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Abstract

This paper examines the effect of agent belief heterogeneity on long-run risk models.

We find that for the long-run risk explanation to adequately explain the equity premium,

it is not sufficient for long-run risk to merely exist : agents must all agree that it exists.
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quickly, even if their belief is wrong. This drives the equity premium down below the

level observed in the data.
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1 Introduction

The Bansal-Yaron long-run risk model (Bansal and Yaron (2004)) has emerged as perhaps

the premier consumption-based asset pricing model. It can generate many of the features of

aggregate stock prices that have long been considered puzzles. The model generates a high

equity premium by combining two mechanisms – investors with a taste for early resolution of

uncertainty, and very persistent shocks to the growth rate of consumption. This persistence is

hard to detect in the data, but its presence is enough to replicate many features of the stock

market.

For long-run risk to generate a high equity premium, the level of persistence must be very

close to a unit root. The amount of persistence is very hard to measure, and arguments

for a range of estimates have appeared in the literature (Bansal, Kiku, and Yaron (2016),

Schorfheide, Song, and Yaron (2016) or Grammig and Schaub (2014)). This suggests that

there is considerable scope for disagreement over the true value.

In this paper, we consider the consequences if agents themselves disagree. Our results are

quite surprising. We find that when agents disagree about the level of persistence that the

agent who is more skeptical about long-run risk—who believes in that the level of persistence

is lower—dominates the economy. This happens even if the beliefs of the skeptical agent are

wrong. More surprisingly, the skeptical agent will dominate the economy in a short amount of

time even for small belief differences. In turn, this drives the equity premium below the level

seen in the data. Thus, for long-run risk to work as an explanation of the equity premium, it

is not enough for long-run to exist—all agents in the economy must also believe in it.

This may seem surprising because it is well established that agents with constant relative

risk aversion (CRRA), in the long run the agent with correct beliefs (Sandroni (2000), Blume

and Easley (2006), Yan (2008)) always grows to dominate the economy. This analysis breaks

down once you allow agents to have preferences for early or late resolution of risk (Borovička

(2015)), which allows agents with incorrect beliefs to survive and even drive out agents with

incorrect beliefs.

The disagreements can be very small. Disagreement could for example arise because

investors use different estimation techniques or data samples to estimate the long-run risk

component in consumption (see for example the estimation studies of Bansal, Kiku, and

Yaron (2016), Schorfheide, Song, and Yaron (2016) or Grammig and Schaub (2014) who all

report different estimates for the persistence of the long-run risk component) or because an

investor does not believe in long-run risks at all. Kroenecke (2016), for example, argues

that the persistence in consumption arises solely from the filtering procedures and that the

unfiltered consumption series is in fact not persistent at all.
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We find that investors who are more skeptical about long-run risks accumulate wealth on

average. Even if they initially hold only a very small consumption share, their share increases

dramatically after short time periods. As small differences in the beliefs about the long-run

risk process have large effects on asset prices, we report a drop in the equity premium by 2%

within a century for our baseline calibration. For slightly larger belief differences the drop

increases to more than 3.5%. This result holds true irrespectively of whether the skeptical

investors have the correct beliefs or not (if they also have the correct beliefs, the drop in the

premium is even more severe).

While the difference in beliefs poses a puzzle for the explanation of expected returns, it

significantly helps in explaining the volatility figures. Beeler and Campbell (2012) show that

the long-run risk models of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)

can not explain the large volatility of the price-dividend ratio observed in the data (a value

of 0.45 compared to 0.18 in the models). Differences in the beliefs about long-run risk can

generate large shifts in the wealth distributions. This in turn increases the volatility of the

price-dividend ratio as the impact of the different agents on asset prices varies over time. We

find that even a small difference can generate significant excess volatility close to the values

observed in the data. This result also gives a model-based explanation for the empirical

findings of Carlin, Longstaff, and Matoba (2014) who use data from the mortgage-backed

security market and show that higher disagreement leads to higher volatility. They also

show that, as in our model, disagreement is time-varying and correlated with macroeconomic

variables.

Related Literature The study of agent belief heterogeneity begins with the market se-

lection hypothesis of Alchian (1950) and Friedman (1953). In analogy with natural selection,

the market selection hypothesis states that agents with systematically wrong beliefs will even-

tually be driven out of the market. The influence of agent heterogeneity on market outcomes

under the standard assumption of discounted expected utility is well-understood, and consis-

tent with market selection. Sandroni (2000) and Blume and Easley (2006) find strong support

for this hypothesis under the assumption of time separable preferences in an economy without

growth. Yan (2008) and Cvitanić, Jouini, Malamud, and Napp (2012) analyze the survival of

investors in a continuous-time framework where there are not only differences in the beliefs

but also potentially differences in the utility parameters of the investors. They show that it is

always the investor with the lowest survival index1 who survives in the long-run. However, the

’long-run’ can be very long and hence, irrational investors can have significant effects on asset

prices even under the assumption of discounted expected utility. David (2008) considers a

1Yan (2008) shows that the survival index increases with the belief distortion, risk aversion and subjective time
discount rate of the investor.
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similar model setup, where both agents have distorted estimates about the mean growth rate

of the economy and shows, that—as agents with lower risk aversion undertake more aggressive

trading strategies—the equity premium increases, the lower the risk aversion. Chen, Joslin,

and Tran (2012) analyze how differences in the beliefs about the probability of disasters affect

asset prices. They show that, even if there is only a small fraction of investors who are opti-

mistic about disasters, they sell insurance for the disaster states and hence, eliminate most of

the risk premium associated with disaster risk.

For non-expected utility equilibrium outcomes change fundamentally. However, there has

been comparably little research in this area, as solving such models is anything but trivial.2

Borovička (2015) shows that agents with fundamentally wrong beliefs can survive or even

dominate in an economy with recursive utility.3 So the inferences about market selection and

equilibrium outcomes fundamentally differ under the assumption of general recursive utility

compared to the special case of standard time separable preferences. While Borovička (2015)

concentrates on the special case of i.i.d. consumption growth, Branger, Dumitrescu, Ivanova,

and Schlag (2011) generalize the results to a model with long-run risks as a state variable.

However, most papers with heterogeneous investors and recursive preferences only consider

an i.i.d. process for consumption growth. For example Gârleanu and Panageas (2015) analyze

the influence of heterogeneity in the preference parameters on asset prices in a two agent OLG

economy. Roche (2011) considers a model where the heterogeneous investors can only invest

in a stock but there is no risk-free bond. Hence, as there is no savings trade-off, the impact

of recursive preferences on equilibrium outcomes will be quite different.

Exceptions that relax the i.i.d. assumptions are for example the papers by Branger, Kon-

ermann, and Schlag (2015) or Collin-Dufresne, Johannes, and Lochstoer (2016). Both papers

reexamine the influence of belief differences about disaster risk with Epstein-Zin instead of

CRRA preferences as in Chen, Joslin, and Tran (2012). Branger, Konermann, and Schlag

(2015) provide evidence that the influence of investors with more optimistic beliefs about

disasters is less profound, when the disaster occurs to the growth rate of consumption and

2Dumas, Uppal, and Wang (2000) show how to solve continuous time asset pricing models with heterogeneous
investors and recursive utility. In particular, they show how to characterize the equilibrium by a single value
function instead of one value function for each agent. Bhamra and Uppal (2014) show how to solve models
with heterogeneous investors that have habit preferences. Related to the method we use in this paper is
the approach described in Collin-Dufresne, Johannes, and Lochstoer (2015), who show how to solve discrete
time economies with heterogeneous investors and recursive preferences. They derive similar expressions for
the characterization of the equilibrium by equation the intertemporal marginal rates of substitutions of the
investors. However, their numerical methods to solve for the equilibrium functions numerically fundamentally
differs from our approach. While they transform the infinite horizon economy to a finite horizon and solve the
model by a backward recursion, we propose a solution method based on projection methods to actually solve
the infinite horizon problem.

3Borovička (2015) describes four channels that affect equilibrium outcomes. We examine these channels in more
detail in Section 4.1 and show how they affect equilibrium outcomes in the asset pricing model considered in
this paper.
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investors have recursive preferences. Collin-Dufresne, Johannes, and Lochstoer (2016) make

a similar claim but for a different reason. They show that, if the investors can learn about

the probability of disaster and if the investors have recursive preferences, the impact of the

optimistic investor on asset prices decreases. Optimists are uncertain about the probability

of disaster and hence will provide less insurance to the pessimistic investors. Collin-Dufresne,

Johannes, and Lochstoer (2016) use an OLG model with two generations to model optimists

and pessimists. Hence—in contrast to the results in this study—the consumption shares of

the investors are fixed and the increasing influence of optimistic agents due to the risk aversion

channel over time are not captured.

Also related to our work is the paper by Andrei, Carlin, and Hasler (2016). While in

this paper, the agents agree to disagree about the long-run risks in the economy, Andrei,

Carlin, and Hasler (2016) provide an explanation how this disagreement can arise from model

uncertainty as market participants calibrate their models differently. They consider a setup

with and find that uncertainty about long-run risks can explain many stylized facts of stock

return volatilities like large volatilities during recessions and booms and persistent volatility

clustering.

The paper is organized as follows. In Section 2.1 we describe the general equilibrium for

the asset pricing model with heterogeneous investors and recursive preferences. A detailed

derivation of the equilibrium is shown in Appendix A.1. Section 3 describes the long-run risk

model with 2 investors and different beliefs about long-run risks. Results are shown in Section

4.

2 Theoretical Framework

2.1 The Heterogeneous Agents Economy

We consider a standard infinite-horizon discrete-time endowment economy, with a finite num-

ber of agents. We introduce a general setup for heterogenous agents. Agents can differ on

both their utility functions and their subjective beliefs.

We restrict our attention to the complete-market setting, which allows us to reformulate

the problem as a social planner’s problem. Here we run into one critical difference with the

representative agent problem – the social planner’s problem is not recursive. This defeats

most of the techniques to solving for equilibrium in an infinite-horizon model.

This failure of recursiveness occurs for essentially economic reasons – even if aggregate

consumption does not contain a trend, the individual consumption allocations can. For ex-

ample, Blume and Easley (2006) show that if agents have different beliefs, then the individual
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consumption of an agent with wrong beliefs will trend down over time. Yan (2008) shows that

in an economy with growth and agents with differing risk aversion, the relative consumption

of the more risk-averse agent tends downward.

Our theoretical contribution is to present a reformulation of the first-order conditions for

equilibrium that is recursive. This reformulation involves introducing new state variables.

Interestingly, the state variables have a clear interpretation in terms of time-varying weights

in the social planner’s problem. These weights capture the relative trend in an agent’s con-

sumption – an agent that has a declining share of consumption will have a decling weight.

