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Abstract

How should a firm set policies– public decision plans that determine the role of its em-
ployees, divisions, and suppliers– to strengthen its relationships? We explore whether
and how a principal might bias the decisions she makes to foster relational contracts
with her agents. To this end, we examine a flexible dynamic game between a principal
and several agents with unrestricted vertical transfers and symmetric information. We
show that if relationships are bilateral– each agent observes only his own output and
pay– then the principal may optimally make decisions in a systematically backward-
looking, history-dependent way in order to credibly reward agents who performed well
in the past. We first show that these backward-looking policies are prevalent in a broad
class of settings. Then we show by example how such policies might affect firm per-
formance: for example, hiring might lag increases in demand or investment might be
awarded in a biased tournament. In contrast to the game with bilateral relationships,
we show that if monitoring is public, optimal policies never involve biased decisions.



1 Introduction

Business relationships often rest upon parties’goodwill rather than the contracts they sign–

fear of destroying future surplus can motivate individuals both to perform well and to reward

strong performance by their partners. In the canonical relational-incentive contracting mod-

els that capture this intuition (Bull, 1987; MacLeod and Malcomson, 1988; Levin, 2003),

the principal’s only role is to promise and pay monetary compensation to her agents. She is

otherwise entirely passive.

Yet in any real-world enterprise, managers make a host of decisions that affect how a

group of individuals contribute to the firm’s objectives. Supervisors assign tasks to team

members. Supply-chain managers source from suppliers. Executives allocate capital to di-

visions. Human-resource managers hire and fire employees. These decisions make certain

individuals more integral and others less integral to the firm. And importantly, these de-

cisions are often made on the basis of past performance, even when doing so harms future

prospects. Supervisors bias promotions, CFOs bias capital allocations, and supply-chain

managers bias future business toward those who saw past success (Peter and Hull, 1969;

Graham, Harvey, and Puri, 2013; Asanuma, 1989). If the firm can compensate employees

with monetary bonuses, then in principle it should be able to reward past successes with-

out tainting future decisions. Why, then, are biased decisions such a widespread feature in

organizations?

In this paper, we argue that backward-looking policies can arise in optimally managed

relationships among a principal and her agents. Biased decisions lead to lower continuation

surplus. However, a principal who promises to bias future decisions towards an agent is better

able to credible promise monetary rewards that motivate that agent today. To make this

point, we develop a general framework that builds upon Levin’s (2003) repeated principal-

agent model with moral hazard, transferable utility, and risk-neutral parties. We extend

Levin’s framework to accommodate persistent public states and multiple agents. The key

feature of our model is that the principal can make a public decision in each period that

influences how agents’efforts affect the firm’s output. A policy is a complete decision plan

for the relationship. A policy is backward-looking if it involves decisions that do not

maximize continuation surplus. We say that such decisions are biased.

We show that backward-looking policies arise naturally if relationships are bilateral– that

is, if each agent cannot observe the principal’s interactions with other agents. In this setting,
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players cannot coordinate punishments or rewards. A decision that makes an agent more

integral to the principal ensures that the principal and that agent have more to lose if they

do not uphold their promises to one another. In particular, the principal can promise larger

rewards to an agent who is expected to produce more future surplus. Decisions biased toward

an individual therefore complement more generous reward schemes for that individual but

also negatively affect the firm’s overall future performance.

As an example of how backward-looking policies might optimally emerge, consider hiring

decisions made by the owner of an up and coming business. Achieving early success requires

sacrifice from early employees, and motivating this sacrifice requires the owner to promise

to reward those employees either immediately or in the future. But these promises are only

credible if early employees know that they will remain an important part of the firm in the

future. One way to ensure that early employees remain valued would be for the owner to

adopt a policy of being slow to hire following an increase in demand for the firm’s products,

which would make existing workers relatively more indispensable for the firm. Such a policy

is not costless, as orders may go unfulfilled, but these costs may be worth incurring in order

to establish cooperative behavior early on. We explore this example in Section 5.

A game with bilateral relationships has imperfect private monitoring– agents do not

observe one another’s output nor pay. In general, such games are diffi cult to analyze, because

standard equilibrium concepts are not recursive. For most of the paper, we consider an

equilibrium refinement to ensure that our relational contracts are recursive. This solution

concept provides a tractable way to emphasize the forces that lead to biased policies in

optimal relational contracts. In Section 6, we demonstrate in the context of a simple class

of games that biased policies arise even if we consider the full (non-recursive) set of Perfect

Bayesian Equilibria.

The first step of our analysis is to develop a set of intuitive necessary and suffi cient condi-

tions for a policy to be part of a self-enforcing relational contract. Using these conditions, we

consider a broad class of environments and show that backward-looking policies are typically

part of surplus-maximizing relational contracts. Indeed, decisions are biased with positive

probability in nearly every period unless agents either already exert first-best effort or exert

no effort at all. We show that policies favor those agents who have performed well in the past

at the expense of those who have not. In the resulting relational contract, agents compete

to secure future decisions that are biased towards them.

Next, we apply our framework to two examples to illustrate how backward-looking policies

2



manifest in stylized settings. The ineffi ciencies that occur in these examples are of potential

independent interest. Revisiting the hiring example, we confirm that additional hiring may

optimally lag an increase in demand and link this distortion to several recent empirical

observations about job growth. We also argue that a firm might both delay and distort

investments in projects (or promotions) to better motivate their managers (or employees).

Finally, we explore the assumption of bilateral monitoring with three extensions. First,

we show that if the game has public monitoring, then biased decisions are never surplus-

maximizing. Unlike the setting with bilateral monitoring, agents can coordinate to jointly

punish the principal if she does not uphold her promises to one of them if monitoring is public.

Biased decisions decrease total continuation surplus and weaken the principal’s incentives to

uphold her promises, so they have no place in a surplus-maximizing relationship. Second, we

explore the role of biased policies if agents can coordinate to punish the principal, but only

imperfectly. Restricting attention to a simple example and a stylized model of imperfect

coordination, we show that biased policies may play a role in an optimal relational contract

so long as the principal’s deviation in one relationship does not become publicly observed

with probability 1. Finally, we show that our central intuition is not driven by our restriction

to recursive equilibria. For a simple class of games, we prove that similarly backward-looking

policies arise if we consider the full set of Perfect Bayesian Equilibria.

Literature Review Our paper is closely related to the literature on sequential ineffi cien-

cies in optimal contracts. The seminal contribution by Fudenberg, Holmstrom, and Milgrom

(1990, henceforth FHM) identifies conditions under which a long-term formal contract is se-

quentially effi cient. We focus on two of these conditions that have been extensively explored

in the literature. First, the principal must be able to punish the agent without simulta-

neously harming herself. Second, players must have symmetric information about future

payoffs. If either of these conditions fail, then the optimal formal contract might entail

dynamic ineffi ciencies.

Within the relational contracting literature, Bull (1987), Baker, Gibbons, and Murphy

(1994), Levin (2003), Kranz (2011), and many others study models in which the conditions

from FHM hold. In these settings, stationary relational contracts are optimal and no sequen-

tial ineffi ciencies arise. A recent and growing literature, partially surveyed in Malcomson

(2013), explores dynamic relational contracts that respond to past outcomes. For instance,

Fong and Li (2012) show that the principal might ineffi ciently suspend production to punish
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poor performance if the agent has limited liability. Li, Matouschek, and Powell (2015) show

that if transfers are limited but the principal can reward and punish the agent with future

control rights, she may permanently alter the firm’s organization away from what maximizes

continuation surplus. Board (2011) considers a setting in which a principal chooses to trade

with a single agent who is liquidity constrained in each period. Because the principal op-

timally backloads incentive payments, she distorts this allocation decision to favor agents

with whom she has traded in the past. Halac (2012), Malcomson (2014), and others study

how relational contracts evolve if the players have asymmetric information about the future.

Relational concerns influence dynamics in these papers. However, FHM’s discussion sug-

gests that the optimal formal contract in these settings might also entail history-dependent

ineffi ciencies.

This paper takes a different approach. We focus on an environment that satisfies the

conditions of FHM, so that optimal formal contracts would not exhibit any history-dependent

ineffi ciencies. Even though history-dependent ineffi ciencies would not arise in an optimal

formal contract, we show that they may arise in an optimal relational contract. Driven

entirely by relational considerations, the principal may bias her decisions to favor some agents

over others. Biased decisions are required to credibly motivate the agents, even though all

parties are risk-neutral and have deep pockets. This intuition is related to Andrews and

Barron (2014), who analyze optimal allocation dynamics in a supply chain, and Calzolari

and Spagnolo (2011), who consider procurement auctions. The goal of our analysis is to

extend the basic intuition of these papers and provide a general framework for analyzing

backward-looking policies in relational contracts.

Our dynamic game has imperfect private monitoring: we assume that one agent cannot

observe the principal’s interactions with the other agents. This assumption is similar to

Segal’s (1999) analysis of private offers in formal contracts, though our biases are quite

different because they are driven by relational concerns. As discussed in Kandori (2002) and

elsewhere, games with private monitoring are technically challenging because equilibrium

payoffs depend on players’beliefs and so are not necessarily recursive. In this paper, we

consider a set of recursive equilibria (related to but slightly weaker than the belief free

equilibria from Ely, Horner, and Olszewski (2005)), which allow us to highlight the intuition

behind biases in surplus-maximizing relationships.
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2 Example: Why Do Ineffi cient Policies Arise?

In this section, we informally introduce the key ideas of our model in an example.

Consider a principal who interacts with two agents in periods t = 0, 1, .... In t = 0,

the principal and each agent pay one another wages. Players have no liquidity constraints;

denote by wi,0 ∈ R the net wage to agent i. After this payment, each agent i privately

chooses a binary effort ei,0 ∈ {0, 1} at cost cei,0. Agent i’s effort determines his output
yi,0 ∈ {0, Hi}, with H1 > H2 > 0. The probability that yi,0 = Hi equals pei,0. After output

is realized, the principal and each agent exchange bonus payments, with the net bonus to

agent i denoted τ i,0 ∈ R. At the start of the second period (t = 1), the principal chooses

one of the two agents. He repeatedly plays this stage game with the chosen agent, but has

no further interactions with the agent who is not chosen. Players share a common discount

factor δ ∈ (0, 1). The principal and agent i respectively earn (1− δ)
∑2

i=1(yi,t − wi,t − τ i,t)
and (1− δ)(wi,t + τ i,t− cei,t) in period t, with yi,t = ei,t = 0 in t ≥ 1 if agent i is not chosen.

As a benchmark, suppose that monitoring is public: all variables except effort are publicly

observed, while effort is private. Assume that δ is such that either agent can be motivated

to work hard in every period t ≥ 1 if the principal chooses him. How might the principal

motivate both agents to work hard in t = 0? Agent i can be motivated by either the

expectation of a bonus or fine today (τ i,0) or a continuation payoff in period 1 onwards

(Ui,1). So agent i’s total reward for producing output yi,0 equals

Bi(yi,0) = E[(1− δ)τ i,0 + δUi,1|yi,0].

Agent i’s reward is constrained, because players cannot commit to a reward scheme. In

particular, agent i can always earn 0 by choosing ei,t = 0 in each period. So Bi ≥ 0 in

equilibrium. The principal can similarly “walk away”from both relationships by refusing to

pay the agents. Therefore, the principal will not be willing to pay the agents more than the

total continuation surplus produced by both of them. If qi ∈ [0, 1] is the probability that

agent i is chosen in period 1, then the sum of both agents’rewards must satisfy B1 + B2 ≤
δ[p(q1H1 + q2H2) − c]. Because H1 > H2, q1 = 1 is clearly the choice that maximizes total

ex ante expected surplus. This decision maximizes total continuation surplus in periods

t = 1, .... It also relaxes the upper bound on the aggregate reward B1 + B2 and so permits

the principal to credibly promise strong incentives in the first period.

Now, suppose that monitoring is bilateral: agent i observes his own output yi,t and pay

{wi,t, τ i,t}, but not the other agent’s output or pay. Under this assumption, we argue that the
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principal might choose to continue her relationship with agent 2 even though doing so leads

to lower surplus in periods t = 1, .... Moreover, the principal’s decision optimally depends

on the realized outputs in period 1.

As before, agent i is motivated by his expected reward Bi(yi,0). Because i can walk

away from the relationship, Bi ≥ 0. However, now the principal can refuse to pay agent

i without alerting the other agent to this deviation. Moreover, the agents have no way to

communicate with one another. So the principal is willing to pay an agent no more than the

total continuation surplus produced by that agent. If the principal were asked to pay more,

she would prefer to abandon her relationship with that agent while continuing to trade with

the other. So agent i’s reward in the first period must satisfy

0 ≤ Bi(yi,0) ≤ δqi(pHi − c).

In Section 4, we show that this dynamic enforcement constraint is the only constraint

imposed by the relational contract. In particular, we can construct an equilibrium in which

the principal implements whatever policy (q1, q2) we choose and the agents earn any Bi that

satisfies this constraint.

Suppose the principal chooses agent 1 in period 1, which maximizes total continuation

surplus. Then q2 = 0 and B2 = 0. Intuitively, the principal cannot credibly offer agent

2 any reward, because they interact only once. The principal can either maximize total

continuation surplus in periods t = 1, ... or motivate agent 2 in period 0, but she cannot do

both. As a result, the optimal relational contract might entail biased decisions if H1−H2

is not too large.

What type of ineffi ciencies arise? One possibility is that the principal chooses randomly

between the two agents. In that case, q1 = q2 = 1/2 and so both agents can be given some

reward following high output. However, note that agent 2 is rewarded only if he performs

well: that is, B2 > 0 only if y2,0 = H2. Therefore, the principal can do even better by setting

q2 > 0 only if y2,0 = H2. Such a history-dependent policy ensures that the principal can

credibly reward agent 2 at exactly the histories in which agent 2’s reward is constrained from

above.

In short, the principal’s optimal policy may entail history-dependent dynamic ineffi cien-

cies if the game has bilateral monitoring. Agents are motivated to work hard by the prospect

of present and future monetary rewards. These wages and bonuses are made credible by the

principal’s policy. That is, the policy does not serve as a direct incentive for effort, but
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instead determines what kinds of direct incentives are credible in a relational contract. In-

effi cient policies arise even though the parties could in principle “settle up”using transfers

in each period.

While this example may seem artificial, we argue that the same basic intuition leads to

backward-looking policies in many settings. The rest of this paper analyzes a model that

generalizes this intuition and applies that model to several concrete examples.

3 The Model

A single principal (player 0, ‘she’) and N agents (players i ∈ {1, ..., N}, each ‘he’) interact
repeatedly in a dynamic game. Time is discrete and denoted by t ∈ {0, 1, . . . }. Players are
risk-neutral and share a common discount factor δ ∈ (0, 1). In each period, the principal

makes a decision dt from a set Dt. The decision determines how each agent i’s effort

ei,t ∈ R+ determines his outcome yi,t ∈ R+. Agent i incurs cost c(ei,t), while the principal

earns revenue equal to the sum of outcomes,
∑N

i=1 yi,t. There are two rounds of transfers

between the principal and each agent. The (net) ex-ante transfer to agent i is denoted

wi,t ∈ R and is paid before the agent accepts or rejects production, while the (net) ex-post
transfer τ i,t ∈ R is paid after output is realized. We sometimes refer to these transfers,

respectively, as wage and bonus payments, and we denote the vectors of wages and bonuses

by wt and τ t. The principal sends a messagemi,t to each agent i along with the wage payment

wi,t. Denote the vector of messages by mt.

Technology In period t, a set of available decisions Dt ⊆ D and state of the world
θt ∈ Θ are realized according to distribution F

(
D, θ| {dt′ , Dt′ , θt′}t−1

t′=0

)
, which depends on

the history of decisions made by the principal as well as the history of available decisions and

realized states. The decision dt ∈ Dt together with the state of the world θt and agent i’s

effort ei,t determine the marginal distribution over agent i’s output: Pi(yi,t|θt, dt, ei,t). Note
that outcomes are independent across agents conditional on the decision and the state of the

world.

Timing The stage game has eight rounds.

1. θt and Dt are publicly realized according to F (Dt, θt| {dt′ , Dt′ , θt′}t−1
t′=0).

2. The principal makes a public decision dt ∈ Dt.
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3. For each agent i, the principal and agent i simultaneously choose wage payments in

R+ to send to one another. Define wi,t ∈ R to be the (net) wage paid to agent i.

4. For each agent i, the principal chooses a message mi,t ∈ M to send to agent i, where

M is a large message space.0

5. Each agent i chooses whether to participate (ai,t = 1) or not (ai,t = 0). If agent i does

not participate, yi,t = 0 and i receives payoff ūi (dt, θt) ≥ 0.

6. If ai,t = 1, then agent i chooses effort ei ∈ R+.

7. The outcome yt = (y1,t, . . . , yN,t) is realized, where yi,t ∼ Pi ( ·| θt, dt, ei,t).

8. For each agent i, the principal and agent i simultaneously choose bonus payments in

R+ to send one another. Define τ i,t ∈ R as the net bonus to agent i.

It is worth pausing to comment briefly on the timing. In our game, agents decide whether

or not to take their outside options after they pay or receive the ex-ante transfer wt. This

assumption ensures that agent i can punish the principal by rejecting production following

an off-path wage payment, which simplifies our equilibrium construction. A third round of

transfers after accept/reject decisions but before efforts would not change our results. We

could also allow the principal to send messages to each agent in every stage of the stage

game without affecting any results.

