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Abstract

We characterise the optimal selling mechanism by a third party adviser who has

sole access to information on the continuous value of the good for the buyer in a

seller-buyer relationship. The adviser sells binary advice (buy or not) contingent on

the seller’s price and, with positive probability, recommends a buy decision when

the price exceeds the value. We extend the analysis to the case that the buyer has

additional private information on the value of the good. If the buyer has private

information the adviser may improve the welfare of the trading parties but, if not,

the adviser is detrimental to them.
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1 Introduction

In many markets there exist third-party information providers who, for a fee, give

information or advice to buyers about goods which they are considering purchasing.

For example, experts provide assessments of fine arts or antiques. Or the buyer

may be a potential purchaser of a firm and the third-party information provider a

consultant who has knowledge about the value of the firm, including its fit to the

potential investor. In this paper we study a situation in which there is a single

seller of an indivisible good, a single potential buyer who may or may not have

some private information about their valuation of the good, and an adviser who has

some information about the buyer’s valuation which neither the buyer nor the seller

possesses. The adviser has a monopoly on this information, which we model as a

realization w of a continuously distributed random variable, and is able to commit

to conveying it truthfully to the buyer. The adviser sets a fee for information and

designs the form which information disclosure will take, assuming the buyer agrees to

pay the fee. For example, he could fully disclose the value of w, or he could adopt a

binary structure (report whether w is above or below a given threshold), or he could

adopt a structure with two thresholds (report whether w is ‘high’, ‘medium’ or ‘low’).

Alternatively he could report a noisy signal of w. The adviser is able to make the

form of disclosure contingent on the price of the good and the seller sets the price

in the knowledge of the adviser’s policy. We are interested, among other aspects,

in the form which information disclosure takes, the interaction between the strategic

interests, and hence price formation, of the seller and the adviser, and the effects of

the adviser on the welfare of the buyer and seller.

The adviser, in designing his fee and information policy, takes into account its

effect on the seller’s price. On the one hand, he would like to design the policy so as

to reduce this price because that would increase the buyer’s surplus and, in principle,

the adviser might be able to extract this extra surplus through his information fee.

On the other hand, he faces a number of constraining factors. In the first place, if

the seller’s price is low the buyer may not be willing to buy information and will
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simply buy the good without the information. Secondly, the seller has the option of

setting a low price precisely in order to induce the buyer to buy outright (as opposed

to buying information first and then buying the good only with a lower probability).

The adviser has to allow the seller enough surplus that she does not want to bypass

the adviser in this way.

We first study the case in which the buyer has no private information. The seller’s

equilibrium price is at least as high as the buyer’s expected value. If the seller’s cost of

production is zero, or close to zero, the price is equal to the expected value, E(w). The

intuition for this is that if the price were higher than E(w) the value of information

would increase if the price were lowered (because the alternative for the buyer is not

to buy the good at all) and if the price were lower the value of information would

increase if the price were increased (because the alternative is to buy the good without

information). The adviser therefore designs his fee and information policy in such a

way as to induce the seller to set the price equal to E(w).

In equilibrium, the buyer buys information but the adviser does not provide full

information to him. Instead, he sells him binary information, i.e., a threshold struc-

ture. Moreover, the equilibrium threshold is below the equilibrium price - in effect,

the adviser advises the buyer to buy the good when its value is below its price. The

reason for this is that it gives a relatively high probability of sale, thereby increas-

ing the seller’s payoff and reducing her incentive to reduce her price and bypass the

adviser.

We also show, for the uniform distribution, that the presence of the adviser is

detrimental - he does not improve the buyer’s expected payoff, and reduces that of

the seller (as well as reducing total surplus).

Secondly, we study a model in which the buyer has private information and the

adviser can sell information in the form of a collection of thresholds (for each threshold

z the buyer can tell whether w is above or below z). In this case it may no longer

be optimal for the adviser to have a binary information policy. If the distribution

of the buyer’s information is convex and the highest type of buyer does not buy

information then the information structure has either one or two thresholds. If, on
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the other hand, the distribution is concave and the lowest type is excluded then there

is full information disclosure over the range of values relevant to those types who buy

information.

For the uniform distribution case we show that the adviser is beneficial to the

trading parties if his information is ‘small’, i.e., if it is relatively less important than

the buyer’s private information. He strictly improves the payoff of some buyer types

without reducing that of any buyer type or of the seller. This therefore contrasts with

the case in which his information is very ‘large’ - the buyer has no private information

- since, as mentioned above, the adviser is detrimental in that case.

There is a large literature which examines the incentives of sellers to provide

information to buyers in markets and auctions. Among others, Lewis and Sapping-

ton (1994), Ottaviani and Prat (2001), Johnson and Myatt (2006), Bergemann and

Pesendorfer (2007) and Eso and Szentes (2007a) study situations in which a seller

chooses both a selling mechanism and a rule for disclosing information to buyers.

Our paper focusses instead on a setting in which the seller and information provider

are distinct agents, and on the strategic interaction between them.

There is also a literature on certification intermediaries. For example, in Lizzeri

(1999) a monopoly intermediary who is informed about a seller’s quality sets a fee

and commits to an information disclosure policy. The seller then decides whether

to pay the intermediary or sell direct. In the unique equilibrium all sellers pay the

intermediary who reveals no information beyond the fact that the seller has paid to

be certified. A seller who does not pay the intermediary is believed to be the worst

type. The difference between this (and other papers in this literature, such as Albano

and Lizzeri (2001) and Biglaiser (1993)) and our paper is that our third party sells

information (in our case, to the buyer) which is not known to the seller.

Eso and Szentes (2007b), like us, study an adviser who sells information rather

than a good. Their focus, however, is different from ours. An adviser gives information

about the value of a project to a decision-maker. The decision-maker has private

information about this value, but the adviser can give him an additional signal. The

main result is that the adviser can get exactly the same surplus if she does not observe
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the signal which she gives as if she observes it perfectly. In the optimal mechanism

there is a menu of pairs of prices - a payment for the signal and a further payment

conditional on whether the project was undertaken.

The literature on Bayesian persuasion (e.g., Kamenica and Gentzkow (2011), Rayo

and Segal (2010)) is also concerned with design of information disclosure policies. Our

model is different in that a third party supplies a signal and that both information

and a product are sold. Prices are crucial strategic variables. In the language of

Kamenica and Gentzkow, we combine two ways in which an agent can be induced to

do something, by pricing and by changing beliefs.

Other papers which study the sale of information, but not by a third party in the

context of a trading relationship, are Bergemann, Bonatti and Smolin (2016), Hörner

and Skrzypacz (2015). Cabrales and Gottardi (2014) study a model in which buyers

can acquire information at a cost and sell it to other buyers if it is not relevant to

them. The focus of the paper is on the efficiency of information acquisition.

Roesler and Szentes (2016) characterize the information structure which is optimal

for the buyer, assuming the seller knows the structure but does not observe the

signal which the buyer receives. This structure is efficient and generates a unit-

elastic demand curve for the seller. This would be the best structure for our adviser

to provide to the buyer if he could extract the surplus. However, he cannot do so

because, since the signal structure is efficient, the buyer would be unwilling, once

the seller has named her price, to pay a positive price for the signal. Our paper

characterizes the structure of information which obtains if it has to be bought from

a monopoly provider.

