility of consumption; whereas bond variance risk premium

loads entirely on the vol-of-vol factor, forward rate loads on both consumption volatility and vol-
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of-vol factors plus growth and inflation factors. Since variance risk premium explains a significant

part in variation in short-horizon Treasury excess returns, we interpret vol-of-vol factor as a short-

run volatility risk factor. Since the forward-rate-related factors appear to explain time-variation

in long-horizon Treasury excess returns, we interpret these factors as related to the long-run

volatility risk factor. Thus, our model and empirical findings provide useful insights on different

volatility risks in driving bond risk premium dynamics. These insights should be useful for market

participants and monetary policy makers in practice.
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Table 1: Summary Statistics

Mean SD Min Max AR(1) Mean SD Min Max AR(1)

A: Variance Risk Premium Measures and Forward Spreads

IRVRP 1.54 0.91 0.58 3.86 0.97 FS 7y 2.18 1.65 -0.40 5.37 0.97

EVRP 0.17 0.23 -2.19 1.16 0.23 FS 8y 2.39 1.73 -0.37 5.72 0.97

FS 2y 0.46 0.53 -0.64 1.96 0.93 FS 9y 2.55 1.78 -0.39 5.82 0.98

FS 3y 0.88 0.87 -0.78 3.02 0.95 FS 10y 2.67 1.80 -0.43 5.72 0.98

FS 4y 1.27 1.15 -0.71 3.53 0.96 FS 15y 2.75 1.77 -0.64 5.69 0.98

FS 5y 1.62 1.37 -0.56 4.09 0.97 FS 20y 2.40 1.72 -0.80 5.35 0.97

FS 6y 1.93 1.53 -0.44 4.72 0.97

B: Asset Returns

1-month holding period 3-month holding period

2y -3.18 2.16 -6.63 0.56 0.94 -2.52 1.93 -6.26 0.93 0.95

3y -3.12 2.27 -6.72 1.04 0.88 -2.36 2.28 -7.36 2.99 0.90

4y -3.07 2.41 -7.29 1.66 0.80 -2.21 2.68 -8.49 4.80 0.86

5y -3.03 2.57 -7.99 2.36 0.72 -2.07 3.09 -9.47 6.34 0.83

6y -2.98 2.75 -8.62 3.86 0.65 -1.93 3.48 -10.61 7.62 0.80

7y -2.94 2.93 -9.18 5.40 0.59 -1.82 3.87 -11.73 8.69 0.78

8y -2.91 3.13 -9.68 6.93 0.53 -1.72 4.24 -12.77 10.34 0.77

9y -2.88 3.33 -10.13 8.39 0.47 -1.63 4.60 -13.75 12.40 0.75

10y -2.86 3.53 -10.85 9.77 0.42 -1.56 4.96 -14.65 14.40 0.74

15y -2.78 4.48 -15.64 14.89 0.26 -1.32 6.61 -18.83 23.38 0.70

20y -2.74 5.31 -19.35 17.35 0.19 -1.19 8.23 -22.83 31.61 0.69

Equity 6.02 52.50 -204.90 130.50 0.09 6.08 31.79 -133.26 93.31 0.73

6-month holding period 12-month holding period

2y -1.55 1.64 -5.19 2.62 0.94 0.23 1.18 -2.70 3.12 0.94

3y -1.24 2.35 -6.56 5.79 0.90 0.86 2.33 -5.15 6.69 0.93

4y -0.94 3.06 -7.78 8.58 0.88 1.46 3.34 -7.10 9.67 0.92

5y -0.67 3.74 -8.84 10.95 0.86 2.01 4.24 -8.67 12.12 0.91

6y -0.42 4.38 -9.86 12.93 0.85 2.50 5.07 -10.36 14.13 0.91

7y -0.20 4.98 -11.11 14.55 0.84 2.93 5.85 -11.94 15.90 0.90

8y -0.01 5.55 -12.28 15.88 0.83 3.30 6.58 -13.56 17.64 0.89

9y 0.15 6.09 -13.38 16.94 0.82 3.62 7.28 -15.09 19.14 0.89

10y 0.29 6.60 -14.41 17.91 0.82 3.88 7.95 -16.55 20.80 0.88

15y 0.72 8.96 -18.74 26.74 0.80 4.72 10.86 -23.18 30.68 0.87

20y 0.96 11.24 -26.64 35.58 0.80 5.16 13.55 -30.21 39.01 0.87

Equity 6.09 24.04 -102.99 68.33 0.86 6.16 18.11 -54.24 42.65 0.94

Note: This table presents summary statistics, including the mean, standard deviation (SD), minimum (Min),

maximum (Max), and AR(1) coefficient, of our interest rate variance risk premium measure (IRVRP), the equity

variance risk premium measure of Bollerslev, Tauchen, and Zhou (2009) using S&P 500 index options, and forward

spreads equal to the difference between one-year forward rate τ years ahead and the one-year zero coupon yield (in