We introduce some notation to state our result. Let t ∈ {0, 1, . . . , }, and let yt be the exoge-

nous time t variable that determines the current state of the economy. Aggregate consumption

is a purely a function of the exogenous state, C(yt).

The economy is populated by a finite number of infinitely-lived agents, H. Let H = 1 . . . H

and H− = 2 . . . H. Agents choose individual consumption at time t as a function of the history

of the exogenous state, yt, where yt = (y0, ..., yt). Note that as will become clear, we cannot

make individual consumption a function of the exogeneous state alone, even if yt is a Markov

process. Let Ch
t = Ch(yt) be the individual consumption for agent h.

Under market clearing,
H∑
h=1

Ch(yt) = C(yt). (1)

Agents have subjective beliefs about the probability distribution of the exogenous state

variable. We denote the expectation operator for agent h at time t as Eh
t . Each agent has

recursive utility. Let {Ch}t = {Ch(yt), Ch(yt+1), . . .} denote the consumption stream of agent

h from time t forward. Utility for agent h at time t, Uh({Ch}t), is specified by an aggregator

F h(c, x) and a certainty-equivalence function G(x),

Uh({Ch}t) = F h
(
Ch(yt), Rh

t

[
Uh({Ch}t+1)

])
(2)

where

Rh
t [xt+1] = G−1

h (Eh
t [Gh(xt+1)]). (3)

We assume F h and Gh are both differentiable. This framework includes both Epstein-Zin

utility, and discounted expected utility, for the appropriate choices of F h and Gh. We consider

Epstein-Zin utility in section 2.2 and discounted expected utility in section 2.3.

To simplify the analysis, we ensure that agents never choose zero consumption in any state

of the world. We do so by imposing an Inada condition on F h: F1(c, x)→∞ as c→ 0.

We also impose one condition on the agents’ beliefs. Let P h
t,t+1 be the subjective conditional

distribution of yt+1 given yt, and Pt,t+1 be the true conditional distribution. We assume that
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each agent’s expectation can be written in terms of the true distribution as

Eh
t [x] = Et

[
x

dPh
t,t+1

dPt,t+1

]
,

for some measurable function dP h
t,t+1/dPt,t+1. (In mathematical terms, every agent’s condi-

tional distribution is absolutely continuous with respect to the true distribution. Then by

the Radon-Nikodym theorem such a dP h
t,t+1/dPt,t+1 must exist. Accordingly, dP h

t,t+1/dPt,t+1 is

known as the Radon-Nikodym derivative of P h
t,t+1 with respect to dPt,t+1.)

To solve for equilibrium, we assume that markets are complete and reformulate as a social

welfare problem. The social planner solves a weighted sum of the individual agent’s utilities

at t = 0. Let λ = {λ1, . . . , λH}, and {C}0 = {{C1}0, . . . , {CH}0}. Then the social planner

problem is

SP ({C}0,λ) =
H∑
h=1

λhUh
(
{Ch}0

)
. (4)

Theorem 1. Let {C}0 be the solution to the social planner’s problem for weights λ. For each

agent, let

Uh
t = Uh({Ch}t),

where Uh is evaluated at the optimum.

A solution to the social planner’s problem 4 solves the following first-order conditions for

each state t,

λht F
h
1 (Ch

t , R
h
t

[
Uh
t+1

]
) = λ1

tF
1
1 (C1

t , R
1
t

[
U1
t+1

]
) (5)

where the λht satisfy

λh0 = λh, (6)

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, t > 0, h ∈ {2, . . . H}, (7)

where Πh
t is given by

Πh
t+1 = F h

2

(
Ch
t , R

h
t [Uh

t+1]
)
·

G′h(U
h
t+1)

G′h(R
h
t [Uh

t+1])

dPh
t,t+1

dPt,t+1

. (8)

The proof can be found in Appendix A.1.

The λht are only determined up to a scalar factor each period, so we are free to choose a

normalization. For numerical purposes, a normalization so that the sum of the λht equal one

every period is convenient. From a conceptual point of view, an attractive choice is to let
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λ1
t+1 = Π1

t+1λ
1
t , because then for all h, λht+1 = Πh

t+1λ
h
t

If F h is additively separable, then the allocation of consumption in 5 depends only on

the current value for the λht . Additive separability is the most common case in applications.

Discounted expected utility is additively separable, while Epstein-Zin can be transformed to

be so. In this particular case, the Negishi weights and individual agent consumption are closely

linked. We can sharpen this to an asymptotic statement that relates the limit for λht and the

limit for consumption.

Theorem 2. Suppose that F h is additively separable all h, and that aggregate endowment is

bounded above a constant C and below by the constant C. If λjt/λ
i
t → ∞, then Ci

t → 0. If

Ci
t → 0, then for at least one agent j, lim supt λ

j
t/λ

i
t =∞.

Note that lim supt λj/λi is a random variable – the outcome can depend on the history.

This result generalizes a similar result in Blume and Easley (2006). We extend this result to

a growth economy in the next section.

2.2 Growth Economy with Epstein-Zin Preferences

We specialize the results of the previous section to the case where agents have Epstein-Zin

preferences (Epstein and Zin (1989) and Weil (1989)), and aggregate consumption is expressed

in terms of growth rates.

If agent h has Epstein-Zin preferences, then

F h(c, x) =
[
(1− δh)cρh + δhxρ

h
]1/ρh

(9)

Gh(x) = xα
h

(10)

In this case, the equations are all homogeneous, so we can divide through by aggregate

consumption, and express the equilibrium allocations in terms of individual consumption

shares, sht = Ch
t /Ct. Market clearing implies that

H∑
h=1

sht = 1. (11)

Let V h
t be agent h’s value function. We also normalize this by aggregate consumption,

vht = V h
t /Ct. Let ct = logCt. The normalized value functions satisfy the following fixed-point

equation,

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H. (12)
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where Rh
t (x) =

(
Eh
t

[
xα

h
]) 1

αh

. The parameter δh is the discount factor, ρh = 1 − 1
ψh

deter-

mines the intertemporal elasticity of substitution ψh and αh = 1− γh determines the relative

risk aversion γh of agent h.

To accompany the normalized value function we introduce a normalized Negishi weight,

λht =
λht

(vht )ρh−1
. In Appendix A.1 we show that the consumption share sht of agent h is given by

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1. (13)

Below we consider the case where agents all have identical ρh, so the aggregate consumption

term cancels out.

Finally, the equations for λht simplify to

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht+1

λ1
t+1

(14)

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , , h ∈ H−. (15)

This gives us H − 1 nonlinear equations for equilibrium. In our numerical calculation, we

complete the system by requiring that
∑
λht = 1. If we solve for the weights, λht given by

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

Additional EZ-Term

, h ∈ H−.
(16)

Unlike the discounted expected utility case, the dynamics of the weights λht depend on

the value functions (12) that in turn depend on the consumption decisions (13). Hence, to

compute the equilibrium we need to jointly solve equations (12), (13), (11) and (16). As

there are—to the best of our knowledge—no closed-form solutions for the general model, we

present in Appendix A.4 a solution approach based on projection methods to compute for the

equilibrium functions numerically.

In this setting, we can derive a considerable improvement over theorem 2 – the limiting

behavior for λht drives the limiting behavior for an agent’s share of aggregate consumption.

This requires no assumptions on aggregate consumption, only that agents have utility in the

Epstein-Zin family.

Theorem 3. If λjt/λ
i
t → ∞, then sit → 0. If sit → 0, then for at least one agent j,
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lim supt λ
j
t/λ

i
t =∞.

2.3 Discounted Expected Utility

The bulk of our paper is concerned with Epstein-Zin preferences, which requires numerical

solution, but in this section we consider classical discounted expected utility, which allows

precise theorems. In this special case, the problem simplifies considerably, which allows us to

replicate several results in the literature. This allow us to reproduce several classical results

(Blume and Easley (2006), Yan (2008)) in our framework.

Discounted expected utility correspond to the case where F h and Gh take the special forms

F h(c, x) = uh(c) + δhx

Gh(x) = x.

where uh is agent h’s one-period utility function. uh must satisfy the Inada condition,

(uh)′(c)→∞ as c→ 0. Then

F h
1 (C, x) = uh

′
(c)

F h
2 (C, x) = δh

G′h(x) = 1,

and equation 5 becomes

λht u
h′(Ch

t ) = λ1
tu

1′(C1
t ) (17)

and equation 8 simplifies dramatically to

Πh
t+1 = δh

dP h
t,t+1

dPt,t+1

. (18)

In the special case where agents have correct beliefs and equal δh, this specializes to Lemma

1 from Judd, Kubler, and Schmedders (2003).

Theorem 4. If aggregate consumption is a Markov process, and all agent have identical δh,

then individual agent consumptions are also Markov.

Once we allow the agents to have different δh or different beliefs, individual consumption

can have a trend, even if the aggregate consumption is Markov (Sandroni (2000), Blume and

Easley (2006)). This leads to a genuinely new phenomenon – asymptotically, an agent can

become a negligible part of the economy. This phenomenon is known as “survival” – agents

survive if they still matters in the long run.
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There are competing definitions of survival in the literature. Sandroni (2000) defines

survival in terms of wealth, while Blume and Easley (2006) uses consumption. The Blume

and Easley (2006) definition fits naturally into our framework. Those authors define agent i

as surviving if lim supt→∞C
i
t > 0, and vanishing if limCi

t → 0. If (uh)′(C) → ∞ as C → 0

then for an economy with aggregate consumption bounded above and below, theorem 2 links

these directly to the behavior of the λht .

In turn, the behavior of λht is governed by the Πh
t . In the special case of discounted

expected utility, Πh
t only depends on the characteristics of the agents, their utility function

and subjective beliefs, and not on any endogenous variables such as individual consumption.

This means that an agent’s tendency to survive is an intrinsic property of the agent. If Πi
t

tends to be higher than Πj
t , then in some sense agent i tends to survive relative to j. (This

does not hold in the general case, since Πh
i depends on the agent’s value function, which

depends on equilibrium consumption allocations, which in turn depends on the other agents.)

If we assume that consumption is i.i.d., then we can give a succinct expression for this

intuition, in terms of the Kullback-Leibler divergence, D(P‖Q). (For two probability distribu-

tions, P , and Q, the expectation of log dP/dQ with respect to P is known as Kullback-Leibler

divergence, or the relative entropy.)

Theorem 5. Suppose that consumption is i.i.d., with distribution Q. Suppose agents agree

that consumption is i.i.d., and their subjective distribution is Qi. Then

lim
T→∞

1

T

T∑
t=1

log Πh
t = log δh −D(Qh‖Q)

by the law of large numbers, so

lim
T→∞

1

T

(
λiT − λ

j
T

)
=
(
log δi −D(Qi‖Q)

)
−
(
log δj −D(Qj‖Q)

)
.

