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Abstract

This paper proposes a hedonic approach for estimating the impacts

of climate change on agriculture that is robust to spatially-dependent

omitted variables. I exploit the fact that certain estimators amplify the

influence of such confounders to varying degrees, to detect the sign and

magnitude of the bias and correct for it. Results suggest that large im-

pacts of climate change on US agriculture are unlikely, in contrast to

the large damages found in the literature. Previous findings appear bi-

ased downward severalfold, possibly due to the omitted differential rise

of development pressure on farmland, which is correlated with climate.

Results stand to various robustness checks. (JEL Q15, Q51, Q54, R14)
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There is a growing consensus that climate change is the global environmental
challenge of our era, and there is a pressing need for reliable approaches of esti-
mating its potential economic impacts. Agriculture has received unparalleled
attention in this literature due to its reliance on climate and its central role
in global development (Schelling, 1992). The past two decades have witnessed
a lively debate, mainly centered on the US, over how to account for farmer
adaptation to climate based on observational data. Despite methodological
improvements, a fundamental disagreement persists regarding the sign of the
potential effect of climate change on US agriculture (see Fisher et al., 2012
and Deschênes and Greenstone, 2012).

The identification of climate effects has become the forefront challenge in
the quest to curtail biases from omitted variables. This paper contributes to
this literature by introducing a hedonic approach that is robust to biases from
spatially-dependent omitted variables, which are, in all likelihood, the domi-
nant class of omitted variables in our context. The approach exploits the fact
that certain estimators amplify bias from spatially-dependent confounders to
varying and known degrees. I am therefore able to infer the sign and magni-
tude of bias in the hedonic regression and to correct for it. My results indicate
that large positive or negative impacts of climate change on US agriculture are
unlikely, contrasting large damages found in hedonic studies in the literature.

Mendelsohn et al. (1994, henceforth MNS) introduced the so-called “Ri-
cardian” approach, an innovative hedonic method to estimate the economic
impacts of climate change on the sector. Because farmers have adopted the
most beneficial practices under a given climate, farmland value should reflect
the full range of adaptations to that climate. The approach estimates agricul-
ture’s sensitivity to climate from the cross-sectional county-level variation of
farmland values and current climate. These estimates are subsequently used
for climate change impact projections based on current market conditions.
MNS finds insignificant impacts of climate change on the sector but Schlenker
et al. (2005, henceforth SHFa) finds large damages when non-irrigated counties
are allowed to respond differently to irrigated ones in the hedonic regression.
Schlenker et al. (2006, henceforth SHFb) finds similar results in a comprehen-
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sive hedonic study.
The cross-sectional nature of the hedonic approach makes it particularly

vulnerable to omitted variables. Factors such as soil quality and the option
value of farmland can introduce biases in unknown directions. This concern
prompted Deschênes and Greenstone (2007, henceforth DG) to develop an
alternative “profit” panel approach to control for time-invariant unobservables
and estimate the sector’s short-run sensitivity to random weather shocks. This
approach estimates the effect of climate on a restricted profit function, so it
does not allow for the full range of farmer adaptations to climate. Because DG
find a small effect, it is interpreted as a potentially positive impact of climate
change on long-run sector profits. However, Fisher et al. (2012) find that data
errors and the smoothing of farmer income to weather shocks bias the DG
results toward nullity. Deschênes and Greenstone (2012) acknowledge these
concerns but propose an alternative distributed lag panel model to control
for the smoothing effect of farm inventories. While negative, the revised DG
impacts are substantially smaller than those based on the hedonic approach,
which is puzzling. Impact projections from the hedonic approach, which allows
for a greater range of adaptations, should be more optimistic.

The hedonic approach remains conceptually appealing but its empirical
shortcomings and the likely presence of unknown omitted variables cast doubts
on its reliability. Inquiring into long-term trends in farmland markets of the
eastern US provides preliminary insights into how pervasive omitted variables
could be.1 Panel A in figure 1 shows that farmland appreciation over the past
half century has followed a distinctive diffuse spatial pattern, which is corre-
lated with climate.2 Farmland values have increased more along the Northeast
corridor, the Appalachian mountains and certain parts of the South, than over
core agricultural areas such as the Corn Belt, the Mississippi Delta or the

1I follow SHFb and restrict the sample to counties located east of the 100th meridian
west to avoid the confounding effect of irrigation.

2A crude OLS regression of the log farmland value change on climate variables yields
statistically significant coefficients (F -statistic= 117.8, p-value< 10−16) and an adjusted R2

of 0.511. Climate variables are based on MNS and include linear and quadratic terms for
the mean temperature and precipitation for January, April, July and October.
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Notes: Urban counties are defined as having population densities exceeding 400 inhabitants per square mile.

The color scale corresponds to deciles. Data sources are indicated in section III.

Figure 1: Farmland Market Indicators in the Eastern United
States

Central and Southern Plains.
To explore the possible origin of this phenomenon, I map the ratio of

farmland value to cropland cash rent in panel B of figure 1. This ratio is
a common indicator of non-farm pressure on the farmland market, with high
values indicating a higher option value of farmland for non-agricultural use.
High-ratio areas are diffusely located around various booming areas of the East,
and coincide with areas of greatest farmland appreciations.3 More importantly,
these appreciations have altered the cross-section of farmland values over time.
For the 1959-1982 period, current low-ratio and high-ratio counties had an
average farmland value of $2,345 and $1,909 per acre, respectively (2012$).
The corresponding farmland values for the 1987-2012 period reach $2,276 and
$2,638 per acre, respectively. This inversion indicates that the influence of non-

3I define high (low)-ratio counties as having a value-to-cash rent ratio above (below)
42.8, which is the median ratio for the 1,790 counties without missing observations. This
excludes “urban” counties with population densities exceeding 400 inhabitants per square
mile in 2012.
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agricultural factors on recent farmland values is pervasive and affects areas well
beyond direct proximity to urban counties.4

Because the option value of farmland strongly influences farmland values
and appears correlated with climate, it could operate as an omitted variable
in the hedonic model. Moreover, this potential omitted variable is likely to ex-
hibit spatial dependence, making it particularly problematic. Pace and LeSage
(2010) show that in such cases omitted variable bias is amplified in least squares
estimation when the explanatory variables are also spatially dependent. This
amplification affects other estimators used in this literature that solely account
for the spatial correlation of disturbances. The bias amplification can be sev-
eralfold depending on the magnitude of the spatial correlation of regressors
and omitted variables.

More generally, other potential omitted variables that have been explicitly
proposed in this literature, such as soil quality, are also likely to exhibit spatial
dependence. As an indication, all control variables used in previous implemen-
tations of the hedonic model, as well as disturbances, exhibit strong degrees of
spatial dependence. This suggests that, in our context with spatially smooth
climate variables, the presence of omitted variables is particularly worrying
because any potential bias is likely amplified.

This paper proposes a hedonic approach that is robust to spatially-dependent
omitted variables. I motivate the approach theoretically by deriving an order
of vulnerability of three different estimators to such confounders. These in-
clude Ordinary Least Squares (OLS), the Spatial Error Model (SEM) and the
Spatial Durbin Model (SDM). OLS is close to the Weighted Least Squares
(WLS) estimator used in MNS and SHFa and the SEM is used in SHFb. To
my knowledge, the SDM has not yet been used in this literature. This model

4The literature has well documented the sizable influence of urban growth on farmland
markets (see Capozza and Helsley, 1989; Plantinga et al., 2002). However, the influence
of low-density housing development, exurban growth and commercial development in rural
areas along major highways is less well studied but is also found to be substantial (see
Heimlich and Anderson, 2001 and Borchers et al., 2014). In addition, the pattern of farmland
appreciation in figure 1 has a striking resemblance to the increase of median housing prices
over a similar time period (not shown), highlighting a link between farmland and housing
markets.
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augments the classical linear model with an endogenous spatial lag of the de-
pendent variable and spatial lags of explanatory variables. In the absence of
omitted variables, all estimators are consistent but differ in efficiency. They
would therefore yield similar climate change impact projections but different
confidence intervals. However, the presence of an omitted variable would lead
to predictable divergences in estimation. In our context, I find that OLS and
SEM would amplify bias by a factor of 3.3 and 2.3-3.0, respectively. On the
other hand, the SDM has a “neutral” bias amplification of 1. Because the
SDM nests estimators previously considered in the literature, the SDM is con-
sistent when other models are correctly specified, but the converse is not true.
Moreover, restrictions among alternative models are testable.

I then estimate the hedonic model based on these three estimators and
find substantial differences in climate change impacts. The differences in esti-
mated parameters are statistically significant, confirming the presence of spa-
tially dependent omitted variables. I find that estimators with greater bias
amplification point to greater climate change damages, which indicates the
direction of the bias in the hedonic regression must be downward. I also find
that the relative magnitude of estimated impacts closely matches the relative
bias amplification among estimators. This indicates estimated climate change
damages mostly reflect the influence of omitted variables. I confirm this finding
with a bias-corrected SDM estimator that points to statistically insignificant
climate change impacts on the sector. Under the most severe climate change
scenario, I find the preferred model in SHFb points to a significant yearly profit
loss of $36.1 billion toward the end of the century, while the preferred model
in this paper points to a statistically insignificant yearly profit gain of $1.4
billion. Various direct tests conclusively indicate the preferred model fits bet-
ter the data than alternative models and results appear more stable over time
and across specifications. Various robustness checks support these findings.

The remainder of the paper is structured as follows. In section I. I discuss
the treatment of omitted variables in this literature and discuss my contri-
bution. In section II. I show how alternative estimators amplify bias from
spatially-dependent omitted variables to varying degrees. I then devote sec-
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tion III. to data sources and summary statistics. Section IV. presents the
results based on alternative econometric models and section V. concludes.

I. Omitted Variables in the Climate Change Im-

pact Literature

In a seminal study, MNS introduced the hedonic method to estimate the eco-
nomic impacts of climate change on agriculture. The approach posits that
the current climate, an exogenous input to the sector, should be capitalized in
the value of farmland. The cross-sectional variation of farmland prices across
the climate spectrum, the reasoning goes, can be used to identify the sector’s
sensitivity to climate under current market and technological conditions.

