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Abstract

Information processing filters out the noise in raw data but it takes time. Hence,
filtered signals are available only with a lag relative to unfiltered signals. As the
cost of raw data declines, unfiltered signals become cheaper to produce and more
investors trade on them. As a result, asset prices reflect unfiltered signals more
quickly. This effect decreases the value of processing information unless unfiltered
signals are very noisy. Thus, a decline in the cost of raw data can trigger a decline
in the number of investors trading on filtered signals and, for this reason, the
informativeness of asset prices in the long run.
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“Increasingly, there is a new technological race in which hedge funds and other well-

heeled investors armed with big data analytics analyze millions of twitter messages

and other non-traditional information sources to buy and sell stocks faster than

smaller investors can hit “retweet”.”

in “How investors are using social media to make money,” Fortune, December 7, 2015.

1 Introduction

Improvements in information technologies change how information is produced and dis-
seminated in financial markets. In particular, they enable investors to obtain huge amount
of data at lower cost.1 For instance, investors can now easily get on-line access to compa-
nies reports, economic reports, or other investors’ opinions (expressed on social medias) to
assess the value of a stock.2 Similarly, traditional data vendors like Reuters, Bloomberg,
or new entrants like iSentium, Dataminr or Eagle Alpha use so-called news analytics
softwares to extract signals from the huge flow of unstructured data (news reports, press
releases, stock market announcements, tweets, satellite images etc.) and then sell these
signals to investors who feed them into their trading algorithms.3

How does this evolution affect the informativeness of asset prices? This question is
important because ultimately price informativeness affects firms’ real decisions (see Bond,
Edmans, and Goldstein (2012) for a survey). Given the existing literature, economists’
prior should be that the decline in the cost of accessing information is beneficial for asset
price informativeness. Indeed, models with endogenous information acquisition predicts
that asset price informativeness increases when information acquisition costs decline,
either because more investors buy information (Grossman and Stiglitz (1980)) or because
investors acquire more precise signals (Verrechia (1982)).

However, existing models of information acquisition commingle the moments at which
investors access to information and process it. Yet, in reality, filtering out noise from a
signal takes time. In this paper, we show that, due to this delay, a decline in the cost

1For instance, at the turn of the millenium, the cost of sending one trillion bits was already only
$0.17 (versus $150, 000 in 1970); see “The new paradigm”, Federal Reserve Bank of Dallas, 1999.

2For instance, websites such as StockTwits or Seeking Alphas allow investors to comment on stocks,
share investment ideas, and provide, in real time, raw financial information pulled off from other social
medias. For evidence that information exchanged on social medias contains value relevant information,
see Chen et al.(2014).

3For popular press articles on this evolution, see, for instance, “Rise of the news-reading machines”
(Financial Times, January 26, 2010), “How investors are using social medias to make money” (Fortune,
December 7, 2015), “Investors mine big data for cutting hedge strategies” (Financial Times, March 30,
2016) or “Big data is a big mess for hedge funds hunting signals” (Bloomberg, November 22, 2016).
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of accessing information can in fact reduce the long run informativeness of asset prices
about fundamentals. Indeed, cheaper access to raw data increases the number of investors
trading on very imprecise information. This effect makes prices more informative in the
short run but it can undermine traders’ incentive to process information further. As a
result, asset prices are less informative in the long run.

In our model, speculators can buy, from information sellers, “raw” (i.e., unfiltered)
signals and “processed” (i.e., filtered) signals about the payoff of a risky asset. When they
receive their signal, they can trade on it with risk neutral market makers and liquidity
traders (as in Kyle (1985)). The raw signal is correct (reveals the asset payoff) with
probability θ or is just noise with probability (1−θ). Thus, θ characterizes the reliability of
the raw signal.4 The true nature of the signal (information/noise) can only be discovered
after filtering out the noise from raw data, which requires some time. To account for
this delay, we assume that the processed signal is available with a lag relative to the raw
signal. Specifically, the raw signal is available in period 1 while the processed signal is
available in period 2, only. Thus, speculators who buy the processed signal trade with a
delay relative to speculators who buy the raw signal.

Following Veldkamp (2006a,b), we assume that the cost of producing a signal is fixed
but, once produced, the signal can be replicated for free so the marginal cost of providing
information to an extra user is zero. We allow the cost of producing the raw and the
processed signals to be different, so that we can study the effects of decreasing the cost
of producing the raw signal, holding constant the cost of the processed signal. Further-
more, markets for information are competitive: (i) raw and processed signals are sold at
competitive prices (i.e., information sellers make zero profits) and (ii) speculators’ profits
from trading on each type of signal net of the price paid to information sellers are zero.
In this set-up, we analyze how a decline in the cost of producing the raw signal affects
equilibrium outcomes, in particular the equilibrium demand for each type of signal (i.e.,
the number of speculators buying this signal) and the informational content of the asset
price in the short run (period 1) and the long run (period 2).

We first show that a decrease in the cost of producing the raw signal can increase or
reduce the demand for the processed signal in equilibrium. Indeed, a decrease in this cost

4The raw signal does not need to be literally interpreted as being completely unprocessed information.
For instance, a buy or sell recommendation of a stock based on linguistic analysis of discussions on social
medias about this stock relies on some automated information processing. However, such information
processing is not as deep as that performed by financial analysts or investment advisors who spend time
in evaluating firms business models, analyzing accounting statements, and building up evaluation models
to determine the fundamental value of an asset (see, for instance, Chapters 7 and 8 in Pedersen (2015)
for a description of the process for discovering information about stocks in some hedge funds).
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raises the number of speculators who trade on the raw signal and therefore the likelihood
that the price of the asset reflects this signal before speculators receive the processed
signal. In other words, a reduction in the cost of producing the raw signal makes the
price in the short run more informative about the raw signal. This has an ambiguous
effect on the expected profit from trading on the processed signal. On the one hand, it
increases this profit when the raw signal is just noise because speculators who receive the
processed signal can then correct the noise in prices. On the other hand, it decreases this
profit when the raw signal is indeed informative because the informational advantage
of speculators who receive the processed signal, relative to the market maker, is then
smaller.

In equilibrium (i.e., accounting for the adjustment in the price of each signal to varia-
tions in demands), the former effect can dominate if the raw signal is sufficiently unreliable
(i.e., θ < 1− (

√
2)−1) while otherwise the latter effect always dominates. In this case, a

decrease in the cost of the raw signal reduces the demand for this signal in equilibrium.
When the cost of the raw signal becomes small enough, this crowding out effect can be so
strong that it leads to a discontinuous drop in the equilibrium demand for the processed
signal, from a strictly positive value to zero. At this point, the market for the processed
signal ceases to exist.

We then study the implications of these effects for the informativeness of the equilib-
rium price at each date about the asset payoff. Other things equal, a reduction in the
cost of the raw (resp., processed) signal improves price informativeness in the short run
(resp., long run), as usual in models of trading with endogenous information acquisition.

More interestingly, a reduction in the cost of the raw signal can lead to less informative
prices in the long run.5 This happens when a reduction in this cost leads to a decline in
the demand for the processed signal. Indeed, this decline reduces the likelihood that the
processed signal will be reflected into the price at date 2. In particular, when the cost of
the raw signal is nil, long run price informativeness is always smaller than if speculators
could only buy the processed signal, even if the cost of this signal gets arbitrarily small
(but remains strictly positive).6 Thus, a decline in the cost of the raw signal can make

5There is at least as much information available in period 2 than in period 1 and strictly more if, in
equilibrium, some speculators buy the processed signal. Thus, the informativeness of the price in period
2 is higher than in period 1. Yet, when the cost of the raw signal declines, the former can decrease, even
though the latter increases.

6Brunnermeier (2005) considers a model of trading in a stock with two trading rounds. In the first
trading round, there is information leakage: one investor receives a noisy signal about a public news
released just before the second trading round. Brunnermeier (2005) shows that the informativeness of
the stock price in the second trading round is smaller than in the absence of information leakage. At first
glance, this result looks similar to ours. However, the mechanisms in Brunnermeier (2005) and in our
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prices more informative in the short run and yet, paradoxically, less informative in the
long run.

This implication of the model is consistent with Weller (2016) who finds empirically
a negative association between the activity of algorithmic traders (a class of traders who
is likely to trade on relatively raw signals) and the informativeness of prices about future
earnings. It also offers a possible interpretation of the empirical findings in Bai, Phillipon,
and Savov (2015). For the entire universe of U.S. stocks, they find (see their Figure A.3)
that stock price informativeness has been declining over time (they obtain the opposite
conclusion for stocks in the S&P500 index). They attribute this evolution to change in
the characteristics of firms that do not belong to the S&P500 index. Our model suggests
that the reduction in the cost of raw information might be another explanatory factor for
this evolution.

Our model has additional testable implications for the trade patterns of various types
of investors. First the model predicts that the correlation between the order flow (the
difference between their sales and buys) of speculators trading on the raw signal and that
of speculators trading on the processed signal should decline (and could even become
negative) when the cost of the raw signal decreases. The reason is that speculators
receiving the processed signal trade in a direction opposite to that of speculators who
trade on the raw signal when the price reflects the raw signal in the short run and this
signal is noise. This event is more likely when more speculators trade on the raw signal,
i.e., when the cost of raw information is small. For this reason, when the cost of the raw
signal declines, sales (resp., buys) by speculators who trade on the raw signal are more
likely to be followed by buys (resp. sales) from speculators who trade on the processed
signal.

Second, the order flow from speculators who trade on the processed signal and past
returns are correlated.7 This correlation is negative when the raw signal is unreliable
(θ ≤ 1

2) and positive otherwise. Thus, in equilibrium, speculators who trade on the
processed signal behave either like contrarian traders (they trade against past returns)
or momentum traders (they trade in the same direction as past returns). Intuitively, the
price impact of the order flow from speculators trading on the raw signal is more likely

model are very different. In particular, there is no public information arrival in our model (so no trader
speculates on this arrival) and our findings rely on endogenous information acquisition (the number of
informed speculators is exogenous in Brunnermeier (2005)).

7This prediction is non standard. Indeed, standard models of informed trading (e.g., Kyle (1985))
predicts a zero correlation between the trades of informed investors at a given date and lagged returns
(see Boulatov, Livdan and Hendershott (2012), Proposition 1, for instance.)
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to be due to noise when the reliability of the raw signal, θ, decreases. Hence, short run
price changes are more likely to be subsequently corrected by speculators receiving the
processed signal when θ is low enough. The model also implies that, in absolute value,
the covariance between past returns and the order flow from speculators who trade on
the processed signal should be inversely related to the cost of the raw signal.

Last, the direction of the order flow from speculators who trade on the raw signal
is positively correlated with future returns (from period 1 to period 2 in the model).8

However, this correlation becomes weaker when the cost of producing the raw signal
declines. Indeed, this decline increases the demand for the raw signal and therefore
the likelihood that the first period price fully reflects this signal. When this happens,
speculators who receive the processed signal can profitably trade only on the component
of this signal that is orthogonal to the raw signal. As a result, the order flow from
speculators trading on the raw signal has less predictive power for the order flow from
speculators trading on the processed signal and therefore the second period return.

All our predictions are about the effects of a decrease in the cost of raw information.
Empiricists could test them by using shocks to the cost of accessing raw financial data.
For instance, in 2009, the SEC mandated that financial statements be filed with a new
language (the so called EXtensible Business Reporting Language) on the ground that it
would lower the cost of accessing data for smaller investors.9 The implementation of this
new rule or other shocks of the same nature could therefore be used to test some of our
predictions.10

Our paper contributes to the literature on costly information acquisition in financial
markets and information markets (e.g., Grossman and Stiglitz (1980), Verrechia (1982),
Admati and Pfleiderer (1986), Veldkamp (2006a,b), Cespa (2008), or Lee (2013); see
Veldkamp (2011) for a survey). Some models (e.g., Verrechia (1982) or Peress (2010))

8This is not due to serial correlation in returns. In our model, the price of the asset at each date is
equal to its expected value conditional on all available public information, i.e., the history of trades as
in Kyle (1985). Hence, returns are serially uncorrelated in our model.

9See SEC (2009). In particular on page 129, the SEC notes that: “If [XBLR] serves to lower the
data aggregation costs as expected, then it is further expected that smaller investors will have greater
access to financial data than before. In particular, many investors that had neither the time nor financial
resources to procure broadly aggregated financial data prior to interactive data will have lower cost access
than before interactive data. Lower data aggregation costs will allow investors to either aggregate the
data on their own, or purchase it at a lower cost than what would be required prior to interactive data.
Hence, smaller investors will have fewer informational barriers that separate them from larger investors
with greater financial resources.”‘

10Interestingly, data vendors such as Dow Jones screen SEC filings by firms and release information
contained in these filings through specialized services (e.g., Dow Jones Corporate Filing Alert). Thus,
reduction in the cost of accessing these filings for data vendors are like reduction in the cost of producing
raw information in our model.
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have considered the possibility for informed investors to pay a cost to obtain more precise
information. This cost can be interpreted as a cost of processing information. However,
in these models, all investors trade simultaneously. In this case, a reduction in the cost
of information leads investors to buy more precise information and make stock prices
more informative (see Verrechia (1982), Corollary 4). In contrast, in our model, time is
required to obtain information of greater precision. In this case, our analysis shows that
a decline in the cost of raw information can reduce the value of processed information
and therefore the demand for this type of information. As a result, price informativeness
is reduced in the long run.

In Lee (2013), investors can buy signals on one of two independent fundamentals
(factors) for an asset. In his model, a decrease in the cost of acquiring information
one one fundamental can increase or reduce the number of investors buying information
on the other fundamental. Our finding that a stronger demand for the raw signal can
reduce or increase the demand for the processed signal has a similar flavor. However, the
mechanisms and information structures in Lee (2013) and our model are very different.
In Lee (2013), all informed investors trade simultaneously and interdependence in the
demands for each type of signals arise from the fact that trades by one type of informed
trader affects (negatively) liquidity for the other type and (positively) the ability of the
other type to conceal his trades. In our model, these effects cannot play out because
speculators trade on the raw and the processed signals at different dates.