Panel A), and of the Treasury and equity market excess returns (in Panel B). Both the forward spreads are excess

returns are in percentage points. We consider forward spreads and Treasury excess returns with tenors of τ=2, 3,

4, 5, 6, 7, 8, 9, 10, 15, and 20 years. Four holding horizons of returns are included, 1-, 3-, 6-, and 12-months. Data

is monthly and runs from March 1993 through February 2013.
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Table 9: Bond Returns using the Fama-Bliss and Fama Maturity Portfolio Dataset

A: Fama-Bliss

2y 3y 4y 5y

1-month holding period

IRVRP 0.888** 0.850** 0.802** 0.768**

(11.792) (11.686) (11.693) (13.364)

R2 0.747 0.685 0.610 0.559

3-month holding period

IRVRP 0.816** 0.696** 0.602** 0.552**

(10.652) (9.624) (8.315) (8.119)

R2 0.612 0.445 0.333 0.280

6-month holding period

IRVRP 0.648** 0.476** 0.397** 0.369**

(7.607) (5.759) (4.697) (4.458)

R2 0.372 0.201 0.140 0.121

12-month holding period

IRVRP 0.028 0.073 0.139 0.216+

(0.225) (0.586) (1.105) (1.709)

R2 0.001 0.004 0.015 0.037

B: Fama Maturity Portfolios

τ < 2y τ <5y 5y≤ τ <10y τ ≥10y

IRVRP 0.886** 0.821** 0.787** 0.614**

(12.325) (13.319) (13.719) (11.546)

R2 0.784 0.674 0.620 0.377

Note: This table presents results of the univariate regression (7) using two alternative Treasury datasets to calculate

the Treasury excess returns. The first is the Fama-Bliss discount bond database from CRSP, which contains

Treasury notes with maturities of 1, 2, 3, 4, and 5 years, while the second is the Fama dataset from CRSP, which

contains actually traded Treasury securities combined into portfolios of different maturity buckets. The t-statistics

presented in parentheses are calculated using Newey and West (1987) standard errors with the optimal lag length

determined according to Newey and West (1994). All variables are standardized to have mean zero and a standard

deviation of one. Data is monthly and runs from March 1993 through February 2013. Significance levels: ∗∗ for

p < 0.01, ∗ for p < 0.05, and + for p < 0.1, where p is the p-value.
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Table 11: Model calibration

Type Parameters BY BTZ GSZ

Panel A: Real economy dynamics
δ 0.997 0.997 0.997

Preferences γ 10 10 8
ψ 1.5 1.5 1.5

µg 0.0015 0.0015 0.0015
ρx 0.979 0 0.979

Endowment φe 0.001 0 0.001
aσ 1.20463e-05 1.20463e-05 1.20463e-05
ρσ 0.978 0.978 0.978

aq 2e-07 2e-10
Uncertainty ρq 0.8 0.8

φq 0.001 0.0001

Panel B: Inflation dynamics
Constant aπ 8.33333e-05
Persistence ρπ 0.95
Autonomous φπ 0.0013
Consumption φπg -0.0385
Uncertainty φπσ 28.5044

Panel C: Campbell-Shiller constants
κ0 0.3251 0.3251 0.3251
κ1 0.9 0.9 0.9

Note: This table reports the calibrated parameters used in previous studies and in our paper.
Column “BY” refers to the choice of parameters in Bansal and Yaron (2004), column “BTZ”
— to that in Bollerslev, Tauchen, and Zhou (2009), and column “GSZ” refers to our choice
of parameters.