Information All players observe the state of the world θ, the set of available decisions D,

and the principal’s decision d. The principal observes all transfers w and τ , accept/reject

decisions a, messages m, and outcomes y, but she does not observe agent’s efforts. Agent i

observes his own effort ei, accept/reject decision ai, wage wi, message mi, outcome yi, and

bonus τ i. He does not observe these variables for any other agent.

Histories and Strategies A history at the beginning of period t is

ht0 = {θt′ , Dt′ , dt′ , wt′ ,mt′ , pt′ , et′ , yt′ , τ t′}t−1
t′=0, from set Ht

0. Let h
t
x ∈ Ht

x denote the within-

period history immediately following the realization of variable x, so

for example, htw = ht0 ∪ {θt, Dt, dt, wt}. For every agent i, let φi (htx) denote agent i’s private
0Formally, we assume that M’s cardinality is at least as large as the Cartesian product of the set of all

histories and the set of all functions f : R→ R. In practice, we can typically make do with a much smaller
message space.
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history at htx and φi(Ht
x) the set of such histories. Likewise, φ0(htx) is the principal’s private

history and φ0(Ht
x) is the set of these histories. Recall that φ0(ht) includes all variables ex-

cept effort, while φi(h
t) includes θt, Dt, dt, and those variables with subscript i. A relational

contract is a strategy profile σ = σ0 × ... × σN , where σi maps φi (Ht) to feasible actions

at those private histories. Continuation play at φi(h
t) is denoted σi|φi(ht). We refer to a

history-contingent plan of decisions as a policy.

Payoffs In period t, agent i’s and the principal’s payoffs are

ui,t = wi,t + τ i,t − ai,tc(ei,t) + (1− ai,t) ūi (dt, θt) ,
πt =

∑N
i=1 (yi,t − τ i,t − wi,t) ,

respectively. Given a relational contract σ and a history htx, agent i’s continuation payoff is

Ui
(
σ, htx

)
= Eσ

[ ∞∑
t′=0

δt
′
(1− δ)ui,t+t′

∣∣∣∣∣htx
]
.

The principal’s continuation payoff, Π(σ, htx), is defined analogously.

We define the punishment payoff for a player as the lowest individually-rational payoff

for that player. The principal’s punishment payoff is 0. Agent i’s punishment payoff is

Ūi(h
t
x) = min

σ
Eσ

[ ∞∑
t′=0

δt
′
(1− δ)ūi(dt+t′ , θt+t′)|htx

]
.

Equilibrium Each player in a game with private information must form beliefs about

the true history given his private information. If players condition their continuation play

on their beliefs, then information– and hence play– grows increasingly complicated as the

game progresses. To avoid these diffi culties, our main results restrict attention to recursive

equilibria (RE), which are a recursive and hence relatively tractable refinement of Perfect

Bayesian Equilibrium.

DEFINITION 1. A Perfect Bayesian Equilibrium σ∗ is a recursive equilibrium (RE) if

for any period t and on-path history ht0 ∈ Ht
0, σ

∗|ht0 is a Perfect Bayesian Equilibrium of the
game starting at ht0.

We say a relational contract is self-enforcing if it is a recursive equilibrium. In a Perfect

Bayesian equilibrium, player i’s actions at history ht0 must be a best response to the other
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players’actions, given i’s information about the true history φi(h
t
0). A recursive equilibrium

requires that on the equilibrium path, player i’s actions are a best-response not just given

i’s information φi(h
t
0), but given the true history ht0. This restriction applies only on the

equilibrium path: the principal can renege on agent i without revealing that deviation to the

other agents, even if subsequent play would not form a PBE. This equilibrium refinement

is related to but weaker than belief-free equilibria, which is a standard recursive solution

concept for games with private monitoring.1

In a recursive equilibrium, players form expectations within a period but must act as

if they know the true history at the start of each period on the equilibrium path. This

refinement implies that an RE is recursive on the equilibrium path, which is a non-trivial

restriction on equilibrium play.2 Our main analysis restricts to recursive equilibria, because

they lead to clean and intuitive constraints on the relational contract and realistic history-

dependent biases. Section 6.3 has a limited analysis of the full set of Perfect Bayesian

Equilibria for a simple set of games and illustrates that our core intuition is not driven by

the restriction to RE.

We focus on surplus-maximizing relational contracts. A self-enforcing relational contract

σ∗ is surplus-maximizing if it yields the largest ex ante total expected surplus of any

recursive equilibrium. It is sequentially surplus-maximizing if at every on-path history

ht0 ∈ Ht
0, continuation play σ

∗|ht0 is surplus-maximizing in the continuation game beginning
at ht0.

3 If σ∗ is not sequentially surplus-maximizing, then we say that decisions are biased

and the policy is backward-looking.

4 Sequential Ineffi ciency and Biased Decisions

If agents cannot observe one another’s relationships, then they cannot coordinate to jointly

punish a deviation by the principal. This section demonstrates how policies influence the

resulting relational contracts. We develop straightforward necessary and suffi cient condi-

1See Ely, Horner, and Olszewski (2005) for more details. In a belief-free equilibrium, a player’s action at
every history htx must be a best response to σ

∗
−i|htx, rather than just histories at the start of each period

on the equilibrium path. Because BFE are recursive and a subset of Perfect Bayesian Equilibrium, any BFE
is also an RE. In a simultaneous-move repeated game with full support over private signals following any
actions, BFE and RE select the same set of equilibria.

2Following a deviation, continuation play need not be recursive. We will nevertheless construct a tight
bound on punishment payoffs that allow us to tractably analyze the resulting set of RE.

3By definition, continuation play σ∗|ht0 on the equilibrium path is an RE of the continuation game. So
sequential surplus-maximization is well-defined.
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tions for self-enforcing relational contract in the game with bilateral relationships. Then we

show that backward-looking policies are an integral feature of surplus-maximizing relational

contracts.

In the game with bilateral relationships, each agent observes only his own output and

bonuses, and furthermore cannot communicate with his counterparts. While this assumption

is stylized, we believe that it captures an important feature of many real-world business rela-

tionships: widespread punishments are diffi cult to coordinate, especially when some of those

involved in the punishment were not involved in the original deviation. In our framework,

while a betrayed agent can deny the principal surplus by taking his outside option, the other

agents do not observe the deviation and so may not punish the deviator. We explore this

assumption further in Section 6.

The principal’s decisions determine how much surplus is produced by each agent. Sup-

pose a principal follows a backward-looking policy that make one agent’s efforts relatively

important to future profits. Then that agent can threaten to take his outside option if the

principal does not follow through on the relational contract. Because the principal is more

willing to reward the agent if she otherwise faces a severe punishment, decisions that are

biased towards one agent allow the principal to credibly promise that agent a large payoff.

Backward-looking policies arise because the principal needs to reward an agent who has per-

formed well, and this reward is only credible if it is accompanied by a "hostage" in the form

of a promise to bias future decisions towards that agent. In short, the surplus-maximizing

relational contract balances ex post effi cient policy choices against providing effective ex ante

effort incentives.

At a history following effort htc, agent i’s reward scheme Bi gives his expected payoff

following each possible output realization. We consider the constraints that the bilateral

relational contract imposes on each agent’s reward scheme.

DEFINITION 2. Define agent i’s net cost Ci,t = ai,tc(ei,t) − (1 − ai,t)ūi(dt, θt). Given a
relational contract σ, history htx, and any agent i, i-dyad surplus equals the total surplus

produced by agent i :

Si
(
σ, htx

)
= Eσ

[ ∞∑
t′=0

δt
′
(1− δ) yi,t+t′ − Ci,t

∣∣∣∣∣htx
]
. (1)

For each agent i and period t ≥ 0, define ζ i,t = (mi,t, wi,t) ∈ Ξi = Mi×R. A reward scheme
Bi : Ξi × R+ ×Ht

d → R is credible in σ if

1. It satisfies agent i’s incentive-compatibility constraint: for each htd, ξi,t, and Ci,t on the
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equilibrium path,

Ci,t ∈ argmax
Ci|dt,θt

Eσ
[
Bi

(
ξi,t, yi,t|htd

)∣∣htd, ξi,t, Ci]− (1− δ)Ci (2)

2. It satisfies bilateral dynamic enforcement: for each on-path hty,

δEσ∗
[
Ūi
(
ht+1

0

)∣∣htd] ≤ Bi

(
ξi,t, yi,t|htd

)
≤ δEσ∗

[
Si
(
σ∗, ht+1

0

)∣∣htd, ξi,t, yi,t] (3)

A credible reward scheme satisfies two conditions. First, agent i must be willing to exert

effort ei,t if he expects to earn Bi

(
hty
)
following history hty. This effort IC constraint is

given by (2) and implies that Bi

(
hty
)
must vary in output yi,t to motivate effort. The second

condition limits how much Bi can vary by bounding it from above and below. Agent i can

never earn more surplus than δSi, the amount he produces in the continuation game. Since

i-dyad surplus Si can potentially vary in realized output, this condition has to hold for each

possible output. In addition, agent i can earn no less than his punishment payoff Ūi. This

dynamic enforcement constraint (3) must hold output-by-output.

We show that every self-enforcing relational contract has a corresponding credible reward

scheme for each agent i. Moreover, if a strategy has a credible reward scheme, there exists

a self-enforcing relational contract that implements the same policy and generates the same

total surplus as that strategy.

LEMMA 1.

1. If σ∗ is a self-enforcing relational contract, then for each agent i there exists a reward

scheme B∗i that is credible in σ
∗.

2. Suppose σ is a relational contract with a credible reward scheme Bi for each agent i.

Then there exists a self-enforcing relational contract σ∗ that induces the same joint

distribution over states of the world, decisions, efforts, and outcomes as σ.

Proof: See Appendix A.

Consider the moral hazard problem faced by an agent i in period t. The principal can

motivate agent i to work hard by varying his contemporaneous bonus payment τ i,t and his

continuation surplus Ui with his output yi,t. For a history hte, define agent i’s reward scheme

Bi : φ0(Ht
y)→ R as his expected continuation payoff for each possible outcome:

Bi(h
t
y) = E

[
(1− δ) τ i + δUi|φ0(hte), yt

]
.
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An agent’s reward scheme summarizes his incentives to exert effort through (2). However,

Bi is constrained in a self-enforcing relational contract because it must be credible within

the ongoing relationship. Our goal, then, is to provide bounds on Bi.

What are the maximum and minimum bonuses τ i that can be credibly promised in

a self-enforcing relational contract? Suppose agent i is asked to pay more than his entire

continuation utility from the relational contract, δ
(
Ui − Ūi

)
. Then he would rather renege

on this agreement and take his punishment payoff. So bonuses are bounded from below by

(1− δ) τ i,t ≥ −δ
(
Ui − Ūi

)
. The principal can similarly walk away from his relationship with

agent i by not paying him wages or bonuses. Importantly, she can do so without alerting

any other agents because the other agents do not observe i’s wages, bonuses, or output.

So the principal is willing to pay agent i no more than her continuation surplus from her

relationship with i. This logic gives an upper bound on (1− δ) τ i,t, which in turn gives the
upper bound on Bi given by (3). Together, these arguments prove the first statement of

Lemma 1.

The proof of the second statement is a little more involved. Intuitively, we construct

a self-enforcing relational contract from the strategy σ. In each period of this relational

contract, the principal chooses the same decision as in σ. She then sends a message to each

agent specifying the equilibrium effort choice and the reward scheme in that period. This

message is accompanied by a wage that ensures that the principal earns 0 in each period.

The agent exerts the specified effort and then repays the principal according to the specified

reward scheme. Any deviation by a player is punished by a breakdown of the corresponding

relationship. Importantly, the principal is willing to follow the equilibrium policy because she

earns 0 in each period both on and off the equilibrium path. Her message is made credible

by the accompanying wage: if the principal specifies a steep reward scheme, then she has to

also pay a large upfront wage. The agent is willing to exert effort and make the specified

payments because the reward scheme is credible.

Lemma 1 implies that biased decisions play an important role in surplus-maximizing

relationships. Intuitively, future decisions determine both total surplus
∑N

i=1 Si and how

much of that surplus is produced by each agent i. Future decisions that are biased towards

agent i increase agent i’s dyad-surplus Si at the cost of decreasing total continuation surplus.

Thus, biased decisions have a direct cost: they lead to lower continuation (and hence lower

ex ante) total surplus. Lemma 1 suggests that biased decisions can also influence effort

decisions. Increasing Si relaxes agent i’s dynamic enforcement constraint (3), leading to an
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incentive benefit: the principal can credibly promise agent i larger rewards, which might

motivate him to exert more effort. Of course, a policy that is biased towards agent i is also

biased away from some agent j 6= i. So biased policies also have an incentive cost: biasing

the future policy away from an agent makes it more diffi cult to motivate that agent.

The direct cost of a biased policy does not depend on past efforts and outputs, but

the incentive cost and incentive benefit both do. If the upper bound of agent i’s dynamic

enforcement constraint binds– for instance, because he produced high output in the past–

then relaxing that upper bound by biasing future decisions towards him leads to higher

effort and so has a large incentive benefit. If agent j’s dynamic enforcement constraint does

not bind, then tightening it does not affect effort and so has no incentive costs. A surplus-

maximizing relational contract entails biased decisions exactly when the incentive benefits

outweigh both the incentive and direct costs of that bias. So surplus-maximizing policies

are backward-looking: decisions will be biased towards those agents who have performed

well– in the sense of producing output that indicates high effort– at the expense of those

who have performed poorly.

Our main result considers these costs and benefits in a particularly tractable set of games.

We restrict attention to a class of "smooth" repeated games and show that backward-looking

policies are an integral part of surplus-maximizing relational contracts.

DEFINITION 3. A game with bilateral relationships is smooth if:

1. Dt =
{

(d1, ..., dN)| di ∈ R+,
∑N

i=1 di ≤ 1
}
in each period. The distribution of θt de-

pends only on {θt′}t−1
t′=0.

2. Outside options depend only on θt: {ūi(θt)}Ni=1 .Effort costs c(·) are smooth, strictly
increasing, and strictly convex.

3. Pi depends only on di, θ, and ei. For each {di, θ}, Pi is smooth in all arguments with
density pi, is strictly MLRP-increasing in ei, has full support, and satisfies CDFC.

E [yi|di, θ, ei] is strictly increasing and strictly concave in {di, ei}.

4. Higher decisions are more informative: for any di ≥ d̃i and θ, there exists a distribution

R(·|y) with density r such that for any ei, ȳi,∫ ȳi

0

pi(yi|θ, d̃i, ei)dyi =

∫ ȳi

0

ri(xi|yi)pi(yi|θ, di, ei)dyi.
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In a smooth game, a decision specifies a weight di,t for each agent i in period t. Agent

i’s effort together with this weight determine the outcome yi,t, where a higher weight di,t
leads to both a larger expected yi,t and a weakly more informative distribution in the sense

of Blackwell. Expected outcomes are smooth in all arguments. The distribution of outcomes

satisfies the Mirrlees-Rogerson conditions, which ensures that we can replace the incentive-

compatibility constraint (2) with its first-order condition.

Given these assumptions, the first-best level of effort can be defined for each state of the

world θ and decision di:

eFBi (di, θ) = arg max
ei

E[yi|di, θ, ei]− c(ei). (4)

Since output is strictly MLRP-increasing in effort, there exists a unique y∗i (di, θ, ei) ∈ R+

that satisfies
∂pi/∂ei
pi

(y∗i (di, θ, ei)|di, θ, ei) = 0. (5)

Loosely, output yi > y∗i statistically suggests that agent i chose an effort no lower than ei.

A critical feature of these games is that d simultaneously affects all agents’ output.

Maximizing the surplus produced by agent i requires di = 1, which requires dj = 0 for

all other agents. Relaxing one agent’s dynamic enforcement constraint necessarily entails

decreasing the surplus produced by some other agent. As a result, biased decisions are

typically an important part of surplus-maximizing relationships in smooth games.

PROPOSITION 1. Consider a smooth game with bilateral relationships. In any surplus-

maximizing relational contract σ∗,

1. Money is never burned:
∑N

i=1 di,t = 1 with ex ante probability 1.

2. Backward-looking policies are optimal: For any agents i and j, let Et be a set

of histories ht+1
0 such that : (i) ei,t ∈ (0, eFBi (di,t, θt)), (ii) yi,t > y∗i (di,t, θt, ei,t), (iii)

yj,t′ < y∗j (dj,t′ , θt′ , ej,t′) for all t
′ ≤ t, and (iv) d∗i,t+1 < 1 and d∗j,t+1 > 0 with positive

probability. For almost every ht+1
0 ∈ Et, σ∗|ht+1

0 is not surplus-maximizing.

Proof: See Appendix A.