2 Model

A seller (S) has an indivisible object which she can sell to a single potential buyer

(B). The value of the object to B, denoted by w, is distributed according to a CDF

F with support [0, 1]. Neither S nor B knows the value of w, but there is a third

party, A (for ‘adviser’), who does know w and can sell information about w to B.
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All parties are risk-neutral and have quasi-linear utility for money. Thus, if trade

between the buyer and seller takes place at price p and the buyer pays an amount

f to the adviser then the seller’s payoff is p − c where c < E(w) is the cost of

transaction/production, the buyer’s payoff is w − p − f and the adviser’s is f . We

make the following assumption about the distribution F .

Assumption 1 F has a strictly positive density.

The adviser A is able to decide what kind of information to offer to the buyer -

for example, he could reveal the true value of w, or he could reveal whether or not it

is above a certain value, or he could provide a stochastic signal which is imperfectly

informative about the value of w. We are interested, among other things, in examining

the equilibrium structure of information provided by A.

Let an Information Structure be a function Σ : [0, 1] → R, where R is the set

of real-valued random variables, which satisfies the measurability condition that, for

any p ∈ ℜ+, {(w̃, σ(w̃))|E(w|σ(w̃)) ≥ p} is a Borel-measurable set, where σ(w̃) is the

realization of Σ(w̃). For w ∈ [0, 1], Σ(w) is the signal, possibly stochastic, which B

receives from A if he buys information and the true state is w.

We denote the set of Information Structures by Φ.

A Price-Contingent Information Scheme is a function M : ℜ+ → Φ. For p ∈ ℜ+,

M(p) is the information structure which B obtains if he buys information and S has

charged price p.

We model the interaction between the three parties by means of the following

game, Γ.

1. A announces a fee f ∈ ℜ+ and a price-contingent information scheme M .

2. S observes A’s announcement and announces a price p.

3. B observes (f,M) and p and chooses either (a) to buy information for fee f

and then, given the realization of M(p), either to buy the good or not; or (b) to buy

the good outright at price p; or (c) not to buy information or the good.
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We assume that if B is indifferent between buying the good and not doing so, he

buys the good. Therefore, having bought information, B then buys the good if and

only if E[w|m] ≥ p, where m is the realization of M(p). Similarly, if B is indifferent

between buying information and not doing so, he buys information. In the sequel we

take it for granted that B’s equilibrium strategy satisfies this tie-breaking rule. Since

the buyer’s value is bounded above by 1, we assume, without loss of generality, that

S’s price is in the interval [c, 1].

Suppose that A has announced (f,M) and S has charged p. If B does not buy

information, then, if B buys the good, B’s payoff is E(w)−p and S’s profit is p−c; if

B does not buy the good B’s payoff is zero and so is S’s profit. If B buys information,

B’s expected payoff is

pr[E(w|m) ≥ p][E(w|E(w|m) ≥ p)− p]− f.

B chooses his optimal action and so his maximized payoff is

max[E(w)− p, pr[E(w|m) ≥ p][E(w|E(w|m) ≥ p)− p]− f, 0].

Given B’s behaviour as described above, the game following A’s announcement is

equivalent to a two-stage two-player game of complete information and the solution

concept we use is subgame-perfect equilibrium (that respects B’s tie-breaking rule

above).

One family of information structures which will be significant is the family of

deterministic threshold structures. For any ŵ ∈ [0, 1], the ŵ-Threshold Structure is

given by Σ(w) = Iŵ(w), where

Iŵ = 1 with probability 1 if w ≥ ŵ

and

Iŵ = 0 with probability 1 if w < ŵ.
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In other words, this is the deterministic structure according to whichA tellsB whether

or not w is at least ŵ.

3 Equilibrium Pricing and Information Disclosure

One possible course of action for A is to offer full information to B, or, equivalently

from B’s point of view, to offer the scheme M(p) = Ip. For any price p charged by

S, this tells B whether or not his value is above p. From an ex post standpoint this

is optimal for the buyer. If A offers this he could then extract this maximal rent

via the upfront fee. However, this ignores the fact that A, by a judicious choice

of information scheme, could oblige S to charge a lower price, thereby in principle

increasing B’s extractible rent. The question of which scheme is optimal for B in

this ex ante sense has been answered in a recent paper by Roesler and Szentes (2016)

for the case of c = 0. They show that if the information structure is optimal for the

buyer then the buyer buys the good after any signal, i.e. the outcome is efficient. The

structure has the property that it minimizes the seller’s optimum price subject to this

efficiency constraint. In the least-informative optimal structure, the buyer’s posterior

expectation of w is distributed in a unit-elastic fashion over an interior interval [p∗, p̄]

with an atom at p̄. As a result, S is indifferent between all prices p ∈ [p∗, p̄], and

selects price p∗.

Unfortunately for A, he cannot extract this ex ante maximal rent from B. If A

sells the information at a strictly positive price it cannot be that the information is

buyer-optimal, because, once the seller has set her price, the buyer has no incentive

to pay for the information if he knows that he will buy the good regardless of the

signal he receives. It must be, therefore, that the information structure designed by

A is inefficient.

We say that a fee f is achievable given information scheme M if there exists a

subgame-perfect continuation equilibrium following A’s announcement of (f,M) in

which B buys information. f is achievable if there exists some M such that it is

achievable given M .
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A fee f is strongly achievable given information scheme M if, following A’s an-

nouncement of (f,M), B buys information in any subgame-perfect continuation equi-

librium. f is strongly achievable if there exists some M such that it is strongly achiev-

able given M .

f ∗ is optimal if it is the maximum achievable f .

First, Lemma 1 below shows that we can assume without loss of generality that

A’s information structure takes a threshold form. A simply recommends whether or

not B should buy the good; more specifically, he recommends that B buys if and

only if w is above a threshold, where the threshold may depend on the price. In

effect, A is in the position of a mechanism designer, albeit one who aims to maximize

the fee paid by B for information. By a logic similar to that of Myerson (1982), he

can recommend a price to S and recommend a price-contingent buy decision to B.

Moreover, to maximize the extractible surplus, he will recommend B to buy when w

is high, hence the threshold rule.

Lemma 1 Suppose that f is achievable; that is, there exists a price-contingent

information scheme M and an equilibrium µ following (f,M) in which B buys in-

formation. Then there exists a price-contingent information scheme M̂ such that,

for each p, M̂(p) is a threshold structure and such that there exists a continuation

equilibrium following (f, M̂) in which B buys information. In this continuation equi-

librium, A and S have the same payoff as in µ while B’s payoff is weakly higher than

in µ.

A can always ensure that she gets a strictly positive payoff, as stated in the next

lemma. This follows from the fact that if she sets a low enough strictly positive fee and

then, for any price p, tells B whether w is above p (the ex post optimal information

structure for B) then B will buy information in any equilibrium.

Lemma 2 There exists a strictly positive strongly achievable fee f .

Suppose that f1 > 0 is achievable given M1 and, in a continuation equilibrium in
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which B buys information, let p1 be the price which S charges on the equilibrium path

and let θ1 be the equilibrium probability of sale of the good. Then S’s equilibrium

payoff is π1 = (p1 − c)θ1.