MNS recognizes that the presence of omitted confounding factors could bias
climatic parameters and result in unreliable climate change impact projections.
The solution in MNS primarily consists in controlling for some of these factors
directly, via economic, regional and soil quality variables in a WLS estimation.5

MNS also assess the presence of omitted variables indirectly, by analyzing the
stability of impact projections for the 1978 and 1982 cross-sections. Because
climate normals change slowly over time, the instability of impact projections
indicates a changing correlation of omitted and climate variables, which con-
firms the presence of an omitted variable. However, this check would not rule
out time-invariant or slowly-varying omitted variables, especially when a small
number of consecutive cross-sections are considered. Based on this approach,
MNS find little evidence that climate change would detrimentally affect US
agriculture, countering earlier negative findings based on biophysical models
(Adams, 1989; Adams et al., 1990; Kaiser et al., 1993; Adams et al., 1995).

The hedonic approach has generated considerable interest and criticism
5In terms of the econometric model, MNS weight their least squares model by either

revenues per acre or total farmland, which assumes independence of observations. Economic
controls include income per capita and population density (linear and quadratic terms).
Regional controls include latitude and altitude while soil quality variables include salinity,
presence of flood-prone zones, presence of wetlands, soil erosion, slope length, soil content
in sand and clay, soil moisture capacity and permeability.
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(see Cline, 1996; Kaufmann, 1998; Darwin, 1999; Quiggin and Horowitz, 1999).
SHFa addresses several concerns in an important refinement that allows irri-
gated and non-irrigated counties to respond differently to climate. This study
restricts the sample to non-irrigated counties, which are mostly located in the
East, and find large negative impacts on the sector.6 SHFa conclude that irri-
gation is confounded with climate and should not be treated as an additional
control but as a feature affecting all slopes in the hedonic regression.7 In a
closely related hedonic study, SHFb confirm this result and introduce new
climate variables and controls that improve model fit.8 More importantly,
SHFb find that results are robust to the introduction of state fixed-effects for
the cross-sections considered.9 This suggests that, even within states, warmer
counties tend to have lower farmland values after controlling for other fac-
tors.10 Finally, SHFb model the spatial dependence of disturbances with a
Spatial Error Model (SEM) estimated via Generalized Methods of Moments
(GMM) which yields more efficient estimates and corrected standard errors
(Kelejian and Prucha, 1999). This innovation, while useful, still assumes ex-
planatory variables are uncorrelated with disturbances.

To circumvent the shortcomings of the cross-sectional nature of the hedo-
nic approach, DG develop an alternative “profit” panel approach to control for
time-invariant unobservables. DG exploit random year-to-year weather fluctu-
ations and their effect on farmer net revenue to identify the sector’s short-run
sensitivity to climate.11 This approach provides an upper (lower) bound on
damages (benefits) and DG’s statistically insignificant result is interpreted as

6SHFa define rainfed counties as having less than 20 percent of the harvested cropland
irrigated. SHFa find annual impacts of -$5.32 billion (in 1982$, or -$12.66 billion in 2012$)
under the uniform warming scenario considered in MNS.

7SHFa considers the 1982, 1987, 1992, 1997 and 2002 farmland value cross-sections.
8This study uses the 100th meridian west as the threshold for rainfed/irrigated agricul-

ture, instead of the percent of irrigated cropland used in SHFa. I adopt this delimitation in
this study.

9SHFb considers the 1982, 1987, 1992 and 1997 farmland value cross-sections.
10An interesting finding in SHFb is that impacts are mostly driven by a single variable,

namely the square root of degree-days above 34°C.
11DG compute net revenue or “profit” as the county-level total sales minus total production

expenses divided by farmland acreage. The study uses data from the 1987, 1992, 1997, and
2002 Census of Agriculture.

8



a potentially positive effect of climate change on the sector. However, Fisher et
al. (2012) find data errors in DG and replicate the results with corrected data
to find significant negative impacts. These authors also argue that farmers use
inventories to smooth the effect of year-to-year weather fluctuations on net rev-
enue, further biasing the effect of these weather shocks toward zero. In other
words, this approach is in turn vulnerable to attenuation from time-varying
omitted variables.

In a noteworthy reply, Deschênes and Greenstone (2012) acknowledge the
data issues in DG but highlight that the corrected estimated damage, although
still negative, is less than half the damage suggested by the hedonic approach
(SHFa and SHFb). Moreover, they propose to address the income smooth-
ing of farmers with a distributed lag panel model. They find that climate
change impact projections become mostly insignificant. These findings are
puzzling because results from the hedonic approach, which allows for the full
range of farmer adaptations, should be more optimistic than those from the
“profit” panel approach, which only allows a restricted range of within-year
adjustments in production practices.

The hedonic approach remains conceptually appealing because it captures
a wide range of farmer adaptations and is simple to implement. However,
its vulnerability to omitted variable bias seems difficult to circumvent. As
previously discussed, recent farmland values seem significantly influenced by
non-agricultural factors that are correlated with current climate. The omission
of these factors could bias results. If one attempts to account for these factors
explicitly, appropriate control variables would need to capture the dynamic
aspects of the demand for land (Plantinga et al., 2002), the supply-side effects
of scarce developable land (Saiz, 2010) or the effect of land use regulations
(Brueckner, 1990).12

And yet, controlling for all these factors may prove insufficient because
other omitted variables are plausible. However, confounding factors in our

12A complicating factor, is that farmers expectations about future land use conversions are
affected by farmland fragmentation and the spatial pattern of housing development within
counties and neighboring areas in ways that are difficult to observe (Heimlich and Anderson,
2001).
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context belong, in all likelihood, to a spatial class. Indeed, suspect variables
such as the option value of farmland or unknown soil characteristics, can be
reasonably expected to exhibit spatial dependence. For instance, the ratio of
farmland value to cash rent shown in panel B of figure 1 is spatially auto-
correlated, just as are all control variables used in this and previous studies.
Therefore, an effective solution should strive to accommodate unknown spa-
tially omitted variables in the hedonic model.

Observational cross-sectional models appear inherently vulnerable to omit-
ted variables. However, some cross-sectional estimators are more vulnerable
than others to spatially-dependent omitted variables. In this study, I exploit
the known and varying sensitivity of three different estimators to spatial con-
founders to detect the sign and magnitude of bias in the hedonic regression.

Theoretically, I find that OLS and SEM amplify bias from spatially de-
pendent omitted variables by a factor of 3.3 and 2.3-3.0, respectively. On
the other hand, the SDM has a “neutral” bias amplification of 1. This latter
model eliminates the amplifying effect of spatially dependent confounders. In
the absence of spatially dependent confounders, the three estimators should
yield similar parameter estimates and therefore similar climate change impact
projections. However, the presence of spatially-dependent confounders lead
to divergence of parameter estimates and therefore to divergence of climate
change impact projections. Moreover, one can infer the direction of the bias
from the order of climate change impact projections based on these estimators.
If climate change impacts projections are increasingly optimistic (pessimistic)
for SDM, SEM and OLS one can infer the bias is upward (downward) and
the true impacts are more negative (positive). Furthermore, it is possible to
obtain bias-corrected SDM climate change impact projections, which makes
the proposed approach robust to spatially-dependent omitted variables.

I then explore the hedonic model empirically based on these estimators. I
rely on a long series of cross-sections spanning 1950-2012. To my knowledge,
this is the longest-spanning exploration of the hedonic approach for climate
change analysis. First, I find that OLS and SEM estimates do not exhibit
stable results over this longer sequence of cross-sections, no matter what cli-
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mate variable specification is used. On the other hand, SDM projections are
more stable across time and specifications. Second, I test directly for omitted
variables by contrasting OLS and SEM estimates, which should be statisti-
cally similar if spatially-dependent variables are absent. This indicates that
impact projections based on these models are biased. Third, I find that cli-
mate change impact projections are increasingly detrimental for SDM, SEM
and OLS. It naturally follows that the underlying omitted variable bias in
US hedonic studies such as SHFa and SHFb must be downward, toward more
negative effects.

The differences in climate change impact projections across estimators is
substantial. Toward the end of the century under the most extreme scenario
(RCP8.5), I find impacts of -87.2, -79.4, and -26.5% projected change in farm-
land values for the pooled OLS, pooled SEM and SDM, respectively.13 Al-
though the latter impact result is statistically insignificant, it corresponds to
a model that is biased downward, although without amplification. A bias-
corrected SDM impact projection for the same scenario points to a statisti-
cally insignificant impact of+2.6% change in farmland values. Climate change
impact projections based on OLS and SEM are 3.3 and 3.0 times larger than
the damage projection based on the SDM.14 Interestingly, these impact ratios
match very closely the theoretical predictions of bias amplification.

II. Model

A. Data Generating Process

In this section I illustrate how certain estimators have varying degrees of
vulnerability to biases from spatially-dependent omitted variables and how to
recovered bias-corrected estimates. As illustrated in figure 1, important omit-
ted factors such as the option value of farmland do not follow state boundaries,
but exhibit a spatially diffuse pattern. In other words, the omitted variable is

13OLS and SEM with state fixed-effects point to -79.3 and-69.0%, respectively.
14The ratio is 3.0 and 2.6 for OLS and SEM with state-fixed effects.
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likely correlated in space, with values that are more similar among neighbor-
ing locations than among distant ones. This is in all likelihood the dominant
class of omitted variable in our context. Indeed, all suspect variables and
controls can be reasonably expected or shown to exhibit spatial dependence.
For instance, the option value of farmland is likely to affect neighboring coun-
ties similarly due to the nature of development pressure. Also, neighboring
counties tend to have similar soil characteristics due to the underlying spatial
similarities in soil-forming factors (Jenny, 1994, p.27-28).

Let us assume the DGP underlying farmland values y takes the form
y = Xβ + e, where X is an n× k matrix of regressors including climate vari-
ables and other controls, and β is a vector of parameters. In our context,
disturbances e are spatially correlated. This type of dependence is most com-
monly expressed as an autoregressive spatial process e= ρWe+εe, where W is
a spatial weight matrix, ρ a spatial autocorrelation parameter and εe is a well-
behaved error term. The spatial weight matrix W is a spatial lag operator,
performing weighted averages of neighboring observations.15 The error in each
location e is therefore partly determined by the average error of surrounding
locations We. This process yields spatially smooth disturbances.16

For illustrative purposes, let us define a simple omitted variable Z = Xγ+

εz, where γ is a vector representing the strength of the relationship between
Z and X, and εz is a well-behaved error. The variance of εz governs the
magnitude of the correlation between the explanatory and omitted variables.
This corresponds to the familiar expression for a linearly-dependent omitted
variable. I later discuss more general cases.