As in Froot, Scharfstein and Stein (1992) and Hirshleifer et al. (1994), our model
features “early” (those who trade on the raw signal) and “late” (those who trade on the
processed signal) informed investors. In contrast to these models, however, investors can
endogenously choose to trade early or late in our model and this choice determines the
reliability of their information (late investors receive more reliable information).11 For
this reason, the implications of our model are distinct from those in existing models with
realy and late informed investors.12 For instance, in Hirshleifer et al.(1994), the trades of
early and late informed investors are always positively correlated (see their Proposition
2) while, instead, they can be negatively correlated in our model. Moreover, in Hirshleifer
et al.(1994), the trades of late informed investors are not correlated with past returns

11In Holden and Subrahmanyam (2002), risk averse investors can choose to receive information at
dates 1 or 2. However, the precision of investors’ signals is the same at both dates. In contrast, in
our model, investors who process information are better informed than investors who just trade on raw
information.

12In Froot et al.(1992), there exist equilibria in which a fraction of speculators trade on noise. However,
there is no possibility for traders to correct price changes due to such trades. In contrast, in our model,
speculators correct price changes due to noise, after receiving the processed signal.
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(see their Proposition 3) while they are in our model.
The next section describes the model. Section 3 derives equilibrium prices at dates

1 and 2, taking the demands for raw and processed information as given. Section 4
endogenizes these demands . Section 5 derives the implications of the model for (a) asset
price informativeness and (ii) price and trade patterns. Section 7 concludes. Proofs of the
main results are in the appendix. Additional material is available in the on-line appendix
on the authors’ website.

2 Model

We consider the market for a risky asset. Figure 1 describes the timing of actions and
events. There are four periods (t ∈ {0, 1, 2, 3}). The payoff of the asset, V , is realized
at date t = 3 and can be equal to 0 or 1 with equal probabilities. Trades take place
at dates t = 1 and t = 2 among three types of market participants: (i) a continuum of
liquidity traders, (ii) a continuum of risk neutral speculators, and (iii) a competitive and
risk neutral market-maker. We denote by ᾱ the mass of speculators relative to the mass
of liquidity traders (which we normalize to one).

t = 0

Markets for information :

- A mass α1 of speculators
decide to buy the raw
signal, which will be
available at date 1, at
price Fr .

- A mass α2 of speculators
decide to buy the
processed signal, which
will be available at date
2, at price Fp .

t = 1

- Speculators
observe the raw
signal s, then
submit buy or
sell orders for
one share.

- Liquidity traders
submit buy or
sell orders.

- The market
maker observes
the aggregate
order flow, f1,
and sets a price
p1.

t = 2

- Speculators
observe the
processed signal
(s, u), then they
submit buy or
sell orders for
one share.

- Liquidity traders
submit buy or
sell orders.

- The market
maker observes
the aggregate
order flow, f2,
and sets a price
p2.

t = 3

The asset pays
off, V ∈ {0, 1}.

Figure 1: Timing

Just before date 1, some new, noisy, information about the payoff of the asset becomes
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privately available to information sellers. There are two types of information sellers: (i)
“raw information” sellers and (ii) “processed information” sellers. Raw information sellers
release a signal s̃ at date 1 to speculators who have subscribed to their services at date
0 (see below), such that:

s̃ = ũ× Ṽ + (1− ũ)× ε̃, (1)

where ũ and ε̃ can take the values 0 or 1. Specifically, ũ = 1 with probability θ (and
therefore ũ = 0 with probability (1− θ)) while ε̃ = 1 with probability 1/2. Moreover, ε̃,
Ṽ , and ũ are independent. Thus, with probability θ, the signal sold by raw information
sellers reveals V and with probability (1− θ), it is just noise.

In contrast, processed information sellers filter out the noise from the information
available at date 1, i.e., process this information (e.g., by accumulating more information
or by analyzing its implications for the asset value in more detail). Formally, they learn
u and disseminate the signal (s, u) to speculators who have subscribed to their services.
Importantly, information processing takes time. Specifically, it requires one period after
the arrival of the new information about the asset. Thus, processed information sellers
can release the signal (s, u) at date 2 only. We say that the processed signal confirms the
raw signal if u = 1 and invalidates it if u = 0.

We refer to s as the “raw signal” and to (s, u) as the “processed signal.” For the prob-
lem to be interesting, we assume that 0 < θ < 1 so that the raw signal is informative but
less reliable than the processed signal. The raw signal does not need to be construed as
completely unprocessed news. For instance, firms (e.g., Reuters, Bloomberg, Dataminr,
Thinknum, Orbital Insights etc.) selling signals extracted from social medias (twitter
etc.), companies reports or satellite imagery use algorithms to process their raw source of
information to some extent. This processing is faster but not as deep as that performed
by securities analysts or investment advisors who take the time to accumulate more in-
formation (e.g., by meeting firms’ managers, forecast future cash flows, compute discount
rates etc.) in order to sharpen the accuracy of their signals.

We denote the cost of producing the raw signal by Cr and the cost of producing the
processed signal by Cp. Moreover, we denote by Fr and Fp the fees charged, respectively,
by raw information sellers and processed information sellers to their subscribers.

Speculators. Speculators decide to buy or not signals at date t = 0. Each speculator
can decide to buy both types of signals, only one type, or no signal at all. As explained
in Section 4, they make their decision to maximize their expected profit of trading on
each signal net of the fee paid to obtain the signal. We denote the mass of speculators
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buying the raw signal by α1 and the mass of speculators buying the processed signal by
α2, with αj ≤ ᾱ. If all speculators find optimal to buy both signals then α1 = α2 = ᾱ.13

As in Glosten and Milgrom (1985), we assume that each speculator can only buy or
sell a fixed number of shares–normalized to one–using market orders (i.e., orders that
are non contingent on the contemporaneous execution price). If he decides to trade a
speculator will optimally submit an order of the maximum size (one share) because he
is risk neutral and too small to individually affect the equilibrium price. We denote by
xit ∈ {−1, 0, 1}, the market order submitted by speculator i trading at date t, with xit = 0
if speculator i chooses not to trade and xit = −1 (resp., +1) if he sells (resp., buys) the
asset. We focus on equilibria in pure strategies in which all speculators play the same
strategy at a given date (symmetric equilibria).14 Moreover, we assume that speculators
who only buy the raw signal trade at date 1 only.15 Henceforth, we drop index i when
referring to the strategy of a speculator since, at a given date t, all speculators follow the
same strategy.

Liquidity Traders. At each date t, liquidity traders buy or sell one share of the
asset for exogenous reasons. Their aggregate demand at date t, denoted l̃t, has a uniform
distribution (denoted φ(·)) on [−1, 1] and l̃1 is independent from l̃2. As usual, liquidity
traders ensure that the order flow at date t is not necessarily fully revealing and thereby
allows speculators to obtain trading profits in equilibrium (Grossman and Stiglitz (1980)).

The market-maker. At date t, the market-maker absorbs the net demand from
liquidity traders and speculators at this date (the “order flow”) at a price, pt, equal to
the expected payoff of the asset conditional on his information. As the market-maker
does not observe s̃ and ũ until t = 3, the price at date t only depends on the order flow
history until this date (as in Kyle (1985)). Formally, let ft be the order flow at date t:

ft = l̃t +
∫ αt

0
xitdi. (2)

13In a previous version of the paper, we considered the case in which each speculator could buy only
one type of signal. In this case, α1 + α2 ≤ ᾱ. Results in this case are identical to those obtained when
we allow each speculator to buy both signals.

14This restriction is innocuous because there are no other equilibria than symmetric equilibria in pure
strategies when speculators’ expected profits, gross of the price paid for the signal, are strictly positive.
This condition is necessarily satisfied in equilibrium when the price of a signal is strictly positive because
no speculator would buy a signal if his gross expected trading profit is zero.

15This assumption simplifies the exposition and the derivation of the equilibrium. It is innocuous
when the price at date 1 reveals the raw signal since retrading on this signal cannot be optimal. If
the price at date 1 does not reveal the raw signal, retrading on this signal at date 2 might be optimal.
Allowing this possibility however makes the analysis of the equilibrium at date 2 more complex without
adding insights. A trader who buys both the processed and the raw signals can trade at both dates. In
reality, traders taking positions on raw signals only are likely to face more stringent position limits than
those who refine their signals by also acquiring processed signals.
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The asset price at date t is:

pt = E[Ṽ |Ωt] = Pr[Ṽ = 1|Ωt], (3)

where Ωt is the market-maker’s information set at date t (Ω1 = {f1} and Ω2 = {f2, f1}).
At date 0, the asset price is p0 = E(V ) = 1/2. The highest and smallest possible
realizations of the order flow at date t are fmaxt = (1 + αt) (all investors are buyers at
date t) and fmint = −(1 + αt) (all investors are sellers at date t).

We solve for the equilibrium of the model backward. That is, in the next section, we
present speculators’ optimal trading strategies and equilibrium prices at dates 1 and 2, for
given values of α1 and α2. This allows us to compute the ex-ante (date 0) expected profits
from trading on each type of signal. Armed with this result, we derive the equilibrium of
the market for information at date 0 in Section 4, that is, we derive the equilibrium fees
(Fr and Fp) charged by information sellers and the equilibrium demand (i.e., α∗1 and α∗2)
for of each type of signal.

3 Equilibrium Trading Strategies and Prices

Let µ(s) be expected payoff of the asset at date 1 conditional on signal s ∈ {0, 1}. We
have:

µ(s) = E[V |s̃ = s] = Pr[V = 1|s̃ = s].

Hence:
µ(1) = 1 + θ

2 >
1
2 and µ(0) = 1− θ

2 <
1
2 .

At date 1, the only source of information available to speculators who buy information
from raw information sellers is s. Thus, we denote their trading strategy by x1(s) and
their expected profit per capita conditional on the realization of the raw signal is:

π1(α1, s) = x1(s)(µ(s)− E[p1|s̃ = s]).

The next proposition provides the equilibrium of the market for the risky asset at date 1
and the ex-ante (date 0) expected trading profit for speculators who buy the raw signal.

Proposition 1. Let ω(x, α1) = φ(x−α1)
φ(x−α1)+φ(x+α1) . The equilibrium at date 1 is as follows:

1. Speculators receiving the raw signal buy the asset if s = 1 and sell it if s = 0
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(x1(0) = −1 and x1(1) = 1). Other speculators do not trade.

2. The asset price is:

p∗1(f1) = Pr[Ṽ = 1|f̃1 = f1] = ω(f1, α1)µ(1) + (1− ω(f1, α1))µ(0), (4)

for f1 ∈ [fmin1 , fmax1 ].

3. Thus, the ex-ante expected profit from trading on the raw signal is:

π̄1(α1) = E(π1(α1, s)) = θ

2Max{1− α1, 0}. (5)

Figure 2 provides a graphical illustration of the proposition, using the fact that the
density of liquidity traders’ aggregate order, φ(.), is uniform.

In Panel A, we show the equilibrium distribution of the aggregate order flow at date
1 for each realization of s, given speculators’ trading strategy at this date. In Panel B,
we show the equilibrium price of the asset for each realization of the order flow at date 1.
When s = 0, speculators who receive the raw signal sell the asset. Thus, their aggregate
order is −α1 and the largest possible realization of the order flow in this case is (1− α1)
(when liquidity traders’ aggregate order is equal to 1). Thus, when the order flow at date
1 exceeds (1−α1), the market maker infers that s = 1 and sets a price equal to µ(1) (see
Panel B in Figure 2). Symmetrically, if the order flow at date 1 is smaller than −(1−α1),
the market maker infers that s = 0 and sets a price equal to p1 = µ(0). Intermediate
realizations of the order flow at date 1 (those in [−1+α1, 1−α1]) have the same likelihood
whether s = 1 or s = 0. Thus, they provide no information to the market marker and,
for these realizations, the market maker sets a price equal to the ex-ante expected value
of the asset, 1/2.

In sum, the order flow at date 1, f̃1, is either completely uninformative about the
raw signal, s, or fully revealing. In the former case, the return from date 0 to date 1,
denoted r1 = (p1 − p0), is zero. Otherwise this return is strictly positive if s = 1 and
strictly negative if s = 0. Thus, the probability of a price movement at date 1 is given by
the probability that the order flow is fully revealing, i.e., Min{α1, 1}. This probability
increases with the mass of speculators buying the raw signal, α1, because, as their mass
increases, their aggregate order size becomes larger relative to that of liquidity traders.
Thus, speculators trading on the raw signal account for a larger fraction of the total order
flow, which therefore becomes more informative. As a result, the price at date 1 becomes

12



Figure 2: Equilibrium at date 1

Panel A shows the distribution of the order flow at date 1. Panel B shows the equilibrium price
at date 1 for each possible realization of the order flow.

(A) Distribution of the Order Flow at Date 1

Blue : s = 1

Red : s = 0

−1−2 1 2

1/2

−1− α1 1− α1−1 + α1 1 + α1

Density of Order Flow at t = 1

Total
Order Flow

(B) Equilibrium Price at Date 1

−1 + α1 1− α1−1− α1 1 + α1

p1 = E [V |Order Flow at t = 1]

Order flow at t = 1 :
Liquidity Traders +
Raw Information
Speculators

p1 =
1
2

p1 =
1−θ
2

p1 =
1+θ
2

Order Flow contains no information

more responsive to trades at this date.
At t = 2, speculators who have purchased processed information receive the signal

(s, u), and observe p1. Hence, we denote their trading strategy by x2(s, u, p1) and their
expected trading profit (per capita) is:

π2(α1, α2, s, u, p1) = x2(s, u, p1)(E[V |u, s]− E[p2|u, s, p1]).

In the rest of the paper, we denote by πc2(α2) and πnc2 (α2), the expected profit of a
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speculator who buys the processed signal conditional on (i) a change in the price at
date 1 (i.e., p1 6= 1/2) and (ii) no change in the price at date 1 (i.e., p1 = p0 = 1/2),
respectively.

Proposition 2. The equilibrium at date t = 2 is as follows:

1. Speculators receiving the processed signal (s, 0) buy one share if the price in the first
period is smaller than 1

2 (i.e., x2(s, 0, p1) = 1 if p1 < 1/2); sell one share if the
price in the first period is greater than 1

2 (i.e., x2(s, 0, p1) = −1 if p1 > 1/2); and do
not trade otherwise (i.e., x2(s, 0, 1/2) = 0). If instead they receive the signal (s, 1),
they buy one share if s = 1 (i.e., x2(1, 1, p1) = 1) and sell one share if s = 0 (i.e.,
x2(0, 1, p1) = −1). Speculators who do not receive the processed signal do not trade
at date 2.

