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1 Introduction

Little is known about the way consumers update their behavior in intermittent choice set-

tings. In this paper, I exploit a natural experiment in which residential water customers were

transitioned from bi-monthly to monthly billing to assess dynamic responses to increases in

billing frequency.

Previous research has found significant changes in electricity and water use induced by

nonpecuniary incentives (Allcott, 2011; Ferraro and Price, 2013; Brent et al., 2015), although

the mechanism by which consumers alter their behavior is unclear. Some behavioral inter-

ventions influence consumption through moral channels (e.g., Ferraro and Price (2013)),

while other informative interventions allow consumption or prices to become more salient

(e.g., Jessoe and Rapson (2014); Kahn and Wolak (2013); Wichman (2015)).

The durability of the effects induced by behavioral and informative interventions remain

even more ambiguous. Allcott and Rogers (2014) find that social comparisons reduce elec-

tricity consumption in the short run, but consumers become increasingly numb to these

treatments over time. Bernedo et al. (2014) find, however, that the effect of a one-shot

behavioral treatment can be observed up to six years after treatment for water conservation

efforts, with evidence suggesting that both habitual changes and structural changes to the

home drive this effect. Contrastingly, Ito et al. (2015) observe dissipating short-run reduc-

tions in electricity use for randomized moral suasion treatments, but longer-lasting effects

from economic incentives, positing a mechanism of habit formation.

In this paper, I build on previous research by examining consumption in response to

changes in the frequency of bills received by residential water customers for a large water

utility in the Southeastern US. The empirical setting is a conditionally exogenous transition

of residential water customers from bi-monthly to monthly billing for a single water util-

ity. Beginning in 2011, the City of Durham’s Department of Water Management in North

Carolina transitioned residential customers in geographically differentiated billing districts

to monthly billing over the course of three and a half years. By exploiting the assignment

of monthly billing, I estimate a causal increase in consumption in response to more frequent

information. The average treatment effect, however, masks important heterogeneity over

time that better highlights the dynamic response of economic agents in response to repeated

interventions. Treatment effects are found to persist but weaken over time to effectively no

response after 12 months.

Because water customers increase consumption at a decreasing rate over time, my em-

pirical results suggest a mechanism other than price by which consumers respond to changes

in billing frequency. Rather, I interpret these effects as the product of habitual heuristics
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in which consumers are repeatedly reminded of how much water they use and, importantly,

how inexpensive water is relative to other budgeted monthly expenditures.

I extend the literature further by examining heterogeneity in the dynamic response to

billing frequency among socioeconomic and structural characteristics of the household. My

results suggest that historically low users of water and households on larger lots display the

largest dynamic response to increases in billing frequency. Notably, little heterogeneity is

found among wealth groups in the dynamic response to more frequent billing. This finding

suggests that more frequent billing does not aid in smoothing expenditures, which was a

purported motivation for the adoption of monthly billing. This contradicts recent studies

(e.g., Jack and Smith (2015)) that suggest increasing the frequency of billing via prepaid

metering for electricity may help to avoid backing up against credit constraints with lumpy

billing practices. I find no evidence consistent with the hypothesis that more frequent bills,

and thus smaller billed amounts, allow constrained consumers to smooth income over the

year.

Overall, this research makes contributions along several dimensions. This paper provides

the first causal analysis of long-run behavior in response to changes in billing frequency

for economic goods purchased intermittently. Second, I find empirical evidence that eco-

nomic agents increase consumption at a decreasing rate in response to more frequent billing

information—both of which are novel findings in program evaluations of price and non-price

interventions for water and electricity consumption. Third, the effects for inattentive con-

sumers (as proxied by enrollment in automatic bill payment) exhibit a dampened profile of

treatment effects, where effects are smaller in magnitude and persist for a shorter duration.

And fourth, this analysis suggests that more frequent billing has no meaningful effect on

helping credit constrained consumers smooth expenditures throughout the year.

In the next section, I describe the data used in the analysis and outline the empirical

setting. I present a series of quasi-experimental models to estimate a causal effect of billing

frequency on consumer demand as well as dynamic responses to treatment in Section 3. In

Section 4, I discuss the results and implications of the empirical models. The final section

concludes.

2 Empirical setting

Beginning in December 2011, the City of Durham’s Department of Water Management in