One simple observation is that, since the maximum available ex ante surplus is

Ec(w) := [E(w|w > c) − c][1 − F (c)] < E(w) and since A’s equilibrium payoff is

strictly positive, S’s equilibrium payoff π1 is less than Ec(w). Another is that, for

any p such that π1 + c < p < E(w), B must buy information. To see this, note that

since p < E(w) B must either buy information or buy outright. If he buys outright

then S can profitably deviate to price p and get payoff p− c > π1. Hence we have

Lemma 3 In any continuation equilibrium in which f1 > 0, S sets price p1, B

buys information and S’s payoff is (p1 − c)θ1, (i) (p1 − c)θ1 < Ec(w); (ii) if S sets

price p ∈ ((p1 − c)θ1 + c, E(w)), B buys information.

The following provides a characterization of the achievable fees.

Lemma 4 f1 > 0 is achievable if and only if there exists (p1, θ1) ∈ [c, 1] × [0, 1]

such that

f1 ≤ U1(p1, θ1) ≡
∫ (p1−c)θ1+c

0

((p1−c)θ1+c−w)dF (w) if (p1−c)θ1+c ≤ E(w), (1)

f1 ≤ U2(p1, θ1) ≡
∫ w1

0

(p1 − w)dF (w) (2)

and

f1 ≤ U3(p1, θ1) ≡
∫ 1

w1

(w − p1)dF (w), (3)

where 1− F (w1) = θ1.

Note that if the price is p̃ and the information threshold (the value of w above

which B would buy having bought information) is w̃ then the net value of buying
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information rather than buying outright is∫ w̃

0

(p̃− w)dF (w)

and the net value of buying information rather than not buying at all is∫ 1

w̃

(w − p̃)dF (w).

Therefore (1) corresponds to the requirement that B prefers to buy information than

buy outright when the price is (p1−c)θ1+c and the information structure is I(p1−c)θ1+c.

(2) corresponds to the same requirement when the price is p1 and the information

structure is Iw1 . (3) is the condition that B prefers to buy information than not to

buy at all in the latter case. Here p1 is the equilibrium price, θ1 is the equilibrium

sale probability, and w1 is the threshold used after price p1. (2) and (3) must be

true because B buys information on the equilibrium path. (1) must be true because,

by Lemma 3, it must be weakly optimal for B to buy information when the price is

(p1 − c)θ1 + c ≤ E(w) and the information structure is ex post optimal for B.

In equilibrium A sets the maximum achievable fee f ∗, i.e. chooses (f1, p1, θ1) ∈
ℜ × [c, 1] × [0, 1] to maximize f1 subject to (1) − (3). As we show in the proof of

Proposition 1 below, the optimal (p∗, θ∗) satisfies

(p∗ − c)θ∗ + c < E(w) ≤ p∗

and constraints (1) and (3) bind at the optimum. Given p∗, the optimal threshold w∗

must maximize U3 subject to U3 = U1, i.e. it must be the maximizer of the problem

(P1(p)) for p = p∗, where (P1(p)) is:

maxw̃∈[0,1]

∫ 1

w̃

(w − p)dF (w)
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subject to

∫ 1

w̃

(w − p)dF (w) =

∫ [1−F (w̃)][p−c]+c

0

([1− F (w̃)][p− c] + c− w)dF (w). (∗)

The following Lemma shows how the optimal threshold varies with p.

Lemma 5 There exists p̂ ∈ (E(w), 1) such that (P1(p)) has a solution w̃p if

and only if p ≤ p̂. The solution is unique. w̃p increases in p ∈ [E(w), p̂] from

w̃E(w) ∈ (0, E(w)) to w̃p̂ > p̂ > E(w).

Let pc be defined by w̃pc = c and denote by f ∗(p) the maximized value of (P1(p))

for p ∈ [E(w), p̂]. The following result characterizes the equilibrium of our game.

Proposition 1 An equilibrium of Γ exists. In any equilibrium [(f,M), p∗],

(i) If c ≤ w̃E(w) then p∗ = E(w);

(ii) If c > w̃E(w) then p∗ = pc;

(iii) f = f ∗(p∗) = f ∗, M(p∗) = Iw̃p∗ and B buys information on the equilibrium

path;

(iv) B’s equilibrium payoff is zero, A’s is f ∗(p∗) and S’s is [1− F (w̃p∗)][p
∗ − c].

As noted above, the adviser’s information structure takes a threshold form: after

the seller has set the equilibrium price p∗, the adviser tells the buyer whether or not

w is above w̃p∗ (and the buyer buys the good only if it is).

When c is zero (and also when it is positive but close to zero) the seller’s price

is E(w). The underlying reason for this is as follows. If p > E(w) then for B

the alternative to buying information is not to buy at all; in this case reducing p

increases the value of information to B. If p < E(w) then the alternative to buying

information is to buy outright; in this case increasing p makes information more

attractive. Therefore A designs the fee and information scheme in such a way that S

sets price E(w).
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Given price E(w), the expected value of information to the buyer, namely

∫ 1

w̃E(w)

(w − E(w))dF (w),

is all extracted by the adviser via the upfront fee f ∗. The fact that w̃E(w) < E(w)

means that the buyer, with positive probability, gets a negative ex post payoff - the

information structure is not ex post optimal for him. Therefore, if A were to increase

the threshold above w̃E(w) A could extract more surplus. However this would violate

the constraint in (P1(p∗)), which is that S should not be able to deviate to a low

price (just above [E(w)][1− F (w̃E(w))]) and sell outright to the buyer.

When c is higher, the above solution is inefficient in the sense that the threshold is

below the cost of production. In that case A does better by increasing the threshold,

reducing the probability of sale, and simultaneously raising the price above E(w) to

compensate the seller.

There are other schemes which achieve f ∗. However, the information structure

which follows the equilibrium price p∗ must be behaviourally equivalent to Iw∗ ; that

is, B, having bought information, buys the good if and only if w ≥ w∗ = w̃(p∗).

Suppose this were not so - there is a scheme M ′ such that, after A offers (M ′, f ∗),

S sets price p∗ and the sale probability is θ∗, but the information structure is not

Iw∗ . Then it would be possible for A to offer the same scheme except for the case of

price p∗, in which case he offers a threshold structure with a threshold slightly lower

than w∗; this would mean a higher payoff, following p∗, both for S and for B - for

S, because the sale probability is higher, for B because Iw∗ is the unique optimal

information structure with sale probability θ∗. A could then charge a fee slightly

higher than f ∗ and it would still be the case that S would set price p∗ and B would

buy information, contradicting the optimality of f ∗.

Any f < f ∗ is strongly achievable given scheme M∗ as just defined. This is

because, with fee f and scheme M∗, B strictly prefers to buy information for any

p ∈ [(p∗ − c)θ∗ + c, E(w)]∪ {p∗} since, with the higher fee f ∗, B would be indifferent

between buying information and buying outright at price (p∗ − c)θ∗ + c and strictly
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prefer the former for any higher price. Therefore, in any continuation equilibrium, S

must set price p∗ and B must buy information.

Example: F uniformly distributed on [0, 1].

In the case of the uniform distribution,∫ 1

w̃

(w − p)dF (w) =
1− w̃2

2
− p(1− w̃)

and ∫ [1−w̃][p−c]+c

0

([1− w̃][p− c] + c− w)dw =

(
[1− w̃][p− c] + c

)2
2

.

When c = 0, p∗ = E(w) = 1/2; equating the above two expressions, we get

w̃ = 1/5 and f ∗, which is their common value, is 2/25.

To solve for general c:

w̃E(w) =
3− 2

√
1− 2c− 2c

5− 4c+ 4c2

> c if c < c∗ ≈ 0.258056

< c if c∗ < c < 0.5.