49



Figure 1: Time series of interest rate and equity variance risk premium
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This figure plots monthly series of the interest rate variance risk premium (top panel) and equity variance risk

premium (bottom panel). The former is computed as the simple average of the five individual interest rate variance

risk premium measures on 1-, 2-, 5-, 10-, and 20-year tenors based on 12-month swaptions on corresponding tenors,

while the latter is based on S&P 500 index options, as in Bollerslev, Tauchen, and Zhou (2009). The sample period

is March 1993 – February 2013.
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Figure 2: Univariate regression coefficients
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This figure plots the estimated coefficients (left panels) and adjusted R2s (right panels) of univariate regressions

of the Treasury and equity market excess returns on the interest rate variance risk premium, the equity variance

risk premium, and the forward spread, in top, middle, and bottom panels, respectively. The shaded areas in the

left panels represent confidence levels of the regression coefficients at the 95% significance level. All variables

are standardized to have mean zero and a standard deviation of one. Data is monthly and runs from March

1993 through February 2013. The holding horizon of the excess returns is three months, and both the estimated

coefficients and adjusted R2s are plotted against the asset tenor τ , equal to 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20

years for Treasuries, and ∞ for the equity market portfolio.
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Figure 3: The model-implied nominal yield curve
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(b) No LRR component

The figure plots the average zero-coupon nominal Treasury yield curve as observed in the data using the sample
of January 1991 - December 2010 monthly data as the solid blue line in both Panels (a) and (b). The figure also
plots the model-implied yield curve with the long-run risk component (Panel (a)) and without the long-run risk
component (Panel (b)) as the dashed red line.
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Figure 4: Equilibrium nominal bond yield loadings
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The figure plots the model-implied nominal bond yield loadings on expected consumption growth (top left panel),
consumption volatility (top right panel), consumption volatility-of-volatility (bottom left panel), and expected
inflation (bottom right panel). Maturity on horizontal axes is in months.
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Figure 5: Model-implied predictability
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The figure plots the model-implied slope of the predictive regression of the nominal bond risk premium to the

nominal bond variance risk premium: brp$,n
t = a + b × BVRP$,n

t

[
σ2
r$,t+1

]
+ ε. Maturity on horizontal axes is in

months.
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A Appendix

A.1 Solution for the consumption-wealth ratio coefficients

Euler equation imposes equilibrium restrictions on the asset prices:

E[exp(mt+1 + rt+1)] = 1. (A.1)

Since this Euler equation should hold for any asset, it should also hold for the wealth-consumption
ratio zt. Thus, the return on this asset rc,t+1 should satisfy (A.1). Using it and the wealth return
equation (18), obtain:

Et [exp(mt+1 + rc,t+1)] = Et

[
exp

(
θ ln δ − θ

ψ
gt+1 + θrc,t+1

)]
= 1, (A.2)

or, in log-linearized dynamics:

Et

[
θ ln δ − θ

ψ
gt+1 + θrc,t+1

]
+

1

2
Vart

[
θ ln δ − θ

ψ
gt+1 + θrc,t+1

]
= 0. (A.3)

Substituting out rc,t+1 in terms of zt dynamics (17) and consumption growth gt+1, we can solve
for the equilibrium wealth-consumption ratio loadings A0, Ax, Aσ2 , Aq:

Et[θ ln δ − θ

ψ
(µg + xt + σg,tzg,t+1) + θ(κ0 + κ1(A0 + Axxt+1 + Aσσ

2
g,t+1 + Aqqt+1)−

A0 − Axxt − Aσσ2
g,t − Aqqt + µg + xt + σg,tzg,t+1)]+

1

2
Vart[θ ln δ − θ

ψ
(µg + xt + σg,tzg,t+1) + θ(κ0 + κ1(A0 + Axxt+1 + Aσσ

2
g,t+1 + Aqqt+1)−

A0 − Axxt − Aσσ2
g,t − Aqqt + µg + xt + σg,tzg,t+1)] = 0.

(A.4)

To solve for A0, set constant terms under the expectation in (A.4) equal to zero:

θ ln δ + θ(κ0 + κ1(A0 + Aσaσ + Aqaq))− A0 +

(
θ − θ

ψ

)
µg = 0 ⇒

A0 =
1

1− κ1

[
ln δ + κ0 + κ1(Aσaσ + Aqaq) +

(
1− 1

ψ

)
µg

]
.

(A.5)

To solve for Ax, match the terms in front of xt:

− θ

ψ
+ θ(κ1Axρx − Ax + 1) = 0 ⇒ Ax =

1− 1
ψ

1− κ1ρx
. (A.6)
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To solve for Aσ, match the terms in front of σ2
g,t:

(θκ1Aσρσ − θAσ)σ2
g,t +

1

2
Vart

[
− θ
ψ
σ2
g,tzg,t+1 + θκ1Axφeσg,tzx,t+1 + θσg,tzg,t+1

]
=

θAσ(κ1ρσ − 1)σ2
g,t +

1

2
Vart

[(
θ − θ

ψ

)
σg,tzg,t+1 + θκ1Axφeσg,tzx,t+1

]
= 0 ⇒

θAσ(κ1ρσ − 1) +
1

2

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
= 0 ⇒

Aσ =
1

2θ(1− κ1ρσ)

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
.