The previous theorem is in Blume and Easley (2006), which refers to log δh − D(Qh‖Q)

as the survival index of the agent. Agents with higher survival indices will survive relative to

agents with lower survival indices.

For general dependent processes, some general results are possible (following Blume and

Easley (2006).)

Theorem 6. 1. If agents have identical beliefs but differ on δ, then only the agent with the

highest δ survives.

2. Suppose agents have identical utility functions, but differing beliefs. If one agent has

correct beliefs, then only agents with correct beliefs survive.
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The previous results depend on the unrealistic assumption that consumption is bounded

for all time. For CRRA utility, we can exploit the homogeneity of the utility function to

generalize to arbitrary consumption processes. In this case, the appropriate measure of survival

is in terms of individual share of aggregate consumption, rather than the individual level of

consumption. We say that an agent survives if lim supt→∞ s
i
t > 0.

CRRA is a special case of Epstein-Zin where αh = ρh, so we can specialize the results in

the previous section. In that case, the equation for Πh
t+1 simplifies to

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

.

Again each agent’s Πh
t only depends on exogenous variables, not endogenous, which makes an

agent’s tendency to survive an intrinsic quality of the agent.

In the i.i.d consumption growth case, we have a result similar to Theorem 5.

Theorem 7. Suppose that consumption growth is i.i.d., with distribution Q. Suppose agents

agree that consumption growth is i.i.d., and their subjective distribution is Qi. Let µ be the

expected log growth rate of consumption under Q. Then

lim
T→∞

T∑
t=1

log Πh
t = log δh + ρhµ−D(Qh‖Q)

and thus

lim
T→∞

1

T

(
λiT − λ

j
T

)
=
(
log δi + ρiµ−D(Qi‖Q)

)
−
(
log δj + ρjµ−D(Qj‖Q)

)
.

Similar to the no-growth case, log δh + ρhµ − D(Qh‖Q) serves as a survival index – the

agent with the highest survival index is the one who survives. One interesting wrinkle is that

the survival results depend on the sign of the expected log groth rate of the economy. If it

is positive, the agent with the highest ρh survives, everything else being equal, while if it is

negative the lowest ρh survives.

A form of the previous theorem can be found in Yan (2008) in continuous time with geo-

metric Brownian motion. If we assume that log consumption growth is normally distributed,

and each agent knows the true variance, σ2, but believes the mean to be µi, then the survival

index specializes to log δh + ρhµ− 1/2(µi−µ)2/σ2, which is essentially identical to Yan. (Yan

consider the negative of this quantity, so the agent with the lowest survival index survives.)

Again for general dependent processes, some general results are possible. We need to

account for whether the economy is a growth economy in the general case. We use the simple

criterion that Et(Ct+1) ≥ Ct.
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Theorem 8. 1. If agents have identical beliefs and ρh but differ on δh, then only the agent

with the highest δh survives.

2. Suppose that agents have identical beliefs and identical δh, but differ on ρh. Also assume

that Et(Ct+1) ≥ Ct. then the agent with the highest ρh survives.

3. Suppose agents have identical CRRA utility parameters, but differing beliefs. If one

agent has correct beliefs, then that agent always survives.

Items 1 and 3 of the theorem are the natural generalizations of Blume and Easley (2006)

to the growth setting, but item 2 for general dependent processes is new.

3 A Long-Run Risk Model with Differences in Belief

We consider a standard long-run risk model as in Bansal and Yaron (2004) where log aggregate

consumption growth ∆ct+1 and log aggregate dividend growth ∆dt+1 are given by

∆ct+1 = µc + xt + σηc,t+1

xt+1 = ρxxt + φxσηx,t+1

∆dt+1 = µd + Φxt + φdσηd,t+1 + φd,cσηc,t+1.

(19)

xt captures the long-run variation in the mean of consumption and dividend growth and

ηc,t+1, ηx,t+1 and ηd,t+1 are i.i.d. normal shocks. A key feature of long-run risk models are

highly persistent shifts in the growth rate of consumption. Together with a preference for

the early resolution of risks (γ > 1
ψ

) investors will dislike shocks in xt and require a large

premium for bearing those risks. Hence, the results in the long-run risk literature rely on a

highly persistent state process xt, or put differently ρx needs to be very close one (0.979 in

the original calibration of Bansal and Yaron (2004)).

In this paper we analyze the equilibrium implications of differences in beliefs about the

long-run risk process. As xt is not directly observable from the data, it is reasonable to

assume that investors disagree—at least slightly—about the data generating process of xt.

However, the majority of investors needs to belief in a highly persistent long-run risk process,

as otherwise asset prices would be determined by the investors not (or less) believing in long-

run risks and hence, the model outcomes would not be consistent with the data. Therefore,

we assume that a majority investors beliefs in a highly persistent long-run risk process and

address the question what happens if there is a small fraction of investors who beliefs in less

persistent shocks, or put differently, who is skeptical about long-run risks.
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For this we consider a setup with H = 2 agents where the first agent believes that ρx

is close to one while the second agent believes that ρx is slightly smaller. We do not make

a specific assumption about which agent has the correct beliefs and we show in our results,

that for small belief differences, the true distribution has a negligible influence on equilibrium

outcomes. We denote by ρhx the belief of agent h about ρx. As xt+1 conditional on time t

information is normally distributed with mean ρxxt and variance φ2
xσ

2, dPh
t,t+1 is given by

dPh
t,t+1 =

1√
2πφxσ

exp

(
−1

2

(
xt+1 − ρhxxt

φxσ

)2
)
dxt+1.

We can think of this model as an extension of Borovička (2015) who considers a two agent

setup with different beliefs about the mean growth rate of the economy. For Epstein-Zin

preferences, Borovička (2015) shows that the agent with the more optimistic beliefs (a larger

belief about the mean growth rate) will dominate the economy in the long-run as long as the

risk aversion in the economy is large enough. This result stands in stark contrast to the case

of CRRA preferences, where the agent with the more correct beliefs will always dominate

independent of the choice of preference parameters (see for example Yan (2008)).4

In the model with different beliefs about the persistence of long-run risks, the beliefs

about the mean growth rate of the economy change over time. Consider the example where

ρx = ρ1
x > ρ2

x. The time t expectation of agent h about the mean growth rate is given by

ρhxxt. This implies that for a negative realization of xt, ρ
2
xxt > ρ1

xxt and hence the second

agent is more optimistic. For xt > 0, we have that ρ2
xxt < ρ1

xxt and hence the first agent is

more optimistic about the mean growth rate (the second agent is more pessimistic). Hence we

can think of this model as a time-varying version of Borovička (2015) where the beliefs about

the growth rate change over time. In Section 4.1 we analyze in detail, how the time variation

induced by the long-run risks influences equilibrium outcomes.

Most long-run risk models calibrate the underlying cash-flow parameters in order to match

asset pricing data. For example Bansal and Yaron (2004) use a value of ρx = 0.979, Bansal,

Kiku, and Yaron (2012) use ρx = 0.975, and Drechsler and Yaron (2011) assume ρx = 0.976.

They obtain high values of ρx by construction, as otherwise the models would not be consistent

with the high equity premium observed in the data. The study by Bansal, Kiku, and Yaron

(2016) uses cash flow and asset pricing data to estimate the long-run risk model parameters

and reports a value of ρx ≈ 0.98 with a standard error of 0.01. For our baseline calibration we

assume that the first agent beliefs that ρ1
x = 0.985. This implies an equity premium of 6.53%

for the representative agent economy, which is consistent with the value observed in the data.

4We assume that the only difference between the agents is their beliefs about the state processes and they share
the same utility parameter specifications.
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The second agent has slightly smaller beliefs about the persistence with ρ2
x = 0.975. Both

values lie well within the confidence interval provided by Bansal, Kiku, and Yaron (2016).

The effect of a small change in ρx has large effects on asset prices. For ρx = 0.975 the equity

premium decreases to 2.76%. For ρx = 0.95 it already collapses to 0.26% and the influence of

xt on asset prices is negligible. Therefore, we consider a second set of results where agent 1

beliefs that ρ1
x = 0.985 and agent two beliefs that ρ2

x = 0.95.

Except from the differences in beliefs, the two agents are the same and share the properties

of the representative investor of Bansal and Yaron (2004) with ψ1 = ψ2 = 1.5, γ1 = γ2 = 10,

δ1 = δ2 = 0.998. For the remaining parameters of the state processes (19) we also use the

calibration from Bansal and Yaron (2004) with µc = µd = 0.0015, σ = 0.0078,Φ = 3, φd =

4.5, φd,c = 0 and φx = 0.044. (This calibration will be used for all results in this paper, unless

otherwise stated.)

4 Results

We begin with the analysis of the equilibrium dynamics of the consumption shares of the

individual agents. Figure 1 shows the consumption share of the second, skeptical agent (ρ2
x =

0.975) over time for different initial shares s2
0 = {0.01, 0.05, 0.5}. We report the median, 5%

and 95% quantile paths using 1000 samples each consisting of 500 years of simulated data. To

minimize the influence of the initial value of xt, we initialize each simulated path by running

a burn-in period of 1000 years before using the output. The left panel shows the results for

ρx = ρ1
x = 0.985 (the first agent has correct beliefs) and the right panel for (ρx = ρ2

x = 0.975

(the second agent has correct beliefs).

We observe that in all cases the consumption share of the skeptical agent 2 strongly

increases over time. While it occurs faster if agent 2 has the correct beliefs (right panel) the

increase is almost as strong if agent 1 has the correct beliefs (left panel). Hence, given a small

difference in the beliefs, independent of whether agent 1 or agent 2 has the correct beliefs,

in the long-run the agent with the lower beliefs about ρx will dominate the economy. Most

importantly, even if the economy is initially almost entirely populated by agent 1 (s2
0 = 0.01),

his consumption share decreases sharply and he loses significant shares in a short amount of

time. Table 1 reports the corresponding median consumption shares for different time horizons

for s2
0 = {0.01, 0.05, 0.5}. We observe that for s2

0 = 0.01 the consumption share of agent 1 has

decreased by 27% after 100 years, 63% after 200 years and almost 93% after 500 years.

Figure 2 shows the corresponding results for ρ2
x = 0.95 and an initial allocation of s2

0 = 0.01.

The left panel shows the results for ρx = 0.985 (agent 1 has the correct beliefs). We observe

that the initial increase in the consumption share is stronger, compared to the case with
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ρ2
x = 0.975 but the median share does not become as large in the long-run (the median

shares of the second agent after 100, 200 and 500 years are given by 32.59%, 37.82% and

40.19% respectively). Also the 5% and 95% quantile paths show that there is significantly

more variation in the shares. The figure also shows a sample paths (grey line). We observe

that there are large drops and recoveries in the consumption share. The large drops occur,

because the second agent assigns ’wrong’ probabilities to extreme states and hence bets on

states, that turn out to occur less often in the long-run. This effect works in favor of agent

2, once he has the correct beliefs and therefore he is more likely to bet on the correct states.

