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ABSTRACT

The neoclassical theory of investment has mainly been tested with physical investment, but
we show that it also helps explain intangible investment. At the firm level, Tobin’s q explains
physical and intangible investment roughly equally well, and it explains total investment even
better. Compared with physical capital, intangible capital adjusts more slowly to changes in
investment opportunities. The classic q theory performs better in firms and years with more
intangible capital: Total and even physical investment are better explained by Tobin’s q and
are less sensitive to cash flow. At the macro level, Tobin’s q explains intangible investment
many times better than physical investment. We propose a simple, new Tobin’s q proxy that
accounts for intangible capital, and we show that it is a superior proxy for both physical and
intangible investment opportunities.
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1. Introduction

The neoclassical theory of investment was developed more than 30 years ago, when

firms mainly owned physical assets such as property, plant, and equipment (PP&E). As a

result, empirical tests of the theory have focused almost exclusively on physical capital. Since

then, the US economy has shifted toward service- and technology-based industries, which has

made intangible assets such as human capital, innovative products, brands, patents, software,

customer relationships, databases, and distribution systems increasingly important. Corrado

and Hulten (2010) estimate that intangible capital makes up 34% of firms’ total capital in

recent years. Despite the importance of intangible capital, researchers have almost always

excluded it when testing investment theories.

Is there a role for intangible capital in the neoclassical theory of investment? If so, how

must empirical tests be adapted? Is the theory still relevant in an economy increasingly

dominated by intangible capital? For example, the Hayashi (1982) classic q-theory of

investment predicts that Tobin’s q, the ratio of capital’s market value to its replacement

cost, perfectly summarizes a firm’s investment opportunities. As a result, Tobin’s q has

become “arguably the most common regressor in corporate finance” (Erickson and Whited,

2012, p. 1286). How should researchers proxy for investment opportunities in an increasingly

intangible economy? And how well do those proxies work?

To answer these questions, we revisit the basic empirical facts about the relation between

corporate investment, Tobin’s q, and free cash flow. A very large investment literature,

both in corporate finance and macroeconomics, is built upon these fundamental facts, so

it is important to understand how the facts change when accounting for intangible capital.

We show that some facts do change significantly, and we discuss the implications for our

theories of investment. Most important, we show that the classic q theory of investment,

despite originally being designed to explain physical investment, also helps explain intangible

investment. In other words, the neoclassical theory of investment is still relevant. An

important component of our analysis is a new Tobin’s q proxy that accounts for intangible

capital. We show that this new proxy captures firms’ investment opportunities better than

other popular proxies, thus offering a simple way to improve corporate finance regressions

without additional econometrics.

To guide our empirical work, we begin with a theory of a firm that invests optimally in

physical and intangible capital over time. The theory is a standard neoclassical investment-q

theory in the spirit of Hayashi (1982) and Abel and Eberly (1994). Like physical capital,

intangible capital is costly to obtain and helps produce future profits, albeit with some
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risk. For this fundamental reason, it makes sense to treat intangible capital as capital in the

neoclassical framework. Our theory predicts that a firm’s physical and intangible investment

rates should both be explained well by a version of Tobin’s q that we call “total q,” which

equals the firm’s market value divided by the sum of its physical and intangible capital

stocks.

We test this and other predictions using data on public US firms from 1975 to 2011.

We measure a firm’s intangible capital as the sum of its knowledge capital and organization

capital. We interpret research and development (R&D) spending as an investment in knowledge

capital, and we apply the perpetual-inventory method to a firm’s past R&D to measure the

replacement cost of its knowledge capital. We similarly interpret a fraction of past selling,

general, and administrative (SG&A) spending as an investment in organization capital,

which includes human capital, brand, customer relationships, and distribution systems. Our

measure of intangible capital builds on the measures of Lev and Radhakrishnan (2005),

Corrado, Hulten, and Sichel (2009), Corrado and Hulten (2010, 2014), Eisfeldt and Papanikolaou

(2013, 2014), Falato, Kadyrzhanova, and Sim (2013), and Zhang (2014). We define a firm’s

total capital as the sum of its physical and intangible capital, both measured at replacement

cost. Guided by our theory, we measure total q as the firm’s market value divided by its

total capital, and we scale the physical and intangible investment rates by total capital.

While our intangible-capital measure has limitations, we believe, and the data confirm,

that an imperfect proxy is better than setting intangible capital to zero. A benefit of the

measure is that it is easily computed for all public US firms back to 1975, and it requires

only Compustat data and other easily downloaded data. Our data on firms’ total q and

intangible capital can be downloaded from Wharton Research Data Services (WRDS).

Our analysis begins with ordinary least squares (OLS) panel regressions of investment on

q. Consistent with our theory, total q explains physical and intangible investment roughly

equally well. Their within-firm R2 values are 21% and 28%, respectively. Total q explains

the sum of physical and intangible investment (total investment) even better, delivering an

R2 of 33%. Judging by R2, the neoclassical theory of investment works at least as well for

intangible capital as for physical capital, and it works even better for an all-inclusive measure

of capital. Also consistent with our theory, the literature’s standard investment regression,

which excludes intangible capital, typically delivers lower R2 values.

According to the theory, physical and intangible investment should co-move, because they

share the same marginal productivity of capital, as proxied by total q. The data support

this view: The within-firm correlation between physical and intangible investment is 31%
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but drops to 17% after controlling for total q.

Throughout the corporate finance literature, researchers use Tobin’s q to proxy for firms’

investment opportunities. Our OLS R2 values help evaluate these proxies. We find that

including intangible capital in our q measure produces a superior proxy for investment

opportunities, no matter how we measure investment. We compare total q with the investment

literature’s standard q measure, which scales firm value by physical capital (PP&E) alone.

Total q is better at explaining physical, intangible, and total investment, as well as R&D

investment and the literature’s standard investment measure, capital expenditure (CAPX)

scaled by PP&E. It is also popular to measure Tobin’s q as the firm’s market value scaled

by the book value of assets. The problem with this measure is that “Assets” on the balance

sheet excludes the vast majority of firms’ intangible capital, because US accounting rules

treat R&D and SG&A as operating expenses, not capital investments. Like Erickson and

Whited (2006, 2012), we find that market-to-book–assets ratios are especially poor proxies

for investment opportunities.

The OLS regressions suffer from two well-known problems. First, the slopes on q are

biased due to measurement error in q. Second, the OLS R2 depends not just on how well q

explains investment, but also on how well our q proxies explain the true, unobservable q. To

address these problems, we reestimate the investment models using the Erickson, Jiang, and

Whited (2014) cumulant estimator. This estimator produces unbiased slopes and a statistic

τ 2 that measures how close our q proxy is to the true, unobservable q. Specifically, τ 2 is

the R2 from a hypothetical regression of our q proxy on the true q. We find that τ 2 is 21%

higher when we include intangible capital in the investment-q regression, implying that our

new q proxy is closer to the true q.

According to our theory, slope coefficients of investment on total q help measure capital

adjustment costs. The inverse q-slope for physical (intangible) investment measures the

convex component of physical (intangible) capital’s adjustment costs. We find that intangible

investment’s q-slope is roughly half as large as physical investment’s, implying intangible

capital’s convex adjustment costs are twice as large as those for physical capital. This finding

supports the literature’s conjecture that intangible capital is costlier than physical capital to

adjust, because adjusting intangible capital often requires replacing highly trained employees

(e.g., Grabowski, 1968; Brown, Fazzari, and Petersen, 2009). An important implication of

our result is that firms adjust more slowly to changes in investment opportunities as the

economy shifts toward intangible capital. We also find that accounting for intangibles roughly

doubles the q-slope for physical investment, implying significantly lower convex adjustment

costs for physical capital than previously believed.
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Like other simple q theories, ours predicts that cash flow should not help explain investment

after controlling for q. Researchers typically measure cash flow as profits net of R&D and

SG&A. Because R&D and at least part of SG&A are actually investments, one should add

them back to measure cash flow available for investment. After making this adjustment, we

find that physical investment becomes more sensitive to cash flow than previously believed.

On this dimension, the neoclassical theory fits the data worse after accounting for intangibles.

In contrast, the R&D component of intangible investment is insensitive to cash flow, supporting

the theory. Because SG&A’s investment component is difficult to measure, it remains

unclear whether intangible investment overall is more sensitive than physical investment

to cash flow. Financing constraints are unlikely to explain the opposing cash flow results for

physical and R&D capital, as financing constraints are arguably more severe for R&D capital

due to its lower collateral value (Almeida and Campello, 2007; Falato, Kadyrzhanova, and

Sim, 2013). More recent theories predict an investment–cash flow sensitivity even without

financing constraints.1 For example, diseconomies of scale can make cash flow informative

about investment opportunities, even controlling for Tobin’s q. Without a full structural

estimation, it is difficult to tell whether our cash flow results are driven by differences in

financing constraints, diseconomies of scale, or some other source.

Several important investment studies use data only from manufacturing firms.2 Surprisingly,

we find that the classic q theory fits the data better outside the manufacturing industry and,

more generally, in firms and years with more intangible capital. Investment is usually better

explained by q and is less sensitive to cash flow in subsamples with more intangibles. These

results even hold using the literature’s standard measures that exclude intangibles. Again,

our results imply that the neoclassical theory of investment is just as relevant, if not more so,

in an increasingly intangible economy. Why the theory fits better in high-intangible settings

remains unclear. We find no robust evidence that high-intangible firms are closer to the

theory’s ideal of perfect competition and constant returns to scale. Also, high-intangible

firms arguably face more financing constraints, which should make theory fit worse, not

better.

Some of our main results are even stronger in macroeconomic time series data. For

example, the literature’s standard investment-q regression, which excludes intangibles, delivers

an R2 of just 4%, whereas the regression including intangible capital produces an R2 of 61%.

1Examples include Gomes (2001), Alti (2003), Cooper and Ejarque (2003), Hennessy and Whited (2007),
Abel and Eberly (2011), Gourio and Rudanko (2014), and Abel (2016).

2Examples include Fazzari, Hubbard, and Petersen (1988), Almeida and Campello (2007), and Erickson
and Whited (2012). A common reason is that manufacturing firms’ capital is easier to measure. Our τ2

statistics confirm that the literature’s standard q proxy has less measurement error in the manufacturing
industry compared with other industries.
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In first differences, total q explains physical and intangible capital roughly equally well.

Again, the neoclassical theory of investment applies just as well, if not better, to intangible

capital.

The empirical investment-q literature is extensive and dates back at least to Ciccolo

(1975) and Abel (1980). Hassett and Hubbard (1997) and Caballero (1999) review the

literature. Tests of the classic q theory using physical capital have been disappointing.

Investment is typically sensitive to cash flow, is explained poorly by q (low R2), and produces

implausibly large adjustment-cost parameters (low q-slopes). We show that including intangible

capital helps solve the last two problems but not the first one. Other attempts to solve these

problems with better measurement include using a fundamental q instead of market values

directly (Abel and Blanchard, 1986), using bond prices (Philippon, 2009), correcting for

measurement error (Erickson and Whited, 2000, 2012; Erickson, Jiang, and Whited, 2014),

and using state variables directly (Gala and Gomes, 2013). We also correct for measurement

error, and we show that including intangibles yields even larger improvements than using

bond prices.

Our paper is not the first to examine the empirical relation between intangible investment

and Tobin’s q. Eisfeldt and Papanikolaou (2013) find a positive relation between investment

in organization capital and q. Almeida and Campello (2007) and others use q and cash flow

to forecast R&D investment. Chen, Goldstein, and Jiang (2007) use q to forecast the sum of

physical investment and R&D. Closer to our specifications, Baker, Stein, and Wurgler (2002)

measure investment as the sum of CAPX, R&D, and SG&A, and they regress them on q.

Gourio and Rudanko (2014) examine the relation between q and investment in customer

capital, a type of intangible capital. All these papers use a q proxy that excludes intangibles

from the denominator. Besides having a different focus, our paper is the first to include

all types of intangible capital not just in investment, but also in Tobin’s q and cash flow.

Including intangibles in all three measures is important for delivering our results. Belo, Lin,

and Vitorino (2014) show that physical and brand investment are both procyclical, which is

related to our co-movement result, but they do not examine Tobin’s q.

Almeida and Campello (2007) examine how asset tangibility and financial constraints

affect the investment–cash flow relation. Like us, they find a higher investment–cash flow

sensitivity for firms using less intangibles. Unlike our measures of asset intangibility, theirs

exclude firms’ internally created intangible assets, which we find make up the vast majority

of intangible capital.