The first statement of Proposition 1 holds because larger di increases agent i’s dyad-

surplus, provides a more precise signal of agent i’s effort, and relaxes (3) for agent i in

previous periods. So any surplus-maximizing relational contract will use the full "budget"

of di– the only question is what weight is assigned to each agent.
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For the second statement, consider a smooth game, let ht+1
0 satisfy the conditions of the

proposition, and suppose σ∗ is sequentially surplus-maximizing. Fixing dyad-surplus for all

agents k /∈ {i, j}, define S̄i(Sj) as agent i’s maximum dyad-surplus in the continuation

game if agent j’s dyad-surplus equals Sj. If S̄i is differentiable, then ∂S̄i
∂Sj

= −1 in any

sequentially surplus-maximizing equilibrium. In particular, increasing Si (and decreasing

Sj) by biasing future decisions towards agent i has a second-order direct cost. Decreasing Sj
has no incentive cost if agent j has never produced high output because the upper bound of

j’s dynamic enforcement constraint does not bind. However, increasing Si has a first-order

incentive benefit because it means agent i can be credibly promised a larger reward for high

output, which motivates him to work harder. This leads to a first-order incentive benefit

because e∗i,t < eFBi . So biasing future decisions has a first-order benefit and a second-order

cost.

The central diffi culty of the proof is showing that S̄i exists and is differentiable. We

construct a perturbation of σ∗ by increasing d∗i,t+1, decreasing d
∗
j,t+1, and increasing e

∗
i,t.

Changing d∗i,t+1 or e
∗
i,t changes the distribution over output and hence continuation play.

In principle, these changes affect the entire vector of efforts that can be sustained in every

prior period. We construct a mapping from each player’s output to continuation play to

ensure that all agents k /∈ {i, j} face the same incentives as in σ∗. Agent i can be motivated
to choose a larger e∗i,t because d

∗
i,t+1 and therefore dyad-surplus in period t + 1 onward is

larger, while e∗i,t+1 and the distribution over continuation play from period t + 2 onward is

held constant by construction. We show that this perturbation smoothly impacts both Si
and Sj, holding Sk fixed for all k /∈ {i, j}. It follows that S̄i is differentiable in Sj, proving
Proposition 1.

The (incentive and direct) costs and (incentive) benefits of biased decisions are relatively

easy to calculate in smooth games. However, the intuition behind backward-looking policies

is not limited to these settings. Lemma 1 applies to many settings in which the principal

can affect agents’outside options, outputs, and the precision of those outputs. We explore

several examples in the next section.

5 Applications of Biased Policies

Biased relational contracts can arise in a many different settings. In this section, we use two

simple examples to illustrate the types of biases that might arise in a relationship. First, we
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consider hiring decisions and prove that a firm might optimally delay hiring after demand

increases. Then we show how a firm might distort irreversible investments or promotions to

better motivate its divisions or employees. For simplicity, we will assume N = 2, ūi = 0 and

ei,t ∈ {0, 1} with cost cei,t in both examples.

5.1 Hiring and Firing

Consider a firm who faces persistent demand shocks and decides how many agents to hire

in each period. This example illustrates how persistent shocks in demand and diminishing

per-worker productivity can lead to firm expansions that substantially lag demand.

DEFINITION 4. The hiring game with demand shocks has the following features:

• Demand is Θ = {W,R} with 0 < W < R. If θt = R, then θt+1 = R. If θt = W , then

θt+1 = R with probability q < 1.

• In each period, Dt = {1, 2}. The principal hires dt ∈ Dt agents. For convenience, we

assume that if dt = 1, then agent 1 is hired.4

• If agent i is not hired, then yi,t = 0. Otherwise, yi,t = θtei,t if dt = 1 and yi,t = θtαei,t

with α < 1 if dt = 2.

The principal is a firm that faces demand θt in period t. If demand is weak (θt = W ),

then it might either grow (to θt+1 = R) or remain the same in the next period. Once

demand increases, it remains robust thereafter. The return to an agent’s effort in period

t is determined by both demand and the number of agents hired in t. We assume that

marginal productivity is decreasing in the number of workers (α < 1). The optimal number

of employees depends on demand and the effort chosen by each worker. We assume that if

agents exert effort, then the firm maximizes myopic profit by hiring two workers if θt = R

and one worker if θt = W .

The surplus-maximizing relational contract in this game exhibits substantial history-

dependent hiring biases. The firm might delay hiring a second worker following an increase

in demand in order to credibly reward the existing employee for his hard work during a

low-demand period.

4This restriction is without loss for our result.
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PROPOSITION 2. Consider the hiring game with bilateral relationships. Suppose that

R > c
2α−1

> W > c and αR > W . Then there exists a range of discount factors
(
δ, δ̄
)
⊂ [0, 1]

such that for δ ∈
(
δ, δ̄
)
, any surplus-maximizing relational contract σ∗ satisfies:

1. If θ0 = R, then dt = 2 in every period t.

2. If θ0 = W , then dt = 1 whenever θt = W . Moreover, there exists some period t′ such

that Prσ∗ {dt′ = 1, θt′ = G} > 0.

If θ0 = W , then one surplus-maximizing relational contract satisfies the following: ei,t =

1 in any period in which agent i is hired. If θt = R for the first time in period t, then dt = 1

with probability γ and otherwise dt = 2. In every t′ > t, dt′ = dt.

Proof: See Appendix A.

The firm immediately hires two workers if it begins with robust demand. If demand is

initially weak, then the firm hires only one worker. Moreover, it may continue to hire only

one worker even after demand becomes robust. If players are neither too patient nor too

impatient, then the dynamic enforcement constraint (3) is satisfied for ei,t = 1 in the high-

demand state with dt = 2. Since low demand is persistent, however, it might be impossible

to satisfy (3) in the weak-demand state without distorting hiring policies. By not hiring a

second worker after demand increases, the principal can ensure that the agent hired in the

weak-demand state can be credibly motivated to work hard. That is, the principal promises

an ineffi cient hiring policy in the future to motivate her workers while demand is weak. The

two assumptions required for this result ensure that (i) myopic profit is maximized by hiring

two workers in a high-demand state and one worker in the low-demand state, and (ii) net

per-worker productivity is higher if demand is robust, regardless of the number of workers

hired.

This hiring delay could take many different forms. In Proposition 2, we demonstrate that

one surplus-maximizing distortion is for the firm to make a once-and-for-all decision whether

or not to expand as demand grows. While the particulars of the principal’s distorted hiring

policy depend on our stylized assumptions, this result illustrates that the optimal relational

contract may entail substantial and long-lasting distortions.

This example is a potential answer to a puzzle posed by Ariely, Belenzon, and Tsolmon

(2013), who note that firms that rely on relational contracts tend to expand more slowly

than those that rely on formal contracts. Here, hiring remains slow because the firm must
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fulfill its promises to old employees before expanding. New firms have no promises to fulfill,

so they can immediately expand to take advantage of improved productivity. Therefore,

this model would suggest that new entry may drive increased employment immediately after

a recession or other period of low demand. Consistent with this implication, Haltiwanger,

Jarmin, and Miranda (2013) find that young firms tend to drive net job growth in the US

from 1976-2004.

5.2 Irreversible Investments

Suppose a principal can choose to make a permanent investment in one of her agents which

increases that agent’s productivity. This investment can be interpreted as training or human

capital, or more broadly as a promotion or another organizational decision that increases

the returns from one agent’s efforts. Some workers may benefit more from this investment

than others. Which agent should the principal choose?

In this example, we show that the principal might optimally award the investment in a

(potentially biased) tournament among her agents. The agent who performs "best" according

to this tournament is chosen, even if he might not have the largest return from investment.

This example also illustrates the types of biases that can arise if output is continuous.

DEFINITION 5. The irreversible investment game has |Θ| = 1 and the following fea-

tures:

• The set of possible decisions is D = {0, 1, 2}. No investment is denoted d = 0 while

d ∈ {1, 2} indicates agent d is chosen.

• Investments are delayed and permanent. D0 = {0} and D1 = {1, 2}. For any t > 1,

Dt = {dt−1}.

• The outcome distribution Pi(·|d, ei) is smooth with density pi and strictly MLRP in-
creasing in ei. It is the same for each agent i if dt 6= i, while E[y1|dt = 1, e1,t] −
E[y2|dt = 2, e2,t] ≡ ∆ > 0. For each agent i, E[yi|dt = i, ei,t] > E[yi|dt 6= i, ei,t].

Define

Li(yi|d) =
pi(yi|d, ei = 1)

pi(yi|d, ei = 0)

as the likelihood ratio for output yi given decision d. Because Pi is MLRP-increasing in ei, Li
is strictly increasing in yi. In the irreversible investments game, the principal chooses one of
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the two agents to receive the investment at the end of the first period. Agents have identical

productivities without the investment, but agent 1’s productivity benefits more from the

investment than agent 2’s. The investment is irreversible.

The principal can use the promise of an investment to make a large reward to the chosen

agent credible. As a result, the principal can potentially motivate both agents in period 0

by promising to invest in (and monetarily reward) whichever agent produces high output.

The result is a tournament in which the less-effi cient agent may receive the investments if

he performs well in the first period. This tournament will typically be "biased," since the

principal wants to maximize the probability that the effi cient agent is chosen subject to the

constraint that both agents exert effort in the first period.

PROPOSITION 3. Consider the irreversible investment game with bilateral relationships.

There exists 0 ≤ δ < δ̄ < 1 and ∆̄ > 0 such that if δ < δ < δ̄ and ∆ < ∆̄, any surplus-

maximizing relational contract σ∗ satisfies:.

1. e1,0 = e2,0 = 1;

2. d1 = 2 with strictly positive probability. Either d1 = 2 with probability 1 or d2 = 2 if

L2(y2,0|d = 0) > 1 and

1

L2(y2,0|d = 0)
< α + β

(
1

L1(y1,0|d = 0)

)
for some α ∈ R and β ≥ 0.

Proof: See Appendix A.

If the agents’productivities are not too different, then the principal finds it optimal to

choose an agent who produces high output. Because both agents have the opportunity to

"win" the investment, both are willing to work hard in the first period. After the principal

chooses one agent, that agent’s dynamic enforcement constraint is slack and so he is willing

to continue working hard. However, the principal can no longer credibly promise strong

monetary incentives to the other agent, who becomes "discouraged" and stops exerting

effort.

In short, the surplus-maximizing relational contract entails a tournament between the

agents. Investment (or promotion) is used as a "prize" but does not directly compensate

the chosen worker. Instead, it is used to make monetary compensation credible within the

context of the relational contract.
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6 The Role of Private Monitoring

Bilateral monitoring plays an essential role in Lemma 1 and so is an integral ingredient of

our results. This section further explores this monitoring assumption via three extensions.

Section 6.1 considers surplus-maximizing relationships if monitoring is public. As suggested

in Section 2, decisions are always chosen to maximize continuation surplus in this setting and

so surplus-maximizing relationships never entail backward-looking policies. In Section 6.2,

we revisit the hiring game and consider a hybrid monitoring structure that allows the agents

to imperfectly coordinate punishments. If this coordination is not perfect, we show that

biased decisions may continue to play an important role in optimal relationships. Section 6.3

revisits our restriction to Recursive Equilibria and demonstrates that this restriction does

not drive our results: backward-looking policies remain important in surplus-maximizing

Perfect Bayesian Equilibria.

6.1 Sequential Effi ciency Under Public Monitoring

Define the game with public relationships as in Section 3, with the following two dif-

ferences. First, all variables except {ei,t} are observed by every player, while efforts remain
private. Second, the players are assumed to have access to a public randomization device in

each round of the stage game. 5

Backward-looking policies have a direct cost because they reduce total continuation sur-

plus. Furthermore, all agents can observe a deviation by the principal in the game with

public relationships. So the principal stands to lose the future production of every agent if

she reneges on any one relationship. Backward-looking policies potentially make the prin-

cipal more willing to renege on an agent because she has less continuation surplus to lose

following a deviation. Rather than biasing her future decisions, the principal can reward

or punish all agents using transfers and choose a policy that maximizes total continuation

surplus.

As a result, surplus-maximizing relational contracts are always sequentially surplus-

maximizing if relationships are public. Past choices may affect the state of the world or

the decisions available to the principal, but they have no other impact on the optimal policy.

PROPOSITION 4. Consider the game with public relationships. Any surplus-maximizing

5This assumption is for convenience - we could add public randomization devices to the game with bilateral
relationships without affecting our results.
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relational contract is sequentially surplus-maximizing.

Proof: See Appendix A.

Proposition 4 says that surplus-maximizing relational contracts need not condition on

any past choices, except insofar as those choices affect the state of the world or the decisions

available in the continuation game. The proof of this result adapts techniques developed in

Levin (2003), Kranz (2014), and others.

Consider the reward scheme Bi(h
t
y) defined as in Lemma 1. This reward scheme must

satisfy (2) to motivate agent i to work hard in period t. As before, the relational contract

constrains the maximum and minimum bonuses rewards that can be promised to an agent.

As before, agent i can earn no less than δŪi, since otherwise he would rather renege and be

punished than continue the relationship. In contrast to the game with bilateral relationships,

however, the principal cannot renege on a single agent without the other agents observing

this deviation. Therefore, the principal faces an aggregate temptation to deviate: if she

reneges on any one relationship, then she optimally betrays every other agent as well. A

necessary6 condition for Bi to be part of an equilibrium is therefore

N∑
i=1

bi ≤ δ
N∑
i=1

Si.

Notice that the right-hand side of this inequality is equal to total continuation sur-

plus. Consider a relational contract that prescribes ineffi cient on-path continuation play.

Then there exists some effi cient continuation that leads to strictly higher continuation sur-

plus
∑N

i=1 Si. Holding effort constant, ex ante total surplus is higher under this effi cient

continuation by definition. Moreover, higher
∑N

i=1 Si relaxes the relational contract’s aggre-

gate dynamic enforcement constraint, which implies that agents can be credibly promised

stronger incentives. So any sequentially ineffi cient relational contract is strictly dominated

by a sequentially surplus-maximizing relational contract that both has higher continuation

surplus and higher effort. This proves Proposition 4.

Agents can perfectly coordinate to jointly punish the principal in the game with public

relationships, so the principal might lose as much as
∑N

i=1 Si following a deviation. In the

game with bilateral relationships, the principal can deviate in her relationship with agent

i without any other agents learning of that deviation. So the principal loses no more than

6This condition is not suffi cient because it does not include bonuses paid to other agents. This necessary
condition suffi ces to convey the intuition for the proof.
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Si from such a deviation. These different punishment payoffs drive the differences between

Propositions 1 and 4. Note that public relationships imply that agents immediately and

perfectly coordinate to punish a deviating principal: for example, if an employer withholds

a bonus from a deserving worker, then she faces sanctions from her entire workforce. The

next subsection illustrates what might happen if this coordination is imperfect.

6.2 Biased Decisions Under Imperfect Coordination

This section considers the hiring example from Section 5.1 and shows that biased decisions

might be optimal even if agents can imperfectly coordinate to punish a deviating principal.

This result suggests that Proposition 4 strongly relies on public relationships, while the forces

driving Proposition 1 might continue to play a role even if agents imperfectly observe one

another’s relationships.

In the hiring game from Section 5.1, suppose that relationship breakdowns are ε-private:

the first time an agent rejects production, all agents observe this choice with probability

1− ε. With probability ε > 0, only the principal observes the agent’s rejection. Subsequent

rejections are observed only by the principal. In any surplus-maximizing equilibrium of

this game, agent i rejects production only following a deviation. Therefore, this monitoring

structure gives agents a "once and for all" chance to communicate and coordinate their

punishments following a deviation. If the principal deviates in her relationship with agent i,

then i will reject production. All agents will observe this rejection with probability 1− ε and
can jointly punish the principal if they do. The rejection remains private with probability

ε > 0, in which case only agent i punishes the principal.

So long as ε > 0, Proposition 5 shows that the principal’s optimal hiring policy will be

biased for at least some parameter values.

PROPOSITION 5. Consider the hiring game with ε-private monitoring with ε > 0. Then

there exists an open set of parameters such that for those parameter values, no surplus-

maximizing relational contract is sequentially surplus maximizing.

Proof: See Appendix A.

The basic intuition for Proposition 5 is fairly straightforward. Suppose that the principal

reneges on her relationship with agent i. Then agent i will reject production in all subsequent

periods. With probability (1 − ε), all players observe this rejection and jointly punish the
principal, resulting in a total of δ

∑N
i=1 Si surplus lost during the punishment. Otherwise,
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only agent i observes a deviation and so only δSi surplus is lost. Note that agent i’s dyad-

surplus is always lost, while the other agents’surplus is lost with probability 1− ε < 1. So

the principal can make stronger incentives to i credible by biasing future decisions towards

i– in this case, by refraining from hiring additional agents.

This basic intuition masks considerable complexity that arises from this monitoring struc-

ture. Unlike the proof of Lemma 1, we can no longer make the principal indifferent among

possible policies, so we must ensure that she is willing to follow the equilibrium policy in each

period. While these additional incentive constraints make a general analysis very diffi cult,

the optimal policy in the hiring game depends only on current and past demand and hiring,

both of which are publicly observed. All agents can observe when the principal chooses the

incorrect decision and so all agents can jointly punish such a deviation. This ensures that

the principal is willing to follow the surplus-maximizing policy.

A full exploration of this monitoring structure is very diffi cult for the reasons outlined

above. Proposition 5 illustrates that, at least in our hiring example, our central intuition

does not depend on agents being totally unable to coordinate. Backwards-looking policies

can play an important role in the surplus-maximizing relational contract even if agents might

imperfectly observe one another’s relationships.

6.3 Biased Decisions in Surplus-Maximizing PBEs

Recursive Equilibria are relatively tractable but potentially entail a loss of generality. This

section considers the full set of Perfect Bayesian Equilibria in the context of a simple class

of games. Biased decisions and backwards-looking policies may continue to be surplus-

maximizing, which shows that the intuition from Proposition 1 does not depend on the

restriction to Recursive Equilibria.