North Carolina (henceforth, “Durham”) transitioned individual billing districts from bi-

monthly to monthly billing at different points in time. Primary reasons for the transition
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include cost-saving from fewer delinquent payments, early leak detection, improving cus-

tomer service, and reducing administrative costs. In addition, the change in billing frequency

was enabled by district-wide installation of automated meters. The new meters allow for

consumption levels to be obtained via radio frequency such that the costs to read meters

manually were reduced. Meters were installed for each billing district and, once the instal-

lations were completed, the entire district was transitioned to monthly billing. Customers

were notified of the transition to monthly billing by mail approximately six weeks before the

transition.1

To make a cost-saving argument to the city council, the water utility used a single billing

district as a pilot group to measure changes in administrative costs before and after the

transition to monthly billing cycles. After that, billing districts were transitioned to monthly

billing according to meter installation and administrative schedules. The order of districts

for meter installation (and, subsequently, monthly billing) was chosen to work around billing

cycles and other feasibility constraints. According to utility officials, no consideration of

billing history, income base of neighborhood, or any other financial indicator was taken into

account when choosing which districts to transition.2

Given these details, the assignment of monthly billing is plausibly exogenous to the

household, conditional on residing within a particular billing district. The household has no

ability to manipulate the assignment of billing frequency short of moving across billing cycle

boundaries. Within the study period, billing districts were transitioned according to the

timing in Table 1. The first district transitioned received its first monthly bill on December

1, 2011. Figure 1 presents a series of maps of the districts that switched to monthly billing.

The entire service area is represented by the union of all billing districts outlined in bold. In

Figure 2, I present a magnified view of billing district boundaries within neighborhoods. This

figure illustrates that the district boundaries are designated in such a manner that neighbors

could be consuming water concurrently, but may be billed at different frequencies. Thus,

this design allows for the exploitation of geographic discontinuities to minimize the concern

that selection into treatment is nonrandom and that unobserved changes in neighborhood

characteristics might bias results.

1A copy of the mailer distributed to customers is included as Figure A.2 in the appendix.
2In Wichman (2015), I present regression results that predict the likelihood of a billing district to be

transitioned from bi-monthly to monthly billing based on observable household characteristics. In particular,
I consider the first district to transition in a probit model, as well as the sequential transition of routes in an
ordered probit framework. The former suggests that lot size, household size, and the number of bedrooms
increased the probability of the pilot group being chose, while the square footage of the home and number
of bathrooms decreased the probability. There is weak evidence that smaller water bills are correlated with
initial treatment. Further, the ordered probit reveals that the age of a home is weakly negatively correlated
with the order of transition, while all other observable factors are insignificant. These results help to establish
conditional exogeneity of treatment.
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2.1 Data

The primary data used in this analysis are residential billing records for Durham water cus-

tomers. Included in these data are (bi-)monthly water and sewer use, fixed service fees and

volumetric consumption rates, the address of the customer, billing district, and whether a

customer has her water bill automatically deducted from a bank account. The billing data

were matched by address with geocoded tax assessor data, containing structural character-

istics of the home, obtained from Durham County. Each matched residential address was

spatially linked to its 2010 Census block as well as billing district polygons provided by

Durham. For each household, I determine the nearest billing district, as well as the linear

distance from the centroid of the tax parcel to its nearest district boundary. Key demo-

graphic variables from the 2010 SF1 Census are matched to each household’s Census block.

Residential premises that changed water billing accounts within the timeframe of the study

are removed from the sample—this strategy reduces the impact of renters, who may not pay

water bills explicitly. Further, this avoids econometric identification problems when relying

on variation within a household over time.3

The final sample consists of roughly 59,000 individual household accounts with water bills

from February 2009 through June 2015, which implies slightly more than 2 million unique

consumption observations. Summary statistics for variables of interest are presented in Table

1. The first four columns decompose household characteristics and details on water use by

the year in which households transitioned from bi-monthly to monthly billing. Summary

statistics in the final column are for the entire sample. All of the treatment waves are

relatively similar across demographic, water use, and housing characteristics, and similar to

the sample mean, with the exception of households that transitioned in 2013 along several

dimensions. For this group, home value (a proxy for wealth) is notably larger than that of

all other groups. Further, these households tend to have larger homes on larger lots, and are

more likely to be located in a Census block with fewer renters and a higher proportion of

white residents. Water consumption, however, is statistically similar across all groups. For

the typical household in the sample, the mean assessed home value is approximately $186,000

with a standard deviation of $126,000. The average home is on one-third of an acre, 34 years

old, roughly 1,800 square feet, with three bedrooms. Within the final sample, households

reside in Census blocks in which approximately one-quarter of all homes are renter-occupied.

Fifty-three percent of the sample is white and the average household size is between two and

three people. Average bi-monthly water bills for all time periods in the sample are $85 for

3Renters may cause problems for identification if they do not receive a water utility bill. However, this
effect would tend to pull any estimated treatment effect towards zero so long as renters did not change their
behavior at the exact time of the change in billing frequency.
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consumption of 985 cubic feet of water.

Further, I include weather covariates obtained from the North Carolina State Climate

Office. The key variables used are mean maximum temperature for a 60-day rolling window

that is backwards-looking from the date each individual bill was mailed. The sum of rainfall

(in inches) for the same 60-day time window is also calculated.