Li, Liu, and Xue (2014) structurally estimate a q-theory model that includes intangible
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capital. Like us, they find that intangible capital has larger adjustment-cost parameters

than physical capital and that including intangibles decreases physical capital’s estimated

adjustment costs. Unlike us, they focus on the cross section of stock returns, and they

exclude organization capital.

The paper proceeds as follows. Section 2 presents our theory of investment in physical

and intangible capital. Section 3 describes the data and intangible-capital measure we use to

test the theory’s predictions. Section 4 presents full-sample results, and Section 5 compares

results across different types of firms, industries, and years. Section 6 contains results for

the overall macroeconomy. Section 7 explores the robustness of our empirical results, and

Section 8 concludes.

2. Intangible capital and the neoclassical theory of

investment

In this section, we review the neoclassical theory of investment, and we argue that

intangible capital fits well into the theory. We simplify and modify the Abel and Eberly

(1994) theory of investment under uncertainty to include two capital goods that we interpret

as physical and intangible capital. We present a stylized model, as our goal is to provide

theoretical motivation for our empirical work, not to make a theoretical contribution. Wildasin

(1984), Hayashi and Inoue (1991), and others already provide theories of investment in

multiple capital goods. We first present the model’s assumptions and predictions, and then

we discuss them.

2.1. Model assumptions and empirical implications

The model features an infinitely lived, perfectly competitive firm i that holds Kphy
it units

of physical capital and Kint
it units of intangible capital at time t. The firm’s total capital is

defined as Ktot = Kphy +Kint. At each instant t, the firm chooses the investment rates Iphy

and I int that maximize firm value Vit:

Vit = max
Iphyi,t+s, I

int
i,t+s

∫ ∞
0

Et[Π
(
Ktot
i,t+s, εi,t+s

)
− cphyi

(
Iphyi,t+s, K

tot
i,t+s, p

phy
i,t+s

)
−cinti

(
I inti,t+s, K

tot
i,t+s, p

int
i,t+s

)
]e−rsds, (1)

subject to

dKm = (Im − δKm) dt, m = phy, int. (2)

Both types of capital depreciate at the same rate δ. The profit function Π depends on a

shock ε and is assumed linearly homogenous in Ktot. The two investment-cost functions c

6



equal

cmi
(
Im, Ktot, pm

)
= pmIm +Ktot

[
ζmi

Im

Ktot
+
γmi
2

(
Im

Ktot

)2
]
, m = phy, int, (3)

where γi > 0. The first term denotes the direct purchase or sale cost of investment, with

each new unit of capital costing pm. The second term equals the cost of adjusting the stock

of capital type m. Capital prices pphyit and pintit , along with profitability shock εit, fluctuate

over time according to a general stochastic diffusion process:

dyit = µ (yit) dt+ Σ (yit) dBit, (4)

where yit =
[
εit pphyit pintit

]′
.

We have four main predictions. All proofs are in Appendix A.

Prediction 1. Physical and intangible capital share the same marginal q. Marginal q

equals average q, the ratio of firm value to its total capital stock:

∂Vit

∂Kphy
it

=
∂Vit
∂Kint

it

=
∂Vit
∂Ktot

it

=
Vit
Ktot
it

≡ qtot
(
εit, p

phy
it , pintit

)
. (5)

Marginal q equals ∂V/∂K and measures the benefit of adding an incremental unit of

capital (either physical or intangible) to the firm. Marginal q equals average q, because we

assume constant returns to scale, perfect competition, and perfect substitutes in production

and depreciation. This prediction provides a rationale for measuring Tobin’s q as qtot, firm

value divided by Ktot, the sum of physical and intangible capital. The value of qtot depends

endogenously on the shock ε and the two capital prices.

The firm chooses its optimal investment rates by equating their marginal q and their

marginal cost of investment. Applying this condition to Eq. (3) yields Prediction 2.

Prediction 2. The firm’s optimal physical and intangible investment rates follow

ιphyit =
Iphyit

Ktot
it

=
1

γphyi

(
qtotit − ζ

phy
i − pphyit

)
(6)

ιintit =
I intit

Ktot
it

=
1

γinti

(
qtotit − ζ inti − pintit

)
. (7)

Prediction 2 says that the physical and intangible investment rates, both scaled by total

capital, vary with qtot. One empirical implication is that physical and intangible investment
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rates should be correlated. The correlation might not be perfect, though, because adjustment-cost

parameters might not be perfectly correlated across firms, and the prices pphyit and pintit might

not be perfectly correlated either across firms or over time.

Predictions 3 and 4 follow immediately from Prediction 2 and form the basis of our

empirical work. Consider a panel of firms indexed by i. We assume parameters γphy and

γint are constant across firms, but other parameters and shocks can vary across firms. We

assume the two capital prices pmit can be decomposed as pmi + pmt .

Prediction 3. In an OLS panel regression of ιphyit on qtotit and firm and time fixed effects

(FEs), the slope on q equals 1/γphy. If the dependent variable is instead ιintit , the q−slope

equals 1/γint. If the dependent variable is ιtotit , the q−slope equals 1/γphy + 1/γint. Any other

regressors, such as free cash flow, should not enter significantly if added to any of these

regressions.

Prediction 3 says that total q helps explain all three investment measures, and it shows

that the OLS slopes identify the adjustment-cost parameters γ. The firm and year FEs are

needed to absorb the terms −ζi − pit in Eqs. (6) and (7).

To our knowledge, Prediction 4 is new to the literature. It helps explain the investment

literature’s typical regression, which excludes intangible capital and instead scales investment

and q by physical capital alone.

Prediction 4. Define q∗it = Vit/K
phy
it and ι∗it = Iphyit /Kphy

it . In an OLS panel regression of

ι∗it on q∗it and firm and time fixed effects, the slope coefficient is a downward-biased estimate

of 1/γphy, and the R2 is lower than the R2 from the regressions in Prediction 3.

According to our theory, this regression is misspecified, because the ratio −Ktot
it /K

phy
it

is part of the regression’s disturbance and cannot be explained by the FEs. Its q-slope

is downward-biased, meaning it produces upward-biased estimates of the adjustment-cost

parameter γphy, because q∗it depends on the ratio Ktot
it /K

phy
it , making the regressor negatively

related to the disturbance.

At this point, we have imposed several restrictive assumptions. To help judge the model’s

empirical relevance, we establish one last prediction and use it as a consistency check in our

empirical work. This last prediction links firms’ use of intangible capital to their adjustment

costs and q-slopes. If we impose the additional assumptions that physical and intangible

capital have the same linear adjustment-cost parameters (ζphyi = ζ inti ) and purchase prices

8



(pphyit = pintit ), then

lim
t→∞

Kint
it

Ktot
it

=
γphy

γphy + γint
=

βint

βint + βphy
, (8)

where βint and βphy are the Prediction 3 slopes of ιint and ιphy, respectively, on qtot. Intuitively,

if physical and intangible capital are identical except for their adjustment-cost parameters

γ, then a firm holds relatively less intangible capital if intangible capital is costlier to adjust

(γint > γphy). Section 5 performs a consistency check by comparing the Eq. (8) ratio of

regression slopes across firms with different amounts of intangible capital.

2.2. Discussion

To summarize, our simple theory predicts that total q helps explains physical, intangible,

and total investments when we scale them by the firm’s total capital. It also illustrates how

investment regressions can identify the convex part (γ) of capital adjustment costs. The

theory also predicts that including intangible capital produces a better-specified investment

regression and more accurate adjustment-cost estimates.

Next, we discuss the theory’s assumptions and limitations. Overall, we argue that

intangible capital fits well into the neoclassical framework.

Conceptually, spending on intangible assets qualifies as a capital investment, because it

reduces current cash flow to increase future cash flow (Corrado, Hulten, and Sichel, 2005,

2009). Ample evidence exists that intangible investments increase firms’ future profits, as our

theory assumes. A large R&D literature (e.g., Lev and Sougiannis, 1996) shows that R&D

investments increase firms’ future profits. Recognizing this fact, the Bureau of Economic

Analysis (BEA) began capitalizing R&D in satellite accounts in 1994 and in core National

Income and Product Accounts (NIPA) in 2013. A large marketing literature (e.g., Aaker,

1991; Srivastava, Shervani, and Fahey, 1997) shows that firms with stronger brands earn

higher profits and are worth more. More generally, Eisfeldt and Papanikoloau (2013) show

that firms using more organization capital are more productive after accounting for physical

capital and labor. Even though a firm does not own its workers, employee training builds

the firm’s human capital, because training is costly and increases the firm’s future profits.

While employee training and brand building can entail relatively low risk, investments

such as R&D projects are highly risky and sometimes fail completely. The same is true

for physical investments, though. Our theory is designed to handle investments with risky

payoffs, so payoff risk is no reason to exclude intangible capital from the neoclassical theory.

In addition to payoff risk, firms face depreciation risk. Our theory assumes a constant

depreciation rate for intangible capital, whereas the true rate is likely random. For example,
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writing off a large portion of knowledge capital could be appropriate when a firm narrowly

loses a patent race. Physical capital’s true depreciation rate is also likely random, however.

For example, an unexpected product-market change could make a machine obsolete. Again,

no conceptual difference exists between physical and intangible capital here, although there

could be a difference of degree.

When researchers test investment theories, they usually measure investment as CAPX

and capital as PP&E. These two measures add together physical assets that are conceptually

very different from each other, such as timberland, medical equipment, oil reserves, computers,

buildings, and so on. By using such measures, researchers implicitly treat these physical

assets as perfect substitutes. Similarly, our theory adds together many different types of

intangible assets into Kint, and then it assumes the firm’s profits depend on Ktot, the sum

of physical and intangible capital. We therefore treat all assets as perfect substitutes in

producing profits, although we do allow them to have potentially different adjustment costs.

In our opinion, a natural first step is to treat intangible capital the same way researchers

for decades have treated physical capital. In reality, physical and intangible capital could

be complements, not substitutes. One might therefore expect our empirical measures, which

simply add together all capital, to produce poor results. We find the opposite, which is

somewhat surprising and suggests that our simple model provides a useful approximation of

reality.

The theory highlights an important limitation of investment regressions. Whited (1994)

and Erickson and Whited (2000) explain that investment regressions cannot identify the

level of adjustment costs. For example, our theory predicts that the linear adjustment-cost

parameters ζ are not separately identified from firm-specific capital prices p. The investment

regression identifies only the quadratic adjustment-cost parameters γ, meaning the investment

regression can identify only the convex component of adjustment costs. This convex component

is interesting, however, as it determines how investment responds to investment opportunities.

3. Firm-level data

Our sample includes all Compustat firms except regulated utilities (Standard Industrial

Classification codes 4900–4999), financial firms (6000–6999), and firms categorized as public

service, international affairs, or non-operating establishments (9000+). We also exclude firms

with missing or non-positive book value of assets or sales and firms with less that $5 million

in physical capital, as is standard in the literature. We use data from 1975 to 2011, although

we use earlier data to estimate firms’ intangible capital. Our sample starts in 1975, because

this is the first year that the Federal Accounting Standards Board (FASB) requires firms to
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report R&D. We winsorize all regression variables at the 1% level to remove outliers.

3.1. Tobin’s q

Guided by our theory, we measure total q by scaling firm value by the sum of physical

and intangible capital:

qtotit =
Vit

Kphy
it +Kint

it

. (9)

We measure the replacement cost of physical capital, Kphy, as the book value of property,

plant, and equipment (Compustat item ppegt). Subsection 3.2 defines our measure of Kint,

the replacement cost of intangible capital. We measure the firm’s market value V as the

market value of outstanding equity (Compustat items prcc f times csho), plus the book

value of debt (Compustat items dltt+dlc), minus the firm’s current assets (Compustat item

act), which include cash, inventory, and marketable securities.

For comparison, we examine the literature’s standard Tobin’s q measure used by Fazzari,

Hubbard, and Petersen (1988), Erickson and Whited (2012), and many others:

q∗it =
Vit

Kphy
it

. (10)

Erickson and Whited (2006, 2012) compare several alternate Tobin’s q measures, including

the market-to-book–assets ratio, and they find that q∗ best explains investment. The

correlation between q∗ and qtot is 0.82.

3.2. Intangible capital

We briefly review the US accounting rules for intangible capital before defining our

measure.3 The accounting rules depend on whether the firm creates the intangible asset

internally or purchases it externally.