(A.7)

To solve for Aq, match the terms in front of qt and set equal to zero:

(θκ1Aqρq − θAq)qt +
1

2
Vart[θκ1Aσ

√
qtzσt+1 + θκ1Aq(ρqqt + φq

√
qtzqt+1)− θAqqt] =

θAq(κ1ρq − 1)qt +
1

2
Var(θκ1Aσ

√
qtzσt+1 + θκ1Aqφq

√
qtzqt+1) = 0 =⇒

1

2
(θκ1φq)

2A2
q + θ(κ1ρq − 1)Aq +

1

2
(θκ1Aσ)2 = 0 or, equivalently,

(θκ1φq)
2A2

q + 2θ(κ1ρq − 1)Aq + (θκ1Aσ)2 = 0.

(A.8)

The solution for Aq represents the solution to a quadratic equation and is given by:

A±q =
1− κ1ρq ±

√
(1− κ1ρq)2 − (θκ2

1φqAσ)2

θ(κ1φq)2
. (A.9)

As Tauchen (2011) notes, a “positive” root A+
q has an unfortunate property limφq→0 φ

2
qA

+
q 6= 0,

which is, essentially, a violation of the transversality condition in this setting: though uncertainty
qt vanishes with φq → 0, the effect of it on prices is not. Therefore, we choose A−q root as a viable
solution for Aq:

Aq =
1− κ1ρq −

√
(1− κ1ρq)2 − θ2κ4

1φ
2
qA

2
σ

θ(κ1φq)2
. (A.10)

To insure that the determinant in (A.10) is positive, we also impose a constraint on φq —the
magnitude of the shock zq,t+1:

φ2
q ≤

(1− κ1ρq)
2

θ2κ4
1A

2
σ

. (A.11)
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A.2 Solution for the real pricing kernel and the real risk-free rate

Using the solutions for A′s obtained in A.1, we solve for the expected value Et[mt+1] and the
variance Vart[mt+1] of the real pricing kernel mt+1:

Et[mt+1] = θ ln δ − θ

ψ
Et[gt+1] + (θ − 1)Et[rc,t+1] =

= θ ln δ − θ

ψ
(µg + xt) + (θ − 1)Et(κ0 + κ1zt+1 + gt − zt)

= θ ln δ − θ

ψ
(µg + xt) + (θ − 1)[κ0 + κ1(A0 + Axρxxt + Aσ(aσ + ρσσ

2
g,t) + Aq(aq + ρqqt))

+ µg + xt − A0 − Axxt − Aσσ2
g,t − Aqqt]

= θ ln δ +

(
(θ − 1)− θ

ψ

)
︸ ︷︷ ︸

−γ

µg + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

− θ

ψ
xt + (θ − 1)[(Ax(κ1ρx − 1) + 1)xt + Aσ(κ1ρσ − 1)σ2

g,t + Aq(κ1ρq − 1)qt]

= θ ln δ − γ(µg + xt) + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

+ (θ − 1)[Ax(κ1ρx − 1)xt + Aσ(κ1ρσ − 1)σ2
g,t + Aq(κ1ρq − 1)qt].

(A.12)

and

Vart[mt+1] = Vart

[
θ ln δ − θ

ψ
gt+1 + (θ − 1)rc,t+1

]
= Vart

[
− θ
ψ
gt+1 + (θ − 1)[κ1(A0 + Axxt+1 + Aσσ

2
g,t+1 + Aqqt+1) + gt+1]

]
= Vart

[(
(θ − 1)− θ

ψ

)
σg,tzg,t+1 + (θ − 1)κ1(Axφeσg,tzx,t+1 + Aσ

√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

]
= γ2σ2

g,t + (θ − 1)2κ2
1

[
A2
xφ

2
eσ

2
g,t + (A2

σ + A2
qφ

2
q)qt
]
.

(A.13)

The real risk-free rate is the negative of the (log) real pricing kernel with the Jensen’s correction.
Using the solutions (A.12) and (A.13) for the real pricing kernel, the model-implied real risk-free
rate is given by:

rf,t = −p1
t = −Et[mt+1]− 1

2
Vart[mt+1]

= −θ ln δ + γµg − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
(θ − 1)2κ2

1A
2
xφ

2
e −

1

2
γ2

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)

]
qt.