For c ∈ (c∗, 0.5), as p increases from E(w) = 0.5, w̃ increases to reach c at pc =
−1+c−c2+c3+

√
(1−c)2(2+c2)

(1−c)2
and (1 − c)(pc − c) + c < E(w) = 0.5. Therefore, the equi-

librium price is 0.5 for c < c∗ but pc for c ∈ (c∗, 0.5) and consequently, the optimal

fee is w̃(1− w̃)/2 for c < c∗ while it is
∫ 1

c
(w − pc)dF (w) = (1− c)[(1 + c)/2− pc] for

c ∈ (c∗, 0.5).

It is instructive to compare the solution for c = 0 with the case in which A fully

discloses w. In that case, for uniform F , B’s expected payoff from buying information

when the price is p is

(1− p)[
1 + p

2
− p]− f =

(1− p)2

2
− f

and his payoff from buying outright is 1/2 − p. Therefore B buys outright if p <
√
2f , buys information if p ∈ [

√
2f, 1 −

√
2f ] (if this interval is non-empty) and
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otherwise does not buy. This implies that, if information is bought, it must be that

f ≤ 1/8, so that the interior interval is non-empty. Given such an f , S chooses

between setting a low price,
√
2f , and selling outright, and setting price 1/2 and

selling with probability 1/2 after B buys information (S’s optimal price in the interval

[
√
2f, 1 −

√
2f ], assuming B is informed, is 1/2). A’s optimal strategy is to set the

highest f such that S is willing to do the latter, i.e., such that
√
2f ≤ 1/4. This gives

f = 1/32.

In the full information scheme B’s payoff is strictly positive (3/32). The reason

that A cannot extract this surplus by increasing the fee is that she is constrained by

the threat that S will bypass her by charging a low price. In A’s optimal scheme it

is not the case, as might be expected, that A’s scheme is designed to force down S’s

price so that surplus is created which A can extract from B through the fee. In fact

the seller’s price (1/2) is the same in the optimal scheme as in the full information

scheme. Instead, A relaxes the constraint that S should not want to bypass him by

withholding information from B and thereby increasing the probability of sale (from

1/2 to 4/5). This creates an increase in total surplus, all of which, and more, is given

to S, reducing her incentive to bypass A. A is then able to increase the fee, reducing

B’s payoff to zero. S’s payoff is 2/5, compared to 1/4 in the full information case.

We can also compare A’s optimal scheme to two benchmarks in which there is no

adviser available: one in which B is uninformed and one in which he is fully informed

(he has free access to w before he meets S).

No adviser; B uninformed. In this case, S sets price 1/2, the probability of

sale is 1, S’s payoff is 1/2 and B’s payoff is zero. The outcome is therefore efficient.

The presence of the adviser reduces efficiency and reduces S’s payoff from 1/2 to 2/5,

but leaves B’s payoff unchanged. The adviser has negative value for the two original

parties.

No adviser; B fully informed. S sets price 1/2 and sells with probability 1/2.

S’s payoff is 1/4 and B’s is 1/8. So, having information provided at a cost by A

improves efficiency and benefits the seller but the buyer is strictly worse off.
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3 The Case of a Privately Informed Buyer

In this section we examine a model in which the buyer has some private informa-

tion about his valuation for the good. We assume that his valuation takes an additive

form; that is, it equals u + w, where the buyer is informed about u and the adviser

is informed about w. One interpretation is that w represents information about the

objective quality of the good (its technical capacities, for example) while u represents

the buyer’s idiosyncratic subjective preference.

We assume that w is distributed according to a cumulative distribution function F

with support [0, k] and u is distributed, independently of w, according to a cumulative

distribution function G with support [0, 1]. G and F both have a strictly positive

density.

We also assume that the information structures whichAmay offer for sale are those

which take the form of a set of thresholds and that B, having bought information,

can select any one of these thresholds and buy the good if and only if w is above

the threshold. That is, there is a set of thresholds {z1, z2, ...zj, ..} ⊆ [0, k], with

zj < zj+1 for all j, and A reports which interval (zj, zj+1] w falls in. The number of

thresholds may be finite or infinite; in the latter case we assume that there exist one

or more intervals of [0, k] for which A reports the exact value of w. We refer to such

a structure as an interval information structure. We model the interaction between

the three players as follows.

(a) A announces, before learning the value of w, a collection of price-contingent

fees and interval information structures {f(p),M(p)}p∈ℜ+ .

(b) S announces price p ∈ ℜ+ after observing A’s announcement.

(c) B observes the announcements of A and S and chooses either to buy outright,

not buy at all, or buy information.

(d) If B chooses to buy information, he pays f(p) to A, A learns w̃, the realization

of w, and reports to B which interval of M(p) w̃ belongs to. B then decides whether

or not to buy the good for price p.
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The payoff functions of the three players are as in the preceding section, except

that u + w replaces w in the (type-u) buyer’s payoff function and we assume in this

section that the seller’s cost c is zero. The game following an announcement by A is

now one of incomplete information; accordingly we use Perfect Bayesian Equilibrium

as our solution concept.

Consider an arbitrary equilibrium σ in which A sells information with positive

probability for a strictly positive price. In this equilibrium, let the seller’s price be

p and let f(p) = f . Suppose that M(p) has a finite number of thresholds. Let the

infimum and supremum of the types which buy information be, respectively, ul and

uh. Let the lowest threshold which is used on the equilibrium path be z1 and let the

highest be zn (these are not necessarily the two extreme points of the offered structure

- if necessary, discard more extreme thresholds and re-label). It is straightforward

to show that the probability of sale must be weakly increasing in u, so, without

loss of generality, types strictly below ul buy with probability zero, types strictly

above uh buy outright and types in [ul, uh] all buy information. Moreover, types in

[ul, uh] are partitioned into intervals [ul, un−1,n, un−2,n−1, ..., u2,3, u1,2, uh] such that, for

k ∈ 1, ..., n, types in (uk,k+1, uk−1,k] use threshold zk, types in (ul, un−1,n] use threshold

zn and types in (u1,2, uh] use threshold z1. That is, higher types use a lower threshold.

If ul > 0 then type ul is indifferent between buying information and not buying

at all; therefore, since if he buys information he then uses threshold zn,

−f + [1− F (zn)][ul + E(w|w ≥ zn)− p] = 0,

so

ul = p+
f

1− F (zn)
− E(w|w ≥ zn).

Similarly, uh (if uh < 1) is indifferent between buying information, subsequently using

threshold z1, and buying outright, hence

−f + [1− F (z1)][uh + E(w|w ≥ z1)− p]] = uh + E(w)− p,
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so

uh = p− f

F (z1)
− E(w|w ≤ z1).

Type uk,k+1 is indifferent between using thresholds zk and zk+1, which implies that

uk,k+1 = p− E(w|w ∈ [zk, zk+1]).

If the density of G is monotonic then we can derive the following proposition about

the structure of information offered by A in equilibrium.

Proposition 2 (i) Suppose that G′(u) is increasing in u. Then there exists an

equilibrium in which the equilibrium path information structure has at most two

thresholds. If G′(u) is strictly increasing then, in any equilibrium in which a positive

measure of types buy outright, the equilibrium path information structure must have

at most two thresholds.

(ii) Suppose that G′(u) is decreasing in u. Then there exists an equilibrium in

which the equilibrium path information structure gives full information. If G′(u) is

strictly decreasing then, in any equilibrium in which a positive measure of types buy

neither information nor the good, the equilibrium path information structure must

have a continuum of thresholds.