2. If p1 = µ(1) = 1+θ
2 then the asset price at date 2 is:

p∗2(f2) =



1
2 if f2 ∈ [fmin2 ,−1 + α2],
1+θ

2 if f2 ∈ [−1 + α2, 1− α2],

1 if f2 ∈ [1− α2, f
max
2 ].

3. If p1 = µ(0) = 1−θ
2 then the asset price at date 2 is:

p∗2(f2) =


0 if f2 ∈ [fmin2 ,−1],
1−θ

2 if f2 ∈ [−1 + α2, 1− α2],
1
2 if f2 ∈ [1− α2, f

max
2 ].

4. If p1 = 1
2 then the asset price at date 2 is:

p∗2(f2) =



0 if f2 ∈ [fmin2 ,−1],
1−θ
2−θ if f2 ∈ [−1,Min{−1 + α2, 1− α2}],
1
2 if f2 ∈ [Min{−1 + α2, 1− α2}],Max{−1 + α2, 1− α2}]

1
2−θ if f2 ∈ [Max{−1 + α2, 1− α2}, 1]

1 if f2 ∈ [1, fmax2 ].

5. The ex-ante expected profit of speculators who buy the processed signal, π̄2(α1, α2) ≡
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E[π2(α1, α2, s, u, p1)], is:

π̄2(α1, α2) = α1π
c
2(α2) + (1− α1)πnc2 (α2), (6)

where πc2(α2) = Max{θ(1− θ)(1− α2), 0} and

πnc2 (α2) =



θ
2(2−θ) (2− θ − α2) if α2 ≤ 1
θ
2

1−θ
2−θ (2− α2) if 1 < α2 ≤ 1,

0 if α2 > 2,

(7)

The trading decision of speculators who receive the processed signal at date 2 depends
on whether u = 1 or u = 0. When u = 1, the processed signal confirms the raw signal s.
Thus, speculators trade on the processed signal as they trade on the raw signal, i.e., they
buy the asset if s = 1 (the asset payoff is high) and sell it if s = 0 (the asset payoff is
zero). Thus, conditional on u = 1, speculators’ trading decision at date 2 is independent
from the price of the asset at the end of the first period.

In contrast, when u = 0, the processed signal invalidates the raw signal and speculators
receiving the processed signal expect the payoff of the asset to be 1/2. Their trading
decision is then determined by the latest price of the asset, i.e., p1. If p1 > 1/2, they
optimally sell the asset because they expect that, on average, their sell orders will execute
at a price greater than their valuation for the asset (1/2). Symmetrically, if p1 < 1/2,
they optimally buy the asset. Finally, if p1 = 1/2 and u = 0, not trading is weakly
dominant for speculators wo receive the processed signal because they expect their order
to execute at a price equal to their valuation for the asset, i.e., 1/2.16

Panel A of Figure 3 shows the possible equilibrium path paths when s = 1 (the case
in which s = 0 is symmetric) and the transition probabilities from the price obtained at
date 1 to the price at date 2, assuming that α1 ≤ 1 and α2 ≤ 1.17 The unconditional
probability of a given price path in equilibrium is obtained by multiplying the conditional
likelihood of this path by 1/2 because s = 1 or s = 0 with equal probabilities. Panel B
shows the distribution of the aggregate order flow at date 2 when p1 = 1/2, conditional on
each realization of the processed signal. As we shall see shortly, it is useful to understand

16The reason is that, in this case, speculators expect (i) liquidity traders’ aggregate demand for the
asset to be zero on average and (ii) other speculators’ demand for the asset to be zero as well. Hence,
a speculator expects the price at date 2 to be identical to the price at date 1 because his demand is
negligible compared to speculators’ aggregate demand.

17Transition probabilities are different when α2 > 1, which may happen in equilibrium; see next
section.
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Figure 3: Equilibrium at date 1

Panel A shows the possible equilibrium paths when s = 1. Panel B shows the distribution of
the order flow at date 2 for each possible realization of the processed signal when p1 = p0 = 1/2.

(A) Equilibrium price dynamics when s=1
Price dynamics conditional on s = 1

p0 =
1
2

p1 =
1
21− α1

p1 =
1+θ
2

α1

p2 =
1
21− α2

p2 =
1+θ
21− α2

p2 = 1

θα2

(1− θ)α2
p2 =

1
2−θ

1
2α2

p2 =
1−θ
2−θ

1
2 (1− θ)α2

1
2θα2

(B) Equilibrium Distribution of the Order Flow at Date 2

Blue : u = 1, s = 1

Red : u = 1, s = 0

Green : u = 0

−1−2 1 2

1/2

−1− α2 1− α2−1 + α2 1 + α2

Density of Order Flow at t = 2 if α2 < 1 and p1 = 1/2 (no price change at t = 1)

Total
Order Flow

Order Flow is non informative :
p2 = 1/2

Dealers learn that
u = 1 and s = 0 : p2 = 0

Dealers learn that
u = 1 and s = 1 : p2 = 1

Dealers learn that either
(u = 1, s = 0) or u = 0 :

p2 = 1−θ
2−θ

Dealers learn that either
(u = 1, s = 1) or u = 0 :

p2 = 1
2−θ

the distribution of equilibrium prices at date 2 when p1 = 1/2.
When s = 1, speculators who receive the raw signal buy the asset at date 1 and, with

probability α1, the market maker infers from the order flow that s = 1 and sets a price
equal to p1 = µ(1) = 1+θ

2 > p0. In this case, after trading at date 1, the only remaining
source of uncertainty for the market maker is about u. At date 2, with probability θ,
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the processed signal confirms the raw signal (i.e., (s, u) = (1, 1)). Hence, speculators
who receive this signal also buy the asset and, with probability α2, their demand is so
strong that the market maker infers that V = 1. Hence, the price goes up at date 2
relative to the price at date 1. The overall unconditional probability of two consecutive
up movements in the price is therefore (θα1α2)/2. Alternatively, with probability (1−θ),
the processed signal invalidates the raw signal (i.e., (s, u) = (1, 0)). Hence, speculators
sell the asset in period 2 because, given their information, it is overpriced. In this case,
with probability α2, their supply is strong enough to push the price back to its initial
level and they in fact correct the noise injected by speculators at date 1 into prices. Thus,
the unconditional probability of an up price movement followed by a down movement is
((1− θ)α1α2)/2. Finally, in either case, there is a probability (1−α2) that the order flow
at date 2 is uninformative. In this case, the price at date 2 is equal to the price at date
1.

When s = 1 and the market maker does not learn s from trades at date 1, his inference
problem at date 2 is more complex since he then knows neither s, nor u. This explains why
the set of possible realizations for the equilibrium price at date 2 is richer when there is no
price change at date 1. For instance, suppose that the market observes a realization of the
aggregate order flow at date 2 in the interval [−1,−1+α2]. As panel B of Figure 3 shows,
this realization is consistent with three possible realizations of the processed signal (1, 0),
(0, 0), or (0, 1). Moreover, for these realizations of the processed signal, all realizations of
the aggregate order flow in the interval [−1,−1+α2] are equally likely, and therefore they
provides no information at all about which signal has been realized. This leads the market
maker to set a price equal to p2 = E(v | (s, u) ∈ {(1, 0), (0, 0), (0, 1)}) = (1− θ)/(2− θ).
This explains why, even though s = 1, the price might decrease from date 1 to date 2
when it has not changed at date 1.

The expected profit from trading on a given signal (raw or processed) decreases with
the number of speculators buying this signal (that is, ∂π̄1(α1)

∂α1
≤ 0 and ∂π̄2(α1,α2)

∂α2
≤ 0).

Indeed, as more speculators trade on a signal, the order flow (or price) becomes more
informative about this signal and, as a result, expected profit from trading on this signal
drops. For instance, when α1 increases, the expected profit of trading on raw information
declines because, as explained previously, the likelihood that the order flow reveals spec-
ulators’ signal at date 1 becomes higher. This substitution effect is standard in models
of informed trading (e.g., Grossman and Stiglitz (1980) or Kyle (1985)).18

18When the demand for a given signal exceeds a threshold, speculators trading on this signal makes
zero expected trading profits. For instance, when α1 ≥ 1, the expected profit from trading on the raw
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More surprisingly, the next corollary shows that investors trading on the processed
signal can in fact benefit from a more informative price at date 1. That is, for some
parameter values, their expected profit is higher when the market maker learns the raw
signal at date 1 (and adjusts his price accordingly) than when he does not. Let denote
α̂2(θ) = (1−2θ)(2−θ)

2(2−3θ+θ2)−1 . Observe that α̂2(θ) > 0 iff θ < 1/2 and that α̂2(θ) goes to 2/3 as θ
goes to zero.

Corollary 1. The expected profit from trading on the processed signal is larger when the
market maker learns the raw signal (the order flow is fully revealing) at date 1 than when
he does not (i.e., πc2(α2) > πnc2 (α2)) when α2 < α̂2(θ) and θ ≤ 1/2. Otherwise it is
smaller.

The intuition for this finding is as follows. Suppose that the price reflects the raw
signal at the end of period 1. If this signal is valid then speculators receiving the processed
signal obtain a smaller expected profit than if the price had not changed. Indeed, the
price has partially adjusted in the direction of the value of the asset, which reduces the
return on trading of the processed signal. This is a standard mechanism in models of
information acquisition. However, the logic is reversed if the raw signal is noise. Indeed,
if the price at date 1 reflects the raw signal, speculators receiving the processed signal can
make a profit by correcting the noise in the price, either by selling the asset if the price
increased in the last period or buying it if the price decreased. This profit opportunity
does not exist if the price has not changed at date 1. For this reason, if the raw signal
is noise, speculators receiving the processed signal are better off when the price reflects
the raw signal at date 1 than when it does not. If the likelihood that the signal is noise
is large enough (θ ≤ 1/2) and competition among speculators receiving the processed
signal is not too intense (α2 < α̂2(θ)) then this second effect dominates and, on average,
speculators obtain a larger profit when the first period price reflects the raw signal than
when it does not.

The previous result implies that an increase in the demand for the raw signal can
have a positive effect on the expected profit of speculators who received the processed
signal. This effect again is non standard. Indeed, in standard models of trading with

signal, s, is nil because the mass of speculators trading on signal is so large relative to the mass of
liquidity traders that the order flow at date 1 is always fully revealing (the interval [−1 + α1, 1− α1] is
empty). For a similar reason, the expected profit from trading on the processed signal, (s, u), is zero
when the mass of speculators trading on the processed signal is twice the mass of liquidity traders, i.e.,
when α2 ≥ 2. The trading strategy that exploits the processed signal has a larger “capacity” (break even
for a larger number of speculators) because it is more difficult for market makers to infer information
about the processed signal from the order flow.
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asymmetric information, the expected profit of informed investors usually decrease with
the mass of informed investors. In contrast, in our setting, an increase in the mass of raw
information speculators can in fact result in larger expected profits for speculators who
receive the processed signal.

To see this, observe that the marginal effect of an increase in the demand for the raw
signal on the unconditional expected profit of trading on the processed signal (given by
eq.(6)) is:

∂π̄2(α1, α2)
∂α1

= πc2(α2)− πnc2 (α2). (8)

Thus, if πc2(α2) > πnc2 (α2), an increase in the demand for the raw signal (α1) increases the
unconditional expected profit of trading on the processed signal. Intuitively, it raises the
likelihood that the price will reflect the raw signal in the first period. This is beneficial for
speculators who trade on the processed signal if their expected profit is higher conditional
on change in price in the first period (the price reflects the raw signal) than conditional
on no change in price, that is, if α2 < α̂2(θ) and θ ≤ 1/2. The next corollary follows.

Corollary 2. The expected profit from trading on the processed signal, π̄2(α1, α2), in-
creases with the demand for the raw signal, α1, if and only if α2 < α̂2(θ) and θ ≤ 1/2.

In sum, an increase in the demand for the raw signal (α1) can either strengthen or
lower the value of the processed signal (i.e., the expected profit from trading on this
signal). Thus, an increase in the equilibrium demand for the raw signal could either
increase or reduce the demand for the processed signal. To study this issue, we analyze
the equilibrium in the markets for the raw and the processed information in the next
section.
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Figure 4: This figure plots the curve that represents the function α̂2(θ) and shows the
sets of values of θ and α2 for which a marginal increase in the demand for the raw signal
(α1) increases or decreases the value of the processed signal for speculators (Corollary 2).

4 Equilibrium in the Market for Information

In this section, we derive the fees charged by information sellers and the resulting equi-
librium demands (α∗2 and α∗1) for each type of signal. Several authors have observed
that the cost of discovering information has a large fixed cost component and a negligi-
ble marginal cost of reproduction and therefore dissemination (see, for instance, Shapiro
and Varian (1999) or Veldkamp (2011), Chapter 8 and references therein). For instance,
Shapiro and Varian (1999) write (on page 21): “Information is costly to produce but cheap
to reproduce [...]. This cost structure leads to substantial economies of scale.” Thus, as
in Veldkamp (2006a,b), we assume that information sellers bear a fixed cost to produce
their signal (denoted Cp for the seller of the processed signal and Cr for seller of the raw
signal) and zero cost to distribute it. For instance, Cr represents the cost of collecting
raw data and designing an algorithm to extract the raw signal s from these data. This
cost is independent from the number of buyers of the raw signal and the marginal cost
of distributing the signal to an extra buyer is zero.19

19Consider a firm like iSentium (see http://www.iSENTIUM.com/) that specializes in selling invest-
ment signals extracted from social medias, like tweeter. For this firm, the total cost of producing a
signal will comprise the cost of subscribing to the complete Twitter stream ($30,000 a month; see “How
investors are using social medias to make money”, Fortune, December 2015)) and developing algorithms
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As in Veldkamp (2006a,b), we also assume that markets for information are com-
petitive and perfectly contestable. This means that, in equilibrium, the buyers and the
seller of a given signal make zero expected profits. We first derive the equilibrium in the
market for the processed signal, holding the demand for the raw signal (α1) fixed. This
is without loss of generality because the equilibrium value of α1 is independent of the
equilibrium value of α2 (while the reverse is not true; see below). Thus, α1 can be treated
as a parameter in the analysis of the equilibrium of the market for the processed signal.