Intangible assets created within a firm are expensed on the income statement and almost

never appear as assets on the balance sheet. For example, a firm’s spending to develop

knowledge, patents, or software is expensed as R&D. Advertising to build brand capital is

a selling expense within SG&A. Employee training to build human capital is a general or

administrative expense within SG&A. There are a few exceptions, in which internally created

intangibles are capitalized on the balance sheet, but these are small in magnitude.4

3Chapter 12 in Kieso, Weygandt, and Warfield (2010) provides a useful summary of the accounting rules
for intangible assets. The authors also provide references to relevant FASB codifications.

4Our measure captures these exceptions via balance sheet Intangible Assets. Firms capitalize the legal
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When a firm purchases an intangible asset externally, for example, by acquiring another

firm, the firm typically capitalizes the asset on the balance sheet as part of Intangible Assets,

which equals the sum of Goodwill and Other Intangible Assets. The asset is booked in Other

Intangible Assets if the acquired asset is separately identifiable, such as a patent, software,

or client list. Acquired assets that are not separately identifiable, such as human capital, are

in Goodwill. When an intangible asset becomes impaired, firms are required to write down

its book value.

We define the replacement cost of intangible capital, denoted Kint, to be the sum of the

firm’s externally purchased and internally created intangible capital. We measure externally

purchased intangible capital as Intangible Assets from the balance sheet (Compustat item

intan). We set this value to zero if missing. We keep Goodwill in Intangible Assets in our

main analysis, because Goodwill does include the fair cost of acquiring intangible assets that

are not separately identifiable. Because Goodwill can be contaminated by non-intangibles,

such as a market premium for physical assets, we also try excluding Goodwill from external

intangibles and show that our results are almost unchanged (Section 7). Our mean (median)

firm purchases only 19% (3%) of its intangible capital externally, meaning the vast majority

of firms’ intangible assets are missing from their balance sheets. There are important outliers,

however. For example, 41% of Google’s intangible capital in 2013 had been purchased

externally. Including these externally purchased intangibles is an innovation in our measure

relative to those in the literature.

Measuring the replacement cost of internally created intangible assets is difficult, as they

appear nowhere on the balance sheet. Fortunately, we can construct a proxy by accumulating

past intangible investments, as reported on firms’ income statements. We define the stock

of internal intangible capital as the sum of knowledge capital and organization capital.

A firm develops knowledge capital by spending on R&D. We estimate a firm’s knowledge

capital by accumulating past R&D spending using the perpetual inventory method:

Git = (1− δR&D)Gi,t−1 +R&Dit, (11)

where Git is the end-of-period stock of knowledge capital, δR&D is its depreciation rate, and

R&Dit is real expenditures on R&D during the year. The BEA uses a similar method to

capitalize R&D, as do practitioners when valuing companies (Damodaran, 1999, 2001). For

δR&D, we use the BEA’s industry-specific R&D depreciation rates.5 We measure annual

costs, consulting fees, and registration fees incurred when developing a patent or trademark. A firm can
start capitalizing software spending only after the product reaches technological feasibility (for externally
sold software) or reaches the coding phase (for internally used software). The resulting software asset is part
of Other Intangible Assets (intano) in Compustat.

5The BEA’s R&D depreciation rates are from the analysis of Li (2012). The depreciation rates range
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R&D using the Compustat variable xrd. We use Compustat data back to 1950 to compute

Eq. (11), but our regressions include only observations starting in 1975. Starting in 1977,

we set R&D to zero when missing, following Lev and Radhakrishnan (2005) and others.6

One challenge in applying the perpetual inventory method in Eq. (11) is choosing a

value for Gi0, the capital stock in the firm’s first non-missing Compustat record, which

usually coincides with the initial public offering (IPO). We estimate Gi0 using data on the

firm’s founding year, R&D spending in its first Compustat record, and average pre-IPO R&D

growth rates. With these data, we estimate the firm’s R&D spending in each year between its

founding and appearance in Compustat. We apply a similar approach to SG&A. Appendix

B provides additional details. Section 7 shows that a simpler measure assuming Gi0 = 0

produces an even stronger investment-q relation than our main measure. We consider that

simpler measure a reasonable alternate proxy for investment opportunities.

Next, we measure the stock of organization capital by accumulating a fraction of past

SG&A spending using the perpetual inventory method, as in Eq. (11). The logic is that

at least part of SG&A represents an investment in organization capital through advertising,

spending on distribution systems, employee training, and payments to strategy consultants.

We follow Hulten and Hao (2008), Eisfeldt and Papanikoloau (2014), and Zhang (2014) in

counting only 30% of SG&A spending as an investment in intangible capital. We interpret

the remaining 70% as operating costs that support the current period’s profits. Section 7

shows that our conclusions still go through, albeit with smaller magnitudes, if we use values

other than 30%. We follow Falato, Kadyrzhanova, and Sim (2013) in using a depreciation

rate of δSG&A = 20%, and in Section 7 we show that our conclusions are robust to alternate

depreciation rates.

Measuring SG&A from Compustat data is not trivial. Companies typically report SG&A

and R&D separately. Compustat, however, almost always adds them together in a variable

misleadingly labeled “Selling, General and Administrative Expense” (item xsga). We must

therefore subtract xrd from xsga to isolate the SG&A that companies report. Appendix B

provides additional details.

from 10% in the pharmaceutical industry to 40% for computers and peripheral equipment. Following the
BEA’s guidance, we use a depreciation rate of 15% for industries not in Li’s Table 4. Our results are virtually
unchanged if we set δR&D equal to 10%, 15%, or 20% for all industries (Table 9).

6We start in 1977 to give firms two years to comply with FASB’s 1975 R&D reporting requirement. If
we see a firm with R&D equal to zero or missing in 1977, we assume the firm was typically not an R&D
spender before 1977, so we set any missing R&D values before 1977 to zero. Otherwise, before 1977, we
either interpolate between the most recent non-missing R&D values (if such observations exist) or we use
the method in Appendix A (if those observations do not exist). Starting in 1977, we make exceptions in
cases in which the firm’s assets are also missing. These are likely years when the firm was privately owned.
In such cases, we interpolate R&D values using the nearest non-missing values.
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Our measure of internally created organization capital is almost identical to that of

Eisfeldt and Papanikolaou (2012, 2013, 2014). They validate the measure in several ways.

They show a positive correlation between firms’ use of organization capital and the Bloom

and Van Reenen (2007) managerial quality score. This score is associated with higher

firm profitability, production efficiency, and productivity of information technology (IT)

(Bloom, Sadun, and Van Reenen, 2010). Eisfeldt and Papanikoloau (2013) show that firms

using more organization capital are more productive after accounting for physical capital

and labor, spend more on IT, and employ higher-skilled workers. They show that firms

with more organization capital list the loss of key personnel as a risk factor more often

in their 10-K filings. Practitioners also use our approach. A popular textbook on value

investing recommends capitalizing SG&A to measure assets missing from the balance sheet

(Greenwald, Kahn, Sonkin, and Van Biema, 2004).

Our measure of intangible capital has the benefit of being easily computed for the full

Compustat sample. The measure has limitations, however, as discussed in Subsection 2.2.

Subsection 4.2 addresses concerns about measurement error bias, and Section 7 shows that

our conclusions are robust to several alternate ways of measuring intangible capital. Overall,

we believe, and the data confirm, that an imperfect proxy for intangible capital is better

than setting it to zero.

3.3. Investment

Guided by our theory, we measure the firm’s physical, intangible, and total investment

rates as

ιphyit =
Iphyit

Ktot
i,t−1

, ιintit =
I intit

Ktot
i,t−1

, ιtotit = ιphyit + ιintit . (12)

We measure physical investment Iphy as capital expenditures (Compustat item capx), and

we measure intangible investment, I int, as R&D + (0.3 × SG&A). This definition assumes

30% of SG&A represents an investment, as we assume when estimating capital stocks. For

comparison, we examine the literature’s standard physical investment measure, denoted ι∗

in our theory:

ι∗it =
Iphyit

Kphy
i,t−1

. (13)

The correlation between ιphy and ι∗ is 0.83.
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3.4. Cash flow

Erickson and Whited (2012), Almeida and Campello (2007), and others measure free

cash flow as

c∗it =
IBit +DPit

Kphy
i,t−1

, (14)

where IB is income before extraordinary items and DP is depreciation expense. The measure

c∗ is the pre-depreciation free cash flow available for physical investment or distribution

to shareholders. One shortcoming of c∗ is that it treats R&D and SG&A as operating

expenses, not investments. In addition to the standard measure c∗, we use an alternate cash

flow measure that recognizes R&D and part of SG&A as investments. We add intangible

investments back into the free cash flow so that we measure the profits available for total,

not just physical, investment:

ctotit =
IBit +DPit + I intit (1− κ)

Kphy
i,t−1 +Kint

i,t−1
. (15)

Lev and Sougiannis (1996) similarly adjust earnings for intangible investments, as do practitioners

(Damodaran, 1999, 2001). Because accounting rules allow firms to expense intangible

investments, the effective cost of a dollar of intangible capital is only (1 − κ), where κ

is the marginal tax rate. When available, we use simulated marginal tax rates from Graham

(1996). Otherwise, we assume a marginal tax rate of 30%, which is close to the mean tax

rate in the sample. The correlation between ctot and c∗ is 0.77.

3.5. Summary statistics

Table 1 contains summary statistics. We define intangible intensity as a firm’s ratio of

intangible to total capital, at replacement cost. The mean (median) intangible intensity is

43% (45%), so almost half of capital is intangible in our typical firm-year. Knowledge capital

makes up only 24% of intangible capital on average, so organization capital makes up 76%.

The median firm has almost no knowledge capital, as almost half of firms report no R&D.

The average qtot is mechanically smaller than q∗, because its denominator is larger. The gap

is dramatic in some cases. For example, Google’s q∗ is 10.1 in 2013, but its qtot is only 3.2.

Researchers sometimes discard q observations exceeding 10, arguing they are unrealistically

large. Total q exceeds 10 in only 1% of observations, compared with 7% for standard q,

suggesting total q is a more reliable measure. The standard deviation of qtot is 74% lower

than for q∗. The standard deviation scaled by its mean is also lower. The average physical

and intangible investment rates are roughly equal, but physical investment is more volatile

and right-skewed. [Table 1]
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Fig. 1 shows that the average intangible intensity has increased over time, especially in

the 1990s. The figure also shows that high-tech and health firms are heavy users of intangible

capital and that manufacturing firms use less. Somewhat surprisingly, even manufacturing

firms’ capital is 30–34% intangible on average. [Fig. 1]

4. Full-sample results

In this section, we test the theory’s predictions in our full sample. Section 5 compares

results across subsamples. We begin with the classic OLS panel regressions of Fazarri,

Hubbard, and Petersen (1988). We then correct for measurement error bias in Subsection

4.2.

4.1. OLS results and co-movement in investment

Table 2 contains results from OLS regressions of investment on lagged q and firm and

year fixed effects. The columns compare different investment measures. For now, we focus

on R2 values, because the regression coefficients suffer from measurement error bias. This

bias is especially severe for cash flow coefficients (Erickson and Whited, 2000; Abel, 2014),

so we exclude cash flow until Subsection 4.2. [Table 2]

Taken literally, the theory predicts an R2 of 100% in Panel A when we measure investment

as ιphy, ιint, or ιtot. We find R2 values that are well below 100%. One potential explanation is

that we measure q with error, an issue we address in Subsection 4.2. Another is that slopes

vary across firms or that shocks hit firms’ marginal adjustment cost functions. Our theory’s

prediction holds better for intangible investment (R2 = 27.9%) than for physical investment

(R2 = 20.9%), and it holds better still for total investment (R2 = 32.7%). We also check

that this result holds for the portion of intangible investment coming from R&D, because

the portion from SG&A is measured with more error. When we measure investment as R&D

scaled by total capital, we find an R2 of 27.0%, which is similar to the 27.9% R2 from our

main intangible investment measure, ιint.

Our theory predicts a lower R2 for the literature’s usual regression of CAPX/PPE on

standard q, shown in the last column of Panel B. The R2 here is low (23.3%) relative to

all the R2 values in Panel A, with one exception: Standard q explains standard investment

slightly better than total q explains our new physical investment measure, ιphy. For ιphy,

measurement error in intangible capital could be offsetting any improvements from including

intangible capital in the denominator of q.