Introducing the omitted variable in the spatially dependent error yields
e = ρWe+Xγ + ε where ε = εe + εz. The omitted variable now also becomes
spatially dependent. The value of the error at a given location now contains the

15It is common to assume that these weights sum to unity for each observation, in which
case W is called “row-standardized”. These weights can be binary (same weight for all
neighbors) or a decreasing function of distance (e.g. inverse distance weights). Note that
the diagonal elements of W are zero, so this operator does not perform a “window average”
but a weighted average of neighboring observations only. Also ρ is bounded between -1 and
1, but is expected to be positive in our empirical application.

16Various versions of W are considered in the empirical application.
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omitted variable in that location but also the weighted average of the omitted
variable in neighboring locations. This feature, as I will show, exacerbates
omitted variable bias in OLS and SEM when the Xs have a smooth spatial
pattern, just as climate variables do. The model DGP can be rearranged in
the following reduced-form where the random component is i.i.d:17

y = Xβ + (In − ρW)−1(Xγ + ε)(1)

B. Bias in OLS

Previous hedonic models in this literature have been based on WLS (MNS,
SHFa) or a SEM (SHFb). Here I illustrate how OLS is affected in the presence
of an omitted variable in spatially correlated disturbances.18 Under the DGP
in (1) it can be shown that the expected value of the OLS estimator for β
takes the following form:19

E[β̂OLS] = β + [Ik + ρ(X
′
X)−1X′(In + ρW + ρ2W2 + ...)X︸ ︷︷ ︸

POLS

]γ(2)

This is a general expression representing omitted variable bias for OLS
where POLS is a k × k matrix representing a bias amplification factor. POLS

has a straightforward interpretation in a partitioned regression model (Greene,
2008, p.27). One can recognize that POLS = B0+ρB1+ρ

2B2+ ..., where B0 =

(X′X)−1X
′
X = Ik, ρB1 = ρ(X′X)−1X

′
WX, ρ2B2 = ρ2(X′X)−1X

′
W2X, etc.

Each of the columns of POLS consists of a weighted sum of the slopes of
the least squares regression of X on the successive spatial lags of X. This
amplification factor can be computed from the data with a assumption on ρ.

17Previous studies have assumed special cases of this DGP.
18I explore OLS instead of WLS for simplicity. The bias for OLS is associated with its

underlying assumption of independence of observations. This assumption also characterizes
WLS, so results are analogous.

19Note that (In−ρW)−1 = In+ρW+ρ2W2+ ... where Wj is the jth order lag operator.
For instance, W2X = W(WX) and note that W0 = Ik. A more general and formal version
of this result is provided in Pace and LeSage (2010), who explore the biases of least squares
under alternative DGP.
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It is useful to explore how (2) simplifies under various assumptions. With-
out spatial dependence in the disturbances we have ρ = 0 and POLS = Ik and
(2) simplifies to E[β̂OLS] = β + γ. The bias amplification factor is neutral
and corresponds to the familiar textbook expression for omitted variable bias
with well-behaved disturbances. However, this study and previous research
finds the error is positively and spatially correlated in the hedonic regression
so ρ > 0. Another case is when ρ > 0, but X is orthogonal to its successive
spatial lags WX. This occurs when X has an uncorrelated or “noisy” spatial
pattern. In this case B0 = Ik, but the other Bj cancel out. This also yields
POLS = Ik with a neutral bias amplification. However, climate variables ex-
hibit a smooth spatial pattern, so X is not orthogonal to its successive spatial
lags WX, W2X, etc.20 In this case POLS maintains its general form in (2)
and the columns of B0, B1, B2, etc. are non-negative vectors. This shows that
the amplification occurs when both the error and the regressors of interest are
spatially correlated.

For clarity of exposition, I explore the simple case with k = 1. Here POLS

becomes a scalar equal to 1 + ρb1 + ρ2b2 + ..., where bj is the coefficient of
the regression of X on the jth spatial lag of X, WjX. Because X is very
similar to its spatial lags we expect bj ≈ 1.21 Therefore POLS takes the
approximate form of a geometric series, POLS ≈ 1/(1 − ρ). This results in
a bias amplification that is non-linear with ρ. For instance, for ρ = 0.3, 0.5
and 0.7, the corresponding bias amplification factors are approximately 1.43,
2 and 3.33. In this and previous studies such as SHFb we have ρ ≈ 0.7, so the
bias amplification is severalfold. This means that a relatively weak omitted
variable (small γ) could have a disproportionate effect on β̂OLS due to the
combined spatial dependence of the error and the relevant regressors.22

20The correlation between climate variables and their spatial lags exceed 0.95 for all
variables considered.

21This is confirmed empirically. For the degree-days variable (8-32C, April-September) I
obtain b1 = 1.006 and b10 = 1.027.

22When k > 1, the off-diagonal elements of POLS correspond to the a weighted sum of the
slopes of the least squares regression of one of the regressors in X on the successive spatial
lags of the other regressors in X. These off-diagonal elements are positive if the covariance
among climate variables is positive. In this case, the bias amplification would be greater.
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C. Bias in the SEM

To explore how the SEM is affected in this context, I find useful to express
the model DGP as a reduced-form expression with a well-behaved error term.
Pre-multiplying the DGP by (In − ρW) and re-arranging yields:

y = ρWy +X (β + γ)︸ ︷︷ ︸
φ

+WX (−ρβ)︸ ︷︷ ︸
θ

+ε(3)

This corresponds to a model augmented with an endogenous spatial lag of
the dependent variable Wy and the spatial lag of the explanatory variables
WX. However, the SEM assumes a DGP of the form y = Xβ + ρWe + ε,
which can be re-written in the following reduced-form with an i.i.d. error
y = ρWy + Xβ + WXβ/(−ρ) + ε. For the SEM to be specified correctly,
this expression must match the model DGP in (3). This only occurs when
φ = −θ/ρ. This is known as the common factor restriction. For it to hold, we
must have γ = 0k. In other words, the presence of an omitted variable creates
a wedge between φ and −θ/ρ that leads to inconsistency in the SEM.23

The SEM estimator for β can be expressed as β̂SEM =
(
X∗
′
X∗
)−1

X∗
′
y∗

where X∗ = X−ρWX and y∗ = y−ρWy are spatially “filtered” variables (see
Anselin, 1988). After some manipulation under the assumed DGP we obtain:

E[β̂SEM] = β + [Ik + ρ(X∗
′
X∗)−1X∗

′
WX︸ ︷︷ ︸

PSEM

]γ(4)

PSEM has an analogous interpretation to POLS, although the former is a
sum of only two terms. One can recognize that PSEM = A0 + ρA1 where
A0 = (X∗

′
X∗)−1X∗

′
X∗ = Ik and ρA1 = ρ(X∗

′
X∗)−1X∗

′
WX. Each of the

columns of PSEM consists of a weighted sum of the slopes of the least squares
regression of X∗on itself and on WX.

Similarly, this expression simplifies under various assumptions. If distur-
bances were spatially independent ρ = 0, we get PSEM = Ik and (4) simplifies

23I am indebted to Professor James LeSage for pointing this out. Also, see LeSage and
Pace (2009, p.158) for a discussion on this matter.
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to E[β̂SEM] = β + γ. The bias amplification is neutral. The next case cor-
responds to ρ > 0 and X is orthogonal to its first spatial lag WX. This
implies that X∗ is also orthogonal to WX, so PSEM = Ik and we obtain the
same neutral result. However, this is not our context. In our case PSEM

should maintain its general form in (4) and the columns of A0 and A1 are
non-negative vectors.

Again, it is useful to consider the case with k = 1 to draw some comparisons
with OLS. In this case PSEM becomes a scalar equal to 1 + ρa1, where a1 is
the coefficient of the regression of X∗ on the first spatial lag of X, WX. In
appendix A0 I show that for k = 1, PSEM ≈ (1−ρ)σ2

X/σ
2
X∗ . This amplification

factor can be computed for a given climate variable with an assumption on
the value of ρ. I find that PSEM is greater than 1 and increases with ρ. In this
and previous studies such as SHFb we have ρ ≈ 0.7 and a back-of-the-envelope
calculation suggests an amplification factor for SEM in the range of 2.3−3.0.24

This is lower than the corresponding theoretical amplification for OLS of 3.33.
Despite accounting for spatial correlation of the error, the SEM estimator also
amplifies omitted variable bias, but to a lesser extent than OLS.

An interpretation of this results is that the bias in both OLS and SEM
emerge from the omission of spatial spillovers of omitted variables correlated
with at least a subset of theXs. This could be captured by the inclusion ofWX

in the model. Because regressors in the SEM are spatially “filtered”, its bias
amplification is smaller than for OLS. Basically, the use of X∗ as a regressor
rather than X reduces the correlation between the regressor and the omitted
variable. This insight is useful for diagnosing the direction of bias in the
hedonic model. If there is bias, one can infer its direction by contrasting OLS
and SEM estimates or impact projections. Indeed, the amplification factor is
independent of the sign of γ. If climate change projections based on OLS are
more (less) detrimental than for SEM, it follows that the bias is downward
(upward), toward more detrimental (beneficial) impacts. However, if OLS and

24For assumed values of ρ of 0.3, 0.5 and 0.7 (spatial weight matrix described later on)
I obtain SEM amplification factors of 1.36, 1.75, 2.34 for the precipitation variable (April-
September), and amplification factors of 1.41, 1.94, 3.04 for the degree-days variable (8-32ºC,
April-September), respectively.
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SEM estimates are similar, it is an indication that spatially-dependent omitted
variables are not affecting the result.

D. Bias in the SDM

One can estimate a model matching the DGP shown in (3). This corre-
sponds to the SDM which can be estimated via Maximum Likelihood (ML)
(LeSage and Pace, 2009, p.46). An important feature of this model is that it
nests the SEM. Therefore, rather than imposing this DGP, one can test the
common factor restriction φ = −θ/ρ via a likelihood ratio (LR) test. If this
restriction cannot be rejected, then we should favor the SEM specification.

Before I proceed, it is important to highlight that SDM coefficients cannot
be directly interpreted as partial derivatives of y. This inconvenience stems
from the presence of ρWy on the right-hand side.25 LeSage (2008) and LeSage
and Pace (2010) develop an approach to spatially partition the effect of X on
y into average “direct” and “indirect” effects. Average direct effects have a
familiar interpretation analogous to the marginalist interpretation of OLS and
SEM coefficients. These represent the sample average effect of a change in
an explanatory variable for a given observation on the dependent variable of
the same observation. Indirect effects, on the other hand, capture spatial
spillovers on the dependent variable of a given observation from changes in
explanatory variables of its neighboring observations.26 Note that indirect
effects are restricted to equal zero in OLS and SEM. In other words, these
estimators are special cases of the SDM.