From the viewpoint of each speculator, the cost of the processed signal is the fee
charged by seller of this processed signal, Fp. Each speculator takes this fee as given
and views it as constant per speculator. Let π̄net2 (α1, α2, Fp) = π̄2(α1, α2) − Fp be the
expected profit from trading on the processed signal in equilibrium net of the fee paid
to obtain this signal. Moreover, let Π̄seller

2 (α2, Fp) = α2 × Fp − Cp be the expected profit
of the seller of processed information. Finally let (F e

p , α
e
2) be the equilibrium fee and the

equilibrium demand for the processed signal. We say that the market for the processed
signal is active if αe2 > 0.

If the market for the processed signal is active, in a competitive equilibrium, the
demand for the processed signal and the fee charged for this signal must be such that
the speculators buying the processed signal and the seller of this signal just break even.
That is, (F e

p , α
e
2) solve:

Zero profit for speculators: π̄net2 (α1, α
e
2, F

e
p ) = π̄2(α1, α

e
2)− F e

p = 0. (9)

and

Zero profit for the information seller: Π̄seller
2 (αe2, F e

p ) = αe2 × F e
p − Cp = 0. (10)

Condition (9) implies that, at equilibrium, a speculator who does not buy the pro-
cessed signal is not strictly better off doing so while a speculator buying it is not strictly
worse off doing so (taking other speculators’ decisions and the fee for information as
given). Obviously, if these conditions were not satisfied, then αe2 would not be the equi-
librium demand for the processed signal since either additional speculators would buy
the signal or some buyers of the signal would prefer not to buy it. Condition (10) is
necessary to preclude profitable entry by another seller of the processed signal. It is

to extract signals from this stream. These costs do not depend on the number of subscribers and cor-
respond to Cr in our model. iSentium charges a fee of 15, 000 per month to each subscriber buying its
signals. This corresponds to the fee Fr in our model.
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also sufficient to preclude such entry if F e
p is the smallest possible fee among all possible

equilibrium fees. Thus, when there are multiple solutions (F e
p , α

e
2) to eq.(9) and (10),

we select the one with the smallest fee, since other fees could profitably be undercut by
another information seller.

When the market for the processed signal is active, Condition (9) implies that the
aggregate net expected profit (denoted πnet,a2 (α1, α

e
2)) of speculators buying the processed

signal is zero. Thus, using eq.(10), we deduce that αe2 is an interior equilibrium if and
only if it solves:

πnet,a2 (α1, α
e
2) = αe2π

net
2 (α1, α

e
2, F

e
p ) = πgross,a2 (α1, α

e
2)− Cp = 0, (11)

where πgross,a2 (α1, α2) = α2π̄2(α1, α2) denotes the equilibrium aggregate gross expected
profit for speculators trading on the processed signal, for a given value of α1. Condition
(11) is equivalent to:

πgross,a2 (α1, α
e
2) = Cp. (12)

Thus, when the market for the processed signal is active, the equilibrium demand for this
signal is such that the aggregate gross expected profit of speculators buying this signal
is equal to its production cost.

Cp

Cmax(θ, α1)

Cmin(θ, α1)

α2
*α2

**
α2

max

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

α2

π
2a

,g
ro

ss
(α

1
,α

2
)

Figure 5: This figure represents speculators’ aggregate gross expected profit from trading
on the processed signal as a function of the demand for this signal, α2.

Speculators’ aggregate gross expected profit, πgross,a2 (α1, α2), is hump-shaped in the
demand for the processed signal, α2, holding α1 fixed (see Figure 5). We denote by
αmax2 (α1, θ) the demand for the processed signal that maximizes the aggregate gross
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expected trading profit from trading on this signal. Using eq.(6), we obtain:

αmax2 (α1, θ) = (2− θ)(1− (2θ − 1)α1)
2(1 + (2(2− θ)(1− θ)− 1)α1) , (13)

which is always less than 1. We deduce from eq.(6) that the maximum aggregate gross
expected trading profit from trading on the processed signal, denoted Cmax(θ, α1), is:

Cmax(θ, α1) ≡ πgross,a2 (α1, α
max
2 ) = θ(1− (2θ − 1)α1)αmax2

4 . (14)

First, consider the case in which Cp < Cmax(θ, α1), as assumed in Figure 5. For α2 ∈
[αmax2 , 2], speculators’ aggregate gross expected profit decreases in α2 from Cmax(θ, α1)
to zero. Thus, there is a unique α∗2 ∈ (αmax2 , 2) solving eq.(12) for 0 < Cp < Cmax. In
general, as Figure 5 shows, there is another value of α2, denoted α∗∗2 , solving eq.(12). This
value is necessarily on the increasing segment of speculators’ aggregate gross expected
profit (see Figure 5) since α∗2 is the unique solution on the decreasing segment, as we just
explained. Thus, α∗∗2 < αmax2 < α∗2.

Therefore, either αe2 = α∗2 or αe2 = α∗∗2 when the market for processed information is
active. In the former case, the zero expected profit condition for the information seller
imposes F e

2 = Cp/α
∗
2 while in the latter it imposes F e

2 = Cp/α
∗∗
2 . Thus, the information

seller’s fee is smaller in the first case since α∗∗2 < α∗2. Thus, the unique competitive
equilibrium of the market for processed information is (αe2, F e

2 ) = (α∗2, Cp/α∗2). Of course,
this equilibrium can be reached only if the mass of speculators , ᾱ, is larger than α∗2,
which is always the case when ᾱ ≥ 2 since α∗2 < 2. Henceforth, we therefore assume that
ᾱ ≥ 2. We show in the on-line appendix that the main findings are unchanged when
ᾱ < 2.

Now consider the case in which Cp ≥ Cmax(θ, α1). In this case, eq.(12) has no solution
because, for any α2, the gross aggregate profit from trading on the processed signal
is smaller than Cp (see Figure 5). Thus, there is no fee for the processed signal at
which transactions between the buyers and the seller of the processed signal are mutually
profitable. Consequently, when Cp ≥ Cmax(θ, α1), the market for the processed signal is
inactive, i.e., αe2 = 0.

The next lemma summarizes the previous discussion by providing the closed form
solution for the equilibrium demand for the processed signal, αe2, and the corresponding
fee charged by the seller of this signal.

Lemma 1. Let Cmin(θ, α1) = θ(1−θ)(1−α1)
2(2−θ) . The competitive equilibrium of the market for
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the processed signal is unique.

1. If Cp < Cmax(θ, α1), the equilibrium demand for the processed signal is:

αe2(θ, α1, Cp) =


αmax2 (θ, α1)

(
1 +

√
1− Cp

Cmax(θ,α1)

)
if Cmin(θ, α1) ≤ Cp ≤ Cmax(θ, α1),

1 +
√

1− Cp

Cmin(θ,α1) if 0 ≤ Cp < Cmin(θ, α1),

and the equilibrium fee for the processed signal is F e
p = Cp

αe
2
.

2. If Cp > Cmax(θ, α1), there is no fee at which the seller and the buyers of the processed
signal can trade in a mutually beneficial way. Thus, the processed signal is not
produced in equilibrium and therefore αe2 = 0.

Not surprisingly, as the fixed cost of producing the processed signal declines (starting
from Cmax), the fee charged by the seller of the processed signal falls and, therefore, the
mass of speculators buying this signal increases ( ∂α

e
2

∂Cp
≥ 0; see Figure 5).

The next proposition provides the equilibrium of the market for the raw signal. As
the derivation of this equilibrium is similar and simpler than that of the equilibrium of
the market for the processed signal, we relegate the proof of Lemma 2 to the on-line
appendix for brevity.

Lemma 2. The competitive equilibrium of the market for the raw signal is unique.

1. If Cr < θ
8 , the equilibrium demand for the raw signal is:

αe1(θ, Cr) = 1
2 +

√
1
4 −

2Cr
θ

(15)

and the equilibrium price of the raw signal is F e
r = Cr

αe
1
.

2. If Cr ≥ θ
8 , there is no fee at which the seller and the buyers of the raw signal

can trade in a mutually beneficial way. Thus, the raw signal is not produced in
equilibrium and therefore αe1 = 0.

Thus, in equilibrium, the demand for the raw signal, α∗1, increases when the cost of
producing this signal decreases. Through this channel, a decrease in the cost of producing
the raw signal, Cr, has also an effect on the equilibrium demand for the processed signal
since the latter is influenced by the demand for the raw signal (see Corollary 2). The
next corollary analyzes this effect. Let C̄r(θ) = θ

2

(
1
4 −max

(
(1−θ)2+θ2

(1−2θ)[2(1−θ)(2−θ)−1] −
1
2 , 0

)2)
and C̄p(θ) = θ(1−θ)2(2−θ)(1−2θ)

(2(1−θ)(2−θ)−1)2 .
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Proposition 3. 1. For θ >
√

2−1√
2 , a decrease in the cost of producing the raw signal

reduces the equilibrium demand for the processed signal ( ∂α
∗
2

∂Cr
> 0).

2. For θ ≤
√

2−1√
2 , a decrease in the cost of the raw signal increases the equilibrium

demand for the processed signal (i.e., ∂α∗
2

∂Cr
< 0) if Cr < C̄r(θ) and Cp > C̄p(θ).

Otherwise, a decrease in the cost of the raw signal reduces the equilibrium demand
for the processed signal.

As shown in Corollary 2, an increase in the demand for the raw signal can either reduce
or increase the gross expected profit from trading on the processed signal. It increases
this profit if and only if αe2 < α̂2(θ) (see Corollary 2). In the proof of Proposition 3,
we show that this condition is equivalent to θ ≤

√
2−1√

2 , Cr < C̄r(θ), and Cp > C̄p(θ).
In this case, a decrease in the cost of the raw signal triggers, directly, an increase in the
equilibrium demand for the raw signal and thereby, indirectly, an increase in the expected
profit from trading on the processed signal, holding the demand for this signal constant.
As a result, the demand for the processed signal increases.

Otherwise (e.g., when θ >
√

2−1√
2 ), an increase in the demand for the raw signal under-

mines the expected gross profit from trading on the processed signal. Consequently, in
this case, the demand for the processed signal declines when the cost of the raw signal
decreases. Figure 6 illustrates this point by showing the equilibrium demand for the
processed signal for two different levels (high and low) of the cost of producing the raw
signal.
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Figure 6: This figure represents speculators’ aggregate profit from trading on the pro-
cessed signal as a function of the demand for this signal for two different values of the
cost of producing the raw signal: (i) high, in which case he equilibrium demand for the
raw signal is denoted by α1,high and (ii) low, in which case he equilibrium demand for the
raw signal is denoted by α1,low. The corresponding equilibrium demands for the processed
signal in each case are, respectively, α∗2(α1,high) and α∗2(α1,low).

As the next corollary shows, this effect can lead to a complete breakdown in the market
for the processed signal (a discontinuous drop to zero of the demand for this signal), even
though this market would exist in the absence of a market for the raw signal.

Proposition 4. Suppose θ >
√

2−1√
2 and θ(1−θ)

4 < Cp <
θ(2−θ)

8 . There exists a threshold
Ĉr(θ, Cp) (defined in the proof of the proposition) such that if Cr ≥ Ĉr, α∗2 ≥ ᾱmax2 > 0
while if Cr < Ĉr, α∗2 = 0.

Thus, the demand for the processed signal discontinuously drops to zero when Cr

passes below Ĉr(θ, Cp). Indeed, as the cost of producing the raw signal declines, more
speculators choose to buy this signal, which reduces the expected return from trading
on the processed signal when θ >

√
2−1√

2 . If the cost of producing the raw signal is just
equal to the threshold Ĉr, the largest possible value for the gross expected trading profit
of speculators trading on the processed signal is just equal to the cost of producing this
signal, Cp. At this point, any further decrease in the cost of the raw signal implies that
the aggregate gross expected trading profit for speculators trading on the processed signal
is smaller than the cost of producing this signal. Thus, there is no price at which the
sellers and buyers of the processed signal can find profitable to trade together. Hence,
the market for the process signal is not viable when Cr < Ĉr(θ, Cp) and therefore ceases
to exist.

26



Figure 7 illustrates this result. As the cost of producing the raw signal, Cr declines,
the demand for this signal increases in equilibrium (dotted line) while the demand for the
processed signal declines (plain line). At Cr = Ĉr ≈ 0.06, the demand for the processed
signal discontinuously drops from α∗2 ≈ 0.6 to zero.

Α1
* Cr

Α2
* Cr

Cr

`

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr

Figure 7: Equilibrium demands for the raw signal (red dotted line) and the processed
signal (blue thick line) as a function of the cost of raw information Cr (X-axis), with
θ = 0.75 and Cp = 0.06

5 Implications

5.1 Price Informativeness

We now study how a change in the cost of producing the raw signal affects price infor-
mativeness. In the absence of informed trading at dates 1 and 2 (α1 = α2 = 0), the asset
price at each date is constant (p0 = p1 = p2 = 1/2) and is therefore completely uninfor-
mative about the asset payoff. In this benchmark case, the average squared pricing error
(the difference between the asset payoff and its price) is therefore E[(Ṽ − p0)2] = 1/4 at
dates 1 and 2. We measure price informativeness at date t, denoted Et(Cr, Cp), by the
difference between the average pricing error in the benchmark case (completely uninfor-
mative prices) and the average pricing error at date t in equilibrium, i.e., by:

Et(Cr, Cp) = 1
4 − E[(Ṽ − p∗t )2] (16)

The more informative is the price at date t in equilibrium, the higher is Et(Cr, Cp). The
highest possible value for Et(Cr, Cp) is obtained if the price at date t is fully informative
(pt = V ) and is therefore equal to 1/4. The smallest possible value is equal to zero and is
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obtained when the price at date t is uninformative.20 Thus, Et(Cr, Cp) belongs to [0, 1/4].
We refer to E1(Cr, Cp) as price informativeness in the short run and to E2(Cr, Cp) as

price informativeness in the long run where the notion of short and long run are defined
relative to the moment at which new raw information becomes available. Intuitively, long
run price informativeness is at least equal to short run price informativeness because the
market maker has at least as much information at date 2 than he has at date 1 (Ω1 ⊂ Ω2).
It is strictly higher (i.e., E2(Cr, Cp) > E1(Cr, Cp)) when αe2 > 0 because trades at date 2
contain new information if some speculators trade on the processed signal. Otherwise, if
αe2 = 0, long run price informativeness is equal to short run price informativeness because
p∗2 = p∗1 with certainty.