A final caveat is that under bi-monthly billing, water bills are mailed on a staggered

schedule that smooths administrative work and meter reading throughout the year. As

an example, a billing district on the odd cycle may receive a bi-monthly bill in March for

consumption in January and February. Contrarily, a billing district on the even cycle would

receive a bill in April for consumption in February and March. Rather than dealing with

these two groups independently, I pool households prior to treatment into two-month cycles

corresponding to the date in which bills are received, but allow for each district to retain

accurate measures of weather fluctuations within their use period. After treatment, I use

monthly consumption in the month in which it occurred. For both billing regimes, I divide

the total consumption within the period by the number of days in the billing cycle so that the

primary outcome of interest is daily average consumption regardless of whether households

are being billed monthly or bi-monthly.

2.2 Prices

At the same time households were switched to monthly billing, fixed water and sewer ser-

vice fees were halved and volumetric block cut-offs in the tiered water rate structure were

halved as well. Marginal volumetric rates for consumption remained constant across billing

frequencies. Sewer usage has a constant marginal price. Figure A.3 illustrates the change in

the rate structure for monthly and bimonthly billing. The solid line is the increasing block

rate structure used to calculate bimonthly bills, while the dotted line is used to calculate

monthly bills for the 2012-2013 fiscal year. As shown, the marginal prices for consumption

do not change between monthly and bimonthly rate structures, but the quantity blocks for

consumption are halved for each price tier.

This structure was adopted to ensure that customers transitioned to monthly billing were

charged at the same rate as bimonthly customers. Thus, for the same level of consumption,

two monthly bills are equivalent to one bimonthly bill in dollar amounts. This is a mechanical

interpretation, however, and the change in the block endpoints could affect consumer behav-

ior. To see this, consider an extreme version of the average water customer. She is extreme

because she consumes no water in the first month and 10 ccf in the second month. Under bi-

monthly billing, her total bill is $82.12. Under monthly billing her first monthly bill is $12.05
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(i.e., fixed service fees only) and her second bill is $74.80, totaling $86.85 for the two-month

period, an increase in expenditures on water. The difference in the billed amounts for the

same quantity consumed is a result of the nonlinear rate schedule: highly variable month-

to-month consumption results in larger inframarginal price changes. The percent change in

the average price of water for this extreme customer is +5.6%. If we assume a common

elasticity of −0.3, we would expect this change in average price to reduce consumption by

1.6% (or, 2.4% if we look only at changes in average volumetric prices). These percentages

tend towards zero as the monthly consumption levels converge. This exercise shows that the

nonlinear rate schedule can have an effect on price signals, although they work in work in

the opposite direction as the treatments effects identified below. Further, the likelihood of

this type of behavior being representative for Durham water customers is virtually zero.

Of course, the extent to which this bias exists also depends on whether consumers know

and use the tiered rate information to make decisions. Because the water utility bill in-

cludes no information about the block rate structure (see Figure A.1), it is unlikely that

consumers are responding to changes in the rate structure itself.4 Further, Wichman (2014)

and Ito (2014) show that water and electricity customers, respectively, exhibit behavior that

corresponds to changes in average price, or the total bill, when facing increasing block rates.

2.3 Meters

Durham installed automated meter reading (AMR) technology prior to switching billing

districts to monthly billing. Based on conversations with utility representatives, the order

of districts was chosen for new meter installation based on geographic convenience (see, e.g.,

Panel B of Figure 1), difficulty of reading meters, district size, and working around the odd-

even billing schedule. Once a district reached 90% saturation with new meters, the district

was ready to be switched to monthly billing.

The new meters allow for consumption levels to be obtained via radio frequency such

that the costs to read meters manually were reduced. Meters were installed for each billing

district and, once the installations were completed, the entire district was transitioned to

monthly billing. In the water industry, meters may fail to register all water that passes

through them over time. Meter replacement offers an avenue through which consumption

could increase mechanically; that is, the treatment effect may also include the increase in

accuracy of the meter. This “mechanical efficiency” improvement depends on the degree of

4As further evidence, I present the empirical density of consumption in Figure A.4 in the appendix. In
this figure, there is no evidence of bunching at the block rate cut-offs for consumption in the calendar year
prior to treatment.

7



inaccuracy of the meter being replaced, water pressure, appropriate meter sizing, and a host

of other factors that are, at present, unobservable. Although manufacturers often tout the

benefits of improved meter reading accuracy, there is mixed evidence of this effect in the

industry and engineering literature (see, e.g., Boyle et al., 2013; Lovely, 2010; Barfuss et al.,

2011; Criminisi et al., 2009; Arregui et al., 2006).

Many of the frequently cited benefits of smarter water meters for utilities are captured

by Ritchie (2011), “...utilities across the US are proving that AMI can drive down costs in

unaccounted water, plus other important areas, such as energy, labor, conservation, capital

investment, forecasting, billing, and customer service.” Unaccounted-for water is a common

metric of lost revenue. A case study in Leesburg, VA, found that system-wide meter replace-

ment helped reduce unaccounted-for water from upwards of 23 percent down to less than 5

percent (Shoemaker, 2009). They also found that the older meters were under-registering

water consumption for households. But age of the meter is not the only factor that matters

for efficiency. In McKinney, TX, a utility-wide installation of new AMR meters revealed that

many of the newly installed residential meters were undersized for their purpose and only

registering a fraction of actual water use (Dobbie et al., 2003). Further, Britton et al. (2013)

suggest that “there is still limited understanding of meter accuracy when considering the

starting or minimum registrations levels (Qs), therefore water with a flow rate that is below

the Qs flow rate of the meter cannot be measured.” All of this is to suggest that although

meter accuracy potentially changed for Durham households within the study period, there

is not a clear direction of this bias, nor is the potential bias a static issue.