25One can re-arrange the DGP in (3) as y = (In − ρW)−1(Xβ +WXθ + ε). It becomes
apparent that the computation of the marginal effect of the kth regressor for the the ith
observation ∂E[yi]/∂Xik, involves the (In − ρW)−1 matrix. As previously mentioned, this
matrix is equal to In+ ρW+ ρ2W2+ .... Therefore, this calculation also involves the “own”
effects that propagate back to i through high-order Ws. Indeed, unlike in time-series, the
second-order neighbors (or greater) of i often include i itself.

26The distinction between coefficients and effects for SDM is important. There has been
confusion in the literature regarding the interpretation of spatial models with lagged de-
pendent variables. Researchers have found that coefficients are sensitive to changes in W.
However, as discussed in LeSage and Pace (2014), the direct and indirect effects, which
are the relevant economic measures, are fairly robust to changes W. This finding is also
apparent in this paper.
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The SDM estimator for φ converges to β+ γ so it yields an asymptotically
biased estimate of β. Interestingly, this bias is constant and independent of
ρ or the spatial dependence of X. This is unlike OLS or SEM for which the
bias is amplified by these factors. In other words, the SDM does not amplify
bias from spatially-dependent omitted variables. In fact, it is the inclusion of
WX on the right hand side of the model that removes the bias amplification.
The inclusion of ρWy, on the other hand, removes the spatial dependence of
disturbances.27

Although the SDM is biased, we can recover a bias-corrected estimate of
the structural parameter β in (3) from the reduced-form estimates of ρ, φ and
θ by noting that β = −θ/ρ. This is feasible, under the assumed model DGP,
because ρ̂ is not affected by the omitted variable.28 In a Monte Carlo study,
Lacombe and LeSage (2015) show that this procedure yields fairly precise
estimates of the true effects.

Any bias-correction of β̂ assumes a particular DGP. Here, I assume a linear
dependence between X and Z. However, the true relationship might be non-
linear or exhibit a more complex correlation pattern. If the true relationship is
non-linear, then the present treatment may be interpreted as a linear approxi-
mation of that relationship. In other words, it would fall short of appropriately
capturing the correct nature of the relationship between between X and Z. In
such circumstances WX would not capture the omitted spatial spillovers and
the estimates would remain more biased. However, this would also be the
case for OLS and SEM, and these would be affected by an additional bias
amplification factor.

On the other hand, the omitted variable Z may exhibit a more complex
spatial correlation with X. This could include omitted variables that are “re-
gionally” but not “locally” correlated with the explanatory variables. I explore
this idea in the appendix (A3) and I find that the structural parameter β is not
identified with a more complex omitted variable. However, the generality of

27In the appendix I show results are similar when the spatial correlation of errors is
modeled directly in the “random” part of the model.

28One can rely on the delta method to obtain measures of dispersion of β̂ from the
estimated variance-covariance matrix of the reduced-form estimator.
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the result holds, with SDM remaining less biased than OLS and SEM. There-
fore, a conservative approach is to rely on the non-corrected estimator φ̂. This
estimator is biased in the presence of a spatially-dependent omitted variable
and points to different estimates than OLS and SEM. However, in such cases
the SDM is less biased than OLS or SEM. I therefore present empirical results
for both the non-corrected and the bias-corrected SDM estimator.

The framework presented here highlights that the presence of a spatially
dependent omitted variable can be at least partly accounted for through the
inclusion of spatially-dependent controls. The SDM eliminates the amplifying
effect of omitted variable bias that affects OLS and SEM. It is important to
emphasize that the SDM is consistent but inefficient when the DGP is OLS
or SEM and there are no spatially dependent omitted variables. Nevertheless,
the SDM provides correct standard errors in such cases. This means that, if
the climate change impact estimates are not affected by spatially-dependent
omitted variables, then OLS, SEM and SDM should yield statistically similar
results. On the contrary, if results differ, then SDM is a more robust model that
subsumes OLS and SEM as special cases. Moreover, models can be compared
directly through testing.

I should highlight that the proposed model is not a panacea for controlling
any type of omitted variable in a cross-sectional setting (Gibbons and Over-
man, 2012). The identification of the SDM relies on the exogeneity of climate
and its local variation in the neighborhood of each observation. This strategy
is especially suited for omitted variables that are spatially dependent and ex-
hibit “diffuse” spatial patterns. This corresponds to our case as discussed in
section I.. Needless to say, the SDM will fail to reduce bias from an omitted
variable that is not spatially dependent. But so will OLS and SEM, which are
special cases of the SDM. However, such an omitted variable would not result
in bias amplification in any of these models. In other words, any bias that
affects the SDM will also affect OLS and SEM, but these latter two models
amplify the bias when it stems from a spatially-dependent omitted variable.
I therefore propose the adoption of this estimator for the hedonic model as a
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more robust alternative to unknown spatially dependent omitted variables.29

I explore this question empirically in the remainder of the paper.

III. Data Sources and Summary Statistics

A. Data Sources

This study relies on four major types of data: agricultural, climate, soil
quality and general socio-economic data. Table 1 provides a summary of key
variables in the study and their source. A portion of the agricultural data
was obtained directly from Quick Stats, the US Department of Agriculture’s
(USDA) online database. This database provides data from the US Census of
Agriculture as well as from various national surveys, such as the Cash Rent
Survey, all conducted by USDA. The Census provides county-level aggregates
of data collected from all farms.30 The dependent variable in the study, farm-
land value, is obtained from the Census by asking farmers their estimate of
the current market value of their land and buildings. This variable naturally
reflects the option value of farmland for non-agricultural uses. Unfortunately,
Quick Stats only provides Census data since 1997 so older Census data since
1950 were obtained from Haines (2004). To the best of my knowledge, this
is the first study to incorporate this historical Census data for the purpose of
climate change impact analysis.

The primary climate data source is Schlenker and Roberts (2009), who
provide a detailed daily gridded dataset for 1950-2005 based on the interpola-
tion of daily weather station data and monthly gridded data from the PRISM
Climate Group , which is USDA’s official climatological data.31 These and
the underlying PRISM data have a spatial resolution of just 4 kilometers and

29A general motivation for the adoption of this model in empirical settings can be found
in LeSage and Pace (2010); LeSage (2014).

30USDA defines a farm as an operation having sold more than $1,000 of agricultural
products during the census year.

31Following Schlenker and Roberts (2009), I rely on the monthly precipitation variables
from PRISM, rather than on re-aggregated daily precipitation interpolations which appear
to be noisy.
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Table 1: Variables and Data Sources

Variable(s) Time Periods Used Resolution Source
Agriculture:

Value of land and buildings,
farmland area (Census)

1997, 2002, 2007,
2012

County USDA Quick Stats

1950, 1954, 1959,
1969, 1974, 1978,
1982, 1987, 1992

County Haines (2004)

Non-irrigated cropland cash
rent (Cash Rent Survey)

2009-2012 County USDA Quick Stats

Climate:
Daily minimum and maximum
temperature

1950-2005 4 km Schlenker and
Roberts (2009)

Monthly average temperature
and precipitation

1912-2005 4 km PRISM

Cropland weights for
grid-to-county aggregation

2008-2014 30 m USDA CDL

Controls:
Population 1970-2012 County US Census

1950, 1960 County US Census via
Haines (2004)

Personal income per capita 1969-2012 County BEA
Family income 1949, 1959, 1969 County US Census via

Haines (2004)
Soil variables: average water
capacity, clay content, minimum
permeability, K-factor of
topsoil, best soil class

N/A Polygon,
sub-county

scale

USGS STATSGO

Notes: Only farmland values for 1964 were missing from Haines (2004) at the time of data
collection.
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cover the entire country. Because the data is gridded it needs to be aggregated
to the county level to match the agricultural observations. I perform this ag-
gregation by weighting each native PRISM grid by the amount of cropland it
contains based on USDA’s Cropland Data Layer (CDL).32 Because I explore
time periods prior to 1950, I also rely on the monthly temperature data from
PRISM, which is available since 1895.33

The hedonic model relies on the cross-sectional variation of farmland values
which are affected by known time-invariant factors such as certain soil quality
characteristics. Soil quality data was obtained from the US Geological Sur-
vey’s (USGS) STATSGO database which aggregates similar soils into distinct
polygons across the country. Similar to climate data, county-level soil quality
data is obtained by weighting each soil polygon by the amount of cropland
based on the CDL.

The analysis also includes a set of economic control variables, namely
county-level population density and income per capita. These controls have
been introduced in an attempt to capture the influence of population pressures
on farmland. County-level population data comes from the US Census and In-
tercensal Estimates. These data are only available online from the US Census
for years 1970-2012. Prior census years were obtained from Haines (2004).
Intercensal Estimates prior to 1970 were not readily available so I interpolate
population between decennial censuses for each county using a natural spline.34

Data on per capita personal income is obtained from the Bureau of Economic
32The CDL provides 30 meter resolution land cover pixels corresponding to over 100

classes. The weights were based on cropland pixel counts falling within each PRISM data
grid. The average of CDL cropland counts for years 2008-2014 were used. In the appendix
A1, I provide a map of the cropland weights as well as a table with all land cover classes
that constitute cropland. Detailed crop cover data for older cross-sections (e.g. 1950) is
not available. However, because farmland area has decreased by 27.4% from 1950 to 2012
and the most productive farmland has most likely remained in farms, cropland weights for
recent periods can be thought as capturing the “core” agricultural area of each county for
older time periods.

33Just recently, the PRISM group released daily data with 4 kilometer resolution free of
charge. However, the earliest year is available is 1981.

34Just as with intercensal estimates, this approach is not meant to capture year-to-year
fluctuations in population with precision, but provide an approximation of the population
level between census years.
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Analysis (BEA). Unfortunately, these only span the 1969-2012 period. I use
family income from the US Census as a substitute for earlier time periods.35

Similar to population, I interpolate family income between decennial censuses
for each county using a natural spline.36 All values in the paper are expressed
in 2012 USD using the Consumer Price Index (CPI).37

B. Summary Statistics

Agricultural data. Summary statistics for farmland values are presented in
table 2. Overall, farmland values have increased over the past several decades,
with some areas experiencing disproportionally greater appreciations as illus-
trated in panel A of figure 1. Over this period, the farmland value cross-section
has greatly changed. For instance, the correlation between (log) farmland val-
ues over 1950-2012 relative to the 1987-2012 average has fluctuated between
0.687 in 1950 and 0.972 in 1997.38 The spatially heterogenous pattern of farm-
land appreciation has been coupled with a steady but equally heterogenous fall
in total farmland area across the eastern part of the country. In 1950, land
in farms across the sample totaled 688 million acres. By 2012, this acreage
had dropped to 500 million, a 27.4% decrease. The number of urban counties
has more than doubled over 1950-2012 but the number of counties classified

35Note these variables are not directly comparable because family size varies across the
country. I therefore compare personal capital income and family income for 1969 which
is the earliest overlapping year. The correlation is 0.82 for all US counties and 0.87 for
counties in the eastern sample. There are a few outliers. Counties with relatively low family
income relative to personal income per capita include places like New York county (NY) or
small coastal counties such as Kenedy county (TX). Counties with relatively low personal
income per capita relative to family income per capita include highly remote counties such
as Hinsdale county (CO) where family size is likely to be large. Outliers do not tend to be
highly agricultural in nature, so this variable seems appropriate.