This case is shown in the right panel (ρx = ρ2
x = 0.95) where we indeed observe that the

increase in the consumption share is much stronger and the large drops in consumption are

not present anymore. The recoveries in the left panel occur because the second agent is less

afraid of long-run risks and hence, sells insurance against this risks to the first agent. As the

first agent beliefs that ρ1
x = 0.985, he strongly dislikes shocks in xt and is willing to pay a

high premium to insure against these risks. So there are two interacting effects that affect

equilibrium outcomes. We later provide a detailed analysis of the two effects is in Section 4.1.

What does the change in the consumption shares imply for asset prices and aggregate

financial market statistics? We assume that the economy is initially almost entirely populated

by agent 1 to generate a high equity premium consistent with the data. But the consumption

share of the first agent decreases rapidly and so will his influence on asset prices. In Table 2

we show the annualized equity premium in the years 0, 100, 200 and 500 assuming an initial

share of s2
0 = 0.01.5 The left panel shows the results for ρ2

x = 0.975 and agent 1 has the

correct beliefs. For the initial allocation s2
t = 0.01, where agent 1 dominates the economy,

the aggregate risk premium is 6.42%. A value very close to the representative agent economy

populated only by the first agent which implies a premium of 6.53%. After 100 years, when the

share of agent 1 has decreased from 99% to 72%, the premium decreases to 4.59%. Hence, even

if agent 1 holds almost all wealth initially, which implies a high risk premium, the premium

will drop by almost 2% within a century. After 200 years, the premium decreases by almost

3% and after 500 years it is almost at the level of the representative agent economy populated

only by agent 2 with a premium of 2.89%. The right panel shows the corresponding results

for ρ2
x = 0.95. We observe that the sharp increase in the consumption share decreases the

premium from 5.42% initially to 1.84% after 100 years—a decrease of more than 3.5% in a

century. In Table 4 in Appendix B we show the corresponding results for the case where agent

2 has the correct beliefs instead of agent 1. We observe that the drop in the equity premium is

5Note that Table 2 does not report the premium starting with a given value for s20 and simulating a long
time series, but we report the average premium for a given consumption share s2t = s̄. Hence, we take the
expectation over all xt while keeping the consumption share constant at s̄. The population moment for 500
years of simulated data is given in Table 3.
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even more severe. Hence, the difference in beliefs brings down the equity premium well below

the levels observed in the data even if the agent who is skeptical about long-run risks does

not have the correct beliefs.

Table 3 shows the population moments from the 1000 sample paths starting with an initial

share of s2
0 = 0.01. We report the mean and the standard deviation of the annualized log price-

dividend ratio, the annualized equity premium and the risk-free return. Results are shown for

the case where agent 1 has the correct beliefs. In addition to the two agent economy, the table

also shows the two representative agent cases where the economy is populated only by agent

1 (s2
t = 0) or agent 2 (s2

t = 1). While the mean statistics of the two agent economy lie well

within the bands of the two representative agent economies and depict the wealth shift towards

the second agent, we observe that the volatility of the log price-dividend ratio is significantly

larger for the two agent economy compared to both representative agent economies. This

effect is especially strong for ρ2
x = 0.95 where the volatility is 0.48 compared to 0.25 and 0.14

for the two representative agent economics.

Beeler and Campbell (2012) argue that one of the major issues of the long-run risk models

of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) is that they significantly

underestimate the volatility of the price-dividend ratio (they report values of 0.18 compared

to 0.45 observed in the financial market data). Our results show, that differences in beliefs

can potentially resolve this puzzle leading to a significant increase in the volatility figures.

The strong increase can be explained by the large variation in the consumption shares for the

case of ρ2
x = 0.95 (see Figure 2). Variation in the shares implies that the influence of each

agent on asset prices varies of time. As both agents have significantly different price-dividend

ratios in the representative agent economies (a mean value of 2.68 for agent 1 compared to

6.27 for agent 2), the variation in the consumption shares generates excess volatility for the

price-dividend ratio.

To sum up, if there are different investors that all believe in long-run risks but use slightly

different estimates for the long-run risk process, the investor who is more skeptical about ρx

will dominate the economy. The investor with a larger belief about ρx will rapidly lose wealth,

independent of whether his beliefs are correct or not. But a large ρx is needed to obtain

a high risk premium in the long-run risk model. Even if the investor with the high belief

about ρx almost entirely populates the economy initially, his consumption share decreases so

fast, that the equity premium in the economy drops tremendously in a short amount of time.

Hence, with differences in beliefs—that are likely present for real-world investors—there must

be mechanisms that shift wealth to the investors with the higher beliefs about ρx as otherwise

risk premia in the economy collapse even in small samples. On the other hand, different

beliefs about ρx introduce variations in the consumption shares, which can in turn increase
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the volatility of the price-dividend ratio and brings the values closer to the level observed in

the data.

Table 1: Consumption Shares: Summary Statistics

ρx = 0.985 ρx = 0.975

Years 100 200 500 100 200 500

s2
0 = 0.5 0.7429 0.8515 0.9628 0.8904 0.9683 0.9995

(0.0500) (0.0481) (0.0212) (0.0118) (0.0072) (4.2e-5)

s2
0 = 0.05 0.4507 0.7143 0.9393 0.5140 0.7947 0.9787

(0.0589) (0.0636) (0.0293) (0.0301) (0.0252) (0.0049)

s2
0 = 0.01 0.2824 0.6376 0.9278 0.3404 0.7249 0.9732

(0.0509) (0.0681) (0.0326) (0.0294) (0.0293) (0.0060)

The table shows the median and the standard deviation (in parenthesis) of the consumption share
of agent 2 using 1000 samples each consisting of 500 years of simulated data. Agent 2 believes that
ρ2
x = 0.975 and agent 1 believes that ρ1

x = 0.985. Summary Statistics are shown for different initial
consumption shares (s2

0 = {0.01, 0.05, 0.5}) and different time periods T = {100, 200, 500} years. The
left panel depicts the case where the pessimistic agent has the right beliefs about the long-run risk
process (ρx = 0.985) and in the right panel, the optimistic agent has the right beliefs (ρx = 0.975).

4.1 Optimal Consumption Decisions and Equilibrium Dynamics

In this section we analyze the different effects that determine the equilibrium allocations

of the agents. For this purpose we set our results in relation to the findings of Borovička

(2015). Borovička (2015) considers a simple two-agent economy with identical preferences

of Epstein-Zin type and different beliefs about the mean growth rate of the economy.6 Our

model can be viewed as a generalized version of his model with time-varying beliefs about the

mean growth rate in the economy. Borovička (2015) describes four channels through which

the individual choices influence long-run equilibrium dynamics: the speculative bias channel,

the risk premium channel, the savings channel and the speculative volatility channel. The

speculative volatility channel only influences equilibrium outcomes for small degrees of risk

aversion and has therefore a negligible influence for the results obtained in this paper. In

the following we argue, that the speculative bias channel and the risk premium channel can

explain the equilibrium dynamics of the long-run risk model considered in the previous section,

while the savings channel is rather irrelevant for our model specification.

6In Borovička (2015) there is no long-run risk and log aggregate consumption growth is normally distributed.

18



Figure 1: Consumption Shares: Simulations
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The figure shows the median, 5% and 95% quantile paths of the consumption share of agent 2 for
1000 samples each consisting of 500 years of simulated data. Agent 2 believes that ρ2

x = 0.975
and agent 1 believes that ρ1

x = 0.985. Results are shown for different initial consumption shares
(s2

0 = {0.01, 0.05, 0.5}). The left panel depicts the case where the pessimistic agent has the right
beliefs about the long-run risk process (ρx = 0.985) and in the right panel, the optimistic agent has
the right beliefs (ρx = 0.975).
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Figure 2: Consumption Shares for ρ2
x = 0.95: Simulations
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The figure shows the median, 5% and 95% quantile paths of the consumption share of agent 2 for
1000 samples each consisting of 500 years of simulated data as well as a sample path (grey line).
Agent 2 believes that ρ2

x = 0.95 and agent 1 believes that ρ1
x = 0.985. Results are shown for an initial

consumption share of s2
0 = 0.01. The left panel depicts the case where the pessimistic agent has the

right beliefs about the long-run risk process (ρx = 0.985) and in the right panel, the optimistic agent
has the right beliefs (ρx = 0.95).

Table 2: Equity Premium for Different Consumption Shares

ρ2
x = 0.975 ρ2

x = 0.95

s2
t Equity Premium s2

t Equity Premium

Rep. Agent 1 0 6.53 0 6.53

0 Years 0.01 6.42 0.01 5.42
100 Years 0.2824 4.59 0.3259 1.84
200 Years 0.6376 3.49 0.3782 1.64
500 Years 0.9278 2.89 0.4019 1.56

Rep. Agent 2 1 2.76 1 0.26

The table shows the annualized equity premium for a specific consumption share s2
t = s̄. The premium

is reported for the equilibrium allocations after 0, 100, 200 and 500 years of simulated data assuming
an initial share of s2

0 = 0.01 (see Table 1). Agent 1 has the correct beliefs with ρ1
x = ρx = 0.985. The

left panel depicts the case for ρ2
x = 0.975 and the right panel for ρ2

x = 0.95.
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Table 3: Annualized Asset Pricing Moments

E (pt − dt) σ (pt − dt) E
(
rmt − r

f
t

)
E
(
rft

)
σ (rmt ) σ

(
rft

)
ρ2
x = 0.975

s2
t = 0 2.68 0.25 6.53 2.32 17.84 1.50

Two Agent Economy 3.10 0.29 3.98 2.58 17.19 1.51
s2
t = 1 3.29 0.20 2.83 2.71 16.55 1.53

ρ2
x = 0.95

s2
t = 0 2.68 0.25 6.53 2.32 17.84 1.50

Two Agent Economy 3.60 0.48 2.63 2.47 20.37 1.58
s2
t = 1 6.27 0.14 0.26 2.93 14.80 1.52

The table shows the population moments from 1000 samples each containing 500 years of simulated
data starting with an initial share of s2

0 = 0.01. It shows the mean and the standard deviation of the
annualized log price-dividend ratio, the annualized market over the risk-free return and the risk-free
return. Agent 1 has the correct beliefs with ρ1

x = ρx = 0.985. The left panel depicts the case for
ρ2
x = 0.975 and the right panel for ρ2

x = 0.95. All returns are shown in percent, so a value of 1.5 is a
1.5% annualized figure.

4.1.1 The Speculative Bias Channel

The speculative bias channel solely determines equilibrium outcomes in the special case of

CRRA preferences. The investors assign different subjective probabilities to future states and

buy assets that pay off in states they belief are more likely. Hence, for CRRA utility the

agent with the more correct beliefs will accumulate wealth in the long-run, as the investor

with the more distorted beliefs bets on states that have a vanishing probability under the true

probability measure.