(A.14)
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Note that the time variation of the risk-free rate (A.14) crucially depends on the assumption of
the preference for early resolution of uncertainty (θ < 0). Without it (θ = 1) the time variation in
the risk-free rate depends only on the variation of the predictable consumption growth component
xt (long-run risk) and equals to: rf,t = − ln δ + γ(µg + xt)− 1

2
γ2σ2

g,t. Moreover, in the absence of
the long-run risk, it is nearly constant (ignoring the time-varying Jensen’s inequality correction):
rf,t = − ln δ + γµg − 1

2
γ2σ2

g,t. In the steady state the real risk-free rate can be written as:

rf = −[c0 c1 c2 c3]× [1 Ex Eσ2 Eq]
′. (A.15)

where steady-state loadings ci, i = 0, . . . , 3 are given by:

c0 = θ ln δ − γµg + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)],

c1 = −γ + (θ − 1)Ax(κ1ρx − 1),

c2 =
1

2
γ2 +

1

2
(θ − 1)2κ2

1A
2
xφ

2
e + (θ − 1)Aσ(κ1ρσ − 1),

c3 =
1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q) + (θ − 1)Aq(κ1ρq − 1).

(A.16)

A.3 Solution for the nominal one-period risk-free rate

Similarly to the real risk-free rate (A.14), the nominal one-period risk-free rate is the negative of
the (log) nominal pricing kernel with the Jensen’s correction:

r$
f,t = −Et

[
m$
t+1

]
− 1

2
Vart

[
m$
t+1

]
= −Et [mt+1 − πt+1]− 1

2
Vart [mt+1]− 1

2
Vart [πt+1] + Covt[mt+1, πt+1]

= rf,t + Et[πt+1]− 1

2
Vart[πt+1] + Covt[mt+1, πt+1]

= rf,t + aπ + ρππt −
1

2
[φ2
π + φ2

πgσ
2
g,t + φ2

πσqt] + Covt[mt+1, πt+1].

(A.17)

We need to compute the last term in (A.17) to complete the expression for the nominal risk-free
rate in closed form:

Covt[mt+1, πt+1] = Et[(mt+1 − Etmt+1)× (πt+1 − Etπt+1)]. (A.18)

The unexpected components of the pricing kernel mt+1 and inflation πt+1 are given by:

mt+1 − Et[mt+1] = −γσg,tzg,t+1 + (θ − 1)κ1(Axφezx,t+1 + Aσ
√
qtzσ,t+1 + Aqφq

√
qtzq,t+1),

πt+1 − Et[πt+1] = φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ
√
qtzσ,t+1,

(A.19)

which implies for (A.18):

Et[(mt+1 − Etmt+1)× (πt+1 − Etπt+1)] = −γφπgσ2
g,t + (θ − 1)κ1Aσφπσqt. (A.20)

Combining together (A.14), (A.17), and (A.20), we obtain the closed-form expression for the
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nominal risk-free rate in terms of the model parameters and state variables:

r$
f,t = −θ ln δ + γµg + aπ − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]−

1

2
φ2
π

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
γ2 − 1

2
(θ − 1)2(κ1Axφe)

2 − 1

2
φ2
πg − γφπg

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)−

1

2
φ2
πσ + (θ − 1)κ1Aσφπσ

]
qt

+ ρππt.

(A.21)

The nominal steady-state risk-free rate can be expressed similarly to that of the real risk-free rate:

r$
f = −[c$

0 c
$
1 c

$
2 c

$
3 c

$
4]× [1 Ex Eσ2 Eq Eπ]′, (A.22)

where the nominal risk-free rate loadings c$
i , i = 0, . . . , 4 are related to the real risk-free rate

loadings ci, i = 0, . . . , 3 as:

c$
0 = c0 − aπ +

1

2
φ2
π,

c$
1 = c1,

c$
2 = c2 +

1

2
φ2
πg + γφπg,

c$
3 = c3 +

1

2
φ2
πσ − (θ − 1)κ1Aσφπσ,

c$
4 = −ρπ.

(A.23)

A.4 Solution for the nominal n−period bond price

The nominal n−period bond (log) price p$,n
t is given by:

p$,n
t = Et

[
m$
t+1

]
+

1

2
Vart

[
m$
t+1

]
+ Et

[
p$,n−1
t+1

]
+

1

2
Vart

[
p$,n−1
t+1

]
+ Covt

[
m$
t+1, p

$,n−1
t+1

]
. (A.24)

The first and the second terms in (A.24) are known from the nominal risk-free rate calcula-
tions (A.17). The last three terms can be computed using an affine pricing conjecture:

p$,n
t = B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt. (A.25)
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Then the expected nominal bond price is:

Et

[
p$,n−1
t+1

]
= B$,n−1

0 +B$,n−1
1 ρxxt +B$,n−1

2 (aσ + ρσσ
2
g,t)

+B$,n−1
3 (aq + ρqqt) +B$,n−1

4 (aπ + ρππt)

=
[
B$,n−1

0 +B$,n−1
2 aσ +B$,n−1

3 aq +B$,n−1
4 aπ

]
+B$,n−1

1 ρxxt +B$,n−1
2 ρσσ

2
g,t +B$,n−1

3 ρqqt +B$,n−1
4 ρππt.