The idea of the proof is as follows. Suppose that there exists an interval informa-

tion structure M̃ such that if M̃ replaces M(p), everything else, including f(p) and

all off-equilibrium path information structures, being the same, then (i) given p, the

set of types buying information is unchanged, i.e. uh and ul are unchanged; and (ii)

the seller’s payoff is strictly higher than in the equilibrium. Suppose first that G′(u) is

strictly increasing in u, i.e., G is a strictly convex function, and that uh < 1. For small

ϵ > 0, let A offer (f(p), M̃) when the seller’s price is p + ϵ and, for any other price,

offer the same fee and information structure as in the equilibrium σ. The increase in

seller’s price implies that all the buyer thresholds ul, un,n−1, ...u1,2, uh move ϵ to the

right. A’s equilibrium expected payoff is f [G(uh) − G(ul)] and his payoff after this

deviation, assuming the seller responds by setting price p+ϵ, is f [G(uh+ϵ)−G(ul+ϵ)]
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which, because G is strictly convex is strictly greater than f [G(uh) − G(ul)]. This

would imply that A has a profitable deviation. Moreover, if G is strictly convex then,

given price p, the seller’s expected sales and hence payoff can indeed be increased

without altering uh or ul, by removing one of the interior thresholds zk. Iterating this

argument, we conclude that when G′ is strictly increasing any equilibrium in which

some types buy outright must involve at most two thresholds, namely the ones used

by types uh and ul. A similar argument shows that if G′ is strictly decreasing and

some types do not buy at all, it must be that there is a continuum of thresholds, i.e.,

A provides full information, at least in some interval [z1, zn].

Example: The Uniform case

In the case in which F and G are both uniform distributions it is possible to solve

explicitly for the equilibrium.

Recall that

ul = p+
f

1− F (zn)
− E(w|w ≥ zn)

and

uh = p− f

F (z1)
− E(w|w ≤ z1)

are the lower and upper bounds respectively of the set of types who buy information,

assuming that they both lie in [0, 1]. Suppose that, for any p, (f̄ , z̄1, z̄n) is the uncon-

strained maximum of f [uh(p, f, z1)− ul(p, f, zn)]. Suppose also that p̄ maximizes S’s

expected payoff if, for any p, the information fee is f̄ and the information structure

is given by the two thresholds z̄1 and z̄2, and that 0 ≤ ul(p̄, f̄ , z̄n) < uh(p̄, f̄ , z̄1) ≤ 1.

Then it is optimal for A to offer this fee and two-threshold structure.

For uniform G, f [uh(p, f, z1)− ul(p, f, zn)]

= f [
k + zn

2
− z1

2
− kf

z1
− kf

k − zn
]

and maximizing this expression gives z1 = k/3, zn = 2k/3 and f = k/18. With this

structure, we have

ul = p− 2k/3
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uh = p− k/3

and

u1,n = p− k/2.

If k < 2/3 then S optimally sets p = (1/2) + (k/4) so ul = (1/2) − (5k/12) > 0,

uh = (1/2)− (k/12) and u1,n = (1/2)− (k/4).

Compared with the case in which there is no adviser, efficiency is improved and the

ex ante welfare of buyers is also improved. Suppose there were no adviser. Then the

valuation of type u is u+(k/2). The optimum price for the seller is (1/2)+(k/4) and

the types who buy are types u such that u ≥ (1/2)− (k/4). When there is an adviser,

the seller’s price is the same and types in the interval [(1/2)−(5k/12), (1/2)−(k/12)]

buy on average with probability 0.5, so expected demand is also the same. However,

efficiency is increased because types in the top half of this interval buy only if w ≥
(k/3) and types in the bottom half, who buy only if w ≥ (2k/3), would not buy if

there were no adviser. All types in the interior of this interval are strictly better off

as a result. The adviser takes some, but not all, of the added social surplus as rent.

In the previous section, for the uniform example, we saw that introducing an

adviser reduces efficiency and makes the original trading parties strictly worse off.

That model, with u = 0, represents the limiting case in which the information of the

adviser is large, i.e., very important to determining the value of the relationship. The

case considered here, with k relatively small, represents the opposite case, in which

A’s information is useful but not large in the above sense. We see therefore that an

adviser may be beneficial if his information is small but detrimental if his information

is large.

Appendix

Proof of Lemma 1 We partition the set of prices into three, according to B’s

response in the continuation equilibrium µ following (f,M). P1 is the set of prices

after which B buys information, P2 is the set of prices after which B buys outright,
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and P3 is the set after which B does not buy at all. For p ∈ P1, let θ(p) be the

probability, conditional on buying information, that B buys the good when the price

is p and the equilibrium is µ. Let w(p) satisfy 1−F (w(p)) = θ(p). Then M̂ is defined

as follows.

If p ∈ P1

M̂(p) = Iw(p)

and if p ∈ P2 ∪ P3

M̂(p) = I0.

For p ∈ P1 we can partition the set of signals as b(p) ∪ n(p) such that, when the

information structure is M(p), B, having bought information, buys the good after

signals in b(p) and not after signals in n(p). Then the probability of b(p) is θ(p). If

instead of observing the signal B were only told whether it was in b(p) or n(p) then

it would be optimal to buy if the former and not buy if the latter. A fortiori, if B

is told only that w is above w(p), an event which has the same probability as b(p),

then it is optimal for him to buy the good since his expectation of w conditional on

w ∈ [w(p), 1] is weakly greater than his expectation conditional on b(p). Similarly,

if he is told that w is below w(p) then it is optimal for him not to buy the good.

Furthermore, after p ∈ P1, B’s expected payoff conditional on buying information is

weakly higher given M̂(p) than it is given M(p).

It follows that, given (f, M̂) it is optimal for B to buy information if p ∈ P1. It

is optimal for B to buy outright if p ∈ P2 and not to buy if p ∈ P3; this is because

M̂(p) gives no information in these cases. Therefore there is an equilibrium in which

B’s behaviour is the same after any p as it is in µ and thus in which S charges the

same price, say p̃, as in µ. B buys information in this equilibrium. A’s payoff is f

and S’s is (p̃− c)θ(p̃), as in µ. QED.

Lemma A1 Suppose, for some p ∈ [0, 1) and some f > 0, B weakly prefers to buy

information than to buy outright when the price is p, the fee is f and the information

structure is the p-threshold structure Ip. Then, for any p̃ ∈ [0, 1] such that p̃ > p, B

strictly prefers to buy information than to buy outright when the fee is f , the price
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is p̃ and the information structure is Ip̃.

Proof With information structure Ip, price p and fee f , B weakly prefers to buy

information than to buy outright if

−f + (1− F (p))[E(w|w ≥ p)− p] ≥ E(w)− p

i.e., if

f ≤ p[

∫ p

0

(1− w

p
)dF (w)] (4)

and strictly prefers to do so if this inequality is strict. The RHS of (4) is strictly

increasing in p. QED

Proof of Lemma 2 Let

π̄ = maxp(p− c)[1− F (p)]

and let

p̄ = argmaxp(p− c)[1− F (p)].