The principal diffi culty in extending Proposition 1 is that Perfect Bayesian Equilibria

are not recursive in games with private monitoring. Different players observe different vari-

ables and so potentially form different beliefs about the true history in each period. Each

player responds optimally to others’predicted actions given these beliefs, but unlike a Re-

cursive Equilibrium, a player’s strategy need not be a best response at the true history. So

continuation play at any given history does not necessarily form an equilibrium.

This complication implies that we must modify the definitions of surplus-maximizing

and sequentially surplus-maximizing relational contracts in order to extend the analysis to

Perfect Bayesian Equilibria. In particular, continuation play at a given history might attain
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payoffs that are impossible to attain at the start of the game. Our first result considers a

class of repeated games and shows that even though continuation payoffs at a given history

might not be replicable at the start of the game, ex ante expected continuation payoffs in

any period can be replicated by some equilibrium at the start of the game.

LEMMA 2. Suppose F (·|·) does not depend on history. Then for any t ≥ 0, there exists a

PBE σ∗ such that Eσ∗
[∑N

i=1 Si(σ
∗, ht0)|ht0 ∈ Ht

0

]
= V̄ if and only if there exists a PBE σ̃∗

such that
∑N

i=1 Si(σ
∗, h0

0) = V̄ .

Proof: See Appendix A.

The proof of Lemma 2 begins by establishing an appropriate extension of the necessary

and suffi cient conditions from Lemma 1 for Perfect Bayesian Equilbria. This extension uses

a similar construction to the proof of Lemma 1, though care must be taken to ensure that

each agent has the correct beliefs to make them willing to exert the equilibrium effort at

each history. A statement of the resulting incentive and dynamic enforcement constraints

for Perfect Bayesian Equilibria may be found in Appendix A.

Given this result, we turn to the "if" statement of Lemma 2. Given an equilibrium

σ∗, consider the following equilibrium σ̃∗: at the start of the game, the principal chooses a

history ht0 according to the distribution induced by σ
∗. In period 0, the principal sends a

message to agent i that consists of φi(h
t
0). Play then continues as in σ∗|ht0. If the principal

is willing to perform this initial randomization, then all players have the same information

that they have at ht0, and so all players are willing to play as in σ
∗|ht0. As in the equilibrium

constructed in Lemma 1, transfers can be used to set the principal’s payoff equal to 0 at

every history. So the principal is completely indifferent across histories and hence is willing to

perform the desired randomization. This proves the "if" statement. The "only if" statement

is straightforward: given σ̃∗, define σ∗ in which players play σ̃∗ after t− 1 periods of playing

the static Nash equilibrium.

Given Lemma 2, we can define surplus-maximizing and sequentially surplus-maximizing

Perfect Bayesian Equilibria. let V̄ be the maximum expected total surplus attainable

in a PBE. Then a surplus-maximizing PBE σ∗ satisfies
∑N

i=1 Si(σ
∗, h0

0) = V̄ . A sequen-

tially surplus-maximizing PBE satisfies Eσ∗
[∑N

i=1 Si(σ
∗, ht0)|ht0 ∈ Ht

0

]
= V̄ for every

period t ≥ 0.

Our main result in this section considers a class of games for which sequentially surplus-
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maximizing PBE are particularly simple and give conditions under which surplus-maximizing

PBE are not sequentially surplus-maximizing. Backward-looking policies arise for much the

same reason as in Proposition 1: biasing future decisions towards an agent who has performed

well in the past strengthens the incentives that can be promised to that agent in previous

periods and leads to more effort.

PROPOSITION 6. Consider a smooth game such that F (·|·) does not depend on history.
Suppose that for any θ, di, ei, the random variable yi may be written

yi = xi + γi(θ, di)

where γi : Θ × D → R is smooth, with ∂γi
∂di

> 0, ∂2γi
∂d2i

< 0, and limdi→0
∂γi
∂di

= ∞, while
xi˜P̃i(·|θ, ei). Suppose that no sequentially surplus-maximizing RE is surplus-maximizing.
Then no sequentially surplus-maximizing PBE is surplus-maximizing.

Proof: See Appendix A.

Proposition 6 restricts attention to a class of games in which the effects of di and ei
on output are additively separable: the decision di only affects the value of γi, while ei
only affects the distribution over xi. In each period t of a sequentially surplus-maximizing

equilibrium, d∗t is determined by the expression

∂γi
∂di

(θt, d
∗
i,t) =

∂γj
∂dj

(θt, d
∗
j,t).

In particular, d∗t depends only on θt and so cannot change in response to the past performance

of the agents. But then each agent’s relationship with the principal is stationary, so the max-

imum effort that that agent can be motivated to choose is also stationary. Agent i’s beliefs

about the true history are irrelevant for his continuation play in this stationary equilibrium,

so any sequentially surplus-maximizing PBE is also a sequentially surplus-maximizing Re-

cursive Equilibrium. So if backward-looking policies are surplus-maximizing in an RE, they

are surplus-maximizing in a PBE as well.

This class of games demonstrates the central tension in our model continues to play a

role when we consider the full set of PBE. A sequentially surplus-maximizing equilibrium

cannot implement a policy that responds to past performance, but such a backward-looking

policy can make stronger incentives to the agents credible and so induce higher effort.

26



7 Discussion and Conclusion

Biased policies are a prominent feature of many long-term relationships. Managers favor

high-performing workers, divisions, and suppliers by choosing policies that make those par-

ties integral to the production process. In this paper, we have argued that biased decisions

can arise in surplus-maximizing relational contracts, even if the principal may freely reward

or fine her agents. By increasing the surplus produced by one agent (at the cost of reduc-

ing the surplus produced by others), biased decisions complement and make credible large

monetary rewards. As a result, employees are rewarded with both higher compensation and

greater responsibilities, divisions are promised both monetary incentives and non-monetary

investments, and suppliers are motivated by both contemporaneous fines and the promise of

future business.

We have presented a few simple examples to argue that these biases manifest in intuitive

ways. Future research is needed to both expand the scope and enrich the analysis in different

settings. For example, our analysis of hiring decisions during recoveries implies that new

entrants would be responsible for a substantial share of new hires, since these entrants would

not be bound by past promises. Productivity should be higher during a recovery than before

the recession. Both of these results are broadly consistent with stylized facts from the 2008

recession. A richer analysis could identify other predictions that might be amenable to

empirical analysis.

In practice, the principal might try to make some aspects of her payments public infor-

mation in order to help her agents coordinate. For example, the principal might implement

a fixed, public bonus pool from which all of her agents are paid. If agents are able to observe

this bonus pool, then they can jointly punish the principal whenever she withholds some of

the pool. For such a scheme to work, the principal must be able to commit both to make the

bonus pool public and to refrain from secretly withdrawing funds from it. Such pools might

also entail their own dynamic ineffi ciencies, particularly if the size of the pool depends on

the outputs realized in each period.

We justify bilateral punishments as the result of bilateral monitoring between the prin-

cipal and each agent: other agents do not observe and so cannot punish the principal if

she betrays agent i. An alternative approach (taken in Levin (2002)) would be to make a

behavioral restriction to equilibria that satisfy a "bilateral punishment" condition. Formally

analyzing such a restriction lies outside the scope of this paper. Nevertheless, our results
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suggest that such a condition might lead to similarly biased decisions and backward-looking

policies.7

Finally, two critical assumptions in our framework are that (i) each agent’s effort affects

only his own output and (ii) the principal earns the sum of agent outputs. An important

extension would be to consider cases in which agent efforts are either substitutes or comple-

ments in profit. The techniques we use in this paper do not directly extend to these settings.

In particular, it is substantially harder to ensure that the principal implements the equilib-

rium policy in such environments. We conjecture that conditions similar to those in Lemma

1 are necessary (though not suffi cient) if efforts are substitutes. If efforts are complements,

then the relational contract is further complicated because it must deter the principal from

simultaneously reneging on multiple relationships at once.

In our setting, firms design policies in part to credibly reward those workers, divisions, and

suppliers that have performed well in the past. The nature of the resulting decisions– and

hence the momentum of a given firm– depends critically on the history of that firm. There-

fore, relational contracts provide a justification for the tremendous heterogeneity among

organizations in many markets.

7For example, suppose that agents only condition their actions on their own past efforts, outputs, and
payments, as well as past states of the world and decisions. Appropriately defined, this restriction would
select the set of recursive equilibria from our analysis.
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Appendix A: Proofs

Proof of Lemma 1

1 : Suppose σ∗ is an RE and define Bi : Ξ× R+ ×Ht
d → R by

Bi(ξi,t, yi,t|htw) = Eσ∗
[
(1− δ) τ i,t + δUi|htd, ξi,t, yi,t

]
. (6)

Consider an on-path history ht0. Then σ
∗|ht0 is a Perfect Bayesian Equilibrium of the con-

tinuation game. In particular, for each on-path Dt, θt, dt, and ξt, agent i is willing to choose

ei,t only if

ei,t ∈ argmax
ei∈R+

Eσ∗
[
(1− δ) τ i,t + δUi|htd, ξi,t, ei,t = ei

]
− (1− δ) c(ei). (7)

We can rewrite (7) as

ei,t ∈ argmax
ei∈R+

Eσ∗
[
Eσ∗

[
(1− δ) τ i,t + δUi|htd, ξi,t, ei,t = ei, yi,t

]
|htd, ξi,t, ei,t = ei

]
−(1− δ) c(ei).

Conditional on yi,t, ei,t does not affect continuation play. So this constraint implies (2) .

Suppose Bi

(
ξi,t, yi,t|htd

)
< δEσ∗

[
Ūi
(
ht+1

0

)∣∣htd, ξi,t, yi,t] at some on-path history hty. Then
agent i may profitably deviate by choosing τ i,t = 0 and earning no less than Ūi

(
ht+1

0

)
in

the continuation game. So the left-hand side of (3) must hold in any RE. Suppose that the

principal refuses to pay τ i,t ≥ 0 following hty. Following this deviation, the refinement to RE

has no bite. We claim the principal’s continuation payoff after this deviation is bounded

from below by

Eσ∗

[
Π
(
σ∗, ht+1

0

)
−
∞∑
t′=0

(1− δ) δt′ (yi,t+t′ − wi,t+t′ − τ i,t+t′)
∣∣∣∣∣hty
]
. (8)

To prove this claim, consider the following strategy for the principal following a deviation in

τ i,t. Agent i observes this deviation, but no other agents do. Denote all variables that are

observed by at least one agent j 6= i by ∪j 6=iφj
(
ht
′

0

)
. In each period ht

′
0 ∈ Ht′

0 , the principal

plays according to σ∗| ∪j 6=i φi
(
ht
′

0

)
, with the sole exception that wi,t′ = τ i,t′ = 0 for all i ∈ I.

This strategy is identical to σ∗ except for transfer payments. Transfer payments do not

affect the continuation game, so this strategy is feasible. Moreover, this strategy and σ∗ are

indistinguishable for every agent j 6= i. The principal’s payoff from this strategy equals (8),

so this strategy bounds the principal’s payoff from below.

29



The principal is willing to pay τ i,t ≥ 0 only if

(1− δ)Eσ∗
[
τ i,t|hty

]
≤ Eσ∗

[ ∞∑
t′=1

(1− δ) δt′ (yi,t+t′ − wi,t+t′ − τ i,t+t′)
∣∣∣∣∣hty
]
. (9)

Adding δUi to both sides of this expression yields

Eσ∗
[
(1− δ)τ i,t + δUi(σ

∗, ht+1
0 )|hty

]
≤ δEσ∗

[
Si(σ

∗, ht+1
0 )|hty

]
.

This inequality must hold a fortiori in expectation. Because htd, ξi,t, and yi,t are elements of

hty, iterating expectations and applying the definition of Bi yields the right-hand inequality

of (3).

2: We construct a RE σ∗ from σ. Recursively define σ∗ as follows:

1. If t = 0, then ht,∗0 = ht0 = ∅, the unique null history. Otherwise, begin with ht0, h
t,∗
0 ∈ Ht

0

such that (i) ht0 is on-path for σ, (ii) h
t,∗
0 is on-path for σ∗, and (iii) ht0 and ht,∗0

induce identical continuation games. Define σ∗|ht,∗0 as follows, where starred variables

represent actions played in σ∗ and unstarred variables represent actions played in σ.

(a) Following the realization of θ∗t and D∗t , the principal chooses history h
t
e ∈ Ht

e

using distribution σ| {ht0, θ∗t , D∗t }. The principal chooses d∗t as in hte. For each
agent i ∈ {1, . . . , N}, the principal pays

w∗i,t = Eσ

[
yi,t −

1

1− δ
(
Bi

(
ξi,t, yi,t|htd

)
− δSi

(
σ, ht+1

0

))∣∣∣∣htd, ξi,t] .
Note w∗i,t ≥ 0 by (3). The principal sends a message to agent i:

m∗i,t =
{
ht,∗0 , ai,t, ei,t,

{
Bi

(
ξi,t, yi,t|htd

)
− δEσ

[
Si
(
σ, ht+1

0

)
|htd, ξi,t, yi,t

]}
yi,t≥0

}
.

(b) Agent i chooses ai,t, ei,t as in mi,t.

(c) If output is y∗t , then for each agent i ∈ {1, . . . , N},

(1− δ)τ ∗i,t = Bi

(
ξi,t, y

∗
i,t|htd

)
− δEσ

[
Si
(
σ, ht+1

0

)
|htd, ξi,t, y∗i,t

]
Note that τ ∗i,t ≤ 0 by (3). Given m∗i,t and the realized y

∗
i,t, agent i can perfectly

infer τ ∗i,t.
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(d) Let ht+1,∗
0 be the realized history at the end of period t. The principal draws ht+1

0 ∈
Ht+1

0 from σ| {hte, yt}. Continuation play σ∗|h
t+1,∗
0 is constructed by repeating

steps (a)-(d) using ht+1
0 and ht+1,∗

0 .

2. If agent i observes a deviation, then he takes his outside option and pays no transfers

in this and every subsequent period. If the principal observes a deviation, then mj,t′ =

wj,t′ = τ j,t′ = 0 for each agent j ∈ {1, . . . , N} in each future period. If agent i deviates,
the principal chooses dt to min-max agent i. Otherwise, dt is chosen uniformly at

random following a deviation.

First, note that past effort choices do not affect current play. Moreover, agents know

the true history at the start of a period ht,∗0 whenever they take actions in that period.

Therefore, if we can show that no player has a profitable deviation from σ∗, it immediately

follows that σ∗|ht,∗0 is a PBE for every on-path ht,∗0 and hence σ∗ is a RE. Furthermore, both

total continuation surplus and i-dyad surplus for every i ∈ {1, ..., N} are identical in σ∗|ht,∗0

and σ|ht0 by construction.
First, consider the principal. For any on-path ht,∗d and each agent i ∈ {1, . . . , N}, the

distribution over y∗i,t is the same as in σ|htd. So

Eσ∗
[
y∗i,t − w∗i,t − τ ∗i,t

∣∣ht,∗d ] = 0

and Π
(
σ∗, ht,∗d

)
= 0. If the principal deviates in d∗t , w

∗
i,t, or m

∗
i,t, then each agent i either

knows that this action is a deviation or not. If agent i knows these actions are a deviation,

then the principal earns 0 from agent i because that agent rejects production in this and all

future periods. If agent i does not know these actions are a deviation, then the principal

must announce some on-path history h̃td such that φi(h̃
t
d) = φi(h

t,∗
d ). But then Eσ∗ [y∗i,t′ −

w∗i,t′ − τ ∗i,t′ |h̃td] = 0 in every t′ ≥ t because h̃td is on-path. So the principal cannot profitably

deviate in d∗t , w
∗
i,t, orm

∗
i,t. The principal likewise has no profitable deviation from τ ∗i,t because

τ ∗i,t ≤ 0. So the principal has no profitable deviation on the equilibrium path.

Suppose the principal deviates off the equilibrium path. As with the argument in the

previous period, if this deviation is detected by agent i then the principal earns 0 from

agent i. If this deviation is not detected by agent i, then it must be in d∗t , w
∗
i,t, or m

∗
i,t,

since τ ∗i,t > 0 is always detected as a deviation. But the principal earns payoff 0 following a

deviation d∗t , w
∗
i,t, or m

∗
i,t by the argument above. So she has no profitable deviation off the

equilibrium path.
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Consider agent i. At each on-path history ht,∗0 , Eσ∗
[
ui,t|ht,∗0

]
= Eσ∗

[
yi,t − c(ei,t)|ht,∗0

]
.

So Ui
(
σ∗, ht,∗0

)
= Si

(
σ∗, ht,∗0

)
. By construction of σ∗, Si

(
σ∗, ht,∗0

)
= Si (σ, h

t
0). Since w∗i,t ≥ 0,

agent i has no profitable deviation from w∗i,t. After agent i observes an on-path
(
w∗i,t,m

∗
i,t

)
and chooses e∗i,t, he earns

Eσ∗
[
(1− δ)τ i,t + δSi(σ

∗, ht+1,∗
0 )

∣∣ht,∗d , w∗i,t,m∗i,t, e∗i,t]− c(e∗i,t),
since he can perfectly infer ht,∗d from D∗t , θ

∗
t , d
∗
t , and m

∗
i,t. Plugging in the definition of τ i,t

yields

Eσ∗
[
Bi

(
ξi,t, y

∗
i,t|htd

)
− δEσ

[
Si
(
σ, ht+1

0

)
|htd, wi,t, y∗i,t

]
+ δSi(σ

∗, h̃t+1
0 )
∣∣∣ht,∗d , w∗i,t,m∗i,t, e∗i,t]−c(e∗i,t).