36Again, this is not intended to capture short run fluctuations in income within counties,
but to preserve the variation in income across counties.

37Other studies have used the GDP implicit price deflator. I use the CPI because it is
available over a longer time span and these two indexes are virtually indistinguishable within
their overlapping time period with a correlation of 0.997 over 1947-2012.

38The correlation of farmland value relative to 1987-2012 are 0.687 (for 1950), 0.715
(1954), 0.771 (1959), 0.810 (1969), 0.874 (1974), 0.840 (1978), 0.872 (1982), 0.948 (1987),
0.966 (1992) 0.972 (1997), 0.967 (2002), 0.966 (2007) and 0.934 (2012).
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Table 2: Summary Statistics of Farmland Real Estate

Year(s)
Farmland Values (2012 USD) Observations
μ min max σv Non-

urban
Urban All

1950 1,063 67 129,888 4,516 2,233 229 2,462
1954 1,283 68 297,803 7,071 2,233 229 2,462
1959 1,867 181 337,523 10,098 2,233 229 2,462
1969 2,324 244 772,776 16,351 2,227 225 2,452
1974 2,909 186 558,623 12,990 2,226 225 2,451
1978 3,632 440 224,056 6,412 2,227 226 2,453
1982 3,160 457 246,818 7,754 2,233 227 2,460
1987 2,439 362 321,491 7,817 2,223 226 2,449
1992 2,291 262 92,274 3,725 2,226 222 2,448
1997 2,795 280 346,299 9,419 2,234 227 2,461
2002 3,220 308 126,306 5,479 2,235 228 2,463
2007 3,989 497 147,550 6,254 2,236 227 2,463
2012 4,574 512 792,500 17,327 2,237 230 2,467

1959-1982 3,001 307 316,232 11,720 2,237 231 2,468
1987-2012 3,358 377 362,222 9,555 2,237 231 2,468

Notes: Data are for counties in the eastern sample multi-year averages ignore missing obser-
vations. Large changes in maximum values and standard deviations in consecutive sample
years results from some highly populated counties being dropped from the Agricultural
Census. This also drives changes in the standard deviation.

as non-urban remains large, exceeding 2,200 in all years. The analysis in this
paper will be confined to these counties, following SHFb.

Climate data. I follow the literature and compute climate normals as
the 30-year average of yearly weather. The main results in the paper fol-
low the climate specification in SHFb, which includes linear and quadratic
terms for degree-days between 8 and 32ºC and precipitation, the square root
of degree-days exceeding 34ºC.39 These variables are aggregated over the April-
September period to reflect the growing season. I also report results for spec-
ifications based on monthly climate variables following MNS as well as linear

39Degree-days are computed using the double-sine method with a horizontal cutoff (see
Ortiz-Bobea et al., 2015). The computations account for the time-path of temperature
throughout the day.
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Table 3: Summary Statistics of Climate Variables

Variable(s) Month(s) μ min max σv

Degree-days 8-32ºC Apr-Sep 2429.9 1108.3 3686.8 520.1
10-30ºC Apr-Sep 2058.8 848.8 3171.2 473.7
>34ºC Apr-Sep 9.5 0.0 140.2 13.7
>30ºC Apr-Sep 64.3 0.2 411.8 56.5

Precipitation (mm) Apr-Sep 602.1 321.5 1041 97.6
Jan 74.2 9.4 169.3 39.3
Apr 89.6 20.1 149.2 21.9
Jul 105.6 38.4 217.6 26.3
Oct 81.2 31.9 135.7 18.5

Mean temperature (ºC) Jan 0.0 -16.4 19.1 6.5
Apr 12.9 2.5 24.2 4.3
Jul 24.8 16.8 30.7 2.6
Oct 13.9 4.9 26.0 4.0

Notes: The climatology window corresponds to 1976-2005. The sample comprises 2,470
counties in the eastern half of the US with at least some CDL cropland within their borders.
Only 40 eastern counties did not satisfy this condition, most of them (36) correspond to
incorporated cities in Virginia.
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Table 4: Correlation of Climate Normals Over Time

Correlation relative to 1976-2005
Variable(s) Month(s) 1916 1926 1936 1946 1956 1966 1976

-1945 -1955 -1965 -1975 -1985 -1995 -2005
Degree-days 8-32ºC Apr-Sep - - - - 0.999 1.000 1

10-30ºC Apr-Sep - - - - 0.999 1.000 1
>34ºC Apr-Sep - - - - 0.991 0.997 1
>30ºC Apr-Sep - - - - 0.995 0.999 1

Precipitation (mm) Apr-Sep 0.944 0.940 0.935 0.950 0.967 0.983 1
Jan 0.949 0.904 0.936 0.942 0.986 0.993 1
Apr 0.882 0.865 0.848 0.889 0.931 0.966 1
Jul 0.838 0.877 0.920 0.930 0.954 0.981 1
Oct 0.820 0.776 0.781 0.813 0.881 0.942 1

Mean temperature (ºC) Jan 0.996 0.994 0.996 0.996 0.999 0.999 1
Apr 0.997 0.997 0.998 0.998 0.999 1.000 1
Jul 0.988 0.991 0.994 0.996 0.995 0.999 1
Oct 0.997 0.997 0.996 0.997 0.998 1.000 1

Notes: Climate variables are county-level averages over the corresponding 30-year period.
The data covers 2,470 counties lying east of the 100th meridian west. Mean temperature and
precipitation are generated from the monthly gridded PRISM dataset while the degree-days
variables were constructed from the daily gridded dataset in Schlenker and Roberts (2009).

linear degree-days variables.40 Summary statistics for all climate variables
(1976-2005) considered in the paper are presented in table 3. There is con-
siderable climatic variation across the sample with a cross-sectional range of
approximately 35ºC and 14ºC for mean temperatures for January and July,
respectively. Large variations are also observed for degree-days variables. Pre-
cipitation also varies considerably across all months, although the variation is
naturally smaller when precipitation totals for a longer time period such as
April-September is considered.

Because I estimate hedonic models over a long period of time, it seems
natural to verify how climate cross-sections have evolved. Table 4 shows the

40The specification in MNS includes monthly climate normals for mean temperature and
precipitation for the months of January, April, July and October. The linear degree-days
specification includes linear terms for degree-days between 10 and 30ºC, and degree-days
above 30ºC.
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correlation of climate normals over time. Because data from Schlenker and
Roberts (2009) is only available since 1950, I cannot assess the correlations
of degree-days variables for earlier time periods. However, the correlations
in excess of 0.95 for most variables, especially for temperature, indicate the
climate cross-section has not changed much. It would be interesting to explore
regional trends in climate, and the resulting agricultural responses over such
a long time period. However, the nature of the underlying PRISM data so far
precludes from this type of analysis making detection vulnerable to artifacts.41

I therefore rely on climate normals for the 1976-2005 for all regressions.42 It
is worth noting that the farmland value cross-section appears to have evolved
much more than the climate cross-section as indicated by the lower and steadily
decreasing correlations over time in the farmland value variable.

Climate change impacts are reported for various warming scenarios as
projected by the Hadley GEM2-ES General Circulation Model (CGM) or
HadGEM2-ES (Jones et al., 2011).43 Starting in its fifth Assessment Re-
port (AR5) in 2014, the Intergovernmental Panel on Climate Change (IPCC)
adopted warming scenarios that correspond to Representative Concentration
Pathways (RCP). Instead of emissions, these scenarios represent trajectories of
greenhouse gas concentration. The scenarios are named based on the radiative
forcing values in year 2100 relative to pre-industrial levels. The four scenar-
ios are RCP2.6, RCP4.5, RCP6, and RCP8.5, corresponding to additional

41The PRISM group discourages the use of their data for trend detection. More specif-
ically, the PRISM documentation states that the long-term average datasets “are not cur-
rently suitable for calculating multi-decadal climate trends. Although longer-term networks
are used, grids still contain non-climatic variations due to station equipment and loca-
tion changes, stations openings and closings, and varying observation times.” (See p.5 in
http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf, accessed 8/1/2015).
In other words, although highly detailed, we ignore if statistically significant differences
in PRISM cross-sections are driven by changes in climate or non-climatic factors.

42A possible robustness check could explore how results differ when the climate normals
are computed based on the preceding 30-year weather average for each census year. Similar
analysis in SHFb found no differences in the results when alternative climate cross-sections
were used.

43Results based on other four GCM and the uniform warming scenario considered in MNS
and SHFa are also available upon request. These are not presented due to space constraints
but results are similar across GCM.
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“trapped” atmospheric energy of 2.6, 4.5, 6.0, and 8.5 W/m2, respectively. To
put this in context, the RCP2.6 and RCP8.5 scenarios are likely to lead to
global mean temperature increases of 1 and 2ºC by 2046-2065, respectively.
Note that regional temperature changes can be much greater. I follow the
approach outlined in Auffhammer et al. (2013) to generate county-level pro-
jections for mid-century (2036-2065) and end-of-century (2070-2099).44

Other data. Summary statistics for control variables are presented in table
5. The control variables in this study follow SHFb. Some controls overlap with
those in MNS, but updated variables have greater explanatory power. As ex-
pected, income per capita and population density vary considerably across the
sample, although the variation is substantially reduced when only non-urban
counties are considered. For instance, the maximum income per capita drops
from 119,000 to 83,600 USD. However, the mean income per capita remains
fairly stable at around 37,000 USD. On the other hand, the mean popula-
tion density drops significantly from over 250 to just under 80 inhabitants per
square mile. In contrast, the distribution of soil quality controls does not seem
to vary much when urban counties are excluded, indicating that the sample
restriction is mainly removing the influence of highly populated and high in-
come areas. The interested reader can find maps of all key climate and control
variables in appendix A2.