Then p̄− c > π̄ > 0. Take p− c ∈ (0, π̄). Suppose A announces M such that, for each

price p, M(p) = Ip. There exists f > 0 sufficiently small that (i) (4) is satisfied for

(f = f ,p = p), so that, given any price p ≥ p, B strictly prefers to buy information

than to buy outright, and (ii) given price p̄, B prefers to buy information than not

to buy at all. Suppose A announces this fee f . Then S must set price p̄ since this

will give her a payoff of π̄, which is the highest payoff she can get conditional on B

buying information, and any price at which B will buy outright is at most p < π̄.

Therefore B must buy information in any continuation equilibrium. QED.

Let

π̂ = maxp≤E(w)(p− c)[1− F (p)],

the largest argmax of which is denoted by p̂. Then p̂ ∈ (π̂ + c, E(w)].

Define information structure M I(p) by M I(p) = Ip if p ≤ E(w) and M I(p) = I0
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if p > E(w).

Proof of Lemma 4 (‘Only if’). Suppose that f1 is achievable. Let the corre-

sponding mechanism be M1 and let the price and sale probability in the equilibrium

continuation be p1 and θ1 respectively. By Lemma 3(i) (p1−c)θ1 < Ec(w). Define M̃1

by M̃1(p1) = Iw1 and M̃1(p) = M I(p) for p ̸= p1. Given (f1, M̃1), B would prefer to

buy information than to buy outright when the price is (p1 − c)θ1 + c ≤ E(w) since,

by Lemma 3, he does so given (f1,M1). This implies (1). Similarly, he also prefers to

buy information when the price is p1, which implies (2) and (3).

(‘If’). Define mechanism M̃1 as above, for the given p1 and w1. Suppose A

announces (f1, M̃1). In the continuation, let S’s strategy be to set p1 if π̂ < (p1− c)θ1

and otherwise set p̂. Define p by

[1− F (p)][E(w|w ≥ p)− p]− f1 = E(w)− p.

Since (2) implies that B prefers to buy information at p1 if information structure is

Ip1 , Lemma A1 implies p ∈ (0, p1).

First, consider the case that (p1−c)θ1+c ≤ E(w). Since B prefers to buy outright

if p = 0, Lemma A1 and (1) imply that p ∈ (0, (p1 − c)θ1 + c]. Let B’s strategy be:

(i) for prices p < p, buy outright; (ii) for prices p ∈ [p, E(w)] and for price p1, buy

information (and then buy the good if and only if w is above the threshold); (iii) for

all other prices, buy neither information nor the good.

Consider first B’s strategy. For p > E(w) such that p ̸= p1 the mechanism gives

no information, hence it is optimal not to buy at all. (1), (2) and (3) imply that

it is optimal for B to buy information at (p1 − c)θ1 + c and at p1. Together with

Lemma A1 and the definition of p, this shows that B’s strategy is optimal. If S sets

a price such that B buys outright then S gets at most p− c ≤ (p1 − c)θ1. If she sets

price p1 B buys information and S’s payoff is (p1 − c)θ1. This is optimal for S unless

π̂ > (p1 − c)θ1, in which case p̂ is optimal (and, again, B buys information because

S’s payoff from a price inducing outright purchase is bounded above by (p1 − c)θ1 as

asserted above). Therefore S’s stated strategy is optimal. This therefore defines an
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equilibrium which achieves f1.

Next, consider the case that (p1 − c)θ1 + c > E(w). Let B’s strategy be: (i) for

prices p < min{p, E(w)}, buy outright; (ii) for prices p ∈ [p, E(w)] and for price p1,

buy information (and then buy the good if and only if w is above the threshold); (iii)

for all other prices, buy neither information nor the good.

Consider first B’s strategy. For p > E(w) such that p ̸= p1 the mechanism gives no

information, hence it is optimal not to buy at all. (2) and (3) imply that it is optimal

for B to buy information at p1. Together with Lemma A1 and the definition of p, this

shows that B’s strategy is optimal. If S sets a price such that B buys outright then

S gets at most min{p, E(w)}− c < (p1− c)θ1. If she sets price p1 B buys information

and S’s payoff is (p1 − c)θ1. This is optimal for S unless π̂ > (p1 − c)θ1, in which

case p̂ is optimal (and, again, B buys information ). Therefore S’s stated strategy is

optimal. This therefore defines an equilibrium which achieves f1. QED

Proof of Lemma 5 Note that the derivative of the LHS of the constraint (*) with

respect to w̃ is −(w̃− p)F ′(w̃) which is positive for w̃ < p and negative for w̃ > p, so

the LHS of the constraint increases in w̃ from E(w)−p ≤ 0 at w̃ = 0, peaks at w̃ = p,

then decreases down to 0 at w̃ = 1. Observe that the RHS of (*) has its derivative

wrt to w̃ as −F ′(w̃)[p− c]F ([1− F (w̃)][p− c] + c) < 0.

For p = E(w), therefore, it suffices to show that the LHS exceeds the RHS when

w̃ = E(w), which is the case because

∫ 1

E(w)

(w − E(w))dF (w) =

∫ E(w)

0

(E(w)− w)dF (w)

and [1− F (w̃)][E(w)− c] + c < E(w).

Note that −(w̃ − p) is 0 when w̃ = p, then decreases in w̃ ∈ (p, 1), whereas

−[p − c]F ([1 − F (w̃)][p − c] + c) increases in w̃ ∈ (0, 1). This implies that the

derivatives of the LHS and RHS of (*) may coincide at most once for w̃ ∈ (p, 1). As p

increases from E(w) the LHS decreases while the RHS increases for all w̃ and exceeds

the LHS at w̃ = 1, this in turn implies that the unique solution w̃p increases until p

reaches a threshold p̂ < 1 at which the graphs of the LHS and RHS are tangent at
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w̃ = w̃p̂, and after which the solution does not exist because the RHS exceeds the

LHS for all w̃. Note further that w̃p̂ > p̂ because the slope is negative at the tangency

point. QED

Proof of Proposition 1 Let f e be the maximized value of the problem (P2):

max(p1,θ1)min{U1(p1, θ1), U2(p1, θ1), U3(p1, θ1)}

subject to (p1, θ1) ∈ D ≡ {(p, θ) ∈ [c, 1]× [0, 1] | (p− c)θ + c ≤ E(w)}.
It will follow that f e is optimal, i.e. f e = f ∗. This implies that f ∗ is obtained

by (p1, θ1) such that (p1 − c)θ1 + c ≤ E(w), which we assume here for expositional

ease and prove below. The closure of D is compact and U1, U2 and U3 are continuous

functions so there exists an optimum for the problem (P2).

Claim 1 f e is the maximized value of the problem (P3):

max(p1,θ1)U3(p1, θ1)

subject to (p1, θ1) ∈ {(p, θ) ∈ [c, 1]× [0, 1] | (p− c)θ+ c < E(w) ≤ p} and U1(p1, θ1) =

U3(p1, θ1).

Proof

Consider a solution (pe, θe) to (P2), with maximized value f e. Let we be defined

by 1−F (we) = θe. Note that f e > 0 because (p1, θ1) = (E(w), ϵ) ∈ D and U3(p1, θ1) =

U2(p1, θ1) > 0 for small ϵ > 0 as well as U1(p1, θ1) > 0. Hence, θe < 1 because θe = 1

would imply we = 0 and thus, U2(p
e, θe) = 0.

If pe < E(w) then (2) implies that (3) is satisfied and slack. Increasing p increases

both U2(p, θ) and U1(p, θ) (the latter because (pe − c)θe + c < pe < E(w) holds).

Therefore it is feasible to increase f . Contradiction. Therefore pe ≥ E(w).