One interesting implication of our theory is that physical and intangible investment

16



should co-move strongly within firms, because the two capital types have the same marginal

productivity and, hence, the same marginal q. We find strong co-movement in the data:

ιphy and ιint have a 31% correlation after we remove firm and time fixed effects from both.

According to the theory, this co-movement should decrease if we remove the effects of total

q, for example, by isolating the residuals for ιphy and ιint from Panel A. The correlation

between these two regressions’ residuals is lower (17%), consistent with the theory. This

remaining correlation could just be an artifact of measurement error in total q.

Throughout the corporate finance literature, researchers use Tobin’s q to proxy for firms’

investment opportunities. The R2 values in Table 2 help us judge how well these proxies

work and, in particular, whether total q or the literature’s standard q measure is the better

proxy for investment opportunities. Panel B shows how well standard q explains the five

investment measures, and Panel C tests whether total q or standard q delivers a higher R2.7

For all five investment measures, total q delivers a larger R2 value than standard q. The

improvement in R2 ranges from 1 to 8 percentage points, or from 5% to 50%. Some of the

improvements are modest in magnitude, but statistical significance in Panel C is high, with

t-statistics ranging from 3.4 to 25.

It is tempting to run a horse race by including total and standard q in the same regression.

Because both variables proxy for q with error, their resulting slopes would be biased in an

unknown direction, making the results difficult to interpret (Klepper and Leamer, 1984).

For this reason, we do not tabulate results from such a horse race. We simply note that

regressing either ιphy or ιtot on both q proxies produces a positive and highly significant slope

on qtot but a negative and less significant slope on q∗. For ιint and ι∗, both q variables have

a significantly positive slope, but the slope on qtot is much larger in magnitude.

Outside the investment literature, it is popular to measure Tobin’s q as the firm’s market

value scaled by its book value of assets. Like Erickson and Whited (2006, 2012), we find that

these market-to-book–assets ratios are especially poor proxies for investment opportunities.

They produce lower R2 values than both standard and total q no matter how we measure

investment (Online Appendix, Table A1).

To summarize, total q explains intangible investment slightly better than physical investment

in our full sample, and it explains total investment even better. As our theory predicts,

physical and intangible investment co-move strongly within firms, because they share the

same q. This result suggests strong co-movement between physical and intangible capital’s

7Throughout, we conduct inference on R2 values using influence functions (Newey and McFadden, 1994).
In a regression y = βx + ε, this approach takes into account the estimation error in β, var(y), and var(x).
We cluster by firm, which accounts for autocorrelation both within and across regressions.
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marginal productivities. Judging by these results, the neoclassical theory of investment is

just as relevant for intangible capital as it is for physical capital. We also show that total q

is a superior proxy for investment opportunities no matter how investment is measured.

4.2. Bias-corrected results

According to our theory, total q is better than standard q at approximating the true,

unobservable q. We recognize, however, that total q is still a noisy proxy. For one, we

measure intangible capital with error. Also, Tobin’s q measures average q, but investment

depends on marginal q in theory. Average q equals marginal q in our simple theory, but, to

the extent that reality departs from this theory, average q measures marginal q with error.8

Because we have only a proxy for q, all the OLS slopes from Subsection 4.1 suffer

from measurement error bias. We now estimate the previous models while correcting this

bias using the Erickson, Jiang, and Whited (2014) higher-order cumulant estimator.9 The

cumulant estimator provides unbiased estimates of β in the following classical errors-in-variables

model:

ιit = ai + qitβ + zitα + uit (16)

pit = γ + qit + εit, (17)

where p is a noisy proxy for the true, unobservable q and z is a vector of perfectly measured

control variables. The cumulant estimator’s main identifying assumptions are that p has

nonzero skewness, β 6= 0, and u and ε are independent of q, z, and each other.

Because the cumulant estimator corrects for measurement error, why is a new q proxy

with less measurement error needed? The reason is that, by ignoring intangibles, the

literature’s standard physical investment and q proxies, ι∗ and q∗, are both mismeasured,

and the measurement error is multiplicative, not additive. The measurement error in ι∗ and

q∗ comes from the omission of intangibles. Because that same error is in both variables,

their measurement errors are correlated with each other, violating the cumulant estimator’s

8Gala (2014) measures the differences between marginal and average q.
9The cumulant estimator supersedes the Erickson and Whited (2002) higher-order moment estimator.

Cumulants are polynomials of moments. The estimator is a generalized method of moments (GMM)
estimator with moments equal to higher-order cumulants of investment and q. Compared with the Erickson
and Whited (2002) estimator, the cumulant estimator has better finite-sample properties and a closed-form
solution, which makes numerical implementation easier and more reliable. We use the third-order cumulant
estimator, which dominates the fourth-order estimator in the estimation of τ2 (Erickson and Whited, 2012;
Erickson, Jiang, and Whited, 2014). Results are similar using the fourth-order cumulant estimator (Online
Appendix).
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assumption that u and ε are independent.10 The measurement error is multiplicative, because

changing the variables’ denominators from physical to total capital requires multiplying them

both by Kphy/Ktot. The multiplicative error makes both variables’ errors depend on the true

q, violating the cumulant estimator’s assumption that u and ε are independent of q. We

cannot solve the problem by regressing total investment on the standard q measure (ιtot on

q∗), because measurement error in q∗ is still multiplicative and, hence, a function of q, again

violating the cumulant estimator’s assumption that ε is independent of q.11

We perform a simple horse race to illustrate that the cumulant estimator on its own

cannot correct for the measurement error in the standard q measure. Using the cumulant

estimator, we regress ιtot on q∗, and then regress ιtot on qtot. If the cumulant estimator

could correct for the measurement error in q∗, then the two q proxies should produce similar

q-slope estimates and ρ2 values (defined below). Instead, we find that using total q produces

a significantly higher q-slope (0.086 versus 0.023) and higher ρ2 (0.423 versus 0.314). Results

are in the Online Appendix.

Estimation results are in Table 3. Regarding the slopes on q, our estimates imply that

intangible capital’s convex adjustment costs are roughly twice as large as those for physical

capital. According to our theory, the q-slopes measure the inverse capital adjustment-cost

parameters γphy and γint. In Panel A, the 0.070 slope for ιphy is roughly double the 0.037

slope for ιint. We obtain a similar result after controlling for cash flow (Panel B) and also

if we isolate the R&D component of intangible investment (Column 4). As we explain in

Subsection 2.2, an important caveat is that our regressions can identify the convex component

but not the overall level of adjustment costs. [Table 3]

This result helps support the Brown, Fazzari, and Petersen (2009, p. 160) conjecture

that “R&D likely has high adjustment costs ..., possibly substantially higher than the

adjustment costs for physical investment.” Their argument is that R&D involves spending

on highly skilled technology workers who are costly to hire, train, and replace. Hall (2002),

Himmelberg and Petersen (1994), Griliches and Hausman (1986), and Grabowski (1968)

make similar arguments about R&D, and one could make similar arguments about human

capital investments that are part of SG&A. Empirical evidence supporting these arguments

10To see this, assume that the world behaves according to ιtotit = qitβ̃, where qit is the unobservable, true
q; that our empirical proxy qtotit = qit + ε̃it, where ε̃it is independently distributed; and that we mistakenly
estimate the errors-in-variables model using the standard measures: ι∗it = qitβ + uit and q∗it = qit + εit.

One can prove that uit = qit

(
AitBitβ̃ − β

)
and εit = qit (Bit − 1) + Bitε̃it, where Bit = Ktot

it /K
phy
it and

Ait = Iphyit /Itotit . Because uit and εit both depend on qitBit, they are not independent of q or each other.
11To see this, suppose that the assumptions in footnote 10 hold, except we instead estimate the

errors-in-variables model ιtotit = qitβ + uit, and q∗it = qit + εit. One can prove that εit = qit (Bit − 1) + ε̃itBit,
so εit and qit are not independent of each other.
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is currently very limited.12 An important implication of our result is that firms adjust more

slowly to shocks to their investment opportunities as the economy shifts toward intangible

capital.

Table 3 also changes how we view physical capital’s adjustment costs. The last column in

Panel A shows the literature’s standard regression, which omits intangible capital. Prediction

4 in our theory states that this regression delivers a downward-biased estimate of 1/γphy,

i.e., a downward-biased q-slope. Consistent with this prediction, this standard regression

delivers a q-slope of 0.036, roughly half as large as the 0.070 slope from the regression using

ιphy and scaling q by total capital. As we explain in Subsection 2.1, the typical regression

delivers downward-biased slopes because the ratio of physical to total capital is an omitted

variable that it positively related to the regressor and negatively related to the residual. This

result helps resolve a puzzle in the investment literature. Researchers since Summers (1981)

have argued that investment-q regressions produce implausibly small q-slopes, i.e., large

adjustment costs. We find that physical capital’s q-slopes are twice as large as previously

believed, once one accounts for intangible capital.

In addition to delivering unbiased q-slopes, the cumulant estimator produces two useful

test statistics. The first, ρ2, is the hypothetical R2 from Eq. (16). Loosely speaking, ρ2

indicates how well the true, unobservable q explains investment, with ρ2 = 1 implying a

perfect relation. Taken literally, our theory predicts ρ2 = 1 even if we measure q with error.

The second statistic, τ 2, is the hypothetical R2 from Eq. (17). It indicates how well our q

proxy explains true q, with τ 2 = 1 implying a perfect proxy.

Comparing the total-investment regression with the literature’s typical regression, we

find that including intangible capital produces a stronger investment-q relation (ρ2 of 0.423

versus 0.372, a 14% increase) and a better proxy for Tobin’s q (τ 2 of 0.597 versus 0.492,

a 21% increase). On these dimensions, the classic q-theory fits the data better when we

account for intangible capital. Model fit is still far from perfect, though: q explains less

than half the variation in investment, and our total-q proxy explains less than 60% of the

variation in true q.

Finally, we discuss the cash flow slopes shown in Panel B. Our simple theory predicts a

12Bernstein and Nadiri (1989a, 1989b) and Mohnen, Nadiri, and Prucha (1986) report slower adjustment
speeds for R&D capital than physical capital in most but not all industries and for most but not all of their
adjustment-cost measures. Bernstein and Nadiri (1989a, 1989b) use data on 48 firms from 1965 to 1978 and
35 firms from 1959 to 1966, respectively. Mohnen, Nadiri, and Prucha (1986) use three countries’ aggregate
data from 1965 to 1977. Intangible capital was less prevalent during these years, and US firms were not
required to report R&D until 1975. Li, Liu, and Xue (2014) estimate a structural model off the cross section
of stock returns, and they find larger adjustment costs for R&D capital. By focusing on R&D capital, all
these papers exclude organization capital.
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zero cash flow slope for regressions using ιphy, ιint, and ιtot. We find that physical investment

has a significantly positive cash flow slope, contrary to the theory’s prediction. We also find

that including intangible capital affects the sensitivity of physical investment to cash flow.

The physical investment–cash flow sensitivity is 60% higher (0.024 versus 0.015) when we

compare the specification with ιphy with the standard regression using CAPX/PPE.

Compared with physical investment, intangible investment appears roughly twice as

sensitive to cash flow (slope of 0.050 versus 0.024). Intangible investment is the sum of

its R&D and SG&A components. Which component is most important for producing the

high investment–cash flow sensitivity? Column 4 of Panel B shows that R&D investment

has a slope of zero on cash flow, consistent with the theory’s prediction. SG&A investment

must be highly sensitive to cash flow. Indeed, we find that SG&A investment has a cash

flow slope of 0.115, which is more than double intangible investment’s slope of 0.050 (Online

Appendix).

One concern here is that measurement error in SG&A investment is biasing its cash flow

slope upward. Compared with R&D, we measure SG&A investment with considerable error.

Our ctot measure is gross of SG&A investment, meaning we add back SG&A investment

when computing it [Eq. (15)]. Any measurement error in SG&A investment, therefore,

appears mechanically in both ctot and SG&A investment itself, biasing its cash flow slope

upward. For this reason, we view 0.115 as an upper bound for SG&A investment’s cash

flow sensitivity. We provide a lower bound in the Online Appendix by creating an alternate

cash flow measure that is net of SG&A and, therefore, immune from this concern. SG&A

investment has a statistically insignificant slope of 0.008 on this alternate cash flow measure.