Further, the City of Durham’s primary goals for installing AMR meters included reduced

payment delinquency, earlier leak detection, and reduced administrative costs from manual

meter reading. No mention of improved meter accuracy was cited in publicly available

documents, which arguably would be a boon in city council deliberations for a revenue-

conscious municipal water utility.5

3 Empirical strategy

The empirical approach I take in this paper identifies demand responses to an increase

in billing frequency using quasi-experimental techniques. I regard the transition from bi-

monthly to monthly billing as the treatment, whereas households that, at any point in time,

are billed on a bi-monthly basis serve as the comparison group.

5See, e.g., https://durhamnc.gov/ArchiveCenter/ViewFile/Item/1203 and https://durhamnc.

gov/2983/Water-Meter-Replacement-Automated-Meter-.

8

https://durhamnc.gov/ArchiveCenter/ViewFile/Item/1203
https://durhamnc.gov/2983/Water-Meter-Replacement-Automated-Meter-
https://durhamnc.gov/2983/Water-Meter-Replacement-Automated-Meter-


3.1 Event study

To explore any differential trends in the treatment group that may invalidate the identifica-

tion strategy, I use an event study that plots coefficients from the following regression,

wijt =
S=30∑
S=−12

γS1[∆ijt = S]ijt +W ′
tγW +X ′iγX + λt + αj + εijt. (1)

where wijt is average daily water consumption in cubic feet (cf) for household i in district j

at time t. ∆ijt denotes the distance, in time, from when a billing district was transitioned to

monthly billing, with ∆ijt = 0 denoting the period in which monthly billing was enacted. Ct

is a vector of weather controls, Xi is a vector of household characteristics, and λt and αj are

period-of-sample and route fixed effects. The set of γS coefficients and 95 percent confidence

intervals are plotted for 12 months before before and 30 months after treatment in Figure 3.

Standard errors are clustered at the billing district level.

As shown in Figure 3, the time fixed effects appear to control reasonably well for season-

ality, although there is evidence of slight seasonal patterns prior to treatment. At the time

of transition to monthly billing, there is a dramatic increase in consumption that remains

throughout the duration of the study period. The results of this exercise provide sugges-

tive evidence that there is a significant, long-term trend in consumption attributable to the

change in billing frequency. These estimates, however, do not control for the nonrandom

selection of billing districts or for unobserved household heterogeneity.

3.2 Empirical models

To improve upon the estimates in Equation 1, I specify a difference-in-difference framework

in which households billed on a monthly basis are treated, whereas households who are

billed bi-monthly are comparisons. Due to the staggered introduction of monthly billing

for different billing districts, the coefficient on the treatment indicator BFjt is identified by

changes in consumption for treated households relative to similar comparison households.

The model takes the form,

wijt = βBFjt +W ′
tγW +X ′iγX + λt + εijt. (2)

where BFjt equals one if district j is billed monthly in period t, and zero otherwise. All

other variables are defined as in Equation 1, except that Xi includes household fixed effects

in some specifications.
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With conditional exogeneity of treatment assignment and common trends between treat-

ment and comparison groups, γB will capture the causal effect of changes in billing frequency.

Common trends in the outcome variable for treatment and comparison groups are presented

in Figure 4. As shown, the consumption patterns for two sets of treatment and comparison

groups are nearly identical leading up to the date at which the first district to transition

received its first monthly bill. Thus, the estimate of β from Equation 2 provides an aver-

age treatment effect (ATE) of the change in billing frequency on water consumption. See

Wichman (2015) for further discussion.

Conditional exogeneity of treatment, however, is more difficult to establish. One could

make this assumption by noting the fact that billing districts were chosen to transition to

monthly billing somewhat arbitrarily. Even arbitrary choice allows for nonrandom differences

across billing districts among covariates that may affect the consumption response to changes

in billing frequency. So, I adopt a border discontinuity model that exploits the fact that

neighbors could be consuming water at different billing frequencies (see Figure 1). This

approach is effectively a regression discontinuity design across the border of billing districts

that jointly exploits the flexibility of the panel data in controlling for unobserved household

heterogeneity.

I estimate Equation 2 for households within 2000, 1000, and 500 feet of the border

discontinuity. The estimate of β is thus a local average treatment effect (LATE) in the

neighborhood of the discontinuity. This spatial panel RD design avoids concern of non-

random selection into treatment. Further, this approach controls for unobserved changes

in neighborhood characteristics over time. In Figure 5, I present mean average daily con-

sumption in 40-foot bins as a function of distance to the border boundary for three time

periods. The first panel shows no change in consumption across the boundary. The second

and third, representing the following three years after the change in billing frequency, show

a discontinuous increase in consumption that can plausibly be attributed to the change in

billing frequency.