Suppose (pe − c)θe + c = E(w), so that pe > E(w). Then

U1(p
e, θe) =

∫ E(w)

0

(E(w)− w)dF (w) = F (E(w))[E(w)− E(w|w < E(w))]
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while

U3(p
e, θe) <

∫ 1

we

(w − E(w))dF (w)

≤
∫ 1

E(w)

(w − E(w))dF (w) = (1− F (E(w)))[E(w|w > E(w))− E(w)]

so that

U1(p
e, θe)− U3(p

e, θe) > F (E(w))[E(w)− E(w|w < E(w))]

−(1− F (E(w)))[E(w|w > E(w))− E(w)] = −F (E(w))E(w|w < E(w))

−(1− F (E(w)))E(w|w > E(w)) + E(w) = 0,

thus (1) cannot bind if (pe − c)θe + c = E(w).

If only (1) binds, then (pe−c)θe+c < E(w) and it is feasible to increase (pe−c)θe,

thereby increasing U1(p, θ), hence increasing f . Contradiction. Therefore if (1) binds

the other relevant constraint(s) must also bind.

Suppose pe > E(w). Then, (3) implies (2). Suppose that (3) binds and (1) is slack.

Then reducing p increases U3(p, θ), so f can feasibly be increased. Contradiction.

Hence (3) and (1) must both bind.

Suppose pe = E(w). Then, (2) and (3) are the same condition. Suppose (2) and

(3) bind and (1) is slack. In this case U3 = U2 =
∫ we

0
(E(w)− w)dF (w). Maximizing

this with respect to we gives we = E(w). Hence we conclude that we = E(w),

otherwise it would be possible to increase f by varying θ (hence we). However, if (2)

binds and (1) is slack, we have f e = U2(p
e, θe) < U1(p

e, θe), i.e.,

∫ E(w)

0

[E(w)− w]dF (w) <

∫ (E(w)−c)θe+c

0

[(E(w)− c)θe + c− w]dF (w),

which is false since (E(w) − c)θe + c ≤ E(w). This shows that f e = U1(p
e, θe) =

U2(p
e, θe) = U3(p

e, θe) if pe = E(w).

Summarizing, (1) and (3) must both bind at (pe, θe) and pe ≥ E(w). Together

with the fact that U2(p, θ) ≥ U3(p, θ) if p ≥ E(w), this establishes that the solution

to (P2) also solves (P3). This proves the Claim.
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Let (p∗, θ∗) solve (P2) with maximized value f ∗ and let 1− F (w∗) = θ∗. Denote

by M I the information scheme defined by M I(p) = Ip if p ≤ E(w) and M I(p) = I0

if p > E(w). Denote by M∗ the scheme defined by M∗(p∗) = Iw∗ and, for p ̸= p∗,

M∗(p) = M I(p), where 1−F (w̃(p∗)) = θ∗. That is, for price p∗, the threshold is w̃(p∗)

and for any other price p, B learns nothing if p is above E(w) and learns whether w

is at least p otherwise. Then M∗ achieves the optimal fee.

Claim 2 The price-contingent information scheme M∗ achieves the optimal fee

f ∗ with price p∗ and sale probability θ∗. B’s equilibrium strategy, given (f ∗,M∗),

is to buy outright for p ∈ [0, (p∗ − c)θ∗ + c), buy information for p ∈ [(p∗ − c)θ∗ +

c, E(w)] ∪ {p∗} and otherwise not to buy at all.

Proof of Claim 2 The mechanism M̃1 described in the ‘If’ part of the proof of

Lemma 4 is the same as M∗, for p1 = p∗ and w1 = w∗. Therefore, taking f1 = f ∗,

the argument in the proof of Lemma 4 shows that after A offers (M∗, f ∗), there is an

equilibrium continuation in which S sets price p∗ and B’s strategy is as described in

the Lemma, as long as p = (p∗− c)θ∗+ c and π̂ ≤ (p∗− c)θ∗. p is uniquely defined by

[1− F (p)][E(w|w ≥ p)− p]− f ∗ = E(w)− p.

However, this equation is true for p = (p∗−c)θ∗+c since (1) is binding for (f ∗, p∗, θ∗).

Therefore p = (p∗−c)θ∗+c. Suppose, to establish a contradiction, that π̂ > (p∗−c)θ∗.

Then, as argued in the proof of Lemma 4, given (M∗, f ∗) there is an equilibrium

which achieves f ∗ in which S sets price p̂ and the sale probability is 1−F (p̂). Hence

(p1 = p̂, θ1 = θ̂ = 1−F (p̂)) solves (P2) because (p̂− c)θ̂+ c < (E(w)− c)+ c = E(w).

By Claim 1, (1) is binding, i.e. U1(p̂, 1− F (p̂)) = f ∗. Since (p∗, θ∗) also solves (P2),

U1(p
∗, θ∗) = f ∗ so

∫ (p∗−c)θ∗+c

0

((p∗ − c)θ∗ + c− w)dF (w) =

∫ π̂+c

0

(π̂ + c− w)dF (w).

This implies that π̂ = (p∗ − c)θ∗, a contradiction.
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It remains to show that the value f ∗ obtained from the solution (p∗, θ∗) to (P2)

as explained above, is the maximum achievable f1 characterized in Lemma 4. Recall

from the proof of Claim 1 above that p∗ ≥ E(w), (1) and (3) both bind at (p∗, θ∗),

and (p∗ − c)θ∗ + c < E(w).

To reach a contradiction, suppose there is a higher f ∗∗ > f ∗ achievable from

equilibrium price p∗∗ and θ∗∗. Then, (p∗∗ − c)θ∗∗ + c ≥ E(w) must hold because

otherwise p∗∗ and θ∗∗ should solve (P2), contradicting f ∗ being the value of (P2).

The inequality also implies p∗∗ > E(w) because θ∗∗ < 1, which in turn implies that

f ∗∗ ≤ U3(p
∗∗, θ∗∗) < U2(p

∗∗, θ∗∗). Define pt = (1 − t)p∗ + tp∗∗ for t ∈ (0, 1), and let

θt be a continuous function with θ0 = θ∗ and θ1 = θ∗∗ such that U3(pt, θt) is a con-

tinuously and strictly increasing function of t from f ∗ at t = 0 to U3(p
∗∗, θ∗∗) ≥ f ∗∗

at t = 1.3 Then, since U1(pt, θt) is continuous function of t such thatU1(p0, θ0) =

U1(p
∗, θ∗) < U1(p1, θ1) = U1(p

∗∗, θ∗∗), there must be some τ ∈ (0, 1) such that

(p∗−c)θ∗+c < (pτ−c)θτ+c < min{Ec(w)+c, E(w)} and thus, U1(p
∗, θ∗) < U1(pτ , θτ ).

As U2(pτ , θτ ) > U3(pτ , θτ ) because pt > E(w) for all t ∈ (0, 1), we would have

min{U1(pτ , θτ ), U2(pτ , θτ ), U3(pτ , θτ )} > f ∗, contradicting f ∗ solving (P2). This es-

tablishes that f ∗ is optimal, i.e, the maximum achievable fee. This proves Claim

2.

Finally, we need to establish the values of p∗ specified in Proposition 1. Consider

the solution w̃, as a function of p, that solves (P1(p)) and thus, satisfies the constraint

(∗):

∫ 1

w̃

(w − p)dF (w) =

∫ [1−F (w̃)][p−c]+c

0

([1− F (w̃)][p− c] + c− w)dF (w).