This 0.008 slope provides a lower bound for the true slope, because netting SG&A from cash

flow pushes down the cash flow slope, and an economically meaningful cash flow measure

should be gross of all investment, including SG&A investment. In sum, we can provide

only a wide range for SG&A investment’s cash flow slope (0.008–0.115), which implies a

wide range in intangible investment’s cash flow slope (0.012–0.050). Whether physical or

intangible investment is more sensitive to cash flow is unclear.

Even absent these measurement challenges, interpreting the investment–cash flow sensitivity

is notoriously difficult. Fazzari, Hubbard, and Petersen (1988) interpret it as evidence

of financing constraints. In contrast, theories by Gomes (2001), Alti (2003), Cooper and

Ejarque (2003), Hennessy and Whited (2007), Abel and Eberly (2011), and Gourio and

Rudanko (2014) predict an investment–cash flow sensitivity even in the absence of financing

constraints. For example, decreasing returns to scale can make cash flow informative about

marginal q, even after controlling for Tobin’s (average) q. We simply conclude that physical

21



investment is even more sensitive to cash flow than previously believed, R&D investment

is insensitive to cash flow, and SG&A investment’s cash flow sensitivity remains unclear.

Without performing a full structural estimation, it is difficult to tell whether these cash flow

results are driven by financing constraints, diseconomies of scale, or some other source.

5. Comparing subsamples

Next, we compare results across firms, industries, and years. Doing so allows us to test

our theory and compare adjustment costs across subsamples. It also lets us check our main

results’ robustness across subsamples, which we discuss in Section 7.

We reestimate the previous models in subsamples formed using three variables. First,

we sort firms each year into quartiles based on their lagged intangible intensity (Table 4).

Second, we use the Fama and French five-industry definition to compare the manufacturing,

consumer, high-tech, and health industries (Table 5). Third, we compare the early (1972–1995)

and late (1996–2011) parts of our sample (Table 6). For each subsample, we estimate

regressions using ιphy, ιint, and ιtot, as well as the standard regression with CAPX/PPE. [Tables
4–6]

5.1. Testing the theory in subsamples

The classic q theory, including the theory in this paper, fits the data better in settings

with more intangible capital. We find this improved fit on three dimensions.

First, R2 values increase dramatically when moving from the lowest to highest intangible

quartile (Table 4, Panel B). For example, the R2 for the total-investment regression increases

monotonically from 23% to 47%. Even when we use the literature’s standard investment and

q measures, the R2 increase monotonically from 18% to 30%. This last result is surprising,

because the standard q measure has more measurement error in firms with more intangibles:

τ 2 is 44% in Quartile 4 versus 68% in Quartile 1. The patterns are similar when we

compare manufacturing with high-intangible industries or the early with the late subperiod.

The increases in R2 across subsamples, tabulated in the last columns of Tables 4–6, are

statistically significant for all four investment measures and in all three tables, with just two

exceptions out of 12 (Table 5, Specification 1 and Table 6, Specification 1).

Second, ρ2 values increase monotonically and roughly double when moving from the

lowest to highest intangible quartile (Panel C). This result means that the true q’s explanatory

power for investment is much stronger in firms with more intangible capital. This increase

in ρ2 is responsible for the large increases in R2 across subsamples. Again, the patterns are

similar across industries and years.

22



Third, cash flow slopes are significantly lower in firms, industries, and years with more

intangible capital (Panel E). The cash flow slopes even turn slightly negative in several

high-intangible subsamples, even when we use the literature’s standard measures. This result

is robust across all four investment measures and across Tables 4–6, with one exception:

Intangible investment has a larger cash flow slope in higher-intangible quartiles (Table 4).

This exception could be an artifact of the measurement error bias we discuss in Subsection

4.2. Like us, Chen and Chen (2012) find a weaker investment-cash flow sensitivity in recent

years. Our findings suggest this change over time could partially reflect the rise of intangible

capital.

The rest of this subsection seeks to explain why the classic q theory works better in

settings with more intangibles. Put differently, which of the theory’s assumptions are violated

more severely in firms using less intangibles? We start by exploring theoretically whether

violations of our simple model’s assumptions could explain the patterns in Table 4. We solve

a more general model that relaxes our earlier assumptions about constant returns to scale,

perfect competition, and quadratic adjustment costs. Details and numerical results are in

the Online Appendix. We explain two predictions from the model next.

We find that violating the assumption about quadratic adjustment costs is unlikely to

generate the empirical patterns in Table 4. When we change the adjustment-cost function’s

exponent from 2 to 1.75 or 1.5, we find a negligible effect on predicted R2 values, and we do

not find a significant predicted investment–cash flow relation.

Differences in economies of scale or competition could theoretically explain some of the

patterns in Table 4. Relative to the benchmark theory in Section 2, a theory with imperfect

competition or decreasing returns to scale produces lower predicted R2 values in regressions

of investment on q, and it also generates a positive investment–cash flow relation, a prediction

already known from Abel and Eberly (2011). If firms using more intangible capital are closer

to the perfect-competition, constant-returns benchmark, this mechanism could explain why

they exhibit lower cash flow slopes and higher R2 and ρ2 values.

Unfortunately, we find little empirical support for this mechanism. In the Online Appendix,

we check whether firms with more intangibles are closer to the perfect-competition, constant-returns

benchmark. First, we estimate production-function curvature using the methods of Cooper

and Haltiwanger (2006) and Olley and Pakes (1996). Comparing the curvature estimates

across subsamples, we find no statistically significant differences in economies of scale between

the high- and low-intangible quartiles. Also, whereas the improvement in model fit in Table

4 is monotonic across quartiles, the curvature estimates are strongly non-monotonic. Second,
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we compare three competition proxies across subsamples. We find mixed results when we use

the Herfindahl Index to proxy for industry-level competition; different industry classifications

deliver increasing, decreasing, or flat patterns across intangible-intensity subsamples. We also

compare profitability across subsamples, because competition should reduce profitability.

Again, different profitability measures produce opposing results. We also compare firm size

across subsamples, as relatively small firms within an industry can face more competition.

The relation between firm size and intangible usage is either statistically insignificant or

strongly non-monotonic depending on the size proxy we use. To summarize, we do not find

any robust empirical evidence that high-intangible firms face less diseconomies of scale or

more competition.

One last possible explanation for the pattern in Table 4 is that high-intangible firms are

less financially constrained, making the theory fit the data better. This explanation seems

unlikely, because it is difficult to use intangible assets as collateral, which arguably makes

high-intangible firms more financially constrained (Almeida and Campello, 2007; Falato,

Kadyrzhanova, and Sim, 2013). Unfortunately, it is difficult to test this financing-constraints

mechanism without a full structural estimation (Hennessy and Whited, 2007).

5.2. Comparing adjustment costs across subsamples

Table 4 shows interesting patterns in q-slopes across subsamples. According to our

theory, these q-slopes do not help us test our theory’s predictions or assumptions. Instead,

the q-slopes reflect adjustment-cost parameters.

Table 4 shows that firms using more intangibles have significantly smaller slopes of

physical investment on q, and they have significantly larger slopes of intangible investment on

q. The implications are that firms using more intangibles have physical capital that exhibits

larger convex adjustment costs and that they have intangible capital that exhibits smaller

convex adjustment costs.

This pattern in q-slopes points to differences in the nature of physical and intangible

capital across firms, and it could also shed light on why some firms use more intangible

capital. As we explain at the end of Subsection 2.1, if a firm’s intangible capital is less costly

than physical capital to adjust, then the firm is predicted to use relatively more intangible

capital. As a result, firms using more intangible capital should have a higher intangible

investment q-slope relative to the sum of slopes for physical and intangible investment. We

show these slope ratios in Panel A of Table 4. The ratios increase monotonically across the

quartiles, consistent with our theory. Our theory further predicts that the slope ratio equals
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firms’ intangible intensity. The actual intensities, shown in the column labels, range from

8% to 76%, and the slope ratios ranges from only 22% to 43%. Our simple theory, therefore,

explains part but not all of firms’ different intangible-capital usage.

This exercise provides a useful consistency check on our theory. Some important caveats

are in order, though. To link q-slopes to firms’ optimal mix of capital types, our theory needs

strong additional assumptions. The theory requires that physical and intangible capital are

identical in all ways except for their quadratic adjustment-cost parameters. Outside our

simple theory, alternate explanations could exist for the pattern we find in q-slopes across

firms. We know from the investment-q literature that q-slopes need not reflect adjustment

costs. For example, Abel and Eberly (2011) show that, even in a world with no adjustment

costs, diseconomies of scale can make investment and Tobin’s q positively related. Also,

differences could exist between physical and intangible capital’s purchase prices, depreciation

rates, economies of scale, and adjustment-cost curvatures. These differences could affect both

firms’ optimal mix of capitals and their investment-q slopes. Because Table 4 does not control

for these differences, we might just be picking up these omitted differences between physical

and intangible capital.

To explore this potential bias further, we solve a more general model that allows physical

and intangible capital to differ in ways not allowed in Section 2. We assume that physical and

intangible capital share the same adjustment-cost parameters (γphy = γint), so we shut down

the mechanism proposed above. We then ask whether other differences between physical and

intangible capital could produce predicted q-slope patterns like the ones in Table 4. Details

and numerical results are in the Online Appendix. First, we find that differences in purchase

prices (pphyit 6= pintit ) can explain why some firms use more intangible capital, but they do

not explain why firms have different investment-q slopes. Second, we show that differences

between the two capital types’ economies of scale do not necessarily drive them to use more of

one capital type and do not make their q-slopes differ significantly. These first two alternate

explanations—differences in purchase prices or economies of scale—do not seem to work for

the empirical patterns we find. Third, we show that if intangible capital depreciates faster

than physical capital, then firms optimally use less intangibles and intangible investment

has a slightly lower q-slope than physical investment, consistent with the patterns in Table

4. Finally, we relax the assumption that both capital types face quadratic adjustment costs.

We show that if intangible capital faces less-convex adjustment costs than physical capital,

then firms optimally use less intangible capital and intangible investment has a lower q-slope

than physical investment, consistent again with the patterns in Table 4. We cannot rule

out that these last two mechanisms, differences in depreciation rates or adjustment-cost

convexities between the two capital types, are driving the Table 4 cross-sectional relation
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between q-slopes and capital mixes.

6. Macro results

The neoclassical theory of investment, including the theory in this paper, can easily be

interpreted as a theory of the macroeconomy, not a single firm. The macro literature has

been interested in the investment-q relation going back to at least Abel (1980) and Summers

(1981). We ask how this relation changes when we account for intangible capital.

Our macro sample contains 141 quarterly observations for the US economy from 1972Q2

to 2007Q2, the longest period for which all variables are available. Data on aggregate physical

q and investment come from Hall (2001), who uses the flow of funds and aggregate stock and

bond market data. The literature’s standard q measure, again denoted q∗, is the ratio of the

value of ownership claims on the firm, less the book value of inventories, to the reproduction

cost of plant and equipment. The standard investment measure, again denoted ι∗, equals

private nonresidential fixed investment scaled by its corresponding stock, both of which are

from the Bureau of Economic Analysis.

Data on the aggregate stock and flow of physical and intangible capital come from Carol

Corrado and are discussed in Corrado and Hulten (2014). Earlier versions of these data are

used by Corrado, Hulten, and Sichel (2009) and Corrado and Hulten (2010). Their measures

of intangible capital include aggregate spending on business investment in computerized

information (from NIPA), R&D (from the National Science Foundation and Census Bureau),

and economic competencies, which include investments in brand names, employer-provided

worker training, and other items. One advantage of these macro data relative to our firm-level

data is that the macro data do not rely on an assumption about the fraction of SG&A

representing an investment. As before, we measure the total capital stock as the sum of the

physical and intangible capital stocks. We compute total q as the ratio of total ownership

claims on firm value, less the book value of inventories, to the total capital stock. We define

the investment rates ιphy, ιint, and ιtot as in our firm-level analysis. To mitigate problems

from potentially differing data coverage, we use the Corrado and Hulten (2014) ratio of

physical to total capital to adjust the Hall (2001) measures of physical q and investment.13

The correlation between standard and total q is extremely high, 0.997. The reason is

that total q equals standard q times the ratio of physical to total capital, and this ratio

has changed slowly and consistently over time (Fig. 1). Of more importance is the change

13To be precise, we use the Hall (2001) data on q∗ and ι∗ and the Corrado and Hulten (2014) data on
A = Kphy/(Kphy + Kint) and B = Iphy/(Iphy + Iint). We compute qtot = q∗A, ιphy = ι∗A, ιtot = ιphy/B,
and ιint = ιtot − ιphy.
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from standard to total investment, which additionally requires multiplying ι∗ by the ratio of

capital flows, which is much more volatile than the ratio of capital stocks. The correlation

between total and standard investment is therefore much smaller, 0.43.