Now, Eσ∗
[
Bi(ξi,t, y

∗
i,t|htd)|h

t,∗
d , w

∗
i,t,m

∗
i,t, e

∗
i,t

]
= Eσ

[
Bi(ξi,t, yi,t|htd)|htd, e∗i,t

]
because θ∗t , d

∗
t

are the same in htd and h
t,∗
d . Similarly, Eσ

[
Si(σ, h

t+1
0 )|htd, ξi,t, y∗i,t

]
= Eσ∗

[
Si(σ

∗, ht+1,∗
0 )|ht,∗d , w∗i,t,m∗i,t, y∗i,t

]
by construction. Therefore, the agent is willing to choose e∗i,t so long as

e∗i,t ∈ arg max
ei

Eσ
[
Bi

(
ξi,t, yi,t|htd

)
|htd, ei

]
− c(ei).

Effort e∗i,t satisfies this constraint because (2) holds. Off the equilibrium path, continuation

play is independent of ei,t and so the agent optimally chooses ai,t = 0.

Following any deviation in τ ∗i,t < 0, agent i earns continuation surplus Ūi
(
ht+1,∗

0

)
. Agent

i observes or infers ht,∗d , w
∗
i,t,m

∗
i,t, y

∗
i,t in σ

∗. So agent i is willing to pay τ ∗i,t < 0 if

− (1− δ) τ ∗i,t ≤ δEσ∗
[
Ui
(
σ∗, ht+1,∗

0

)
− Ūi

(
ht+1,∗

0

)∣∣ht,∗d , w∗i,t,m∗i,t, y∗i,t]
Recall that Ui(σ∗, h

t+1,∗
0 ) = Si(σ

∗, ht+1,∗
0 ) by construction. Moreover,

Eσ∗
[
Si
(
σ∗, ht+1,∗

0

)
|ht,∗d , w∗i,t,m∗i,t, y∗i,t

]
= Eσ

[
Si(σ, h

t+1
0 )|htd, ξi,t, y∗i,t

]
because continuation dyad-surplus in σ∗ following ht,∗d , w

∗
i,t,m

∗
i,t, y

∗
i,t is drawn is drawn ac-

cording to σ|(hte, y∗t ). Furthermore, Eσ∗
[
Ūi
(
ht+1,∗

0

)
|ht,∗d , w∗i,t,m∗i,t, y∗i,t

]
= Eσ

[
Ūi(h

t+1
0 )|htd

]
because htd and h

t,∗
d induce identical continuation games in periods t + 1 onwards, and all

other variables do not affect the continuation game. Therefore, agent i is willing to pay so

long as

−(1− δ)τ ∗i,t ≤ δEσ
[
Si
(
σ, ht+1

0

)∣∣htd, ξi,t, y∗i,t]− Eσ∗ [ Ūi (ht+1
0

)∣∣htd] .
τ ∗i,t depends only on variables that agent i has observed or can perfectly infer from m∗i,t.

Plugging in τ ∗i,t, agent i is willing to pay so long as

−
(
Bi

(
ξi,t, y

∗
i,t|htd

)
− δEσ

[
Si
(
σ, ht+1

0

)∣∣htd, ξi,t, y∗i,t]) ≤ δEσ
[
Si
(
σ, ht+1

0

)∣∣htd, ξi,t, y∗i,t]−Eσ [ Ūi (ht+1
0

)∣∣htd]
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or Bi

(
ξi,t, y

∗
i,t|htd

)
≥ Eσ

[
Ūi
(
ht+1

0

)∣∣htd]. This inequality holds by (3). Off the equilibrium

path, agent i’s payoff is independent of τ ∗i,t and so he chooses τ
∗
i,t = 0. So agent i has no

profitable deviation from τ ∗i,t, regardless of his beliefs about the true history.

We conclude that σ∗ is an RE with the desired properties.

Proof of Proposition 1

7.0.1 Proof of Statement 2

Definition 1. Define the transformation

Gi

(
yi| θ, di, d̃i, ei, ẽi

)
= F−1

i

(
Fi

(
yi| θ, ẽi, d̃i

)∣∣∣ θ, ei, di) .
The distribution over outcomes yi has full support, so Fi is strictly increasing and hence F−1

i

is a function. F−1
i is continuously differentiable, because Fi is continuously differentiable.

Claim 1. The distribution over Gi

(
yi| θ, di, d̃i, ei, ẽi

)
induced by

(
θ, d̃i, ẽi

)
is identical to

the distribution over yi induced by (θ, di, ei): Gi (yi)| θ, d̃i, ẽi
d
= yi| θ, di, ei.

Proof of Claim 1. To prove the claim, it suffi ces to show that for every yi,

F
(
yi| θ, d̃i, ẽi

)
= Fi

(
Gi

(
yi| θ, di, d̃i, ei, ẽi

)∣∣∣ θ, di, ei) .
This is true by definition of Gi.�
Definition 2. Fix a distribution ψ over i-dyad surplus. Define

ēi (θ, di, ψ) = argmax
ei

E [yi| θ, di, ei]− c (ei)

subject to: there exists a mapping Si : [0,∞) → R and a reward scheme Bi : [0,∞) → R
satisfying

1. Effort IC: ēi ∈ argmaxei {E [Bi (yi)| θ, di, ei]− c (ei)}

2. Dynamic enforcement: for all yi ∈ [0,∞), δŪi (θ) ≤ Bi (yi) ≤ δSi (yi)

3. Distribution-matching: Si| θ, di, ei
d
= ψ.

Definition 3. For monotonically increasing Si : [0,∞) → R, define êi
(
θ, di, d̃i, ei

∣∣∣Si)
implicitly by

c′ (êi) =

∫ y∗i (θ,di,ei)

0

Ūi (θ)
∂fi
∂ei

(
yi| θ, d̃i, êi

)
dyi (1)

+

∫ ∞
y∗i (θ,di,ei)

Si

(
Gi

(
yi| θ, di, d̃i, ei, êi

)) ∂fi
∂ei

(
yi| θ, d̃i, êi

)
dyi.
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Claim 1. Suppose
(
θ, di, d̃i, ei

)
are such that di = d̃i and êi (θ, di, di, ei|Si) = ei. Then êi is

differentiable on a neighborhood about that point.

Proof of Claim 1. Take Si : [0,∞) → R to be a monotonically increasing function. The
equation (1) may be rewritten as H = 0, where

H ≡
∫ y∗i (θ,di,ei)

0

Ūi (θ)
∂fi
∂ei

(
yi| θ, d̃i, êi

)
dyi

+

∫ ∞
Gi(y∗i (θ,di,ei))

Si (yi)
∂G−1

i

∂yi

∂fi
∂ei

(
G−1
i (yi)

∣∣ θ, d̃i, êi) dyi − c′ (êi) .
This expression is continuously differentiable in both d̃i and êi. Therefore, by the Implicit

Function Theorem, ∂êi
∂d̃i
exists on a neighborhood about

(
θ, di, d̃i, ei

)
as long as ∂H

∂êi
6= 0.

To show that this is the case, we will bound H from above by a function H̄ that is

differentiable in êi and strictly decreasing in êi on a neighborhood about
(
θ, di, d̃i, ei

)
, and

coincides with H at êi = ei. For ε > 0, let

H̄ ≡
∫ y∗i (θ,di,ei)

0

Ūi (θ)
∂fi
∂ei

(yi| θ, di, êi) dyi

+

∫ y∗i (θ,di,ei)+ε

y∗i (θ,di,ei)

Si (Gi (yi| θ, di, di, ei, êi))
∂fi
∂ei

(yi| θ, di, êi) dyi

+

∫ ∞
y∗i (θ,di,ei)+ε

Si (yi)
∂fi
∂ei

(yi| θ, di, êi)− c′ (êi) .

At êi = ei, Gi (yi) = yi, so H̄ = H. For êi > ei suffi ciently close, we claim that H̄ ≥ H. Note

that Gi (yi| θ, di, di, ei, êi) ≤ yi if êi ≥ ei, because Fi is FOSD increasing in ei. Therefore,

Si (Gi (yi| θ, di, di, ei, êi)) ≤ Si (yi), because Si is monotonically increasing. Further, for êi
suffi ciently close to ei,

∂fi
∂ei

(yi| θ, di, êi) ≥ 0 for yi ≥ y∗i (θ, di, ei) + ε, because ∂fi
∂ei
is strictly

monotonically increasing in yi and equals 0 at y∗i (θ, di, ei) for decision di and effort ei. This

proves that H̄ ≥ H.

If ε = 0, then ∂H̄
∂êi

< 0 by CDFC. ∂H̄
∂êi
is continuous in ε, because Gi is continuous in yi, so

∂H̄
∂êi

< 0 for ε suffi ciently close to 0. So H̄ is such that H̄ = H at ei = êi, H̄ ≥ H for êi > ei

suffi ciently close, and ∂H̄
∂êi

< 0. We conclude that ∂H
∂êi

< 0.�
Claim 2. Let σ∗ be a surplus-maximizing equilibrium. Then for any on-path history htd ∈
Ht
d, and agent i, let ψ

∗
i ( ·|htd) be the distribution Si

(
ht+1

0

)∣∣htd induced by σ∗. Then e∗i,t =

ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
.

Proof of Claim 2. Suppose e∗i,t > ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
. It is easy to see that (IC) is a

necessary condition for a credible reward scheme to exist. So e∗i,t satisfies (2) and (3) by
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Lemma 1 and induces a distribution over continuation dyad-surplus equal to ψ∗i ( ·|htd). So it
must be that e∗i,t > eFBi (θt, di,t) by definition of ēi. By Definition 2, there exists some mapping

Ḡ (yi,t) such that the distribution Si
(
Ḡ (yi,t)

)∣∣htd, ēi,t (θt, d∗i,t, ψ∗i ( ·|htd)
)
equals ψ∗i ( ·|htd).

Define σ̃ as a strategy that is identical to σ∗ except following history htd. At history

htd, agents j 6= i play as in σ∗. Agent i chooses effort ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
. Following the

realization of output yt, agent i’s output yi,t is treated as output Ḡ (yi,t), but otherwise

continuation play is identical to σ∗. Following ht+1
0 , σ̃ has a credible reward scheme, be-

cause σ∗ does. In period t, there exists a credible reward scheme that induces agent i to

choose ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
by Definition 2. Agents j 6= i face marginal distributions over

continuation payoffs that are identical to σ∗, so they are willing to choose e∗j,t as in σ
∗. At

histories ht
′

0 for t
′ < t, Sj

(
σ̃, ht

′
0

)
= Sj

(
σ∗, ht

′
0

)
for j 6= i, while Si

(
σ̃, ht

′
0

)
≥ Si

(
σ∗, ht

′
0

)
,

because ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
leads to strictly higher surplus at history htd than e

∗
i,t. So σ̃ has

a credible reward scheme and so is payoff-equivalent to an equilibrium, which contradicts σ∗

being surplus-maximizing.

If e∗i,t < ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
, then e∗i,t < eFBi (θt, di,t) as well. Then the alternative

equilibrium that is identical to σ∗ except that agent i chooses ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
leads to a

strictly higher total surplus, which is a contradiction. Therefore e∗i,t = ēi
(
θt, d

∗
i,t, ψ

∗
i ( ·|htd)

)
.�

Claim 3. ēi (θt, di,t, ψ∗i ( ·|htd)) is weakly increasing in di,t.
Proof of Claim 3. Fix d∗i and di > d∗i . By assumption, for any di ≥ d∗i , there exists a

conditional distribution Ri

(
xi| θt, d∗i,t, di,t, yi

)
with density ri such that∫ y

0

∫ ∞
0

ri
(
xi| θt, d∗i,t, di,t, yi

)
fi (yi| θ, di, ei) dxidyi =

∫ y

0

fi (yi| θ, d∗i , ei) dyi.

Suppose ei satisfies the conditions of Definition 2 under (θ, d∗i , ψ
∗
i ). Then there exists some

Bi, Si : [0,∞)→ R that satisfy the conditions of Definition 2 and induce effort ei. For di ≥ d∗i ,

consider implementing the scheme B̃i, S̃i derived by first transforming the realized output yi
using the conditional distribution ri

(
xi| θt, d∗i,t, di,t, yi,t

)
, then applying B̃i, S̃i to the trans-

formed output. If the agent exerts effort ei, then this results in an identical distribution over

continuation play ψ∗i . Furthermore, ei satisfies (IC) and B̃i satisfies (DE), because both of

these expressions were satisfied under the original Bi, Si. So for any ei ≤ ēi (θ, d
∗
i , ψ

∗
i ( ·|htd)),

ei ≤ ēi (θ, di, ψ
∗
i ( ·|htd)) as well. �

Claim 4. Let σ∗ be a surplus-maximizing equilibrium with on-path history htd. Define

Si (yi,t) = Eσ∗
[
Si
(
σ∗, ht+1

0

)∣∣htd, yi,t]. Without loss of generality, Si (yi,t) is monotonically in-
creasing. Moreover, if êi

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

∣∣Si) ≤ eFBi
(
θt, d

∗
i,t

)
, then e∗i,t = êi

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

∣∣Si).
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Proof of Claim 4. We first argue that Si (yi,t) is monotonically increasing. Suppose not.

Then there exists yi < ỹi such that Si (yi) > Si (ỹi). Consider the following alternative: with

probability ε > 0, outcome ỹi is treated as outcome yi. With probability
fi( ỹi|θt,di,t,e∗i,t)
fi(yi|θt,di,t,e∗i,t)

ε,

outcome yi is treated as outcome ỹi. Agents j 6= i face identical distributions over contin-

uation play and so are willing to exert the same effort in every period. Agent i’s incentive

constraint can be written

c′ (ei) ≤
∫ y∗i (θt,di,t,ei,t)

0

Ūi (θt)
∂fi
∂ei

dyi +

∫ ∞
y∗i (θt,di,t,ei,t)

Si (yi)
∂fi/∂ei
fi

fi (yi| θt, di,t, et) dyi.

Thus, it suffi ces to show that

ε [Si (yi)− Si (ỹi)]
(∂fi/∂ei) (ỹi)

fi (ỹi)
fi (ỹi)+ε

[
fi (ỹi)

fi (yi)
Si (ỹi)−

fi (ỹi)

fi (yi)
Si (yi)

]
(∂fi/∂ei) (yi)

fi (yi)
fi (yi) ≥ 0

or

ε [Si (yi)− Si (ỹi)]
[

(∂fi/∂ei) (ỹi)

fi (ỹi)
− (∂fi/∂ei) (yi)

fi (yi)

]
≥ 0.

By assumption, Si (yi) − Si (ỹi) > 0, so the first term is positive. Similarly, (∂fi/∂ei)(ỹi)
fi(ỹi)

>
(∂fi/∂ei)(yi)

fi(yi)
, because ỹi > yi and fi satisfies strictly MLRP. Thus, this inequality holds strictly,

and so the proposed perturbation strictly relaxes agent i’s (IC) constraint without affecting

the (IC) constraints for agents j 6= i. So we can assume Si (yi) is monotonically increasing

without loss.

We already know that e∗i,t = ēi, and it is easy to show that ēi ≥ êi
(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
if

êi ≤ eFBi . Therefore, it suffi ces to show that ēi = êi
(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
. We know that ēi

satisfies the first-order condition

c′ (ēi) =

∫ ∞
0

Bi (yi)
∂fi
∂ei

(
yi| θt, d∗i,t, ēi

)
.

Since Bi must satisfy the (DE) constraint, this first-order condition implies that

c′ (ēi) ≤
∫ y∗i (θt,d∗i ,ēi)

0

Ūi (θt)
∂fi
∂ei

(
yi| θt, d∗i,t, ēi

)
+

∫ ∞
y∗i (θt,d∗i,t,ēi)

Si (yi)
∂fi
∂ei

(
yi| θt, d∗i,t, ēi

)
.

If this expression holds with equality, then ēi = êi
(
θt, d

∗
i,t, d

∗
i,t, ēi

)
and we are done. Suppose

that this expression does not hold with equality. Then either êi
(
θt, d

∗
i,t, d

∗
i,t, ēi

)
> ēi or

êi
(
θt, d

∗
i,t, d

∗
i,t, ēi

)
does not exist. The former contradicts ēi ≥ êi

(
θt, d

∗
i,t, d

∗
i,t, ēi

)
, while the

latter implies that (IC) is always satisfied and so êi
(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
≤ eFBi

(
θt, d

∗
i,t

)
cannot

hold. �
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Claim 5. Define

si

(
θt, di,t, d̃i,t, ei,t

)
= E

[
yi| θt, d̃i,t, êi,t

(
θt, di,t, d̃i,t, ei,t

)]
− c

(
êi,t

(
θt, di,t, d̃i,t, ei,t

))
and

s∗i

(
θ, d̃i,t, e

∗
i,t

)
= E

[
yi| θt, d̃i,t, e∗i,t

]
− c

(
e∗i,t
)
.

In any sequentially surplus-maximizing equilibrium σ∗, let ht0 ∈ Ht
0 be an on-path history.