(A.26)

The shock to the nominal bond price is given by:

p$,n−1
t+1 − Et

[
p$,n−1
t+1

]
= B$,n−1

1 φeσg,tzx,t+1 +B$,n−1
2

√
qtzσ,t+1 +B$,n−1

3 φq
√
qtzq,t+1

+B$,n−1
4 [φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ

√
qtzσ,t+1].

(A.27)

Thus, the variance of the nominal bond price is given by:

Vart[p
$,n−1
t+1 ] = Et

[
p$,n−1
t+1 − Et

[
p$,n−1
t+1

]]2

=
[
(B$,n−1

1 φe)
2 + (B$,n−1

4 φπg)
2
]
σ2
g,t

+

[(
B$,n−1

2 +B$,n−1
4 φπσ

)2

+
(
B$,n−1

3 φq

)2
]
qt +

(
B$,n−1

4 φπ

)2

.
(A.28)

Lastly, covariance between between the nominal pricing kernel and the nominal bond price equals
to:

Covt

[
m$
t+1, p

$,n−1
t+1

]
= Et

[(
m$
t+1 − Etm

$
t+1

)
×
(
p$,n−1
t+1 − Etp

$,n−1
t+1

)]
, (A.29)

where the shock to the nominal pricing kernel in terms of state variables is:

m$
t+1 − Etm

$
t+1 = mt+1 − Etmt+1 − (πt+1 − Etπt+1)

= −γσg,tzg,t+1 + (θ − 1)κ1 (Axφeσg,tzx,t+1 + Aσ
√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

− φπzπ,t+1 − φπgσg,tzg,t+1 − φπσ
√
qtzσ,t+1,

(A.30)

and the shock to the nominal bond price, p$,n−1
t+1 − Etp

$,n−1
t+1 , is given in (A.27). Thus, a final

expression for a covariance term in (A.24) is:

Covt

[
m$
t+1, p

$,n−1
t+1

]
=
[
(θ − 1)κ1AxB

$,n−1
1 φ2

e − (γ + φπg)B
$,n−1
4 φπg

]
σg,t

+
[
((θ − 1)κ1Aσ − φπσ)(B$,n−1

2 +B$,n−1
4 φπσ) + (θ − 1)κ1AqB

$,n−1
3 φ2

qqt

]
qt

−B$,n−1
4 φ2

π.

(A.31)
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Combining together (A.17), (A.26), (A.28), and (A.31), the nominal n−period bond price is:

B$,n
0 = c0 − aπ +

[
B$,n−1

0 +B$,n−1
2 aσ +B$,n−1

3 aq +B$,n−1
4 aπ

]
+

1

2
φ2
π

(
B$,n−1

4 − 1
)2

B$,n
1 = c1 +B$,n−1

1 ρx

B$,n
2 = B$,n−1

2 ρσ + (θ − 1)Aσ(κ1ρσ − 1) +
1

2
(γ + φπg)

2 +
1

2
φ2
e

[
(θ − 1)κ1Ax +B$,n−1

1

]2

+
1

2
(B$,n−1

4 φπg)
2 − (γ + φπg)B

$,n−1
4 φπg

B$,n
3 = B$,n−1

3 ρq + (θ − 1)Aq(κ1ρq − 1) +
1

2

[
(θ − 1)κ1Aσ +B$,n−1

2 + φπσ

(
B$,n−1

4 − 1
)]2

+
1

2

[
(θ − 1)κ1Aq +B$,n−1

3

]2

φ2
q

B$,n
4 = ρπ

(
B$,n−1

4 − 1
)
.