For comparison, we also use the Philippon (2009) aggregate bond q measure, which he

obtains by applying a structural model to data on bond maturities and yields. Bond q is

available at the macro level but not at the firm level. Philippon (2009) shows that bond q

explains more of the aggregate variation in what we call physical investment than standard

q does. Bond q data are from Philippon’s website.

Fig. 2 plots the time series of investment and q. Panel A shows the standard q and

investment measures, which omit intangible capital. Except in a few subperiods, q explains

investment relatively poorly, as Philippon (2009) and others have shown. Panel B shows

that the relation between total q and ιphy is still weak. Panel C shows a strong relation

between total q and intangible investment, mainly because total q and intangible investment

both trend up from 1982 to 2000. Panel D compares total investment and total q. Here the

fit looks strongest of all. [Fig. 2]

To explore these patterns more carefully, Table 7 shows results from time series regressions

of investment on lagged q. Panel A shows regressions in levels, comparing our four investment

measures. Consistent with Fig. 2, the literature’s standard measures and ιphy produce

statistically insignificant q-slopes and R2 values near zero. In stark contrast, intangible and

total investment both have highly significant q-slopes, and they deliver R2 values of 57% and

61%, respectively. These R2 values are even higher than the 46% R2 that Philippon (2009)

obtains by regressing the standard investment measure on bond q (Panel B). Judging by R2,

the classic q theory fits the data much better when we include intangible capital, because we

are better able to explain the low-frequency trends in q and investment. Put differently, the

literature’s standard investment measure suffers from a low-frequency error—the omission

of intangibles—that trends strongly with q over time. [Table 7]

How well can q explain higher-frequency variation in investment? Panels C and D answer

this question by rerunning the previous regressions in four-quarter differences. As in our

firm-level analysis, total q now explains physical and intangible investment roughly equally

well, and it explains total investment even better. As before, intangible investment has a

lower q-slope than physical investment, indicating higher convex adjustment costs. Bond

q, though, is much better than total q at explaining changes in investment. In differences,

bond q also explains physical investment better than intangible investment. Philippon (2009)

offers one potential explanation: Growth options affect stocks more than bonds, and growth
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options affect intangible investment more than physical investment. Put differently, physical

and intangible capital can have different values of marginal q. Bond q could be a better proxy

for physical capital’s marginal q, whereas the traditional q measures, which use stock prices,

could be better proxies for intangible capital’s marginal q. A second possible explanation is

about sample selection. Firms with more intangible investment typically hold less debt, so

they contribute less to the aggregate bond q measure.

To summarize, at the macro level, including intangibles makes q explain the level of

investment much better, meaning the classic q theory fits the data much better than previously

believed. When we try to explain changes in investment, the macro results look more like our

firm-level results. Bond q is still better at explaining physical investment as well as changes

in investment.

7. Robustness

This section describes our results’ robustness across different subsamples, empirical measures,

and estimators. We also explain why our main results are not mechanical.

7.1. Robustness of main results across subsamples

Tables 4–6 show that our main results are quite robust across subsamples. Compared

with physical investment, intangible investment has a lower q-slope in all ten subsamples

(Panel A). We always see larger q-slopes for physical investment in the specification with

ιphy compared with the specification with CAPX/PP&E (Panel A). Total q always explains

total investment better than it explains either physical or intangible investment and better

than standard q explains standard investment (Panel B). This result means that including

intangibles produces a better proxy for investment opportunities even in subsamples with

less intangible capital, such as the manufacturing industry. In the full sample (Table 3),

total q explains intangible investment slightly better than physical investment. We see the

reverse in four of ten subsamples, so we conclude that total q explains physical and intangible

investment roughly equally well.

The improvement in model fit from including intangible capital is especially large in

subsamples with more intangible capital, which is a useful consistency check. Consider the

increase in R2 when moving from the regression that ignores intangibles (Specification 4 in

the tables) to the regression that uses ιtot and qtot (Specification 3). In Table 4, the increase

in R2 is 0.174 (58%) in the highest intangible quartile, but just 0.050 (27%) in the lowest

quartile. This pattern is mainly driven by τ 2, which increases by 0.284 (65%) in the top
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quartile but decreases by a statistically insignificant 0.018 (3%) in the lowest quartile. This

result means that total q is a better proxy for true q, especially in firms with the most

intangible capital. These same patterns are also present, but less dramatic, across industry

and year subsamples.

7.2. What fraction of SG&A is an investment?

Arguably, the strongest assumptions in our intangible-capital measure are that λ =

30% of SG&A represents an investment and λ is constant across firms and time. Table 8

shows that our main conclusions go though, at least qualitatively, when we use different

values of λ ranging from zero to 100%. When λ is zero, firms’ intangible capital comes

exclusively from R&D. No matter what λ value we assume, we find larger q-slopes for physical

investment, roughly equal R2 for physical and intangible investment, and the highest R2 for

total investment. Intangible investment has its largest R2 when λ = 30%, meaning the data

seem to prefer the λ value we use in our main analysis. The R2 is considerably lower (15%

versus 28%) if λ = 0, so the data do prefer counting at least part of SG&A as investment. [Table 8]

Instead of assuming λ = 30%, we can let the data reveal λ’s value. The structural

parameter λ affects both the investment and q measures. We estimate λ along with the

q-slope and firm fixed effects by maximum likelihood, applied to the ιtot regression. The

estimated λ values are 0.38 in the consumer industry, 0.51 in the high-tech industry, and

0.24 in the health care industry, which are all in the neighborhood of our assumed 0.3 value.

However, we do not push these λ estimates strongly, for three reasons. First, the investment-q

relation is not the ideal setting for identifying λ. Second, the estimation imposes two very

strong identifying assumptions: The linear investment-q model is true, and we measure all

variables perfectly. Finally, the λ estimate in the manufacturing industry is constrained at

1.0, which is implausibly large and likely a symptom of the previous two issues. The main

message from this subsection, though, is that our main conclusions hold regardless of the λ

value we use.

7.3. Alternate measures of intangible capital

In addition to varying the SG&A multiplier λ, we try nine other variations on our

intangible-capital measure. We vary δSG&A, the depreciation rate for organization capital;

we vary δR&D, the depreciation rate for knowledge capital; we exclude Goodwill from firms’

intangible capital; we exclude all balance sheet intangibles, which brings us closer to existing

measures from the literature; we set firms’ starting intangible capital stock to zero; and

we estimate firms’ starting intangible capital stock using a perpetuity formula, like Falato,
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Kadyrzhanov, and Sim (2013). We also drop the first five years of data for each firm, which

makes the choice of starting intangible capital stock less important. We also try dropping

the 47% of firm-years with missing R&D from our regressions. Table 9 provides details about

these variations and their results. Although magnitudes vary somewhat, our main results

still hold in all these variations: Total q explains physical and intangible investment roughly

equally well, total q explains total investment even better, and intangible investment always

has a lower q-slope. [Table 9]

7.4. Alternate estimators

In addition to using the cumulant estimator to obtain unbiased q-slopes, we use the Biorn

(2000) and Arellano and Bond (1991) instrumental variable (IV) estimators. Both estimators

take first differences of the linear investment-q model and then use lagged regressors as

instruments for the q proxy. Erickson and Whited (2012) show that these IV estimators are

biased if measurement error is serially correlated, which is likely in our setting. This bias is

probably most severe in the standard regressions that omit intangible capital, as omitting

intangible capital is an important source of measurement error, and a firm’s intangible capital

stock is highly serially correlated. Because the cumulant estimators are robust to serially

correlated measurement error, we prefer them over the IV estimators. The IV estimators

generate similar conclusions about adjustment costs. They produce lower q-slopes for ιint

than ιphy and lower q-slopes for ι∗ than ιphy (Online Appendix).

7.5. A mechanical result?

Is it mechanical that total q explains total investment better than standard q explains

standard investment? A potential concern is that moving from the latter regression to the

former requires multiplying both sides of the regression by Kphy/Ktot. Multiplying both

sides of a regression by the same variable can, but does not necessarily, increase the R2 even

if that variable is pure noise.

Our result is not mechanical or obvious, however. Multiplying both sides of the literature’s

standard regression by Kphy/Ktot produces the regression of ιphy on qtot, shown in Column 1

of Table 3. Contrary to the concern, that regression gets a slightly lower R2, τ 2, and ρ2 value

than the standard regression (last column in Table 3). Moving to the regression of ιtot on qtot

requires further multiplying ιphy, but not qtot, by the ratio of total to physical investment.

This change would further reduce the R2 if intangible investment were noise, but instead

R2 increases. Moreover, if our measure of intangible investment were just noise, we would

not find that it is well explained by q and co-moves with physical investment. The Online
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Appendix presents a placebo simulation analysis showing that our main results would not

obtain if our intangible capital measures were pure noise with similar statistical properties.

8. Conclusion

The neoclassical theory of investment has been applied almost exclusively to physical

capital. We show that the theory is also relevant for intangible capital, which increasingly

dominates the US economy. In both our theory and firm-level data, physical and intangible

investment co-move strongly, and they are explained roughly equally well by Tobin’s q.

Compared with physical capital, intangible capital’s convex adjustment costs are roughly

twice as large, meaning intangible capital responds more slowly to changes in investment

opportunities. In macro data, Tobin’s q explains the level of intangible investment many

times better than physical investment. The neoclassical theory performs significantly better

in firms, industries, and years with more intangible capital.

Tobin’s q is “arguably the most common regressor in corporate finance” (Erickson and

Whited, 2012, p. 1286). Guided by our theory, we provide a new Tobin’s q measure that

accounts for intangible capital, and we show that it is a superior proxy for both physical

and intangible investment opportunities. This new Tobin’s q measure offers a simple way

to improve corporate finance regressions without additional econometrics. A benefit of the

new measure is that it can be easily computed for the full Compustat sample. Data on our

Tobin’s q measure and firms’ intangible capital can be downloaded from WRDS.

This paper revisits the basic facts about investment, Tobin’s q, and cash flow while

accounting for intangible capital. We believe this is an important step, because a vast

investment literature in corporate finance and macroeconomics is built upon these facts.

Important next steps include understanding how physical and intangible capital interact,

how they face different prices for different firms in different periods, how they respond

differently to growth options and financial constraints, and how they show up differently

in firms’ market values. Why the classic q-theory fits the data better in high-intangible

settings is also an interesting open question. Finally, there is more work to do on measuring

intangible capital.
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Appendix A. Proofs

A.1. Proof of Prediction 1

Dropping firm subscripts, we can write the value function as

Vt = max
{Iphyt+s ,I

int
t+s}

∫ ∞
0

Et{ Ktot
t+s[H (εt+s)−

γphy

2

(
Iphyt+s

Ktot
t+s

)2

− γint

2

(
I intt+s

Ktot
t+s

)2

−
(
pphyt+s + ζphy

) Iphyt+s

Ktot
t+s

−
(
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) I intt+s
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t+s

]}. (18)

Total capital follows

dKtot
t = Ktot

t

(
Iphyt

Ktot
t

+
I intt

Ktot
t

− δ

)
dt. (19)

Following the same argument as in Appendix A of Abel and Eberly (1994), firm value must

be proportional to total capital Ktot :

V
(
Kphy, Kint, ε, pphy, pint

)
= Ktotqtot

(
ε, pphy, pint

)
. (20)

Differentiating this equation with respect to Kphy and Kint yields Eq. (5).

A.2. Proof of Prediction 2

Following a similar proof as in Abel and Eberly (1994), one can derive the Bellman equation

and take first-order conditions with respect to each investment rate to obtain

qtott =
∂

∂Imt
cm
(
Imt , K

tot
t , pmt

)
= pmt + ζm + γm

Imt
Ktot

, m = phy, int. (21)

Rearranging yields Eqs. (6) and (7).

A.3. Proof of Prediction 4

Multiplying both sides of Eq. (6) by Ktot
it /K

phy
it yields

ι∗it =
Iphyit

Kphy
it

=
1

γphy

(
q∗it −

Ktot
it

Kphy
it

(
ζphyi + pphyit

))
. (22)

Now consider a regression of ι∗it on q∗it and firm and time FEs. The residual in that regression,

ε∗it, equals the residual from a regression of − 1
γphy

Ktot
it

Kphy
it

(
ζphyi + pphyit

)
on firm and time FEs.