To demonstrate how the speculative bias channel affects equilibrium outcomes in the long-

run risk model with different beliefs, we first consider the special case of CRRA preferences.

In Figure 3 we show the change in the Pareto weights λ2
t+1− λ2

t as a function of λ2
t . The blue

and yellow lines depict the cases of a negative shock (xt+1 − ρxxt = −0.001) and a positive

shock (xt+1−ρxxt = 0.001) in xt+1 respectively. The red line shows the average over all shocks.

From left to right, the results are shown for for xt = −0.008, xt = −0.0013, xt = 0, xt = 0.0013

and xt = 0.008. Agent 1 has the correct beliefs ρ1
x = ρx = 0.985 while agent 2 believes that

ρ2
x = 0.975.

The second agent believes that xt converges faster to its long-run mean compared to agent

1. Hence, if xt < 0 he assigns larger probabilities to large xt+1 and bets on those states as

ρ2
xxt > ρ1

xxt (left panels). The opposite holds true for xt > 0. So agent 2 loses wealth if xt

is low and the shock in xt is negative (blue line in the left figures) or if xt is high and the
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shock in xt is also high (yellow line in the right figures). Taking the average over all future

realization of xt+1 (red line), agent 2 loses wealth on average (red line). For xt = 0 both

agents share the same beliefs (ρ2
xxt = ρ1

xxt) and hence they assign the same probabilities to

xt+1 (red and blue line coincide with the red line). As agent 2 loses wealth on average for all

xt except for xt = 0, he will eventually diminish in the long-run. Note that the influence of

the speculative bias channel becomes stronger, the larger |xt|, as the belief dispersion grows

the more xt deviates from its unconditional mean E(xt) = 0.

The speculative bias channel can be directly related to the two sets of results in Section

4. Results are shown for the case where agent 1 has the correct beliefs (ρx = ρ1
x) as well as

for the case where agent 2 has the correct beliefs (ρx = ρ2
x). In the first case, the speculative

bias channel works in favor of agent 1, while in the second case, it works in favor of agent 2.

Hence, in case two, the consumption share of agent 2 increases more rapidly, as the speculative

bias channel works in his favor (see Figure 1).

The speculative bias channel entirely determines the equilibrium in the standard case of

CRRA preferences. For general Epstein-Zin preferences equilibrium dynamics become more

complex. In the following we first describe the general effects of the risk premium channel

and then analyze how the two effects interact and influence equilibrium outcomes.

Figure 3: Changes in the Wealth-Distribution—The CRRA Case
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1

x and CRRA preferences.
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4.1.2 The Risk Premium Channel

With Epstein-Zin preferences, risk-return trade-offs are not the same among agents and opti-

mistic agents are willing to take larger risks (see Borovička (2015)). So if risk aversion, and

hence risk premia, are high, more optimistic agents will profit from investing in a portfolio

with a higher average return. Borovička (2015) calls this the risk premium channel. In our

model we can’t specify optimists or pessimists as the beliefs about the mean growth rate

change over time (see Section 3). We rather refer to agents who are skeptical about long-run

risks, that is, they have a lower belief about ρx. Skepticism implies that the agent is less afraid

of long-run risks. An investor who beliefs in a large ρx is afraid of large negative realizations of

xt and would therefore like buy insurance against these risks. As risk premia in the economy

are high due to the combination of high risk aversion, the preference of early resolution of

risks and highly persistent shocks to xt, the premium the investor is willing to pay, will be

high. The skeptical investor on the other hand, will be willing to provide this insurance as he

is less afraid of the long-run risks.

In Figures 4 we demonstrate how this channel affects model outcomes. It shows the

corresponding results to Figure 3 but for the general case of Epstein-Zin preferences. First,

consider the center panel where xt = 0 and hence the speculative bias channel has no effect

on equilibrium outcomes (see Figure 3). Agent 1 is more afraid of negative shocks to xt+1

compared to agent 2. Therefore he buys insurance against the long-run risks which pays of in

bad times when there is a negative shock to xt+1 (the blue line is negative which implies an

increase in the weights of the first agent for all λ2
t ). Therefore he has to pay a premium in

good times. So for a positive shock in xt+1 the results reverse (yellow line). The average over

all shocks (red line) is positive, so he pays a positive premium to insure against long-run risk

which is why he loses wealth on average. The effect is stronger for small λ2
t and decreases for

large λ2
t . A small value of λ2

t implies that there is a large share of agents who wants to buy

insurance against long-run risks. Hence, they are willing to pay a higher price. The larger

the share of the skeptical investors becomes, the lower becomes the demand for the insurance

and hence, also the increase in the Pareto weights becomes less pronounced.

Decreasing xt has two effects. First of all, agent 1 becomes more afraid of long-run risks

(given a negative value of xt a large negative realization of xt+1 becomes more likely due to

high persistence of ρx), which is why he wants to buy more insurance against long-run risks

and is willing to pay a higher premium. We observe this effect in the second panel from the

left (xt = −0.0013) where the average increase in the Pareto weight of the second agent (red

line) increases compared to the results for xt = 0. Additionally, the belief difference and

hence the difference between the subjective probabilities becomes more pronounced for large
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|xt|. So the influence of the speculative bias channel becomes stronger, the further xt is away

from its unconditional mean. This potentially shifts wealth to the first agent who has the

correct beliefs about ρx. We observe this pattern in the left panel (xt = −0.008) where for

large λ2
t the average change in the weights λ2

t+1−λ2
t becomes negative. For positive xt agent 1

becomes less afraid of long-run risks and hence, he is only willing to pay less to insure against

these risk. Therefore, the average increase in the weights of agent 2 decrease for xt = 0.0013

compared to xt = 0. For very large xt (right panel) the influence of the speculative bias channel

dominates and hence the results reverse. The second agent wins, if there is a negative shock

(blue line), but loses, if there is a positive shock (yellow line). The risk premium channel

becomes negligible and the second investor loses on average as he bets on states, that have

a vanishing probability under the true measure (see Figure 3). So the risk premium channel

dominates the speculative bias channel for xt close to its unconditional mean, and only for

very large xt the speculative bias channel dominates and agent 2 potentially loses wealth on

overage. However, values of xt = 0.008 (+4 standard deviation of xt) occur only very rarely

and most of the time, the process stays within the range where the risk premium channel

clearly dominates the speculative bias channel and hence, the consumption share of agent 2

increases on average.

In Figure 5 we show the corresponding results for ρ2
x = 0.95 instead of ρ2

x = 0.975. This

increases the influence of the speculative bias channel as the beliefs of the second agent are

’more wrong’ on average and hence will shift wealth to the first investor. Furthermore, the

second investor is less afraid of long-run risks and therefore will be willing to sell more in-

surance. So also the influence of risk premium channel increases, which on the other hand

shifts wealth to the second investor. Looking at the aggregate effects, we observe that for

xt = 0 the change in the weights λ2
t+1−λ2

t becomes larger on average (note the different scale.

For a better visualization we show the average change separately in Figure 10 in Appendix

B). This reflects the increasing influence of the risk premium channel compared to the case

with ρ2
x = 0.975. However, for larger |xt|, the influence of the speculative bias channel quickly

increases and only for small λ2
t where there is a large share of investors who want to buy in-

surance against long-run risks, the risk premium channel dominates. This explains, why the

median consumption share in Figure 2 only increase to a certain level and does not converge

further towards 1. The magnitude of the change in the weights explains the large drops and

recoveries that we observe in Figure 2. For example for the extreme case with xt = −0.008, a

large negative shock implies a drop in the weights of more than 0.3 for λ2
t = 0.5. This implies

a decrease in the consumption share of the second agent of more than 0.3. But as the influence

of the risk premium channel increases for small λ2
t the second investor recovers rather quickly

as can be observed from Figure 2.
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Figure 4: Changes in the Wealth-Distribution—The Epstein-Zin Case
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1

x.

Figure 5: Changes in the Wealth-Distribution—The Epstein-Zin Case (ρ2
x = 0.95)
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The figure shows the change in the optimal weights λ2
t+1 − λ2

t as a function of λ2
t . From left to

right, the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations).
The blue line depicts the case of a negative shock in xt+1 (xt+1− ρxxt = −0.001) and the yellow line
of a positive shock in xt+1 (xt+1 − ρxxt = 0.001). The red line shows the average over all shocks.
Calibration with ρx = ρ1

x = 0.985 and ρ2
x = 0.95.
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4.1.3 The Savings Channel

The third channel that influences equilibrium outcomes for Epstein-Zin preferences is the

savings channel. It states that agents with high subjective beliefs about expected returns

will choose a high (low) savings rate if the IES is large (small). In the long-run risk model

the IES needs to be significantly larger than 1 in order to model a strong preference for

the early resolution of risks. Hence, the agent with the higher subjective expected returns

chooses a higher savings rate and therefore—all other things being equal—his consumption

share increases relative to the agent with the lower expected returns.

Figure 6 shows the subjective expected risk premia of the two agents as a function of the

states (Figure 6a as well as the difference between the two (Figure 6b). Agent 2 has higher

subjective risk premia for small xt and the opposite is true for large xt. Therefore, for small

(large) xt, agent 2 will choose a higher (lower) savings rate compared to agent 1 that in turn

increases (decreases) his consumption share. However, we find that in the aggregate, the

influence of the savings channel is rather small compared to the risk premium channel and

the speculative bias channel. In Figure 7 we show the corresponding results to Figure 4 but

with ψ1 = ψ2 = 1.1 instead of ψ1 = ψ2 = 1.5 and hence, a smaller influence of the savings

channel channel. We observe that the quantitative change is rather small and the qualitative

conclusions stay the same.

Figure 6: Expected Subjective Risk Premia
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The figure shows the expected subjective risk premium of the two agents as a function of the states
λ2
t and xt. Panel (a) show the absolute values for the two agents and Panel (b) shows the difference

between the subjective risk premium of agent 2 and agent 1.
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Figure 7: Changes in the Wealth-Distribution—The Epstein-Zin Case Sensitivity ψh
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1

x and ψ1 = ψ2 = 1.1 (instead of 1.5 as in the baseline model).