(A.32)

A.5 Solution for the forward spread

Let f $,n
t be the one-year forward rate starting n − 1 periods ahead: f $,n

t = ny$,n
t − (n − 1)y$,n−1

t ,

then the forward spread FS$,n
t = f $,n

t − y$,1
t is the difference between the forward rate and the

one-period nominal bond yield y$,1
t . Using the affine pricing conjecture (A.25), show that the

forward spread is the function of all four model state variables:

FS$,n
t = ny$,n

t − (n− 1)y$,n−1
t − y$,1

t = p$,n−1
t − p$,n

t − y
$,1
t =(

B$,n−1
0 −B$,n

0

)
+
(
B$,n−1

1 −B$,n
1

)
xt +

(
B$,n−1

2 −B$,n
2

)
σ2
g,t +

(
B$,n−1

3 −B$,n
3

)
qt+(

B$,n−1
4 −B$,n

4

)
πt−(

−(c0 − aπ +
1

2
φ2
π)− c1xt − (c2 +

1

2
φ2
πg + γφπg)σ

2
g,t − (c3 +

1

2
φ2
πσ − (θ − 1)κ1Aσφπσ)qt − ρππt

)
= F $,n

0 + F $,n
1 xt + F $,n

2 σ2
g,t + F $,n

3 qt + F $,n
4 πt.

(A.33)

Using the nominal bond loadings in (A.32), obtain the constant term and the factors for the state

variables in the forward spread equation (A.33). The constant term F $,n
0 in (A.33) is:

F $,n
0 =

(
B$,n−1

0 −B$,n
0

)
+ (c0 − aπ +

1

2
φ2
π) =

−
[
B$,n−1

2 aσ +B$,n−1
3 aq +B$,n−1

4 aπ

]
+

1

2
φ2
π

(
1−

(
B$,n−1

4 − 1
)2
)
.

(A.34)
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The F $,n
1 loading on xt is:

F $,n
1 =

(
B$,n−1

1 −B$,n
1

)
+ c1 = B$,n−1

1 (1− ρx). (A.35)

The F $,n
2 loading on σ2

g,t is:(
B$,n−1

2 −B$,n
2

)
+ (c2 +

1

2
φ2
πg + γφπg) = B$,n−1

2 (1− ρσ)− (θ − 1)κ1Axφ
2
eB

$,n−1
1 −

1

2
φ2
e

(
B$,n−1

1

)2

− 1

2
(B$,n−1

4 φπg)
2 + (γ + φπg)B

$,n−1
4 φπg.

(A.36)

The F $,n
3 loading on qt is:(
B$,n−1

3 −B$,n
3

)
+ (c3 +

1

2
φ2
πσ − (θ − 1)κ1Aσφπσ) = B$,n−1

3 (1− ρq)− (θ − 1)Aq(κ1ρq − 1)

− 1

2

[
(θ − 1)κ1Aσ +B$,n−1

2 + φπσ

(
B$,n−1

4 − 1
)]2

− 1

2

[
(θ − 1)κ1Aq +B$,n−1

3

]2

φ2
q

+ (c3 +
1

2
φ2
πσ − (θ − 1)κ1Aσφπσ).

(A.37)

and the F $,n
4 loading on πt term is:(

B$,n−1
4 −B$,n

4

)
− ρπ) = B$,n−1

4 (1− ρπ). (A.38)

A.6 Solution for the nominal bond variance risk premium (BVRP)

Define σ2
r$,t

= Vart

[
r$,n
t,t+1

]
, where r$,n

t,t+1 = p$,n−1
t+1 −p

$,n
t , so σ2

r$,t
= Vart

[
p$,n−1
t+1

]
. Similarly, σ2

r$,t+1
=

Vart+1

[
p$,n−2
t+2

]
. We need the conditional variance at time t+1 because time-t conditional variance

is known and therefore, variance risk premium is constant. To derive the nominal bond variance
risk premium recall the affine pricing conjecture (A.25):

p$,n
t = B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt. (A.39)

Therefore:

σ2
r$,t+1 = Vart+1

[
p$,n−2
t+2

]
= Et+1

[
p$,n−2
t+2 − Et

[
p$,n−2
t+2

]]2

=[(
B$,n−2

1 φe

)2

+
(
B$,n−2

4 φπg

)2
]
σ2
g,t+1 +

[(
B$,n−2

2 +B$,n−2
4 φπσ

)2

+
(
B$,n−2

3 φq

)2
]
qt+1

+
(
B$,n−2

4 φπ

)2

,

(A.40)
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and its expectation equals to:

Et

[
σ2
r$,t+1

]
=

[(
B$,n−2

1 φe

)2

+
(
B$,n−2

4 φπg

)2
]

(aσ + ρσσ
2
g,t)

+

[(
B$,n−2

2 +B$,n−2
4 φπσ

)2

+
(
B$,n−2

3 φq

)2
]

(aq + ρqqt) +
(
B$,n−2

4 φπ

)2

.