This residual is nonzero and, hence, the regression’s R2 is less than 100%, because the ratio

Ktot
it /K

phy
it cannot be fully explained by firm and time fixed effects. To see this last claim,

define ωit = Ktot
it /K

phy
it . By Ito’s lemma, ω evolves according to

dωit
ωit

=
[
ιphyit (1− ωit) + ιintit

]
dt. (23)
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The evolution of ωit cannot be fully be explained by firm and time FEs, because it depends on

the investment rates ιphyit and ιintit , which depend on qtotit and, hence, εit, which cannot be fully

explained by the FEs. Furthermore, the error term ε∗it is negatively correlated to the regressor

q∗it = qtotit K
tot
it /K

phy
it , because Ktot

it /K
phy
it multiplies both terms, albeit with a negative sign

in ε∗it. Because the error term is negatively related to the regressor, the regression produces

downward-biased estimates of 1/γphy.

A.4. Proof of last prediction

Set dωit = 0 in Eq. (23) and solve for the equilibrium value, ω :

ω =
ιintit + ιphyit

ιphyit

=

1
γint (qtotit − ζ − pit) + 1

γphy
(qtotit − ζ − pit)

1
γphy

(qtotit − ζ − pit)
=
γphy + γint

γint
. (24)

The last prediction follows, because Kint/Ktot = 1− 1/ω.

Appendix B. Measuring intangible capital

B.1. Measuring SG&A

We measure SG&A as Compustat variable xsga minus xrd minus rdip. We add the

following screen: When xrd exceeds xsga but is less than cogs, or when xsga is missing, we

measure SG&A as xsga with no further adjustments or zero if xsga is missing.

The logic behind this formula is as follows. According to the Compustat manual, xsga

includes R&D expense unless the company allocates R&D expense to cost of goods sold

(COGS). For example, xsga often equals the sum of Selling, General and Administrative

and Research and Development on the Statement of Operations from firms’ 10-K filings. To

isolate (non-R&D) SG&A, we must subtract R&D from xsga when Compustat adds R&D

to xsga. There is a catch: When a firm externally purchases R&D on products not yet

being sold, this R&D is expensed as In-Process R&D and does not appear on the balance

sheet. Compustat adds to xsga only the part of R&D not representing acquired In-Process

R&D, so our formula subtracts rdip (In-Process R&D Expense), which Compustat codes

as negative. We find that Compustat almost always adds R&D to xsga, which motivates

our formula above. Standard & Poor’s explained in private communication that, “in most

cases, when there is a separately reported xrd, this is included in xsga.” As a further check,

we compare the Compustat records and 10-K filings for a random sample of one hundred

firm-year observations with non-missing xrd. We find that Compustat includes R&D in

xsga in 90 out of one hundred cases, partially includes it in xsga in one case, and includes
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it in COGS in seven cases. Two cases remain unclear even after asking the Compustat

support team. The screen above lets us identify obvious cases in which xrd is part of COGS.

This screen catches six of the seven cases in which xrd is part of COGS. Unfortunately,

identifying the remaining cases is impossible without reading SEC filings. We thank the

Compustat support team from Standard & Poors for their help in this exercise.

We set xsga, xrd, and rdip to zero when missing. For R&D and SG&A, we make

exceptions in years when the firm’s assets are also missing. For these years, we interpolate

these two variables using their nearest non-missing values. We use these interpolated values

to compute capital stocks but not regressions’ dependent variables.

B.2. Measuring firms’ initial capital stock

This section explains how we estimate the stock of knowledge and organization capital

in firm i’s first non-missing Compustat record. We describe the steps for estimating the

initial knowledge-capital stock. The method for organization capital is similar. Broadly, we

estimate firm i’s R&D spending in each year of life between the firm’s founding and its first

non-missing Compustat record, denoted year one. Our main assumption is that the firm’s

pre-IPO R&D grows at the average rate across pre-IPO Compustat records. We then apply

the perpetual inventory method to these estimated R&D values to obtain the initial stock

of knowledge capital at the end of year zero. The seven steps are as follows.

1. Define age since IPO as number of years elapsed since a firm’s IPO. Using the full

Compustat database, compute the average log change in R&D in each yearly category of

age since IPO. Apply these age-specific growth rates to fill in missing R&D observations

before 1977.

2. Using the full Compustat database, isolate records for firms’ IPO years and the previous

two years. (Not all firms have pre-IPO data in Compustat.) Compute the average log

change in R&D within this pre-IPO subsample, which equals 0.348. (The corresponding

pre-IPO average log change in SG&A equals 0.333.)

3. If firm i’s IPO year is in Compustat, go to Step 5. Otherwise go to the next step.

4. This step applies almost exclusively to firms with IPOs before 1950. Estimate firm i’s

R&D spending in each year between the firm’s IPO year and first Compustat year,

assuming the firm’s R&D grows at the average age-specific rates estimated in Step 1.
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5. Obtain data on firm i’s founding year from Jay Ritter’s website. For firms with missing

founding year, estimate the founding year as the minimum of (a) the year of the firm’s

first Compustat record and (b) firm’s IPO year minus eight, which is the median age

between founding and IPO for IPOs from 1980 to 2012 (from Jay Ritter’s website).

6. Estimate the firm i’s R&D spending in each year between the firm’s founding year and

IPO year assuming the firm’s R&D grows at the estimated pre-IPO average rate from

Step 2.

7. Assume the firm is founded with no capital. Apply the perpetual inventory method in

Eq. (11) to the estimated R&D spending from the previous steps to obtain Gi0, the

stock of knowledge capital at the beginning of the firm’s first Compustat record.

We only use estimated R&D and SG&A values to compute firms’ initial stocks of intangible

capital. We never use estimated R&D in a regression’s dependent variable.
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Fig. 1. Capital intangibility over time. This figure plots the mean intangible capital
intensity over time, both for our full sample and within industries. Intangible intensity
equals Kint/(Kint +Kphy), the firm’s stock of intangible divided by its total stock of capital.
We use the Fama and French five-industry definition and exclude industry “Other.”
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Fig. 2. Investment-q relation in macro data. This figure plots Tobin’s q (solid lines) and the
investment rates (dashed lines) over time for the aggregate US economy. Panel A uses data
from Hall (2001) and shows standard measures that exclude intangible capital. Standard
q (q∗) is aggregate market value scaled by the physical capital stock. Standard investment
(ι∗) equals physical investment scaled by the physical capital stock. Panels B–D also use
data from Corrado and Hulten (2014). Total q is aggregate market value scaled by total
capital, the sum of the physical and intangible capital stocks. Panel B shows ιphy, physical
investment scaled by total capital. Panel C shows ιint, intangible investment scaled by total
capital. Panel D shows ιtot = ιphy + ιint. For each graph, the left axis is the value of q and
the right axis is the investment rate.
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Table 1
Summary statistics

Statistics are based on the sample of Compustat firms from 1975 to 2011. The physical capital stock,
Kphy, is measured as property, plant, and equipment (PP&E). We estimate the intangible capital stock,
Kint, by applying the perpetual inventory method to firms’ intangible investments, defined as research and
development (R&D) and 0.3 × selling, general, and administrative (SG&A) spending. We then add in firms’
balance sheet intangibles. Intangible intensity equals Kint/(Kint + Kphy). Knowledge capital is the part
of intangible capital that comes from R&D. The denominator for all new measures is Kint + Kphy. The
denominator for all standard measures is Kphy. The numerator for both q variables is the market value
of equity plus the book value of debt minus current assets. The numerator for ιphy is capital expenditure
(CAPX), and the numerator for ιint is R&D + (0.3 × SG&A). Total investment ιtot = ιphy + ιint. The
numerator for standard cash flow is income before extraordinary items plus depreciation expenses. The
numerator for total cash flow is the same but adds back intangible investment net a tax adjustment.

Variable Mean Median
Standard
deviation

Skewness

Intangible capital stock (millions of dollars) 427 41.7 1990 11.6
Physical capital stock (millions of dollars) 1237 77.9 6691 16.5
Intangible intensity 0.43 0.45 0.27 -0.01
Knowledge capital / intangible capital 0.24 0.01 0.37 1.65

New measures
Total q (qtot) 1.11 0.57 1.91 3.76
Physical investment (ιphy) 0.10 0.06 0.14 3.47
Intangible investment (ιint) 0.11 0.09 0.11 1.92
Total investment (ιtot) 0.21 0.16 0.18 2.61
Total cash flow (ctot) 0.16 0.15 0.19 0.52

Standard measures
Standard q (q∗) 3.14 0.93 7.22 4.41
CAPX/PPE (ι∗) 0.19 0.11 0.24 3.52
Standard cash flow (c∗) 0.15 0.16 0.62 -1.63
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Table 2
Ordinary least squares results

Results are from OLS panel regressions of investment on lagged Tobin’s q and firm and year fixed effects.
Each column uses a different investment measure. Physical investment (ιphy) equals capital expenditure
(CAPX) scaled by total capital (Ktot = Kphy + Kint). Intangible investment (ιint) equals research and
development (R&D) + 0.3 × selling, general and administrative (SG&A) expense, scaled by Ktot. Total
investment equals ιphy + ιint. R&D investment equals R&D scaled by total capital. The R&D column
excludes observations with missing R&D. The investment measure in the final column is CAPX divided by
property, plant and equipment (PP&E). Panel A shows regressions on total q, denoted qtot. Panel B shows
regressions on standard q, denoted q∗. The numerator for both q variables is the market value of equity plus
the book value of debt minus current assets. The denominator for qtot is Ktot. The denominator for q∗ is
Kphy. Standard errors clustered by firm are in parentheses. We report the within-firm R2. Panel C tests
whether the R2 values in Panels A and B are different, taking into account the correlation across regressions
and again clustering by firm. Data are from Compustat from 1975 to 2011.

Investment scaled by total capital (Ktot)

Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions with total q

Total q 0.029 0.020 0.049 0.013 0.062
(0.001) (0.000) (0.001) (0.000) (0.001)

R2 0.209 0.279 0.327 0.270 0.244
(0.008) (0.007) (0.006) (0.009) (0.008)

Panel B: Regressions with standard q

Standard q 0.006 0.005 0.011 0.003 0.017
(0.000) (0.000) (0.000) (0.000) (0.000)

R2 0.139 0.266 0.250 0.250 0.233
(0.009) (0.008) (0.007) (0.010) (0.008)

Panel C: Difference in R2 (Panel A − Panel B)

∆R2 0.070 0.013 0.077 0.020 0.011
(0.003) (0.004) (0.003) (0.005) (0.003)

Number of observations 141,800 141,800 141,800 75,426 141,800
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Table 3
Bias-corrected results

Results are from regressions of investment on lagged Tobin’s q, firm fixed effects, and (in Panel B)
contemporaneous cash flow, all estimated using the cumulant estimator. Each column uses a different
investment measure as defined in Table 2. Total (standard) q equals the firm’s market value scaled by
Ktot (Kphy). The numerator for standard cash flow is income before extraordinary items plus depreciation
expenses. The numerator for total cash flow is the same but adds back intangible investment net a tax
adjustment. Total cash flow is scaled by Ktot; standard cash flow, by Kphy. ρ2 is the within-firm R2 from a
hypothetical regression of investment on true q, and τ2 is the within-firm R2 from a hypothetical regression
of our q proxy on true q. For comparison, the table also shows the ordinary least squares (OLS) R2 values
from Table 2. Standard errors clustered by firm are in parentheses. Data are from Compustat from 1975 to
2011.