Differentiating both sides wrt to p,

w̃′(p−w̃)F ′(w̃)−(1−F (w̃)) =
[
1−F (w̃)−w̃′F ′(w̃)(p−c)

]
F ([1−F (w̃)][p−c]+c) (5)

where w̃′ = w̃′(p) and w̃ = w̃(p) for short. Recall from Lemma 5 that w̃′ > 0. (i) If

c < w̃, so that p− c > p− w̃, the value of (5) is negative because otherwise, the RHS

3This is always possible to construct.
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being positive, i.e, 1− F (w̃) ≥ w̃′F ′(w̃)(p− c), would imply the LHS being negative,

a contradiction. If c < w̃(E(w)), therefore, as p increases from E(w), the maximized

value of (P1) decreases. Consequently, the optimal fee is obtained at p∗ = E(w) and

θ∗ = 1− F (w̃(E(w))).

(ii) If c > w̃, so that p−c < p−w̃, the value of (5) is positive by an argument anal-

ogous to above. If c > w̃(E(w)), therefore, as p increases from E(w), the maximized

value of (P1(p)) increases until w̃(p) hits c, say at pc > E(w), after which it decreases

by (i) above. Moreover, [1−F (w̃(pc))][pc−c]+c < E(w) must hold because otherwise

the solution to (P2) would be at p∗ ∈ (E(w), pc] such that [1−F (w̃(p∗))][p∗−c]+c =

E(w), which contradicts the earlier finding (in the proof of Claim 1) that (1) binds

at the solution to (P2) and thus [1 − F (w̃(p∗))][p∗ − c] + c < E(w). Therefore, the

optimal fee is obtained at p∗ = pc and θ∗ = 1− F (w̃(pc))). QED

Proof of Proposition 2 Take an equilibrium σ in which A’s payoff is strictly

positive. (There must exist an equilibrium in which a positive measure of types buy

information for a strictly positive price since, for any p ∈ (0, k), there exists a single

threshold for which some types are willing to pay a sufficiently low positive fee.)

Suppose first that the equilibrium path information structure M(p) consists of a

finite number of thresholds {z1, z2, ..., zn}. Then types in [ul, un−1,n] buy with prob-

ability 1 − F (zn), types in [uk,k+1, uk−1,k] buy with probability 1 − F (zk), types in

[u12, uh] buy with probability 1− F (z1) and types above uh buy with probability 1.

Therefore S’s expected payoff is pΨ(p), where expected equilibrium sales Ψ(p) are

given by

Ψ(p) = 1−G(uh) + [G(uh)−G(u12)][1− F (z1)] + [G(u12)−G(u23)][1− F (z2)]

+...+ [G(uk−2,k−1)−G(uk−1,k)][1− F (zk−1)] + [G(uk−1,k)−G(uk,k+1)][1− F (zk)]

+[G(uk,k+1)−G(uk+1,k+2)][1−F (zk+1)] + ...+ [G(un−2,n−1)−G(un−1,n)][1−F (zn−1)]

+[G(un−1,n)−G(ul)][1− F (zn)].
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Now define a new partition threshold structure M̃ which is the same as M(p) except

that one interior threshold, zk, has been removed. Suppose that A offers M̃ instead

of M(p) for price p, the rest of his strategy remaining unchanged. If S sets price p

her expected payoff will be pΨ̃(p), where

Ψ̃(p) = 1−G(uh) + [G(uh)−G(u12)][1− F (z1)] + [G(u12)−G(u23)][1− F (z2)]

+...+[G(uk−2,k−1)−G(ũk−1,k+1)][1−F (zk−1)]+[G(ũk−1,k+1)−G(uk+1,k+2)][1−F (zk+1)]

+...+ [G(un−2,n−1)−G(un−1,n)][1− F (zn−1)] + [G(un−1,n)−G(ul)][1− F (zn)]

and ũk−1,k+1 = p − E(w|zk−1 ≤ w ≤ zk+1) is the type which is indifferent between

using thresholds zk−1 and zk+1.

Therefore

Ψ̃(p)−Ψ(p) = [G(uk−2,k−1)−G(ũk−1,k+1)][1−F (zk−1)]+[G(ũk−1,k+1)−G(uk+1,k+2)][1−F (zk+1)]

−[G(uk−2,k−1)−G(uk−1,k)][1− F (zk−1)]− [G(uk−1,k)−G(uk,k+1)][1− F (zk)]

−[G(uk,k+1)−G(uk+1,k+2)][1− F (zk+1)]

= G(uk−1,k)[F (zk)−F (zk−1)]+G(uk,k+1)[F (zk+1)−F (zk)]−G(ũzk−1,zk+1
)[F (zk+1)−F (zk−1)].

S’s payoff increases, compared with the equilibrium, if and only if

G(uk−1,k)[F (zk)−F (zk−1)]+G(uk,k+1)[F (zk+1)−F (zk)] ≥ G(ũk−1,k+1)[F (zk+1)−F (zk−1)].

(6)

Let

α =
F (zk)− F (zk−1)

F (zk+1)− F (zk−1)
.

Then (6) is

αG(p−E(w|zk−1 ≤ w ≤ zk))+(1−α)G(p−E(w|zk ≤ w ≤ zk+1)) ≥ G(p−E(w|zk−1 ≤ w ≤ zk+1)).
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But

p−E(w|zk−1 ≤ w ≤ zk+1) = α(p−E(w|zk−1 ≤ w ≤ zk)+(1−α)(p−E(w|zk ≤ w ≤ zk+1).

Therefore, if G is convex, S’s payoff is weakly increased compared with the equilib-

rium. It follows that it is optimal for S to set price p in the continuation. A’s payoff

is unchanged since it depends only on p, f, uh and ul, all of which are unchanged.

Iterating this argument, we conclude that there must be an equilibrium in which

A offers just two thresholds at most (the highest and lowest offered in the original

equilibrium). If G is concave, we can argue, conversely, that A can add a thresh-

old in between any two existing thresholds (e.g. their average) and S’s payoff will

weakly increase. Therefore there is an equilibrium in which A offers full information

(a continuum of thresholds [0, k]).

Suppose that G is strictly convex and, in a given equilibrium, more than two

thresholds are used and uh < 1. Then deleting an interior threshold strictly increases

S’s payoff and leaves A’s unchanged. Again, denote this altered structure by M̃ . For

small ϵ > 0, let A offer (f(p), M̃) when the seller’s price is p+ϵ and, for any other price,

offer the same fee and information structure as in the equilibrium σ. The increase in

seller’s price implies that all the buyer thresholds ul, un,n−1, ...u1,2, uh move ϵ to the

right. A’s equilibrium expected payoff is f [G(uh) − G(ul)] and his payoff after this

deviation, assuming the seller responds by setting price p+ϵ, is f [G(uh+ϵ)−G(ul+ϵ)]

which, because F is strictly convex, is strictly greater than f [G(uh) − G(ul)]. This

would imply that A has a profitable deviation. Since, for price p, M̃ gives S strictly

more than her equilibrium payoff, the same is true for price p+ ϵ if ϵ is small enough.

Since a structure with infinitely many thresholds can be approximated arbitrarily

closely by one with finitely many thresholds, the conclusion (i) follows.

In the concave case, we can make a similar argument, involving a small reduction

in S’s price. This proves the Proposition.
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