(A.41)

The nominal BVRP is defined as the difference in expectations of the variance under risk-neutral
Q and actual measures, which is given by the covariance between the variance of the nominal bond
price and the nominal stochastic discount factor:

EQ
t

[
σ2
r$,t+1

]
− Et

[
σ2
r$,t+1

]
= Covt

[
σ2
r$,t+1,m

$
t+1

]
= Et

[(
σ2
r$,t+1 − Etσ

2
r$,t+1

)
×
(
m$
t+1 − Etm

$
t+1

)]
.

(A.42)

The unexpected part of the variance of the nominal bond price is given by:

σ2
r$,t+1 − Etσ

2
r$,t+1 =

[(
B$,n−2

1 φe

)2

+
(
B$,n−2

4 φπg

)2
]
√
qtzσ,t+1

+

[(
B$,n−2

2 +B$,n−2
4 φπσ

)2

+
(
B$,n−2

3 φq

)2
]
φq
√
qtzq,t+1

(A.43)

and the unexpected part of the nominal pricing kernel is given by (A.30). Taking the expectation
of the product of (A.30) and (A.43), we obtain the nominal BVRP (A.42) in the closed form as a
function of model parameters:

BVRP$,n
t

[
σ2
r$,t+1

]
= EQ

t

[
σ2
r$,t+1

]
− Et

[
σ2
r$,t+1

]
=

(θ − 1)κ1

{
(Aσ − φπσ)

[(
B$,n−2

1 φe

)2

+
(
B$,n−2

4 φπg

)2
]

+

Aqφ
2
q

[(
B$,n−2

2 +B$,n−2
4 φπσ

)2

+
(
B$,n−2

3 φq

)2
]}

qt.

(A.44)

Note that the nominal BVRP in (A.44) has a superscript n, meaning that it is maturity-dependent.
Although the nominal BVRP in (A.44) is a function of (n− 2)−period bond price parameters, it
is indexed by n superscript because it is assessed at time t when the nominal bond has n periods
to maturity. The notational leap from n− 2 to n happens because we assess time-t expectation of
the time-(t+ 1) conditional variance σ2

r$,t+1
of the time-(t+ 2) nominal bond price p$,n−2

t+2 .

A.7 Model-implied predictive regression coefficients

In this subsection we provide model-implied coefficients of the predictive regression of the nominal
bond risk premium (??) on the nominal BVRP (A.44):

brp$,n
t = a+ b× BVRP$,n

t

[
σ2
r$,t+1

]
+ ε. (A.45)
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Ignoring the error term, the slope coefficient is given by:

b =
Cov

[
brp$,n

t ,BVRP$,n
t

[
σ2
r$,t+1

]]
Var

[
BVRP$,n

t

[
σ2
r$,t+1

]] , (A.46)

and the R2 coefficient is given by:

R2 =
b2 × Var

[
BVRP$,n

t

[
σ2
r$,t+1

]]
Var

[
brp$,n

t

] . (A.47)

Using that brp$,n
t = β$,n−1

1 σ2
g,t + β$,n−1

2 qt + B$,n−1
4 φ2

π from (??) and that BVRPt = (θ − 1)κ1νqt,

where ν = {. . .} in (A.44), and ignoring the constant inflation adjustment term B$,n−1
4 φ2

π in the
nominal bond risk premium expression obtain

Cov
[
brp$,n

t ,BVRP$,n
t

[
σ2
r$,t+1

]]
= Cov

[
β$,n−1

1 σ2
g,t + β$,n−1

2 qt, (θ − 1)κ1νqt

]
= (θ−1)κ1νβ

$,n−1
2 Var(qt),

(A.48)
because Cov

[
σ2
g,t, qt

]
= 0 according to the dynamics of the model state variables. Accordingly,

model-implied variance of the bond variance risk-premium is:

Var
[
BVRP$,n

t

[
σ2
r$,t+1

]]
= (θ − 1)2κ2

1ν
2Var(qt). (A.49)

Then the model-implied slope coefficient b is:

b =
(θ − 1)κ1νβ

$,n−1
2

(θ − 1)2κ2
1ν

2Var(qt)
=

β$,n−1
2

(θ − 1)κ1ν
, (A.50)

and the slope coefficient R2 is:

R2 =

(
β$,n−1
2

(θ−1)κ1ν

)2

× (θ − 1)2κ2
1ν

2Var(qt)(
β$,n−1

1

)2

Var(σ2
g,t) +

(
β$,n−1

2

)2

Var(qt)
=

(
β$,n−1

2

)2

Var(qt)(
β$,n−1

1

)2

Var(σ2
g,t) +

(
β$,n−1

2

)2

Var(qt)
. (A.51)
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