For two agents i, j, if êi
(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
= e∗i,t and êj

(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
= e∗j,t, then

∂si

∂d̃i

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
=
∂sj

∂d̃j

(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
.

If êi
(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
= e∗i,t but êj

(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
6= e∗j,t, then

∂s∗j

∂d̃j
=
∂si

∂d̃i
.

If êi
(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
6= e∗i,t and êj

(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
6= e∗j,t, then

∂s∗i
∂d̃i

=
∂s∗j

∂d̃j
.

Proof of Claim 5. We consider each case separately. Let êi = e∗i,t and êj = e∗j,t. Suppose

towards contradiction that

∂si

∂d̃i

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
>
∂sj

∂d̃j

(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
.

Because σ∗ is sequentially surplus-maximizing, σ∗|ht0 must be surplus-maximizing. Con-
sider the following perturbed continuation equilibrium starting in period t (with perturba-

tions denoted by ~): d̃i,t = di,t + ε, d̃j,t = dj,t − ε, ẽi,t = êi,t

(
θt, di,t, d̃i,t, e

∗
i,t

)
and ẽj,t =

ej,t

(
θt, d

∗
j,t, d̃j,t, e

∗
j,t

)
. For all agents k 6∈ {i, j}, dk,t and ek,t remain the same. Continuation

play is as in σ∗, except that yi,t is first transformed byGi

(
·| θ, d∗i,t, d̃i,t, e∗i,t, êi,t

(
θt, d

∗
i,t, d̃i,t, e

∗
i,t

))
and likewise for yj,t. For all k 6∈ {i, j}, this reward scheme is identical to the reward scheme
in σ∗. For i,

Bi (yi,t) =

{
Ūi (θt)

Si (Gi (yi,t))

yi,t ≤ y∗i
(
θt, d

∗
i,t, e

∗
i,t

)
yi,t > y∗i

(
θt, d

∗
i,t, e

∗
i,t

)
and similarly for agent j. Such a perturbation is feasible, because di,t and dj,t are both

interior.
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For agents k 6∈ {i, j}, the (IC) constraint is

c′
(
e∗k,t
)

=

∫ ∞
0

· · ·
∫ ∞

0

Bk

(
yk,t, Gi (yi,t) , Gj (yj,t) , y−{i,j,k},t

) ∂fk
∂ek

(
yk,t| θt, d∗k,t, e∗k,t

)
dyk,t

∏
`6=k

f`

(
y`,t| θt, d̃`,t, ẽ`,t

)
dy`,t.

Fix y−i,t. Then changing variables to Gi (yi) yields∫ ∞
0

Bk

(
yk,t, Gi (yi,t) , Gj (yj,t) , y−{i,j,k},t

)
fi

(
yi,t| θt, d̃i,t, ẽi,t

)
dyi,t

=

∫ ∞
0

Bi

(
yk,t, yi,t, Gj (yj,t) , y−{i,j,k},t

)
fi (yi,t| θt, di,t, ei,t) dyi,t

since fi
(
G−1
i (yi,t)

∣∣ θt, d̃i,t, ẽi,t) ∂G−1i
∂yi

= fi
(
yi| θt, d∗i,t, e∗i,t

)
by definition of Gi. A similar cal-

culation holds for yj,t. For all ` 6∈ {i, j, k},
(
d̃`,t, ẽ`,t

)
=
(
d∗`,t, e

∗
`,t

)
. Therefore, agent k’s (IC)

constraint may be written

c′
(
e∗k,t
)

=

∫ ∞
0

· · ·
∫ ∞

0

Bk (yt)
∂fk
∂ek

(
yk,t| θt, d∗k,t, e∗k,t

)
dyk,t

∏
`6=k

f`
(
y`,t| θt, d∗`,t, e∗`,t

)
dy`,t.

But this (IC) constraint is identical to the (IC) constraint under σ∗ and so must hold. The

dynamic enforcement constraint must hold for k 6∈ {i, j} for similar reasons.
Consider agent i. Agent i is willing to choose effort êi,t

(
θt, di,t, d̃i,t, e

∗
i,t

)
, because this

effort satisfies IC-FOC by construction. Similarly for agent j. The dynamic enforcement

constraint holds by construction of the reward scheme and continuation play for agents i

and j.

This perturbed equilibrium generates identical surplus in periods t + 1 onwards. Thus,

σ∗|ht0 is surplus-maximizing only if

si
(
θt, d

∗
i,t, d

∗
i,t + ε, e∗i,t

)
+ sj

(
θt, d

∗
j,t, d

∗
j,t − ε, e∗j,t

)
≤ si

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
+ sj

(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
.

The left-hand side of this expression is the total surplus produced by agents i and j in period

t of the perturbed equilibrium. By Claim 4, the right-hand side is the total surplus produced

by agents i and j in period t of σ∗. Rearranging, dividing by ε > 0, and taking the limit as

ε→ 0 yields:

lim
ε→0

si
(
θt, d

∗
i,t, d

∗
i,t + ε, e∗i,t

)
− si

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
ε

≤ lim
ε→0

sj
(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
− sj

(
θt, d

∗
j,t, d

∗
j,t − ε, e∗j,t

)
ε

or
∂si

∂d̃i

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
≤ ∂sj

∂d̃j

(
θt, d

∗
j,t, d

∗
j,t, ej,t

)
,
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which is a contradiction.

Suppose êi = e∗i,t but êj 6= e∗j,t. Then êj > e∗j,t, since otherwise e
∗
j,t could not satisfy

IC-FOC for any reward scheme that satisfies that (DE) constraint. In particular,

c′
(
e∗j,t
)

<

∫ y∗j (θt,d∗j,t,e∗j,t)

0

Ūi (θt)
∂f

∂ej

(
yj,t| θt, d∗j,t, e∗j,t

)
dyj

+

∫ ∞
y∗j (θt,d∗j,t,e∗j,t)

Si (yi,t)
∂f

∂ej

(
yj,t| θt, d∗j,t, e∗j,t

)
dyj.

For ε > 0 suffi ciently small, e∗j,t continues to satisfy IC-FOC with the same reward scheme.

So consider an identical perturbation to the previous case, except that agent j continues to

choose e∗j,t. Derivations similar to the previous case prove that

∂s∗j

∂d̃j
=
∂si

∂d̃i

as desired.

If êi > eFBi and êj > eFBj , then IC-FOC binds for neither agent. So a similar perturbation

leads to the desired result.�
Claim 6. Let σ∗ be a surplus-maximizing equilibrium. At any history ht+1

0 such that for

some agent i, (i) e∗i,t < eFBi , (ii) yi,t ≥ y∗i,t, and (iii) there exists j 6= i such that yj,t′ ≤ y∗j,t′

for all t′ ≤ t, σ∗|ht+1
0 is not surplus-maximizing.

Proof of Claim 6. Suppose towards contradiction that σ∗|ht+1
0 is surplus-maximizing. By

Claim 5,
∂si

∂d̃i

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
=
∂sj

∂d̃j

(
θt, d

∗
j,t, d

∗
j,t, e

∗
j,t

)
.

Consider the following perturbation in σ∗: in all periods t′ < e, σ̃ is as in σ∗. In period

t, ẽi,t = e∗i,t + η for some η > 0, while ẽk,t = e∗k,t for all k 6= i. At the end of pe-

riod t, output for each agent is transformed using Gi

(
yi,t| θt, d∗i,t, d∗i,t, e∗i,t, ẽi,t

)
, and these

transformed outputs are used to calculate the “effective history” ht+1
0 . In period t + 1,

d̃i,t+1 = d∗i,t+1 +ε and d̃j,t+1 = d∗j,t+1−ε at the “effective history”ht+1
0 with yi,t ≥ y∗i,t

(
θt, d̃i,t

)
and yj,t < y∗j,t

(
θt, d̃j,t

)
. Agents choose efforts ẽi,t+1 = ēi

(
θt+1, d̃i,t+1, ψ

∗
i

(
·|ht+1

0

))
, ẽj,t+1 =

ēj

(
θt+1, d̃j,t+1, ψ

∗
j

(
·|ht+1

0

))
, and ẽk,t+1 = e∗k,t+1 for all k 6∈ {i, j}.

Given on-path history ht+1
d , let Si (yi) = Eσ∗

[
Si
(
σ∗, ht+2

0

)∣∣ht+1
d , yi

]
. Then there exist

functions Ḡi and Ḡj such that the distribution Si
(
Ḡi (yi)

)∣∣ θt+1, d̃t+1, ēi equals ψ
∗
i

(
·|ht+1

0

)
and similarly for agent j. In period t + 2 onwards, treat the realized outputs for agents i

and j as Ḡi (yi) and Ḡj (yj), but otherwise treat continuation play as in σ∗.
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We claim that this perturbed strategy is an equilibrium, and that if ε > 0 is suffi ciently

small, this perturbed strategy generates strictly higher total surplus. First consider continu-

ation play in periods t+2 onward. BFE are recursive, and S̃ was an equilibrium dyad-surplus

vector under the original equilibrium σ∗. So continuation play forms an equilibrium.

In period t + 1, agents i and j are willing to choose ēi, ēj respectively, by definition.

Agents k 6∈ {i, j} are willing to choose e∗k,t+1, because the distribution over reward schemes

and continuation play are identical to σ∗. Therefore, the change in total surplus in period

t+ 1 from this perturbation equals(
E
[
yi,t+1| θt+1, d̃i,t+1, ēi

]
− c (ēi) + E

[
yj,t+1| θt+1, d̃j,t+1, ēj

]
− c (ēj)

)
−
(
E
[
yi,t+1| θt+1, d

∗
i,t+1, e

∗
i,t+1

]
− c

(
e∗i,t+1

)
+ E

[
yj,t+1| θt+1, d

∗
j,t+1, e

∗
j,t+1

]
− c

(
e∗j,t+1

))
.

Suppose êi
(
θt+1, d

∗
i,t+1, d

∗
i,t+1, e

∗
i,t+1

)
= e∗i,t+1 and similarly for agent j. Then

E
[
yi,t+1| θt+1, d̃i,t+1, ēi

]
− c (ēi) ≥ E

[
yi,t+1| θt+1, d̃i,t+1, êi

]
− c (êi)

by definition of ēi, and similarly for agent j. By claim 4, e∗i,t+1 = êi
(
θt+1, d

∗
i,t+1, d

∗
i,t+1, e

∗
i,t+1

)
and e∗j,t+1 = êj

(
θt+1, d

∗
j,t+1, d

∗
j,t+1, e

∗
j,t+1

)
. Therefore, we can bound the change in total surplus

in period t+ 1 from below by

K (ε) = si

(
θt+1, d

∗
i,t+1, d̃i,t+1, e

∗
i,t+1

)
− si

(
θt+1, d

∗
i,t+1, d

∗
i,t+1, e

∗
i,t+1

)
+sj

(
θt+1, d

∗
j,t+1, d̃j,t+1, e

∗
j,t+1

)
− sj

(
θt+1, d

∗
j,t+1, d

∗
j,t+1, e

∗
j,t+1

)
.

This is the “cost”of these distorted policies. Note that limε→0K (ε) /ε = 0 by Claim 5.

If êi
(
θt+1, d

∗
i,t+1, d

∗
i,t+1, e

∗
i,t+1

)
6= e∗i,t+1, then

E
[
yi,t+1| θt+1, d̃i,t+1, ēi

]
− c (ēi) ≥ E

[
yi,t+1| θt+1, d̃i,t+1, e

∗
i,t+1

]
− c

(
e∗i,t+1

)
as shown in the proof of Claim 5. So limε→0K (ε) /ε = 0 by Claim 5.

Now consider period t. Because y∗j,t′ ≤ y∗j (θt′ , dj,t′ , ej,t′) for all t′ ≤ t, it is without loss to

assume that Bj

(
y∗j,t′
)
< Sj

(
ht
′+1

0

)
in every previous period. Suppose not for some t′ < t;

then we could replace the reward scheme with B̃j such that B̃j

(
y∗j,t′
)
< Sj

(
ht
′+1

0

)
for all

yj,t′ < y∗j (θt′ , dj,t′ , ej,t′) such that IC-FOC holds with equality. Therefore, the perturbation

of Sj
(
ht+1

0

)
described above does not affect agent j’s effort in period t. Similarly, the

distribution over Sk
(
ht+1

0

)
is identical for all k 6∈ {i, j}, so agent k is willing to choose the

same effort in period t and all preceding periods. It remains to consider whether agent i is

willing to choose effort ẽi,t.
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Because e∗i,t < eFBi
(
θt, d

∗
i,t

)
, we know that e∗i,t = êi

(
θt, d

∗
i,t, d

∗
i,t, e

∗
i,t

)
by Claim 4. Therefore,

c′
(
e∗i,t
)

=

∫ y∗i (θt,d∗i,t,e∗i,t)

0

Ūi (θt)
∂fi
∂ei

(
yi| θt, d∗i,t, e∗i,t

)
dyi+

∫ ∞
y∗i (θt,d∗i,t,e∗i,t)

Si (yi)
∂fi
∂ei

(
yi| θt, d∗i,t, e∗i,t

)
dyi.

By Claim 3, ēi ≥ e∗i in period t+ 1. Furthermore, by assumption

∂E [yi,t+1| θt+1, di,t+1, ei,t+1]

∂di,t+1

> 0.

Therefore, Si (yi) strictly increases for every yi ≥ y∗i
(
θt, d

∗
i,t, e

∗
i,t

)
. Let S̃i (yi) be the new dyad

surpluses. Then there exist ζ > 0 and a measurable function ρ : [y∗i
(
θt, d

∗
i,t, e

∗
i,t

)
,∞)→ {0, 1}

such that ∫ ∞
y∗i (θt,d∗i,t,e∗i,t)

ρ (yi)
∂fi
∂ei

dyi > 0

and such that for all yi such that ρ (yi) = 1,

S̃i (yi)− Si (yi) ≥ ζρ (yi) .

Consider the function

H̃ (ẽi, ζ) = −c (ẽi) +

∫ y∗i (θt,d∗i,t,e∗i,t)

0

Ūi (θt)
∂fi
∂ei

(
yi| θt, d∗i,t, ẽi

)
dyi

+δ

∫ ∞
y∗i (θt,d∗i,t,e∗i,t)

(
Si
(
Gi

(
yi| θt, d∗i,t, d∗i,t, e∗i,t, ẽi

))
+ ζρ

(
Gi

(
yi| θt, d∗i,t, d∗i,t, e∗i,t, ẽi

)) ∂fi
∂ei

(
yi| θt, d∗i,t, ẽi

)
dyi

)
Effort e∗i,t satisfies the original IC-FOC constraint with equality, so

H̃
(
e∗i,t, 0

)
= 0.

We claim that ∂ẽi,t
∂ζ

∣∣∣
(e∗i,t,0)

> 0. An argument similar to the one used in Claim 1 shows that

∂H̃
∂ẽi

< 0. So this partial derivative exists. It is strictly positive, because ∂H̃
∂ζ

> 0.

Define

s̃i (ẽi,t (ζ)) = E
[
yi| θt, d∗i,t, ẽi,t (ζ)

]
− c (ẽi,t (ζ)) .

Note that ζ depends on the difference between S̃i (yi) and Si (yi) and is therefore a function of

ε. Note also that s̃i is differentiable in ẽi and ∂s̃i
∂ẽi

> 0 at ẽi = e∗i,t, because e
∗
i,t < eFBi

(
θt, d

∗
i,t

)
.

Furthermore,

ζ (ε) ρ (yi,t) ≥ E
[
yi,t+1| θt+1, d

∗
i,t+1 + ε, e∗i,t+1

]
− E

[
yi,t+1| θt+1, d

∗
i,t+1, e

∗
i,t+1

]
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because effort e∗i,t is weakly increasing in ε. Define ζ (ε) to solve

ζ (ε) ρ (yi,t) = E
[
yi,t+1| θt+1, d

∗
i,t+1 + ε, e∗i,t+1

]
− E

[
yi,t+1| θt+1, d

∗
i,t+1, e

∗
i,t+1

]
.

Then ζ (ε) is differentiable and satisfies dζ/dε > 0. So the difference in period-t surplus may

be bounded from may be written

B (ε) = s̃i
(
ẽi,t
(
ζ (ε)

))
− s̃i

(
e∗i,t
)

where s̃i = E [yi| ei]− c (ei). Since only agent i’s effort changes in period t.

This perturbation leads to strictly higher total surplus if

B (ε) +K (ε) > 0.

Dividing by ε and taking the limit as ε→ 0 implies that this perturbation generates strictly

higher surplus if

lim
ε→0

B (ε)

ε
> − lim

ε→0

K (ε)

ε
.

Recall that limε→0 s̃i
(
ẽi,t
(
ζ (ε)

))
= s̃i

(
e∗i,t
)
. So

lim
ε→0

B (ε)

ε
=
ds̃i
dẽi

dẽi
dζ

dζ

dε
> 0,

because each of these derivatives is strictly positive. Similarly,

lim
ε→0

K (ε)

ε
=

∂si

∂d̃i,t+1

(
θt+1, d

∗
i,t+1, d

∗
i,t+1, e

∗
i,t+1

)
− ∂sj

∂d̃j,t+1

(
θt+1, d

∗
j,t+1, d

∗
j,t+1, e

∗
j,t+1

)
= 0.