The next corollary studies how a change in the cost of producing the processed signal
(Cp) affects price informativeness in equilibrium (i.e., accounting for the effects of a change
in this cost on equilibrium fees and demands for the processed and the raw signals).

Corollary 3. A reduction in the cost of the processed signal has no effect on short run
price informativeness (∂E1(Cr,Cp)

∂Cp
= 0) while it (weakly) increases long run price informa-

tiveness (∂E2(Cr,Cp)
∂Cp

≤ 0).

A decrease in the cost of producing the processed signal raises the demand for the
processed signal in equilibrium and therefore leads to more informative prices at date 2.
This effect is standard in models with endogenous information acquisition (e.g., Grossman
and Stiglitz (1980)): when the cost of information production falls, the demand for
information increases and prices become more informative.

Our main new result regarding price informativeness is that this logic does not nec-
essarily apply when one considers a decline in the cost of producing the raw signal (Cr).
Indeed, even though a decline in this cost improves price informativeness in the short
run, it can impair long run price informativeness.

Proposition 5. A reduction in the cost of the raw signal (weakly) increases short run
price informativeness (∂E1(Cr,Cp)

∂Cr
≤ 0). However, its effect on long run price informative-

ness is ambiguous. Specifically, suppose that (i) θ >
√

2−1√
2 or (ii) θ ≤

√
2−1√

2 and (ii.a)
Cr > C̄r(θ), or (ii.b) Cp < C̄p(θ). In these cases, a reduction in the cost of produc-
ing the raw signal reduces long run price informativeness when (a) Cp ≤ Cmin(θ, αe1) or
(b) Cmin(θ, αe1) ≤ Cp ≤ Cmax(θ, αe1) and Υ(αe1, αe2, θ, Cp) > 0 (a function defined in the

20As As pt = E[V |Ωt], we have E[(Ṽ − p∗
t )2] = E[V ar[V |Ωt]]. Thus, Et(Cr, Cp) = V ar(V ) −

E[V ar[V |Ωt]]. Hence, price informativeness at date t is higher when, on average, the price at this
date provides a more accurate signal of the asset payoff.
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proof of the proposition). Otherwise it increases long run price informativeness when
Cp ≥ Cmax(θ, αe1).

Short run price informativeness increases when the cost of producing the raw signal
declines because it leads more speculators to buy this signal. As the raw signal is not
always noise (θ > 0, as otherwise no investor buys the raw signal), the increase in the
mass of speculators trading on the raw signal makes the asset price more informative at
date 1. However, when (i) θ >

√
2−1√

2 or (ii) θ ≤
√

2−1√
2 and (ii.a) Cr > C̄r(θ), or (ii.b)

Cp < C̄p(θ), this effect triggers a drop in the demand for the processed signal because it
reduces the expected profit from trading on this signal (see Corollary 3 and Figure 7).
This indirect effect of a reduction in the cost of the raw signal tends to decrease long run
price informativeness.

This second effect dominates for a large range of parameter values. That is, in many
cases, a reduction in the cost of the raw signal leads to a drop in long run price informative-
ness (a drop in E2(Cr, Cp)), despite its positive effect on short run price informativeness.
Figure 8 illustrates this finding by showing the evolution of E1(Cr, Cp) and E2(Cr, Cp) as
a function of the cost of raw information, Cr, for specific parameter values.

E1
* Cr ,Cp 

E2
* Cr ,Cp 

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.00

0.05

0.10

0.15

Cr

Figure 8: Price informativeness in the short run (red dotted line) and the long run (blue
thick line) as a function of the cost of raw information Cr (X-axis), with θ = 0.75 and
Cp = 0.06

When the cost of raw information, Cr, is large, there is no trading on raw information
(αe1 = 0) and the demand for the processed signal is relatively high. As the cost of the raw
signal declines, the demand for this signal starts increasing and consequently the demand
for the processed signal, αe2, decreases (see Figure 7). Short run price informativeness
increases but long run price informativeness declines (see Figure 8). When Cr = Ĉr '
0.06, the gross aggregate expected profit from trading on the processed signal is just equal
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to the cost of producing this signal. At this point, if Cr decreases further, the demand for
the processed signal discontinuously drops to zero (as implied by Corollary 4) and long
run price informativeness drops discontinuously as well and becomes just equal to short
run price informativeness. As Cr keeps declining, the demand for the raw signal increases.
Hence, short run price informativeness improves and long run price informativeness does
as well. Indeed, short run and long run price informativeness are now equal because there
is no further investment in discovering the payoff of the asset after date 1.

Interestingly, even if Cr = 0 (i.e., αe1 = 1), price informativeness at date 2 is smaller
than when the cost of producing the raw signal is so high (Cr ≥ θ

8) that there is no
demand for the raw signal (αe1 = 0). For instance, for the parameter values considered
in Figure 8, E2(0, Cp) = 0.14 while E2(Cr, Cp) = 0.17 for Cr ≥ θ

8 . The next proposition
shows that this conclusion holds more generally.

Proposition 6. When 0 < Cp ≤ θ(2−θ)(1−(2θ−1)2)
8 , long run price informativeness is

always smaller when the raw signal is free (Cr = 0) than when it is so costly that no
investor buys it in equilibrium (Cr > θ

8).

Arguably, progress in information technologies have reduced both the cost of accessing
raw data and information processing costs. However, as Proposition 6 shows, this evolu-
tion does not imply that long run price informativeness should improve. Indeed, for any
level of the cost of producing the processed signal, if θ < 1, there is always a sufficiently
low value of the cost of producing the raw signal such that long run price informativeness
is smaller than if there were no trading on the raw signal.21

Parts 1 and 3 of Proposition 5 hold for all parameter values. Part 2 requires the
conditions on parameters that are stated in the proposition. When these conditions do
not hold then a reduction in the cost of producing the raw signal improves long run
price informativeness because it raises the expected trading profit from trading on the
processed signal and thereby the demand for this signal (see Corollary 3).

The arrival of public news in financial markets (e.g., earnings announcements) offer
trading opportunities for speculators because news often need to be interpreted and
processed (see, for instance, Engelberg et al.(2012) for supporting evidence). One way to
test our predictions is therefore to consider the evolution price informativeness after news
arrival for a firm. For instance, suppose public news arrives about the asset just before
date 1. The prior distribution of V represents market participants’ beliefs about the payoff

21This follows from Proposition 6 and the continuity of E2(Cr, Cp) in Cr for Cr sufficiently close to
zero. The condition θ < 1 is required because for θ = 1, the condition on Cp in Proposition 6 can never
be satisfied.
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of the asset just after the arrival of this news. The raw signal s can then be interpreted as
a signal distributed by information sellers such as Thomson-Reuters or Ravenpack using
news analytics to extract information from the news while (s, u) would be signal produced
by buy-side securities analysts after carefully analyzing the implications of the news for
a firm. Using this interpretation of the timing of events in our model, one could test
its implications for price informativeness (and other implications developed in the next
section) by considering the effect of a decline in the cost of producing the raw signal (e.g.,
due to lower access costs to raw data) on the informativeness of stock prices at various
dates after news arrival about, say, future earnings (a proxy for V ). The model predicts
that a decline in the cost of raw information should make prices more informative shortly
after news arrival (say, one day; t = 1 in the model) and those at dates further away from
the news (say, one week; t = 2 in the model) less informative.

One problem with this approach is that one must take a stand on what are short and
long run prices. One way to circumvent this empirical issue is to measure the effect of a
reduction in the cost of raw information on the average price observed over some period
of time, after the arrival of news. For instance, consider the average price over periods
1 and 2 in our model: p̄∗ = p∗

1+p∗
2

2 . The informativeness of the average price is measured
by:

Eaverage(Cr, Cp) = 1
4 − E[(Ṽ − p̄∗)2] (17)

Using the fact that (V − p∗2) is orthogonal to (p∗2 − p∗1), we obtain after some algebra
that:22

Eaverage(Cr, Cp) = 0.75× E2(Cr, Cp) + 0.25× E1(Cr, Cp). (18)

Thus, as one could expect, the informativeness of the average price over periods 1 and
2 is a weighted average of long run price informativeness and short run price informa-
tiveness. Long run price informativeness counts relatively more than short run price
informativeness since it receives a weight of 75%.

A decline in the cost of raw information improves short run price informativeness but
it can reduce long run price informativeness. Hence, eq.(18) implies that this decline
should have a non monotonic effect on the informativeness of the average price over a
given period of time. Specifically, numerical simulations show that as Cr declines, the
informativeness of the average price first increases (the positive effect on short run price

22Indeed, we have E[(Ṽ − p̄∗)2] = E[(Ṽ − p∗
2)2] + 0.25E[(p∗

2 − p∗
1)2] because (V − p∗

2) is orthogonal
to p∗

2 − p∗
1. Moreover, for the same reason, we also have E[(Ṽ − p∗

1)2] = E[(V − p∗
2)2] + E[(p∗

2 − p∗
1)2].

Hence, E[(p∗
2 − p∗

1)2] = E[(Ṽ − p∗
1)2]−E[(V − p∗

2)2]. We deduce that E[(Ṽ − p̄∗)2] = 0.75E[(Ṽ − p∗
2)2] +

0.25E[(V − p∗
1)2], which yields eq.(18).
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informativeness dominates the negative effect on long run price informativeness) and
then decreases (the negative effect on long run price informativeness dominates). Figure
9 illustrates this pattern for specific parameter values (the informativeness of the average
price is given by the green dotted line). It also shows that the informativeness of the
average price when Cr = 0 is strictly smaller than the informativeness of the average
price when Cr is so large that no speculator chooses to buy raw information, as implied
by Proposition 6.
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Figure 9: Price informativeness at date t = 1 (red dotted line), at date t = 2 (blue
thick line), and Informativeness of the average price (green dotted line) as a function of
the cost of raw information Cr (X-axis), with θ = 0.68 and Cp = 0.066

5.2 Price and Trade Patterns

In this section, we analyze in more detail the return and trade patterns induced by spec-
ulators’ equilibrium behavior. Our goal is to derive the predictions of our model for the
effects of a decrease in the cost of raw information on the relationships between (i) the
trades of speculators at different dates, (ii) past returns and the trades of speculators
trading on the processed signal, (iii) future returns and the trades of speculators trading
on the raw signal. These predictions could be tested with data on trades by each type
of speculators. For instance, discretionary long-short equity hedge funds rely on funda-
mental analysis of stocks to decide whether to buy or sell them while other hedge funds
(or trading desks within these funds) specialize in trading on very high frequency signals
(see Pedersen (2015), Chapters 7 and 9). The former trade on processed signals while
the latter trade on the raw signal according to our terminology.

Corollary 4. In equilibrium, the covariance between the trades of speculators trading on
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the raw signal (x1) and the trades of speculators trading on the processed signal (x2) is:

Cov(x1, x2) =


θ − (1− θ)αe1(θ, Cr) if Cr < θ

8 and Cp < Cmax(θ, αe1(θ, Cr)),

0 if Cr > θ
8 or Cp > Cmax(θ, αe1(θ, Cr)),

This covariance declines when the cost of the raw signal declines and becomes negative if
θ < 1

2 and Cr < θ2(2θ−1)
2(1−θ) .

Figure 10, Panel A, illustrates Corollary 4. It plots the covariance between trades of
speculators at dates 1 and 2 against the reliability of the raw signal, θ, for various values of
the cost of producing this signal. This covariance is zero when this cost is so large relative
to the reliability of information, θ, that no speculator buys the raw signal (Cr > θ

8) or
so small that no speculator buys the processed signal (Cp > Cmax(θ, α∗1(θ, Cr)), which
happens for θ large enough, holding Cr constant. For intermediate values of θ, the
covariance increases with θ and can be positive or negative. Moreover, holding θ fixed,
it decreases as the cost of the raw signal declines.

The intuition for Corollary 4 is as follows. The processed and the raw signals command
trades in the same direction if the raw signal is valid, i.e., when u = 1. Instead, when the
raw signal is noise, speculators trade on the raw and the processed signals in opposite
directions when the price at date 1 reflects the raw signal. Indeed, in this case, speculators
who trade on the processed signal correct the noise injected in prices by those trading
on the raw signal. Holding θ constant, the probability of the latter event is low when
the cost of raw information is large because the mass of speculators trading on the raw
signal is too small to move prices. Hence, for sufficiently high values of Cr, speculators
who trade on the raw and the processed signals often trade in the same direction and
therefore Cov(x1, x2) > 0. As the cost of raw information declines, the likelihood that
speculators who trade on the raw signal move prices is higher because more speculators
trade on this signal. This effect raises the likelihood that speculators who trade on the
processed signal trade in a direction opposite to that of speculators who trade on the raw
signal. For this reason, as the cost of raw information declines, the covariance between
the trades of speculators trading at dates 1 and 2 becomes weaker and can even become
negative if the raw signal is sufficiently unreliable (i.e., if θ < 1/2).
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Figure 10: Panel A shows the covariance between speculators’ trades at dates 1 and
2 (Cov(x1, x2)) as a function of θ. Panel B shows the covariance between the return at
date 1 and speculators’ trades at date 2 as a function of θ. Panel C shows the covariance
between speculators’ trades at date 1 and the return at date 2 as a function of θ. In each
case, various values of Cr are considered: Cr = 0.1 (dotted lines), Cr = 0.05 (dashed
lines), Cr = 0.01 (thick lines). In all cases Cp = 0.02.

Corollary 5. In equilibrium, the covariance between the first period return (r1 = p1−p0)
and the trade of speculators who trade on the processed signal is:

Cov(x1, x2) =


θ(2θ − 1)αe1 if Cr < θ

8 and Cp < Cmax(θ, αe1(θ, Cr)),

0 if Cr > θ
8 or Cp > Cmax(θ, αe1(θ, Cr)),

Hence, the trades of speculators who trade on the processed signal are negatively correlated
with the first period return if and only if θ < 1

2 . Furthermore, a decline in the cost of the
raw signal, Cr, raises the absolute value of the covariance between their trade and the first
period return.