Of course, the primary threat to identification of a LATE is that nothing else is changing

at the border discontinuity. In Figure 6, I present observable household characteristics that

influence water consumption. For each panel, mean statistics for each household are plotted

as a function of its distance to the border discontinuity for the first 9 districts to transition.

For the majority of observed covariates, the distribution moves smoothly through the border

discontinuity. For the percentage of white residents within a Census block, however, there

is a shift in the trend near the discontinuity. It is, however, difficult to come up with a

hypothesis that would explain how race (conditional on other covariates in Xi) affects water

use. As such, these distribution tests provide evidence that a regression discontinuity design
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is appropriate in this scenario.

3.3 Dynamic treatment effects

In addition to estimating parameters that summarize the overall treatment effect, I adopt an

approach to estimate the dynamics of the treatment effect itself. This specification mimics

the intuition of an event study, but provides a stronger causal foundation because it is based

upon the spatial panel RD design. Specifically, I re-estimate Equation 2 to obtain a set of

“dynamic” LATEs by decomposing the local average treatment effect as follows,

30∑
S=0

βS · 1(BFjt−S).

where BFjt−D is a set of lagged treatment indicators for D periods after the initial transition

to monthly billing. The the series of βS estimates provides a time profile of the ATE that

I refer to as the dynamic local average treatment effect (D-LATE). I estimate 30 periods of

βS coefficients after initial treatment, which provides a profile of monthly treatment effects

for two-and-a-half years after initial treatment.

3.4 Heterogeneity

In addition to looking at the aggregate dynamic ATEs, I estimate Equation 2 on several

subsamples of the data to explore heterogeneity in dynamic treatment effects. Specifically,

I focus on quartiles of three observable characteristics of consumers. First, I segregate

households into quartiles of historical consumption patterns. To construct these quartiles, I

use mean water consumption before treatment occurred in 2009 and 2010. Next, I explore

assessed value of the home as a proxy for household wealth. Lastly, I explore lot size, in

acres, as it is often used as a proxy for preferences for outdoor water use (Wichman et al.,

2016).

To explore whether the change in billing frequency is salient to the customer (Sexton,

2015), I estimate models for subsamples of customers who are enrolled in automatic bill

payment throughout the transition to monthly billing.
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4 Empirical results and discussion

In this section I briefly discuss the empirical findings and implications of the models outlined

above.

First, in Table 2, I present average treatment effects corresponding to Equation 2 with

various household and Census block-level controls. In columns (2) through (4), I shrink

the window around the border discontinuity progressively. The primary coefficient of inter-

est remains robust to this stratification and suggests an increase in water consumption of

approximately 2.1 cubic feet per day, which is similar to the estimates in Figure 3.

Next, I present the same set of models, but I add household fixed effects. The preferred

estimates are in the last column of Table 3. As shown, the preferred LATE is approximatelyca

cubic feet per day, which translates to a 5.3 percent increase in consumption (relative to a

pre-treatment mean of 12 cf per day) in response to the switch to monthly billing. The

large change in the estimates between OLS and panel models suggests that controlling for

unobservable household heterogeneity plays a more important role than nonrandom selection

into treatment (as indicated by moving from the Column (1) to (4) in each of the results

tables).

Although these ATE estimates are virtually identical to that of Wichman (2015), I note

that the present analysis uses a different outcome variable, an additional year of data than

what was used previously, five additional billing districts have been transitioned to monthly

billing within this sample, and there are changes in the length of time post-transition for each

billing district. As such, there are numerous ways in which the treatment effect may have

been altered. Regardless, similar results are produced and they encourage the exploration

of longer-run impacts.

What is notable about these estimates is that a simple change in billing frequency, a

non-price attribute, can induce changes in behavior that are commensurate with the percent

change in consumption due to targeted behavioral interventions in water demand (Ferraro

and Price, 2013; Brent et al., 2015). Of course, the estimates presented here work in the

opposite expected direction of conservation initiatives and the natural experiment here was

not intended to affect consumption. What is lacking from the estimates in Table 3, however,

is how these treatment effects play out over time.

To examine the dynamics of the treatment effects, I plot dynamic LATE coefficients in

Figure 7. As shown, the estimated coefficient is plotted as a function of its distance in

time from initial treatment. The figure can be interpreted as follows. The first point is the

treatment effect in period 0—that is, the immediate effect of a household receiving its first

monthly bill. The second point is the treatment effect in period 1, one month after initial
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treatment; and so on. Conceptually, the long-run average treatment effect from the dynamic

models is a weighted average of the dynamic treatment effects presented in Figure 7.