We conclude that this perturbed equilibrium generates strictly higher surplus than σ∗, so σ∗

is not surplus-maximizing. �

7.0.2 Proof of Statement 1

If
∑N

i=1 di,t < 1 in some period t, consider the alternative decision d̃t with
∑N

i=1 d̃i,t = 1 and

d̃i,t ≥ di,t for all i, and each agent i chooses effort ēi(θ, di, ψ
∗
i (·|htd). It is straightforward to

show that this alternative is a continuation equilibrium that generates strictly higher surplus

total surplus and i-dyad surplus for all agents i ∈ {1, .., N}. Therefore, it also weakly
relaxes all dynamic-enforcement constraints in previous periods. So we have constructed an

equilibrium that generates more total ex ante surplus than σ∗. Contradiction. �
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Proof of Proposition 2

Let SR2 = αR − c, SR1 = R − c, and SWj = (1 − δ)(W − c) + δ(ρSRj + (1 − ρ)SWj) for

j ∈ {1, 2}. Note that SW2 < SW1 < SR2 < SR1 by assumption.

We claim that dt = 1 in any period with θt = W . Let T be the first period in which

dT = 2 if θt = W . We proceed by induction on T . If T = 0, then either at least one

worker works hard or neither do. If neither do, then the payoff is identical if d0 = 1. If

at least one agent works hard, then the payoff is strictly higher if d0 = 1 by assumption.

So d0 = 1. Similarly, if dT = 2 for the first time in period T > 0 and neither agent works

hard, then both total and dyad-surplus is the same if dT = 1. If at least one agent works

hard, consider setting dT = 1. This change increases total surplus. It also relaxes agent 1’s

dynamic enforcement constraints. But dt′ = 1 for all t′ < T , so only agent 1 worked hard

in previous periods. So this change strictly increases total surplus and relaxes all relevant

dynamic enforcement constraints.

Now, define δ̄ as the solution to

c =
δ̄

1− δ̄
SW2.

For δ < δ̄, agent 1 cannot be motivated to work hard if dt = 2 whenever θt = R. One option

is e1,t = 0 whenever θt = W. Define δ as the solution to

c =
δ

1− δS
R2.

Because SR2 > SW2, δ < δ̄. For the rest of the proof, consider δ ∈ (δ, δ̄)

Suppose that an equilibrium in which e1,t = 0 whenever θt = W is not effi cient. Then

dt = 1 in some period such that θt = R. Consider a history ht0 such that (i) θt = R for

the first time in period t, and (ii) dt′ = 1 with positive probability in some t′ following ht0.

Define χt′ = Pr{dt′ = 1|ht0} for all t′ ≥ t. Then total continuation surplus following history

ht0 is bounded above by

∞∑
t′=t

δt
′−t(1− δ)(χt′SR1 + 2(1− χt′)SR2),

while 1-dyad surplus is bounded above by

∞∑
t′=t

δt
′−t(1− δ)(χt′SR1 + (1− χt′)SR2).
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This bound on total surplus may be rewritten

(1− δ)SR1

∞∑
t′=t

δt
′−tχt′ + 2(1− δ)SR2

∞∑
t′=t

δt
′−t(1− χt′)

with a similar expression for the bound on 1-dyad surplus.

Note that
∞∑
t′=t

δt
′−tχt′ +

∞∑
t′=t

δt
′−t(1− χt′) =

1

1− δ .

Therefore, consider the alternative continuation equilibrium: with probability χ ≡ (1 −
δ)
∑∞

t′=t δ
t′−tχt′ , dt′ = 1 in every t′ ≥ t. Otherwise, dt′ = 2 in every t′ ≥ t. Because δ > δ,

both agents are willing to work hard in every t′ ≥ t in this alternative equilibrium. So this

alternative attains the upper bound on both total and 1-dyad surplus. Given that dt = 1

whenever θt = 1, it suffi ces to consider continuation equilibria of this kind once demand

becomes robust.

Finally, we argue that for δ suffi ciently near δ̄, the following equilibrium is surplus-

maximizing:

• If θt = W , then dt = 1 and e1,t = 1.

• In the first period t such that θt = R, dt = 1 with probability χ ∈ (0, 1].

• In every subsequent period t′ ≥ t, dt′ = dt.

Given the previous arguments, it suffi ces to show that (i) if dt = 1 when θt = R is

surplus-maximizing, then e1,t = 1 and S1 is the same in each period with θt = W , and (ii)

dt = 1 when θt = R is surplus-maximizing.

For (i), relax the problem so that agent 1’s dynamic enforcement constraint must only

hold the first time he chooses e1,t−1 = 1. Then i-dyad surplus from t onwards may be written

∞∑
t′=t

δt
′−t
(

(1− ρ)t
′−t [(1− ρ)(1− δ)(W − c) + ρδ(γt′S

R1 + (1− γt′)SR2)
])

or

(1− ρ)(1− δ)
1− δ(1− ρ)

(W − c) + δρSR1

∞∑
t′=t

δt
′−t(1− ρ)t

′−tγt′ + δρSR2
∑

δt
′−t(1− ρ)t

′−t(1− γt′).

Now, define

γ ≡ (1− δ(1− ρ))
∞∑
t′=t

δt
′−t(1− ρ)t

′−tγt′ .

44



Note that γ ∈ [0, 1]. Consider the equilibrium in which γt′ = γ in every period t′ ≥ t. This

alternative equilibrium satisfies agent 1’s dynamic enforcement constraint in t, as well as

in every t′ ≥ t. Therefore, this alternative generates at least as much total surplus as the

original equilibrium.

As δ → δ̄, γ → 0 satisfies agent 1’s dynamic enforcement constraint. Therefore, for δ

suffi ciently close to δ̄, e1,t = 1 while θt = W. This proves the claim.

Proof of Proposition 3

In period t and given reward scheme bi, agent i chooses ei,t = 1 if∫ ∞
0

(bi(x)[pi(x|e = 1, dt)− pi(x|e = 0, dt)]− (1− δ)c) dx ≥ 0.

Let Si(y) equal i-dyad surplus following output y. Then by Lemma 1, bi must satisfy

0 ≤ bi(y) ≤ Si(y) in equilibrium. Define y∗i as the unique output such that Li(y
∗
i |d 6= i) = 1.

Then if dt 6= i, agent i’s incentive constraint is satisfied only if

δ

1− δ

∫ ∞
0

∫ ∞
y∗i

δSi(x)[pi(xi|e = 1, dt)− pi(xi|e = 0, dt)]dxidx−i ≥ c.

Define SPi =
∫∞

0
xpi(x|ei = 1, d = i)dx − c, S1

i =
∫∞

0
xpi(x|ei = 1, d 6= i)dx − c, and

S0 =
∫∞

0
xpi(x|e = 0, d 6= i)dx. Define δ̄ as the largest discount factor for which agent 2’s IC

constraint holds for S2 = S1
2 . For δ < δ̄, agent 2 is only willing to work hard if he expects to

be promoted with positive probability. Therefore, if d2 = 1 with probability 1, then agent 2

shirks in each period on the equilibrium path.

How can agent 2 be motivated if δ < δ̄? agent 2 chooses e2,t = 0 in t ≥ 1 if d1 = 1.

Suppose that agent 1 is willing to chooses e1,t = 1 for t ≥ 1 even if d1 = 2. If ξ > 0, then

there exists an open interval of discount factors δ < δ̄ that satisfy this condition. Then agent

2 should be promoted with probability 1 if

S1
1 + SP2 > SP1 + S0

2

This inequality holds if ξ is not too large.

Now, suppose e1,t = 0 for t ≥ 1 if d1 = 2. Let ρ(y) ∈ [0, 1] be the probability that d1 = 1

following outcome y = (y1, y2). Total surplus for t ≥ 1 is increasing in ρ(y). Therefore, the

surplus-maximizing relational contract solves

max
ρ:R2→[0,1]

∫ ∞
0

∫ ∞
0

ρ(x)p1(x1|e = 1, d 6= 1)p2(x2|e = 1, d 6= 2)dx1dx2

s.t. IC for each agent given d0 = 0
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If y2 < y∗2, then ρ(y) = 1 is optimal because it maximizes the objective function, relaxes

agent 1’s dynamic enforcement constraint, and does not affect agent 2’s dynamic enforcement

constraint.

The Lagrangian for this constrained optimization problem can be solved separately for

each ρ(y). Doing so yields the following first-order expression:

1 + λ1

(
δ(SP1 − S0

1)

1− δ

[
1− 1

L1(y1|d 6= 1)

])
+ λ2

(
δ(S0

2 − SP2 )

1− δ

[
1− 1

L2(y2|d 6= 2)

])
where λi is the multiplier on agent i’s dynamic enforcement constraint. This expression is

constant in ρ. If it is negative, then ρ(y) = 0 optimally. If it is positive, then ρ(y) = 1

optimally. Rearranging, we have the desired condition for ρ(y) = 1.

If SP1 −SP2 < 1−δ
δ
E[y2− c|e2 = 1, d 6= 2], the equilibrium in which both agents work hard

in period 1 dominates the equilibrium in which only agent 1 works hard. This condition is

satisfied if ∆ is not too large.

Proof of Proposition 4

We begin the proof with a lemma that gives necessary and suffi cient conditions for a strategy

profile to be an equilibrium of the game with public monitoring.

Statement of Lemma A.1

1. If σ∗ is a BFE, then for any agent i ∈ {1, . . . , N} there exists a function bi : φ0

(
Ht
y

)
→

R satisfying

(a) Effort IC: bi satisfies (2).

(b) Public Dynamic Enforcement: for any I ⊂ {1, . . . , N} and hty,

δ
∑
i∈I

Eσ∗
[
Ūi
(
ht+1

0

)∣∣hty] ≤∑
i∈I

bi
(
φ0

(
hty
))
≤ δ

∑
i∈I

Eσ∗

[∑
i∈I

Ui
(
σ∗, ht+1

0

)
+ Π

(
σ∗, ht+1

0

)∣∣∣∣∣hty
]
.

(10)

(c) Individual Rationality: for any htd ∈ Ht
d, i ∈ {1, ..., N}, and I ⊆ {1, ..., N},

Ui(σ
∗, htd) ≥ Ūi(h

t
d) (11)

Π
(
σ∗, htd

)
≥

∑
i∈I

(
Eσ∗

[
bi
(
φ0

(
hty
))
− (1− δ) ci,t

∣∣htd]− Ui (σ∗, htd))
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2. For strategy σ, suppose there exists bi : φ0

(
Ht
y

)
→ R satisfying (2), (10), and (11).

Then there exists a BFE σ∗ that induces the same distribution over
{
Dt, dt, et, yt, {ui}Ni=0

}∞
t=0

as σ.

Proof of Lemma A.1

1: Suppose σ∗ is a PDE. Then at any ht0 ∈ Ht
0, agent i can earn at least Ūi (h

t
0) by

taking his outside option in each period. Similarly, the principal can earn no less than 0.

Define bi by

bi(φ0(hty)) = Eσ
[
(1− δ)τ i,t + δUi(σ, h

t+1
0 )|φ0(hty)

]
.

Then agent i chooses ei,t to solve (2). As in Lemma 1, bi(φ0(hty)) ≥ E[Ūi(h
t+1
0 )|hty]. Suppose

there exists a set I ⊂ {1, . . . , N} such that∑
i∈I

Eσ∗
[
τ i,t|φ0

(
hty
)]
> δEσ∗

[
Π(σ∗, ht+1

0 )
∣∣φ0

(
hty
)]
.

Then the principal may profitably deviate by choosing τ i,t = 0 for all i ∈ I, earning no less
than 0 in the continuation game. Together, these arguments imply (10).

For agent i’s per-period payoff at history htd to equal Eσ∗ [ui,t|htd], it must be that

Eσ∗
[
wi,t|htd

]
= Eσ∗

[
ui,t + c(ei,t)−

1

1− δ
(
bi
(
φ0

(
hty
))
− δUi

(
σ∗, ht+1

0

))∣∣∣∣htd] .
If wi,t < 0, then agent i is only willing to pay if

Eσ∗
[
(1− δ) (wi,t − c(ei,t)) + bi

(
φ0

(
hty
))∣∣htd] = Ui

(
σ∗, htd

)
≥ Ūi

(
htd
)
,

implying the first line of (11).

Let I = {i|Eσ∗ [wi,t|htd] ≤ 0}. Then the principal is only willing to pay
∑

i 6∈I wi,t > 0 if

Eσ∗

[
(1− δ)

(
N∑
i=1

yi,t −
∑
i 6∈I

wi,t

)
−

N∑
i=1

(
bi
(
φ0

(
hty
))
− δUi

(
σ∗, ht+1

0

))
+ δΠ

(
σ∗, ht+1

0

)∣∣∣∣∣htd
]
≥ ū0.

Plugging in wi,t and noting that
∑N

i=1 yi,t −
∑N

i=1 (ui,t + c(ei,t)) = πt, we may rewrite this

expression

Π
(
σ∗, htd

)
≥
∑
i∈I

(
Eσ∗

[
bi
(
φ0

(
hty
))
− (1− δ) c(ei,t)

∣∣htd]− δUi (σ∗, htd))
If this expression holds for the crucial set of agents I, then a fortiori it holds for any other

set of agents, implying the second line of (10).
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2 : Define ζ (ht) = {Dt′ , dt′ , et′ , yt′}tt′=0. Given history ht0 ∈ Ht
0, consider a history

h̃t0 ∈ Ht
0 such that h

t
0 and h̃

t
0 induce the same continuation games. We recursively construct

σ∗ so that Ui
(
σ∗, h̃t0

)
= Ui (σ, h

t
0) for all agents i ∈ {1, . . . , N} and Π(σ∗, h̃t0) = Π(σ, ht0).

1. If h̃t0 is on-path for σ
∗, then σ∗ specifies

(a) For Dt, the public randomization device chooses htd ∈ Ht
d according to σ| {ht, Dt}.

(b) The principal chooses dt ∈ Dt as in htd.

(c) Agent i’s wage equalswi,t = Eσ
[
ui,t + c(ei,t)− 1

1−δ
(
bi
(
φ0

(
hty
))
− δUi

(
σ, ht+1

0

))∣∣htd] .
(d) The public randomization device chooses htc ∈ Ht

c according to σ|htd.

(e) Agent i chooses c(ei,t) as in hte.

(f) Following realization of output yt, agent i’s bonus equals

τ i,t =
1

1− δEσ
[
bi
(
φ0

(
hty
))
− δUi

(
σ, ht+1

0

)∣∣hte, yt] .
(g) If no player deviates in period t, then

{
Π(σ∗, h̃t+1

0 ),
{
Ui

(
σ∗, h̃t+1

0

)}N
i=1

}
is chosen

according to σ| {hte, yt} .

2. Following a publicly observed unilateral deviation by agent i, the principal chooses all

future dt′ to hold agent i at Ūi (ht0). Each agent j chooses aj,t = 0 and wj,t = τ j,t = 0.

Following a unilateral deviation by the principal, play as if agent 1 deviated. Following

a simultaneous deviation by multiple players, play as if agent 1 deviated.

We claim σ∗ is a BFE. Consider an off-path history h̃t. Agent j earns no more than 0 if

aj,t = 1, which is not profitable because Ūi ≥ 0. τ j,t = wj,t = 0 is clearly optimal for each

player. The principal is willing to choose the specified d, because her payoff is 0 regardless of

the policy chosen. These punishments are therefore a BFE in which the principal and agent

i earn 0 and Ūi (ht0) respectively.

Suppose h̃t0 is on-path. We want to show (i) players earn Ui (σ, ht0) by conforming to σ∗,

and (ii) players have no profitable one-shot deviation. For (i), agent i’s payoff is

(1− δ)Eσ∗
[
Eσ

[
ui,t + c(ei,t)−

1

1− δ
(
bi
(
φ0

(
hty
))
− δUi

(
σ, ht+1

0

))
− ci,t

∣∣∣∣htd]∣∣∣∣ h̃t0]
+Eσ∗

[
Eσ
[
bi
(
φ0

(
hty
))
− δUi

(
σ, ht+1

0

)∣∣hte]∣∣ h̃t0] .
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Recall htd and h
t
e have distributions σ|ht0 and σ|htd, respectively. Moreover, σ∗|h̃te and σ|hte

induce identical distributions over yt. Applying Iterated Expectations, agent i’s payoffequals

(1− δ)Eσ
[
ui,t|ht0

]
+ δEσ

[
Ui
(
σ, ht+1

0

)∣∣ht0] = Ui
(
σ, ht0

)
,

as desired. Since σ|ht0 and σ∗| h̃t0 generate the same total surplus, the principal’s continuation
surplus must likewise equal Π (σ, ht0).

Consider potential deviations by the players. The only variable that is not commonly

observed is et. Players do not condition on past effort choices, so it suffi ces to check that

there are no proftiable deviations at each public history. If h̃td is on-path for σ
∗| h̃t0, then

by an argument similar to above Ui (σ, htd) = Ui

(
σ∗, h̃td

)
for all agents i ∈ {1, . . . , N} and

Π(σ, htd) = Π(σ∗, h̃td). Agents i ∈ {1, . . . , N} have no profitable deviation in ai,t because
Ui (σ, h

t
d) ≥ Ūi(h

t
d) by (11). Similarly, the principal has no profitable deviation: setting

I = ∅ in (2) implies Π (σ, htd) ≥ 0.