Figure 10 (Panel B) illustrates this result. Conditional on a price change at date 1, the
likelihood that speculators trade against this change after receiving the processed signal
increases with the likelihood, (1− θ), that the raw signal is noise. This explains why, for
θ < 1

2 , Cov(r1, x2) < 0. Thus, speculators who trade on the processed signal behave like
momentum traders when θ > 1

2 (the direction of their trades is positively related to the
lagged return) and contrarian traders (the direction of their trades is negatively related
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to lagged return) when θ < 1
2 . Moreover, holding θ constant, the relationship between

past returns and their trades becomes stronger when the cost of producing the raw signal
declines. Indeed, this decline triggers an increase in the demand for the raw signal and
therefore the likelihood that the price at date 1 will adjust to reflect the raw signal.

Corollary 6. In equilibrium, the covariance between the trade of speculators who receive
the raw signal and the second period return, r2 = p∗2 − p∗1, is positive and equal to:

Cov(x1, r2) =


0 when Cp > Cmax(θ, α∗1),
θ(1−α∗

1)α∗
2

2(2−θ) , when Cmin(θ, α∗1) ≤ Cp ≤ Cmax(θ, α∗1),
θ(1−α∗

1)(1−(1−θ)(1−α∗
2))

2(2−θ) , when Cp ≤ Cmin(θ, α∗1).

(19)

This covariance decreases when the cost of the raw signal declines if (i) θ >
√

2−1√
2 or (ii)

θ ≤
√

2−1√
2 and Cr ≥ C̄r(θ), or (iii) θ ≤

√
2−1√

2 and Cp ≤ C̄p(θ). In contrast, it always
increases when the cost of the processed signal declines.

When the cost of raw signal declines, the demand for this signal increases and it
becomes increasingly likely that the price at the end of the first period reveals s. In this
case, speculators receiving the processed signal in the second period can only trade on
the component of their signal that is orthogonal to the raw signal (i.e., the innovation
in the expectation of the asset payoff due to the observation of u). This effect lowers
the covariance between the trade of speculators in the first period and the second period
return (see Figure 10, Panel C) because the latter is increasingly determined by factors
independent from the raw signal (the realization of u and liquidity traders’ orders in the
second period).

In contrast, a decline in the cost of processed information has the opposite effect: it
strengthens the covariance between speculators’ trade in the first period and the second
period return. The reason is that this decrease raises the mass of speculators trading on
the processed signal and thereby the likelihood that the return in the second period reveals
their information. As this information is correlated with the raw signal s, the predictive
power of the trade of speculators using the raw signal for future returns increases.
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6 Extension: Price Contingent Information Acquisi-

tion

In our baseline model, investors decide to acquire each type of signal at date 0. In the
on-line appendix, we also analyze the case in which speculators can make their decision
to acquire the processed signal contingent on the price realized at date 1 for the asset and
the seller of the processed signal can charge a fee contingent on this price. In equilibrium,
the demand and the fee for the processed signal varies according to the price realized at
date 1 since the expected profit from trading on the processed signal is different when the
asset price at date 1 reflects the raw signal and when it does not (Corollary 1). We show
that our conclusions regarding the effect of a decrease in the cost of producing the raw
signal on (i) asset price informativeness and (ii) the relationships between returns and
order flows still hold in this case. In fact, the negative effect of a reduction in the cost of
raw information on asset price informativeness holds for a broader set of parameters.

7 Conclusion

The sharp decrease in the cost of accessing and manipulating vast amount of raw data
has lowered the cost of producing unfiltered (raw) signals about asset payoffs. Thus, the
price of unfiltered signals goes down and more investors buy these signals to trade on
them. As a result, asset prices become more informative about unfiltered signals. In this
paper we have shown that this evolution can either strengthen or weaken the incentive to
produce filtered signals (i.e., to process information to filter out the noise from raw data).
Indeed, when unfiltered signals turn out to be just noise, investors who can distinguish
fundamentals from noise make profits by correcting the noise injected in prices by those
trading on unfiltered signals. However, when unfiltered signals are indeed informative,
the return on information processing is lower. The reason is that information processing
takes time and therefore asset prices partially reflect the information contained in filtered
signals before these signals become available. The first effect makes filtered signals more
valuable while the second make them less valuable.

We find that the second effect dominates when unfiltered signals are not too unreliable.
In this case, a decline in the cost of producing unfiltered signals leads to a drop in the
demand for filtered signals and eventually a drop in the informativeness of prices about
asset payoffs. The model also predicts that a decline in the cost of producing unfiltered
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signals should affect correlations between (i) the trades of speculators trading on filtered
signals and those trading on unfiltered signals, (ii) the trades of speculators trading on
filtered signals and past returns, and (iii) the trades of speculators trading on unfiltered
signals and future returns.

Future research could test these implications by considering technological changes
that reduce the cost of access to raw information. We believe that recent improvements
in technologies to disseminate information in digital form offer many opportunities in this
respect.

Our analysis in this paper is silent on the welfare effects of a drop in the cost of
producing unfiltered signals. In our model, trading is a zero sum game and therefore
information has no social value. In this setting, the total fixed cost of producing signals
is a deadweight loss. Thus, a reduction in the cost of producing unfiltered signals is
welfare improving since it reduces the total fixed cost of information production, both
directly an indirectly by possibly crowding out the incentive to invest in the production
of filtered signals. However, a more complete analysis should account for possible social
gains of more informative prices. In particular, a growing literature (see Bond, Edmans,
and Goldstein (2012) for a survey) suggests that firms learn information from asset prices
and use this information to make more efficient investment decisions. Noisier prices lead
therefore to less efficient investment decisions (see Dessaint et al.(2016)). In this case,
the reduction in the total cost of information production (due to lower costs of accessing
raw data) should be balanced with the costs of less efficient decisions for firms due to less
informative asset prices. A detailed welfare analysis of this type is an interesting venue
for future research.
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Appendix A

Proof of Proposition 1.

Step 1: Stock price at date 1. The equilibrium price at date 1 satisfies (see eq.(3)):

p∗1(f1) = Pr[V = 1|f̃1 = f1] = Pr[f̃1 = f1|V = 1]Pr[V = 1]
Pr[f̃1 = f1]

. (20)

Speculators buy the asset at date 1 when they observe s = 1. Hence, conditional on V = 1,

aggregate speculators’ demand at date 1 is α1 with probability (1+θ)/2 and−α1 with probability

(1− θ)/2. Thus:

Pr[f̃1 = f1|V = 1] = (1 + θ

2 )φ(f1 − α1) + 1− θ
2 φ(f1 + α1). (21)

Furthermore, by symmetry:

Pr[f̃1 = f1] = 1
2φ(f1 − α1) + 1

2φ(f1 + α1). (22)

Substituting (21) and (22) in (20) and using the fact that Pr[V = 1] = 1/2, we obtain eq.(4).

Step 2: Speculators’ trading strategy at date 1. For a given trade x1, a speculator’s

expected profit when he observes signal s is:

π1(α, s) = x1(µ(s)− E[p1|s]).

As p∗1(f1) = E[V |f̃1] and the market-maker’s information set at date 1 is coarser than specula-

tors’ information set, we have:

µ(0) ≤ p∗1 ≤ µ(1),

with a strict inequality when f1 ∈ [−1 + α1, 1− α1] because in this case the order flow at date

1 contains no information (all realizations of the order flow in this interval are equally likely

conditional on V = 0 or V = 1). Therefore:

µ(0) < E[p∗1|s] < µ(1),
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when α1 < 1. Thus, in this case, it is a strictly dominant strategy for a speculator to buy the

asset when s = 1 and sell it when s = 0. It follows that the equilibrium at date 1 is unique

when α1 < 1. When α1 ≥ 1, [−1 + α1, 1− α1] is an empty set and p∗1(f1) = µ(s) for all values

of f1. Hence, a speculator obtains a zero expected profit for all x1 whether s = 1 or s = 0.

Buying the asset when s = 1 and selling the asset when s = 0 is then weakly dominant.

Step 3: The expected profit of trading on the raw signal. Suppose that s = 1,

so that speculators’ valuation for the asset after receiving the raw signal is µ(1). Given their

equilibrium strategy, speculators’ aggregate demand at date 1 is then α1. Thus, the aggregate

demand for the asset at date 1 is above the threshold −1 + α1. Accordingly, the price at date

1 is either 1/2 if f1 ∈ [−1 + α1, 1 − α1] or µ(1) if f1 ≥ 1 − α1. In the former case, speculators

earn a zero expected profit on the raw signal while in the later case, their expected profit is

µ(1)− 1/2 = θ/2. Now we have:

Pr(f1 ∈ [−1 + α1, 1− α1] | s = 1) = Pr(l1 ∈ [−1, 1− 2α1]) = Max{1− α1, 0}.

Thus, conditional on s = 1, speculators’ expected profit is θ
2Max{1−α1, 0}. By symmetry, this

is also the case when s = −1. Thus, π̄1(α1) = θ
2Max{1− α1, 0}.

Proof of Proposition 2.

Step 1. Asset price at date 2. We first derive the equilibrium asset price when specu-

lators behave as described in part 1 of Proposition 2.

Case 1. Suppose first that p1 = µ(1). In this case, the market maker knows that s = 1.

Hence, the remaining uncertainty is about u. If u = 1, speculators who receive the processed

signal buy the asset at date 2 and, therefore, their total demand for the asset belongs to

[−1 + α2, f
max
2 ]. If u = 0, these speculators sell the asset since p1 > 1/2 and therefore their

total demand for the asset belongs to [fmin2 , 1−α2]. For α2 ≤ 1, we have 1−α2 > −1+α2. Thus,

if f2 ∈ [fmin2 ,−1 + α2], market makers infer that u = 0 and set p∗2 = E(V | s = 1, u = 0) = 1/2.

Symmetrically if f2 ∈ [1 − α2, f
max
2 ], they infer that u = 1 and they set p∗2 = E(V | s = 1, u =

1) = 1. Intermediate realizations of f2 (those in [−1 + α2, 1 − α2]) are equally likely when

u = 1 or when u = 0. Thus, they convey no information on u. Hence, for these realizations:

p∗2 = E(V | s = 1) = µ(1). For α2 > 1, the reasoning is unchanged but the intermediate case
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never occurs. This yields Part 2 of the proposition.

Case 2. When p1 = µ(0), the reasoning is symmetric to that followed when p1 = µ(0)

(Case 1). Part 3 of the proposition follows.

Case 3. Now consider the case in which p1 = 1/2. In this case, the market outcome at

date 1 conveys no information to the market maker. Thus, from his viewpoint, there are three

possible states at date 2: {u = 1, s = 1}, {u = 0}, and {u = 1, s = −1}. Given speculators’

trading strategy at date 2, the corresponding total demand for the asset at date 2 has the

following support: [−1 + α2, f
max
2 ] if {u = 1, s = 1}, [−1, 1] if {u = 0}, and [fmin2 , 1 − α2] if

{u = 1, s = −1}.

Thus, if f2 > 1, the market maker infers that {u = 1, s = 1} and if f2 < −1, he infers that

{u = 1, s = 0}. Hence, in the first case p∗2 = 1 and in the second case p∗2 = 0. Now, consider

intermediate realizations for f2, i.e., f2 ∈ [−1, 1]. First, suppose f2 ∈ [−1,Min{−1+α2, 1−α2}].

Such a realization is possible only if u = 0 or if {u = 1, s = 0}. Thus, in this case:

p∗2 = Pr[u = 0|f2 ∈ [−1,Min{−1 + α2, 1− α2}]×
1
2 .

Now,

Pr[u = 0|f2 ∈ [−1,Min{−1+α2, 1−α2}] = Pr[f2 ∈ [−1,Min{−1 + α2, 1− α2}]|u = 0](1− θ)
Pr[f2 ∈ [−1,Min{−1 + α2, 1− α2}]

,

that is

Pr[u = 0|f2 ∈ [−1,Min{−1 + α2, 1− α2}] = 2(1− θ)
2− θ .

Thus, for f2 ∈ [−1,Min{−1 + α2, 1 − α2}], p∗2 = (1−θ)
2−θ . The case, in which f2 ∈ [Max{−1 +

α2, 1 − α2}, 1] is symmetric: such a realization of the order flow is possible only if u = 0 or if

{u = 1, s = 1}. Thus, in this case,

p∗2 = Pr[u = 1, s = 1|f2 ∈ [Max{−1+α2, 1−α2}, 1]]+Pr[u = 0|f2 ∈ [Max{−1+α2, 1−α2}, 1]]12 .

(23)

Using the fact that deep information speculators buy if {u = 1, s = 1} and stay put if u = 0

(since we are in the case in which p∗1 = 1/2), we deduce from eq.(23):

p∗2 = 1
2− θ .
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Finally, realizations of f2 ∈ [Min{−1 + α2, 1 − α2},Max{−1 + α2, 1 − α2}] are equally likely

in each possible state when p1 = 1/2. Thus, observations of f2 in this range are uninformative

and the equilibrium price in this case is p∗2 = 1/2. This achieves the proof of Part 4 of the

proposition.

Step 2. Speculators’ trading strategy at date 2. Let µ(u, s) be the expected payoff

of the asset conditional on the processed signal (u, s). This is the valuation of the asset for the

speculators who receive the processed signal at date 2. Suppose p∗1 = µ(1) first. In this case

s = 1 and either µ(1, 1) = 1 or µ(0, 1) = 1/2. Moreover, in this case, the equilibrium price of

the asset at date 2 is such that:

µ(0, 1) ≤ p∗2 ≤ µ(1, 1),

with a strict inequality when f2 ∈ [−1 + α2, 1]. This interval is never empty for α2 ≤ 2. Thus,

we can proceed exactly as in the proof of Proposition 1 to show that it is a dominant strategy

for speculators receiving the processed signal to (i) buy the asset if their expectation of the

value of the asset is µ(1, 1) and p1 = µ(1) and (ii) sell the asset if their expectation of the value

of the asset is µ(0, 1) and p1 = µ(1).

Now suppose that p∗1 = µ(0). In this case, a similar reasoning implies that it is a dominant

strategy for the speculators receiving the processed signal to (i) sell the asset if their expectation

of the value of the asset is µ(1, 0) and (ii) buy the asset if their expectation of the value of the

asset is µ(0, 1).