The dynamic LATEs in Figure 7 suggest that there is an immediate increase in response

to the first monthly bill, and this effect declines over the course of 12–16 months, at which

point the treatment effect becomes insignificant. This result is consistent with the notion

that consumers may see a small billed amount and react to that initial information treatment.

But, as they become accustomed to the lower billed amounts, they adjust to the new billing

regime over time.

To shed light on the mechanism driving this dynamic response to monthly billing, I repeat

the exercise above for subsets of the full sample. Specifically, I plot dynamic treatment

effect coefficients for different quartiles of historical consumption. In Figure 8, the smallest

consumptive group is shown to exhibit the most immediate uptick in consumption, and

maintains the largest treatment effects (in percentage terms) over the 30 months following

initial treatment.

I perform the same exercise for household wealth, as proxied by the assessed value of the

home gathered from county tax assessor data. The dynamic treatment effects are presented

in Figure 9. Unlike the consumptive heterogeneity, there is very little difference among

households residing in homes of different value. The dynamic treatment effects track the

profile of the pooled D-LATE estimates. Recent studies (e.g., Jack and Smith (2015)) suggest

that increasing the frequency of billing, via prepaid metering, for electricity may help to

avoid backing up against credit constraints with lumpy billing practices. I find no evidence

consistent with the hypothesis that more frequent bills, and thus smaller billed amounts,

allow constrained consumers to smooth income over the year.

I also explore the size of a consumer’s lot to determine whether increases in outdoor

water use are driving the dynamic increase in consumption. In Figure 10, I plot dynamic

treatment coefficients for different quartiles of lot sizes. Previous literature in water demand

and conservation has used lot size as a proxy for irrigation intensity, with larger lots indicating

a greater willingness to pay for outdoor water use. I find that the dynamic treatment effect

is most pronounced initially for households on lots in the largest three quartiles of the

distribution. The first quartile displays a dynamic LATE that is lower than that of the other

quartiles over the first 12 months after treatment. This result is consistent with insight from

Wichman et al. (2016) who show important heterogeneity for larger lots that can be targeted

by outdoor watering restrictions.

Finally, I examine the effect of automatic bill payment on the primary empirical results

for two reasons: (1) to explore differential response among consumers who are more likely

to be inattentive, and (2) to assess the meter accuracy argument from a different angle. In
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Table 4, I show that the static effect of changes in billing frequency is statistically zero. This

provides an empirical test for whether customers who are inattentive to prices and water bills

observe the change in billing frequency (Sexton, 2015). As this result pertains to rationally

inattentive consumers (Sallee, 2014), those who enrolled in automatic bill payment made

an active choice to be inattentive in this setting, whereas the other customers did not. To

the extent that ABP proxies for rational inattentiveness, the divergence in behavior of these

types of consumers suggests that the average non-ABP consumer is aware of the change in

billing frequency and adjusts her behavior accordingly. This result instills confidence that the

preferred specifications are indeed identifying a response to the change in billing frequency.

The lack of a positive effect also lends credence to the notion that the preferred ATE in

previous models is not an artifact of mechanical efficiency of the new meters.

Further, I explore the dynamic response to monthly billing for automatic bill payment

customers in Figure 11. As shown, there is an immediate uptick in consumption following

the switch to monthly billing, although it is about 1 cf/day less than that of “attentive”

consumers. The dynamic ABP effect follows a similar profile to the overall effect, but it

dissipates quicker and becomes largely insignificant after 4 months, with some noise in the

trend. Overall, this results suggests a dampened reaction to the switch to monthly billing

that is more heavily concentrated in the first few months of treatment, whereas attentive

consumers adjust to the change over the course of a year. Due to selection into ABP, however,

generalizing these results should be done with caution.

5 Discussion

Overall, there are several important takeaways from this research. First, nonprice treat-

ments, such as changes in the frequency of billing information, can induce behavior similar

in magnitude to social comparison treatments. The effect identified here, however, is oppo-

site in sign. Further, the dynamics in the treatment effect are similar to that of nonprice

policies—that is, information treatments alter behavior in the short run, but they are not

permanent (Allcott and Rogers, 2014; Bernedo et al., 2014; Ito et al., 2015). This result

suggests that increased information frequency (or, a treatment that alters the subjective

perception of the total billed amount) induces behavior that is not consistent with a simple

change in price. Because of this distinction, it is possible that price policies have more attrac-

tive benefits in the long run than do information treatments for water conservation. Within

rigid institutions that govern dynamic water prices and the need for short-run reductions

in demand during drought, however, nonprice policies can be effective demand-management
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tools to reduce consumption. The sign of the LATE in this paper highlights the danger of

simply using more information as a conservation tool. To improve the predictive power of

our economic models in intermittent choice settings, we need to account for the fact that

inattentive consumers are just that: inattentive.

In this paper, I exploit a natural experiment in which residential water customers were

switched from bi-monthly to monthly billing to assess the dynamic response to increases

in billing frequency. I find that customers increase water consumption, but the estimated

average treatment effect masks important dynamic responses observed for 12–18 months after

the initial treatment. I estimate dynamic treatment effects that weaken over time and differ

based on historical consumption patterns and preferences for outdoor water use. Notably,

little heterogeneity is found among wealth groups in the dynamic response to more frequent

billing, which suggests that more frequent billing does not aid in smoothing expenditures.