IV. Results

A. Baseline Hedonic Model.

In this section I present regression results and climate change impact pro-
jections for a baseline hedonic model. I follow the preferred specification in

44First, I compute changes in monthly climate normals for each variable for mid-century
(2036-2065) and end-of-century (2070-2099) periods relative to a historical reference period
(1976-2005). Second, I downscale the relatively coarse projections on the GCM grid to the
PRISM grid based on inverse distance weights between the four nearest GCM grid centroids
to each PRISM grid. Third, I add the downscaled projections to the fine-scale climatologies
of PRISM or Schlenker and Roberts (2009). This preserves the smoothness of climate
variation in the projections. Fourth, I aggregate these projections to the county-level using
cropland weights based on the 2008-2014 CDL as previously mentioned.
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SHFb, which is a semi-log model of farmland values with degree-days climate
variables and various controls. For comparison purposes, I present results
based on OLS and a SEM estimated via GMM (Kelejian and Prucha, 1999).
Due to space constraints, I only report regressions results based on averaged
data for recent cross-sections (1987-2012). However, climate change impact
projections are provided for all cross-sections. All spatial models in the main
part of the paper are based on a queen contiguity matrix with row-standardized
inverse distance weights.45 I later explore alternative weight matrices, but re-
sults remain stable.

Table 6 presents regression results based on OLS and SEM for pooled and
state fixed-effects models. The first observation is that disturbances are spa-
tially correlated in the pooled OLS model (column 1) as indicated by Moran’s
I statistic (42.2) and a classic Lagrange Multiplier (LM) test for spatial error
dependence (LM-Err= 1776.6).46 It is natural then, for the SEM to capture
this spatial error correlation (ρ = 0.755, column 2). If one ignores this positive
spatial error dependence, it should lead to overconfident standard errors for
OLS, but not to bias of regression coefficients.

Pace and LeSage (2008) developed a spatial Hausman test for this situa-
tion. If the DGP is truly SEM (null), both models are consistent but OLS is
inefficient. If one rejects this hypothesis, it indicates the spatially-dependent
error is correlated with the explanatory variables. Indeed, as illustrated in
section II., omitted variables affect these two models differently, so their pres-
ence lead to divergence in their estimates. A spatial Hausman test comparing
results from columns 1 and 2 of table 6 yields a test statistic of -446.4, which
rejects the null.47 However, this is a joint test for all coefficients and may be

45Unless otherwise noted, all weight matrices in the rest of the paper correspond to this
weight matrix. I choose this one in particular because it yields the highest value of the
likelihood function when spatial models are estimated via ML. Stakhovych and Bijmolt
(2009) show in a Monte Carlo study that this procedure increases the probability of obtaining
the correct weight matrix. This matrix was also considered in SHFb.

46Notice that the LM test for the presence of a spatial lag of the dependent variable
(LM-Lag) is also significant. However, this could be reflecting the spatial correlation of
disturbances.

47Under the null, the test statistic is distributed χ2(14). The corresponding p-value is
under 10−16.
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reflecting a correlation of the error with the control variables only, not with
the climate variables of interest. I thus perform the test excluding all con-
trol variables and the test statistic is -2234.5, which leads to an even stronger
rejection.48 This indicates the presence of omitted variables in the OLS and
SEM pooled models.

It is possible that this correlation is introduced by omitted factors occur-
ring at the state level, such as differences in government payments or state
policies. I thus present results for OLS and SEM model with state fixed-
effects in columns 3 and 4 of 6. I perform the spatial Hausman test comparing
these two models and obtain a test statistic of 248.6, which also rejects the
null.49 I perform the same test dropping all control variables and obtain a test
statistic of 3595.6, which leads to a stronger rejection.50 This result suggests
that, even within states, there are omitted variables in the error term that are
correlated with the included climate variables of interest. This is a new result
that indicates that climate change impact projections based on either pooled
or state fixed-effects OLS and SEM are unreliable.

To get a sense of the climate change impacts implied by the state fixed-
effects models based OLS and SEM, I present their associated projections in
figure 2. The first observation is that impact projections are more detrimental
based on OLS than on SEM.51 For the 1987-2012 average cross-section, the
mid-century predicted farmland change under RCP8.5 is -61.5% and -50.2%
for OLS and SEM, respectively. In section II. I discussed how bias in OLS is
amplified to a greater extent than for SEM. It logically follows that the bias
affecting these two models is downward, toward more negative and detrimental
results.52

48The test statistic is distributed χ2(6) under the null. The associated p-value is naturally
also under 10−16.

49Under the null, the test statistic is distributed χ2(50). The corresponding p-value is
under 10−16.

50Under the null, the test statistic is distributed χ2(41). The corresponding p-value is
below 10−16.

51Projections appear statistically different at a 1% level. However the result is to be
handled with care given that the standard errors of OLS are biased downward.

52Results for pooled OLS and SEM are more negative and are provided in appendix A3.
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A. Ordinary Least Squares (OLS)

B. Spatial Error Model (SEM) estimated via GMM

Notes: Farmland value percent changes correspond to the farmland-weighted sample average
projection. The top (bottom) row of each panel corresponds to the predicted farmland value
change for 2036-2065 (2070-2099) relative to the 1976-2005 reference period. RCP scenarios
increase in severity from left to right as described in section III.. The confidence bands
represent 95 percent confidence intervals for the predicted mean change. Blue solid dots
represent full models while hollow grey dots represent models without control variables.

Figure 2: Climate Change Impacts Based on OLS and SEM with
State Fixed-Effects
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A puzzling characteristic of figure 2 is that damage projections tend to
attenuate for older cross-sections. In fact, for some scenarios and early time
periods, the SEM points to barely significant impacts. Previous implemen-
tations of the hedonic model do not rely on older census data. As discussed
in section I., the rationale for estimating the hedonic model for several cross-
sections is to assess its stability and robustness under the presumption that
the correlation of omitted variables with climate variables changes over time.
Stable results across various cross-sections signal robustness. As previously
discussed, the farmland value cross-section has changed substantially over the
study period, mostly driven by factors that seem unrelated to agriculture.
Moreover, projections based on models without control variables suggest this
attenuation is not driven by changes in control variables either.

Recall that OLS and SEM estimates diverge in the presence of omitted
variables. One could rely on the evolution of the spatial Hausman test statistic
over cross-sections to assess the strength of the presence of omitted variables
over time. I perform these tests and find that the test statistic increases in
magnitude for more recent cross-sections.53 This evidence indicates that while
omitted variables affect all cross-sections, the presence of omitted variables
seems stronger for recent cross-sections. It turns out these recent cross-sections
point to larger damages, suggesting that large estimated damages are at least
partly driven by omitted variables whose influence has increased over time.
Although not conclusive, this pattern is consistent with the rise of the option
value of farmland over time. If farmer’s expectation about future land use
conversions are well anchored, the option value should diminish as we consider
earlier cross-sections. Therefore the option value of farmland is a plausible
omitted variable in this context.54

53I perform these tests on the pooled model without control variables to avoid the influence
of coefficients related to state dummies and control variables. The test statistic is distributed
χ2(6) under the null and the p-values are all below 10−6. The spatial Hausman test statistics
are 107.4 (for the 1950 cross-section), 39.4 (1954), -187.5 (1959), -125.0 (1969), -277.4 (1974),
-399.3 (1978), -299.1 (1982), -576.3 (1987), -666.5 (1992), -908.7 (1997), -855.5 (2002), -726.4
(2007) and -568.4 (2012). The test statistics for averaged cross-sections are -525.3 (1959-
1982) and -1018.4 (1987-2012).

54An interesting finding is that the coefficient for “Best soil class”, which measures the
share of high-quality soil in a county, steadily decreases for more recent cross-sections. This
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In summary, impact projections based on either pooled or state fixed-effects
OLS or SEM appear unreliable due to the presence of omitted variables. Dam-
age projections for OLS are more detrimental suggesting, according to theory,
that omitted variable bias in both OLS and SEM is toward more negative
effects. This bias seems to strengthen for more recent cross-sections, as in-
dicated by a growing spatial Hausman statistic. This is consistent with the
rise of the option value of farmland which seems correlated with climate and
strongly influences farmland values.

B. A General Spatial Hedonic Model

In this section I present regression results and climate change impact pro-
jections for the preferred model in this paper. I augment the specification of
the baseline models with an endogenous spatial lag of the dependent variables
and the explanatory variables. This is the SDM which I estimate via ML:

y = ρWy +Xφ+WXθ + ε(5)

As discussed in section II., the exact nature of the functional form of the
omitted variables is unknown. I therefore present both non-corrected and bias-
corrected results. Non-corrected results are directly based on the reduced-form
estimates of φ and θ. Recall these are biased estimators of β but do not have
the bias amplification of OLS and SEM in the presence of a spatially correlated
omitted variable.55

Before I proceed, it is worth noting that OLS results presaged the suitability
of the proposed model. LM tests on OLS residuals can provide insights to
discriminate between alternative spatial models. Recall that both LM-Err

suggests that the soil qualities that are inherently valuable for agriculture are having a
decreasing role in determining the market value of farmland over time. The associated
coefficients are: 0.4922 (for the 1950 cross-section), 0.4913 (1954), 0.4718 (1959), 0.5453
(1969), 0.4043 (1974), 0.3601 (1978), 0.3527 (1982), 0.1619 (1987), 0.2332 (1992), 0.1939
(1997), 0.1025 (2002), 0.08546 (2007), 0.1965 (2012). All coefficients are significant at a
10% level at a minimum.

55Because OLS and SEM estimates differ indicating both of those models are biased, then
the non-corrected SDM must also be biased, but less so.
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and LM-lag tests were statistically significant (columns 1 and 3 of table 6).
However, these tests assume that the spatial dependence is either in the error
or present as a spatial lag of the dependent variable, not both. Anselin et
al. (1996) developed robust tests (RLM-Err and RLM-Lag) that account for
the joint presence of both types of spatial dependence. Table 6 shows these
robust tests are significant, providing evidence for both error dependence and
the presence of a spatial lag of the dependent variable in the underlying DGP.
In such circumstances, the use of the SDM is recommended (Elhorst, 2010).

However, we can test directly whether the SDM fits the data better than
other models. Recall that the SDM presented in equation (3) simplifies to
OLS or SEM when ρ = 0, θ = 0 and φ = −θ/ρ, respectively. As previously
mentioned, the latter is the common factor restriction and can be tested via
a LR test when both models are estimated via ML. I test this restriction and
the SEM is rejected for all cross-sections.56 Therefore, evidence based on
OLS residuals as well as direct testing of models points to the adoption of the
SDM.57 This result corroborates the finding of the spatial Hausman tests that
indicate the presence of a spatially dependent omitted variable in OLS and
SEM.