Now consider the case in which p∗1 = 1/2 and u = 1. In this case, we have:

µ(1, 0) ≤ p∗2 ≤ µ(1, 1),

with a strict inequality for some realizations of f2. Thus, again, we conclude that it is a dominant

strategy for speculators receiving the processed signal to (i) sell the asset if their expectation

of the value of the asset is µ(1, 0) and (ii) buy the asset if their expectation of the value of the

asset is µ(1, 1).

The remaining case is the case in which p∗1 = 1/2 and u = 0. In this case, a speculator

who receive the processed signal expects other speculators to stay put in equilibrium. Suppose

that one speculator deviates from this strategy by trading x2 shares in [−1, 1]. His effect on
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aggregate demand is infinitesimal. Hence, he expects f2 = l2 and therefore he expect f2 to be

uniformly distributed on [−1, 1]. Therefore, using the expression for p∗2 when p∗1 = 1/2, the

speculator expects to trade at:

E(p∗2 | p1 = 1/2, f2 ∈ [−1, 1]) = 1/2−θ(Min{−1 + α2, 1− α2}+Max{−1 + α2, 1− α2})
4(2− θ) = 1/2.

As the speculator expects the payoff to be µ(0, 0) = 1/2, his expected profit is therefore

x2(µ(0, 0) − E(p∗2 | p1 = 1/2, f2 ∈ [−1, 1]) = 0. Thus, the deviation yields a zero expected

profit and therefore not trading is weakly dominant for the speculator when p∗1 = 1/2 and

u = 0.

In sum we have shown that the trading strategy described in Part 1 of Proposition 2 is

optimal for a speculator who receives the processed signal, if he expects other traders to follow

this strategy and if prices at date 2 are given as in Parts 2, 3, and 4 of Proposition 2.

Step 3. Expected profit from trading on the processed signal.

Case 1: p1 = µ(1). In this case, a speculator receiving the processed signal buys the asset

if u = 1 and sells it if u = 0. Thus, he makes a profit if and only if p∗2 = p∗1 = µ(1), i.e., if

f2 ∈ [−1+α2, 1−α−2]. The likelihood of this event is Max{1−α2, 0} whether u = 1 or u = 0.

Thus, the expected profit of a deep information speculator if p∗1 = µ(1) is:

πc2(α2) = Max{1− α2, 0}(θ × (1− µ(1)) + (1− θ)× (µ(1)− 1/2)) = Max{1− α2, 0}θ(1− θ).

Case 2: p∗1 = µ(0). The case is symmetric to Case 1 and a speculator receiving the processed

signal also earns an expected profit equal to πc2(α2).

Case 3: p∗1 = 1/2. In this case a speculator trades the asset only if u = 1. Suppose first

that s = 1. Using Parts 2, 3, and 4 of Proposition 2, Table 1 gives the probability of each

possible realization for the equilibrium price at date 2 conditional on {u, s, p1} = {1, 1, 1/2} and

the associated profit for speculator who receives the processed signal (taking into account that

speculators buy the asset at date 2 if u = s = 1).

We deduce that if {u, s, p1} = {1, 1, 1/2}, the expected profit of as speculator who receives
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Table 1

Equilibrium price at date 2: p∗2 Prob if α2 ≤ 1 Prob if 1 < α2 ≤ 2 Speculator’s profit
0 0 0 1

1−θ
2−θ 0 0 1

2−θ
1
2 1− α2 0 1

2
1

2−θ
α2
2

(2−α2)
2

1−θ
2−θ

1 α2
2

α2
2 0

the processed signal is:

πnc2 (α2) =



θ
2(2−θ) (2− θ − α2) if α2 ≤ 1

θ
2

1−θ
2−θ (2− α2) if 1 < α2 ≤ 1,

0 if α2 > 2,

(24)

The case in which u = 1, s = 0, and p1 = 1/2 is symmetric and therefore yields the same

expected profit for a deep information speculator. Thus, when p∗1 = 1/2, the expected profit for

a speculator who receives the processed signal is given by πnc2 (α2).

Cases 1 and 2 happen with probability α1/2 each whileCcase 3 happens with probability

(1− α1). We deduce that if α2 ≤ 1, the expected profit of a speculator receiving the processed

signal is as given by eq.(6).

Proof of Corollary 1 Using the expressions for πnc2 (α2) and πc2(α2) in Proposition 2, it is

direct to show that πnc2 (α2) < πc2(α2) iff α2 < α̂2(θ) and θ ≤ 1/2.

Proof of Corollary 2. It follows directly from Corollary 1 and eq.(8).

Proof of Lemma 1. As explained in the text, α∗2 = 0 when Cp ≥ Cmax and α∗2 ∈ (αmax2 , 2)

when 0 < Cp < Cmax. Let Cmin(θ, α1) be the value of Cp such that α∗2 = 1. Thus, Cmin

solves πgross,a2 (α1, 1) = Cmin. Using eq.(6) and the definition of πgross,a2 (α1, α2), we deduce

that Cmin(θ, α1) = θ
2
θ(1−θ)(1−α1)

2(2−θ) . As πgross,a2 (α1, α2) decreases continuously in both α2 for

α2 ∈ (αmax2 , 2) and Cp, we deduce that α∗2 ≤ 1 for Cp > Cmin (case 1) and α∗2 ≥ 1 for

Cp ≤ Cmin (case 2).
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In Case 1, using eq.(6) and eq.(12), we deduce that α∗2 solves:

α∗2π̄2(α1, α
∗
2)− Cp = θ

2α2

[
1− (2θ − 1)α1 −

( 1
2− θ +

(
2(1− θ)− 1

2− θ

)
α1

)
α2

]
− Cp = 0.

(25)

This equation has two roots in α2 but only one is larger than αmax2 , as required in equilibrium.

This root is:

α∗2 = αmax2 (θ, α1)
(

1 +
√

1− Cp
Cmax(θ, α1)

)
.

In Case 2 (Cp ≤ Cmin), α∗2 ≥ 1. Thus, using eq.(6) and eq.(12), we deduce that α∗2 solves:

α∗2π̄2(α1, α
∗
2)− Cp = θ

2
1− θ
2− θ (1− α1)α2(2− α2)− Cp = 0. (26)

This equation again has two roots in α2 but only one is larger than 1 (as required). This root

is:

α∗2 = 1 +
√

1− Cp
Cmin(θ, α1) .

Proof of Proposition 3. As Cr affects α∗2 only through its effect on α∗1, we have:

∂α∗2
∂Cr

= (∂α
∗
2

∂α1
)(∂α

∗
1

∂Cr
). (27)

It is immediate from Lemma 2 that ∂α∗
1

∂Cr
≤ 0. Thus, eq.(27) implies that ∂α∗

2
∂Cr
≥ 0 iff ∂α∗

2
∂α1

< 0.

Thus, in the rest of this proof, we sign ∂α∗
2

∂α1
.

Remember that for Cp < Cmax, α∗2 > αmax2 and α∗2 solves:

πgross,a2 (α1, α
∗
2) = Cp.

Thus, using the implicit function theorem and the definition of πnet,a2 (α1, α2, Cp), we have

∂α∗2
∂α1

= −
∂
∂α1

[α2π̄2(α1, α2)]α2=α∗
2

∂
∂α2

[α2π̄2(α1, α2)]α2=α∗
2

. (28)

As α∗2 > αmax2 , we have ∂
∂α2

[α2π̄2(α1, α2)]α2=α∗
2
< 0. We deduce from eq.(28) that ∂α∗

2
∂α1

> 0 iff
∂
∂α1

[α2π̄2(α1, α2)]α2=α∗
2
< 0.

Case 1: 1/2 < θ or Cp < Cmin(θ, α1). If θ > 1/2, we deduce from Corollary 2 that the

expected profit of a speculator who trades on the processed signal, π̄2, decreases with α1. If
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Cp < Cmin(θ, α1), we deduce from Proposition 1 that α∗2 > 1. Therefore, using Corollary 2

again, π̄2, decreases with α1. Hence, for θ > 1/2 or Cp < Cmin(θ, α1), we have:

∂[α2π̄2(α1, α
∗
2)]

∂α1
< 0.

We deduce that if θ > 1/2 or Cp < Cmin(θ, α1) then ∂α∗
2

∂α1
< 0 and therefore ∂α∗

2
∂Cr

> 0.

Case 2: θ < 1/2 and Cmin(θ, α1) < Cp < Cmax(θ, α1). Using Corollary 2, we deduce that

the expected profit of a speculator who trades on the processed signal, π̄2, increases with α1

iff α∗2(α1) < α̂2(θ). Thus, if this condition is satisfied then ∂
∂α1

[α2π̄2(α1, α2)]α2=α∗
2
< 0 and

therefore ∂α∗
2

∂α1
> 0. Thus, in this case, ∂α∗

2
∂Cr

> 0. The rest of the proof consists in showing that

the conditions (i) θ <
√

2−1√
2 , (ii) Cr < C̄r(θ), and (iii) Cp > C̄p(θ) are necessary and sufficient

for α∗2(α1) < α̂2(θ). For brevity, we provide the proof of this result in the on-line appendix. As
√

2−1√
2 < 1/2, the proposition follows.

Proof of Proposition 4. When θ >
√

2−1√
2 , we show in the on-line appendix that Cmax(θ, α1)

decreases with α1. Moreover, using eq.(14), we obtain Cmax(θ, 1) = θ(1−θ)
4 and Cmax(θ, 0) =

θ(2−θ)
8 . Thus, for each Cp ∈ [ θ(1−θ)4 , θ(2−θ)8 ], there exists a unique αc1(θ, Cp) such that:

Cp = Cmax(θ, αc1).

Moreover, for α∗1 > αc1, Cp < Cmax(θ, α∗1) while for α∗1 < αc1, Cp > Cmax(θ, α∗1). We deduce from

Lemma 1, that for α∗1 > αc1, α∗2(θ, α∗1) > αmax2 while for α∗1 < αc1, α∗2(θ, α∗1) = 0. The corollary

follows by defining Ĉr as the value of Cr such that α∗1(θ, Ĉr) = αc1(θ, Cp).

Proof of Corollary 3. Using Proposition 1 (or Figure ??), we obtain that:

E1(Cr, Cp) =


0 if Cr ≥ θ

8 ,

α∗
1(θ,Cr)θ2

4 if Cr ≤ θ
8 ,

(29)

and
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E2(Cr, Cp) =



E1(Cr, Cp) if Cp ≥ Cmax(θ, α∗1),

θ
4

[
1− (1− α∗1

(
1− α∗

2
2−θ

)
− (1− θ)α∗1(1− α∗2)

]
if Cmin(θ, α∗1) ≤ Cp ≤ Cmax(θ, α∗1),

θ
4

[
1− (1− θ(1−θ)

2−θ α∗1)(2− α∗2)
]

if Cp ≤ Cmin(θ, α∗1),
(30)

where to simplify notations we have omitted the arguments of functions α∗2 and α∗1. As α∗1 does

not depend on the cost of the processed signal, we deduce from eq.(29) that price informativeness

at date 1 is not affected by a change in Cp.

As explained in the text, E2(Cr, Cp) ≤ E1(Cr, Cp) and this inequality is strict if α∗2 > 0,

i.e., if Cp < Cmax(θ, α∗1). In this range of value for Cp, it is immediate from eq.(30) that price

informativeness at date 2 increases with α∗2. As α∗2 declines when Cp decreases, we deduce

that price informativeness at date 2 increases when Cp declines for Cp < Cmax(θ, α∗1). For

Cp > Cmax(θ, α∗1), price informativeness at date 2 is equal to price informativeness at date 1

and therefore independent of Cp.

Proof of Proposition 5.

Part 1: Effect of Cr on short run price informativeness. We know from Proposition 2

that α∗1 weakly increases when Cr increases. Hence, we deduce from eq.(29) that E∗1 (Cr, Cp)

weakly decreases when Cr decreases.

Part 2: Effect of Cr on long run price informativeness. We consider three different cases

depending on the value of Cp.

Case 1. Consider first the case in which Cp < Cmin(θ, α∗1). In this case, α∗2 ≥ 1 (Proposition

1). Using eq.(6) and eq.(30), we have:

E∗2 (Cr, Cp) = θ

4 −
1
2 π̄2(α∗1, α∗2), (31)

where we omit the arguments of functions α∗1 and α∗2 to simplify notations. Now, as α∗2 > 0, in

equilibrium, α∗2π̄∗2 = Cp (see eq.(11). Thus, we deduce from (31) that:

E∗2 = θ

4 −
1
2
Cp
α∗2
. (32)
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As Cp < Cmin(θ, α∗1), we deduce from the analysis of Case 1 in the proof of Proposition 3

that α∗2 decreases when Cr decreases. Hence, from eq.(32), we deduce that if Cp < Cmin(θ, α∗1)

then E∗2 (Cr, Cp) decreases when Cr decreases.

Case 2. Now consider the case in which Cmin(θ, α∗1) < Cp < Cmax(θ, α∗1). In this case,

0 < α∗2 ≤ 1 (Proposition 1). Using eq.(6) and eq.(30), we have:

E∗2 (Cr, Cp) = θ

4 −
1
2

(
π̄2(α∗1, α∗2)− θ(1− θ)

2 α∗1(1− α∗2)
)
, (33)

where we again omit the arguments of functions α∗1 and α∗2 to simplify notations. As α∗2 > 0,

in equilibrium, α∗2π̄∗2 = Cp (see eq.(11). Thus, we can rewrite eq.(33) as:

E∗2 (Cr, Cp) = θ

4 −
1
2

(
Cp
α∗2
− θ(1− θ)

2 α∗1(1− α∗2)
)
, (34)

Using the fact that Cr affects α∗2 only through its effect on α∗1, we deduce from eq.(33) that:

∂E∗2 (Cr, Cp)
∂Cr

= (1
2
∂α∗1
∂Cr

)
(
∂α∗2
∂α∗1

(
Cp
α∗22
− θ(1− θ)

2 α∗1

)
+ θ(1− θ)

2 (1− α∗2)
)
, (35)

As ∂α∗
1

∂Cr
≤ 0, we deduce that the sign of ∂E∗

2 (Cr,Cp)
∂Cr

is opposite to the sign of the following

function:

G(α∗1, α∗2) ≡ ∂α∗2
∂α∗1

(
Cp
α∗22
− θ(1− θ)

2 α∗1

)
+ θ(1− θ)

2 (1− α∗2) (36)

To determine the sign of G(α∗1, α∗2), we first compute ∂α∗
2

∂α∗
1
. Using eq.(28), we obtain:

−∂α
∗
2

∂α∗1
=

∂[α∗
2π̄2(α∗

1,α
∗
2)]

∂α∗
1

∂[α∗
2π̄2(α∗

1,α
∗
2)]

∂α∗
2

=
α∗2

∂π̄2(α∗
1,α

∗
2)

∂α∗
1

α∗2
∂π̄2(α∗

1,α
∗
2)

∂α∗
2

+ π̄2(α∗1, α∗2)
.