4.2 Examination of the Risk Premium Channel (Robustness of the

Results)

In this section we examine the influence of the risk premium channel in more detail. We have

argued that, if risk premia are high, the influence of the risk premium channel is strong. This

will in turn shift wealth to the investors who are skeptical about long-run risks. In Figure 8a

we show the median consumption share of agent 2 (as in Figure 1) for different degrees of risk

aversion γh = {2, 5, 10}. For γ1 = γ2 = 10 the equity premium for the representative agent

economies either populated only by agent 1 or 2 are 6.53% and 2.76% respectively (see Table

2). For a risk aversion of γ1 = γ2 = 5 they decrease to 2.71% and 0.72% and for γ1 = γ2 = 2

the premia are only -0.61% and -0.68%. So for γh = 5 and γh = 2, we expect the impact of

the risk premium channel to decrease significantly. For γh = 10 (yellow line) the influence of

the risk premium channel is strong. Hence, agent 2 profits from selling the insurance against

long-run risks and rapidly accumulates wealth. For γh = 5 (red line) this effect becomes

less severe and his consumption share increases less quickly. For γh = 2 (blue line), where

risk premia are negative the risk premium channel has no influence and the speculative bias

channel becomes dominates equilibrium outcomes. As ρx = ρ1
x the speculative bias channel

works in favor of agent 1 (agent 2 bets on states, that have a vanishing probability under the

true probability measure) and agent 1 dominates the economy in the long-run. If agent two

has the correct beliefs ρx = ρ2
x, the speculative bias channel works in favor of agent 2. We

show this case in Figure 8b. The blue line shows the consumption shares for ρx = ρ1
x and
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the red line for ρx = ρ2
x. So in the absence of the risk premium channel the speculative bias

channel determines equilibrium outcomes.

In Figure 8c we analyze the robustness of our findings with regard to the level of the

persistences of xt. We show the consumption paths for ρ2
x = 0.6, ρ1

x = 0.5 instead of 0.975 and

0.985. Lowering the persistence will—similarily to the decrease in risk aversion—bring down

the equity premium to -0.74%. Consequently, we observe that in this setup the dynamics of

the consumption shares strongly depend on the true value of ρx as the speculative bias channel

dominates—that is, the agent with the correct beliefs will dominate the economy.

But long-run risk models require a high degree of risk aversion and a high persistence level

of the long-run risk process in order to obtain an equity premium consistent with the data.

Consequently, the impact of the risk premium channel will be strong and the investors who

are skeptical about long-run risks will dominate the economy. The qualitative implications

also hold irrespectively of the true value of the underlying persistence of the long-run risk

process. In Figure ?? we show the consumption paths with ρ1
x = 0.985 and ρ2

x = ρx = 0.975

for different values of ρx = {0, 0.9, 0.99}. A lower persistence of ρx implies that xt will remain

closer to its unconditional mean (given the same standard deviation). As Figure 4 shows, for

xt close to 0, the consumption share of the second agent increases on average. Hence, the

lower the true persistence, the faster the increase in the consumption share. But even for the

very large value of ρx of 0.99, the risk premium effect still dominates and the second agent

dominates the economy in the long-run.

4.3 Correcting for the Difference in Mean Consumption Growth

Different beliefs about the persistence of the long-run risks process imply that—all other

equal—the agent also has different beliefs about the mean of the gross growth rate of con-

sumption E
(
Ct+1

Ct

)
due to Jensen’s inequality. In this section we argue that our results are

not driven by this simple mean effect, but rather by the time varying risk premium channel as

demonstrated in the previous section. In fact, when we correct for the belief difference in the

mean growth rate of consumption, the consumption share of the skeptical investor increases

even faster. For the long-run risks model (19), the mean growth rate of consumption is given

by

E

(
Ct+1

Ct

)
= E

(
e∆ct+1

)
= e

µc+0.5σ2+0.5
φ2xσ

2

1−(ρx)2 . (20)

For ρ2
x < ρ1

x = ρx we have that

E2

(
Ct+1

Ct

)
= e

µc+0.5σ2+0.5
φ2xσ

2

1−(ρ2x)
2 < E

(
Ct+1

Ct

)
. (21)
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Figure 8: The Risk Premium and Speculative Bias Channels
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The figure shows the median consumption share of agent 2 for 1000 samples each consisting of 500
years of simulated data. The Panel (a) shows the time series for different degrees of risk aversion
γh = {2, 5, 10}. Agent 2 believes that ρ2

x = 0.975 and agent 1 has the correct beliefs with ρ1
x = ρx =

0.985. Panel (b) shows the time series for γh = 2, ρ1
x = 0.985 ρ2

x = 0.975 for the two cases where
either agent 1 (blue line) or agent 2 (red line) has the correct beliefs. Panel (c) shows the time series
for γh = 10, ρ1

x = 0.6 and ρ2
x = 0.5 for the two cases where either agent 1 (blue line) or agent 2 (red

line) has the correct beliefs.

29



Figure 9: The Risk Premium and Speculative Bias Channels (2)
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The figure shows the median consumption share of agent 2 for 1000 samples each consisting of 500
years of simulated data. Both agents have a risk aversion of γ = 10. The results are shown for
ρ2
x = 0.975 and ρ1

x = 0.985 for different values of ρx = {0, 0.9, 0.99}.

So the second agent beliefs in a lower mean growth rate of consumption as he beliefs in a

lower persistence and hence a lower unconditional volatility of the long-run risk process. We

correct for this belief differences by setting the subjective belief of the second investor about

mean log consumption growth to µ2
c = µc + 0.5 φ2xσ

2

1−(ρx)2
− 0.5 φ2xσ

2

1−(ρ2x)2
. Once we correct for this

difference, the consumption shares of the skeptical investor increase even faster. For the origi-

nal specification with an initial allocation of s2
0 = 0.01 the consumption shares of the skeptical

investor increased to 0.2824, 0.6376 and 0.9278 after 100,200 and 500 years respectively (see

Table 1). With the corrected mean we obtain values of 0.2827, 0.6379 and 0.9281. Hence, our

results are not driven by the effect of different mean beliefs about consumption growth. This

result is also in line with Borovička (2015) who shows that an underestimation of the mean

growth rate lowers the chances of survival while the overestimation has the opposite effect

due to the positive risk premium channel. Consequently, in our model specification, the effect

from the mean growth rate should lead to lower consumption shares of the skeptical investor.

And indeed, once we correct the mean of the skeptical investor we obtain a faster increase in

the consumption shares of the skeptical investor.
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5 Conclusion

We have performed a detailed study of heterogenity in agent beliefs for the long-run risk model

of Bansal and Yaron (2004). In particular, we consider agents with different beliefs about the

level of persistence in long-run risk. We find that as long as the level of heterogeneity is not

too large, agents who believe in a lower level of persistence come to dominate the economy

rather quickly relative to agents who believe in a higher level of persistence. This holds even

if the agent with the higher level of persistence holds the correct belief. This suggests that

for long-run risk to work as an explanation of the equity premium, it is not sufficient for

consumption suffer from long-run risk— all agents must also agree on the amount of long-run

risk the economy experiences.
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Appendix

A Proofs and Details

A.1 Solution Method for Asset Pricing Models with Heterogeneous

Agents and Recursive Preferences

Proof of Theorem 1. Let λ = {λ1, . . . , λH}, and {C}0 = {{C1}0, . . . , {CH}0}. The optimal

decision of the social planner in the initial period takes into account all future consumption

streams of the individual agents and the optimal decisions must satisfy the market clearing

condition (1). For the ease of notation we abbreviate the state dependence in the following,

so we use Ch
t for Ch(yt) and Uh

{t} for Uh
(
{Ch}t

)
.

To derive the first-order conditions, we borrow a technique from the calculus of variations.

For any function ft we can vary the consumption of two agents by

Ch
t → Ch

t + εft

C l
t → C l

t − εft. (22)

It is sufficient to consider the variation with agent l = 1. Since we have an optimal

allocation it must be true that

dSP ({C}0,λ)

dε

∣∣∣∣
ε=0

= 0. (23)

This gives us

λhÛh
0,t = λ1Û1

0,t, h ∈ H−, (24)

where Ûh
t,t+k is defined as

Ûh
t,t+k =

dUh(Ch
t , . . . , C

h
t+k + εft+k, . . .)

dε

∣∣∣∣
ε=0

. (25)

Ûh
t,t+k satisfies a recursive equation with the initial condition

Ûh
t,t =

dUh(Ch
t + εft, . . .)

dε

∣∣∣∣
ε=0

= F h
1

(
Ch
t , Rt[U

h
{t+1}]

)
· ft (26)

where F h
k

(
Ch
t , R

h
t [Uh
{t+1}]

)
denotes the derivative of F h

(
Ch
t , R

h
t [Uh
{t+1}]

)
with respect to its
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kth argument. The recursive step is given by

Ûh
t,t+k =

dF h
(
Ch
t , R

h
t

[
Uh(Ch

t+1, . . . C
h
t+k + εft+k, . . .)

])
dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

dRh
t

[
Uh(·)

]
dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

dG−1
h

(
Eh
t Gh

[
Uh(·)

])
dEh

t Gh[Uh(·)]
· dEh

t Gh[U
h(·)]

dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
· 1

G′h(G
−1
h (Eh

t Gh[Uh
{t+1}]))

· Eh
t

(
G′h(U

h
{t+1}) · Ûh

t+1,t+k

)

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·
Eh
t

(
G′h(U

h
{t+1}) · Ûh

t+1,t+k

)
G′h(R

h
t [Uh
{t+1}])

(27)

where we use ∂G−1(x)
∂x

= 1
G′(G−1(x))

and abbreviate Uh(Ch
t+1, . . . C

h
t+k + εft+k, . . .) by Uh(·). We

can recast this recursion into a useful form. Therefore we define a second recursion Uh
t,t+k by

Uh
t,t = F h

1

(
Ch
t , R

h
t [Uh
{t+1}]

)
(28)

and

Uh
t,t+k = Πh

t+1 · Uh
t+1,t+k (29)

where

Πh
t+1 = F h

2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

G′h(U
h
{t+1})

G′h(R
h
t [Uh
{t+1}])

dPh
t,t+1

dPt,t+1

. (30)

A simple induction shows that

Ûh
t,t+k = Et(U

h
t,t+kft). (31)

Plugging (31) into the optimality condition (24) we get

E0((λhUh
0,t − λ1U1

0,t)ft) = 0, h ∈ H−. (32)

Under a broad range of regularity conditions, this implies that

λhUh
0,t = λ1U1

0,t, h ∈ H−. (33)

For example, if λhUh
0,t−λ1U1

0,t has finite variance, then this holds for the Riesz Representation

Theorem for L2 random variables.

We can then split expression (33) into two parts. First define λh0 ≡ λh to obtain
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λh0
λ1

0

=
U1

0,t

Uh
0,t

=
Π1

0

Πh
0

U1
1,t

Uh
1,t

=
Π1

0

Πh
0

λh1
λ1

1

, h ∈ H−,

where λh1 denotes the Negishi weight of the social planner’s optimum in t = 1. Generalizing

this equation for any period t, we obtain the following dynamics for the optimal weight λht+1

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, h ∈ H−. (34)

Note that we can either solve the model in terms of the ratio
λht
λ1t

(this is equal to setting

λ1
t = 1∀t as done in Judd, Kubler, and Schmedders (2003)) or we can normalize the weights

so that they are bounded between (0, 1). We later propose a solution method that uses the

latter approach as it obtains better numerical properties.