Investment scaled by total capital (Ktot)

Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions without cash flow

Total q (qtot) 0.070 0.037 0.086 0.023
(0.001) (0.001) (0.001) (0.000)

Standard q (q∗) 0.036
(0.001)

OLS R2 0.209 0.279 0.327 0.270 0.233
(0.008) (0.007) (0.006) (0.009) (0.008)

ρ2 0.358 0.392 0.423 0.376 0.372
(0.008) (0.008) (0.008) (0.011) (0.008)

τ2 0.437 0.559 0.597 0.593 0.492
(0.009) (0.012) (0.010) (0.016) (0.010)

Panel B: Regressions with cash flow

Total q (qtot) 0.069 0.038 0.086 0.024
(0.001) (0.001) (0.002) (0.001)

Total cash flow (ctot) 0.024 0.050 0.140 0.000
(0.008) (0.004) (0.009) (0.004)

Standard q (q∗) 0.035
(0.001)

Standard cash flow (c∗) 0.015
(0.004)

OLS R2 0.235 0.326 0.374 0.281 0.233
(0.008) (0.007) (0.006) (0.009) (0.008)

ρ2 0.361 0.447 0.481 0.405 0.371
(0.008) (0.009) (0.008) (0.011) (0.008)

τ2 0.435 0.502 0.544 0.568 0.494
(0.010) (0.014) (0.011) (0.017) (0.011)

Number of observations 141,800 141,800 141,800 75,426 141,800
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Table 4
Comparing firms with different amounts of intangible capital

This table shows results from subsamples formed based on yearly quartiles of intangible intensity,
which equals the ratio of a firm’s intangible to total capital. The first row show each quartile’s mean
intangible intensity. Results are from regressions of investment on lagged q, firm fixed effects, and (in
Panel E) contemporaneous cash flow. Slopes on q and cash flow, as well as ρ2 and τ2 values, are from
the cumulant estimator. R2 is from the ordinary least squares (OLS) estimator that includes year fixed
effects. Specifications 1–3 use physical (ιphy), intangible (ιint), and total investment (ιtot), respectively,
along with total q, all of which are scaled by total capital. Specification 4 uses standard investment (ι∗ =
capital expenditure (CAPX) / property plant and equipment (PPE)) and standard q (q∗), which is scaled by
physical capital. The last row in Panel A shows the ratio of the Specification 2 q-slope to the sum of slopes
from Specifications 1 and 2. We conduct inference using the delta method. Specifications 5–8 in Panel E
add standard cash flow (c∗) and total cash flow (ctot), defined in Table 3. Standard errors clustered by firm
are in parentheses. We use influence functions to conduct inference for ρ2 and τ2.
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Quartile 4− 1

Specification Quartile 1 Quartile 2 Quartile 3 Quartile 4 Difference
Standard

error

Intangible intensity 8% 33% 56% 76%

Panel A: Slopes on q

(1) ιphy on qtot 0.095 0.081 0.063 0.050 -0.045 (0.004)
(2) ιint on qtot 0.027 0.032 0.035 0.038 0.011 (0.004)
(3) ιtot on qtot 0.101 0.097 0.086 0.074 -0.027 (0.004)
(4) CAPX/PPE on q∗ 0.065 0.052 0.035 0.033 -0.032 (0.007)
βint/(βint + βphy) 22% 28% 36% 43% 21% (2.90%)

Panel B: OLS R2 values
(1) ιphy on qtot 0.219 0.227 0.259 0.284 0.065 (0.026)
(2) ιint on qtot 0.061 0.170 0.306 0.458 0.397 (0.064)
(3) ιtot on qtot 0.232 0.270 0.357 0.473 0.241 (0.016)
(4) CAPX/PPE on q∗ 0.182 0.195 0.248 0.299 0.117 (0.022)

Panel C: ρ2 values

(1) ιphy on qtot 0.261 0.364 0.486 0.612 0.351 (0.027)
(2) ιint on qtot 0.271 0.311 0.377 0.411 0.140 (0.048)
(3) ιtot on qtot 0.274 0.388 0.498 0.543 0.269 (0.020)
(4) CAPX/PPE on q∗ 0.197 0.282 0.379 0.561 0.364 (0.023)

Panel D: τ2 values
(1) ιphy on qtot 0.650 0.478 0.374 0.375 -0.275 (0.033)
(2) ιint on qtot 0.196 0.365 0.561 0.792 0.596 (0.031)
(3) ιtot on qtot 0.664 0.519 0.503 0.659 -0.005 (0.034)
(4) CAPX/PPE on q∗ 0.682 0.514 0.483 0.439 -0.243 (0.062)

Panel E: Slopes on cash flow

(5) ιphy on qtot, ctot 0.203 0.090 -0.009 -0.036 -0.239 (0.023)
(6) ιint on qtot, ctot -0.018 0.018 0.060 0.110 0.128 (0.013)
(7) ιtot on qtot, ctot 0.227 0.148 0.100 0.129 -0.098 (0.024)
(8) CAPX/PPE on q∗, c∗ 0.182 0.072 0.011 -0.003 -0.185 (0.026)

Number of observations 35,438 35,453 35,442 35,467
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Table 5
Comparing industries

This table shows results from industry subsamples. We use the Fama and French five-industry definition,
excluding the industry “Other.” Remaining details are the same as in Table 4.

Quartile 4− 1

Specification Manufacturing Consumer High-tech Health Difference
Standard

error

Intangible intensity 31% 48% 55% 62%

Panel A: Slopes on q

(1) ιphy on qtot 0.083 0.085 0.059 0.068 -0.015 (0.005)
(2) ιint on qtot 0.038 0.037 0.036 0.040 0.002 (0.003)
(3) ιtot on qtot 0.097 0.102 0.079 0.084 -0.013 (0.005)
(4) CAPX/PPE on q∗ 0.041 0.042 0.033 0.038 -0.003 (0.003)

Panel B: OLS R2 values
(1) ιphy on qtot 0.194 0.239 0.307 0.244 0.050 (0.038)
(2) ιint on qtot 0.206 0.209 0.407 0.281 0.075 (0.031)
(3) ιtot on qtot 0.258 0.310 0.460 0.362 0.104 (0.024)
(4) CAPX/PPE on q∗ 0.186 0.214 0.354 0.258 0.072 (0.031)

Panel C: ρ2 values

(1) ιphy on qtot 0.254 0.397 0.540 0.551 0.297 (0.036)
(2) ιint on qtot 0.321 0.234 0.474 0.376 0.055 (0.030)
(3) ιtot on qtot 0.294 0.386 0.572 0.521 0.227 (0.028)
(4) CAPX/PPE on q∗ 0.206 0.290 0.549 0.545 0.339 (0.029)

Panel D: τ2 values
(1) ιphy on qtot 0.557 0.442 0.431 0.319 -0.238 (0.035)
(2) ιint on qtot 0.398 0.485 0.686 0.545 0.147 (0.041)
(3) ιtot on qtot 0.632 0.539 0.634 0.522 -0.110 (0.036)
(4) CAPX/PPE on q∗ 0.655 0.539 0.511 0.365 -0.290 (0.048)

Panel E: Slopes on cash flow

(5) ιphy on qtot, ctot 0.171 0.029 -0.033 -0.059 -0.230 (0.032)
(6) ιint on qtot, ctot 0.041 0.106 0.059 -0.019 -0.060 (0.017)
(7) ιtot on qtot, ctot 0.265 0.190 0.090 0.010 -0.255 (0.034)
(8) CAPX/PPE on q∗, c∗ 0.083 0.048 0.001 -0.003 -0.086 (0.018)

Number of observations 40,280 36,884 31,680 11,207
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Table 6
Comparing time periods

This table shows results from the early (1975–1995) and late (1996–2011) subsamples. The 1995
breakpoint produces subsamples of roughly equal size. Remaining details are the same as in Table 4.

Late − Early

Specification Early Late Difference
Standard

error

Intangible intensity 39% 47%

Panel A: Slopes on q

(1) ιphy on qtot 0.083 0.062 -0.021 (0.002)
(2) ιint on qtot 0.035 0.037 0.002 (0.002)
(3) ιtot on qtot 0.100 0.079 -0.021 (0.004)
(4) CAPX/PPE on q∗ 0.043 0.033 -0.010 (0.001)

Panel B: OLS R2 values
(1) ιphy on qtot 0.205 0.208 0.003 (0.018)
(2) ιint on qtot 0.190 0.328 0.138 (0.016)
(3) ιtot on qtot 0.273 0.357 0.084 (0.013)
(4) CAPX/PPE on q∗ 0.209 0.268 0.059 (0.017)

Panel C: ρ2 values

(1) ιphy on qtot 0.304 0.407 0.103 (0.016)
(2) ιint on qtot 0.259 0.497 0.238 (0.018)
(3) ιtot on qtot 0.336 0.511 0.175 (0.016)
(4) CAPX/PPE on q∗ 0.262 0.479 0.217 (0.016)

Panel D: τ2 values
(1) ιphy on qtot 0.501 0.423 -0.078 (0.022)
(2) ιint on qtot 0.504 0.584 0.080 (0.030)
(3) ιtot on qtot 0.595 0.603 0.008 (0.022)
(4) CAPX/PPE on q∗ 0.615 0.477 -0.138 (0.026)

Panel E: Slopes on cash flow

(5) ιphy on qtot, ctot 0.109 -0.033 -0.142 (0.017)
(6) ιint on qtot, ctot 0.090 -0.033 -0.123 (0.013)
(7) ιtot on qtot, ctot 0.256 0.038 -0.218 (0.020)
(8) CAPX/PPE on q∗, c∗ 0.074 -0.008 -0.082 (0.009)

Number of observations 69,753 72,047
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Table 7
Time series macro regressions

Results are from 141 quarterly observations from aggregate US data, from 1972Q2 to 2007Q2. Each
column uses a different investment measure. Standard q (q∗) equals the lagged aggregate stock and bond
market value divided by the physical capital stock. Hall (2001) computes these measures from the flow of
funds. Total q includes intangible capital by multiplying physical q by the ratio of physical to total capital.
The ratio is from the Corrado and Hulten (2014) aggregate US data. Bond q is constructed by applying
the structural model of Philippon (2009) to bond maturity and yield data. These data are from Philippon’s
website. Newey-West standard errors with autocorrelation up to 12 quarters are in parentheses. Standard
errors for the ordinary least squares (OLS) R2 values are computed via bootstrap.

Investment scaled by total capital (Ktot)

CAPX / PPE (ι∗) Physical (ιphy) Intangible (ιint) Total (ιtot)

Panel A: Regressions in levels

Total q (qtot) -0.001 0.019 0.017
(0.003) (0.003) (0.003)

Standard q (q∗) 0.002
(0.003)

OLS R2 0.035 0.014 0.570 0.610
(0.034) (0.030) (0.026) (0.040)

Panel B: Regressions in levels with bond q

Bond q 0.061 0.049 0.006 0.055
(0.009) (0.011) (0.039) (0.032)

OLS R2 0.462 0.347 0.001 0.139
(0.059) (0.050) (0.013) (0.060)

Panel C: Regressions in four-quarter differences

Total q (qtot) 0.007 0.004 0.01
(0.002) (0.001) (0.003)

Standard q (q∗) 0.007
(0.002)

OLS R2 0.124 0.106 0.096 0.121
(0.057) (0.052) (0.056) (0.060)

Panel D: Regressions in four-quarter differences with bond q

Bond q 0.056 0.043 0.017 0.060
(0.006) (0.005) (0.004) (0.008)

OLS R2 0.606 0.620 0.235 0.530
(0.053) (0.059) (0.074) (0.070)
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Table 8
Robustness: what fraction of SG&A expense is an investment?

Results are from regressions of three investment measures on lagged total q and firm fixed effects.
Slopes on total q are from the cumulant estimator. Within-firm R2 is from the ordinary least squares (OLS)
estimator that also includes year fixed effects. The selling, general and administrative (SG&A) multiplier is
the fraction of SG&A assumed to represent an investment. Our main analysis uses a 0.3 multiplier. For each
multiplier value, we reestimate the intangible investment and capital stocks in the data. Because physical
investment, total investment, and total q are scaled by total capital, their values also depend on the SG&A
multiplier. Each regression uses 141,800 firm-year Compustat observations from 1975 to 2011. * indicates
value used in main analysis

Investment scaled by total capital (Ktot)

SG&A Physical (ιphy) Intangible (ιint) Total (ιtot)

Multiplier q-slope OLS R2 q-slope OLS R2 q-slope OLS R2

0.0 0.060 0.223 0.021 0.147 0.064 0.277
0.1 0.064 0.217 0.025 0.256 0.074 0.307
0.2 0.067 0.213 0.032 0.276 0.081 0.320
0.3* 0.070 0.209 0.037 0.279 0.086 0.327
0.4 0.072 0.206 0.043 0.278 0.092 0.331
0.5 0.075 0.203 0.048 0.274 0.097 0.333
0.6 0.077 0.201 0.054 0.270 0.103 0.335
0.7 0.078 0.200 0.06 0.266 0.108 0.335
0.8 0.080 0.198 0.065 0.262 0.113 0.334
0.9 0.082 0.197 0.071 0.257 0.118 0.333
1.0 0.084 0.196 0.075 0.253 0.122 0.332
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