Table 7 presents regression results for the non-corrected SDM.58 Because
there is an endogenous lag of the dependent variable, SDM coefficients do not
have the same marginal interpretation of a classical linear model. The compu-

56Under the null, the LR test statistic is distributed χ2(14) and the test statistics are 184.4
(for the 1950 cross-section), 201.9 (1954), 214.0 (1959), 193.7 (1969), 232.7 (1974), 250.6
(1978), 184.0 (1982), 233.9 (1987), 208.9 (1992), 244.8 (1997), 236.7(2002), 184.8 (2007),
163.2 (2012), 161.8 (1959-1982) and 225.5 (1987-2012).

57I also perform additional LR tests to discriminate between the SDM and a model for
which βi = 0, and those tests also lead to rejections of the restricted model. The restricted
model in this case is the Spatial Autoregressive Model (SAR) with a DGP of the form
y = ρWy +Xφ+ ε.

58Because the SDM exploits local variation in the independent and explanatory variables,
a specification with state fixed-effects would not be sensible. Such a model can be estimated
mechanically, but would introduce artifacts. More precisely, the weight matrix W performs
local weighted averages of neighboring counties. In the state fixed-effects specification, the
data is demeaned by the state mean. Differences in demeaned values between adjacent
counties located in different states is not meaningful, but would be used in the calculation
of the spatial lags Wy and WX. This procedure would therefore introduce and possibly
amplify non-meaningful between-state variation in the estimation.
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Table 7: Selected Regression Results for SDM

Variable Direct Effect Indirect Effect
Degree-days (8-32°C) -0.0006971 * 0.0008081
Degree-days (8-32°C) squared 1.51E-07 * -2.08E-07
Degree-days (>34°C) squared root -0.04432 * -0.0792 *
Precipitation 0.003334 ** 0.002062
Precipitation squared -2.57E-06 ** -1.63E-06
Average water capacity 1.967 ** 0.8095
Clay content 0.0003951 -0.001317
Minimum permeability 0.001068 -0.004149
K-factor of topsoil -0.6375 ** -0.8305
Best soil class 0.06533 * 0.06573
Latitude -0.1785 ** 0.1056 *
Income per capita 1.87E-05 ** 4.80E-05 **
Population density 0.002004 ** 0.007236 **
Population density squared -2.72E-06 ** -1.49E-05 **
Spatial autoregressive parameter (ρ) 0.8461 **
Log-likelihood 1,001.4
AIC -1,940.9
Observations 2,274

Notes: * and ** indicate statistical significance at 5 and 1 percent level. The dependent
variable is the average of the log of farmland values for 1987-2012. I follow the approach
in LeSage (2008) and LeSage and Pace (2010) and report the direct and indirect effects
of explanatory variables on farmland values, rather than estimated coefficients. These are
non-corrected results based on the reduced form estimates of φ and θ.

tation of marginal effects of explanatory variables on the dependent variable
and their standard errors is somewhat involved. For clarity of exposition, I
follow the approach in LeSage (2008) and LeSage and Pace (2010) and report
the direct and indirect marginal effects of explanatory variables, rather than
coefficients. These effects have the familiar marginal interpretation and are
fairly insensitive to changes in W.

Results in table 7 confirm there is a strong spatial dependence in the model
as indicated by a significant autocorrelation parameter (ρ = 0.841). Climate
variables exhibit significant direct effects but mostly for precipitation. The
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degree-days variables are now only significant at the 5% level.59 The economic
controls have direct effects that are highly significant. On the other hand, the
indirect effects of climate variables are tenuous. Only the degree-days variable
for extreme temperature is significant at the 5% level. However, the indirect
effects of the economic controls are highly significant.

Climate change impact projections based on the SDM are presented in fig-
ure 3 for all cross-sections. Because OLS and SEM are found to be biased
downward, SDM should also be biased downward, but less so. Therefore, it is
not surprising that climate change impacts for the SDM remain slightly nega-
tive in panel A for recent cross-sections. However, all impacts are statistically
insignificant at a 5% level, even for the most extreme RCP 8.5 scenario at the
end of the century. Moreover, the SDM impact projections are statistically
different from impacts projections based on the SEM. On the other hand, the
bias-corrected SDM (with β̂ = −θ̂/ρ̂) points to slightly more optimistic results
in panel B. This was expected given the downward direction of the bias. How-
ever, the associated confidence bands are much wider due to the less precise
estimation of the variance of the structural parameters.

To put these results in context, I present impact projections for the 1987-
2012 averaged cross-section for all models in table 8. Results based on the state
fixed-effects SEM specification are very similar to those found in SHFb.60 For
the SEM with state fixed-effects, the climate change impact toward the end
of the century and under the extreme RCP8.5 scenario is -69.0% change in
farmland values with a 95% confidence interval of -97.9 to -40.1%. This is
equivalent to a 36.1 billion annual loss in profits.61 On the other hand, the

59Note the direct effect for the degree-days for extreme temperature (> 34°C) has a
substantially lower magnitude than for OLS or SEM models presented in table 6.

60SHFb finds impacts of -27.4, -31.6, -61.6 and -68.5% for the B1, B2, A2 and A1F1
climate change scenarios for the end of the century. In this paper I find impacts of -25.3,
-43.8, -50.1 and -69.0% for RCP 2.6, 4.5, 6.0 and 8.5 climate change scenarios. Although
these scenarios are not equivalent, they show high agreement between low and high warming
scenarios.

61The total value of farmland for the sample is approximately $1 trillion USD (2012$).
This is calculated by multiplying the average farmland value for 1987-2012 by the average
number of farmland acres in the same period. Assuming a 5% capitalization rate this is
equivalent to a yearly profit of $52.258 billion (G$).
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A. SDM, non-corrected

B. SDM, bias-corrected

Figure 3: Climate Change Impacts Based on SDM
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corresponding impact projection for the non-corrected SDM is -26.5% change
in farmland values, or a 13.8 billion profit loss per year, with a 95% confidence
interval of -60.3 to +7.3%.

The impact ratio column of the table shows the ratio of the OLS and SEM
impacts relative to those of the non-corrected SDM. The column shows that
damages based on OLS and SEM are 2.6 to 5.8 times greater than damages
based on the non-corrected SDM specification, depending on the scenario or
time horizon. These differences are statistically significant. Interestingly, the
magnitude of this ratio closely matches the order of magnitude of the theo-
retical bias amplification found in section II.. Although the SDM impacts are
not distinguishable from zero, the result is biased downward, although without
amplification. The bias-corrected SDM points to a statistically insignificant
+2.6% change in farmland values, or a 1.4 billion gain in yearly profits, but
the associated confidence interval is much wider for this scenario.

The table shows that both the non-corrected and bias-corrected SDM point
to impacts of climate change that cannot be distinguished from zero under all
scenarios and time horizons. This result is statistically different from the
impact projections based on the SEM, which serves as the reference cross-
sectional model in the literature. Because the SDM subsumes the SEM as a
special case, and that various tests conclusively suggest that the SDM fits the
data better, these results rule of large benefits or damages from climate change
on eastern US agriculture.

C. Robustness Checks

Here I explore the robustness of the results presented in this paper. I
explore issues related to multicollinearity, the role of the endogenous spatial
lag, the stability of results across spatial weight matrices, climate variables,
dependent variables and regional subsets of the data.

A potential concern with the SDM is that the inclusion of the spatial lag of
climate variables may lead to multicollinearity. Indeed, the spatial lag of cli-
mate variables are highly correlated with the climate variables. However, this
problem would lead to wider confidence intervals for impact projections, not
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Table 8: Climate Change Impacts for all Models under Alterna-
tive Scenarios

Model

2036-2065 2070-2099

Impact 95% C.I. Impact Impact Impact 95% C.I. Impact Impact

(%) (±,%) (G$/yr) Ratio (%) (±,%) (G$/yr) Ratio

Hadley GEM2-ES, Scenario RCP 2.6

OLS - pooled -42.1 4.5 -22.0 5.8 -43.5 4.6 -22.8 5.4
OLS - state FE -33.2 5.4 -17.4 4.5 -34.7 5.5 -18.1 4.3
SEM - pooled -31.7 7.6 -16.6 4.3 -33.3 7.7 -17.4 4.2
SEM - state FE -24.0 7.6 -12.5 3.3 -25.3 7.8 -13.2 3.2
SDM - non-corrected -7.3 8.9 -3.8 1.0 -8.0 9.1 -4.2 1.0
SDM - bias-corrected 1.5 12.6 0.8 . 1.2 12.9 0.6 .

Hadley GEM2-ES, Scenario RCP 4.5

OLS - pooled -55.0 6.0 -28.7 4.7 -65.8 8.4 -34.4 4.6
OLS - state FE -45.0 7.6 -23.5 3.9 -55.6 10.7 -29.0 3.9
SEM - pooled -44.5 10.2 -23.2 3.8 -54.6 14.4 -28.5 3.8
SEM - state FE -34.4 10.6 -18.0 3.0 -43.8 14.8 -22.9 3.1
SDM - non-corrected -11.6 12.3 -6.1 1.0 -14.2 17.2 -7.4 1.0
SDM - bias-corrected 0.7 17.5 0.4 . 2.3 24.4 1.2 .

Hadley GEM2-ES, Scenario RCP 6.0

OLS - pooled -47.8 5.0 -25.0 5.0 -71.8 9.5 -37.5 4.2
OLS - state FE -37.5 6.3 -19.6 3.9 -61.9 12.4 -32.4 3.6
SEM - pooled -37.9 8.4 -19.8 3.9 -61.5 16.4 -32.1 3.6
SEM - state FE -28.2 8.7 -14.7 2.9 -50.1 17.1 -26.2 2.9
SDM - non-corrected -9.6 10.0 -5.0 1.0 -17.3 20.1 -9.0 1.0
SDM - bias-corrected 0.5 14.2 0.3 . 1.7 28.4 0.9 .

Hadley GEM2-ES, Scenario RCP 8.5

OLS - pooled -70.8 8.4 -37.0 3.7 -87.2 15.7 -45.5 3.3
OLS - state FE -61.5 11.2 -32.1 3.3 -79.3 21.3 -41.5 3.0
SEM - pooled -61.3 14.6 -32.1 3.2 -79.4 27.3 -41.5 3.0
SEM - state FE -50.2 15.5 -26.2 2.7 -69.0 28.9 -36.1 2.6
SDM - non-corrected -18.9 18.7 -9.9 1.0 -26.5 33.8 -13.8 1.0
SDM - bias-corrected -1.3 26.4 -0.7 . 2.6 48.0 1.4 .