The second expression is obtained by inserting the initial condition (28) into (33) for t = 0

and generalizing it for any social planner’s optimum at time t:

λht F
h
1

(
Ch
t , R

h
t [Uh
{t+1}]

)
= λ1

tF
1
1

(
C1
t , R

1
t [U

1
{t+1}]

)
, h ∈ H−. (35)

Equation (35) states the optimality conditions for the individual consumption choices at

any time t. Note that for time separable utility, F h
1

(
Ch
t , R

h
t [Uh
{t+1}]

)
is simply marginal utility

of agent h at time t, and so we obtain the same optimality condition as for example in Judd,

Kubler, and Schmedders (2003) (compare equation (7) on page 2209). In this special case the

Negishi weights can be pinned down in the initial period and thereafter remain constant. For

general recursive preferences this is not true. The optimal weights vary over time following

the law of motion described by equation (34).

We can use the two equations (34) and (35) together with the market clearing condition

(1) to compute the social planner’s optimum. We therefore define λ−t = {λ2
t , λ

3
t , . . . , λ

H
t } and

let V h denote the value function of agent h ∈ H. We are looking for model solutions of the

form V h(λ−
t , y

t). So additional to the exogenous states yt, the model solution depends on the

time varying Negishi weights λ−t . An optimal allocation is then characterized by the following

four equations:

• the market clearing condition (1)

H∑
h=1

Ch(λ−
t , y

t) = C(yt) (36)
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• the optimality conditions (35) for the individual consumption decisions

λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)

= λ1
tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
(37)

for h ∈ H−

• the value functions (2) of the individual agents

V h(λ−
t , y

t) = F h
(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)
, h ∈ H (38)

• the equations (34) for the dynamics of λ−
t

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, h ∈ H−, (39)

where

Πh
t+1 = F h

2

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)
·

G′h(V
h(λ−

t+1, y
t+1))

G′h(R
h
t [V h(λ−

t+1, y
t+1)])

dPh
t,t+1

dPt,t+1

(40)

This concludes the general description of the equilibrium obtained from the social planner’s

optimization problem.

To prove theorem 2, we derive a variant of lemma 1 in Blume and Easley (2006).

Lemma 1. Let X i
t be a family of H non-negative random variables for each t, such that

A ≤
∑

iXi ≤ B. Let f and g be decreasing functions such that f(x), g(x)→∞ as x→ 0. If

f(Xj
t )/g(X i

t)→∞ then X i
t → 0. If X i

t → 0, then for at least one j, lim supt f(Xj
t )/g(X i

t) =

∞.

Proof. Since Xi is positive, Xi ≤ B. By assumption, g(B) ≤ g(Xi), and 1/g(Xi) ≤ 1/g(B).

So f(Xj)/g(Xi)→∞ if and only if f(Xj)→∞ which happens when Xj → 0.

Conversely, assume X i
t → 0. Every period, for at least one j, Xj ≥ A/H (otherwise∑

XH
j=1 < A). Since there are only finitely many random variables, for at least one j we

have Xj ≥ A/H infinitely often. By assumption, f(Xj) > f(A/H), so lim sup f(Xj)/g(Xi) =

∞.
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Proof of Theorem 2. By the first-order condition, equation ((5)), λjt/λ
i
t = F j

1 (Cj
1 , R

j
1)/F i

1(Cj
1 , R

j
1).

Since F h is additively separable, F h
1 is a function of consumption alone. Let f = F j

1 , g = F i
1,

A = C and B = C, and apply lemma 1.

A.2 The Case of Epstein-Zin Preferences

In this section we provide the specific expressions for V h, F h
1 , F

h
2 and Πh when the heteroge-

neous investors have recursive preferences as in Epstein and Zin (1989) and Weil (1989). The

value function for Epstein-Zin (EZ) preferences is given by7

V h
t =

[
(1− δh)(Ch

t )ρ
h

+ δhRh
t

(
V h
t+1

)ρh] 1

ρh

(41)

where

Rh
t

(
V h
t+1

)
= G−1

h

(
Eh
t

[
Gh(V

h
t+1)
])

Gh(V
h
t+1) =

(
V h
t+1

)αh
.

The parameter δh is the discount factor, ρh = 1− 1
ψh

determines the intertemporal elasticity

of substitution ψh and αh = 1− γh determines the relative risk aversion γh of agent h.

Using this notation the derivatives of F h
(
Ch
t , R

h
t [Uh

t+1]
)

= V h
t with respect to its first and

second argument are then given by

F h
1,t = (1− δh)(Ch

t )ρ
h−1(V h

t )1−ρh (42)

and

F h
2,t = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )1−ρh . (43)

In this paper we focus on growth economies. Therefore we introduce the following normal-

ization to obtain a stationary formulation of the model. We define the consumption share of

agent h by sht =
Cht
Ct

and we define the normalized value functions vht =
V ht
Ct

. The value function

(41) is then given by

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

. (44)

By inserting (42) into (37) we obtain the optimality condition for the individual consump-

tion decisions:

7For the ease of notation we again abbreviate the dependence on the exogenous state yt and the endogenous
state λ−

t . Hence we write V ht for V h(λ−
t , y

t) or Cht for Ch(λ−
t ,y

t).
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λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)

= λ1
tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
λht (1− δh)(Ch

t )ρ
h−1(V h

t )1−ρh = λ1
t (1− δ1)(C1

t )ρ
1−1(V 1

t )1−ρ1 (45)

In the following we define the detrended weights, λht =
λht

(vht )ρh−1
. From equation (45) we get

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1. (46)

This is the optimality condition for the individual consumption decisions we are going to

use for the model with Epstein-Zin preferences. Inserting the detrended weight λht into the

dynamics for the weights (39) we obtain

λht+1

λ1
t+1

=
λht+1(vht+1)ρ

h−1

λ1
t+1(v1

t+1)ρ1−1
=
λht (v

h
t )ρ

h−1

λ1
t (v

1
t )
ρ1−1

Πh
t+1

Π1
t+1

, h ∈ H− (47)

Plugging the expressions for Epstein-Zin preferences (41)–(43) into equation (40), we ob-

tain the following expression for Πh
t+1:

Πh
t+1 = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )1−ρh
(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−1

dPh
t,t+1

dPt,t+1

= δh(V h
t )1−ρh

(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−ρh dPh
t,t+1

dPt,t+1

. (48)

Using the normalized value function vht =
V ht
Ct

we have

Πh
t+1 = δh(vht )1−ρh

(
vht+1e

∆ct+1
)αh−1

Rh
t

(
vht+1e

∆ct+1
)αh−ρh dPh

t,t+1

dPt,t+1

. (49)

Equation (47) can then be written as

λht+1

λ1
t+1

=
λht
λ1
t

Πh
t+1

Π1
t+1

, h ∈ H− (50)

where

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

New EZ-Term

. (51)
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For αh = ρh, we obtain the standard term for CRRA preferences where the dynamics

of λht+1 only depend on the subjective discount factor, the IES and the subjective beliefs of

the investors. For Epstein-Zin preferences, we obtain an extra term that reflects the time

trade-off. Using the normalization
∑H

h=1 λ
h
t = 1, the dynamics for λht+1 are then given by

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

(52)

Hence, for Epstein-Zin preferences we obtain the following system for the first-order con-

ditions (36)-(40):
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The market clearing condition:

H∑
h=1

sht = 1. (MC)

The optimality condition for the individual consumption decisions:

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1, h ∈ H− (CD)

with
∑H

h=1 λ
h
t = 1.

The value functions of the individual agents:

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H. (VF)

The equation for the dynamics of λht :

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , h ∈ H−.

(Dλ)

Note that equation (13) and hence the individual consumption decisions sht only depend

on time t information and there is no intertemporal dependence. This allows us to first solve

for sht given the current state of the economy and in a second step solve for the dynamics

of the Negishi weights. Hence, we can separate solving the optimality conditions (11)-(16)

into two steps in order to reduce the computational complexity. In the following section we

describe this approach in detail.

Proof of Theorem 3. Let f(s) = sρ
j
, g(s) = sρ

i
, and A = B = 1, and apply lemma 1.

A.3 The Case of Discounted Expected Utility

Proof of Theorem 4. Under the assumptions of the theorem, Πh
t = δ, and the ratio of λ’s

simplifies to
λht+1

λ1
t+1

=
λht
λ1
t

,

so they are not time-varying.
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If aggregate consumption is Markov, then the first-order condition is purely a function of

the aggregate state.

Proof of Theorem 5. In logs,

log Πh
t = log δh + log

dQh
t

dQt

,

so
1

T

T∑
t=1

log Πh
t = log δh +

1

T

T∑
t=1

log
dQh

t

dQt

→ log δh −D(Qh‖Q),

by the law of large numbers.

log λiT − log λjT =
(
log λi0 − log λj0

)
+

T∑
t=1

Πi
t −

T∑
t=1

Πj
t ,

so the result follows.

For general dependent processes, survival results depend on a deceptively simple technical

result.

Lemma 2. Suppose that Et(Π
i
t/Π

j
t) ≤ 1. Then agent j survives.

Proof. We have

Et

(
λit+1

λjt+1

)
= Et

(
Πi
t+1

Πj
t+1

)(
λit
λjt

)
≤ λit
λjt
,

so λit/λ
j
t is a supermartingale. By the martingale convergence theorem, limλit/λ

j
t exists as a

random variable that is finite almost surely. Thus by the contrapositive of the second part of

theorem 2, Ci
t does not go to zero.

An identical result holds for Πh
t .

Proof of Theorem 6. 1. In this case, Πi/Πj = δi/δj, so λit/λ
j
t → ∞. The result follows

from theorem 2.

2. Suppose agent j has the correct belief. Then Πi/Πj = dPi/dP . dPi/dP is a martingale,

so by theorem 2 the result follow.

Proof of Theorem 7.

lim
T→∞

1

T

T∑
t=1

log Πh
t = log δh + rhohµ−D(Qh‖Q),

by the law of large numbers. The proof is otherwise identical to 5.
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Proof of Theorem 8. 1. The proof is identical to the proof of part 1 of theorem 6.

2. In this case Πi
t/Π

j
t = (Ct)

ρi−ρj . If ρi − ρj < 0, then

Et(C
ρi−ρj
t+1 ) ≤ Et(Ct+1)ρ

i−ρj ≤ Cρi−ρj
t .

(The first inequality follows from Jensen’s inequality, while the second follows from the

fact that xa is order reversing for a < 0.)

Thus Πi
t/Π

j
t is a supermartingale, and by Lemma 2 the result follows.