This research contributes to the general literature on consumer behavior under inat-

tention, with implications for the role of informative interventions as policy instruments.

More specifically, I highlight the importance of understanding the mechanism through which

consumers assimilate and use information to make decisions in intermittent choice settings.

Lastly, this research provides a cautionary tale for electric and water utility managers seeking

to use more frequent information as a policy tool.
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Table 1: Demographic and water use characteristics among households that transi-
tioned to monthly billing at different points in time

Summary statistics for households
that received first monthly bill in:

2011-2012 2013 2014a 2014b Total
Tax assessor records:
Assessed value of home 161,248 226,557 179,055 169,726 185,998

(103,633) (162,985) (80,776) (123,219) (126,453)
Lot size (acres) 0.32 0.39 0.25 0.31 0.32

(0.43) (0.53) (0.41) (0.31) (0.43)
Age of home (years since 2014) 33.81 29.72 28.73 44.88 34.47

(22.85) (19.98) (24.63) (28.02) (25.1)
Size of home (square feet) 1639.5 2005.2 1777.6 1708.9 1793.3

(766.08) (893.5) (641.24) (780.04) (808.98)
Number of bedrooms 3.02 3.25 3.11 3.04 3.10

(0.73) (0.76) (0.72) (0.80) (0.78)
Number of bathrooms 1.77 2.05 1.94 1.74 1.87

(0.61) (0.65) (0.57) (0.70) (0.65)
2010 Census (block):
Percent renters 0.27 0.17 0.23 0.33 0.25

(0.23) (0.20) (0.23) (0.28) (0.24)
Percent white 0.46 0.61 0.50 0.47 0.53

(0.28) (0.31) (0.29) (0.37) (0.31)
Household size 2.52 2.50 2.51 2.48 2.48

(0.48) (0.46) (0.52) (0.54) (0.51)
Billing records:
Total bimonthly water bill 81.96 91.21 89.02 84.13 84.62

($/ccf) (36.54) (44.76) (41.99) (38.91) (39.67)
Full sample bimonthly 977.46 1033.81 986.89 978.50 985.24

water use (cf) (520.35) (551.99) (489.66) (542.51) (528.03)
2009-2010 bimonthly 997.83 1066.01 1004.7 1014.96 1018.17

water use (cf) (600.74) (651.73) (578.80) (635.39) (622.24)

Number of households: 18,042 15,415 10,589 14,215 58,965
Number of billing districts: 5 4 3 5 17

Date of first monthly bill:

12/1/11 1/29/13 1/30/14 6/23/14
7/13/12 2/12/13 4/18/14 7/23/14
10/25/12 3/30/13 5/15/14 8/5/14
11/14/12 11/22/13 9/4/14
12/29/12 9/5/14

Note: Means and standard deviations (in parentheses) are presented. The first billing district
to transition to monthly billing occurred on December 1, 2011, so this district is grouped jointly
with districts that transitioned in 2012. The 2010 Census (SF1) data is assigned to the Census
block in which the household resides. 2009-2010 bimonthly water use is used to provide a sense
of average consumption among each group prior to the transition to monthly billing (2009-2010
refers to consumption that occurred in the full calendar years of 2009 and 2010).
2014a and 2014b refer to the first and second wave of billing transitions in 2014.
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Table 2: Baseline OLS model results

(1) (2) (3) (4)
<2000 ft <1000 ft <500 ft

Full from from from
Sample discontinuity discontinuity discontinuity

BF 2.341*** 2.203*** 2.128*** 2.096***
(0.371) (0.364) (0.329) (0.277)

totassessvalue 0.013 0.010 0.003 0.009
(0.009) (0.010) (0.007) (0.011)

mapacres 0.097 0.163* 0.221 0.085
(0.067) (0.078) (0.169) (0.186)

sqft 0.090*** 0.088*** 0.101*** 0.102***
(0.016) (0.017) (0.012) (0.015)

pctrent 0.198 0.202 0.057 -0.185
(0.203) (0.245) (0.335) (0.421)

pctwhite -0.213 -0.153 -0.147 -0.391
(0.182) (0.178) (0.203) (0.361)

houseage -0.009*** -0.011*** -0.010*** -0.008**
(0.003) (0.003) (0.003) (0.003)

hhsize 1.581*** 1.521*** 1.487*** 1.368***
(0.142) (0.148) (0.154) (0.185)

maxtemp 0.012 0.015 0.019* 0.020*
(0.009) (0.009) (0.010) (0.010)

rain -0.005 -0.002 -0.007 -0.013
(0.020) (0.019) (0.019) (0.019)

Observations 2,072,422 1,633,025 998,916 537,788
R-squared 0.094 0.093 0.089 0.085