Notes: Percent impacts are computed as 100(exp(∆Xβ)− 1), where ∆Xβ are log farmland changes driven

by changes in climatic variables only. ∆X is computed as the farmland-weighted change in climate variables

under each scenario. Confidence intervals for OLS are incorrect and biased downward because they ignore

the positive spatial correlation of the errors. The impact ratio is the ratio between the mean impact for

each model relative to the non-corrected SDM impact.
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to bias. A comparison of figures 2 and 3 shows that statistically insignificant
projections from the SDM do not stem from wider confidence intervals relative
to SEM, but from point estimates that are closer to zero. Table 8 shows that
the confidence intervals on impact projections are just about 20 percent larger
for the SDM relative to the pooled SEM. Therefore results seem unaffected by
this issue.

Another potential source of concern, is the endogenous spatial lag of the
dependent variable Wy in the SDM. This term follows from re-arranging the
model DGP with an omitted variable in a spatially correlated error term.
Its purpose is to remove the spatial correlation of disturbances. A potential
concern is that the spatial lag might be capturing too much of the spatial
variation in farmland values. To verify this possibility, I estimate a model with
the following form y = Xφ+WXθ + ρWe+ ε, where the spatial dependence
of unobservables is modeled in the error, rather than in the “mean” part of
the model.62 The results presented in appendix A5 show that the impact
projections based on this model are virtually identical to those based on the
SDM. This suggests that it is the spatial lag of regressors which are capturing
the effect of omitted variables in the hedonic regression, as suggested by the
theoretical model.

An important aspect of spatial models is the assumption on the W matrix.
The one presented in the paper is based on queen contiguity and weights that
decay with the reciprocal of the distance. This spatial weight matrix is also
used in SHFb. That study finds results are largely unaffected by the choice of
W. Similarly, I find that impact projections are fairly insensitive to alternative
weight matrices (in appendix A6).63

The main results presented in the paper are based on the degree-days
variables and specification adopted in SHFb. To assess how results are affected
by the choice of alternative climate variables I re-estimate the SEM (GMM)

62This model is commonly referred to as the Spatial Durbin Error Model (SDEM). It is
a SEM augmented with a spatial lag of the independent variables. Unlike the SDM, the
coefficients of the SDEM can be directly interpreted as marginal effects.

63The alternative weight matrices include queen contiguity with binary weights and near-
est 7 and 15 neighbors with inverse distance weights. All weights are row-standardized.
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with state fixed-effects and the SDM using linear degree-days variables and
monthly climate normals following MNS.64 I present results in appendix A7.
The linear degree-days specification provides qualitatively similar results for
both models to those provided in the paper so further discussion is not needed.

However, results based on monthly climate variables are different. For re-
cent periods (1992-2012), the SEM points to negative impacts just as with
the degree-days variables, but these projections become positive for older time
periods (1950-1982). This result highlights that degree-days variables and
monthly temperatures fit the data differently as suggested by SHFb. Because
these are non-nested models we cannot rely on LR tests for model selection
but on other criteria, such as AIC.65 The AIC is slightly lower for models
based on monthly climate variables compared to degree-days variables for all
cross-sections, suggesting that, within-sample, monthly average climate vari-
ables seem to fit the data slightly better.66 Irrespective of whether one set
of climate variables is more appropriate than the other, this result indicates
the SEM impact projections are unstable and change signs when monthly cli-
mate variables are used. In contrast, the SDM impact projections based on
monthly climate variables are slightly more stable and do not point to negative
impacts under any cross-section. Impact projections based on the preferred
SDM suggest statistically insignificant impacts with these alternative climate
variables.

Throughout the paper I suggest the option value of farmland as a likely
omitted variable. Because farmland prices from the US Agricultural Census
are based on farmer assessment of market value, these naturally reflect the
option value of development opportunities outside of agriculture. In principle,

64The linear degree-days specification includes separate linear terms for degree-days 10-
30°C and >30°C as well as linear and quadratic precipitation variables. The monthly climate
variable specification includes linear and quadratic terms for monthly mean temperature and
precipitation normals for the months of January, April, July and October.

65This requires, however, that the SEM is estimated via ML, not GMM.
66This is a little surprising given that SHFb find that degree-days variables provide a

superior fit. However, their comparison is performed out of sample, and not based on AIC.
However, it is evident that models based on degree-days are considerably more stable across
cross-sections.
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one could circumvent this issue by using a more direct measure of agricultural
productivity, such as the rental price of farmland, which should not reflect its
option value. However, only the rental price of cropland, a subset of farmland,
is available for recent years.67 This latter variable is somewhat problematic
because the share of cropland in the rental market varies considerably across
the country and there are many counties with missing observations. Thus, the
associated results could be based on a skewed sample. Nevertheless, I present
results based on this variable for pooled OLS, SEM (GMM) and SDM in
appendix A8. Interestingly, results based on OLS and SEM point to negative
but smaller damages than for models based on farmland values. However, these
results are affected by omitted variables as indicated by a spatial Hausman test.
On the other hand, the SDM results are less negative but remain statistically
insignificant.

Finally, I present results based on alternative regional subsets. I divide
the eastern US sample into North/South and Central/East subsamples and
run the SDM for each group. The subsamples and the results are presented
in appendix A9. Impact projections are noisier and become slightly negative
only for the “East” subsample. However, this subsample contains most of the
“high-ratio” counties of figure 1 and is where the effect of omitted variables
appears to be the strongest. As a result, these findings support results based
on the SDM.

V. Conclusion

There’s been a lively debate regarding the potential impacts of climate change
on US agriculture. Studies based on the hedonic approach such as Schlenker et
al. (2005) and Schlenker et al. (2006) find large detrimental effects of climate
change on US agriculture. I find similar results based on the SEM used in the
latter study, with a projected impact of -69.0% change in farmland values, or an
annual loss of $36.1 billion, under the most severe climate change scenario for
the end of the century. However, this result is vulnerable to slowly-varying or

67The data is from the Cash Rent Survey as indicated in section III..
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time-invariant omitted variables. More importantly, I argue that confounders,
if present in this context, are likely to be spatially dependent given the nature
of all suspect variables that have been proposed and the spatial dependence
of all controls variables used in this literature. This feature, as I illustrated,
can compound omitted variables bias severalfold.

In this paper I propose a hedonic approach for estimating the impacts of
climate change on agriculture that is robust to spatially-dependent omitted
variables. I exploit the fact that certain estimators amplify the bias from such
confounders to varying degrees, to detect the sign and magnitude of the bias
and correct for it. Theoretically, I predict that OLS and the SEM amplify
such biases by a factor of 3.3 and 2.3-3.0, respectively, while the preferred
SDM has a neutral amplification of 1. In the absence of spatially-dependent
confounders, OLS, the SEM and the SDM, should lead to statistically similar
estimates and thus similar climate change impact projections. However, the
presence of spatially-dependent confounders lead to divergence of estimates
across estimators and therefore to divergence of climate change impact pro-
jections.

My empirical findings conclusively suggest that climate change impacts
based on OLS or the SEM are biased downward severalfold. I use a spatial
Hausman test to find that OLS and SEM estimates are statistically differ-
ent for all cross-sections from 1950 to 2012, which confirms the presence of
spatially-dependent confounders. Moreover, I infer the direction of the bias
in US hedonic models is downward because climate change impact projections
based on OLS are systematically more detrimental than for SEM and the bias
amplification is larger for OLS.

Because the SEM is nested within the SDM I could test the common factor
restriction via a LR test. I reject the SEM for all cross-sections, confirming
again the presence of spatial omitted variables and indicating the superior fit
of the SDM. In the presence of a spatially-dependent omitted variable the
SDM is also biased, but without amplification. It is therefore not surprising
that the SDM impact projections appear slightly negative although results are
not statistically significant for any of the scenarios or time horizons. I find
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that OLS and SEM point to damages that are 2.6 to 5.8 times greater than
for the SDM. This impact ratio interestingly matches the order of magnitude
of the theoretical bias amplification mentioned above, which shows agreement
between my theoretical predictions and assumptions and empirical findings.

Finally, I derive a bias-corrected SDM and find that impact are unsur-
prisingly more optimistic, although impacts remain statistically insignificant.
The bias-corrected SDM points to a statistically insignificant impact of +2.6%
change in farmland values, or an annual gain of $1.4 billion, under the most
severe climate change scenario toward the end of the century. This contradicts
previous detrimental effects found in the literature.

In this paper I find no evidence of large beneficial or detrimental impacts of
climate change on US agriculture. This contribution can help rationalize the
relative magnitude of projected climate change impacts stemming from alter-
native approaches that allow varying degrees of farmer adaptations. Methods
that only allow short-run and within-year adjustments should naturally point
to more detrimental effects than methods, such as the hedonic approach, that
allow for long-run adaptations. Therefore, the findings in this paper need
not be in conflict with the large negative effects of weather shocks on crops
yields (e.g. Schlenker and Roberts, 2009) because such approaches allow for a
narrower range of farmer responses and adjustments.

It is important to emphasize that the proposed approach is not a panacea
for controlling any type of omitted variables in a cross-sectional setting. The
SDM only eliminates the bias amplification -not the bias itself- from spatially-
dependent omitted variables. It is subsequently possible to derive bias-corrected
estimates which are robust to such confounders. However, the proposed ap-
proach is particularly well suited for our context in which omitted variables
are, in all likelihood, spatially correlated.

Finally, I must highlight that the hedonic approach has several caveats
related to its observational nature and its reduced form. Observational ap-
proaches rely on historical variation in the data to infer future responses.
However, there are changes that are not perceptible in the data that will oc-
cur under climate change. These include the rise of carbon dioxide in the
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atmosphere, the depletion of aquifers or large-scale ecological changes that
affect pest populations and thus agricultural production. These remain im-
portant unknowns and add to the uncertainty of these results. On the other
hand, the reduced-form nature of this approach does not allow unpacking the
mechanisms through which farmers adapt. More research is needed to identify
the potentially fruitful pathways to enhance farmer adaptations to a changing
climate (Ortiz-Bobea and Just, 2013). Finally, more research effort should fo-
cus in areas, such as sub-saharan Africa, where data is scarce and the potential
effects of climate change on agriculture are likely to be most disruptive.
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