Moreover, as 0 < α∗2 ≤ 1, we deduce from Proposition 2 that:

π̄2(α∗1, α∗2) = θ

2

{
1− (2θ − 1)α∗1 −

[ 1
2− θ +

(
2(1− θ)− 1

2− θ

)
α∗1

]
α∗2

}
.

This implies that

∂π̄2(α∗1, α∗2)
∂α∗1

= −θ2

[
2θ − 1 +

(
2(1− θ)− 1

2− θ

)
α∗2

]
,
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∂π̄2(α∗1, α∗2)
∂α∗1

= −θ2

[ 1
2− θ +

(
2(1− θ)− 1

2− θ

)
α∗1

]
.

Therefore,

−∂α
∗
2

∂α∗1
=

α∗2

[
2θ − 1 +

(
2(1− θ)− 1

2−θ

)
α∗2

]
α∗2

[
1

2−θ +
(
2(1− θ)− 1

2−θ

)
α∗1

]
− 2Cp

θ
1
α∗

2

The denominator of this expression is equal to −∂[α∗
2π̄2(α∗

1,α
∗
2)]

∂α∗
2

. This derivative is strictly pos-

itive in equilibrium (see the discussion that precedes Proposition 1). Hence, we deduce that

G(α∗1, α∗2) < 0 iff:

α∗2

[
2θ − 1 +

(
2(1− θ)− 1

2− θ

)
α∗2

](2Cp
θ

1
α∗22
− (1− θ)α∗1

)
,

− (1− θ)(1− α∗2)
[
α∗2

( 1
2− θ +

(
2(1− θ)− 1

2− θ

)
α∗1

)
− 2Cp

θ

1
α∗2

]
> 0

After some algebra, one can show that this condition is equivalent to:

Υ(α∗1, α∗2(α∗1), θ, Cp) > 0,

where

Υ(α∗1, α∗2(α∗1), θ, Cp) ≡
1− θ
2− θ

(2Cp
θ
− α∗2(1− α∗2)

)
+ 2Cp

( 1
α∗2
− 1

)
− α∗1α∗2

(1− θ)2

2− θ . (37)

In sum, G(α∗1, α∗2) < 0 iff Υ(α∗1, α∗2(α∗1), θ, Cp) > 0. Thus, when Cmin(θ, α∗1) < Cp <

Cmax(θ, α∗1), ∂E∗
2 (Cr,Cp)
∂Cr

> 0 iff Υ(α∗1, α∗2(α∗1), θ, Cp) > 0.

Case 3. Last consider the case in which Cmax(θ, α∗1) < Cp. In this case, we deduce from eq.(30)

that E2(Cr, Cp) = E1(Cr, Cp). As E1(Cr, Cp) increases when Cr decreases, we obtain that this

is also the case for E2(Cr, Cp) when Cmax(θ, α∗1) < Cp.

Proof of Proposition 6. Note that α∗1 = 0 for all Cr ≥ θ
8 . Thus, E2(Cr, Cp) = E2( θ8 , Cp) for

Cr ≥ θ
8 . We denote the difference in price informativeness at date 2 when Cr = 0 and when

Cr ≥ θ
8 , for a given Cp, by ∆E2(Cp). That is:

∆E2(Cp) ≡ E2(θ8 , Cp)− E2(0, Cp) (38)
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Observe that:

Cmax(θ, 0) = θ(2− θ)
8 > Cmin(θ, 0) = θ(1− θ)

2(2− θ) > Cmax(θ, 1) = θ(1− θ)
4 ,

and that

αmax2 (θ, 0) = 1− θ

2 , and αmax2 (θ, 1) = 1
2 .

Case 1. First, consider the case in which Cp ∈ [0, Cmax(θ, 1)]. In this case, using Proposition

1 and the previous observations, we obtain that if Cr = 0 then

α∗2 = 1
2

(
1 +

√
1− 4

θ(1− θ)Cp

)
< 1

and that if Cr ≥ θ
8 then

α∗2 = 1 +
√

1− 2(2− θ)
θ(1− θ)Cp > 1

Hence, using eq.(30) and eq.(38) , the previous observations, and the fact that α∗1 = 1 if Cr = 0,

we obtain

∆E2(Cp) = θ

4

[
(1− θ)1

2

(
1−

√
1− 4

θ(1− θ)Cp

)
− 1− θ

2− θ

(
1−

√
1− 2(2− θ)

θ(1− θ)Cp

)]
.

We deduce that:

4
θ

∂∆E2
∂Cp

= 1
θ

 1√
1− 4

θ(1−θ)Cp
− 1√

1− 2(2−θ)
θ(1−θ)Cp

 .

This is always positive iff 4
θ(1−θ)Cp >

2(2−θ)
θ(1−θ)Cp, which is always true. Thus, for Cp ∈ [0, Cmax(θ, 1)],

∆E2(Cp) increases with Cp. As ∆E2(0) = 0 and ∆E2(Cmax(θ, 1)) > 0, we obtain that ∆E2(Cp) >

0 when Cp ∈ [0, Cmax(θ, 1)].

Case 2. Now, consider the case in which Cp ∈ [Cmax(θ, 1), Cmin(θ, 0)]. In this case, using

Lemma 1 and the previous observations, we obtain that if Cr = 0 then

α∗2 = 1 +
√

1− 2(2− θ)
θ(1− θ)Cp > 1,
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and if Cr ≥ θ
8 then

α∗2 = 0.

Hence, using eq.(30) and eq.(38), and the fact that α∗1 = 1 if Cr = 0, we obtain

∆E2(Cp) = θ

4

[
1− θ − 1− θ

2− θ

(
1−

√
1− 2(2− θ)

θ(1− θ)Cp

)]
= θ

4

[
(1− θ)2

2− θ
1− θ
2− θ

√
1− 2(2− θ)

θ(1− θ)Cp

]
> 0.

Case 3. Finally suppose that Cp ∈ [Cmin(θ, 0), Cmax(θ, 1)]. In this case, using Lemma 1 and

the previous observations, we obtain that if Cr = 0 then

α∗2 =
(

1− θ

2

)(
1 +

√
1− 8

θ(2− θ)Cp

)
< 1,

and if Cr ≥ θ
8 then

α∗2 = 0.

Hence, using eq.(30) and eq.(38), and the fact that α∗1 = 1 if Cr = 0, we obtain that

∆E2 = θ

4

[
1
2 − θ + 1

2

√
1− 8

θ(2− θ)Cp

]
,

which is positive if Cp ≤ (1− (2θ − 1)2) θ(2−θ)8 .

Proof of Corollary 4. Using the first parts of Propositions 1 and 2, we deduce that:

x1 = Is=1 − Is=0, with s = u× V + (1− u)× ε, (39)

x2 = u× [IV=1 − IV=0] + (1− u)× [Ip1=(1−θ)/2 − Ip1=(1+θ)/2], (40)

where I denotes the indicator function, which is equal to one when the statement in brackets

holds. As E[x1] = E[x2] = 0, we deduce from eq. (39) and eq.(40) that:

Cov(x1, x2) = E[x1x2] = 1
2 E[x2|s = 1]− 1

2 E[x2|s = 0],

= θ

2 E [x2|V = 1, u = 1] + 1
2(1− θ)α

∗

Q
E
[
x2|ε = 1, u = 0, p1 = 1 + θ

2

]
,

− θ

2 E [x2|V = 0, u = 1]− 1
2(1− θ)α

∗

Q
E
[
x2|ε = 0, u = 0, p1 = 1− θ

2

]
,

= θ − (1− θ)α∗1.
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As α∗1 increases when Cr declines, we deduce that Cov(x1, x2) decreases when Cr decreases.

Moreover, Cov(x1, x2) < 0 iff:

α∗1(θ, Cr) ≥
θ

1− θ .

Substituting α∗1(θ, Cr) by its expression in eq.(15), we deduce that Cov(x1, x2) < 0 iff θ < 1/2

and Cr <
θ2(2θ−1)
2(1−θ) .

Proof of Corollary 5. Using the second part of Proposition 1 and the first part of Proposition

2, we deduce that:

p1 = 1
2 + θ

2If1>1−α∗
1
− θ

2If1<−1+α∗
1

(41)

x2 = U × [IV=1 − IV=0] + (1− u)× [Ip1=(1−θ)/2 − Ip∗
1=(1+θ)/2]. (42)

As E[x2] = 0 and E[p1] = 1/2, we deduce from (41) and (42) that:

Cov(p1, x2) = E[(p∗1 − 1/2)x2] = θα∗1
4

{
E
[
x2|s = 1, p∗1 = 1 + θ

2

]
− E

[
x2|s = 0, p1 = 1− θ

2

]}
= θ2

4 α
∗
1 E
[
x2|V = 1, u = 1, p∗1 = 1 + θ

2

]
+ θ(1− θ)

4 α∗1 E
[
x2|ε = 1, u = 0, p∗1 = 1 + θ

2

]
− θ2

4 α
∗
1 E
[
x2|V = 0, u = 1, p∗1 = 1− θ

2

]
− θ(1− θ)

4 α∗1 E
[
x2|ε = 0, u = 0, p∗1 = 1− θ

2

]
= θ(2θ − 1)α∗1.

As α∗1 increases when Cr declines, we deduce that |Cov(p1, x2)| increases when Cr decreases.

Proof of Corollary 6.

We first compute the expression for Cov(x1, r2) given in eq.(19). As E[x1] = 0,

Cov(x1, r2) = E[(p∗2 − p∗1)x1]− E[p∗2 − p∗1] E[x1] = E[(p∗2 − p∗1)x1]. (43)

Now:

E[p∗1x1] = 1
2(E[p∗1x1|s = 1] + E[p∗1x1|s = 0]) = 1

2(E[p∗1|s = 1]− E[p1|s = 0])

= 1
2

(
(1− α∗1)1

2 + α1
1 + θ

2

)
− 1

2

(
(1− α∗1)1

2 + α∗1
1− θ

2

)
= θα∗1

2 . (44)
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Similarly , we have that:

E[p∗2x1] = 1
2(E[p∗2|s = 1]− E[p∗2|s = 0]). (45)

We first compute E[p∗2|s = 1]. We have:

E[p∗2|s = 1] = α∗1 E
[
p2

∣∣∣∣s = 1, p∗1 = 1 + θ

2

]
+ (1− α∗1) E

[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
. (46)

The event p1 = 1+θ
2 implies that s = 1. Thus,

E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1 + θ

2

]
= E

[
p2

∣∣∣∣p∗1 = 1 + θ

2

]
= p∗1 = 1 + θ

2 ,

where the third equality follows from the fact that the equilibrium price is a martingale. More-

over, using Proposition 2, we deduce that if α∗2 < 1:

E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
= 1

2(1− θ)α∗2 ×
1− θ
2− θ + (1− α∗2)× 1

2 + 1
2α
∗
2 ×

1
2− θ + 1

2θα
∗
2 × 1

= 1
2 + α∗2

(
−1

2 + (1− θ)2

2(2− θ) + 1
2(2− θ) + θ

2

)

= 1
2 + θα∗2

2(2− θ) .

and if α∗2 ≥ 1,

E
[
p∗2

∣∣∣∣s = 1, p∗1 = 1
2

]
= (1− θ)1

2 + θ

[
α∗2
2 × 1 +

(
1− α∗2

2

)
× 1

2− θ

]
= 1

2 + θ

[
α∗2
2

(
1− 1

2− θ

)
+ 1

2− θ −
1
2

]
= 1

2 + θ

[
θ

2(2− θ) + 1− θ
2(2− θ)α

∗
2

]
= 1

2 + θ

2(2− θ) [1 + (1− θ)(α∗2 − 1)].

We deduce from these expressions and eq.(46) that:

E[p∗2|s = 1] =


1+θα∗

1
2 + θ(1−α∗

1)α∗
2

2(2−θ) if α∗2 ≤ 1,

1+θα∗
1

2 + θ(1−α∗
1)

2(2−θ) [1− (1− θ)(1− α∗2)] if α∗2 > 1.
(47)
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Proceeding in a similar way, we obtain after some algebra that

E[p∗2|s = 1] =


1−θα∗

1
2 − θα∗

2
2(2−θ) if α∗2 ≤ 1,

1−θα∗
1

2 − θ
2(2−θ) [1− (1− θ)(1− α∗2)] if α∗2 > 1.

(48)

After some algebra, we deduce from equations (43), (44), (45), (47), and (48) that:

Cov(x1, r2) =


θ(1−α∗

1)α∗
2

2(2−θ) if α∗2 ≤ 1,

(1−α∗
1)θ

2(2−θ) [1− (1− θ)(1− α∗2)] if α∗2 > 1,
(49)

which is equivalent to eq.(19) because α∗2 > 1 iff Cp < Cmin(θ, α∗1) and α∗2 ≤ 1 iff Cmin(θ, α∗1) ≤

Cp ≤ Cmax(θ, α∗1).

As α∗2 decreases with Cp and α∗1 does not depend on Cp, it is immediate from eq.(19) that

Cov(x1, r2) increases when Cp decreases. Moreover, if (i) θ >
√

2−1√
2 or (ii) θ ≤

√
2−1√

2 and

Cr ≥ C̄r(θ), or (iii) θ ≤
√

2−1√
2 and Cp ≤ C̄p(θ) then α∗2 decreases when Cr decreases. Thus, as

α∗1 increases when Cr decreases, we deduce that Cov(x1, r2) decreases when C − r decreases if

i) θ >
√

2−1√
2 or (ii) θ ≤

√
2−1√

2 and Cr ≥ C̄r(θ), or (iii) θ ≤
√

2−1√
2 and Cp ≤ C̄p(θ).
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