3. The proof is identical to the proof of part 2 of theorem 6.

A.4 Computational Procedure - A Two Step Approach

For the ease of notation the following procedures are described for H = 2 agents and a single

state variable yt ∈ R1. However, the approach can analogously be extended to the general case

of H > 2 agents and multiple states. We solve the social planner’s problem using a collocation

projection. For this we perform the usual transformation from an equilibrium described by

the infinite sequences (with a time index t) to the equilibrium being described by functions

of some state variable(s) x on a state space X. We denote the current exogenous state of

the economy by y and the subsequent state in the next period by y′ with the state space

Y ∈ R1. λ2 denotes the current endogenous state of the Negishi weight and λ′2 denotes the

corresponding state in the subsequent period with Λ2 ∈ (0, 1).

We approximate the value functions of the two agents vh(λ2, y), h = {1, 2} by two di-

mensional cubic splines and we denote the approximated value functions v̂h(λ2, y). For the

collocation projection we have to choose a set of collocation nodes {λ2k
}nk=0 and {yl}ml=0 at

which we evaluate v̂h(λ2, y). The individual consumption shares only depend on the endoge-

neous state λ2k
. So in the following we show how to first solve for the individual consumption

shares at the collocation nodes shk = sh(λ2k
) that are then used to solve for the value functions

vh and the dynamics of the endogenous state λ2.

Step 1: Computing Optimal Consumption Allocations

Equation (13) has to hold at each collocation node {λ2k
}nk=0:

λ2k
(1− δ2)

(
s2
k

)ρ2−1
= (1− λ2k

)(1− δ1)
(
s1
k

)ρ1−1
.
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Together with the market clearing condition (11) we get

λ2k
(1− δ2)

(
s2
k

)ρ2−1
= (1− λ2k

)(1− δ1)
(
1− s2

k

)ρ1−1
. (53)

So for each node {λ2k
}nk=0 the optimal consumption choice s2

k can be computed by solving

equation (53) and s1
k is obtained by the market clearing condition (11).8 For the special case

of ρ2 = ρ1 we can solve for s2 as function of λ2 analytically and hence, we don’t have to solve

the system of equations for each node.

Step 2: Solving for the Value Function and the Dynamics of the Negishi Weights

Solving for the value function is not straight-forward as it depends on the dynamics of the

endogenous state λ2 that are unknown and follow equation (16). We compute the expectation

over the exogenous state by a Gauss-Quadrature with Q quadrature nodes. This implies that

the values for y′ at which we evaluate vh are given by the quadrature rule. We denote the

corresponding quadrature nodes by {y′l,g}
m,Q
l=0,g=1 and the weights by {ωg}Qg=1.9 We can then

solve equation (16) for a given pair of collocation nodes {λ2k
, yl}n,mk=0,l=0 and the corresponding

quadrature nodes {y′l,g}
m,Q
l=0,g=1 to compute a vector ~λ

′
2 of size (n+1)×(m+1)×Q that consists

of the corresponding values λ′2k,l,g for each node. For each λ′2k,l,g equation (16) then reads

λ′2k,l,g =
λ2k

Π2

(1− λ2k
)Π1 + λ2k

Π2

Πh = δheρ
h∆c(y′l,g)

(
vh(λ′2k,l,g , y

′
l,g)e

∆c(y′l,g)

Rh
[
vh(λ′2, y

′)e∆c(y′)|λ2k
, yl
])αh−ρh

dPh(y′l,g|yl)
dP(y′l,g|yl)

(54)

where

Rh
[
vh(λ′2, y

′)e∆c(y′)|λ2k
, yl

]
= G−1

h

(
E

[
Gh

(
vh(λ′2, y

′)e∆c(y′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k
, yl

])
.

Note that λ′2k,l,g depends on the full distribution of λ′2 through the expectation operator.

By applying the Gauss-Quadrature to compute the expectation we get

8Note that in the case of H agents we have to solve a system of H − 1 equations that pin down the H − 1
individual consumption choices sh ∈ H−.

9Note that the quadrature nodes {{y′

l,g}Gg=0}ml=0 depend on the state today {yl}ml=0.
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E

[
Gh

(
vh(λ′2, y

′)e∆c(y′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k
, yl

]
≈

Q∑
g=1

Gh

(
vh(λ′2k,l,g , yl,g)e

∆c(yl,g)
)
· ωg.

So by computing the expectation with the quadrature rule, we do not need the full distri-

bution of λ′2 but only have to evaluate vh at the values λ′2k,l,g that can be obtained by solving

(54) for each pair of collocation nodes {λ2k
, yl}n,mk=0,l=0 and the corresponding quadrature nodes

{y′l,g}
m,G
l=0,g=1. So at the end we have a square system of equations with (n+ 1)× (m+ 1)×G

unknowns λ′2k,l,g and as many equations (54) for each {k, l, g}.
The value function is in general not known so we have to compute it simultaneously when

solving for λ′2k,l,g . Plugging the approximation v̂h(λ2, y) into the value function (12) yields

v̂h(λ2k
, yl) =

[
(1− δh)

(
shk
)ρh

+ δhRh

(
v̂h(λ′2, y

′)e∆c(y′)

∣∣∣∣λ2k
, yl

)] 1

ρh

. (55)

The collocation projection conditions require that the equation has to hold at each colloca-

tion node {λ2k
, yl}n,mk=0,l=0. So we obtain a square system of equations with (n+1)×(m+1)×2

equations (55) and as many unknowns for the spline interpolation at each collocation node

that we solve simultaneously with the system for λ′2k,l,g described above.

A.5 Properties of the Value Function

In the case of heterogeneous agents the approximation of the value function is a delicate

computational task as an agent can die out over time. Marginal utility of the agent at this

limiting case is infinity which makes it difficult to obtain accurate approximations for the

value function close to the singularity. To obtain information about the properties of the

singularity, we formally derive the limiting behavior of the value function for the special case

of an economy with no uncertainty. We then include this information in the value function

approximation for the stochastic economy. From equation (13) we know that

s2(λ2) =

(
1− δ1

1− δ2

)−ψ2

(λ2)ψ
2

(1− λ2)−ψ
2

(s1(λ2))
ψ2

ψ1 . (56)

We are interested in the properties of s2(λ2) for λ2 close to 0. For λ2 ≈ 0 agent 1 obtains all

consumption so s1(λ2) ≈ 1 and the Negishi weight of the first agent becomes 1. Therefore we

obtain

s2(λ2) ≈
(

1− δ1

1− δ2

)ψ2

(λ2)ψ
2

(57)
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for λ2 close to 0. The value function (41) for the deterministic economy at the steady state

y = y′, λ2 = λ′2 is given by

v2(λ2, y) = s2(λ2). (58)

Inserting the behavior of s2(λ2) for λ2 close to 0, we obtain10

v2(λ2) ≈
(

1− δ1

1− δ2

)ψ2

(λ2)ψ
2 ≡ Υ0(λ2). (59)

We denote by Υ0(λ2) the zero basis functions which we add to the cubic spline value

function approximation to obtain accurate approximations close to the singularity. We find

that for all solutions reported in this paper, including the zero basis functions improves the

accuracy of the solution. This concludes the description of the methodology for solving the

heterogeneous agent model with recursive preferences. In the following section we apply the

approach to solve the long-run risk model of Bansal and Yaron (2004) with heterogeneous

agents.

A.6 Computational Details

For the projection method outlined above, we need to choose certain collocation nodes. In

this paper we use 17 uniform nodes for the λ2 dimension and 13 uniform nodes for the xt

dimension for the results with ρ2 = 0.975 and ρ1 = 0.985. For the results with ρ2 = 0.95 and

ρ1 = 0.985, we use 51 uniform nodes for the λ2 dimension and 23 uniform nodes for the xt

dimension. For λ2 the minimum and maximum values are given by 0 and 1. For xt we choose

the approximation interval to cover ±4 standard deviations around the unconditional mean

of the process. We approximate the value functions using two-dimensional cubic splines with

not-a-knot end conditions. We provide the solver with additional information that we can

formally derive for the limiting cases. For example we know that for λ2
t = 1 (λ2

t = 0) agent

2 (1) consumes everything, so it corresponds to the representative agent economy populated

only by agent 2 (1). Hence, we require that the value function for these cases equals the

value function for the corresponding representative agent economy. We also know that for

λ2
t = 0 (λ2

t = 1) consumption of agent 2 (1) is 0 and hence the value function is also zero.

As the shocks in the model are normally distributed, we compute the expectations over the

exogenous states by Gauss-Hermite quadrature using 5 nodes for the shock in xt+1 and 3

nodes for the shock in ∆ct+1. Euler errors for the value function approximations evaluated on

a 200× 200 uniform grid for both states are less than 1× 10−6 suggesting a high accuracy of

10For the first agent we obtain a similar expression for λ2 close to 1 given by v1(λ2) ≈
(

1−δ2
1−δ1

)ψ1

(1− λ2)ψ
1

.
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our results. We double checked the accuracy by increasing the approximation interval as well

as the number of collocation nodes with no significant change is the results.

B Additional Figures and Tables

Table 4: Equity Premium for Different Consumption Shares (ρx = ρ2
x)

ρ2
x = 0.975 ρ2

x = 0.95

s2
t Equity Premium s2

t Equity Premium

Rep. Agent 1 0 6.49 0 6.50

0 Years 0.01 6.38 0.01 5.36
100 Years 0.3404 4.39 0.8147 0.49
200 Years 0.7249 3.33 0.8810 0.41
500 Years 0.9732 2.83 0.9388 0.34

Rep. Agent 2 1 2.75 1 0.25

The table shows the annualized equity premium for a specific consumption share s2
t = s̄. The premium

is reported for the equilibrium allocations after 0, 100, 200 and 500 years of simulated data assuming
an initial share of s2

0 = 0.01 (see Table 1). Agent 1 beliefs that ρ1
x = 0.985 and agent 2 has the correct

beliefs (ρx = ρ2
x). The left panel depicts the case for ρ2

x = 0.975 and the right panel for ρ2
x = 0.95.
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Figure 10: Changes in the Wealth-Distribution—The Epstein-Zin Case 2 (ρ2
x = 0.95)

λ
2

t

0 0.5 1

λ
2 t
+
1
−
λ
2 t

-0.04

-0.02

0

0.02

0.04

x
t
 = -0.008

λ
2

t

0 0.5 1
-0.01

-0.005

0

0.005

0.01

x
t
 = -0.0013

λ
2

t

0 0.5 1
-0.01

-0.005

0

0.005

0.01

x
t
 = 0

λ
2

t

0 0.5 1
-0.01

-0.005

0

0.005

0.01

x
t
 = 0.0013

λ
2

t

0 0.5 1
-0.03

-0.015

0

0.015

0.03

x
t
 = 0.008

The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The red
line shows the average over all shocks in xt+1. Calibration with ρx = ρ1

x = 0.985 and ρ2
x = 0.95.
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