Notes: All models include household and month-of-sample fixed effects. Weather covari-
ates included. Robust standard errors clustered at the billing district level in parentheses.
Dependent variable is daily water consumption in cubic feet (cf). Constant term omitted.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Baseline panel model results

(1) (2) (3) (4)
<2000 ft <1000 ft <500 ft

Full from from from
Sample discontinuity discontinuity discontinuity

BF 0.685** 0.581** 0.555** 0.541**
(0.239) (0.237) (0.223) (0.212)

Observations 2,086,488 1,642,061 1,003,800 539,601
R-squared 0.030 0.030 0.029 0.028
Number of households 58,780 46,496 28,535 15,412

Notes: All models include household and month-of-sample fixed effects. Weather covariates in-
cluded. Robust standard errors clustered at the billing district level in parentheses. Dependent
variable is daily water consumption in cubic feet (cf). Constant term omitted. *** p<0.01, **
p<0.05, * p<0.1.

Table 4: Panel results for sub-
set of automatic bill payment cus-
tomers

(1)
<500 ft

from
discontinuity

BF 0.083
(0.215)

Observations 26,604
R-squared 0.020
Number of households 677

Notes: Model includes household and month-
of-sample fixed effects. Weather covariates in-
cluded. Robust standard errors clustered at the
billing district level in parentheses. Dependent
variable is daily water consumption in cubic feet
(cf). Constant term omitted. *** p<0.01, **
p<0.05, * p<0.1.
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(a) Monthly billing by end of 2011 (b) Monthly billing by end of 2012

(c) Monthly billing by end of 2013 (d) Monthly billing by end of sample

Figure 1: Billing districts transitioned to monthly billing over time.
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Figure 2: Snapshot of billing group boundaries within neighborhoods.
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Figure 3: Event study for changes in billing frequency. Dots represent coefficient estimates as a
function of the distance in time from treatment. Error bars represent 95% confidence intervals.
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Figure 4: Mean bimonthly consumption over time for households that transitioned to monthly
billing and households that never transitioned to monthly billing.
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Figure 5: Mean consumption as a function of distance from the billing district boundary for the
year before transition to monthly billing, the year after the transiton, and the 2nd and 3rd years
after the transition
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Figure 6: Mean structural and socioeconomic characteristics as a function of distance from the
billing district boundary
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Figure 7: Dynamic average treatment effects for changes in billing frequency. The trend
shows how the average treatment effect evolves over time.

Figure 8: Dynamic average treatment effects for changes in billing frequency conditional
on consumption heterogeneity. The trend shows how the average treatment effect evolves
over time for each quartile.
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Figure 9: Dynamic average treatment effects for changes in billing frequency conditional
on “wealth” heterogeneity. The trend shows how the average treatment effect evolves over
time for each quartile.

Figure 10: Dynamic average treatment effects for changes in billing frequency conditional
on acreage heterogeneity. The trend shows how the average treatment effect evolves over
time for each quartile.
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Figure 11: Dynamic average treatment effects for changes in billing frequency for automatic
bill payment customers. The trend shows how the average treatment effect evolves over time.
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A Appendix A

Figure A.1: Example of first monthly water bill for the City of Durham Water Utility.
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Good Things Are Happening In Durham 

 

 
  

 
September 4, 2012 
 
Customer Name 
Customer Address 
Customer City, State Zip 
 
Service Address: 
 
Dear Valued Customer: 
 
The City of Durham is transitioning to billing for water/sewer services on a monthly 
basis.  For the past several years you have been receiving bills every other month.  
Starting in October, you will begin receiving a bill monthly. 
 
This will benefit you by reducing the amount you need to pay at one time, and by 
shortening the period when leaks or other problems may be discovered. 
 
Another change is that the City will no longer be sending out “friendly reminder” 
letters if your payment is not received prior to the due date.  In that case, you will see 
a past due balance in bold letters at the top of the bill.  If your payment for any prior 
month is not received by the due date for that bill, your water service may be 
disconnected even though your current bill is not yet due. 
 
The City will still send disconnection letters and provide telephone reminders prior to 
disconnection for nonpayment.  To make sure you receive these notices, please notify 
the City at once if you have any change in your mailing address or phone number. 
 
If you have any questions or concerns, please call  or e-mail 

.  We appreciate this opportunity to improve our 
service to you. 
 
Sincerely, 
 

Department of Water Management 
City of Durham 

CITY OF DURHAM 
DEPARTMENT OF WATER MANAGEMENT  
101 CITY HALL PLAZA • DURHAM, NC 27701 
919-560-4381 • FAX 919-560-4479 

 

Figure A.2: Example of monthly billing notification received at least six weeks before
transition to monthly billing.
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Figure A.3: Increasing block rate structure before and after transition for monthly and
bi-monthly billing. As shown, quantity blocks are halved for monthly billing relative to
bi-monthly billing while marginal prices remain constant within the rate structure.
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Figure A.4: Empirical density of bi-monthly water consumption with block rate cut-offs.
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