Consider deviations in the wage wi,t. If wi,t < 0, then agent i earns Ūi
(
h̃td

)
following a

deviation. But Ūi (htd) = Ūi

(
h̃td

)
by construction. So agent i has no profitable deviation,

because Ui (σ, htd) ≥ Ūi (h
t
d). Let I = {i ∈ {1, . . . , N}|wi,t ≤ 0}. If the principal has any

profitable deviation, then she has a profitable deviation in which wi,t = 0 for all i 6∈ I.

But this deviation is not profitable by an argument essentially identical to the argument in

statement 1.

Agent i chooses effort to maximize

ei,t ∈ argmax
ei∈R+

Eσ∗
[

(1− δ) (τ i,t − c(ei)) + δUi
(
σ∗, ht+1

0

)∣∣ h̃tw, ei,t = ei

]
.

Applying the Law of Iterated Expectations and the definition of τ i,t shows that this condition

reduces to (2). So agents do not deviate from the specified effort.

Finally, consider deviations in {τ i,t}Ni=1. If τ i,t < 0, agent i has no profitable deviation

by the first inequality in (10). Let J = {i ∈ {1, . . . , N}| τ i,t ≤ 0}. The principal has no
profitable deviations as long as

− (1− δ)
∑
i 6∈J

τ i,t + δEσ∗
[

Π
(
σ∗, h̃t+1

0

)∣∣∣ h̃ty] ≥ δū0.

By construction, Eσ∗
[

Π
(
σ∗, h̃t+1

0

)∣∣∣ h̃ty] = Eσ
[
Π
(
σ, ht+1

0

)∣∣hty]. So the second inequality in
(10) implies that the principal has no profitable deviation.
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Completing Proof of Proposition 4

Towards contradiction: suppose a surplus-maximizing BFE σ∗ is not sequentially surplus-

maximizing. We first define a strategy σ̃ that induces the same distribution over {Dt, dt, et, yt}∞t=0

as σ∗, but with Ui (σ̃, ht) = Ūi (h
t) for all agents i and ht ∈ Ht

0. Define σ̃ from σ∗ as in the

recursive construction from Lemma A.1, with the sole exception that τ i,t = 0 in each period,

anad

wi,t = Eσ̃

[
c(ei,t) +

1

1− δ
(
Ūi
(
htd
)
− δŪi

(
ht+1

0

))∣∣∣∣htd] .
Then agent i’s continuation surplus equals Ūi (htd) at each on-path h

t
d.

Let b∗i be the reward scheme that satisfies (2), (10), and (11) for σ∗. Then b∗i satisfies

these constraints for σ̃. In particular, Lemma A.1 applies and there exists a BFE σ̃∗ that

induces the same distribution over {Dt, dt, et, yt, }∞t=0 as σ̃. Recall that σ̃ and σ
∗ generate

the same total surplus, so σ̃∗ is a surplus-maximizing BFE. Because σ∗ is not sequentially

surplus-maximizing, there exists some on-path history ht0 ∈ Ht
0 such that σ̃

∗|ht0 is not
surplus-maximizing.

Finally, consider a strategy profile σ̄ that is identical to σ̃∗, except that the continuation

strategy σ̄|ht0 is surplus-maximizing. Because ht0 is reached on the equilibrium path, σ̄

generates strictly higher total ex-ante expected surplus than σ̃∗. At any history inconsistent

with or following ht0, σ̄ clearly satisfies Lemma 1. If h
t′
0 is a predecessor to h

t
0, consider the

reward scheme b̄i = b∗i . This scheme immediately satisfies (2). All agents are held at their

outside options in σ̄, so the principal’s payoff equals total expected continuation surplus

minus agents’outside options. Agents’outside options at ht
′

0 are identical under σ̃
∗ and σ̄.

Increasing the principal’s payoff relaxes (10) and (11). Since the principal’s continuation

payoff is higher under σ̄ than under σ̃∗, we conclude that σ̄ satisfies Lemma A.1. So σ∗

cannot be surplus-maximizing, which is a contradiction.

Proof of Proposition 5

We begin by finding necessary conditions for equilibrium. As before, define bi(hty) = Eσ[(1−
δ)τ i,t + δUi(h

t+1
0 )|hty] as agent i’s reward. By an argument similar to Lemma 1, agent i can

earn no less than 0 in the continuation game, so bi(hty) ≥ 0. Consider a deviation in the

principal’s relationship with agent i. The principal is min-maxed if agent i chooses his outside

option. With probability ε, this choice is not publicly observed, in which case the principal

loses no more than Πi ≡
∑∞

t′=1 δ
t′(1− δ)(yi,t+t′ −wi,t+t′ − τ i,t+t′).With probability 1− ε, this
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choice is publicly observed, in which case the principal loses no more than δ
∑N

j 6=1 Si + δΠi

because Πj ≤ Sj. Therefore, the principal is willing to pay τ i,t only if

τ i,t ≤
δ

1− δ

(
(1− ε)

∑
j 6=i

Si + Πi

)
.

Plugging this expression into the definition of bi yields that bi(hty) ≤ δ
(

(1− ε)
∑

j 6=i Sj + Si

)
Finally, the principal must not be able to profitably deviate by refusing to pay all agents, a

condition given by
∑N

j=1 bj(h
t
y) ≤ δ

∑N
j=1 Sj.

Suppose these three sets of conditions are the only constraints on the equilibrium. Define

C̃R1 = R − c, C̃R2 = (2 − ε)(αR − c), C̃W1 = (1 − δ)(W − c) + δ(ρC̃R1 + (1 − ρ)C̃W1),

and C̃W2 = (1 − δ)(W − c) + δ(ρCR2 + (1 − ρ)CW2). We make the following equilibrium

assumptions:

c ≤ δ

1− δ (αR− c)

c >
δ

1− δ C̃
W2

c ≤ δ

1− δ C̃
W1

2(αR− c) > R− c > (2− ε)(αR− c) > W − c > 2(αW − c)

(1− δ)(αR−W ) > δρ(1− ε)(αR− c)

As long as ε > 0, it is easy to show that these constraints are simultaneously satisfied by

an open, non-empty set of parameters. Define γ ∈ (0, 1) as the solution to c = δ
1−δ (γC̃

W1 +

(1− γ)C̃W2).

Note that for appropriately-chosen parameters, we can satisfy the constraints and make γ

arbitrarily close to 0. If these constraints are satisfied, any sequentially effi cient equilibrium

must hire one agent whenever θt = W and two agents whenever θt = R. However, under

this hiring scheme, the agent hired when θt = W cannot be motivated to work hard.

Now, consider the following strategy. If θt = W, then dt = 1, wi,t = 0, e1,t = 1, e2,t = 0,

τ 1,t = c, and τ 2,t = 0. If θt = R for the first time in period t, then the same actions as

above are played with probability γ. With probability 1 − γ, dt = 2, wi,t = 0, ei,t = 1,

and τ i,t = c. In subsequent periods, players choose the same actions as in the first period

such that θt = R. Following any deviation, the agents who observe that deviation reject

production and choose low effort in every period, and the principal maximizes surplus given

those strategies.
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This strategy is an equilibrium. The principal’s decision dt depends only on publicly

observed variables (the public randomization device and θt), so any deviation from this

decision results in payoff 0. So the principal is willing to follow dt. If θt = W , then the

principal is willing to pay τ 1,t = c because if she does not, she earns payoff 0 with probability

1− ε and otherwise earns δρ
1−δ+δρ(1− γ)(αR− c) continuation surplus. By choice of γ,

c =
δ

1− δ (γC̃W1 + (1− γ)C̃W2)

so the principal would rather pay τ 1,t than face punishment. Agent 1 is indifferent between

rejecting production and accepting and working hard, so is willing to follow the equilibrium.

Similar arguments show that there are no profitable deviations once θt = R since c ≤
δ

1−δ (αR− c) by assumption.
If γ is suffi ciently close to 0, then this equilibrium strictly dominates any sequentially

surplus-maximizing equilibrium because agent 1 works hard while θt = R. So no surplus-

maximizing equilibrium is sequentially surplus-maximizing, as desired.

7.1 Proof of Lemma 2

We begin by proving the appropriate extension of Lemma 1 to PBE.

Definition: PBE-Credible Recall ξi,t = (mi,t, wi,t). A reward schemeBi : Ξ×R× φi(Ht
d)→

R is PBE-credible in σ if:

1. For each htd, ξi,t, and Ci,t on the equilibrium path,

Ci,t ∈ arg max
Ci|di,θ

Eσ
[
Bi(ξi,t, yi,t|φi(htd))|φi(htd), ξi,t, Ci

]
− (1− δ)Ci. (12)

2. For each on-path hty,

δEσ
[
Ūi(h

t+1
0 )|φi(htd)

]
≤ Bi(ξi,t, yi,t|φi(htd)) ≤ δEσ

[
Si(σ, h

t+1
0 )|φi(htd), ξi,t, yi,t

]
. (13)

Lemma A.2: Extension of Lemma 1 to PBE

1. If σ∗ is a PBE in which no player conditions on past effort choices. Then for each agent

i there exists a PBE-credible reward scheme for σ∗.

2. Suppose σ is a strategy with a PBE-credible reward scheme Bi for each agent i. Then

there exists a PBE σ∗ that induces the same joint distribution over states of the world,

decisions, efforts, and outcomes as σ.
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Proof of Lemma A.2 This argument is adapted from Andrews and Barron (2014).

Statement 1: Suppose σ∗ is a PBE and define Bi by

Bi(ξi,t, yi,t|φi(htd)) = Eσ∗
[
(1− δ)τ i,t + δUi|φi(htd), ξi,t, yi,t

]
.

Then Bi must satisfy (12) and the left-hand inequality of (13) by an argument identical to

Lemma 1. The principal knows the true history apart from effort, which is irrelevant for

her payoff by assumption. So (9) must hold at each history. But then it holds a fortiori in

expectation, implying the right-hand side of (13)

Statement 2: We construct a PBE σ∗ from the strategy σ. Consider a construction

identical to the one used in the proof of Lemma 1, statement 2, except that

w∗i,t = Eσ

[
yi,t −

1

1− δ
(
Bi(ξi,t, yi,t|φi(htd))− δSi(σ, ht+1

0 )
)
|φi(htd), ξi,t

]
,

m∗i,t =
{
φi(h

t,∗
0 ), ai,t, ei,t,

{
Bi(ξi,t, yi,t|φi(htd))− δEσ

[
Si(σ, h

t+1
0 )|φi(htd), ξi,t, yi,t

]}
yi,t∈R

}
,

and the transfer following output y∗t equals

(1− δ)τ ∗i,t = Bi(ξi,t, y
∗
i,t|φi(htd))− δEσ

[
Si(σ, h

t+1
0 )|φi(htd), ξi,t, y∗i,t

]
.

By construction, σ∗ implements the same joint distribution over states of the world,

decisions, efforts, and outcomes as σ. It remains to show that σ∗ is a PBE. As in the proof of

Lemma 1, the principal earns 0 from each agent i at each history ht0 on and offthe equilibrium

path. So as in Lemma 1, the principal is willing to follow the equilibrium.

Consider deviations by agent i. It is straightforward to show that σ∗ induces a coarser

information partition for agent i than σ: if ht0,h
t,∗
0 and h̃t0, h̃

t,∗
0 are two pairs of histories from

the construction of σ∗, then φi(h
t,∗
0 ) = φi(h̃

t,∗
0 ) whenever φi(h

t
0) = φi(h̃

t
0). Following any

deviation in period t, agent i earns payoff Ūi(ht+1
0 ). Agent i cannot profitably deviate from

w∗i,t ≥ 0. Agent i is willing to choose ei,t if

ei,t ∈ arg max
ei

Eσ∗
[
(1− δ)τ ∗i,t + δUi|φi(h

t,∗
d ), ei

]
− (1− δ)c(ei).

Now, Si(σ, ht+1
0 ) = Si(σ

∗, ht+1,∗
0 ) = Ui(σ

∗, ht+1,∗
0 ), where the first equality is from the def-

inition of ht+1
0 and ht+1,∗

0 and the second equality follows from the fact that the principal

earns 0 at each history. Further, because φi(h
t,∗
0 ) = φi(h̃

t,∗
0 ) whenever φi(h

t
0) = φi(h̃

t
0) and
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Eσ
[
Si(σ, h

t+1
0 )|φi(htd)

]
is the same at all histories in φi(h

t,∗
d ) by construction of σ∗, it can be

shown that

Eσ∗
[
Eσ
[
Si(σ, h

t+1
0 )|φi(htd)

]
|φi(h

t,∗
d )
]

= Eσ
[
Si(σ, h

t+1
0 )|φi(h

t,∗
d )
]
.

Plugging these expressions into agent i’s incentive constraint yields (12), which is satisfied

because Bi is credible.

Agent i is willing to pay τ ∗i,t so long as

−(1− δ)τ ∗i,t ≤ δEσ∗
[
Ui − Ūi|φi(h

t+1,∗
0 )

]
.

Note that Eσ∗
[
Ūi|φi(h

t+1,∗
0 )

]
= Ūi(h

t+1
0 ) because Ūi depends only on the public history,

which is identical at ht+1,∗
0 and ht+1

0 . Therefore, the agent is willing to pay τ ∗i,t so long as

the left-hand side of (13) holds, which is true because Bi is credible. We conclude that no

player has a profitable deviation, so σ∗ is a PBE. �

Completing Proof of Lemma 2 (→) Suppose σ∗ attains continuation surplus V from

period t. Consider the following alternative σ̃:

1. At t = 0, the principal chooses ht0 from the distribution over Ht
0 induced by σ

∗.

2. Play continues as in σ∗|ht0, with the following exception: the message mi,t in period

t = 0 includes φi(h
t
0).

By construction, players have the same beliefs in σ̃ as in σ∗|ht0. Therefore, σ̃ is an

equilibrium. In expectation, σ̃ generates total surplus V because ht0 is drawn according to

the distribution induced by σ∗.

(←) Suppose σ∗ leads to net ex ante total surplus V . Construct σ̃ in the following way:

for all periods t′ < t, players follow the static equilibrium (ai,t′ = wi,t′ = τ i,t′ = 0, dt′ chosen

to maximize surplus in period t′ given these actions). From period t onwards, players follow

σ∗. Then σ̃ is clearly an equilibrium that attains continuation surplus V in period t. �

7.2 Proof of Proposition 6

Let σ∗ be a surplus-maximizing PBE. Then we claim that there exists a d∗ : Θ → D such

that d0 = d∗(θ0) with probability 1. For each i ∈ {1, .., N}, define

S̃i(x|h0
e) = Eσ∗

[
Si(σ

∗, h1
0)|θ0, d0, e0, y0 = x+ γ(θ0, d0)

]
.
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Let d∗(θ) be the unique vector such that
∑N

i=1 d
∗
i (θ) = 1 and ∀i, j ∈ {1, ..., N},

∂γi
∂di

(θ, d∗i (θ)) =
∂γj
∂dj

(θ, d∗j(θ)). (14)

The vector d∗(θ) exists and is unique because limdi→0
∂γi
∂di

=∞ and γi is strictly concave.

Suppose d0 6= d∗(θ0) with positive probability. Then there exists agents i, j such that
∂γi
∂di

(θ, d0,i) >
∂γj
∂dj

(θ, d0,j). Then it must be that d0,j > 0 and d0,i < 1. Consider an alternative

strategy that is identical to σ∗ except for t = 0. In t = 0: (i) d̃0,i = d0,i + ε, d̃0,j = d0,j − ε,
and d̃0,k = d0,k, (ii) agents choose e0 as in σ∗, and (iii) if output y0 is realized, continuation

play is chosen as if the output realized was ỹ0 = y0 − γ(θ0, d̃0) + γ(θ0, d0).

It is straightforward to show that this alternative strategy is a PBE. It generates strictly

higher total surplus in period t = 0 because σ∗ does not satisfy (14). Following period 0,

it generates the same surplus as σ∗. So σ∗ cannot be a surplus-maximizing equilibrium;

contradiction.

Now, suppose that σ∗ is a sequentially surplus-maximizing PBE. Then in every period t,

dt = d∗(θt) with probability 1 by the previous argument; otherwise, we could construct an

equilibrium that is surplus-maximizing but with d0 6= d∗(θ0). Further, we claim that there

exists a function e∗ : Θ → [0,∞) such that et = e∗(θ) with probability 1 in each period of

σ∗. Define x̄i(ei) as the unique xi such that
∂p̃i
∂ei

(xi, ei) = 0. Given that dt depends only on θt
in each period, each agent faces a stationary environment. The techniques of Levin (2003)

can be extended to this setting, which proves that et = e∗(θt) in each period t.

In any sequentially surplus-maximizing PBE, dt = d∗(θt) and et = e∗(θt). These ac-

tions are independnet of history, so agent beliefs about the true history are irrelevant for

satisfying (12) and (13). Therefore, any sequentially surplus-maximizing PBE σ∗ is also a

Recursive Equilibrium. At almost every on-path history ht0, σ
∗|ht0 is a PBE that maximizes

continuiation surplus. So σ∗ is a sequentially surplus-maximizing Recursive Equilibrium.

Suppose that surplus-maximizing Recursive Equilibria are not sequentially surplus-maximizing.

Then no sequentially surplus-maximizing RE exists, so by the argument above no sequen-

tially surplus-maximizing PBE exists. This proves the claim. �
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